Total coverage: 222717 (12%)of 2015781
27 28 26 24 23 22 22 22 22 21 22 1 20 21 21 20 20 21 2 2 24 28 2 2 1 1 2 13 13 13 13 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 // SPDX-License-Identifier: GPL-2.0-only #include <linux/fs.h> #include <linux/fs_struct.h> #include <linux/kernel_read_file.h> #include <linux/security.h> #include <linux/vmalloc.h> /** * kernel_read_file() - read file contents into a kernel buffer * * @file: file to read from * @offset: where to start reading from (see below). * @buf: pointer to a "void *" buffer for reading into (if * *@buf is NULL, a buffer will be allocated, and * @buf_size will be ignored) * @buf_size: size of buf, if already allocated. If @buf not * allocated, this is the largest size to allocate. * @file_size: if non-NULL, the full size of @file will be * written here. * @id: the kernel_read_file_id identifying the type of * file contents being read (for LSMs to examine) * * @offset must be 0 unless both @buf and @file_size are non-NULL * (i.e. the caller must be expecting to read partial file contents * via an already-allocated @buf, in at most @buf_size chunks, and * will be able to determine when the entire file was read by * checking @file_size). This isn't a recommended way to read a * file, though, since it is possible that the contents might * change between calls to kernel_read_file(). * * Returns number of bytes read (no single read will be bigger * than SSIZE_MAX), or negative on error. * */ ssize_t kernel_read_file(struct file *file, loff_t offset, void **buf, size_t buf_size, size_t *file_size, enum kernel_read_file_id id) { loff_t i_size, pos; ssize_t copied; void *allocated = NULL; bool whole_file; int ret; if (offset != 0 && (!*buf || !file_size)) return -EINVAL; if (!S_ISREG(file_inode(file)->i_mode)) return -EINVAL; ret = deny_write_access(file); if (ret) return ret; i_size = i_size_read(file_inode(file)); if (i_size <= 0) { ret = -EINVAL; goto out; } /* The file is too big for sane activities. */ if (i_size > SSIZE_MAX) { ret = -EFBIG; goto out; } /* The entire file cannot be read in one buffer. */ if (!file_size && offset == 0 && i_size > buf_size) { ret = -EFBIG; goto out; } whole_file = (offset == 0 && i_size <= buf_size); ret = security_kernel_read_file(file, id, whole_file); if (ret) goto out; if (file_size) *file_size = i_size; if (!*buf) *buf = allocated = vmalloc(i_size); if (!*buf) { ret = -ENOMEM; goto out; } pos = offset; copied = 0; while (copied < buf_size) { ssize_t bytes; size_t wanted = min_t(size_t, buf_size - copied, i_size - pos); bytes = kernel_read(file, *buf + copied, wanted, &pos); if (bytes < 0) { ret = bytes; goto out_free; } if (bytes == 0) break; copied += bytes; } if (whole_file) { if (pos != i_size) { ret = -EIO; goto out_free; } ret = security_kernel_post_read_file(file, *buf, i_size, id); } out_free: if (ret < 0) { if (allocated) { vfree(*buf); *buf = NULL; } } out: allow_write_access(file); return ret == 0 ? copied : ret; } EXPORT_SYMBOL_GPL(kernel_read_file); ssize_t kernel_read_file_from_path(const char *path, loff_t offset, void **buf, size_t buf_size, size_t *file_size, enum kernel_read_file_id id) { struct file *file; ssize_t ret; if (!path || !*path) return -EINVAL; file = filp_open(path, O_RDONLY, 0); if (IS_ERR(file)) return PTR_ERR(file); ret = kernel_read_file(file, offset, buf, buf_size, file_size, id); fput(file); return ret; } EXPORT_SYMBOL_GPL(kernel_read_file_from_path); ssize_t kernel_read_file_from_path_initns(const char *path, loff_t offset, void **buf, size_t buf_size, size_t *file_size, enum kernel_read_file_id id) { struct file *file; struct path root; ssize_t ret; if (!path || !*path) return -EINVAL; task_lock(&init_task); get_fs_root(init_task.fs, &root); task_unlock(&init_task); file = file_open_root(&root, path, O_RDONLY, 0); path_put(&root); if (IS_ERR(file)) return PTR_ERR(file); ret = kernel_read_file(file, offset, buf, buf_size, file_size, id); fput(file); return ret; } EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); ssize_t kernel_read_file_from_fd(int fd, loff_t offset, void **buf, size_t buf_size, size_t *file_size, enum kernel_read_file_id id) { CLASS(fd, f)(fd); if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ)) return -EBADF; return kernel_read_file(fd_file(f), offset, buf, buf_size, file_size, id); } EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
31 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 // SPDX-License-Identifier: GPL-2.0 /* * RTC related functions */ #include <linux/platform_device.h> #include <linux/mc146818rtc.h> #include <linux/export.h> #include <linux/pnp.h> #include <asm/vsyscall.h> #include <asm/x86_init.h> #include <asm/time.h> #include <asm/setup.h> #ifdef CONFIG_X86_32 /* * This is a special lock that is owned by the CPU and holds the index * register we are working with. It is required for NMI access to the * CMOS/RTC registers. See arch/x86/include/asm/mc146818rtc.h for details. */ volatile unsigned long cmos_lock; EXPORT_SYMBOL(cmos_lock); #endif /* CONFIG_X86_32 */ DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); /* * In order to set the CMOS clock precisely, mach_set_cmos_time has to be * called 500 ms after the second nowtime has started, because when * nowtime is written into the registers of the CMOS clock, it will * jump to the next second precisely 500 ms later. Check the Motorola * MC146818A or Dallas DS12887 data sheet for details. */ int mach_set_cmos_time(const struct timespec64 *now) { unsigned long long nowtime = now->tv_sec; struct rtc_time tm; int retval = 0; rtc_time64_to_tm(nowtime, &tm); if (!rtc_valid_tm(&tm)) { retval = mc146818_set_time(&tm); if (retval) printk(KERN_ERR "%s: RTC write failed with error %d\n", __func__, retval); } else { printk(KERN_ERR "%s: Invalid RTC value: write of %llx to RTC failed\n", __func__, nowtime); retval = -EINVAL; } return retval; } void mach_get_cmos_time(struct timespec64 *now) { struct rtc_time tm; /* * If pm_trace abused the RTC as storage, set the timespec to 0, * which tells the caller that this RTC value is unusable. */ if (!pm_trace_rtc_valid()) { now->tv_sec = now->tv_nsec = 0; return; } if (mc146818_get_time(&tm, 1000)) { pr_err("Unable to read current time from RTC\n"); now->tv_sec = now->tv_nsec = 0; return; } now->tv_sec = rtc_tm_to_time64(&tm); now->tv_nsec = 0; } /* Routines for accessing the CMOS RAM/RTC. */ unsigned char rtc_cmos_read(unsigned char addr) { unsigned char val; lock_cmos_prefix(addr); outb(addr, RTC_PORT(0)); val = inb(RTC_PORT(1)); lock_cmos_suffix(addr); return val; } EXPORT_SYMBOL(rtc_cmos_read); void rtc_cmos_write(unsigned char val, unsigned char addr) { lock_cmos_prefix(addr); outb(addr, RTC_PORT(0)); outb(val, RTC_PORT(1)); lock_cmos_suffix(addr); } EXPORT_SYMBOL(rtc_cmos_write); int update_persistent_clock64(struct timespec64 now) { return x86_platform.set_wallclock(&now); } /* not static: needed by APM */ void read_persistent_clock64(struct timespec64 *ts) { x86_platform.get_wallclock(ts); } static struct resource rtc_resources[] = { [0] = { .start = RTC_PORT(0), .end = RTC_PORT(1), .flags = IORESOURCE_IO, }, [1] = { .start = RTC_IRQ, .end = RTC_IRQ, .flags = IORESOURCE_IRQ, } }; static struct platform_device rtc_device = { .name = "rtc_cmos", .id = -1, .resource = rtc_resources, .num_resources = ARRAY_SIZE(rtc_resources), }; static __init int add_rtc_cmos(void) { #ifdef CONFIG_PNP static const char * const ids[] __initconst = { "PNP0b00", "PNP0b01", "PNP0b02", }; struct pnp_dev *dev; int i; pnp_for_each_dev(dev) { for (i = 0; i < ARRAY_SIZE(ids); i++) { if (compare_pnp_id(dev->id, ids[i]) != 0) return 0; } } #endif if (!x86_platform.legacy.rtc) return -ENODEV; platform_device_register(&rtc_device); dev_info(&rtc_device.dev, "registered platform RTC device (no PNP device found)\n"); return 0; } device_initcall(add_rtc_cmos);
4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 3 3 3 3 3 3 4 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 // SPDX-License-Identifier: GPL-2.0-or-later /* * IPV6 GSO/GRO offload support * Linux INET6 implementation */ #include <linux/kernel.h> #include <linux/socket.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/printk.h> #include <net/protocol.h> #include <net/ipv6.h> #include <net/inet_common.h> #include <net/tcp.h> #include <net/udp.h> #include <net/gro.h> #include <net/gso.h> #include "ip6_offload.h" /* All GRO functions are always builtin, except UDP over ipv6, which lays in * ipv6 module, as it depends on UDPv6 lookup function, so we need special care * when ipv6 is built as a module */ #if IS_BUILTIN(CONFIG_IPV6) #define INDIRECT_CALL_L4(f, f2, f1, ...) INDIRECT_CALL_2(f, f2, f1, __VA_ARGS__) #else #define INDIRECT_CALL_L4(f, f2, f1, ...) INDIRECT_CALL_1(f, f2, __VA_ARGS__) #endif #define indirect_call_gro_receive_l4(f2, f1, cb, head, skb) \ ({ \ unlikely(gro_recursion_inc_test(skb)) ? \ NAPI_GRO_CB(skb)->flush |= 1, NULL : \ INDIRECT_CALL_L4(cb, f2, f1, head, skb); \ }) static int ipv6_gro_pull_exthdrs(struct sk_buff *skb, int off, int proto) { const struct net_offload *ops = NULL; struct ipv6_opt_hdr *opth; for (;;) { int len; ops = rcu_dereference(inet6_offloads[proto]); if (unlikely(!ops)) break; if (!(ops->flags & INET6_PROTO_GSO_EXTHDR)) break; opth = skb_gro_header(skb, off + sizeof(*opth), off); if (unlikely(!opth)) break; len = ipv6_optlen(opth); opth = skb_gro_header(skb, off + len, off); if (unlikely(!opth)) break; proto = opth->nexthdr; off += len; } skb_gro_pull(skb, off - skb_gro_receive_network_offset(skb)); return proto; } static int ipv6_gso_pull_exthdrs(struct sk_buff *skb, int proto) { const struct net_offload *ops = NULL; for (;;) { struct ipv6_opt_hdr *opth; int len; ops = rcu_dereference(inet6_offloads[proto]); if (unlikely(!ops)) break; if (!(ops->flags & INET6_PROTO_GSO_EXTHDR)) break; if (unlikely(!pskb_may_pull(skb, 8))) break; opth = (void *)skb->data; len = ipv6_optlen(opth); if (unlikely(!pskb_may_pull(skb, len))) break; opth = (void *)skb->data; proto = opth->nexthdr; __skb_pull(skb, len); } return proto; } static struct sk_buff *ipv6_gso_segment(struct sk_buff *skb, netdev_features_t features) { struct sk_buff *segs = ERR_PTR(-EINVAL); struct ipv6hdr *ipv6h; const struct net_offload *ops; int proto, err; struct frag_hdr *fptr; unsigned int payload_len; u8 *prevhdr; int offset = 0; bool encap, udpfrag; int nhoff; bool gso_partial; skb_reset_network_header(skb); err = ipv6_hopopt_jumbo_remove(skb); if (err) return ERR_PTR(err); nhoff = skb_network_header(skb) - skb_mac_header(skb); if (unlikely(!pskb_may_pull(skb, sizeof(*ipv6h)))) goto out; encap = SKB_GSO_CB(skb)->encap_level > 0; if (encap) features &= skb->dev->hw_enc_features; SKB_GSO_CB(skb)->encap_level += sizeof(*ipv6h); ipv6h = ipv6_hdr(skb); __skb_pull(skb, sizeof(*ipv6h)); segs = ERR_PTR(-EPROTONOSUPPORT); proto = ipv6_gso_pull_exthdrs(skb, ipv6h->nexthdr); if (skb->encapsulation && skb_shinfo(skb)->gso_type & (SKB_GSO_IPXIP4 | SKB_GSO_IPXIP6)) udpfrag = proto == IPPROTO_UDP && encap && (skb_shinfo(skb)->gso_type & SKB_GSO_UDP); else udpfrag = proto == IPPROTO_UDP && !skb->encapsulation && (skb_shinfo(skb)->gso_type & SKB_GSO_UDP); ops = rcu_dereference(inet6_offloads[proto]); if (likely(ops && ops->callbacks.gso_segment)) { skb_reset_transport_header(skb); segs = ops->callbacks.gso_segment(skb, features); if (!segs) skb->network_header = skb_mac_header(skb) + nhoff - skb->head; } if (IS_ERR_OR_NULL(segs)) goto out; gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); for (skb = segs; skb; skb = skb->next) { ipv6h = (struct ipv6hdr *)(skb_mac_header(skb) + nhoff); if (gso_partial && skb_is_gso(skb)) payload_len = skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)(ipv6h + 1); else payload_len = skb->len - nhoff - sizeof(*ipv6h); ipv6h->payload_len = htons(payload_len); skb->network_header = (u8 *)ipv6h - skb->head; skb_reset_mac_len(skb); if (udpfrag) { int err = ip6_find_1stfragopt(skb, &prevhdr); if (err < 0) { kfree_skb_list(segs); return ERR_PTR(err); } fptr = (struct frag_hdr *)((u8 *)ipv6h + err); fptr->frag_off = htons(offset); if (skb->next) fptr->frag_off |= htons(IP6_MF); offset += (ntohs(ipv6h->payload_len) - sizeof(struct frag_hdr)); } if (encap) skb_reset_inner_headers(skb); } out: return segs; } /* Return the total length of all the extension hdrs, following the same * logic in ipv6_gso_pull_exthdrs() when parsing ext-hdrs. */ static int ipv6_exthdrs_len(struct ipv6hdr *iph, const struct net_offload **opps) { struct ipv6_opt_hdr *opth = (void *)iph; int len = 0, proto, optlen = sizeof(*iph); proto = iph->nexthdr; for (;;) { *opps = rcu_dereference(inet6_offloads[proto]); if (unlikely(!(*opps))) break; if (!((*opps)->flags & INET6_PROTO_GSO_EXTHDR)) break; opth = (void *)opth + optlen; optlen = ipv6_optlen(opth); len += optlen; proto = opth->nexthdr; } return len; } INDIRECT_CALLABLE_SCOPE struct sk_buff *ipv6_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct net_offload *ops; struct sk_buff *pp = NULL; struct sk_buff *p; struct ipv6hdr *iph; unsigned int nlen; unsigned int hlen; unsigned int off; u16 flush = 1; int proto; off = skb_gro_offset(skb); hlen = off + sizeof(*iph); iph = skb_gro_header(skb, hlen, off); if (unlikely(!iph)) goto out; NAPI_GRO_CB(skb)->network_offsets[NAPI_GRO_CB(skb)->encap_mark] = off; flush += ntohs(iph->payload_len) != skb->len - hlen; proto = iph->nexthdr; ops = rcu_dereference(inet6_offloads[proto]); if (!ops || !ops->callbacks.gro_receive) { proto = ipv6_gro_pull_exthdrs(skb, hlen, proto); ops = rcu_dereference(inet6_offloads[proto]); if (!ops || !ops->callbacks.gro_receive) goto out; iph = skb_gro_network_header(skb); } else { skb_gro_pull(skb, sizeof(*iph)); } skb_set_transport_header(skb, skb_gro_offset(skb)); NAPI_GRO_CB(skb)->proto = proto; flush--; nlen = skb_gro_offset(skb) - off; list_for_each_entry(p, head, list) { const struct ipv6hdr *iph2; __be32 first_word; /* <Version:4><Traffic_Class:8><Flow_Label:20> */ if (!NAPI_GRO_CB(p)->same_flow) continue; iph2 = (struct ipv6hdr *)(p->data + off); first_word = *(__be32 *)iph ^ *(__be32 *)iph2; /* All fields must match except length and Traffic Class. * XXX skbs on the gro_list have all been parsed and pulled * already so we don't need to compare nlen * (nlen != (sizeof(*iph2) + ipv6_exthdrs_len(iph2, &ops))) * memcmp() alone below is sufficient, right? */ if ((first_word & htonl(0xF00FFFFF)) || !ipv6_addr_equal(&iph->saddr, &iph2->saddr) || !ipv6_addr_equal(&iph->daddr, &iph2->daddr) || iph->nexthdr != iph2->nexthdr) { not_same_flow: NAPI_GRO_CB(p)->same_flow = 0; continue; } if (unlikely(nlen > sizeof(struct ipv6hdr))) { if (memcmp(iph + 1, iph2 + 1, nlen - sizeof(struct ipv6hdr))) goto not_same_flow; } } NAPI_GRO_CB(skb)->flush |= flush; skb_gro_postpull_rcsum(skb, iph, nlen); pp = indirect_call_gro_receive_l4(tcp6_gro_receive, udp6_gro_receive, ops->callbacks.gro_receive, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } static struct sk_buff *sit_ip6ip6_gro_receive(struct list_head *head, struct sk_buff *skb) { /* Common GRO receive for SIT and IP6IP6 */ if (NAPI_GRO_CB(skb)->encap_mark) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } NAPI_GRO_CB(skb)->encap_mark = 1; return ipv6_gro_receive(head, skb); } static struct sk_buff *ip4ip6_gro_receive(struct list_head *head, struct sk_buff *skb) { /* Common GRO receive for SIT and IP6IP6 */ if (NAPI_GRO_CB(skb)->encap_mark) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } NAPI_GRO_CB(skb)->encap_mark = 1; return inet_gro_receive(head, skb); } INDIRECT_CALLABLE_SCOPE int ipv6_gro_complete(struct sk_buff *skb, int nhoff) { const struct net_offload *ops; struct ipv6hdr *iph; int err = -ENOSYS; u32 payload_len; if (skb->encapsulation) { skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IPV6)); skb_set_inner_network_header(skb, nhoff); } payload_len = skb->len - nhoff - sizeof(*iph); if (unlikely(payload_len > IPV6_MAXPLEN)) { struct hop_jumbo_hdr *hop_jumbo; int hoplen = sizeof(*hop_jumbo); /* Move network header left */ memmove(skb_mac_header(skb) - hoplen, skb_mac_header(skb), skb->transport_header - skb->mac_header); skb->data -= hoplen; skb->len += hoplen; skb->mac_header -= hoplen; skb->network_header -= hoplen; iph = (struct ipv6hdr *)(skb->data + nhoff); hop_jumbo = (struct hop_jumbo_hdr *)(iph + 1); /* Build hop-by-hop options */ hop_jumbo->nexthdr = iph->nexthdr; hop_jumbo->hdrlen = 0; hop_jumbo->tlv_type = IPV6_TLV_JUMBO; hop_jumbo->tlv_len = 4; hop_jumbo->jumbo_payload_len = htonl(payload_len + hoplen); iph->nexthdr = NEXTHDR_HOP; iph->payload_len = 0; } else { iph = (struct ipv6hdr *)(skb->data + nhoff); iph->payload_len = htons(payload_len); } nhoff += sizeof(*iph) + ipv6_exthdrs_len(iph, &ops); if (WARN_ON(!ops || !ops->callbacks.gro_complete)) goto out; err = INDIRECT_CALL_L4(ops->callbacks.gro_complete, tcp6_gro_complete, udp6_gro_complete, skb, nhoff); out: return err; } static int sit_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; return ipv6_gro_complete(skb, nhoff); } static int ip6ip6_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP6; return ipv6_gro_complete(skb, nhoff); } static int ip4ip6_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP6; return inet_gro_complete(skb, nhoff); } static struct sk_buff *sit_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) return ERR_PTR(-EINVAL); return ipv6_gso_segment(skb, features); } static struct sk_buff *ip4ip6_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP6)) return ERR_PTR(-EINVAL); return inet_gso_segment(skb, features); } static struct sk_buff *ip6ip6_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP6)) return ERR_PTR(-EINVAL); return ipv6_gso_segment(skb, features); } static const struct net_offload sit_offload = { .callbacks = { .gso_segment = sit_gso_segment, .gro_receive = sit_ip6ip6_gro_receive, .gro_complete = sit_gro_complete, }, }; static const struct net_offload ip4ip6_offload = { .callbacks = { .gso_segment = ip4ip6_gso_segment, .gro_receive = ip4ip6_gro_receive, .gro_complete = ip4ip6_gro_complete, }, }; static const struct net_offload ip6ip6_offload = { .callbacks = { .gso_segment = ip6ip6_gso_segment, .gro_receive = sit_ip6ip6_gro_receive, .gro_complete = ip6ip6_gro_complete, }, }; static int __init ipv6_offload_init(void) { if (tcpv6_offload_init() < 0) pr_crit("%s: Cannot add TCP protocol offload\n", __func__); if (ipv6_exthdrs_offload_init() < 0) pr_crit("%s: Cannot add EXTHDRS protocol offload\n", __func__); net_hotdata.ipv6_packet_offload = (struct packet_offload) { .type = cpu_to_be16(ETH_P_IPV6), .callbacks = { .gso_segment = ipv6_gso_segment, .gro_receive = ipv6_gro_receive, .gro_complete = ipv6_gro_complete, }, }; dev_add_offload(&net_hotdata.ipv6_packet_offload); inet_add_offload(&sit_offload, IPPROTO_IPV6); inet6_add_offload(&ip6ip6_offload, IPPROTO_IPV6); inet6_add_offload(&ip4ip6_offload, IPPROTO_IPIP); return 0; } fs_initcall(ipv6_offload_init);
21268 21253 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 /* SPDX-License-Identifier: GPL-2.0 */ /* * Latched RB-trees * * Copyright (C) 2015 Intel Corp., Peter Zijlstra <peterz@infradead.org> * * Since RB-trees have non-atomic modifications they're not immediately suited * for RCU/lockless queries. Even though we made RB-tree lookups non-fatal for * lockless lookups; we cannot guarantee they return a correct result. * * The simplest solution is a seqlock + RB-tree, this will allow lockless * lookups; but has the constraint (inherent to the seqlock) that read sides * cannot nest in write sides. * * If we need to allow unconditional lookups (say as required for NMI context * usage) we need a more complex setup; this data structure provides this by * employing the latch technique -- see @write_seqcount_latch_begin -- to * implement a latched RB-tree which does allow for unconditional lookups by * virtue of always having (at least) one stable copy of the tree. * * However, while we have the guarantee that there is at all times one stable * copy, this does not guarantee an iteration will not observe modifications. * What might have been a stable copy at the start of the iteration, need not * remain so for the duration of the iteration. * * Therefore, this does require a lockless RB-tree iteration to be non-fatal; * see the comment in lib/rbtree.c. Note however that we only require the first * condition -- not seeing partial stores -- because the latch thing isolates * us from loops. If we were to interrupt a modification the lookup would be * pointed at the stable tree and complete while the modification was halted. */ #ifndef RB_TREE_LATCH_H #define RB_TREE_LATCH_H #include <linux/rbtree.h> #include <linux/seqlock.h> #include <linux/rcupdate.h> struct latch_tree_node { struct rb_node node[2]; }; struct latch_tree_root { seqcount_latch_t seq; struct rb_root tree[2]; }; /** * latch_tree_ops - operators to define the tree order * @less: used for insertion; provides the (partial) order between two elements. * @comp: used for lookups; provides the order between the search key and an element. * * The operators are related like: * * comp(a->key,b) < 0 := less(a,b) * comp(a->key,b) > 0 := less(b,a) * comp(a->key,b) == 0 := !less(a,b) && !less(b,a) * * If these operators define a partial order on the elements we make no * guarantee on which of the elements matching the key is found. See * latch_tree_find(). */ struct latch_tree_ops { bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b); int (*comp)(void *key, struct latch_tree_node *b); }; static __always_inline struct latch_tree_node * __lt_from_rb(struct rb_node *node, int idx) { return container_of(node, struct latch_tree_node, node[idx]); } static __always_inline void __lt_insert(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx, bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b)) { struct rb_root *root = &ltr->tree[idx]; struct rb_node **link = &root->rb_node; struct rb_node *node = &ltn->node[idx]; struct rb_node *parent = NULL; struct latch_tree_node *ltp; while (*link) { parent = *link; ltp = __lt_from_rb(parent, idx); if (less(ltn, ltp)) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node_rcu(node, parent, link); rb_insert_color(node, root); } static __always_inline void __lt_erase(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx) { rb_erase(&ltn->node[idx], &ltr->tree[idx]); } static __always_inline struct latch_tree_node * __lt_find(void *key, struct latch_tree_root *ltr, int idx, int (*comp)(void *key, struct latch_tree_node *node)) { struct rb_node *node = rcu_dereference_raw(ltr->tree[idx].rb_node); struct latch_tree_node *ltn; int c; while (node) { ltn = __lt_from_rb(node, idx); c = comp(key, ltn); if (c < 0) node = rcu_dereference_raw(node->rb_left); else if (c > 0) node = rcu_dereference_raw(node->rb_right); else return ltn; } return NULL; } /** * latch_tree_insert() - insert @node into the trees @root * @node: nodes to insert * @root: trees to insert @node into * @ops: operators defining the node order * * It inserts @node into @root in an ordered fashion such that we can always * observe one complete tree. See the comment for write_seqcount_latch_begin(). * * The inserts use rcu_assign_pointer() to publish the element such that the * tree structure is stored before we can observe the new @node. * * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be * serialized. */ static __always_inline void latch_tree_insert(struct latch_tree_node *node, struct latch_tree_root *root, const struct latch_tree_ops *ops) { write_seqcount_latch_begin(&root->seq); __lt_insert(node, root, 0, ops->less); write_seqcount_latch(&root->seq); __lt_insert(node, root, 1, ops->less); write_seqcount_latch_end(&root->seq); } /** * latch_tree_erase() - removes @node from the trees @root * @node: nodes to remote * @root: trees to remove @node from * @ops: operators defining the node order * * Removes @node from the trees @root in an ordered fashion such that we can * always observe one complete tree. See the comment for * write_seqcount_latch_begin(). * * It is assumed that @node will observe one RCU quiescent state before being * reused of freed. * * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be * serialized. */ static __always_inline void latch_tree_erase(struct latch_tree_node *node, struct latch_tree_root *root, const struct latch_tree_ops *ops) { write_seqcount_latch_begin(&root->seq); __lt_erase(node, root, 0); write_seqcount_latch(&root->seq); __lt_erase(node, root, 1); write_seqcount_latch_end(&root->seq); } /** * latch_tree_find() - find the node matching @key in the trees @root * @key: search key * @root: trees to search for @key * @ops: operators defining the node order * * Does a lockless lookup in the trees @root for the node matching @key. * * It is assumed that this is called while holding the appropriate RCU read * side lock. * * If the operators define a partial order on the elements (there are multiple * elements which have the same key value) it is undefined which of these * elements will be found. Nor is it possible to iterate the tree to find * further elements with the same key value. * * Returns: a pointer to the node matching @key or NULL. */ static __always_inline struct latch_tree_node * latch_tree_find(void *key, struct latch_tree_root *root, const struct latch_tree_ops *ops) { struct latch_tree_node *node; unsigned int seq; do { seq = read_seqcount_latch(&root->seq); node = __lt_find(key, root, seq & 1, ops->comp); } while (read_seqcount_latch_retry(&root->seq, seq)); return node; } #endif /* RB_TREE_LATCH_H */
3 3 4 535 11 11 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/lockd/svc.c * * This is the central lockd service. * * FIXME: Separate the lockd NFS server functionality from the lockd NFS * client functionality. Oh why didn't Sun create two separate * services in the first place? * * Authors: Olaf Kirch (okir@monad.swb.de) * * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> */ #include <linux/module.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/moduleparam.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/uio.h> #include <linux/smp.h> #include <linux/mutex.h> #include <linux/freezer.h> #include <linux/inetdevice.h> #include <linux/sunrpc/types.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/svc.h> #include <linux/sunrpc/svcsock.h> #include <linux/sunrpc/svc_xprt.h> #include <net/ip.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <linux/lockd/lockd.h> #include <linux/nfs.h> #include "netns.h" #include "procfs.h" #include "netlink.h" #define NLMDBG_FACILITY NLMDBG_SVC #define LOCKD_BUFSIZE (1024 + NLMSVC_XDRSIZE) static struct svc_program nlmsvc_program; const struct nlmsvc_binding *nlmsvc_ops; EXPORT_SYMBOL_GPL(nlmsvc_ops); static DEFINE_MUTEX(nlmsvc_mutex); static unsigned int nlmsvc_users; static struct svc_serv *nlmsvc_serv; static void nlmsvc_request_retry(struct timer_list *tl) { svc_wake_up(nlmsvc_serv); } DEFINE_TIMER(nlmsvc_retry, nlmsvc_request_retry); unsigned int lockd_net_id; /* * These can be set at insmod time (useful for NFS as root filesystem), * and also changed through the sysctl interface. -- Jamie Lokier, Aug 2003 */ static unsigned long nlm_grace_period; unsigned long nlm_timeout = LOCKD_DFLT_TIMEO; static int nlm_udpport, nlm_tcpport; /* * Constants needed for the sysctl interface. */ static const unsigned long nlm_grace_period_min = 0; static const unsigned long nlm_grace_period_max = 240; static const unsigned long nlm_timeout_min = 3; static const unsigned long nlm_timeout_max = 20; #ifdef CONFIG_SYSCTL static const int nlm_port_min = 0, nlm_port_max = 65535; static struct ctl_table_header * nlm_sysctl_table; #endif static unsigned long get_lockd_grace_period(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); /* Return the net-ns specific grace period, if there is one */ if (ln->gracetime) return ln->gracetime * HZ; /* Note: nlm_timeout should always be nonzero */ if (nlm_grace_period) return roundup(nlm_grace_period, nlm_timeout) * HZ; else return nlm_timeout * 5 * HZ; } static void grace_ender(struct work_struct *grace) { struct delayed_work *dwork = to_delayed_work(grace); struct lockd_net *ln = container_of(dwork, struct lockd_net, grace_period_end); locks_end_grace(&ln->lockd_manager); } static void set_grace_period(struct net *net) { unsigned long grace_period = get_lockd_grace_period(net); struct lockd_net *ln = net_generic(net, lockd_net_id); locks_start_grace(net, &ln->lockd_manager); cancel_delayed_work_sync(&ln->grace_period_end); schedule_delayed_work(&ln->grace_period_end, grace_period); } /* * This is the lockd kernel thread */ static int lockd(void *vrqstp) { struct svc_rqst *rqstp = vrqstp; struct net *net = &init_net; struct lockd_net *ln = net_generic(net, lockd_net_id); svc_thread_init_status(rqstp, 0); /* try_to_freeze() is called from svc_recv() */ set_freezable(); dprintk("NFS locking service started (ver " LOCKD_VERSION ").\n"); /* * The main request loop. We don't terminate until the last * NFS mount or NFS daemon has gone away. */ while (!svc_thread_should_stop(rqstp)) { nlmsvc_retry_blocked(rqstp); svc_recv(rqstp); } if (nlmsvc_ops) nlmsvc_invalidate_all(); nlm_shutdown_hosts(); cancel_delayed_work_sync(&ln->grace_period_end); locks_end_grace(&ln->lockd_manager); dprintk("lockd_down: service stopped\n"); svc_exit_thread(rqstp); return 0; } static int create_lockd_listener(struct svc_serv *serv, const char *name, struct net *net, const int family, const unsigned short port, const struct cred *cred) { struct svc_xprt *xprt; xprt = svc_find_xprt(serv, name, net, family, 0); if (xprt == NULL) return svc_xprt_create(serv, name, net, family, port, SVC_SOCK_DEFAULTS, cred); svc_xprt_put(xprt); return 0; } static int create_lockd_family(struct svc_serv *serv, struct net *net, const int family, const struct cred *cred) { struct lockd_net *ln = net_generic(net, lockd_net_id); int err; err = create_lockd_listener(serv, "udp", net, family, ln->udp_port ? ln->udp_port : nlm_udpport, cred); if (err < 0) return err; return create_lockd_listener(serv, "tcp", net, family, ln->tcp_port ? ln->tcp_port : nlm_tcpport, cred); } /* * Ensure there are active UDP and TCP listeners for lockd. * * Even if we have only TCP NFS mounts and/or TCP NFSDs, some * local services (such as rpc.statd) still require UDP, and * some NFS servers do not yet support NLM over TCP. * * Returns zero if all listeners are available; otherwise a * negative errno value is returned. */ static int make_socks(struct svc_serv *serv, struct net *net, const struct cred *cred) { static int warned; int err; err = create_lockd_family(serv, net, PF_INET, cred); if (err < 0) goto out_err; err = create_lockd_family(serv, net, PF_INET6, cred); if (err < 0 && err != -EAFNOSUPPORT) goto out_err; warned = 0; return 0; out_err: if (warned++ == 0) printk(KERN_WARNING "lockd_up: makesock failed, error=%d\n", err); svc_xprt_destroy_all(serv, net); svc_rpcb_cleanup(serv, net); return err; } static int lockd_up_net(struct svc_serv *serv, struct net *net, const struct cred *cred) { struct lockd_net *ln = net_generic(net, lockd_net_id); int error; if (ln->nlmsvc_users++) return 0; error = svc_bind(serv, net); if (error) goto err_bind; error = make_socks(serv, net, cred); if (error < 0) goto err_bind; set_grace_period(net); dprintk("%s: per-net data created; net=%x\n", __func__, net->ns.inum); return 0; err_bind: ln->nlmsvc_users--; return error; } static void lockd_down_net(struct svc_serv *serv, struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); if (ln->nlmsvc_users) { if (--ln->nlmsvc_users == 0) { nlm_shutdown_hosts_net(net); cancel_delayed_work_sync(&ln->grace_period_end); locks_end_grace(&ln->lockd_manager); svc_xprt_destroy_all(serv, net); svc_rpcb_cleanup(serv, net); } } else { pr_err("%s: no users! net=%x\n", __func__, net->ns.inum); BUG(); } } static int lockd_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct in_ifaddr *ifa = (struct in_ifaddr *)ptr; struct sockaddr_in sin; if (event != NETDEV_DOWN) goto out; if (nlmsvc_serv) { dprintk("lockd_inetaddr_event: removed %pI4\n", &ifa->ifa_local); sin.sin_family = AF_INET; sin.sin_addr.s_addr = ifa->ifa_local; svc_age_temp_xprts_now(nlmsvc_serv, (struct sockaddr *)&sin); } out: return NOTIFY_DONE; } static struct notifier_block lockd_inetaddr_notifier = { .notifier_call = lockd_inetaddr_event, }; #if IS_ENABLED(CONFIG_IPV6) static int lockd_inet6addr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct inet6_ifaddr *ifa = (struct inet6_ifaddr *)ptr; struct sockaddr_in6 sin6; if (event != NETDEV_DOWN) goto out; if (nlmsvc_serv) { dprintk("lockd_inet6addr_event: removed %pI6\n", &ifa->addr); sin6.sin6_family = AF_INET6; sin6.sin6_addr = ifa->addr; if (ipv6_addr_type(&sin6.sin6_addr) & IPV6_ADDR_LINKLOCAL) sin6.sin6_scope_id = ifa->idev->dev->ifindex; svc_age_temp_xprts_now(nlmsvc_serv, (struct sockaddr *)&sin6); } out: return NOTIFY_DONE; } static struct notifier_block lockd_inet6addr_notifier = { .notifier_call = lockd_inet6addr_event, }; #endif static int lockd_get(void) { struct svc_serv *serv; int error; if (nlmsvc_serv) { nlmsvc_users++; return 0; } /* * Sanity check: if there's no pid, * we should be the first user ... */ if (nlmsvc_users) printk(KERN_WARNING "lockd_up: no pid, %d users??\n", nlmsvc_users); serv = svc_create(&nlmsvc_program, LOCKD_BUFSIZE, lockd); if (!serv) { printk(KERN_WARNING "lockd_up: create service failed\n"); return -ENOMEM; } error = svc_set_num_threads(serv, NULL, 1); if (error < 0) { svc_destroy(&serv); return error; } nlmsvc_serv = serv; register_inetaddr_notifier(&lockd_inetaddr_notifier); #if IS_ENABLED(CONFIG_IPV6) register_inet6addr_notifier(&lockd_inet6addr_notifier); #endif dprintk("lockd_up: service created\n"); nlmsvc_users++; return 0; } static void lockd_put(void) { if (WARN(nlmsvc_users <= 0, "lockd_down: no users!\n")) return; if (--nlmsvc_users) return; unregister_inetaddr_notifier(&lockd_inetaddr_notifier); #if IS_ENABLED(CONFIG_IPV6) unregister_inet6addr_notifier(&lockd_inet6addr_notifier); #endif svc_set_num_threads(nlmsvc_serv, NULL, 0); timer_delete_sync(&nlmsvc_retry); svc_destroy(&nlmsvc_serv); dprintk("lockd_down: service destroyed\n"); } /* * Bring up the lockd process if it's not already up. */ int lockd_up(struct net *net, const struct cred *cred) { int error; mutex_lock(&nlmsvc_mutex); error = lockd_get(); if (error) goto err; error = lockd_up_net(nlmsvc_serv, net, cred); if (error < 0) { lockd_put(); goto err; } err: mutex_unlock(&nlmsvc_mutex); return error; } EXPORT_SYMBOL_GPL(lockd_up); /* * Decrement the user count and bring down lockd if we're the last. */ void lockd_down(struct net *net) { mutex_lock(&nlmsvc_mutex); lockd_down_net(nlmsvc_serv, net); lockd_put(); mutex_unlock(&nlmsvc_mutex); } EXPORT_SYMBOL_GPL(lockd_down); #ifdef CONFIG_SYSCTL /* * Sysctl parameters (same as module parameters, different interface). */ static const struct ctl_table nlm_sysctls[] = { { .procname = "nlm_grace_period", .data = &nlm_grace_period, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = (unsigned long *) &nlm_grace_period_min, .extra2 = (unsigned long *) &nlm_grace_period_max, }, { .procname = "nlm_timeout", .data = &nlm_timeout, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = (unsigned long *) &nlm_timeout_min, .extra2 = (unsigned long *) &nlm_timeout_max, }, { .procname = "nlm_udpport", .data = &nlm_udpport, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = (int *) &nlm_port_min, .extra2 = (int *) &nlm_port_max, }, { .procname = "nlm_tcpport", .data = &nlm_tcpport, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = (int *) &nlm_port_min, .extra2 = (int *) &nlm_port_max, }, { .procname = "nsm_use_hostnames", .data = &nsm_use_hostnames, .maxlen = sizeof(bool), .mode = 0644, .proc_handler = proc_dobool, }, { .procname = "nsm_local_state", .data = &nsm_local_state, .maxlen = sizeof(nsm_local_state), .mode = 0644, .proc_handler = proc_douintvec, .extra1 = SYSCTL_ZERO, }, }; #endif /* CONFIG_SYSCTL */ /* * Module (and sysfs) parameters. */ #define param_set_min_max(name, type, which_strtol, min, max) \ static int param_set_##name(const char *val, const struct kernel_param *kp) \ { \ char *endp; \ __typeof__(type) num = which_strtol(val, &endp, 0); \ if (endp == val || *endp || num < (min) || num > (max)) \ return -EINVAL; \ *((type *) kp->arg) = num; \ return 0; \ } static inline int is_callback(u32 proc) { return proc == NLMPROC_GRANTED || proc == NLMPROC_GRANTED_MSG || proc == NLMPROC_TEST_RES || proc == NLMPROC_LOCK_RES || proc == NLMPROC_CANCEL_RES || proc == NLMPROC_UNLOCK_RES || proc == NLMPROC_NSM_NOTIFY; } static enum svc_auth_status lockd_authenticate(struct svc_rqst *rqstp) { rqstp->rq_client = NULL; switch (rqstp->rq_authop->flavour) { case RPC_AUTH_NULL: case RPC_AUTH_UNIX: rqstp->rq_auth_stat = rpc_auth_ok; if (rqstp->rq_proc == 0) return SVC_OK; if (is_callback(rqstp->rq_proc)) { /* Leave it to individual procedures to * call nlmsvc_lookup_host(rqstp) */ return SVC_OK; } return svc_set_client(rqstp); } rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } param_set_min_max(port, int, simple_strtol, 0, 65535) param_set_min_max(grace_period, unsigned long, simple_strtoul, nlm_grace_period_min, nlm_grace_period_max) param_set_min_max(timeout, unsigned long, simple_strtoul, nlm_timeout_min, nlm_timeout_max) MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); MODULE_DESCRIPTION("NFS file locking service version " LOCKD_VERSION "."); MODULE_LICENSE("GPL"); module_param_call(nlm_grace_period, param_set_grace_period, param_get_ulong, &nlm_grace_period, 0644); module_param_call(nlm_timeout, param_set_timeout, param_get_ulong, &nlm_timeout, 0644); module_param_call(nlm_udpport, param_set_port, param_get_int, &nlm_udpport, 0644); module_param_call(nlm_tcpport, param_set_port, param_get_int, &nlm_tcpport, 0644); module_param(nsm_use_hostnames, bool, 0644); static int lockd_init_net(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); INIT_DELAYED_WORK(&ln->grace_period_end, grace_ender); INIT_LIST_HEAD(&ln->lockd_manager.list); ln->lockd_manager.block_opens = false; INIT_LIST_HEAD(&ln->nsm_handles); return 0; } static void lockd_exit_net(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); WARN_ONCE(!list_empty(&ln->lockd_manager.list), "net %x %s: lockd_manager.list is not empty\n", net->ns.inum, __func__); WARN_ONCE(!list_empty(&ln->nsm_handles), "net %x %s: nsm_handles list is not empty\n", net->ns.inum, __func__); WARN_ONCE(delayed_work_pending(&ln->grace_period_end), "net %x %s: grace_period_end was not cancelled\n", net->ns.inum, __func__); } static struct pernet_operations lockd_net_ops = { .init = lockd_init_net, .exit = lockd_exit_net, .id = &lockd_net_id, .size = sizeof(struct lockd_net), }; /* * Initialising and terminating the module. */ static int __init init_nlm(void) { int err; #ifdef CONFIG_SYSCTL err = -ENOMEM; nlm_sysctl_table = register_sysctl("fs/nfs", nlm_sysctls); if (nlm_sysctl_table == NULL) goto err_sysctl; #endif err = register_pernet_subsys(&lockd_net_ops); if (err) goto err_pernet; err = genl_register_family(&lockd_nl_family); if (err) goto err_netlink; err = lockd_create_procfs(); if (err) goto err_procfs; return 0; err_procfs: genl_unregister_family(&lockd_nl_family); err_netlink: unregister_pernet_subsys(&lockd_net_ops); err_pernet: #ifdef CONFIG_SYSCTL unregister_sysctl_table(nlm_sysctl_table); err_sysctl: #endif return err; } static void __exit exit_nlm(void) { /* FIXME: delete all NLM clients */ nlm_shutdown_hosts(); genl_unregister_family(&lockd_nl_family); lockd_remove_procfs(); unregister_pernet_subsys(&lockd_net_ops); #ifdef CONFIG_SYSCTL unregister_sysctl_table(nlm_sysctl_table); #endif } module_init(init_nlm); module_exit(exit_nlm); /** * nlmsvc_dispatch - Process an NLM Request * @rqstp: incoming request * * Return values: * %0: Processing complete; do not send a Reply * %1: Processing complete; send Reply in rqstp->rq_res */ static int nlmsvc_dispatch(struct svc_rqst *rqstp) { const struct svc_procedure *procp = rqstp->rq_procinfo; __be32 *statp = rqstp->rq_accept_statp; if (!procp->pc_decode(rqstp, &rqstp->rq_arg_stream)) goto out_decode_err; *statp = procp->pc_func(rqstp); if (*statp == rpc_drop_reply) return 0; if (*statp != rpc_success) return 1; if (!procp->pc_encode(rqstp, &rqstp->rq_res_stream)) goto out_encode_err; return 1; out_decode_err: *statp = rpc_garbage_args; return 1; out_encode_err: *statp = rpc_system_err; return 1; } /* * Define NLM program and procedures */ static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version1_count[17]); static const struct svc_version nlmsvc_version1 = { .vs_vers = 1, .vs_nproc = 17, .vs_proc = nlmsvc_procedures, .vs_count = nlmsvc_version1_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version3_count[ARRAY_SIZE(nlmsvc_procedures)]); static const struct svc_version nlmsvc_version3 = { .vs_vers = 3, .vs_nproc = ARRAY_SIZE(nlmsvc_procedures), .vs_proc = nlmsvc_procedures, .vs_count = nlmsvc_version3_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; #ifdef CONFIG_LOCKD_V4 static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version4_count[ARRAY_SIZE(nlmsvc_procedures4)]); static const struct svc_version nlmsvc_version4 = { .vs_vers = 4, .vs_nproc = ARRAY_SIZE(nlmsvc_procedures4), .vs_proc = nlmsvc_procedures4, .vs_count = nlmsvc_version4_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; #endif static const struct svc_version *nlmsvc_version[] = { [1] = &nlmsvc_version1, [3] = &nlmsvc_version3, #ifdef CONFIG_LOCKD_V4 [4] = &nlmsvc_version4, #endif }; #define NLM_NRVERS ARRAY_SIZE(nlmsvc_version) static struct svc_program nlmsvc_program = { .pg_prog = NLM_PROGRAM, /* program number */ .pg_nvers = NLM_NRVERS, /* number of entries in nlmsvc_version */ .pg_vers = nlmsvc_version, /* version table */ .pg_name = "lockd", /* service name */ .pg_class = "nfsd", /* share authentication with nfsd */ .pg_authenticate = &lockd_authenticate, /* export authentication */ .pg_init_request = svc_generic_init_request, .pg_rpcbind_set = svc_generic_rpcbind_set, }; /** * lockd_nl_server_set_doit - set the lockd server parameters via netlink * @skb: reply buffer * @info: netlink metadata and command arguments * * This updates the per-net values. When updating the values in the init_net * namespace, also update the "legacy" global values. * * Return 0 on success or a negative errno. */ int lockd_nl_server_set_doit(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct lockd_net *ln = net_generic(net, lockd_net_id); const struct nlattr *attr; if (GENL_REQ_ATTR_CHECK(info, LOCKD_A_SERVER_GRACETIME)) return -EINVAL; if (info->attrs[LOCKD_A_SERVER_GRACETIME] || info->attrs[LOCKD_A_SERVER_TCP_PORT] || info->attrs[LOCKD_A_SERVER_UDP_PORT]) { attr = info->attrs[LOCKD_A_SERVER_GRACETIME]; if (attr) { u32 gracetime = nla_get_u32(attr); if (gracetime > nlm_grace_period_max) return -EINVAL; ln->gracetime = gracetime; if (net == &init_net) nlm_grace_period = gracetime; } attr = info->attrs[LOCKD_A_SERVER_TCP_PORT]; if (attr) { ln->tcp_port = nla_get_u16(attr); if (net == &init_net) nlm_tcpport = ln->tcp_port; } attr = info->attrs[LOCKD_A_SERVER_UDP_PORT]; if (attr) { ln->udp_port = nla_get_u16(attr); if (net == &init_net) nlm_udpport = ln->udp_port; } } return 0; } /** * lockd_nl_server_get_doit - get lockd server parameters via netlink * @skb: reply buffer * @info: netlink metadata and command arguments * * Return 0 on success or a negative errno. */ int lockd_nl_server_get_doit(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct lockd_net *ln = net_generic(net, lockd_net_id); void *hdr; int err; skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = genlmsg_iput(skb, info); if (!hdr) { err = -EMSGSIZE; goto err_free_msg; } err = nla_put_u32(skb, LOCKD_A_SERVER_GRACETIME, ln->gracetime) || nla_put_u16(skb, LOCKD_A_SERVER_TCP_PORT, ln->tcp_port) || nla_put_u16(skb, LOCKD_A_SERVER_UDP_PORT, ln->udp_port); if (err) goto err_free_msg; genlmsg_end(skb, hdr); return genlmsg_reply(skb, info); err_free_msg: nlmsg_free(skb); return err; }
11 1 913 806 913 5 660 23 106 1 104 104 105 105 1 105 77 38 27 27 19 10 104 103 104 11 105 105 1 1 11 11 11 9 11 11 8 11 11 11 11 11 9 9 11 11 11 10 11 11 11 9 11 11 11 10 10 11 11 11 11 11 11 11 11 11 10 1 11 11 11 11 11 10 11 11 11 11 1004 23 39 36 37 37 58 46 45 47 58 22 58 8 147 1009 3 3 7 5 3 3 2 5 1 4 3 4 7 4 3 5 5 7 535 535 535 535 535 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 // SPDX-License-Identifier: GPL-2.0-or-later /* * Neighbour Discovery for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Mike Shaver <shaver@ingenia.com> */ /* * Changes: * * Alexey I. Froloff : RFC6106 (DNSSL) support * Pierre Ynard : export userland ND options * through netlink (RDNSS support) * Lars Fenneberg : fixed MTU setting on receipt * of an RA. * Janos Farkas : kmalloc failure checks * Alexey Kuznetsov : state machine reworked * and moved to net/core. * Pekka Savola : RFC2461 validation * YOSHIFUJI Hideaki @USAGI : Verify ND options properly */ #define pr_fmt(fmt) "ICMPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/sched.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/route.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/jhash.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <net/flow.h> #include <net/ip6_checksum.h> #include <net/inet_common.h> #include <linux/proc_fs.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool ndisc_key_eq(const struct neighbour *neigh, const void *pkey); static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack); static int ndisc_constructor(struct neighbour *neigh); static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb); static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb); static int pndisc_constructor(struct pneigh_entry *n); static void pndisc_destructor(struct pneigh_entry *n); static void pndisc_redo(struct sk_buff *skb); static int ndisc_is_multicast(const void *pkey); static const struct neigh_ops ndisc_generic_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops ndisc_hh_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops ndisc_direct_ops = { .family = AF_INET6, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table nd_tbl = { .family = AF_INET6, .key_len = sizeof(struct in6_addr), .protocol = cpu_to_be16(ETH_P_IPV6), .hash = ndisc_hash, .key_eq = ndisc_key_eq, .constructor = ndisc_constructor, .pconstructor = pndisc_constructor, .pdestructor = pndisc_destructor, .proxy_redo = pndisc_redo, .is_multicast = ndisc_is_multicast, .allow_add = ndisc_allow_add, .id = "ndisc_cache", .parms = { .tbl = &nd_tbl, .reachable_time = ND_REACHABLE_TIME, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = ND_RETRANS_TIMER, [NEIGH_VAR_BASE_REACHABLE_TIME] = ND_REACHABLE_TIME, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL_GPL(nd_tbl); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, int data_len, int pad) { int space = __ndisc_opt_addr_space(data_len, pad); u8 *opt = skb_put(skb, space); opt[0] = type; opt[1] = space>>3; memset(opt + 2, 0, pad); opt += pad; space -= pad; memcpy(opt+2, data, data_len); data_len += 2; opt += data_len; space -= data_len; if (space > 0) memset(opt, 0, space); } EXPORT_SYMBOL_GPL(__ndisc_fill_addr_option); static inline void ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, u8 icmp6_type) { __ndisc_fill_addr_option(skb, type, data, skb->dev->addr_len, ndisc_addr_option_pad(skb->dev->type)); ndisc_ops_fill_addr_option(skb->dev, skb, icmp6_type); } static inline void ndisc_fill_redirect_addr_option(struct sk_buff *skb, void *ha, const u8 *ops_data) { ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, ha, NDISC_REDIRECT); ndisc_ops_fill_redirect_addr_option(skb->dev, skb, ops_data); } static struct nd_opt_hdr *ndisc_next_option(struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { int type; if (!cur || !end || cur >= end) return NULL; type = cur->nd_opt_type; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && cur->nd_opt_type != type); return cur <= end && cur->nd_opt_type == type ? cur : NULL; } static inline int ndisc_is_useropt(const struct net_device *dev, struct nd_opt_hdr *opt) { return opt->nd_opt_type == ND_OPT_PREFIX_INFO || opt->nd_opt_type == ND_OPT_RDNSS || opt->nd_opt_type == ND_OPT_DNSSL || opt->nd_opt_type == ND_OPT_6CO || opt->nd_opt_type == ND_OPT_CAPTIVE_PORTAL || opt->nd_opt_type == ND_OPT_PREF64; } static struct nd_opt_hdr *ndisc_next_useropt(const struct net_device *dev, struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { if (!cur || !end || cur >= end) return NULL; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && !ndisc_is_useropt(dev, cur)); return cur <= end && ndisc_is_useropt(dev, cur) ? cur : NULL; } struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)opt; if (!nd_opt || opt_len < 0 || !ndopts) return NULL; memset(ndopts, 0, sizeof(*ndopts)); while (opt_len) { bool unknown = false; int l; if (opt_len < sizeof(struct nd_opt_hdr)) return NULL; l = nd_opt->nd_opt_len << 3; if (opt_len < l || l == 0) return NULL; if (ndisc_ops_parse_options(dev, nd_opt, ndopts)) goto next_opt; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LL_ADDR: case ND_OPT_TARGET_LL_ADDR: case ND_OPT_MTU: case ND_OPT_NONCE: case ND_OPT_REDIRECT_HDR: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { ND_PRINTK(2, warn, "%s: duplicated ND6 option found: type=%d\n", __func__, nd_opt->nd_opt_type); } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFO: ndopts->nd_opts_pi_end = nd_opt; if (!ndopts->nd_opt_array[nd_opt->nd_opt_type]) ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; break; #ifdef CONFIG_IPV6_ROUTE_INFO case ND_OPT_ROUTE_INFO: ndopts->nd_opts_ri_end = nd_opt; if (!ndopts->nd_opts_ri) ndopts->nd_opts_ri = nd_opt; break; #endif default: unknown = true; } if (ndisc_is_useropt(dev, nd_opt)) { ndopts->nd_useropts_end = nd_opt; if (!ndopts->nd_useropts) ndopts->nd_useropts = nd_opt; } else if (unknown) { /* * Unknown options must be silently ignored, * to accommodate future extension to the * protocol. */ ND_PRINTK(2, notice, "%s: ignored unsupported option; type=%d, len=%d\n", __func__, nd_opt->nd_opt_type, nd_opt->nd_opt_len); } next_opt: opt_len -= l; nd_opt = ((void *)nd_opt) + l; } return ndopts; } int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_IEEE802: /* Not sure. Check it later. --ANK */ case ARPHRD_FDDI: ipv6_eth_mc_map(addr, buf); return 0; case ARPHRD_ARCNET: ipv6_arcnet_mc_map(addr, buf); return 0; case ARPHRD_INFINIBAND: ipv6_ib_mc_map(addr, dev->broadcast, buf); return 0; case ARPHRD_IPGRE: return ipv6_ipgre_mc_map(addr, dev->broadcast, buf); default: if (dir) { memcpy(buf, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } EXPORT_SYMBOL(ndisc_mc_map); static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return ndisc_hashfn(pkey, dev, hash_rnd); } static bool ndisc_key_eq(const struct neighbour *n, const void *pkey) { return neigh_key_eq128(n, pkey); } static int ndisc_constructor(struct neighbour *neigh) { struct in6_addr *addr = (struct in6_addr *)&neigh->primary_key; struct net_device *dev = neigh->dev; struct inet6_dev *in6_dev; struct neigh_parms *parms; bool is_multicast = ipv6_addr_is_multicast(addr); in6_dev = in6_dev_get(dev); if (!in6_dev) { return -EINVAL; } parms = in6_dev->nd_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); neigh->type = is_multicast ? RTN_MULTICAST : RTN_UNICAST; if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &ndisc_direct_ops; neigh->output = neigh_direct_output; } else { if (is_multicast) { neigh->nud_state = NUD_NOARP; ndisc_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); if (dev->flags&IFF_LOOPBACK) neigh->type = RTN_LOCAL; } else if (dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &ndisc_hh_ops; else neigh->ops = &ndisc_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } in6_dev_put(in6_dev); return 0; } static int pndisc_constructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return -EINVAL; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); return 0; } static void pndisc_destructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } /* called with rtnl held */ static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev || idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on this device"); return false; } return true; } static struct sk_buff *ndisc_alloc_skb(struct net_device *dev, int len) { int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct sk_buff *skb; skb = alloc_skb(hlen + sizeof(struct ipv6hdr) + len + tlen, GFP_ATOMIC); if (!skb) return NULL; skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reserve(skb, hlen + sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); /* Manually assign socket ownership as we avoid calling * sock_alloc_send_pskb() to bypass wmem buffer limits */ rcu_read_lock(); skb_set_owner_w(skb, dev_net_rcu(dev)->ipv6.ndisc_sk); rcu_read_unlock(); return skb; } static void ip6_nd_hdr(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int hop_limit, int len) { struct ipv6hdr *hdr; struct inet6_dev *idev; unsigned tclass; rcu_read_lock(); idev = __in6_dev_get(skb->dev); tclass = idev ? READ_ONCE(idev->cnf.ndisc_tclass) : 0; rcu_read_unlock(); skb_push(skb, sizeof(*hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, tclass, 0); hdr->payload_len = htons(len); hdr->nexthdr = IPPROTO_ICMPV6; hdr->hop_limit = hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } void ndisc_send_skb(struct sk_buff *skb, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct icmp6hdr *icmp6h = icmp6_hdr(skb); struct dst_entry *dst = skb_dst(skb); struct inet6_dev *idev; struct net *net; struct sock *sk; int err; u8 type; type = icmp6h->icmp6_type; rcu_read_lock(); net = dev_net_rcu(skb->dev); sk = net->ipv6.ndisc_sk; if (!dst) { struct flowi6 fl6; int oif = skb->dev->ifindex; icmpv6_flow_init(sk, &fl6, type, saddr, daddr, oif); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { rcu_read_unlock(); kfree_skb(skb); return; } skb_dst_set(skb, dst); } icmp6h->icmp6_cksum = csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_ICMPV6, csum_partial(icmp6h, skb->len, 0)); ip6_nd_hdr(skb, saddr, daddr, READ_ONCE(inet6_sk(sk)->hop_limit), skb->len); idev = __in6_dev_get(dst->dev); IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTREQUESTS); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, dst->dev, dst_output); if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } rcu_read_unlock(); } EXPORT_SYMBOL(ndisc_send_skb); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt) { struct sk_buff *skb; struct in6_addr tmpaddr; struct inet6_ifaddr *ifp; const struct in6_addr *src_addr; struct nd_msg *msg; int optlen = 0; /* for anycast or proxy, solicited_addr != src_addr */ ifp = ipv6_get_ifaddr(dev_net(dev), solicited_addr, dev, 1); if (ifp) { src_addr = solicited_addr; if (ifp->flags & IFA_F_OPTIMISTIC) override = false; inc_opt |= READ_ONCE(ifp->idev->cnf.force_tllao); in6_ifa_put(ifp); } else { if (ipv6_dev_get_saddr(dev_net(dev), dev, daddr, inet6_sk(dev_net(dev)->ipv6.ndisc_sk)->srcprefs, &tmpaddr)) return; src_addr = &tmpaddr; } if (!dev->addr_len) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_ADVERTISEMENT); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT, .icmp6_router = router, .icmp6_solicited = solicited, .icmp6_override = override, }, .target = *solicited_addr, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_ADVERTISEMENT); ndisc_send_skb(skb, daddr, src_addr); } static void ndisc_send_unsol_na(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; idev = in6_dev_get(dev); if (!idev) return; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { /* skip tentative addresses until dad completes */ if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_OPTIMISTIC)) continue; ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifa->addr, /*router=*/ !!idev->cnf.forwarding, /*solicited=*/ false, /*override=*/ true, /*inc_opt=*/ true); } read_unlock_bh(&idev->lock); in6_dev_put(idev); } struct sk_buff *ndisc_ns_create(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *saddr, u64 nonce) { int inc_opt = dev->addr_len; struct sk_buff *skb; struct nd_msg *msg; int optlen = 0; if (!saddr) return NULL; if (ipv6_addr_any(saddr)) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) optlen += 8; skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return NULL; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION, }, .target = *solicit, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) { u8 *opt = skb_put(skb, 8); opt[0] = ND_OPT_NONCE; opt[1] = 8 >> 3; memcpy(opt + 2, &nonce, 6); } return skb; } EXPORT_SYMBOL(ndisc_ns_create); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce) { struct in6_addr addr_buf; struct sk_buff *skb; if (!saddr) { if (ipv6_get_lladdr(dev, &addr_buf, (IFA_F_TENTATIVE | IFA_F_OPTIMISTIC))) return; saddr = &addr_buf; } skb = ndisc_ns_create(dev, solicit, saddr, nonce); if (skb) ndisc_send_skb(skb, daddr, saddr); } void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct sk_buff *skb; struct rs_msg *msg; int send_sllao = dev->addr_len; int optlen = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * According to section 2.2 of RFC 4429, we must not * send router solicitations with a sllao from * optimistic addresses, but we may send the solicitation * if we don't include the sllao. So here we check * if our address is optimistic, and if so, we * suppress the inclusion of the sllao. */ if (send_sllao) { struct inet6_ifaddr *ifp = ipv6_get_ifaddr(dev_net(dev), saddr, dev, 1); if (ifp) { if (ifp->flags & IFA_F_OPTIMISTIC) { send_sllao = 0; } in6_ifa_put(ifp); } else { send_sllao = 0; } } #endif if (send_sllao) optlen += ndisc_opt_addr_space(dev, NDISC_ROUTER_SOLICITATION); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct rs_msg) { .icmph = { .icmp6_type = NDISC_ROUTER_SOLICITATION, }, }; if (send_sllao) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_ROUTER_SOLICITATION); ndisc_send_skb(skb, daddr, saddr); } static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb) { /* * "The sender MUST return an ICMP * destination unreachable" */ dst_link_failure(skb); kfree_skb(skb); } /* Called with locked neigh: either read or both */ static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb) { struct in6_addr *saddr = NULL; struct in6_addr mcaddr; struct net_device *dev = neigh->dev; struct in6_addr *target = (struct in6_addr *)&neigh->primary_key; int probes = atomic_read(&neigh->probes); if (skb && ipv6_chk_addr_and_flags(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, false, 1, IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) saddr = &ipv6_hdr(skb)->saddr; probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(READ_ONCE(neigh->nud_state) & NUD_VALID)) { ND_PRINTK(1, dbg, "%s: trying to ucast probe in NUD_INVALID: %pI6\n", __func__, target); } ndisc_send_ns(dev, target, target, saddr, 0); } else if ((probes -= NEIGH_VAR(neigh->parms, APP_PROBES)) < 0) { neigh_app_ns(neigh); } else { addrconf_addr_solict_mult(target, &mcaddr); ndisc_send_ns(dev, target, &mcaddr, saddr, 0); } } static int pndisc_is_router(const void *pkey, struct net_device *dev) { struct pneigh_entry *n; int ret = -1; read_lock_bh(&nd_tbl.lock); n = __pneigh_lookup(&nd_tbl, dev_net(dev), pkey, dev); if (n) ret = !!(n->flags & NTF_ROUTER); read_unlock_bh(&nd_tbl.lock); return ret; } void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts) { neigh_update(neigh, lladdr, new, flags, 0); /* report ndisc ops about neighbour update */ ndisc_ops_update(dev, neigh, flags, icmp6_type, ndopts); } static enum skb_drop_reason ndisc_recv_ns(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_ifaddr *ifp; struct inet6_dev *idev = NULL; struct neighbour *neigh; int dad = ipv6_addr_any(saddr); int is_router = -1; SKB_DR(reason); u64 nonce = 0; bool inc; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NS: multicast target address\n"); return reason; } /* * RFC2461 7.1.1: * DAD has to be destined for solicited node multicast address. */ if (dad && !ipv6_addr_is_solict_mult(daddr)) { ND_PRINTK(2, warn, "NS: bad DAD packet (wrong destination)\n"); return reason; } if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NS: invalid link-layer address length\n"); return reason; } /* RFC2461 7.1.1: * If the IP source address is the unspecified address, * there MUST NOT be source link-layer address option * in the message. */ if (dad) { ND_PRINTK(2, warn, "NS: bad DAD packet (link-layer address option)\n"); return reason; } } if (ndopts.nd_opts_nonce && ndopts.nd_opts_nonce->nd_opt_len == 1) memcpy(&nonce, (u8 *)(ndopts.nd_opts_nonce + 1), 6); inc = ipv6_addr_is_multicast(daddr); ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { have_ifp: if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) { if (dad) { if (nonce != 0 && ifp->dad_nonce == nonce) { u8 *np = (u8 *)&nonce; /* Matching nonce if looped back */ ND_PRINTK(2, notice, "%s: IPv6 DAD loopback for address %pI6c nonce %pM ignored\n", ifp->idev->dev->name, &ifp->addr, np); goto out; } /* * We are colliding with another node * who is doing DAD * so fail our DAD process */ addrconf_dad_failure(skb, ifp); return reason; } else { /* * This is not a dad solicitation. * If we are an optimistic node, * we should respond. * Otherwise, we should ignore it. */ if (!(ifp->flags & IFA_F_OPTIMISTIC)) goto out; } } idev = ifp->idev; } else { struct net *net = dev_net(dev); /* perhaps an address on the master device */ if (netif_is_l3_slave(dev)) { struct net_device *mdev; mdev = netdev_master_upper_dev_get_rcu(dev); if (mdev) { ifp = ipv6_get_ifaddr(net, &msg->target, mdev, 1); if (ifp) goto have_ifp; } } idev = in6_dev_get(dev); if (!idev) { /* XXX: count this drop? */ return reason; } if (ipv6_chk_acast_addr(net, dev, &msg->target) || (READ_ONCE(idev->cnf.forwarding) && (READ_ONCE(net->ipv6.devconf_all->proxy_ndp) || READ_ONCE(idev->cnf.proxy_ndp)) && (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) { if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) && skb->pkt_type != PACKET_HOST && inc && NEIGH_VAR(idev->nd_parms, PROXY_DELAY) != 0) { /* * for anycast or proxy, * sender should delay its response * by a random time between 0 and * MAX_ANYCAST_DELAY_TIME seconds. * (RFC2461) -- yoshfuji */ struct sk_buff *n = skb_clone(skb, GFP_ATOMIC); if (n) pneigh_enqueue(&nd_tbl, idev->nd_parms, n); goto out; } } else { SKB_DR_SET(reason, IPV6_NDISC_NS_OTHERHOST); goto out; } } if (is_router < 0) is_router = READ_ONCE(idev->cnf.forwarding); if (dad) { ndisc_send_na(dev, &in6addr_linklocal_allnodes, &msg->target, !!is_router, false, (ifp != NULL), true); goto out; } if (inc) NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast); else NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast); /* * update / create cache entry * for the source address */ neigh = __neigh_lookup(&nd_tbl, saddr, dev, !inc || lladdr || !dev->addr_len); if (neigh) ndisc_update(dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE, NDISC_NEIGHBOUR_SOLICITATION, &ndopts); if (neigh || !dev->header_ops) { ndisc_send_na(dev, saddr, &msg->target, !!is_router, true, (ifp != NULL && inc), inc); if (neigh) neigh_release(neigh); reason = SKB_CONSUMED; } out: if (ifp) in6_ifa_put(ifp); else in6_dev_put(idev); return reason; } static int accept_untracked_na(struct net_device *dev, struct in6_addr *saddr) { struct inet6_dev *idev = __in6_dev_get(dev); switch (READ_ONCE(idev->cnf.accept_untracked_na)) { case 0: /* Don't accept untracked na (absent in neighbor cache) */ return 0; case 1: /* Create new entries from na if currently untracked */ return 1; case 2: /* Create new entries from untracked na only if saddr is in the * same subnet as an address configured on the interface that * received the na */ return !!ipv6_chk_prefix(saddr, dev); default: return 0; } } static enum skb_drop_reason ndisc_recv_na(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_dev *idev = __in6_dev_get(dev); struct inet6_ifaddr *ifp; struct neighbour *neigh; SKB_DR(reason); u8 new_state; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NA: target address is multicast\n"); return reason; } if (ipv6_addr_is_multicast(daddr) && msg->icmph.icmp6_solicited) { ND_PRINTK(2, warn, "NA: solicited NA is multicasted\n"); return reason; } /* For some 802.11 wireless deployments (and possibly other networks), * there will be a NA proxy and unsolicitd packets are attacks * and thus should not be accepted. * drop_unsolicited_na takes precedence over accept_untracked_na */ if (!msg->icmph.icmp6_solicited && idev && READ_ONCE(idev->cnf.drop_unsolicited_na)) return reason; if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NA: invalid link-layer address length\n"); return reason; } } ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { if (skb->pkt_type != PACKET_LOOPBACK && (ifp->flags & IFA_F_TENTATIVE)) { addrconf_dad_failure(skb, ifp); return reason; } /* What should we make now? The advertisement is invalid, but ndisc specs say nothing about it. It could be misconfiguration, or an smart proxy agent tries to help us :-) We should not print the error if NA has been received from loopback - it is just our own unsolicited advertisement. */ if (skb->pkt_type != PACKET_LOOPBACK) ND_PRINTK(1, warn, "NA: %pM advertised our address %pI6c on %s!\n", eth_hdr(skb)->h_source, &ifp->addr, ifp->idev->dev->name); in6_ifa_put(ifp); return reason; } neigh = neigh_lookup(&nd_tbl, &msg->target, dev); /* RFC 9131 updates original Neighbour Discovery RFC 4861. * NAs with Target LL Address option without a corresponding * entry in the neighbour cache can now create a STALE neighbour * cache entry on routers. * * entry accept fwding solicited behaviour * ------- ------ ------ --------- ---------------------- * present X X 0 Set state to STALE * present X X 1 Set state to REACHABLE * absent 0 X X Do nothing * absent 1 0 X Do nothing * absent 1 1 X Add a new STALE entry * * Note that we don't do a (daddr == all-routers-mcast) check. */ new_state = msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE; if (!neigh && lladdr && idev && READ_ONCE(idev->cnf.forwarding)) { if (accept_untracked_na(dev, saddr)) { neigh = neigh_create(&nd_tbl, &msg->target, dev); new_state = NUD_STALE; } } if (neigh && !IS_ERR(neigh)) { u8 old_flags = neigh->flags; struct net *net = dev_net(dev); if (READ_ONCE(neigh->nud_state) & NUD_FAILED) goto out; /* * Don't update the neighbor cache entry on a proxy NA from * ourselves because either the proxied node is off link or it * has already sent a NA to us. */ if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) && READ_ONCE(net->ipv6.devconf_all->forwarding) && READ_ONCE(net->ipv6.devconf_all->proxy_ndp) && pneigh_lookup(&nd_tbl, net, &msg->target, dev, 0)) { /* XXX: idev->cnf.proxy_ndp */ goto out; } ndisc_update(dev, neigh, lladdr, new_state, NEIGH_UPDATE_F_WEAK_OVERRIDE| (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0), NDISC_NEIGHBOUR_ADVERTISEMENT, &ndopts); if ((old_flags & ~neigh->flags) & NTF_ROUTER) { /* * Change: router to host */ rt6_clean_tohost(dev_net(dev), saddr); } reason = SKB_CONSUMED; out: neigh_release(neigh); } return reason; } static enum skb_drop_reason ndisc_recv_rs(struct sk_buff *skb) { struct rs_msg *rs_msg = (struct rs_msg *)skb_transport_header(skb); unsigned long ndoptlen = skb->len - sizeof(*rs_msg); struct neighbour *neigh; struct inet6_dev *idev; const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; struct ndisc_options ndopts; u8 *lladdr = NULL; SKB_DR(reason); if (skb->len < sizeof(*rs_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; idev = __in6_dev_get(skb->dev); if (!idev) { ND_PRINTK(1, err, "RS: can't find in6 device\n"); return reason; } /* Don't accept RS if we're not in router mode */ if (!READ_ONCE(idev->cnf.forwarding)) goto out; /* * Don't update NCE if src = ::; * this implies that the source node has no ip address assigned yet. */ if (ipv6_addr_any(saddr)) goto out; /* Parse ND options */ if (!ndisc_parse_options(skb->dev, rs_msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) goto out; } neigh = __neigh_lookup(&nd_tbl, saddr, skb->dev, 1); if (neigh) { ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER, NDISC_ROUTER_SOLICITATION, &ndopts); neigh_release(neigh); reason = SKB_CONSUMED; } out: return reason; } static void ndisc_ra_useropt(struct sk_buff *ra, struct nd_opt_hdr *opt) { struct icmp6hdr *icmp6h = (struct icmp6hdr *)skb_transport_header(ra); struct sk_buff *skb; struct nlmsghdr *nlh; struct nduseroptmsg *ndmsg; struct net *net = dev_net(ra->dev); int err; int base_size = NLMSG_ALIGN(sizeof(struct nduseroptmsg) + (opt->nd_opt_len << 3)); size_t msg_size = base_size + nla_total_size(sizeof(struct in6_addr)); skb = nlmsg_new(msg_size, GFP_ATOMIC); if (!skb) { err = -ENOBUFS; goto errout; } nlh = nlmsg_put(skb, 0, 0, RTM_NEWNDUSEROPT, base_size, 0); if (!nlh) { goto nla_put_failure; } ndmsg = nlmsg_data(nlh); ndmsg->nduseropt_family = AF_INET6; ndmsg->nduseropt_ifindex = ra->dev->ifindex; ndmsg->nduseropt_icmp_type = icmp6h->icmp6_type; ndmsg->nduseropt_icmp_code = icmp6h->icmp6_code; ndmsg->nduseropt_opts_len = opt->nd_opt_len << 3; memcpy(ndmsg + 1, opt, opt->nd_opt_len << 3); if (nla_put_in6_addr(skb, NDUSEROPT_SRCADDR, &ipv6_hdr(ra)->saddr)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_ND_USEROPT, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_free(skb); err = -EMSGSIZE; errout: rtnl_set_sk_err(net, RTNLGRP_ND_USEROPT, err); } static enum skb_drop_reason ndisc_router_discovery(struct sk_buff *skb) { struct ra_msg *ra_msg = (struct ra_msg *)skb_transport_header(skb); bool send_ifinfo_notify = false; struct neighbour *neigh = NULL; struct ndisc_options ndopts; struct fib6_info *rt = NULL; struct inet6_dev *in6_dev; struct fib6_table *table; u32 defrtr_usr_metric; unsigned int pref = 0; __u32 old_if_flags; struct net *net; SKB_DR(reason); int lifetime; int optlen; __u8 *opt = (__u8 *)(ra_msg + 1); optlen = (skb_tail_pointer(skb) - skb_transport_header(skb)) - sizeof(struct ra_msg); ND_PRINTK(2, info, "RA: %s, dev: %s\n", __func__, skb->dev->name); if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "RA: source address is not link-local\n"); return reason; } if (optlen < 0) return SKB_DROP_REASON_PKT_TOO_SMALL; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_HOST) { ND_PRINTK(2, warn, "RA: from host or unauthorized router\n"); return reason; } #endif in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) { ND_PRINTK(0, err, "RA: can't find inet6 device for %s\n", skb->dev->name); return reason; } if (!ndisc_parse_options(skb->dev, opt, optlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, did not accept ra for dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific parameters from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT, dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #endif if (in6_dev->if_flags & IF_RS_SENT) { /* * flag that an RA was received after an RS was sent * out on this interface. */ in6_dev->if_flags |= IF_RA_RCVD; } /* * Remember the managed/otherconf flags from most recently * received RA message (RFC 2462) -- yoshfuji */ old_if_flags = in6_dev->if_flags; in6_dev->if_flags = (in6_dev->if_flags & ~(IF_RA_MANAGED | IF_RA_OTHERCONF)) | (ra_msg->icmph.icmp6_addrconf_managed ? IF_RA_MANAGED : 0) | (ra_msg->icmph.icmp6_addrconf_other ? IF_RA_OTHERCONF : 0); if (old_if_flags != in6_dev->if_flags) send_ifinfo_notify = true; if (!READ_ONCE(in6_dev->cnf.accept_ra_defrtr)) { ND_PRINTK(2, info, "RA: %s, defrtr is false for dev: %s\n", __func__, skb->dev->name); goto skip_defrtr; } lifetime = ntohs(ra_msg->icmph.icmp6_rt_lifetime); if (lifetime != 0 && lifetime < READ_ONCE(in6_dev->cnf.accept_ra_min_lft)) { ND_PRINTK(2, info, "RA: router lifetime (%ds) is too short: %s\n", lifetime, skb->dev->name); goto skip_defrtr; } /* Do not accept RA with source-addr found on local machine unless * accept_ra_from_local is set to true. */ net = dev_net(in6_dev->dev); if (!READ_ONCE(in6_dev->cnf.accept_ra_from_local) && ipv6_chk_addr(net, &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: default router ignored\n", skb->dev->name); goto skip_defrtr; } #ifdef CONFIG_IPV6_ROUTER_PREF pref = ra_msg->icmph.icmp6_router_pref; /* 10b is handled as if it were 00b (medium) */ if (pref == ICMPV6_ROUTER_PREF_INVALID || !READ_ONCE(in6_dev->cnf.accept_ra_rtr_pref)) pref = ICMPV6_ROUTER_PREF_MEDIUM; #endif /* routes added from RAs do not use nexthop objects */ rt = rt6_get_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev); if (rt) { neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } } /* Set default route metric as specified by user */ defrtr_usr_metric = in6_dev->cnf.ra_defrtr_metric; /* delete the route if lifetime is 0 or if metric needs change */ if (rt && (lifetime == 0 || rt->fib6_metric != defrtr_usr_metric)) { ip6_del_rt(net, rt, false); rt = NULL; } ND_PRINTK(3, info, "RA: rt: %p lifetime: %d, metric: %d, for dev: %s\n", rt, lifetime, defrtr_usr_metric, skb->dev->name); if (!rt && lifetime) { ND_PRINTK(3, info, "RA: adding default router\n"); if (neigh) neigh_release(neigh); rt = rt6_add_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev, pref, defrtr_usr_metric, lifetime); if (!rt) { ND_PRINTK(0, err, "RA: %s failed to add default route\n", __func__); return reason; } neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } neigh->flags |= NTF_ROUTER; } else if (rt && IPV6_EXTRACT_PREF(rt->fib6_flags) != pref) { struct nl_info nlinfo = { .nl_net = net, }; rt->fib6_flags = (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); inet6_rt_notify(RTM_NEWROUTE, rt, &nlinfo, NLM_F_REPLACE); } if (rt) { table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); fib6_set_expires(rt, jiffies + (HZ * lifetime)); fib6_add_gc_list(rt); spin_unlock_bh(&table->tb6_lock); } if (READ_ONCE(in6_dev->cnf.accept_ra_min_hop_limit) < 256 && ra_msg->icmph.icmp6_hop_limit) { if (READ_ONCE(in6_dev->cnf.accept_ra_min_hop_limit) <= ra_msg->icmph.icmp6_hop_limit) { WRITE_ONCE(in6_dev->cnf.hop_limit, ra_msg->icmph.icmp6_hop_limit); fib6_metric_set(rt, RTAX_HOPLIMIT, ra_msg->icmph.icmp6_hop_limit); } else { ND_PRINTK(2, warn, "RA: Got route advertisement with lower hop_limit than minimum\n"); } } skip_defrtr: /* * Update Reachable Time and Retrans Timer */ if (in6_dev->nd_parms) { unsigned long rtime = ntohl(ra_msg->retrans_timer); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/HZ) { rtime = (rtime*HZ)/1000; if (rtime < HZ/100) rtime = HZ/100; NEIGH_VAR_SET(in6_dev->nd_parms, RETRANS_TIME, rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } rtime = ntohl(ra_msg->reachable_time); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/(3*HZ)) { rtime = (rtime*HZ)/1000; if (rtime < HZ/10) rtime = HZ/10; if (rtime != NEIGH_VAR(in6_dev->nd_parms, BASE_REACHABLE_TIME)) { NEIGH_VAR_SET(in6_dev->nd_parms, BASE_REACHABLE_TIME, rtime); NEIGH_VAR_SET(in6_dev->nd_parms, GC_STALETIME, 3 * rtime); in6_dev->nd_parms->reachable_time = neigh_rand_reach_time(rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } } } skip_linkparms: /* * Process options. */ if (!neigh) neigh = __neigh_lookup(&nd_tbl, &ipv6_hdr(skb)->saddr, skb->dev, 1); if (neigh) { u8 *lladdr = NULL; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) { ND_PRINTK(2, warn, "RA: invalid link-layer address length\n"); goto out; } } ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER, NDISC_ROUTER_ADVERTISEMENT, &ndopts); reason = SKB_CONSUMED; } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, accept_ra is false for dev: %s\n", __func__, skb->dev->name); goto out; } #ifdef CONFIG_IPV6_ROUTE_INFO if (!READ_ONCE(in6_dev->cnf.accept_ra_from_local) && ipv6_chk_addr(dev_net(in6_dev->dev), &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: router info ignored.\n", skb->dev->name); goto skip_routeinfo; } if (READ_ONCE(in6_dev->cnf.accept_ra_rtr_pref) && ndopts.nd_opts_ri) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_ri; p; p = ndisc_next_option(p, ndopts.nd_opts_ri_end)) { struct route_info *ri = (struct route_info *)p; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT && ri->prefix_len == 0) continue; #endif if (ri->prefix_len == 0 && !READ_ONCE(in6_dev->cnf.accept_ra_defrtr)) continue; if (ri->lifetime != 0 && ntohl(ri->lifetime) < READ_ONCE(in6_dev->cnf.accept_ra_min_lft)) continue; if (ri->prefix_len < READ_ONCE(in6_dev->cnf.accept_ra_rt_info_min_plen)) continue; if (ri->prefix_len > READ_ONCE(in6_dev->cnf.accept_ra_rt_info_max_plen)) continue; rt6_route_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, &ipv6_hdr(skb)->saddr); } } skip_routeinfo: #endif #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific ndopts from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT (interior routes), dev: %s\n", __func__, skb->dev->name); goto out; } #endif if (READ_ONCE(in6_dev->cnf.accept_ra_pinfo) && ndopts.nd_opts_pi) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_pi; p; p = ndisc_next_option(p, ndopts.nd_opts_pi_end)) { addrconf_prefix_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, ndopts.nd_opts_src_lladdr != NULL); } } if (ndopts.nd_opts_mtu && READ_ONCE(in6_dev->cnf.accept_ra_mtu)) { __be32 n; u32 mtu; memcpy(&n, ((u8 *)(ndopts.nd_opts_mtu+1))+2, sizeof(mtu)); mtu = ntohl(n); if (in6_dev->ra_mtu != mtu) { in6_dev->ra_mtu = mtu; send_ifinfo_notify = true; } if (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) { ND_PRINTK(2, warn, "RA: invalid mtu: %d\n", mtu); } else if (READ_ONCE(in6_dev->cnf.mtu6) != mtu) { WRITE_ONCE(in6_dev->cnf.mtu6, mtu); fib6_metric_set(rt, RTAX_MTU, mtu); rt6_mtu_change(skb->dev, mtu); } } if (ndopts.nd_useropts) { struct nd_opt_hdr *p; for (p = ndopts.nd_useropts; p; p = ndisc_next_useropt(skb->dev, p, ndopts.nd_useropts_end)) { ndisc_ra_useropt(skb, p); } } if (ndopts.nd_opts_tgt_lladdr || ndopts.nd_opts_rh) { ND_PRINTK(2, warn, "RA: invalid RA options\n"); } out: /* Send a notify if RA changed managed/otherconf flags or * timer settings or ra_mtu value */ if (send_ifinfo_notify) inet6_ifinfo_notify(RTM_NEWLINK, in6_dev); fib6_info_release(rt); if (neigh) neigh_release(neigh); return reason; } static enum skb_drop_reason ndisc_redirect_rcv(struct sk_buff *skb) { struct rd_msg *msg = (struct rd_msg *)skb_transport_header(skb); u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct rd_msg, opt)); struct ndisc_options ndopts; SKB_DR(reason); u8 *hdr; #ifdef CONFIG_IPV6_NDISC_NODETYPE switch (skb->ndisc_nodetype) { case NDISC_NODETYPE_HOST: case NDISC_NODETYPE_NODEFAULT: ND_PRINTK(2, warn, "Redirect: from host or unauthorized router\n"); return reason; } #endif if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: source address is not link-local\n"); return reason; } if (!ndisc_parse_options(skb->dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ndopts.nd_opts_rh) { ip6_redirect_no_header(skb, dev_net(skb->dev), skb->dev->ifindex); return reason; } hdr = (u8 *)ndopts.nd_opts_rh; hdr += 8; if (!pskb_pull(skb, hdr - skb_transport_header(skb))) return SKB_DROP_REASON_PKT_TOO_SMALL; return icmpv6_notify(skb, NDISC_REDIRECT, 0, 0); } static void ndisc_fill_redirect_hdr_option(struct sk_buff *skb, struct sk_buff *orig_skb, int rd_len) { u8 *opt = skb_put(skb, rd_len); memset(opt, 0, 8); *(opt++) = ND_OPT_REDIRECT_HDR; *(opt++) = (rd_len >> 3); opt += 6; skb_copy_bits(orig_skb, skb_network_offset(orig_skb), opt, rd_len - 8); } void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target) { struct net_device *dev = skb->dev; struct net *net = dev_net_rcu(dev); struct sock *sk = net->ipv6.ndisc_sk; int optlen = 0; struct inet_peer *peer; struct sk_buff *buff; struct rd_msg *msg; struct in6_addr saddr_buf; struct rt6_info *rt; struct dst_entry *dst; struct flowi6 fl6; int rd_len; u8 ha_buf[MAX_ADDR_LEN], *ha = NULL, ops_data_buf[NDISC_OPS_REDIRECT_DATA_SPACE], *ops_data = NULL; bool ret; if (netif_is_l3_master(dev)) { dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); if (!dev) return; } if (ipv6_get_lladdr(dev, &saddr_buf, IFA_F_TENTATIVE)) { ND_PRINTK(2, warn, "Redirect: no link-local address on %s\n", dev->name); return; } if (!ipv6_addr_equal(&ipv6_hdr(skb)->daddr, target) && ipv6_addr_type(target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: target address is not link-local unicast\n"); return; } icmpv6_flow_init(sk, &fl6, NDISC_REDIRECT, &saddr_buf, &ipv6_hdr(skb)->saddr, dev->ifindex); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; rt = dst_rt6_info(dst); if (rt->rt6i_flags & RTF_GATEWAY) { ND_PRINTK(2, warn, "Redirect: destination is not a neighbour\n"); goto release; } peer = inet_getpeer_v6(net->ipv6.peers, &ipv6_hdr(skb)->saddr); ret = inet_peer_xrlim_allow(peer, 1*HZ); if (!ret) goto release; if (dev->addr_len) { struct neighbour *neigh = dst_neigh_lookup(skb_dst(skb), target); if (!neigh) { ND_PRINTK(2, warn, "Redirect: no neigh for target address\n"); goto release; } read_lock_bh(&neigh->lock); if (neigh->nud_state & NUD_VALID) { memcpy(ha_buf, neigh->ha, dev->addr_len); read_unlock_bh(&neigh->lock); ha = ha_buf; optlen += ndisc_redirect_opt_addr_space(dev, neigh, ops_data_buf, &ops_data); } else read_unlock_bh(&neigh->lock); neigh_release(neigh); } rd_len = min_t(unsigned int, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(*msg) - optlen, skb->len + 8); rd_len &= ~0x7; optlen += rd_len; buff = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!buff) goto release; msg = skb_put(buff, sizeof(*msg)); *msg = (struct rd_msg) { .icmph = { .icmp6_type = NDISC_REDIRECT, }, .target = *target, .dest = ipv6_hdr(skb)->daddr, }; /* * include target_address option */ if (ha) ndisc_fill_redirect_addr_option(buff, ha, ops_data); /* * build redirect option and copy skb over to the new packet. */ if (rd_len) ndisc_fill_redirect_hdr_option(buff, skb, rd_len); skb_dst_set(buff, dst); ndisc_send_skb(buff, &ipv6_hdr(skb)->saddr, &saddr_buf); return; release: dst_release(dst); } static void pndisc_redo(struct sk_buff *skb) { enum skb_drop_reason reason = ndisc_recv_ns(skb); kfree_skb_reason(skb, reason); } static int ndisc_is_multicast(const void *pkey) { return ipv6_addr_is_multicast((struct in6_addr *)pkey); } static bool ndisc_suppress_frag_ndisc(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev) return true; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED && READ_ONCE(idev->cnf.suppress_frag_ndisc)) { net_warn_ratelimited("Received fragmented ndisc packet. Carefully consider disabling suppress_frag_ndisc.\n"); return true; } return false; } enum skb_drop_reason ndisc_rcv(struct sk_buff *skb) { struct nd_msg *msg; SKB_DR(reason); if (ndisc_suppress_frag_ndisc(skb)) return SKB_DROP_REASON_IPV6_NDISC_FRAG; if (skb_linearize(skb)) return SKB_DROP_REASON_NOMEM; msg = (struct nd_msg *)skb_transport_header(skb); __skb_push(skb, skb->data - skb_transport_header(skb)); if (ipv6_hdr(skb)->hop_limit != 255) { ND_PRINTK(2, warn, "NDISC: invalid hop-limit: %d\n", ipv6_hdr(skb)->hop_limit); return SKB_DROP_REASON_IPV6_NDISC_HOP_LIMIT; } if (msg->icmph.icmp6_code != 0) { ND_PRINTK(2, warn, "NDISC: invalid ICMPv6 code: %d\n", msg->icmph.icmp6_code); return SKB_DROP_REASON_IPV6_NDISC_BAD_CODE; } switch (msg->icmph.icmp6_type) { case NDISC_NEIGHBOUR_SOLICITATION: memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); reason = ndisc_recv_ns(skb); break; case NDISC_NEIGHBOUR_ADVERTISEMENT: reason = ndisc_recv_na(skb); break; case NDISC_ROUTER_SOLICITATION: reason = ndisc_recv_rs(skb); break; case NDISC_ROUTER_ADVERTISEMENT: reason = ndisc_router_discovery(skb); break; case NDISC_REDIRECT: reason = ndisc_redirect_rcv(skb); break; } return reason; } static int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct net *net = dev_net(dev); struct inet6_dev *idev; bool evict_nocarrier; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&nd_tbl, dev); fib6_run_gc(0, net, false); fallthrough; case NETDEV_UP: idev = in6_dev_get(dev); if (!idev) break; if (READ_ONCE(idev->cnf.ndisc_notify) || READ_ONCE(net->ipv6.devconf_all->ndisc_notify)) ndisc_send_unsol_na(dev); in6_dev_put(idev); break; case NETDEV_CHANGE: idev = in6_dev_get(dev); if (!idev) evict_nocarrier = true; else { evict_nocarrier = READ_ONCE(idev->cnf.ndisc_evict_nocarrier) && READ_ONCE(net->ipv6.devconf_all->ndisc_evict_nocarrier); in6_dev_put(idev); } change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&nd_tbl, dev); if (evict_nocarrier && !netif_carrier_ok(dev)) neigh_carrier_down(&nd_tbl, dev); break; case NETDEV_DOWN: neigh_ifdown(&nd_tbl, dev); fib6_run_gc(0, net, false); break; case NETDEV_NOTIFY_PEERS: ndisc_send_unsol_na(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ndisc_netdev_notifier = { .notifier_call = ndisc_netdev_event, .priority = ADDRCONF_NOTIFY_PRIORITY - 5, }; #ifdef CONFIG_SYSCTL static void ndisc_warn_deprecated_sysctl(const struct ctl_table *ctl, const char *func, const char *dev_name) { static char warncomm[TASK_COMM_LEN]; static int warned; if (strcmp(warncomm, current->comm) && warned < 5) { strscpy(warncomm, current->comm); pr_warn("process `%s' is using deprecated sysctl (%s) net.ipv6.neigh.%s.%s - use net.ipv6.neigh.%s.%s_ms instead\n", warncomm, func, dev_name, ctl->procname, dev_name, ctl->procname); warned++; } } int ndisc_ifinfo_sysctl_change(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net_device *dev = ctl->extra1; struct inet6_dev *idev; int ret; if ((strcmp(ctl->procname, "retrans_time") == 0) || (strcmp(ctl->procname, "base_reachable_time") == 0)) ndisc_warn_deprecated_sysctl(ctl, "syscall", dev ? dev->name : "default"); if (strcmp(ctl->procname, "retrans_time") == 0) ret = neigh_proc_dointvec(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if ((strcmp(ctl->procname, "retrans_time_ms") == 0) || (strcmp(ctl->procname, "base_reachable_time_ms") == 0)) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0 && dev && (idev = in6_dev_get(dev)) != NULL) { if (ctl->data == &NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)) idev->nd_parms->reachable_time = neigh_rand_reach_time(NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)); WRITE_ONCE(idev->tstamp, jiffies); inet6_ifinfo_notify(RTM_NEWLINK, idev); in6_dev_put(idev); } return ret; } #endif static int __net_init ndisc_net_init(struct net *net) { struct ipv6_pinfo *np; struct sock *sk; int err; err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { ND_PRINTK(0, err, "NDISC: Failed to initialize the control socket (err %d)\n", err); return err; } net->ipv6.ndisc_sk = sk; np = inet6_sk(sk); np->hop_limit = 255; /* Do not loopback ndisc messages */ inet6_clear_bit(MC6_LOOP, sk); return 0; } static void __net_exit ndisc_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.ndisc_sk); } static struct pernet_operations ndisc_net_ops = { .init = ndisc_net_init, .exit = ndisc_net_exit, }; int __init ndisc_init(void) { int err; err = register_pernet_subsys(&ndisc_net_ops); if (err) return err; /* * Initialize the neighbour table */ neigh_table_init(NEIGH_ND_TABLE, &nd_tbl); #ifdef CONFIG_SYSCTL err = neigh_sysctl_register(NULL, &nd_tbl.parms, ndisc_ifinfo_sysctl_change); if (err) goto out_unregister_pernet; out: #endif return err; #ifdef CONFIG_SYSCTL out_unregister_pernet: unregister_pernet_subsys(&ndisc_net_ops); goto out; #endif } int __init ndisc_late_init(void) { return register_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_late_cleanup(void) { unregister_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_cleanup(void) { #ifdef CONFIG_SYSCTL neigh_sysctl_unregister(&nd_tbl.parms); #endif neigh_table_clear(NEIGH_ND_TABLE, &nd_tbl); unregister_pernet_subsys(&ndisc_net_ops); }
6 6 6 6 6 6 6 6 6 6 6 6 6 1 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 // SPDX-License-Identifier: GPL-2.0-only /* * vivid-touch-cap.c - touch support functions. */ #include "vivid-core.h" #include "vivid-kthread-touch.h" #include "vivid-vid-common.h" #include "vivid-touch-cap.h" static int touch_cap_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct vivid_dev *dev = vb2_get_drv_priv(vq); struct v4l2_pix_format *f = &dev->tch_format; unsigned int size = f->sizeimage; if (*nplanes) { if (*nplanes != 1) return -EINVAL; return sizes[0] < size ? -EINVAL : 0; } *nplanes = 1; sizes[0] = size; return 0; } static int touch_cap_buf_prepare(struct vb2_buffer *vb) { struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue); struct v4l2_pix_format *f = &dev->tch_format; unsigned int size = f->sizeimage; if (dev->buf_prepare_error) { /* * Error injection: test what happens if buf_prepare() returns * an error. */ dev->buf_prepare_error = false; return -EINVAL; } if (vb2_plane_size(vb, 0) < size) { dprintk(dev, 1, "%s data will not fit into plane (%lu < %u)\n", __func__, vb2_plane_size(vb, 0), size); return -EINVAL; } vb2_set_plane_payload(vb, 0, size); return 0; } static void touch_cap_buf_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue); struct vivid_buffer *buf = container_of(vbuf, struct vivid_buffer, vb); vbuf->field = V4L2_FIELD_NONE; spin_lock(&dev->slock); list_add_tail(&buf->list, &dev->touch_cap_active); spin_unlock(&dev->slock); } static int touch_cap_start_streaming(struct vb2_queue *vq, unsigned int count) { struct vivid_dev *dev = vb2_get_drv_priv(vq); int err; dev->touch_cap_seq_count = 0; if (dev->start_streaming_error) { dev->start_streaming_error = false; err = -EINVAL; } else { err = vivid_start_generating_touch_cap(dev); } if (err) { struct vivid_buffer *buf, *tmp; list_for_each_entry_safe(buf, tmp, &dev->touch_cap_active, list) { list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED); } } return err; } /* abort streaming and wait for last buffer */ static void touch_cap_stop_streaming(struct vb2_queue *vq) { struct vivid_dev *dev = vb2_get_drv_priv(vq); vivid_stop_generating_touch_cap(dev); } static void touch_cap_buf_request_complete(struct vb2_buffer *vb) { struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue); v4l2_ctrl_request_complete(vb->req_obj.req, &dev->ctrl_hdl_touch_cap); } const struct vb2_ops vivid_touch_cap_qops = { .queue_setup = touch_cap_queue_setup, .buf_prepare = touch_cap_buf_prepare, .buf_queue = touch_cap_buf_queue, .start_streaming = touch_cap_start_streaming, .stop_streaming = touch_cap_stop_streaming, .buf_request_complete = touch_cap_buf_request_complete, }; int vivid_enum_fmt_tch(struct file *file, void *priv, struct v4l2_fmtdesc *f) { if (f->index) return -EINVAL; f->pixelformat = V4L2_TCH_FMT_DELTA_TD16; return 0; } int vivid_g_fmt_tch(struct file *file, void *priv, struct v4l2_format *f) { struct vivid_dev *dev = video_drvdata(file); if (dev->multiplanar) return -ENOTTY; f->fmt.pix = dev->tch_format; return 0; } int vivid_g_fmt_tch_mplane(struct file *file, void *priv, struct v4l2_format *f) { struct vivid_dev *dev = video_drvdata(file); struct v4l2_format sp_fmt; if (!dev->multiplanar) return -ENOTTY; sp_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; sp_fmt.fmt.pix = dev->tch_format; fmt_sp2mp(&sp_fmt, f); return 0; } int vivid_g_parm_tch(struct file *file, void *priv, struct v4l2_streamparm *parm) { struct vivid_dev *dev = video_drvdata(file); if (parm->type != (dev->multiplanar ? V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE : V4L2_BUF_TYPE_VIDEO_CAPTURE)) return -EINVAL; parm->parm.capture.capability = V4L2_CAP_TIMEPERFRAME; parm->parm.capture.timeperframe = dev->timeperframe_tch_cap; parm->parm.capture.readbuffers = 1; return 0; } int vivid_enum_input_tch(struct file *file, void *priv, struct v4l2_input *inp) { if (inp->index) return -EINVAL; inp->type = V4L2_INPUT_TYPE_TOUCH; strscpy(inp->name, "Vivid Touch", sizeof(inp->name)); inp->capabilities = 0; return 0; } int vivid_g_input_tch(struct file *file, void *priv, unsigned int *i) { *i = 0; return 0; } int vivid_set_touch(struct vivid_dev *dev, unsigned int i) { struct v4l2_pix_format *f = &dev->tch_format; if (i) return -EINVAL; f->pixelformat = V4L2_TCH_FMT_DELTA_TD16; f->width = VIVID_TCH_WIDTH; f->height = VIVID_TCH_HEIGHT; f->field = V4L2_FIELD_NONE; f->colorspace = V4L2_COLORSPACE_RAW; f->bytesperline = f->width * sizeof(s16); f->sizeimage = f->width * f->height * sizeof(s16); return 0; } int vivid_s_input_tch(struct file *file, void *priv, unsigned int i) { return vivid_set_touch(video_drvdata(file), i); } static void vivid_fill_buff_noise(__s16 *tch_buf, int size) { int i; /* Fill 10% of the values within range -3 and 3, zero the others */ for (i = 0; i < size; i++) { unsigned int rand = get_random_u32(); if (rand % 10) tch_buf[i] = 0; else tch_buf[i] = (rand / 10) % 7 - 3; } } static inline int get_random_pressure(void) { return get_random_u32_below(VIVID_PRESSURE_LIMIT); } static void vivid_tch_buf_set(struct v4l2_pix_format *f, __s16 *tch_buf, int index) { unsigned int x = index % f->width; unsigned int y = index / f->width; unsigned int offset = VIVID_MIN_PRESSURE; tch_buf[index] = offset + get_random_pressure(); offset /= 2; if (x) tch_buf[index - 1] = offset + get_random_pressure(); if (x < f->width - 1) tch_buf[index + 1] = offset + get_random_pressure(); if (y) tch_buf[index - f->width] = offset + get_random_pressure(); if (y < f->height - 1) tch_buf[index + f->width] = offset + get_random_pressure(); offset /= 2; if (x && y) tch_buf[index - 1 - f->width] = offset + get_random_pressure(); if (x < f->width - 1 && y) tch_buf[index + 1 - f->width] = offset + get_random_pressure(); if (x && y < f->height - 1) tch_buf[index - 1 + f->width] = offset + get_random_pressure(); if (x < f->width - 1 && y < f->height - 1) tch_buf[index + 1 + f->width] = offset + get_random_pressure(); } void vivid_fillbuff_tch(struct vivid_dev *dev, struct vivid_buffer *buf) { struct v4l2_pix_format *f = &dev->tch_format; int size = f->width * f->height; int x, y, xstart, ystart, offset_x, offset_y; unsigned int test_pattern, test_pat_idx, rand; __s16 *tch_buf = vb2_plane_vaddr(&buf->vb.vb2_buf, 0); buf->vb.sequence = dev->touch_cap_with_seq_wrap_count; test_pattern = (buf->vb.sequence / TCH_SEQ_COUNT) % TEST_CASE_MAX; test_pat_idx = buf->vb.sequence % TCH_SEQ_COUNT; vivid_fill_buff_noise(tch_buf, size); if (test_pat_idx >= TCH_PATTERN_COUNT) return; if (test_pat_idx == 0) dev->tch_pat_random = get_random_u32(); rand = dev->tch_pat_random; switch (test_pattern) { case SINGLE_TAP: if (test_pat_idx == 2) vivid_tch_buf_set(f, tch_buf, rand % size); break; case DOUBLE_TAP: if (test_pat_idx == 2 || test_pat_idx == 4) vivid_tch_buf_set(f, tch_buf, rand % size); break; case TRIPLE_TAP: if (test_pat_idx == 2 || test_pat_idx == 4 || test_pat_idx == 6) vivid_tch_buf_set(f, tch_buf, rand % size); break; case MOVE_LEFT_TO_RIGHT: vivid_tch_buf_set(f, tch_buf, (rand % f->height) * f->width + test_pat_idx * (f->width / TCH_PATTERN_COUNT)); break; case ZOOM_IN: x = f->width / 2; y = f->height / 2; offset_x = ((TCH_PATTERN_COUNT - 1 - test_pat_idx) * x) / TCH_PATTERN_COUNT; offset_y = ((TCH_PATTERN_COUNT - 1 - test_pat_idx) * y) / TCH_PATTERN_COUNT; vivid_tch_buf_set(f, tch_buf, (x - offset_x) + f->width * (y - offset_y)); vivid_tch_buf_set(f, tch_buf, (x + offset_x) + f->width * (y + offset_y)); break; case ZOOM_OUT: x = f->width / 2; y = f->height / 2; offset_x = (test_pat_idx * x) / TCH_PATTERN_COUNT; offset_y = (test_pat_idx * y) / TCH_PATTERN_COUNT; vivid_tch_buf_set(f, tch_buf, (x - offset_x) + f->width * (y - offset_y)); vivid_tch_buf_set(f, tch_buf, (x + offset_x) + f->width * (y + offset_y)); break; case PALM_PRESS: for (x = 0; x < f->width; x++) for (y = f->height / 2; y < f->height; y++) tch_buf[x + f->width * y] = VIVID_MIN_PRESSURE + get_random_pressure(); break; case MULTIPLE_PRESS: /* 16 pressure points */ for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { ystart = (y * f->height) / 4 + f->height / 8; xstart = (x * f->width) / 4 + f->width / 8; vivid_tch_buf_set(f, tch_buf, ystart * f->width + xstart); } } break; } #ifdef __BIG_ENDIAN__ for (x = 0; x < size; x++) tch_buf[x] = (__force s16)__cpu_to_le16((u16)tch_buf[x]); #endif }
8 8 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* SMBUS message transfer tracepoints * * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #undef TRACE_SYSTEM #define TRACE_SYSTEM smbus #if !defined(_TRACE_SMBUS_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SMBUS_H #include <linux/i2c.h> #include <linux/tracepoint.h> /* * drivers/i2c/i2c-core-smbus.c */ /* * i2c_smbus_xfer() write data or procedure call request */ TRACE_EVENT_CONDITION(smbus_write, TP_PROTO(const struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int protocol, const union i2c_smbus_data *data), TP_ARGS(adap, addr, flags, read_write, command, protocol, data), TP_CONDITION(read_write == I2C_SMBUS_WRITE || protocol == I2C_SMBUS_PROC_CALL || protocol == I2C_SMBUS_BLOCK_PROC_CALL), TP_STRUCT__entry( __field(int, adapter_nr ) __field(__u16, addr ) __field(__u16, flags ) __field(__u8, command ) __field(__u8, len ) __field(__u32, protocol ) __array(__u8, buf, I2C_SMBUS_BLOCK_MAX + 2) ), TP_fast_assign( __entry->adapter_nr = adap->nr; __entry->addr = addr; __entry->flags = flags; __entry->command = command; __entry->protocol = protocol; switch (protocol) { case I2C_SMBUS_BYTE_DATA: __entry->len = 1; goto copy; case I2C_SMBUS_WORD_DATA: case I2C_SMBUS_PROC_CALL: __entry->len = 2; goto copy; case I2C_SMBUS_BLOCK_DATA: case I2C_SMBUS_BLOCK_PROC_CALL: case I2C_SMBUS_I2C_BLOCK_DATA: __entry->len = data->block[0] + 1; copy: memcpy(__entry->buf, data->block, __entry->len); break; case I2C_SMBUS_QUICK: case I2C_SMBUS_BYTE: case I2C_SMBUS_I2C_BLOCK_BROKEN: default: __entry->len = 0; } ), TP_printk("i2c-%d a=%03x f=%04x c=%x %s l=%u [%*phD]", __entry->adapter_nr, __entry->addr, __entry->flags, __entry->command, __print_symbolic(__entry->protocol, { I2C_SMBUS_QUICK, "QUICK" }, { I2C_SMBUS_BYTE, "BYTE" }, { I2C_SMBUS_BYTE_DATA, "BYTE_DATA" }, { I2C_SMBUS_WORD_DATA, "WORD_DATA" }, { I2C_SMBUS_PROC_CALL, "PROC_CALL" }, { I2C_SMBUS_BLOCK_DATA, "BLOCK_DATA" }, { I2C_SMBUS_I2C_BLOCK_BROKEN, "I2C_BLOCK_BROKEN" }, { I2C_SMBUS_BLOCK_PROC_CALL, "BLOCK_PROC_CALL" }, { I2C_SMBUS_I2C_BLOCK_DATA, "I2C_BLOCK_DATA" }), __entry->len, __entry->len, __entry->buf )); /* * i2c_smbus_xfer() read data request */ TRACE_EVENT_CONDITION(smbus_read, TP_PROTO(const struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int protocol), TP_ARGS(adap, addr, flags, read_write, command, protocol), TP_CONDITION(!(read_write == I2C_SMBUS_WRITE || protocol == I2C_SMBUS_PROC_CALL || protocol == I2C_SMBUS_BLOCK_PROC_CALL)), TP_STRUCT__entry( __field(int, adapter_nr ) __field(__u16, flags ) __field(__u16, addr ) __field(__u8, command ) __field(__u32, protocol ) __array(__u8, buf, I2C_SMBUS_BLOCK_MAX + 2) ), TP_fast_assign( __entry->adapter_nr = adap->nr; __entry->addr = addr; __entry->flags = flags; __entry->command = command; __entry->protocol = protocol; ), TP_printk("i2c-%d a=%03x f=%04x c=%x %s", __entry->adapter_nr, __entry->addr, __entry->flags, __entry->command, __print_symbolic(__entry->protocol, { I2C_SMBUS_QUICK, "QUICK" }, { I2C_SMBUS_BYTE, "BYTE" }, { I2C_SMBUS_BYTE_DATA, "BYTE_DATA" }, { I2C_SMBUS_WORD_DATA, "WORD_DATA" }, { I2C_SMBUS_PROC_CALL, "PROC_CALL" }, { I2C_SMBUS_BLOCK_DATA, "BLOCK_DATA" }, { I2C_SMBUS_I2C_BLOCK_BROKEN, "I2C_BLOCK_BROKEN" }, { I2C_SMBUS_BLOCK_PROC_CALL, "BLOCK_PROC_CALL" }, { I2C_SMBUS_I2C_BLOCK_DATA, "I2C_BLOCK_DATA" }) )); /* * i2c_smbus_xfer() read data or procedure call reply */ TRACE_EVENT_CONDITION(smbus_reply, TP_PROTO(const struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int protocol, const union i2c_smbus_data *data, int res), TP_ARGS(adap, addr, flags, read_write, command, protocol, data, res), TP_CONDITION(res >= 0 && read_write == I2C_SMBUS_READ), TP_STRUCT__entry( __field(int, adapter_nr ) __field(__u16, addr ) __field(__u16, flags ) __field(__u8, command ) __field(__u8, len ) __field(__u32, protocol ) __array(__u8, buf, I2C_SMBUS_BLOCK_MAX + 2) ), TP_fast_assign( __entry->adapter_nr = adap->nr; __entry->addr = addr; __entry->flags = flags; __entry->command = command; __entry->protocol = protocol; switch (protocol) { case I2C_SMBUS_BYTE: case I2C_SMBUS_BYTE_DATA: __entry->len = 1; goto copy; case I2C_SMBUS_WORD_DATA: case I2C_SMBUS_PROC_CALL: __entry->len = 2; goto copy; case I2C_SMBUS_BLOCK_DATA: case I2C_SMBUS_BLOCK_PROC_CALL: case I2C_SMBUS_I2C_BLOCK_DATA: __entry->len = data->block[0] + 1; copy: memcpy(__entry->buf, data->block, __entry->len); break; case I2C_SMBUS_QUICK: case I2C_SMBUS_I2C_BLOCK_BROKEN: default: __entry->len = 0; } ), TP_printk("i2c-%d a=%03x f=%04x c=%x %s l=%u [%*phD]", __entry->adapter_nr, __entry->addr, __entry->flags, __entry->command, __print_symbolic(__entry->protocol, { I2C_SMBUS_QUICK, "QUICK" }, { I2C_SMBUS_BYTE, "BYTE" }, { I2C_SMBUS_BYTE_DATA, "BYTE_DATA" }, { I2C_SMBUS_WORD_DATA, "WORD_DATA" }, { I2C_SMBUS_PROC_CALL, "PROC_CALL" }, { I2C_SMBUS_BLOCK_DATA, "BLOCK_DATA" }, { I2C_SMBUS_I2C_BLOCK_BROKEN, "I2C_BLOCK_BROKEN" }, { I2C_SMBUS_BLOCK_PROC_CALL, "BLOCK_PROC_CALL" }, { I2C_SMBUS_I2C_BLOCK_DATA, "I2C_BLOCK_DATA" }), __entry->len, __entry->len, __entry->buf )); /* * i2c_smbus_xfer() result */ TRACE_EVENT(smbus_result, TP_PROTO(const struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int protocol, int res), TP_ARGS(adap, addr, flags, read_write, command, protocol, res), TP_STRUCT__entry( __field(int, adapter_nr ) __field(__u16, addr ) __field(__u16, flags ) __field(__u8, read_write ) __field(__u8, command ) __field(__s16, res ) __field(__u32, protocol ) ), TP_fast_assign( __entry->adapter_nr = adap->nr; __entry->addr = addr; __entry->flags = flags; __entry->read_write = read_write; __entry->command = command; __entry->protocol = protocol; __entry->res = res; ), TP_printk("i2c-%d a=%03x f=%04x c=%x %s %s res=%d", __entry->adapter_nr, __entry->addr, __entry->flags, __entry->command, __print_symbolic(__entry->protocol, { I2C_SMBUS_QUICK, "QUICK" }, { I2C_SMBUS_BYTE, "BYTE" }, { I2C_SMBUS_BYTE_DATA, "BYTE_DATA" }, { I2C_SMBUS_WORD_DATA, "WORD_DATA" }, { I2C_SMBUS_PROC_CALL, "PROC_CALL" }, { I2C_SMBUS_BLOCK_DATA, "BLOCK_DATA" }, { I2C_SMBUS_I2C_BLOCK_BROKEN, "I2C_BLOCK_BROKEN" }, { I2C_SMBUS_BLOCK_PROC_CALL, "BLOCK_PROC_CALL" }, { I2C_SMBUS_I2C_BLOCK_DATA, "I2C_BLOCK_DATA" }), __entry->read_write == I2C_SMBUS_WRITE ? "wr" : "rd", __entry->res )); #endif /* _TRACE_SMBUS_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
22 33 17 10 10 17 10 2 3 3 3 3 3 302 302 300 302 1 1 1 1 1 3 3 3 3 3 16 16 16 16 16 16 16 16 28 28 26 25 24 24 24 24 23 17 17 14 14 3 3 17 17 17 17 16 17 17 17 17 16 16 16 16 16 15 15 16 16 16 16 16 2 2 17 17 12 12 13 13 13 13 12 13 13 13 13 13 13 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 7 7 7 7 5 7 7 28 6 1 1 1 5 5 6 5 5 5 5 5 5 2 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 4 2 1 3 3 2 1 1 3 17 17 17 15 15 6 6 1 15 7 5 15 52 53 53 2 2 2 2 2 2 2 28 28 28 28 27 28 28 28 1 1 1 2 3 14 14 14 13 14 15 10 10 7 10 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 // SPDX-License-Identifier: GPL-2.0 /* * gendisk handling * * Portions Copyright (C) 2020 Christoph Hellwig */ #include <linux/module.h> #include <linux/ctype.h> #include <linux/fs.h> #include <linux/kdev_t.h> #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/major.h> #include <linux/mutex.h> #include <linux/idr.h> #include <linux/log2.h> #include <linux/pm_runtime.h> #include <linux/badblocks.h> #include <linux/part_stat.h> #include <linux/blktrace_api.h> #include "blk-throttle.h" #include "blk.h" #include "blk-mq-sched.h" #include "blk-rq-qos.h" #include "blk-cgroup.h" static struct kobject *block_depr; /* * Unique, monotonically increasing sequential number associated with block * devices instances (i.e. incremented each time a device is attached). * Associating uevents with block devices in userspace is difficult and racy: * the uevent netlink socket is lossy, and on slow and overloaded systems has * a very high latency. * Block devices do not have exclusive owners in userspace, any process can set * one up (e.g. loop devices). Moreover, device names can be reused (e.g. loop0 * can be reused again and again). * A userspace process setting up a block device and watching for its events * cannot thus reliably tell whether an event relates to the device it just set * up or another earlier instance with the same name. * This sequential number allows userspace processes to solve this problem, and * uniquely associate an uevent to the lifetime to a device. */ static atomic64_t diskseq; /* for extended dynamic devt allocation, currently only one major is used */ #define NR_EXT_DEVT (1 << MINORBITS) static DEFINE_IDA(ext_devt_ida); void set_capacity(struct gendisk *disk, sector_t sectors) { if (sectors > BLK_DEV_MAX_SECTORS) { pr_warn_once("%s: truncate capacity from %lld to %lld\n", disk->disk_name, sectors, BLK_DEV_MAX_SECTORS); sectors = BLK_DEV_MAX_SECTORS; } bdev_set_nr_sectors(disk->part0, sectors); } EXPORT_SYMBOL(set_capacity); /* * Set disk capacity and notify if the size is not currently zero and will not * be set to zero. Returns true if a uevent was sent, otherwise false. */ bool set_capacity_and_notify(struct gendisk *disk, sector_t size) { sector_t capacity = get_capacity(disk); char *envp[] = { "RESIZE=1", NULL }; set_capacity(disk, size); /* * Only print a message and send a uevent if the gendisk is user visible * and alive. This avoids spamming the log and udev when setting the * initial capacity during probing. */ if (size == capacity || !disk_live(disk) || (disk->flags & GENHD_FL_HIDDEN)) return false; pr_info("%s: detected capacity change from %lld to %lld\n", disk->disk_name, capacity, size); /* * Historically we did not send a uevent for changes to/from an empty * device. */ if (!capacity || !size) return false; kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); return true; } EXPORT_SYMBOL_GPL(set_capacity_and_notify); static void part_stat_read_all(struct block_device *part, struct disk_stats *stat) { int cpu; memset(stat, 0, sizeof(struct disk_stats)); for_each_possible_cpu(cpu) { struct disk_stats *ptr = per_cpu_ptr(part->bd_stats, cpu); int group; for (group = 0; group < NR_STAT_GROUPS; group++) { stat->nsecs[group] += ptr->nsecs[group]; stat->sectors[group] += ptr->sectors[group]; stat->ios[group] += ptr->ios[group]; stat->merges[group] += ptr->merges[group]; } stat->io_ticks += ptr->io_ticks; } } unsigned int part_in_flight(struct block_device *part) { unsigned int inflight = 0; int cpu; for_each_possible_cpu(cpu) { inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) + part_stat_local_read_cpu(part, in_flight[1], cpu); } if ((int)inflight < 0) inflight = 0; return inflight; } static void part_in_flight_rw(struct block_device *part, unsigned int inflight[2]) { int cpu; inflight[0] = 0; inflight[1] = 0; for_each_possible_cpu(cpu) { inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu); inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu); } if ((int)inflight[0] < 0) inflight[0] = 0; if ((int)inflight[1] < 0) inflight[1] = 0; } /* * Can be deleted altogether. Later. * */ #define BLKDEV_MAJOR_HASH_SIZE 255 static struct blk_major_name { struct blk_major_name *next; int major; char name[16]; #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD void (*probe)(dev_t devt); #endif } *major_names[BLKDEV_MAJOR_HASH_SIZE]; static DEFINE_MUTEX(major_names_lock); static DEFINE_SPINLOCK(major_names_spinlock); /* index in the above - for now: assume no multimajor ranges */ static inline int major_to_index(unsigned major) { return major % BLKDEV_MAJOR_HASH_SIZE; } #ifdef CONFIG_PROC_FS void blkdev_show(struct seq_file *seqf, off_t offset) { struct blk_major_name *dp; spin_lock(&major_names_spinlock); for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) if (dp->major == offset) seq_printf(seqf, "%3d %s\n", dp->major, dp->name); spin_unlock(&major_names_spinlock); } #endif /* CONFIG_PROC_FS */ /** * __register_blkdev - register a new block device * * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If * @major = 0, try to allocate any unused major number. * @name: the name of the new block device as a zero terminated string * @probe: pre-devtmpfs / pre-udev callback used to create disks when their * pre-created device node is accessed. When a probe call uses * add_disk() and it fails the driver must cleanup resources. This * interface may soon be removed. * * The @name must be unique within the system. * * The return value depends on the @major input parameter: * * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] * then the function returns zero on success, or a negative error code * - if any unused major number was requested with @major = 0 parameter * then the return value is the allocated major number in range * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise * * See Documentation/admin-guide/devices.txt for the list of allocated * major numbers. * * Use register_blkdev instead for any new code. */ int __register_blkdev(unsigned int major, const char *name, void (*probe)(dev_t devt)) { struct blk_major_name **n, *p; int index, ret = 0; mutex_lock(&major_names_lock); /* temporary */ if (major == 0) { for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { if (major_names[index] == NULL) break; } if (index == 0) { printk("%s: failed to get major for %s\n", __func__, name); ret = -EBUSY; goto out; } major = index; ret = major; } if (major >= BLKDEV_MAJOR_MAX) { pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n", __func__, major, BLKDEV_MAJOR_MAX-1, name); ret = -EINVAL; goto out; } p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); if (p == NULL) { ret = -ENOMEM; goto out; } p->major = major; #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD p->probe = probe; #endif strscpy(p->name, name, sizeof(p->name)); p->next = NULL; index = major_to_index(major); spin_lock(&major_names_spinlock); for (n = &major_names[index]; *n; n = &(*n)->next) { if ((*n)->major == major) break; } if (!*n) *n = p; else ret = -EBUSY; spin_unlock(&major_names_spinlock); if (ret < 0) { printk("register_blkdev: cannot get major %u for %s\n", major, name); kfree(p); } out: mutex_unlock(&major_names_lock); return ret; } EXPORT_SYMBOL(__register_blkdev); void unregister_blkdev(unsigned int major, const char *name) { struct blk_major_name **n; struct blk_major_name *p = NULL; int index = major_to_index(major); mutex_lock(&major_names_lock); spin_lock(&major_names_spinlock); for (n = &major_names[index]; *n; n = &(*n)->next) if ((*n)->major == major) break; if (!*n || strcmp((*n)->name, name)) { WARN_ON(1); } else { p = *n; *n = p->next; } spin_unlock(&major_names_spinlock); mutex_unlock(&major_names_lock); kfree(p); } EXPORT_SYMBOL(unregister_blkdev); int blk_alloc_ext_minor(void) { int idx; idx = ida_alloc_range(&ext_devt_ida, 0, NR_EXT_DEVT - 1, GFP_KERNEL); if (idx == -ENOSPC) return -EBUSY; return idx; } void blk_free_ext_minor(unsigned int minor) { ida_free(&ext_devt_ida, minor); } void disk_uevent(struct gendisk *disk, enum kobject_action action) { struct block_device *part; unsigned long idx; rcu_read_lock(); xa_for_each(&disk->part_tbl, idx, part) { if (bdev_is_partition(part) && !bdev_nr_sectors(part)) continue; if (!kobject_get_unless_zero(&part->bd_device.kobj)) continue; rcu_read_unlock(); kobject_uevent(bdev_kobj(part), action); put_device(&part->bd_device); rcu_read_lock(); } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(disk_uevent); int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode) { struct file *file; int ret = 0; if (!disk_has_partscan(disk)) return -EINVAL; if (disk->open_partitions) return -EBUSY; /* * If the device is opened exclusively by current thread already, it's * safe to scan partitons, otherwise, use bd_prepare_to_claim() to * synchronize with other exclusive openers and other partition * scanners. */ if (!(mode & BLK_OPEN_EXCL)) { ret = bd_prepare_to_claim(disk->part0, disk_scan_partitions, NULL); if (ret) return ret; } set_bit(GD_NEED_PART_SCAN, &disk->state); file = bdev_file_open_by_dev(disk_devt(disk), mode & ~BLK_OPEN_EXCL, NULL, NULL); if (IS_ERR(file)) ret = PTR_ERR(file); else fput(file); /* * If blkdev_get_by_dev() failed early, GD_NEED_PART_SCAN is still set, * and this will cause that re-assemble partitioned raid device will * creat partition for underlying disk. */ clear_bit(GD_NEED_PART_SCAN, &disk->state); if (!(mode & BLK_OPEN_EXCL)) bd_abort_claiming(disk->part0, disk_scan_partitions); return ret; } /** * add_disk_fwnode - add disk information to kernel list with fwnode * @parent: parent device for the disk * @disk: per-device partitioning information * @groups: Additional per-device sysfs groups * @fwnode: attached disk fwnode * * This function registers the partitioning information in @disk * with the kernel. Also attach a fwnode to the disk device. */ int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk, const struct attribute_group **groups, struct fwnode_handle *fwnode) { struct device *ddev = disk_to_dev(disk); int ret; if (WARN_ON_ONCE(bdev_nr_sectors(disk->part0) > BLK_DEV_MAX_SECTORS)) return -EINVAL; if (queue_is_mq(disk->queue)) { /* * ->submit_bio and ->poll_bio are bypassed for blk-mq drivers. */ if (disk->fops->submit_bio || disk->fops->poll_bio) return -EINVAL; /* * Initialize the I/O scheduler code and pick a default one if * needed. */ elevator_init_mq(disk->queue); } else { if (!disk->fops->submit_bio) return -EINVAL; bdev_set_flag(disk->part0, BD_HAS_SUBMIT_BIO); } /* * If the driver provides an explicit major number it also must provide * the number of minors numbers supported, and those will be used to * setup the gendisk. * Otherwise just allocate the device numbers for both the whole device * and all partitions from the extended dev_t space. */ ret = -EINVAL; if (disk->major) { if (WARN_ON(!disk->minors)) goto out_exit_elevator; if (disk->minors > DISK_MAX_PARTS) { pr_err("block: can't allocate more than %d partitions\n", DISK_MAX_PARTS); disk->minors = DISK_MAX_PARTS; } if (disk->first_minor > MINORMASK || disk->minors > MINORMASK + 1 || disk->first_minor + disk->minors > MINORMASK + 1) goto out_exit_elevator; } else { if (WARN_ON(disk->minors)) goto out_exit_elevator; ret = blk_alloc_ext_minor(); if (ret < 0) goto out_exit_elevator; disk->major = BLOCK_EXT_MAJOR; disk->first_minor = ret; } /* delay uevents, until we scanned partition table */ dev_set_uevent_suppress(ddev, 1); ddev->parent = parent; ddev->groups = groups; dev_set_name(ddev, "%s", disk->disk_name); if (fwnode) device_set_node(ddev, fwnode); if (!(disk->flags & GENHD_FL_HIDDEN)) ddev->devt = MKDEV(disk->major, disk->first_minor); ret = device_add(ddev); if (ret) goto out_free_ext_minor; ret = disk_alloc_events(disk); if (ret) goto out_device_del; ret = sysfs_create_link(block_depr, &ddev->kobj, kobject_name(&ddev->kobj)); if (ret) goto out_device_del; /* * avoid probable deadlock caused by allocating memory with * GFP_KERNEL in runtime_resume callback of its all ancestor * devices */ pm_runtime_set_memalloc_noio(ddev, true); disk->part0->bd_holder_dir = kobject_create_and_add("holders", &ddev->kobj); if (!disk->part0->bd_holder_dir) { ret = -ENOMEM; goto out_del_block_link; } disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); if (!disk->slave_dir) { ret = -ENOMEM; goto out_put_holder_dir; } ret = blk_register_queue(disk); if (ret) goto out_put_slave_dir; if (!(disk->flags & GENHD_FL_HIDDEN)) { ret = bdi_register(disk->bdi, "%u:%u", disk->major, disk->first_minor); if (ret) goto out_unregister_queue; bdi_set_owner(disk->bdi, ddev); ret = sysfs_create_link(&ddev->kobj, &disk->bdi->dev->kobj, "bdi"); if (ret) goto out_unregister_bdi; /* Make sure the first partition scan will be proceed */ if (get_capacity(disk) && disk_has_partscan(disk)) set_bit(GD_NEED_PART_SCAN, &disk->state); bdev_add(disk->part0, ddev->devt); if (get_capacity(disk)) disk_scan_partitions(disk, BLK_OPEN_READ); /* * Announce the disk and partitions after all partitions are * created. (for hidden disks uevents remain suppressed forever) */ dev_set_uevent_suppress(ddev, 0); disk_uevent(disk, KOBJ_ADD); } else { /* * Even if the block_device for a hidden gendisk is not * registered, it needs to have a valid bd_dev so that the * freeing of the dynamic major works. */ disk->part0->bd_dev = MKDEV(disk->major, disk->first_minor); } blk_apply_bdi_limits(disk->bdi, &disk->queue->limits); disk_add_events(disk); set_bit(GD_ADDED, &disk->state); return 0; out_unregister_bdi: if (!(disk->flags & GENHD_FL_HIDDEN)) bdi_unregister(disk->bdi); out_unregister_queue: blk_unregister_queue(disk); rq_qos_exit(disk->queue); out_put_slave_dir: kobject_put(disk->slave_dir); disk->slave_dir = NULL; out_put_holder_dir: kobject_put(disk->part0->bd_holder_dir); out_del_block_link: sysfs_remove_link(block_depr, dev_name(ddev)); pm_runtime_set_memalloc_noio(ddev, false); out_device_del: device_del(ddev); out_free_ext_minor: if (disk->major == BLOCK_EXT_MAJOR) blk_free_ext_minor(disk->first_minor); out_exit_elevator: if (disk->queue->elevator) { mutex_lock(&disk->queue->elevator_lock); elevator_exit(disk->queue); mutex_unlock(&disk->queue->elevator_lock); } return ret; } EXPORT_SYMBOL_GPL(add_disk_fwnode); /** * device_add_disk - add disk information to kernel list * @parent: parent device for the disk * @disk: per-device partitioning information * @groups: Additional per-device sysfs groups * * This function registers the partitioning information in @disk * with the kernel. */ int __must_check device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups) { return add_disk_fwnode(parent, disk, groups, NULL); } EXPORT_SYMBOL(device_add_disk); static void blk_report_disk_dead(struct gendisk *disk, bool surprise) { struct block_device *bdev; unsigned long idx; /* * On surprise disk removal, bdev_mark_dead() may call into file * systems below. Make it clear that we're expecting to not hold * disk->open_mutex. */ lockdep_assert_not_held(&disk->open_mutex); rcu_read_lock(); xa_for_each(&disk->part_tbl, idx, bdev) { if (!kobject_get_unless_zero(&bdev->bd_device.kobj)) continue; rcu_read_unlock(); bdev_mark_dead(bdev, surprise); put_device(&bdev->bd_device); rcu_read_lock(); } rcu_read_unlock(); } static bool __blk_mark_disk_dead(struct gendisk *disk) { /* * Fail any new I/O. */ if (test_and_set_bit(GD_DEAD, &disk->state)) return false; if (test_bit(GD_OWNS_QUEUE, &disk->state)) blk_queue_flag_set(QUEUE_FLAG_DYING, disk->queue); /* * Stop buffered writers from dirtying pages that can't be written out. */ set_capacity(disk, 0); /* * Prevent new I/O from crossing bio_queue_enter(). */ return blk_queue_start_drain(disk->queue); } /** * blk_mark_disk_dead - mark a disk as dead * @disk: disk to mark as dead * * Mark as disk as dead (e.g. surprise removed) and don't accept any new I/O * to this disk. */ void blk_mark_disk_dead(struct gendisk *disk) { __blk_mark_disk_dead(disk); blk_report_disk_dead(disk, true); } EXPORT_SYMBOL_GPL(blk_mark_disk_dead); /** * del_gendisk - remove the gendisk * @disk: the struct gendisk to remove * * Removes the gendisk and all its associated resources. This deletes the * partitions associated with the gendisk, and unregisters the associated * request_queue. * * This is the counter to the respective __device_add_disk() call. * * The final removal of the struct gendisk happens when its refcount reaches 0 * with put_disk(), which should be called after del_gendisk(), if * __device_add_disk() was used. * * Drivers exist which depend on the release of the gendisk to be synchronous, * it should not be deferred. * * Context: can sleep */ void del_gendisk(struct gendisk *disk) { struct request_queue *q = disk->queue; struct block_device *part; unsigned long idx; bool start_drain; might_sleep(); if (WARN_ON_ONCE(!disk_live(disk) && !(disk->flags & GENHD_FL_HIDDEN))) return; disk_del_events(disk); /* * Prevent new openers by unlinked the bdev inode. */ mutex_lock(&disk->open_mutex); xa_for_each(&disk->part_tbl, idx, part) bdev_unhash(part); mutex_unlock(&disk->open_mutex); /* * Tell the file system to write back all dirty data and shut down if * it hasn't been notified earlier. */ if (!test_bit(GD_DEAD, &disk->state)) blk_report_disk_dead(disk, false); /* * Drop all partitions now that the disk is marked dead. */ mutex_lock(&disk->open_mutex); start_drain = __blk_mark_disk_dead(disk); if (start_drain) blk_freeze_acquire_lock(q); xa_for_each_start(&disk->part_tbl, idx, part, 1) drop_partition(part); mutex_unlock(&disk->open_mutex); if (!(disk->flags & GENHD_FL_HIDDEN)) { sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); /* * Unregister bdi before releasing device numbers (as they can * get reused and we'd get clashes in sysfs). */ bdi_unregister(disk->bdi); } blk_unregister_queue(disk); kobject_put(disk->part0->bd_holder_dir); kobject_put(disk->slave_dir); disk->slave_dir = NULL; part_stat_set_all(disk->part0, 0); disk->part0->bd_stamp = 0; sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); device_del(disk_to_dev(disk)); blk_mq_freeze_queue_wait(q); blk_throtl_cancel_bios(disk); blk_sync_queue(q); blk_flush_integrity(); if (queue_is_mq(q)) blk_mq_cancel_work_sync(q); blk_mq_quiesce_queue(q); if (q->elevator) { mutex_lock(&q->elevator_lock); elevator_exit(q); mutex_unlock(&q->elevator_lock); } rq_qos_exit(q); blk_mq_unquiesce_queue(q); /* * If the disk does not own the queue, allow using passthrough requests * again. Else leave the queue frozen to fail all I/O. */ if (!test_bit(GD_OWNS_QUEUE, &disk->state)) __blk_mq_unfreeze_queue(q, true); else if (queue_is_mq(q)) blk_mq_exit_queue(q); if (start_drain) blk_unfreeze_release_lock(q); } EXPORT_SYMBOL(del_gendisk); /** * invalidate_disk - invalidate the disk * @disk: the struct gendisk to invalidate * * A helper to invalidates the disk. It will clean the disk's associated * buffer/page caches and reset its internal states so that the disk * can be reused by the drivers. * * Context: can sleep */ void invalidate_disk(struct gendisk *disk) { struct block_device *bdev = disk->part0; invalidate_bdev(bdev); bdev->bd_mapping->wb_err = 0; set_capacity(disk, 0); } EXPORT_SYMBOL(invalidate_disk); /* sysfs access to bad-blocks list. */ static ssize_t disk_badblocks_show(struct device *dev, struct device_attribute *attr, char *page) { struct gendisk *disk = dev_to_disk(dev); if (!disk->bb) return sysfs_emit(page, "\n"); return badblocks_show(disk->bb, page, 0); } static ssize_t disk_badblocks_store(struct device *dev, struct device_attribute *attr, const char *page, size_t len) { struct gendisk *disk = dev_to_disk(dev); if (!disk->bb) return -ENXIO; return badblocks_store(disk->bb, page, len, 0); } #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD static bool blk_probe_dev(dev_t devt) { unsigned int major = MAJOR(devt); struct blk_major_name **n; mutex_lock(&major_names_lock); for (n = &major_names[major_to_index(major)]; *n; n = &(*n)->next) { if ((*n)->major == major && (*n)->probe) { (*n)->probe(devt); mutex_unlock(&major_names_lock); return true; } } mutex_unlock(&major_names_lock); return false; } void blk_request_module(dev_t devt) { int error; if (blk_probe_dev(devt)) return; error = request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)); /* Make old-style 2.4 aliases work */ if (error > 0) error = request_module("block-major-%d", MAJOR(devt)); if (!error) blk_probe_dev(devt); } #endif /* CONFIG_BLOCK_LEGACY_AUTOLOAD */ #ifdef CONFIG_PROC_FS /* iterator */ static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) { loff_t skip = *pos; struct class_dev_iter *iter; struct device *dev; iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return ERR_PTR(-ENOMEM); seqf->private = iter; class_dev_iter_init(iter, &block_class, NULL, &disk_type); do { dev = class_dev_iter_next(iter); if (!dev) return NULL; } while (skip--); return dev_to_disk(dev); } static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) { struct device *dev; (*pos)++; dev = class_dev_iter_next(seqf->private); if (dev) return dev_to_disk(dev); return NULL; } static void disk_seqf_stop(struct seq_file *seqf, void *v) { struct class_dev_iter *iter = seqf->private; /* stop is called even after start failed :-( */ if (iter) { class_dev_iter_exit(iter); kfree(iter); seqf->private = NULL; } } static void *show_partition_start(struct seq_file *seqf, loff_t *pos) { void *p; p = disk_seqf_start(seqf, pos); if (!IS_ERR_OR_NULL(p) && !*pos) seq_puts(seqf, "major minor #blocks name\n\n"); return p; } static int show_partition(struct seq_file *seqf, void *v) { struct gendisk *sgp = v; struct block_device *part; unsigned long idx; if (!get_capacity(sgp) || (sgp->flags & GENHD_FL_HIDDEN)) return 0; rcu_read_lock(); xa_for_each(&sgp->part_tbl, idx, part) { if (!bdev_nr_sectors(part)) continue; seq_printf(seqf, "%4d %7d %10llu %pg\n", MAJOR(part->bd_dev), MINOR(part->bd_dev), bdev_nr_sectors(part) >> 1, part); } rcu_read_unlock(); return 0; } static const struct seq_operations partitions_op = { .start = show_partition_start, .next = disk_seqf_next, .stop = disk_seqf_stop, .show = show_partition }; #endif static int __init genhd_device_init(void) { int error; error = class_register(&block_class); if (unlikely(error)) return error; blk_dev_init(); register_blkdev(BLOCK_EXT_MAJOR, "blkext"); /* create top-level block dir */ block_depr = kobject_create_and_add("block", NULL); return 0; } subsys_initcall(genhd_device_init); static ssize_t disk_range_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%d\n", disk->minors); } static ssize_t disk_ext_range_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%d\n", (disk->flags & GENHD_FL_NO_PART) ? 1 : DISK_MAX_PARTS); } static ssize_t disk_removable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%d\n", (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); } static ssize_t disk_hidden_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%d\n", (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); } static ssize_t disk_ro_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); } ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%llu\n", bdev_nr_sectors(dev_to_bdev(dev))); } ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf) { struct block_device *bdev = dev_to_bdev(dev); struct disk_stats stat; unsigned int inflight; inflight = part_in_flight(bdev); if (inflight) { part_stat_lock(); update_io_ticks(bdev, jiffies, true); part_stat_unlock(); } part_stat_read_all(bdev, &stat); return sysfs_emit(buf, "%8lu %8lu %8llu %8u " "%8lu %8lu %8llu %8u " "%8u %8u %8u " "%8lu %8lu %8llu %8u " "%8lu %8u" "\n", stat.ios[STAT_READ], stat.merges[STAT_READ], (unsigned long long)stat.sectors[STAT_READ], (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC), stat.ios[STAT_WRITE], stat.merges[STAT_WRITE], (unsigned long long)stat.sectors[STAT_WRITE], (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC), inflight, jiffies_to_msecs(stat.io_ticks), (unsigned int)div_u64(stat.nsecs[STAT_READ] + stat.nsecs[STAT_WRITE] + stat.nsecs[STAT_DISCARD] + stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC), stat.ios[STAT_DISCARD], stat.merges[STAT_DISCARD], (unsigned long long)stat.sectors[STAT_DISCARD], (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC), stat.ios[STAT_FLUSH], (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC)); } ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf) { struct block_device *bdev = dev_to_bdev(dev); struct request_queue *q = bdev_get_queue(bdev); unsigned int inflight[2]; if (queue_is_mq(q)) blk_mq_in_flight_rw(q, bdev, inflight); else part_in_flight_rw(bdev, inflight); return sysfs_emit(buf, "%8u %8u\n", inflight[0], inflight[1]); } static ssize_t disk_capability_show(struct device *dev, struct device_attribute *attr, char *buf) { dev_warn_once(dev, "the capability attribute has been deprecated.\n"); return sysfs_emit(buf, "0\n"); } static ssize_t disk_alignment_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%d\n", bdev_alignment_offset(disk->part0)); } static ssize_t disk_discard_alignment_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%d\n", bdev_alignment_offset(disk->part0)); } static ssize_t diskseq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sysfs_emit(buf, "%llu\n", disk->diskseq); } static ssize_t partscan_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%u\n", disk_has_partscan(dev_to_disk(dev))); } static DEVICE_ATTR(range, 0444, disk_range_show, NULL); static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL); static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL); static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL); static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL); static DEVICE_ATTR(size, 0444, part_size_show, NULL); static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL); static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL); static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL); static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store); static DEVICE_ATTR(diskseq, 0444, diskseq_show, NULL); static DEVICE_ATTR(partscan, 0444, partscan_show, NULL); #ifdef CONFIG_FAIL_MAKE_REQUEST ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", bdev_test_flag(dev_to_bdev(dev), BD_MAKE_IT_FAIL)); } ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int i; if (count > 0 && sscanf(buf, "%d", &i) > 0) { if (i) bdev_set_flag(dev_to_bdev(dev), BD_MAKE_IT_FAIL); else bdev_clear_flag(dev_to_bdev(dev), BD_MAKE_IT_FAIL); } return count; } static struct device_attribute dev_attr_fail = __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); #endif /* CONFIG_FAIL_MAKE_REQUEST */ #ifdef CONFIG_FAIL_IO_TIMEOUT static struct device_attribute dev_attr_fail_timeout = __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store); #endif static struct attribute *disk_attrs[] = { &dev_attr_range.attr, &dev_attr_ext_range.attr, &dev_attr_removable.attr, &dev_attr_hidden.attr, &dev_attr_ro.attr, &dev_attr_size.attr, &dev_attr_alignment_offset.attr, &dev_attr_discard_alignment.attr, &dev_attr_capability.attr, &dev_attr_stat.attr, &dev_attr_inflight.attr, &dev_attr_badblocks.attr, &dev_attr_events.attr, &dev_attr_events_async.attr, &dev_attr_events_poll_msecs.attr, &dev_attr_diskseq.attr, &dev_attr_partscan.attr, #ifdef CONFIG_FAIL_MAKE_REQUEST &dev_attr_fail.attr, #endif #ifdef CONFIG_FAIL_IO_TIMEOUT &dev_attr_fail_timeout.attr, #endif NULL }; static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, typeof(*dev), kobj); struct gendisk *disk = dev_to_disk(dev); if (a == &dev_attr_badblocks.attr && !disk->bb) return 0; return a->mode; } static struct attribute_group disk_attr_group = { .attrs = disk_attrs, .is_visible = disk_visible, }; static const struct attribute_group *disk_attr_groups[] = { &disk_attr_group, #ifdef CONFIG_BLK_DEV_IO_TRACE &blk_trace_attr_group, #endif #ifdef CONFIG_BLK_DEV_INTEGRITY &blk_integrity_attr_group, #endif NULL }; /** * disk_release - releases all allocated resources of the gendisk * @dev: the device representing this disk * * This function releases all allocated resources of the gendisk. * * Drivers which used __device_add_disk() have a gendisk with a request_queue * assigned. Since the request_queue sits on top of the gendisk for these * drivers we also call blk_put_queue() for them, and we expect the * request_queue refcount to reach 0 at this point, and so the request_queue * will also be freed prior to the disk. * * Context: can sleep */ static void disk_release(struct device *dev) { struct gendisk *disk = dev_to_disk(dev); might_sleep(); WARN_ON_ONCE(disk_live(disk)); blk_trace_remove(disk->queue); /* * To undo the all initialization from blk_mq_init_allocated_queue in * case of a probe failure where add_disk is never called we have to * call blk_mq_exit_queue here. We can't do this for the more common * teardown case (yet) as the tagset can be gone by the time the disk * is released once it was added. */ if (queue_is_mq(disk->queue) && test_bit(GD_OWNS_QUEUE, &disk->state) && !test_bit(GD_ADDED, &disk->state)) blk_mq_exit_queue(disk->queue); blkcg_exit_disk(disk); bioset_exit(&disk->bio_split); disk_release_events(disk); kfree(disk->random); disk_free_zone_resources(disk); xa_destroy(&disk->part_tbl); disk->queue->disk = NULL; blk_put_queue(disk->queue); if (test_bit(GD_ADDED, &disk->state) && disk->fops->free_disk) disk->fops->free_disk(disk); bdev_drop(disk->part0); /* frees the disk */ } static int block_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct gendisk *disk = dev_to_disk(dev); return add_uevent_var(env, "DISKSEQ=%llu", disk->diskseq); } const struct class block_class = { .name = "block", .dev_uevent = block_uevent, }; static char *block_devnode(const struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid) { struct gendisk *disk = dev_to_disk(dev); if (disk->fops->devnode) return disk->fops->devnode(disk, mode); return NULL; } const struct device_type disk_type = { .name = "disk", .groups = disk_attr_groups, .release = disk_release, .devnode = block_devnode, }; #ifdef CONFIG_PROC_FS /* * aggregate disk stat collector. Uses the same stats that the sysfs * entries do, above, but makes them available through one seq_file. * * The output looks suspiciously like /proc/partitions with a bunch of * extra fields. */ static int diskstats_show(struct seq_file *seqf, void *v) { struct gendisk *gp = v; struct block_device *hd; unsigned int inflight; struct disk_stats stat; unsigned long idx; /* if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) seq_puts(seqf, "major minor name" " rio rmerge rsect ruse wio wmerge " "wsect wuse running use aveq" "\n\n"); */ rcu_read_lock(); xa_for_each(&gp->part_tbl, idx, hd) { if (bdev_is_partition(hd) && !bdev_nr_sectors(hd)) continue; inflight = part_in_flight(hd); if (inflight) { part_stat_lock(); update_io_ticks(hd, jiffies, true); part_stat_unlock(); } part_stat_read_all(hd, &stat); seq_put_decimal_ull_width(seqf, "", MAJOR(hd->bd_dev), 4); seq_put_decimal_ull_width(seqf, " ", MINOR(hd->bd_dev), 7); seq_printf(seqf, " %pg", hd); seq_put_decimal_ull(seqf, " ", stat.ios[STAT_READ]); seq_put_decimal_ull(seqf, " ", stat.merges[STAT_READ]); seq_put_decimal_ull(seqf, " ", stat.sectors[STAT_READ]); seq_put_decimal_ull(seqf, " ", (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC)); seq_put_decimal_ull(seqf, " ", stat.ios[STAT_WRITE]); seq_put_decimal_ull(seqf, " ", stat.merges[STAT_WRITE]); seq_put_decimal_ull(seqf, " ", stat.sectors[STAT_WRITE]); seq_put_decimal_ull(seqf, " ", (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC)); seq_put_decimal_ull(seqf, " ", inflight); seq_put_decimal_ull(seqf, " ", jiffies_to_msecs(stat.io_ticks)); seq_put_decimal_ull(seqf, " ", (unsigned int)div_u64(stat.nsecs[STAT_READ] + stat.nsecs[STAT_WRITE] + stat.nsecs[STAT_DISCARD] + stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC)); seq_put_decimal_ull(seqf, " ", stat.ios[STAT_DISCARD]); seq_put_decimal_ull(seqf, " ", stat.merges[STAT_DISCARD]); seq_put_decimal_ull(seqf, " ", stat.sectors[STAT_DISCARD]); seq_put_decimal_ull(seqf, " ", (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC)); seq_put_decimal_ull(seqf, " ", stat.ios[STAT_FLUSH]); seq_put_decimal_ull(seqf, " ", (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC)); seq_putc(seqf, '\n'); } rcu_read_unlock(); return 0; } static const struct seq_operations diskstats_op = { .start = disk_seqf_start, .next = disk_seqf_next, .stop = disk_seqf_stop, .show = diskstats_show }; static int __init proc_genhd_init(void) { proc_create_seq("diskstats", 0, NULL, &diskstats_op); proc_create_seq("partitions", 0, NULL, &partitions_op); return 0; } module_init(proc_genhd_init); #endif /* CONFIG_PROC_FS */ dev_t part_devt(struct gendisk *disk, u8 partno) { struct block_device *part; dev_t devt = 0; rcu_read_lock(); part = xa_load(&disk->part_tbl, partno); if (part) devt = part->bd_dev; rcu_read_unlock(); return devt; } struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, struct lock_class_key *lkclass) { struct gendisk *disk; disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); if (!disk) return NULL; if (bioset_init(&disk->bio_split, BIO_POOL_SIZE, 0, 0)) goto out_free_disk; disk->bdi = bdi_alloc(node_id); if (!disk->bdi) goto out_free_bioset; /* bdev_alloc() might need the queue, set before the first call */ disk->queue = q; disk->part0 = bdev_alloc(disk, 0); if (!disk->part0) goto out_free_bdi; disk->node_id = node_id; mutex_init(&disk->open_mutex); xa_init(&disk->part_tbl); if (xa_insert(&disk->part_tbl, 0, disk->part0, GFP_KERNEL)) goto out_destroy_part_tbl; if (blkcg_init_disk(disk)) goto out_erase_part0; disk_init_zone_resources(disk); rand_initialize_disk(disk); disk_to_dev(disk)->class = &block_class; disk_to_dev(disk)->type = &disk_type; device_initialize(disk_to_dev(disk)); inc_diskseq(disk); q->disk = disk; lockdep_init_map(&disk->lockdep_map, "(bio completion)", lkclass, 0); #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED INIT_LIST_HEAD(&disk->slave_bdevs); #endif return disk; out_erase_part0: xa_erase(&disk->part_tbl, 0); out_destroy_part_tbl: xa_destroy(&disk->part_tbl); disk->part0->bd_disk = NULL; bdev_drop(disk->part0); out_free_bdi: bdi_put(disk->bdi); out_free_bioset: bioset_exit(&disk->bio_split); out_free_disk: kfree(disk); return NULL; } struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node, struct lock_class_key *lkclass) { struct queue_limits default_lim = { }; struct request_queue *q; struct gendisk *disk; q = blk_alloc_queue(lim ? lim : &default_lim, node); if (IS_ERR(q)) return ERR_CAST(q); disk = __alloc_disk_node(q, node, lkclass); if (!disk) { blk_put_queue(q); return ERR_PTR(-ENOMEM); } set_bit(GD_OWNS_QUEUE, &disk->state); return disk; } EXPORT_SYMBOL(__blk_alloc_disk); /** * put_disk - decrements the gendisk refcount * @disk: the struct gendisk to decrement the refcount for * * This decrements the refcount for the struct gendisk. When this reaches 0 * we'll have disk_release() called. * * Note: for blk-mq disk put_disk must be called before freeing the tag_set * when handling probe errors (that is before add_disk() is called). * * Context: Any context, but the last reference must not be dropped from * atomic context. */ void put_disk(struct gendisk *disk) { if (disk) put_device(disk_to_dev(disk)); } EXPORT_SYMBOL(put_disk); static void set_disk_ro_uevent(struct gendisk *gd, int ro) { char event[] = "DISK_RO=1"; char *envp[] = { event, NULL }; if (!ro) event[8] = '0'; kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); } /** * set_disk_ro - set a gendisk read-only * @disk: gendisk to operate on * @read_only: %true to set the disk read-only, %false set the disk read/write * * This function is used to indicate whether a given disk device should have its * read-only flag set. set_disk_ro() is typically used by device drivers to * indicate whether the underlying physical device is write-protected. */ void set_disk_ro(struct gendisk *disk, bool read_only) { if (read_only) { if (test_and_set_bit(GD_READ_ONLY, &disk->state)) return; } else { if (!test_and_clear_bit(GD_READ_ONLY, &disk->state)) return; } set_disk_ro_uevent(disk, read_only); } EXPORT_SYMBOL(set_disk_ro); void inc_diskseq(struct gendisk *disk) { disk->diskseq = atomic64_inc_return(&diskseq); }
1 2 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2018 Samsung Electronics Co., Ltd. */ #include <linux/jhash.h> #include <linux/slab.h> #include <linux/rwsem.h> #include <linux/mutex.h> #include <linux/wait.h> #include <linux/hashtable.h> #include <net/net_namespace.h> #include <net/genetlink.h> #include <linux/socket.h> #include <linux/workqueue.h> #include "vfs_cache.h" #include "transport_ipc.h" #include "server.h" #include "smb_common.h" #include "mgmt/user_config.h" #include "mgmt/share_config.h" #include "mgmt/user_session.h" #include "mgmt/tree_connect.h" #include "mgmt/ksmbd_ida.h" #include "connection.h" #include "transport_tcp.h" #include "transport_rdma.h" #define IPC_WAIT_TIMEOUT (2 * HZ) #define IPC_MSG_HASH_BITS 3 static DEFINE_HASHTABLE(ipc_msg_table, IPC_MSG_HASH_BITS); static DECLARE_RWSEM(ipc_msg_table_lock); static DEFINE_MUTEX(startup_lock); static DEFINE_IDA(ipc_ida); static unsigned int ksmbd_tools_pid; static bool ksmbd_ipc_validate_version(struct genl_info *m) { if (m->genlhdr->version != KSMBD_GENL_VERSION) { pr_err("%s. ksmbd: %d, kernel module: %d. %s.\n", "Daemon and kernel module version mismatch", m->genlhdr->version, KSMBD_GENL_VERSION, "User-space ksmbd should terminate"); return false; } return true; } struct ksmbd_ipc_msg { unsigned int type; unsigned int sz; unsigned char payload[]; }; struct ipc_msg_table_entry { unsigned int handle; unsigned int type; wait_queue_head_t wait; struct hlist_node ipc_table_hlist; void *response; unsigned int msg_sz; }; static struct delayed_work ipc_timer_work; static int handle_startup_event(struct sk_buff *skb, struct genl_info *info); static int handle_unsupported_event(struct sk_buff *skb, struct genl_info *info); static int handle_generic_event(struct sk_buff *skb, struct genl_info *info); static int ksmbd_ipc_heartbeat_request(void); static const struct nla_policy ksmbd_nl_policy[KSMBD_EVENT_MAX + 1] = { [KSMBD_EVENT_UNSPEC] = { .len = 0, }, [KSMBD_EVENT_HEARTBEAT_REQUEST] = { .len = sizeof(struct ksmbd_heartbeat), }, [KSMBD_EVENT_STARTING_UP] = { .len = sizeof(struct ksmbd_startup_request), }, [KSMBD_EVENT_SHUTTING_DOWN] = { .len = sizeof(struct ksmbd_shutdown_request), }, [KSMBD_EVENT_LOGIN_REQUEST] = { .len = sizeof(struct ksmbd_login_request), }, [KSMBD_EVENT_LOGIN_RESPONSE] = { .len = sizeof(struct ksmbd_login_response), }, [KSMBD_EVENT_SHARE_CONFIG_REQUEST] = { .len = sizeof(struct ksmbd_share_config_request), }, [KSMBD_EVENT_SHARE_CONFIG_RESPONSE] = { .len = sizeof(struct ksmbd_share_config_response), }, [KSMBD_EVENT_TREE_CONNECT_REQUEST] = { .len = sizeof(struct ksmbd_tree_connect_request), }, [KSMBD_EVENT_TREE_CONNECT_RESPONSE] = { .len = sizeof(struct ksmbd_tree_connect_response), }, [KSMBD_EVENT_TREE_DISCONNECT_REQUEST] = { .len = sizeof(struct ksmbd_tree_disconnect_request), }, [KSMBD_EVENT_LOGOUT_REQUEST] = { .len = sizeof(struct ksmbd_logout_request), }, [KSMBD_EVENT_RPC_REQUEST] = { }, [KSMBD_EVENT_RPC_RESPONSE] = { }, [KSMBD_EVENT_SPNEGO_AUTHEN_REQUEST] = { }, [KSMBD_EVENT_SPNEGO_AUTHEN_RESPONSE] = { }, [KSMBD_EVENT_LOGIN_REQUEST_EXT] = { .len = sizeof(struct ksmbd_login_request), }, [KSMBD_EVENT_LOGIN_RESPONSE_EXT] = { .len = sizeof(struct ksmbd_login_response_ext), }, }; static struct genl_ops ksmbd_genl_ops[] = { { .cmd = KSMBD_EVENT_UNSPEC, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_HEARTBEAT_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_STARTING_UP, .doit = handle_startup_event, }, { .cmd = KSMBD_EVENT_SHUTTING_DOWN, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_LOGIN_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_LOGIN_RESPONSE, .doit = handle_generic_event, }, { .cmd = KSMBD_EVENT_SHARE_CONFIG_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_SHARE_CONFIG_RESPONSE, .doit = handle_generic_event, }, { .cmd = KSMBD_EVENT_TREE_CONNECT_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_TREE_CONNECT_RESPONSE, .doit = handle_generic_event, }, { .cmd = KSMBD_EVENT_TREE_DISCONNECT_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_LOGOUT_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_RPC_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_RPC_RESPONSE, .doit = handle_generic_event, }, { .cmd = KSMBD_EVENT_SPNEGO_AUTHEN_REQUEST, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_SPNEGO_AUTHEN_RESPONSE, .doit = handle_generic_event, }, { .cmd = KSMBD_EVENT_LOGIN_REQUEST_EXT, .doit = handle_unsupported_event, }, { .cmd = KSMBD_EVENT_LOGIN_RESPONSE_EXT, .doit = handle_generic_event, }, }; static struct genl_family ksmbd_genl_family = { .name = KSMBD_GENL_NAME, .version = KSMBD_GENL_VERSION, .hdrsize = 0, .maxattr = KSMBD_EVENT_MAX, .netnsok = true, .module = THIS_MODULE, .ops = ksmbd_genl_ops, .n_ops = ARRAY_SIZE(ksmbd_genl_ops), .resv_start_op = KSMBD_EVENT_LOGIN_RESPONSE_EXT + 1, }; static void ksmbd_nl_init_fixup(void) { int i; for (i = 0; i < ARRAY_SIZE(ksmbd_genl_ops); i++) ksmbd_genl_ops[i].validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP; ksmbd_genl_family.policy = ksmbd_nl_policy; } static int rpc_context_flags(struct ksmbd_session *sess) { if (user_guest(sess->user)) return KSMBD_RPC_RESTRICTED_CONTEXT; return 0; } static void ipc_update_last_active(void) { if (server_conf.ipc_timeout) server_conf.ipc_last_active = jiffies; } static struct ksmbd_ipc_msg *ipc_msg_alloc(size_t sz) { struct ksmbd_ipc_msg *msg; size_t msg_sz = sz + sizeof(struct ksmbd_ipc_msg); msg = kvzalloc(msg_sz, KSMBD_DEFAULT_GFP); if (msg) msg->sz = sz; return msg; } static void ipc_msg_free(struct ksmbd_ipc_msg *msg) { kvfree(msg); } static void ipc_msg_handle_free(int handle) { if (handle >= 0) ksmbd_release_id(&ipc_ida, handle); } static int handle_response(int type, void *payload, size_t sz) { unsigned int handle = *(unsigned int *)payload; struct ipc_msg_table_entry *entry; int ret = 0; ipc_update_last_active(); down_read(&ipc_msg_table_lock); hash_for_each_possible(ipc_msg_table, entry, ipc_table_hlist, handle) { if (handle != entry->handle) continue; entry->response = NULL; /* * Response message type value should be equal to * request message type + 1. */ if (entry->type + 1 != type) { pr_err("Waiting for IPC type %d, got %d. Ignore.\n", entry->type + 1, type); continue; } entry->response = kvzalloc(sz, KSMBD_DEFAULT_GFP); if (!entry->response) { ret = -ENOMEM; break; } memcpy(entry->response, payload, sz); entry->msg_sz = sz; wake_up_interruptible(&entry->wait); ret = 0; break; } up_read(&ipc_msg_table_lock); return ret; } static int ipc_server_config_on_startup(struct ksmbd_startup_request *req) { int ret; ksmbd_set_fd_limit(req->file_max); server_conf.flags = req->flags; server_conf.signing = req->signing; server_conf.tcp_port = req->tcp_port; server_conf.ipc_timeout = req->ipc_timeout * HZ; if (check_mul_overflow(req->deadtime, SMB_ECHO_INTERVAL, &server_conf.deadtime)) { ret = -EINVAL; goto out; } server_conf.share_fake_fscaps = req->share_fake_fscaps; ksmbd_init_domain(req->sub_auth); if (req->smb2_max_read) init_smb2_max_read_size(req->smb2_max_read); if (req->smb2_max_write) init_smb2_max_write_size(req->smb2_max_write); if (req->smb2_max_trans) init_smb2_max_trans_size(req->smb2_max_trans); if (req->smb2_max_credits) { init_smb2_max_credits(req->smb2_max_credits); server_conf.max_inflight_req = req->smb2_max_credits; } if (req->smbd_max_io_size) init_smbd_max_io_size(req->smbd_max_io_size); if (req->max_connections) server_conf.max_connections = req->max_connections; ret = ksmbd_set_netbios_name(req->netbios_name); ret |= ksmbd_set_server_string(req->server_string); ret |= ksmbd_set_work_group(req->work_group); server_conf.bind_interfaces_only = req->bind_interfaces_only; ret |= ksmbd_tcp_set_interfaces(KSMBD_STARTUP_CONFIG_INTERFACES(req), req->ifc_list_sz); out: if (ret) { pr_err("Server configuration error: %s %s %s\n", req->netbios_name, req->server_string, req->work_group); return ret; } if (req->min_prot[0]) { ret = ksmbd_lookup_protocol_idx(req->min_prot); if (ret >= 0) server_conf.min_protocol = ret; } if (req->max_prot[0]) { ret = ksmbd_lookup_protocol_idx(req->max_prot); if (ret >= 0) server_conf.max_protocol = ret; } if (server_conf.ipc_timeout) schedule_delayed_work(&ipc_timer_work, server_conf.ipc_timeout); return 0; } static int handle_startup_event(struct sk_buff *skb, struct genl_info *info) { int ret = 0; #ifdef CONFIG_SMB_SERVER_CHECK_CAP_NET_ADMIN if (!netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; #endif if (!ksmbd_ipc_validate_version(info)) return -EINVAL; if (!info->attrs[KSMBD_EVENT_STARTING_UP]) return -EINVAL; mutex_lock(&startup_lock); if (!ksmbd_server_configurable()) { mutex_unlock(&startup_lock); pr_err("Server reset is in progress, can't start daemon\n"); return -EINVAL; } if (ksmbd_tools_pid) { if (ksmbd_ipc_heartbeat_request() == 0) { ret = -EINVAL; goto out; } pr_err("Reconnect to a new user space daemon\n"); } else { struct ksmbd_startup_request *req; req = nla_data(info->attrs[info->genlhdr->cmd]); ret = ipc_server_config_on_startup(req); if (ret) goto out; server_queue_ctrl_init_work(); } ksmbd_tools_pid = info->snd_portid; ipc_update_last_active(); out: mutex_unlock(&startup_lock); return ret; } static int handle_unsupported_event(struct sk_buff *skb, struct genl_info *info) { pr_err("Unknown IPC event: %d, ignore.\n", info->genlhdr->cmd); return -EINVAL; } static int handle_generic_event(struct sk_buff *skb, struct genl_info *info) { void *payload; int sz; int type = info->genlhdr->cmd; #ifdef CONFIG_SMB_SERVER_CHECK_CAP_NET_ADMIN if (!netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; #endif if (type > KSMBD_EVENT_MAX) { WARN_ON(1); return -EINVAL; } if (!ksmbd_ipc_validate_version(info)) return -EINVAL; if (!info->attrs[type]) return -EINVAL; payload = nla_data(info->attrs[info->genlhdr->cmd]); sz = nla_len(info->attrs[info->genlhdr->cmd]); return handle_response(type, payload, sz); } static int ipc_msg_send(struct ksmbd_ipc_msg *msg) { struct genlmsghdr *nlh; struct sk_buff *skb; int ret = -EINVAL; if (!ksmbd_tools_pid) return ret; skb = genlmsg_new(msg->sz, KSMBD_DEFAULT_GFP); if (!skb) return -ENOMEM; nlh = genlmsg_put(skb, 0, 0, &ksmbd_genl_family, 0, msg->type); if (!nlh) goto out; ret = nla_put(skb, msg->type, msg->sz, msg->payload); if (ret) { genlmsg_cancel(skb, nlh); goto out; } genlmsg_end(skb, nlh); ret = genlmsg_unicast(&init_net, skb, ksmbd_tools_pid); if (!ret) ipc_update_last_active(); return ret; out: nlmsg_free(skb); return ret; } static int ipc_validate_msg(struct ipc_msg_table_entry *entry) { unsigned int msg_sz = entry->msg_sz; switch (entry->type) { case KSMBD_EVENT_RPC_REQUEST: { struct ksmbd_rpc_command *resp = entry->response; msg_sz = sizeof(struct ksmbd_rpc_command) + resp->payload_sz; break; } case KSMBD_EVENT_SPNEGO_AUTHEN_REQUEST: { struct ksmbd_spnego_authen_response *resp = entry->response; msg_sz = sizeof(struct ksmbd_spnego_authen_response) + resp->session_key_len + resp->spnego_blob_len; break; } case KSMBD_EVENT_SHARE_CONFIG_REQUEST: { struct ksmbd_share_config_response *resp = entry->response; if (resp->payload_sz) { if (resp->payload_sz < resp->veto_list_sz) return -EINVAL; msg_sz = sizeof(struct ksmbd_share_config_response) + resp->payload_sz; } break; } case KSMBD_EVENT_LOGIN_REQUEST_EXT: { struct ksmbd_login_response_ext *resp = entry->response; if (resp->ngroups) { msg_sz = sizeof(struct ksmbd_login_response_ext) + resp->ngroups * sizeof(gid_t); } } } return entry->msg_sz != msg_sz ? -EINVAL : 0; } static void *ipc_msg_send_request(struct ksmbd_ipc_msg *msg, unsigned int handle) { struct ipc_msg_table_entry entry; int ret; if ((int)handle < 0) return NULL; entry.type = msg->type; entry.response = NULL; init_waitqueue_head(&entry.wait); down_write(&ipc_msg_table_lock); entry.handle = handle; hash_add(ipc_msg_table, &entry.ipc_table_hlist, entry.handle); up_write(&ipc_msg_table_lock); ret = ipc_msg_send(msg); if (ret) goto out; ret = wait_event_interruptible_timeout(entry.wait, entry.response != NULL, IPC_WAIT_TIMEOUT); if (entry.response) { ret = ipc_validate_msg(&entry); if (ret) { kvfree(entry.response); entry.response = NULL; } } out: down_write(&ipc_msg_table_lock); hash_del(&entry.ipc_table_hlist); up_write(&ipc_msg_table_lock); return entry.response; } static int ksmbd_ipc_heartbeat_request(void) { struct ksmbd_ipc_msg *msg; int ret; msg = ipc_msg_alloc(sizeof(struct ksmbd_heartbeat)); if (!msg) return -EINVAL; msg->type = KSMBD_EVENT_HEARTBEAT_REQUEST; ret = ipc_msg_send(msg); ipc_msg_free(msg); return ret; } struct ksmbd_login_response *ksmbd_ipc_login_request(const char *account) { struct ksmbd_ipc_msg *msg; struct ksmbd_login_request *req; struct ksmbd_login_response *resp; if (strlen(account) >= KSMBD_REQ_MAX_ACCOUNT_NAME_SZ) return NULL; msg = ipc_msg_alloc(sizeof(struct ksmbd_login_request)); if (!msg) return NULL; msg->type = KSMBD_EVENT_LOGIN_REQUEST; req = (struct ksmbd_login_request *)msg->payload; req->handle = ksmbd_acquire_id(&ipc_ida); strscpy(req->account, account, KSMBD_REQ_MAX_ACCOUNT_NAME_SZ); resp = ipc_msg_send_request(msg, req->handle); ipc_msg_handle_free(req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_login_response_ext *ksmbd_ipc_login_request_ext(const char *account) { struct ksmbd_ipc_msg *msg; struct ksmbd_login_request *req; struct ksmbd_login_response_ext *resp; if (strlen(account) >= KSMBD_REQ_MAX_ACCOUNT_NAME_SZ) return NULL; msg = ipc_msg_alloc(sizeof(struct ksmbd_login_request)); if (!msg) return NULL; msg->type = KSMBD_EVENT_LOGIN_REQUEST_EXT; req = (struct ksmbd_login_request *)msg->payload; req->handle = ksmbd_acquire_id(&ipc_ida); strscpy(req->account, account, KSMBD_REQ_MAX_ACCOUNT_NAME_SZ); resp = ipc_msg_send_request(msg, req->handle); ipc_msg_handle_free(req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_spnego_authen_response * ksmbd_ipc_spnego_authen_request(const char *spnego_blob, int blob_len) { struct ksmbd_ipc_msg *msg; struct ksmbd_spnego_authen_request *req; struct ksmbd_spnego_authen_response *resp; if (blob_len > KSMBD_IPC_MAX_PAYLOAD) return NULL; msg = ipc_msg_alloc(sizeof(struct ksmbd_spnego_authen_request) + blob_len + 1); if (!msg) return NULL; msg->type = KSMBD_EVENT_SPNEGO_AUTHEN_REQUEST; req = (struct ksmbd_spnego_authen_request *)msg->payload; req->handle = ksmbd_acquire_id(&ipc_ida); req->spnego_blob_len = blob_len; memcpy(req->spnego_blob, spnego_blob, blob_len); resp = ipc_msg_send_request(msg, req->handle); ipc_msg_handle_free(req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_tree_connect_response * ksmbd_ipc_tree_connect_request(struct ksmbd_session *sess, struct ksmbd_share_config *share, struct ksmbd_tree_connect *tree_conn, struct sockaddr *peer_addr) { struct ksmbd_ipc_msg *msg; struct ksmbd_tree_connect_request *req; struct ksmbd_tree_connect_response *resp; if (strlen(user_name(sess->user)) >= KSMBD_REQ_MAX_ACCOUNT_NAME_SZ) return NULL; if (strlen(share->name) >= KSMBD_REQ_MAX_SHARE_NAME) return NULL; msg = ipc_msg_alloc(sizeof(struct ksmbd_tree_connect_request)); if (!msg) return NULL; msg->type = KSMBD_EVENT_TREE_CONNECT_REQUEST; req = (struct ksmbd_tree_connect_request *)msg->payload; req->handle = ksmbd_acquire_id(&ipc_ida); req->account_flags = sess->user->flags; req->session_id = sess->id; req->connect_id = tree_conn->id; strscpy(req->account, user_name(sess->user), KSMBD_REQ_MAX_ACCOUNT_NAME_SZ); strscpy(req->share, share->name, KSMBD_REQ_MAX_SHARE_NAME); snprintf(req->peer_addr, sizeof(req->peer_addr), "%pIS", peer_addr); if (peer_addr->sa_family == AF_INET6) req->flags |= KSMBD_TREE_CONN_FLAG_REQUEST_IPV6; if (test_session_flag(sess, CIFDS_SESSION_FLAG_SMB2)) req->flags |= KSMBD_TREE_CONN_FLAG_REQUEST_SMB2; resp = ipc_msg_send_request(msg, req->handle); ipc_msg_handle_free(req->handle); ipc_msg_free(msg); return resp; } int ksmbd_ipc_tree_disconnect_request(unsigned long long session_id, unsigned long long connect_id) { struct ksmbd_ipc_msg *msg; struct ksmbd_tree_disconnect_request *req; int ret; msg = ipc_msg_alloc(sizeof(struct ksmbd_tree_disconnect_request)); if (!msg) return -ENOMEM; msg->type = KSMBD_EVENT_TREE_DISCONNECT_REQUEST; req = (struct ksmbd_tree_disconnect_request *)msg->payload; req->session_id = session_id; req->connect_id = connect_id; ret = ipc_msg_send(msg); ipc_msg_free(msg); return ret; } int ksmbd_ipc_logout_request(const char *account, int flags) { struct ksmbd_ipc_msg *msg; struct ksmbd_logout_request *req; int ret; if (strlen(account) >= KSMBD_REQ_MAX_ACCOUNT_NAME_SZ) return -EINVAL; msg = ipc_msg_alloc(sizeof(struct ksmbd_logout_request)); if (!msg) return -ENOMEM; msg->type = KSMBD_EVENT_LOGOUT_REQUEST; req = (struct ksmbd_logout_request *)msg->payload; req->account_flags = flags; strscpy(req->account, account, KSMBD_REQ_MAX_ACCOUNT_NAME_SZ); ret = ipc_msg_send(msg); ipc_msg_free(msg); return ret; } struct ksmbd_share_config_response * ksmbd_ipc_share_config_request(const char *name) { struct ksmbd_ipc_msg *msg; struct ksmbd_share_config_request *req; struct ksmbd_share_config_response *resp; if (strlen(name) >= KSMBD_REQ_MAX_SHARE_NAME) return NULL; msg = ipc_msg_alloc(sizeof(struct ksmbd_share_config_request)); if (!msg) return NULL; msg->type = KSMBD_EVENT_SHARE_CONFIG_REQUEST; req = (struct ksmbd_share_config_request *)msg->payload; req->handle = ksmbd_acquire_id(&ipc_ida); strscpy(req->share_name, name, KSMBD_REQ_MAX_SHARE_NAME); resp = ipc_msg_send_request(msg, req->handle); ipc_msg_handle_free(req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_rpc_command *ksmbd_rpc_open(struct ksmbd_session *sess, int handle) { struct ksmbd_ipc_msg *msg; struct ksmbd_rpc_command *req; struct ksmbd_rpc_command *resp; msg = ipc_msg_alloc(sizeof(struct ksmbd_rpc_command)); if (!msg) return NULL; msg->type = KSMBD_EVENT_RPC_REQUEST; req = (struct ksmbd_rpc_command *)msg->payload; req->handle = handle; req->flags = ksmbd_session_rpc_method(sess, handle); req->flags |= KSMBD_RPC_OPEN_METHOD; req->payload_sz = 0; resp = ipc_msg_send_request(msg, req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_rpc_command *ksmbd_rpc_close(struct ksmbd_session *sess, int handle) { struct ksmbd_ipc_msg *msg; struct ksmbd_rpc_command *req; struct ksmbd_rpc_command *resp; msg = ipc_msg_alloc(sizeof(struct ksmbd_rpc_command)); if (!msg) return NULL; msg->type = KSMBD_EVENT_RPC_REQUEST; req = (struct ksmbd_rpc_command *)msg->payload; req->handle = handle; req->flags = ksmbd_session_rpc_method(sess, handle); req->flags |= KSMBD_RPC_CLOSE_METHOD; req->payload_sz = 0; resp = ipc_msg_send_request(msg, req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_rpc_command *ksmbd_rpc_write(struct ksmbd_session *sess, int handle, void *payload, size_t payload_sz) { struct ksmbd_ipc_msg *msg; struct ksmbd_rpc_command *req; struct ksmbd_rpc_command *resp; if (payload_sz > KSMBD_IPC_MAX_PAYLOAD) return NULL; msg = ipc_msg_alloc(sizeof(struct ksmbd_rpc_command) + payload_sz + 1); if (!msg) return NULL; msg->type = KSMBD_EVENT_RPC_REQUEST; req = (struct ksmbd_rpc_command *)msg->payload; req->handle = handle; req->flags = ksmbd_session_rpc_method(sess, handle); req->flags |= rpc_context_flags(sess); req->flags |= KSMBD_RPC_WRITE_METHOD; req->payload_sz = payload_sz; memcpy(req->payload, payload, payload_sz); resp = ipc_msg_send_request(msg, req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_rpc_command *ksmbd_rpc_read(struct ksmbd_session *sess, int handle) { struct ksmbd_ipc_msg *msg; struct ksmbd_rpc_command *req; struct ksmbd_rpc_command *resp; msg = ipc_msg_alloc(sizeof(struct ksmbd_rpc_command)); if (!msg) return NULL; msg->type = KSMBD_EVENT_RPC_REQUEST; req = (struct ksmbd_rpc_command *)msg->payload; req->handle = handle; req->flags = ksmbd_session_rpc_method(sess, handle); req->flags |= rpc_context_flags(sess); req->flags |= KSMBD_RPC_READ_METHOD; req->payload_sz = 0; resp = ipc_msg_send_request(msg, req->handle); ipc_msg_free(msg); return resp; } struct ksmbd_rpc_command *ksmbd_rpc_ioctl(struct ksmbd_session *sess, int handle, void *payload, size_t payload_sz) { struct ksmbd_ipc_msg *msg; struct ksmbd_rpc_command *req; struct ksmbd_rpc_command *resp; if (payload_sz > KSMBD_IPC_MAX_PAYLOAD) return NULL; msg = ipc_msg_alloc(sizeof(struct ksmbd_rpc_command) + payload_sz + 1); if (!msg) return NULL; msg->type = KSMBD_EVENT_RPC_REQUEST; req = (struct ksmbd_rpc_command *)msg->payload; req->handle = handle; req->flags = ksmbd_session_rpc_method(sess, handle); req->flags |= rpc_context_flags(sess); req->flags |= KSMBD_RPC_IOCTL_METHOD; req->payload_sz = payload_sz; memcpy(req->payload, payload, payload_sz); resp = ipc_msg_send_request(msg, req->handle); ipc_msg_free(msg); return resp; } static int __ipc_heartbeat(void) { unsigned long delta; if (!ksmbd_server_running()) return 0; if (time_after(jiffies, server_conf.ipc_last_active)) { delta = (jiffies - server_conf.ipc_last_active); } else { ipc_update_last_active(); schedule_delayed_work(&ipc_timer_work, server_conf.ipc_timeout); return 0; } if (delta < server_conf.ipc_timeout) { schedule_delayed_work(&ipc_timer_work, server_conf.ipc_timeout - delta); return 0; } if (ksmbd_ipc_heartbeat_request() == 0) { schedule_delayed_work(&ipc_timer_work, server_conf.ipc_timeout); return 0; } mutex_lock(&startup_lock); WRITE_ONCE(server_conf.state, SERVER_STATE_RESETTING); server_conf.ipc_last_active = 0; ksmbd_tools_pid = 0; pr_err("No IPC daemon response for %lus\n", delta / HZ); mutex_unlock(&startup_lock); return -EINVAL; } static void ipc_timer_heartbeat(struct work_struct *w) { if (__ipc_heartbeat()) server_queue_ctrl_reset_work(); } int ksmbd_ipc_id_alloc(void) { return ksmbd_acquire_id(&ipc_ida); } void ksmbd_rpc_id_free(int handle) { ksmbd_release_id(&ipc_ida, handle); } void ksmbd_ipc_release(void) { cancel_delayed_work_sync(&ipc_timer_work); genl_unregister_family(&ksmbd_genl_family); } void ksmbd_ipc_soft_reset(void) { mutex_lock(&startup_lock); ksmbd_tools_pid = 0; cancel_delayed_work_sync(&ipc_timer_work); mutex_unlock(&startup_lock); } int ksmbd_ipc_init(void) { int ret = 0; ksmbd_nl_init_fixup(); INIT_DELAYED_WORK(&ipc_timer_work, ipc_timer_heartbeat); ret = genl_register_family(&ksmbd_genl_family); if (ret) { pr_err("Failed to register KSMBD netlink interface %d\n", ret); cancel_delayed_work_sync(&ipc_timer_work); } return ret; }
1 2 1 2 54 55 4 4 4 2 41 1 2 44 2 45 5 4 5 5 5 5 3 12 2 3 12 12 12 11 14 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 1 5 5 5 5 5 1 2 2 2 2 2 2 2 7 4 4 2 2 2 2 2 7 2 2 2 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 1 2 3 3 3 3 2 3 3 3 3 3 2 2 41 6 11 12 2 12 5 41 6 41 43 43 43 43 41 41 2 2 2 2 1 2 1 2 2 11 11 11 11 11 11 11 10 7 7 7 4 6 3 3 3 3 3 1 6 7 4 1 4 4 1 4 4 4 4 2 1 1 1 1 1 1 1 1 1 2 5 2 34 3 34 34 11 2 1 1 4 3 1 2 3 2 2 1 1 2 2 2 2 2 2 1 10 1 2 1 7 32 7 19 34 34 1 2 2 3 3 1 2 3 8 8 8 8 8 8 8 8 8 3 8 8 7 8 10 10 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 2 4 4 4 4 4 1 1 1 1 1 1 1 5 5 5 5 1 5 4 1 4 2 2 2 2 2 2 1 3 1 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 // SPDX-License-Identifier: GPL-2.0-only /* binder.c * * Android IPC Subsystem * * Copyright (C) 2007-2008 Google, Inc. */ /* * Locking overview * * There are 3 main spinlocks which must be acquired in the * order shown: * * 1) proc->outer_lock : protects binder_ref * binder_proc_lock() and binder_proc_unlock() are * used to acq/rel. * 2) node->lock : protects most fields of binder_node. * binder_node_lock() and binder_node_unlock() are * used to acq/rel * 3) proc->inner_lock : protects the thread and node lists * (proc->threads, proc->waiting_threads, proc->nodes) * and all todo lists associated with the binder_proc * (proc->todo, thread->todo, proc->delivered_death and * node->async_todo), as well as thread->transaction_stack * binder_inner_proc_lock() and binder_inner_proc_unlock() * are used to acq/rel * * Any lock under procA must never be nested under any lock at the same * level or below on procB. * * Functions that require a lock held on entry indicate which lock * in the suffix of the function name: * * foo_olocked() : requires node->outer_lock * foo_nlocked() : requires node->lock * foo_ilocked() : requires proc->inner_lock * foo_oilocked(): requires proc->outer_lock and proc->inner_lock * foo_nilocked(): requires node->lock and proc->inner_lock * ... */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/fdtable.h> #include <linux/file.h> #include <linux/freezer.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/miscdevice.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/nsproxy.h> #include <linux/poll.h> #include <linux/debugfs.h> #include <linux/rbtree.h> #include <linux/sched/signal.h> #include <linux/sched/mm.h> #include <linux/seq_file.h> #include <linux/string.h> #include <linux/uaccess.h> #include <linux/pid_namespace.h> #include <linux/security.h> #include <linux/spinlock.h> #include <linux/ratelimit.h> #include <linux/syscalls.h> #include <linux/task_work.h> #include <linux/sizes.h> #include <linux/ktime.h> #include <uapi/linux/android/binder.h> #include <linux/cacheflush.h> #include "binder_internal.h" #include "binder_trace.h" static HLIST_HEAD(binder_deferred_list); static DEFINE_MUTEX(binder_deferred_lock); static HLIST_HEAD(binder_devices); static HLIST_HEAD(binder_procs); static DEFINE_MUTEX(binder_procs_lock); static HLIST_HEAD(binder_dead_nodes); static DEFINE_SPINLOCK(binder_dead_nodes_lock); static struct dentry *binder_debugfs_dir_entry_root; static struct dentry *binder_debugfs_dir_entry_proc; static atomic_t binder_last_id; static int proc_show(struct seq_file *m, void *unused); DEFINE_SHOW_ATTRIBUTE(proc); #define FORBIDDEN_MMAP_FLAGS (VM_WRITE) enum { BINDER_DEBUG_USER_ERROR = 1U << 0, BINDER_DEBUG_FAILED_TRANSACTION = 1U << 1, BINDER_DEBUG_DEAD_TRANSACTION = 1U << 2, BINDER_DEBUG_OPEN_CLOSE = 1U << 3, BINDER_DEBUG_DEAD_BINDER = 1U << 4, BINDER_DEBUG_DEATH_NOTIFICATION = 1U << 5, BINDER_DEBUG_READ_WRITE = 1U << 6, BINDER_DEBUG_USER_REFS = 1U << 7, BINDER_DEBUG_THREADS = 1U << 8, BINDER_DEBUG_TRANSACTION = 1U << 9, BINDER_DEBUG_TRANSACTION_COMPLETE = 1U << 10, BINDER_DEBUG_FREE_BUFFER = 1U << 11, BINDER_DEBUG_INTERNAL_REFS = 1U << 12, BINDER_DEBUG_PRIORITY_CAP = 1U << 13, BINDER_DEBUG_SPINLOCKS = 1U << 14, }; static uint32_t binder_debug_mask = BINDER_DEBUG_USER_ERROR | BINDER_DEBUG_FAILED_TRANSACTION | BINDER_DEBUG_DEAD_TRANSACTION; module_param_named(debug_mask, binder_debug_mask, uint, 0644); char *binder_devices_param = CONFIG_ANDROID_BINDER_DEVICES; module_param_named(devices, binder_devices_param, charp, 0444); static DECLARE_WAIT_QUEUE_HEAD(binder_user_error_wait); static int binder_stop_on_user_error; static int binder_set_stop_on_user_error(const char *val, const struct kernel_param *kp) { int ret; ret = param_set_int(val, kp); if (binder_stop_on_user_error < 2) wake_up(&binder_user_error_wait); return ret; } module_param_call(stop_on_user_error, binder_set_stop_on_user_error, param_get_int, &binder_stop_on_user_error, 0644); static __printf(2, 3) void binder_debug(int mask, const char *format, ...) { struct va_format vaf; va_list args; if (binder_debug_mask & mask) { va_start(args, format); vaf.va = &args; vaf.fmt = format; pr_info_ratelimited("%pV", &vaf); va_end(args); } } #define binder_txn_error(x...) \ binder_debug(BINDER_DEBUG_FAILED_TRANSACTION, x) static __printf(1, 2) void binder_user_error(const char *format, ...) { struct va_format vaf; va_list args; if (binder_debug_mask & BINDER_DEBUG_USER_ERROR) { va_start(args, format); vaf.va = &args; vaf.fmt = format; pr_info_ratelimited("%pV", &vaf); va_end(args); } if (binder_stop_on_user_error) binder_stop_on_user_error = 2; } #define binder_set_extended_error(ee, _id, _command, _param) \ do { \ (ee)->id = _id; \ (ee)->command = _command; \ (ee)->param = _param; \ } while (0) #define to_flat_binder_object(hdr) \ container_of(hdr, struct flat_binder_object, hdr) #define to_binder_fd_object(hdr) container_of(hdr, struct binder_fd_object, hdr) #define to_binder_buffer_object(hdr) \ container_of(hdr, struct binder_buffer_object, hdr) #define to_binder_fd_array_object(hdr) \ container_of(hdr, struct binder_fd_array_object, hdr) static struct binder_stats binder_stats; static inline void binder_stats_deleted(enum binder_stat_types type) { atomic_inc(&binder_stats.obj_deleted[type]); } static inline void binder_stats_created(enum binder_stat_types type) { atomic_inc(&binder_stats.obj_created[type]); } struct binder_transaction_log_entry { int debug_id; int debug_id_done; int call_type; int from_proc; int from_thread; int target_handle; int to_proc; int to_thread; int to_node; int data_size; int offsets_size; int return_error_line; uint32_t return_error; uint32_t return_error_param; char context_name[BINDERFS_MAX_NAME + 1]; }; struct binder_transaction_log { atomic_t cur; bool full; struct binder_transaction_log_entry entry[32]; }; static struct binder_transaction_log binder_transaction_log; static struct binder_transaction_log binder_transaction_log_failed; static struct binder_transaction_log_entry *binder_transaction_log_add( struct binder_transaction_log *log) { struct binder_transaction_log_entry *e; unsigned int cur = atomic_inc_return(&log->cur); if (cur >= ARRAY_SIZE(log->entry)) log->full = true; e = &log->entry[cur % ARRAY_SIZE(log->entry)]; WRITE_ONCE(e->debug_id_done, 0); /* * write-barrier to synchronize access to e->debug_id_done. * We make sure the initialized 0 value is seen before * memset() other fields are zeroed by memset. */ smp_wmb(); memset(e, 0, sizeof(*e)); return e; } enum binder_deferred_state { BINDER_DEFERRED_FLUSH = 0x01, BINDER_DEFERRED_RELEASE = 0x02, }; enum { BINDER_LOOPER_STATE_REGISTERED = 0x01, BINDER_LOOPER_STATE_ENTERED = 0x02, BINDER_LOOPER_STATE_EXITED = 0x04, BINDER_LOOPER_STATE_INVALID = 0x08, BINDER_LOOPER_STATE_WAITING = 0x10, BINDER_LOOPER_STATE_POLL = 0x20, }; /** * binder_proc_lock() - Acquire outer lock for given binder_proc * @proc: struct binder_proc to acquire * * Acquires proc->outer_lock. Used to protect binder_ref * structures associated with the given proc. */ #define binder_proc_lock(proc) _binder_proc_lock(proc, __LINE__) static void _binder_proc_lock(struct binder_proc *proc, int line) __acquires(&proc->outer_lock) { binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); spin_lock(&proc->outer_lock); } /** * binder_proc_unlock() - Release outer lock for given binder_proc * @proc: struct binder_proc to acquire * * Release lock acquired via binder_proc_lock() */ #define binder_proc_unlock(proc) _binder_proc_unlock(proc, __LINE__) static void _binder_proc_unlock(struct binder_proc *proc, int line) __releases(&proc->outer_lock) { binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); spin_unlock(&proc->outer_lock); } /** * binder_inner_proc_lock() - Acquire inner lock for given binder_proc * @proc: struct binder_proc to acquire * * Acquires proc->inner_lock. Used to protect todo lists */ #define binder_inner_proc_lock(proc) _binder_inner_proc_lock(proc, __LINE__) static void _binder_inner_proc_lock(struct binder_proc *proc, int line) __acquires(&proc->inner_lock) { binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); spin_lock(&proc->inner_lock); } /** * binder_inner_proc_unlock() - Release inner lock for given binder_proc * @proc: struct binder_proc to acquire * * Release lock acquired via binder_inner_proc_lock() */ #define binder_inner_proc_unlock(proc) _binder_inner_proc_unlock(proc, __LINE__) static void _binder_inner_proc_unlock(struct binder_proc *proc, int line) __releases(&proc->inner_lock) { binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); spin_unlock(&proc->inner_lock); } /** * binder_node_lock() - Acquire spinlock for given binder_node * @node: struct binder_node to acquire * * Acquires node->lock. Used to protect binder_node fields */ #define binder_node_lock(node) _binder_node_lock(node, __LINE__) static void _binder_node_lock(struct binder_node *node, int line) __acquires(&node->lock) { binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); spin_lock(&node->lock); } /** * binder_node_unlock() - Release spinlock for given binder_proc * @node: struct binder_node to acquire * * Release lock acquired via binder_node_lock() */ #define binder_node_unlock(node) _binder_node_unlock(node, __LINE__) static void _binder_node_unlock(struct binder_node *node, int line) __releases(&node->lock) { binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); spin_unlock(&node->lock); } /** * binder_node_inner_lock() - Acquire node and inner locks * @node: struct binder_node to acquire * * Acquires node->lock. If node->proc also acquires * proc->inner_lock. Used to protect binder_node fields */ #define binder_node_inner_lock(node) _binder_node_inner_lock(node, __LINE__) static void _binder_node_inner_lock(struct binder_node *node, int line) __acquires(&node->lock) __acquires(&node->proc->inner_lock) { binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); spin_lock(&node->lock); if (node->proc) binder_inner_proc_lock(node->proc); else /* annotation for sparse */ __acquire(&node->proc->inner_lock); } /** * binder_node_inner_unlock() - Release node and inner locks * @node: struct binder_node to acquire * * Release lock acquired via binder_node_lock() */ #define binder_node_inner_unlock(node) _binder_node_inner_unlock(node, __LINE__) static void _binder_node_inner_unlock(struct binder_node *node, int line) __releases(&node->lock) __releases(&node->proc->inner_lock) { struct binder_proc *proc = node->proc; binder_debug(BINDER_DEBUG_SPINLOCKS, "%s: line=%d\n", __func__, line); if (proc) binder_inner_proc_unlock(proc); else /* annotation for sparse */ __release(&node->proc->inner_lock); spin_unlock(&node->lock); } static bool binder_worklist_empty_ilocked(struct list_head *list) { return list_empty(list); } /** * binder_worklist_empty() - Check if no items on the work list * @proc: binder_proc associated with list * @list: list to check * * Return: true if there are no items on list, else false */ static bool binder_worklist_empty(struct binder_proc *proc, struct list_head *list) { bool ret; binder_inner_proc_lock(proc); ret = binder_worklist_empty_ilocked(list); binder_inner_proc_unlock(proc); return ret; } /** * binder_enqueue_work_ilocked() - Add an item to the work list * @work: struct binder_work to add to list * @target_list: list to add work to * * Adds the work to the specified list. Asserts that work * is not already on a list. * * Requires the proc->inner_lock to be held. */ static void binder_enqueue_work_ilocked(struct binder_work *work, struct list_head *target_list) { BUG_ON(target_list == NULL); BUG_ON(work->entry.next && !list_empty(&work->entry)); list_add_tail(&work->entry, target_list); } /** * binder_enqueue_deferred_thread_work_ilocked() - Add deferred thread work * @thread: thread to queue work to * @work: struct binder_work to add to list * * Adds the work to the todo list of the thread. Doesn't set the process_todo * flag, which means that (if it wasn't already set) the thread will go to * sleep without handling this work when it calls read. * * Requires the proc->inner_lock to be held. */ static void binder_enqueue_deferred_thread_work_ilocked(struct binder_thread *thread, struct binder_work *work) { WARN_ON(!list_empty(&thread->waiting_thread_node)); binder_enqueue_work_ilocked(work, &thread->todo); } /** * binder_enqueue_thread_work_ilocked() - Add an item to the thread work list * @thread: thread to queue work to * @work: struct binder_work to add to list * * Adds the work to the todo list of the thread, and enables processing * of the todo queue. * * Requires the proc->inner_lock to be held. */ static void binder_enqueue_thread_work_ilocked(struct binder_thread *thread, struct binder_work *work) { WARN_ON(!list_empty(&thread->waiting_thread_node)); binder_enqueue_work_ilocked(work, &thread->todo); /* (e)poll-based threads require an explicit wakeup signal when * queuing their own work; they rely on these events to consume * messages without I/O block. Without it, threads risk waiting * indefinitely without handling the work. */ if (thread->looper & BINDER_LOOPER_STATE_POLL && thread->pid == current->pid && !thread->process_todo) wake_up_interruptible_sync(&thread->wait); thread->process_todo = true; } /** * binder_enqueue_thread_work() - Add an item to the thread work list * @thread: thread to queue work to * @work: struct binder_work to add to list * * Adds the work to the todo list of the thread, and enables processing * of the todo queue. */ static void binder_enqueue_thread_work(struct binder_thread *thread, struct binder_work *work) { binder_inner_proc_lock(thread->proc); binder_enqueue_thread_work_ilocked(thread, work); binder_inner_proc_unlock(thread->proc); } static void binder_dequeue_work_ilocked(struct binder_work *work) { list_del_init(&work->entry); } /** * binder_dequeue_work() - Removes an item from the work list * @proc: binder_proc associated with list * @work: struct binder_work to remove from list * * Removes the specified work item from whatever list it is on. * Can safely be called if work is not on any list. */ static void binder_dequeue_work(struct binder_proc *proc, struct binder_work *work) { binder_inner_proc_lock(proc); binder_dequeue_work_ilocked(work); binder_inner_proc_unlock(proc); } static struct binder_work *binder_dequeue_work_head_ilocked( struct list_head *list) { struct binder_work *w; w = list_first_entry_or_null(list, struct binder_work, entry); if (w) list_del_init(&w->entry); return w; } static void binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer); static void binder_free_thread(struct binder_thread *thread); static void binder_free_proc(struct binder_proc *proc); static void binder_inc_node_tmpref_ilocked(struct binder_node *node); static bool binder_has_work_ilocked(struct binder_thread *thread, bool do_proc_work) { return thread->process_todo || thread->looper_need_return || (do_proc_work && !binder_worklist_empty_ilocked(&thread->proc->todo)); } static bool binder_has_work(struct binder_thread *thread, bool do_proc_work) { bool has_work; binder_inner_proc_lock(thread->proc); has_work = binder_has_work_ilocked(thread, do_proc_work); binder_inner_proc_unlock(thread->proc); return has_work; } static bool binder_available_for_proc_work_ilocked(struct binder_thread *thread) { return !thread->transaction_stack && binder_worklist_empty_ilocked(&thread->todo); } static void binder_wakeup_poll_threads_ilocked(struct binder_proc *proc, bool sync) { struct rb_node *n; struct binder_thread *thread; for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n)) { thread = rb_entry(n, struct binder_thread, rb_node); if (thread->looper & BINDER_LOOPER_STATE_POLL && binder_available_for_proc_work_ilocked(thread)) { if (sync) wake_up_interruptible_sync(&thread->wait); else wake_up_interruptible(&thread->wait); } } } /** * binder_select_thread_ilocked() - selects a thread for doing proc work. * @proc: process to select a thread from * * Note that calling this function moves the thread off the waiting_threads * list, so it can only be woken up by the caller of this function, or a * signal. Therefore, callers *should* always wake up the thread this function * returns. * * Return: If there's a thread currently waiting for process work, * returns that thread. Otherwise returns NULL. */ static struct binder_thread * binder_select_thread_ilocked(struct binder_proc *proc) { struct binder_thread *thread; assert_spin_locked(&proc->inner_lock); thread = list_first_entry_or_null(&proc->waiting_threads, struct binder_thread, waiting_thread_node); if (thread) list_del_init(&thread->waiting_thread_node); return thread; } /** * binder_wakeup_thread_ilocked() - wakes up a thread for doing proc work. * @proc: process to wake up a thread in * @thread: specific thread to wake-up (may be NULL) * @sync: whether to do a synchronous wake-up * * This function wakes up a thread in the @proc process. * The caller may provide a specific thread to wake-up in * the @thread parameter. If @thread is NULL, this function * will wake up threads that have called poll(). * * Note that for this function to work as expected, callers * should first call binder_select_thread() to find a thread * to handle the work (if they don't have a thread already), * and pass the result into the @thread parameter. */ static void binder_wakeup_thread_ilocked(struct binder_proc *proc, struct binder_thread *thread, bool sync) { assert_spin_locked(&proc->inner_lock); if (thread) { if (sync) wake_up_interruptible_sync(&thread->wait); else wake_up_interruptible(&thread->wait); return; } /* Didn't find a thread waiting for proc work; this can happen * in two scenarios: * 1. All threads are busy handling transactions * In that case, one of those threads should call back into * the kernel driver soon and pick up this work. * 2. Threads are using the (e)poll interface, in which case * they may be blocked on the waitqueue without having been * added to waiting_threads. For this case, we just iterate * over all threads not handling transaction work, and * wake them all up. We wake all because we don't know whether * a thread that called into (e)poll is handling non-binder * work currently. */ binder_wakeup_poll_threads_ilocked(proc, sync); } static void binder_wakeup_proc_ilocked(struct binder_proc *proc) { struct binder_thread *thread = binder_select_thread_ilocked(proc); binder_wakeup_thread_ilocked(proc, thread, /* sync = */false); } static void binder_set_nice(long nice) { long min_nice; if (can_nice(current, nice)) { set_user_nice(current, nice); return; } min_nice = rlimit_to_nice(rlimit(RLIMIT_NICE)); binder_debug(BINDER_DEBUG_PRIORITY_CAP, "%d: nice value %ld not allowed use %ld instead\n", current->pid, nice, min_nice); set_user_nice(current, min_nice); if (min_nice <= MAX_NICE) return; binder_user_error("%d RLIMIT_NICE not set\n", current->pid); } static struct binder_node *binder_get_node_ilocked(struct binder_proc *proc, binder_uintptr_t ptr) { struct rb_node *n = proc->nodes.rb_node; struct binder_node *node; assert_spin_locked(&proc->inner_lock); while (n) { node = rb_entry(n, struct binder_node, rb_node); if (ptr < node->ptr) n = n->rb_left; else if (ptr > node->ptr) n = n->rb_right; else { /* * take an implicit weak reference * to ensure node stays alive until * call to binder_put_node() */ binder_inc_node_tmpref_ilocked(node); return node; } } return NULL; } static struct binder_node *binder_get_node(struct binder_proc *proc, binder_uintptr_t ptr) { struct binder_node *node; binder_inner_proc_lock(proc); node = binder_get_node_ilocked(proc, ptr); binder_inner_proc_unlock(proc); return node; } static struct binder_node *binder_init_node_ilocked( struct binder_proc *proc, struct binder_node *new_node, struct flat_binder_object *fp) { struct rb_node **p = &proc->nodes.rb_node; struct rb_node *parent = NULL; struct binder_node *node; binder_uintptr_t ptr = fp ? fp->binder : 0; binder_uintptr_t cookie = fp ? fp->cookie : 0; __u32 flags = fp ? fp->flags : 0; assert_spin_locked(&proc->inner_lock); while (*p) { parent = *p; node = rb_entry(parent, struct binder_node, rb_node); if (ptr < node->ptr) p = &(*p)->rb_left; else if (ptr > node->ptr) p = &(*p)->rb_right; else { /* * A matching node is already in * the rb tree. Abandon the init * and return it. */ binder_inc_node_tmpref_ilocked(node); return node; } } node = new_node; binder_stats_created(BINDER_STAT_NODE); node->tmp_refs++; rb_link_node(&node->rb_node, parent, p); rb_insert_color(&node->rb_node, &proc->nodes); node->debug_id = atomic_inc_return(&binder_last_id); node->proc = proc; node->ptr = ptr; node->cookie = cookie; node->work.type = BINDER_WORK_NODE; node->min_priority = flags & FLAT_BINDER_FLAG_PRIORITY_MASK; node->accept_fds = !!(flags & FLAT_BINDER_FLAG_ACCEPTS_FDS); node->txn_security_ctx = !!(flags & FLAT_BINDER_FLAG_TXN_SECURITY_CTX); spin_lock_init(&node->lock); INIT_LIST_HEAD(&node->work.entry); INIT_LIST_HEAD(&node->async_todo); binder_debug(BINDER_DEBUG_INTERNAL_REFS, "%d:%d node %d u%016llx c%016llx created\n", proc->pid, current->pid, node->debug_id, (u64)node->ptr, (u64)node->cookie); return node; } static struct binder_node *binder_new_node(struct binder_proc *proc, struct flat_binder_object *fp) { struct binder_node *node; struct binder_node *new_node = kzalloc(sizeof(*node), GFP_KERNEL); if (!new_node) return NULL; binder_inner_proc_lock(proc); node = binder_init_node_ilocked(proc, new_node, fp); binder_inner_proc_unlock(proc); if (node != new_node) /* * The node was already added by another thread */ kfree(new_node); return node; } static void binder_free_node(struct binder_node *node) { kfree(node); binder_stats_deleted(BINDER_STAT_NODE); } static int binder_inc_node_nilocked(struct binder_node *node, int strong, int internal, struct list_head *target_list) { struct binder_proc *proc = node->proc; assert_spin_locked(&node->lock); if (proc) assert_spin_locked(&proc->inner_lock); if (strong) { if (internal) { if (target_list == NULL && node->internal_strong_refs == 0 && !(node->proc && node == node->proc->context->binder_context_mgr_node && node->has_strong_ref)) { pr_err("invalid inc strong node for %d\n", node->debug_id); return -EINVAL; } node->internal_strong_refs++; } else node->local_strong_refs++; if (!node->has_strong_ref && target_list) { struct binder_thread *thread = container_of(target_list, struct binder_thread, todo); binder_dequeue_work_ilocked(&node->work); BUG_ON(&thread->todo != target_list); binder_enqueue_deferred_thread_work_ilocked(thread, &node->work); } } else { if (!internal) node->local_weak_refs++; if (!node->has_weak_ref && list_empty(&node->work.entry)) { if (target_list == NULL) { pr_err("invalid inc weak node for %d\n", node->debug_id); return -EINVAL; } /* * See comment above */ binder_enqueue_work_ilocked(&node->work, target_list); } } return 0; } static int binder_inc_node(struct binder_node *node, int strong, int internal, struct list_head *target_list) { int ret; binder_node_inner_lock(node); ret = binder_inc_node_nilocked(node, strong, internal, target_list); binder_node_inner_unlock(node); return ret; } static bool binder_dec_node_nilocked(struct binder_node *node, int strong, int internal) { struct binder_proc *proc = node->proc; assert_spin_locked(&node->lock); if (proc) assert_spin_locked(&proc->inner_lock); if (strong) { if (internal) node->internal_strong_refs--; else node->local_strong_refs--; if (node->local_strong_refs || node->internal_strong_refs) return false; } else { if (!internal) node->local_weak_refs--; if (node->local_weak_refs || node->tmp_refs || !hlist_empty(&node->refs)) return false; } if (proc && (node->has_strong_ref || node->has_weak_ref)) { if (list_empty(&node->work.entry)) { binder_enqueue_work_ilocked(&node->work, &proc->todo); binder_wakeup_proc_ilocked(proc); } } else { if (hlist_empty(&node->refs) && !node->local_strong_refs && !node->local_weak_refs && !node->tmp_refs) { if (proc) { binder_dequeue_work_ilocked(&node->work); rb_erase(&node->rb_node, &proc->nodes); binder_debug(BINDER_DEBUG_INTERNAL_REFS, "refless node %d deleted\n", node->debug_id); } else { BUG_ON(!list_empty(&node->work.entry)); spin_lock(&binder_dead_nodes_lock); /* * tmp_refs could have changed so * check it again */ if (node->tmp_refs) { spin_unlock(&binder_dead_nodes_lock); return false; } hlist_del(&node->dead_node); spin_unlock(&binder_dead_nodes_lock); binder_debug(BINDER_DEBUG_INTERNAL_REFS, "dead node %d deleted\n", node->debug_id); } return true; } } return false; } static void binder_dec_node(struct binder_node *node, int strong, int internal) { bool free_node; binder_node_inner_lock(node); free_node = binder_dec_node_nilocked(node, strong, internal); binder_node_inner_unlock(node); if (free_node) binder_free_node(node); } static void binder_inc_node_tmpref_ilocked(struct binder_node *node) { /* * No call to binder_inc_node() is needed since we * don't need to inform userspace of any changes to * tmp_refs */ node->tmp_refs++; } /** * binder_inc_node_tmpref() - take a temporary reference on node * @node: node to reference * * Take reference on node to prevent the node from being freed * while referenced only by a local variable. The inner lock is * needed to serialize with the node work on the queue (which * isn't needed after the node is dead). If the node is dead * (node->proc is NULL), use binder_dead_nodes_lock to protect * node->tmp_refs against dead-node-only cases where the node * lock cannot be acquired (eg traversing the dead node list to * print nodes) */ static void binder_inc_node_tmpref(struct binder_node *node) { binder_node_lock(node); if (node->proc) binder_inner_proc_lock(node->proc); else spin_lock(&binder_dead_nodes_lock); binder_inc_node_tmpref_ilocked(node); if (node->proc) binder_inner_proc_unlock(node->proc); else spin_unlock(&binder_dead_nodes_lock); binder_node_unlock(node); } /** * binder_dec_node_tmpref() - remove a temporary reference on node * @node: node to reference * * Release temporary reference on node taken via binder_inc_node_tmpref() */ static void binder_dec_node_tmpref(struct binder_node *node) { bool free_node; binder_node_inner_lock(node); if (!node->proc) spin_lock(&binder_dead_nodes_lock); else __acquire(&binder_dead_nodes_lock); node->tmp_refs--; BUG_ON(node->tmp_refs < 0); if (!node->proc) spin_unlock(&binder_dead_nodes_lock); else __release(&binder_dead_nodes_lock); /* * Call binder_dec_node() to check if all refcounts are 0 * and cleanup is needed. Calling with strong=0 and internal=1 * causes no actual reference to be released in binder_dec_node(). * If that changes, a change is needed here too. */ free_node = binder_dec_node_nilocked(node, 0, 1); binder_node_inner_unlock(node); if (free_node) binder_free_node(node); } static void binder_put_node(struct binder_node *node) { binder_dec_node_tmpref(node); } static struct binder_ref *binder_get_ref_olocked(struct binder_proc *proc, u32 desc, bool need_strong_ref) { struct rb_node *n = proc->refs_by_desc.rb_node; struct binder_ref *ref; while (n) { ref = rb_entry(n, struct binder_ref, rb_node_desc); if (desc < ref->data.desc) { n = n->rb_left; } else if (desc > ref->data.desc) { n = n->rb_right; } else if (need_strong_ref && !ref->data.strong) { binder_user_error("tried to use weak ref as strong ref\n"); return NULL; } else { return ref; } } return NULL; } /* Find the smallest unused descriptor the "slow way" */ static u32 slow_desc_lookup_olocked(struct binder_proc *proc, u32 offset) { struct binder_ref *ref; struct rb_node *n; u32 desc; desc = offset; for (n = rb_first(&proc->refs_by_desc); n; n = rb_next(n)) { ref = rb_entry(n, struct binder_ref, rb_node_desc); if (ref->data.desc > desc) break; desc = ref->data.desc + 1; } return desc; } /* * Find an available reference descriptor ID. The proc->outer_lock might * be released in the process, in which case -EAGAIN is returned and the * @desc should be considered invalid. */ static int get_ref_desc_olocked(struct binder_proc *proc, struct binder_node *node, u32 *desc) { struct dbitmap *dmap = &proc->dmap; unsigned int nbits, offset; unsigned long *new, bit; /* 0 is reserved for the context manager */ offset = (node == proc->context->binder_context_mgr_node) ? 0 : 1; if (!dbitmap_enabled(dmap)) { *desc = slow_desc_lookup_olocked(proc, offset); return 0; } if (dbitmap_acquire_next_zero_bit(dmap, offset, &bit) == 0) { *desc = bit; return 0; } /* * The dbitmap is full and needs to grow. The proc->outer_lock * is briefly released to allocate the new bitmap safely. */ nbits = dbitmap_grow_nbits(dmap); binder_proc_unlock(proc); new = bitmap_zalloc(nbits, GFP_KERNEL); binder_proc_lock(proc); dbitmap_grow(dmap, new, nbits); return -EAGAIN; } /** * binder_get_ref_for_node_olocked() - get the ref associated with given node * @proc: binder_proc that owns the ref * @node: binder_node of target * @new_ref: newly allocated binder_ref to be initialized or %NULL * * Look up the ref for the given node and return it if it exists * * If it doesn't exist and the caller provides a newly allocated * ref, initialize the fields of the newly allocated ref and insert * into the given proc rb_trees and node refs list. * * Return: the ref for node. It is possible that another thread * allocated/initialized the ref first in which case the * returned ref would be different than the passed-in * new_ref. new_ref must be kfree'd by the caller in * this case. */ static struct binder_ref *binder_get_ref_for_node_olocked( struct binder_proc *proc, struct binder_node *node, struct binder_ref *new_ref) { struct binder_ref *ref; struct rb_node *parent; struct rb_node **p; u32 desc; retry: p = &proc->refs_by_node.rb_node; parent = NULL; while (*p) { parent = *p; ref = rb_entry(parent, struct binder_ref, rb_node_node); if (node < ref->node) p = &(*p)->rb_left; else if (node > ref->node) p = &(*p)->rb_right; else return ref; } if (!new_ref) return NULL; /* might release the proc->outer_lock */ if (get_ref_desc_olocked(proc, node, &desc) == -EAGAIN) goto retry; binder_stats_created(BINDER_STAT_REF); new_ref->data.debug_id = atomic_inc_return(&binder_last_id); new_ref->proc = proc; new_ref->node = node; rb_link_node(&new_ref->rb_node_node, parent, p); rb_insert_color(&new_ref->rb_node_node, &proc->refs_by_node); new_ref->data.desc = desc; p = &proc->refs_by_desc.rb_node; while (*p) { parent = *p; ref = rb_entry(parent, struct binder_ref, rb_node_desc); if (new_ref->data.desc < ref->data.desc) p = &(*p)->rb_left; else if (new_ref->data.desc > ref->data.desc) p = &(*p)->rb_right; else BUG(); } rb_link_node(&new_ref->rb_node_desc, parent, p); rb_insert_color(&new_ref->rb_node_desc, &proc->refs_by_desc); binder_node_lock(node); hlist_add_head(&new_ref->node_entry, &node->refs); binder_debug(BINDER_DEBUG_INTERNAL_REFS, "%d new ref %d desc %d for node %d\n", proc->pid, new_ref->data.debug_id, new_ref->data.desc, node->debug_id); binder_node_unlock(node); return new_ref; } static void binder_cleanup_ref_olocked(struct binder_ref *ref) { struct dbitmap *dmap = &ref->proc->dmap; bool delete_node = false; binder_debug(BINDER_DEBUG_INTERNAL_REFS, "%d delete ref %d desc %d for node %d\n", ref->proc->pid, ref->data.debug_id, ref->data.desc, ref->node->debug_id); if (dbitmap_enabled(dmap)) dbitmap_clear_bit(dmap, ref->data.desc); rb_erase(&ref->rb_node_desc, &ref->proc->refs_by_desc); rb_erase(&ref->rb_node_node, &ref->proc->refs_by_node); binder_node_inner_lock(ref->node); if (ref->data.strong) binder_dec_node_nilocked(ref->node, 1, 1); hlist_del(&ref->node_entry); delete_node = binder_dec_node_nilocked(ref->node, 0, 1); binder_node_inner_unlock(ref->node); /* * Clear ref->node unless we want the caller to free the node */ if (!delete_node) { /* * The caller uses ref->node to determine * whether the node needs to be freed. Clear * it since the node is still alive. */ ref->node = NULL; } if (ref->death) { binder_debug(BINDER_DEBUG_DEAD_BINDER, "%d delete ref %d desc %d has death notification\n", ref->proc->pid, ref->data.debug_id, ref->data.desc); binder_dequeue_work(ref->proc, &ref->death->work); binder_stats_deleted(BINDER_STAT_DEATH); } if (ref->freeze) { binder_dequeue_work(ref->proc, &ref->freeze->work); binder_stats_deleted(BINDER_STAT_FREEZE); } binder_stats_deleted(BINDER_STAT_REF); } /** * binder_inc_ref_olocked() - increment the ref for given handle * @ref: ref to be incremented * @strong: if true, strong increment, else weak * @target_list: list to queue node work on * * Increment the ref. @ref->proc->outer_lock must be held on entry * * Return: 0, if successful, else errno */ static int binder_inc_ref_olocked(struct binder_ref *ref, int strong, struct list_head *target_list) { int ret; if (strong) { if (ref->data.strong == 0) { ret = binder_inc_node(ref->node, 1, 1, target_list); if (ret) return ret; } ref->data.strong++; } else { if (ref->data.weak == 0) { ret = binder_inc_node(ref->node, 0, 1, target_list); if (ret) return ret; } ref->data.weak++; } return 0; } /** * binder_dec_ref_olocked() - dec the ref for given handle * @ref: ref to be decremented * @strong: if true, strong decrement, else weak * * Decrement the ref. * * Return: %true if ref is cleaned up and ready to be freed. */ static bool binder_dec_ref_olocked(struct binder_ref *ref, int strong) { if (strong) { if (ref->data.strong == 0) { binder_user_error("%d invalid dec strong, ref %d desc %d s %d w %d\n", ref->proc->pid, ref->data.debug_id, ref->data.desc, ref->data.strong, ref->data.weak); return false; } ref->data.strong--; if (ref->data.strong == 0) binder_dec_node(ref->node, strong, 1); } else { if (ref->data.weak == 0) { binder_user_error("%d invalid dec weak, ref %d desc %d s %d w %d\n", ref->proc->pid, ref->data.debug_id, ref->data.desc, ref->data.strong, ref->data.weak); return false; } ref->data.weak--; } if (ref->data.strong == 0 && ref->data.weak == 0) { binder_cleanup_ref_olocked(ref); return true; } return false; } /** * binder_get_node_from_ref() - get the node from the given proc/desc * @proc: proc containing the ref * @desc: the handle associated with the ref * @need_strong_ref: if true, only return node if ref is strong * @rdata: the id/refcount data for the ref * * Given a proc and ref handle, return the associated binder_node * * Return: a binder_node or NULL if not found or not strong when strong required */ static struct binder_node *binder_get_node_from_ref( struct binder_proc *proc, u32 desc, bool need_strong_ref, struct binder_ref_data *rdata) { struct binder_node *node; struct binder_ref *ref; binder_proc_lock(proc); ref = binder_get_ref_olocked(proc, desc, need_strong_ref); if (!ref) goto err_no_ref; node = ref->node; /* * Take an implicit reference on the node to ensure * it stays alive until the call to binder_put_node() */ binder_inc_node_tmpref(node); if (rdata) *rdata = ref->data; binder_proc_unlock(proc); return node; err_no_ref: binder_proc_unlock(proc); return NULL; } /** * binder_free_ref() - free the binder_ref * @ref: ref to free * * Free the binder_ref. Free the binder_node indicated by ref->node * (if non-NULL) and the binder_ref_death indicated by ref->death. */ static void binder_free_ref(struct binder_ref *ref) { if (ref->node) binder_free_node(ref->node); kfree(ref->death); kfree(ref->freeze); kfree(ref); } /* shrink descriptor bitmap if needed */ static void try_shrink_dmap(struct binder_proc *proc) { unsigned long *new; int nbits; binder_proc_lock(proc); nbits = dbitmap_shrink_nbits(&proc->dmap); binder_proc_unlock(proc); if (!nbits) return; new = bitmap_zalloc(nbits, GFP_KERNEL); binder_proc_lock(proc); dbitmap_shrink(&proc->dmap, new, nbits); binder_proc_unlock(proc); } /** * binder_update_ref_for_handle() - inc/dec the ref for given handle * @proc: proc containing the ref * @desc: the handle associated with the ref * @increment: true=inc reference, false=dec reference * @strong: true=strong reference, false=weak reference * @rdata: the id/refcount data for the ref * * Given a proc and ref handle, increment or decrement the ref * according to "increment" arg. * * Return: 0 if successful, else errno */ static int binder_update_ref_for_handle(struct binder_proc *proc, uint32_t desc, bool increment, bool strong, struct binder_ref_data *rdata) { int ret = 0; struct binder_ref *ref; bool delete_ref = false; binder_proc_lock(proc); ref = binder_get_ref_olocked(proc, desc, strong); if (!ref) { ret = -EINVAL; goto err_no_ref; } if (increment) ret = binder_inc_ref_olocked(ref, strong, NULL); else delete_ref = binder_dec_ref_olocked(ref, strong); if (rdata) *rdata = ref->data; binder_proc_unlock(proc); if (delete_ref) { binder_free_ref(ref); try_shrink_dmap(proc); } return ret; err_no_ref: binder_proc_unlock(proc); return ret; } /** * binder_dec_ref_for_handle() - dec the ref for given handle * @proc: proc containing the ref * @desc: the handle associated with the ref * @strong: true=strong reference, false=weak reference * @rdata: the id/refcount data for the ref * * Just calls binder_update_ref_for_handle() to decrement the ref. * * Return: 0 if successful, else errno */ static int binder_dec_ref_for_handle(struct binder_proc *proc, uint32_t desc, bool strong, struct binder_ref_data *rdata) { return binder_update_ref_for_handle(proc, desc, false, strong, rdata); } /** * binder_inc_ref_for_node() - increment the ref for given proc/node * @proc: proc containing the ref * @node: target node * @strong: true=strong reference, false=weak reference * @target_list: worklist to use if node is incremented * @rdata: the id/refcount data for the ref * * Given a proc and node, increment the ref. Create the ref if it * doesn't already exist * * Return: 0 if successful, else errno */ static int binder_inc_ref_for_node(struct binder_proc *proc, struct binder_node *node, bool strong, struct list_head *target_list, struct binder_ref_data *rdata) { struct binder_ref *ref; struct binder_ref *new_ref = NULL; int ret = 0; binder_proc_lock(proc); ref = binder_get_ref_for_node_olocked(proc, node, NULL); if (!ref) { binder_proc_unlock(proc); new_ref = kzalloc(sizeof(*ref), GFP_KERNEL); if (!new_ref) return -ENOMEM; binder_proc_lock(proc); ref = binder_get_ref_for_node_olocked(proc, node, new_ref); } ret = binder_inc_ref_olocked(ref, strong, target_list); *rdata = ref->data; if (ret && ref == new_ref) { /* * Cleanup the failed reference here as the target * could now be dead and have already released its * references by now. Calling on the new reference * with strong=0 and a tmp_refs will not decrement * the node. The new_ref gets kfree'd below. */ binder_cleanup_ref_olocked(new_ref); ref = NULL; } binder_proc_unlock(proc); if (new_ref && ref != new_ref) /* * Another thread created the ref first so * free the one we allocated */ kfree(new_ref); return ret; } static void binder_pop_transaction_ilocked(struct binder_thread *target_thread, struct binder_transaction *t) { BUG_ON(!target_thread); assert_spin_locked(&target_thread->proc->inner_lock); BUG_ON(target_thread->transaction_stack != t); BUG_ON(target_thread->transaction_stack->from != target_thread); target_thread->transaction_stack = target_thread->transaction_stack->from_parent; t->from = NULL; } /** * binder_thread_dec_tmpref() - decrement thread->tmp_ref * @thread: thread to decrement * * A thread needs to be kept alive while being used to create or * handle a transaction. binder_get_txn_from() is used to safely * extract t->from from a binder_transaction and keep the thread * indicated by t->from from being freed. When done with that * binder_thread, this function is called to decrement the * tmp_ref and free if appropriate (thread has been released * and no transaction being processed by the driver) */ static void binder_thread_dec_tmpref(struct binder_thread *thread) { /* * atomic is used to protect the counter value while * it cannot reach zero or thread->is_dead is false */ binder_inner_proc_lock(thread->proc); atomic_dec(&thread->tmp_ref); if (thread->is_dead && !atomic_read(&thread->tmp_ref)) { binder_inner_proc_unlock(thread->proc); binder_free_thread(thread); return; } binder_inner_proc_unlock(thread->proc); } /** * binder_proc_dec_tmpref() - decrement proc->tmp_ref * @proc: proc to decrement * * A binder_proc needs to be kept alive while being used to create or * handle a transaction. proc->tmp_ref is incremented when * creating a new transaction or the binder_proc is currently in-use * by threads that are being released. When done with the binder_proc, * this function is called to decrement the counter and free the * proc if appropriate (proc has been released, all threads have * been released and not currently in-use to process a transaction). */ static void binder_proc_dec_tmpref(struct binder_proc *proc) { binder_inner_proc_lock(proc); proc->tmp_ref--; if (proc->is_dead && RB_EMPTY_ROOT(&proc->threads) && !proc->tmp_ref) { binder_inner_proc_unlock(proc); binder_free_proc(proc); return; } binder_inner_proc_unlock(proc); } /** * binder_get_txn_from() - safely extract the "from" thread in transaction * @t: binder transaction for t->from * * Atomically return the "from" thread and increment the tmp_ref * count for the thread to ensure it stays alive until * binder_thread_dec_tmpref() is called. * * Return: the value of t->from */ static struct binder_thread *binder_get_txn_from( struct binder_transaction *t) { struct binder_thread *from; spin_lock(&t->lock); from = t->from; if (from) atomic_inc(&from->tmp_ref); spin_unlock(&t->lock); return from; } /** * binder_get_txn_from_and_acq_inner() - get t->from and acquire inner lock * @t: binder transaction for t->from * * Same as binder_get_txn_from() except it also acquires the proc->inner_lock * to guarantee that the thread cannot be released while operating on it. * The caller must call binder_inner_proc_unlock() to release the inner lock * as well as call binder_dec_thread_txn() to release the reference. * * Return: the value of t->from */ static struct binder_thread *binder_get_txn_from_and_acq_inner( struct binder_transaction *t) __acquires(&t->from->proc->inner_lock) { struct binder_thread *from; from = binder_get_txn_from(t); if (!from) { __acquire(&from->proc->inner_lock); return NULL; } binder_inner_proc_lock(from->proc); if (t->from) { BUG_ON(from != t->from); return from; } binder_inner_proc_unlock(from->proc); __acquire(&from->proc->inner_lock); binder_thread_dec_tmpref(from); return NULL; } /** * binder_free_txn_fixups() - free unprocessed fd fixups * @t: binder transaction for t->from * * If the transaction is being torn down prior to being * processed by the target process, free all of the * fd fixups and fput the file structs. It is safe to * call this function after the fixups have been * processed -- in that case, the list will be empty. */ static void binder_free_txn_fixups(struct binder_transaction *t) { struct binder_txn_fd_fixup *fixup, *tmp; list_for_each_entry_safe(fixup, tmp, &t->fd_fixups, fixup_entry) { fput(fixup->file); if (fixup->target_fd >= 0) put_unused_fd(fixup->target_fd); list_del(&fixup->fixup_entry); kfree(fixup); } } static void binder_txn_latency_free(struct binder_transaction *t) { int from_proc, from_thread, to_proc, to_thread; spin_lock(&t->lock); from_proc = t->from ? t->from->proc->pid : 0; from_thread = t->from ? t->from->pid : 0; to_proc = t->to_proc ? t->to_proc->pid : 0; to_thread = t->to_thread ? t->to_thread->pid : 0; spin_unlock(&t->lock); trace_binder_txn_latency_free(t, from_proc, from_thread, to_proc, to_thread); } static void binder_free_transaction(struct binder_transaction *t) { struct binder_proc *target_proc = t->to_proc; if (target_proc) { binder_inner_proc_lock(target_proc); target_proc->outstanding_txns--; if (target_proc->outstanding_txns < 0) pr_warn("%s: Unexpected outstanding_txns %d\n", __func__, target_proc->outstanding_txns); if (!target_proc->outstanding_txns && target_proc->is_frozen) wake_up_interruptible_all(&target_proc->freeze_wait); if (t->buffer) t->buffer->transaction = NULL; binder_inner_proc_unlock(target_proc); } if (trace_binder_txn_latency_free_enabled()) binder_txn_latency_free(t); /* * If the transaction has no target_proc, then * t->buffer->transaction has already been cleared. */ binder_free_txn_fixups(t); kfree(t); binder_stats_deleted(BINDER_STAT_TRANSACTION); } static void binder_send_failed_reply(struct binder_transaction *t, uint32_t error_code) { struct binder_thread *target_thread; struct binder_transaction *next; BUG_ON(t->flags & TF_ONE_WAY); while (1) { target_thread = binder_get_txn_from_and_acq_inner(t); if (target_thread) { binder_debug(BINDER_DEBUG_FAILED_TRANSACTION, "send failed reply for transaction %d to %d:%d\n", t->debug_id, target_thread->proc->pid, target_thread->pid); binder_pop_transaction_ilocked(target_thread, t); if (target_thread->reply_error.cmd == BR_OK) { target_thread->reply_error.cmd = error_code; binder_enqueue_thread_work_ilocked( target_thread, &target_thread->reply_error.work); wake_up_interruptible(&target_thread->wait); } else { /* * Cannot get here for normal operation, but * we can if multiple synchronous transactions * are sent without blocking for responses. * Just ignore the 2nd error in this case. */ pr_warn("Unexpected reply error: %u\n", target_thread->reply_error.cmd); } binder_inner_proc_unlock(target_thread->proc); binder_thread_dec_tmpref(target_thread); binder_free_transaction(t); return; } __release(&target_thread->proc->inner_lock); next = t->from_parent; binder_debug(BINDER_DEBUG_FAILED_TRANSACTION, "send failed reply for transaction %d, target dead\n", t->debug_id); binder_free_transaction(t); if (next == NULL) { binder_debug(BINDER_DEBUG_DEAD_BINDER, "reply failed, no target thread at root\n"); return; } t = next; binder_debug(BINDER_DEBUG_DEAD_BINDER, "reply failed, no target thread -- retry %d\n", t->debug_id); } } /** * binder_cleanup_transaction() - cleans up undelivered transaction * @t: transaction that needs to be cleaned up * @reason: reason the transaction wasn't delivered * @error_code: error to return to caller (if synchronous call) */ static void binder_cleanup_transaction(struct binder_transaction *t, const char *reason, uint32_t error_code) { if (t->buffer->target_node && !(t->flags & TF_ONE_WAY)) { binder_send_failed_reply(t, error_code); } else { binder_debug(BINDER_DEBUG_DEAD_TRANSACTION, "undelivered transaction %d, %s\n", t->debug_id, reason); binder_free_transaction(t); } } /** * binder_get_object() - gets object and checks for valid metadata * @proc: binder_proc owning the buffer * @u: sender's user pointer to base of buffer * @buffer: binder_buffer that we're parsing. * @offset: offset in the @buffer at which to validate an object. * @object: struct binder_object to read into * * Copy the binder object at the given offset into @object. If @u is * provided then the copy is from the sender's buffer. If not, then * it is copied from the target's @buffer. * * Return: If there's a valid metadata object at @offset, the * size of that object. Otherwise, it returns zero. The object * is read into the struct binder_object pointed to by @object. */ static size_t binder_get_object(struct binder_proc *proc, const void __user *u, struct binder_buffer *buffer, unsigned long offset, struct binder_object *object) { size_t read_size; struct binder_object_header *hdr; size_t object_size = 0; read_size = min_t(size_t, sizeof(*object), buffer->data_size - offset); if (offset > buffer->data_size || read_size < sizeof(*hdr) || !IS_ALIGNED(offset, sizeof(u32))) return 0; if (u) { if (copy_from_user(object, u + offset, read_size)) return 0; } else { if (binder_alloc_copy_from_buffer(&proc->alloc, object, buffer, offset, read_size)) return 0; } /* Ok, now see if we read a complete object. */ hdr = &object->hdr; switch (hdr->type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: object_size = sizeof(struct flat_binder_object); break; case BINDER_TYPE_FD: object_size = sizeof(struct binder_fd_object); break; case BINDER_TYPE_PTR: object_size = sizeof(struct binder_buffer_object); break; case BINDER_TYPE_FDA: object_size = sizeof(struct binder_fd_array_object); break; default: return 0; } if (offset <= buffer->data_size - object_size && buffer->data_size >= object_size) return object_size; else return 0; } /** * binder_validate_ptr() - validates binder_buffer_object in a binder_buffer. * @proc: binder_proc owning the buffer * @b: binder_buffer containing the object * @object: struct binder_object to read into * @index: index in offset array at which the binder_buffer_object is * located * @start_offset: points to the start of the offset array * @object_offsetp: offset of @object read from @b * @num_valid: the number of valid offsets in the offset array * * Return: If @index is within the valid range of the offset array * described by @start and @num_valid, and if there's a valid * binder_buffer_object at the offset found in index @index * of the offset array, that object is returned. Otherwise, * %NULL is returned. * Note that the offset found in index @index itself is not * verified; this function assumes that @num_valid elements * from @start were previously verified to have valid offsets. * If @object_offsetp is non-NULL, then the offset within * @b is written to it. */ static struct binder_buffer_object *binder_validate_ptr( struct binder_proc *proc, struct binder_buffer *b, struct binder_object *object, binder_size_t index, binder_size_t start_offset, binder_size_t *object_offsetp, binder_size_t num_valid) { size_t object_size; binder_size_t object_offset; unsigned long buffer_offset; if (index >= num_valid) return NULL; buffer_offset = start_offset + sizeof(binder_size_t) * index; if (binder_alloc_copy_from_buffer(&proc->alloc, &object_offset, b, buffer_offset, sizeof(object_offset))) return NULL; object_size = binder_get_object(proc, NULL, b, object_offset, object); if (!object_size || object->hdr.type != BINDER_TYPE_PTR) return NULL; if (object_offsetp) *object_offsetp = object_offset; return &object->bbo; } /** * binder_validate_fixup() - validates pointer/fd fixups happen in order. * @proc: binder_proc owning the buffer * @b: transaction buffer * @objects_start_offset: offset to start of objects buffer * @buffer_obj_offset: offset to binder_buffer_object in which to fix up * @fixup_offset: start offset in @buffer to fix up * @last_obj_offset: offset to last binder_buffer_object that we fixed * @last_min_offset: minimum fixup offset in object at @last_obj_offset * * Return: %true if a fixup in buffer @buffer at offset @offset is * allowed. * * For safety reasons, we only allow fixups inside a buffer to happen * at increasing offsets; additionally, we only allow fixup on the last * buffer object that was verified, or one of its parents. * * Example of what is allowed: * * A * B (parent = A, offset = 0) * C (parent = A, offset = 16) * D (parent = C, offset = 0) * E (parent = A, offset = 32) // min_offset is 16 (C.parent_offset) * * Examples of what is not allowed: * * Decreasing offsets within the same parent: * A * C (parent = A, offset = 16) * B (parent = A, offset = 0) // decreasing offset within A * * Referring to a parent that wasn't the last object or any of its parents: * A * B (parent = A, offset = 0) * C (parent = A, offset = 0) * C (parent = A, offset = 16) * D (parent = B, offset = 0) // B is not A or any of A's parents */ static bool binder_validate_fixup(struct binder_proc *proc, struct binder_buffer *b, binder_size_t objects_start_offset, binder_size_t buffer_obj_offset, binder_size_t fixup_offset, binder_size_t last_obj_offset, binder_size_t last_min_offset) { if (!last_obj_offset) { /* Nothing to fix up in */ return false; } while (last_obj_offset != buffer_obj_offset) { unsigned long buffer_offset; struct binder_object last_object; struct binder_buffer_object *last_bbo; size_t object_size = binder_get_object(proc, NULL, b, last_obj_offset, &last_object); if (object_size != sizeof(*last_bbo)) return false; last_bbo = &last_object.bbo; /* * Safe to retrieve the parent of last_obj, since it * was already previously verified by the driver. */ if ((last_bbo->flags & BINDER_BUFFER_FLAG_HAS_PARENT) == 0) return false; last_min_offset = last_bbo->parent_offset + sizeof(uintptr_t); buffer_offset = objects_start_offset + sizeof(binder_size_t) * last_bbo->parent; if (binder_alloc_copy_from_buffer(&proc->alloc, &last_obj_offset, b, buffer_offset, sizeof(last_obj_offset))) return false; } return (fixup_offset >= last_min_offset); } /** * struct binder_task_work_cb - for deferred close * * @twork: callback_head for task work * @file: file to close * * Structure to pass task work to be handled after * returning from binder_ioctl() via task_work_add(). */ struct binder_task_work_cb { struct callback_head twork; struct file *file; }; /** * binder_do_fd_close() - close list of file descriptors * @twork: callback head for task work * * It is not safe to call ksys_close() during the binder_ioctl() * function if there is a chance that binder's own file descriptor * might be closed. This is to meet the requirements for using * fdget() (see comments for __fget_light()). Therefore use * task_work_add() to schedule the close operation once we have * returned from binder_ioctl(). This function is a callback * for that mechanism and does the actual ksys_close() on the * given file descriptor. */ static void binder_do_fd_close(struct callback_head *twork) { struct binder_task_work_cb *twcb = container_of(twork, struct binder_task_work_cb, twork); fput(twcb->file); kfree(twcb); } /** * binder_deferred_fd_close() - schedule a close for the given file-descriptor * @fd: file-descriptor to close * * See comments in binder_do_fd_close(). This function is used to schedule * a file-descriptor to be closed after returning from binder_ioctl(). */ static void binder_deferred_fd_close(int fd) { struct binder_task_work_cb *twcb; twcb = kzalloc(sizeof(*twcb), GFP_KERNEL); if (!twcb) return; init_task_work(&twcb->twork, binder_do_fd_close); twcb->file = file_close_fd(fd); if (twcb->file) { // pin it until binder_do_fd_close(); see comments there get_file(twcb->file); filp_close(twcb->file, current->files); task_work_add(current, &twcb->twork, TWA_RESUME); } else { kfree(twcb); } } static void binder_transaction_buffer_release(struct binder_proc *proc, struct binder_thread *thread, struct binder_buffer *buffer, binder_size_t off_end_offset, bool is_failure) { int debug_id = buffer->debug_id; binder_size_t off_start_offset, buffer_offset; binder_debug(BINDER_DEBUG_TRANSACTION, "%d buffer release %d, size %zd-%zd, failed at %llx\n", proc->pid, buffer->debug_id, buffer->data_size, buffer->offsets_size, (unsigned long long)off_end_offset); if (buffer->target_node) binder_dec_node(buffer->target_node, 1, 0); off_start_offset = ALIGN(buffer->data_size, sizeof(void *)); for (buffer_offset = off_start_offset; buffer_offset < off_end_offset; buffer_offset += sizeof(binder_size_t)) { struct binder_object_header *hdr; size_t object_size = 0; struct binder_object object; binder_size_t object_offset; if (!binder_alloc_copy_from_buffer(&proc->alloc, &object_offset, buffer, buffer_offset, sizeof(object_offset))) object_size = binder_get_object(proc, NULL, buffer, object_offset, &object); if (object_size == 0) { pr_err("transaction release %d bad object at offset %lld, size %zd\n", debug_id, (u64)object_offset, buffer->data_size); continue; } hdr = &object.hdr; switch (hdr->type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: { struct flat_binder_object *fp; struct binder_node *node; fp = to_flat_binder_object(hdr); node = binder_get_node(proc, fp->binder); if (node == NULL) { pr_err("transaction release %d bad node %016llx\n", debug_id, (u64)fp->binder); break; } binder_debug(BINDER_DEBUG_TRANSACTION, " node %d u%016llx\n", node->debug_id, (u64)node->ptr); binder_dec_node(node, hdr->type == BINDER_TYPE_BINDER, 0); binder_put_node(node); } break; case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { struct flat_binder_object *fp; struct binder_ref_data rdata; int ret; fp = to_flat_binder_object(hdr); ret = binder_dec_ref_for_handle(proc, fp->handle, hdr->type == BINDER_TYPE_HANDLE, &rdata); if (ret) { pr_err("transaction release %d bad handle %d, ret = %d\n", debug_id, fp->handle, ret); break; } binder_debug(BINDER_DEBUG_TRANSACTION, " ref %d desc %d\n", rdata.debug_id, rdata.desc); } break; case BINDER_TYPE_FD: { /* * No need to close the file here since user-space * closes it for successfully delivered * transactions. For transactions that weren't * delivered, the new fd was never allocated so * there is no need to close and the fput on the * file is done when the transaction is torn * down. */ } break; case BINDER_TYPE_PTR: /* * Nothing to do here, this will get cleaned up when the * transaction buffer gets freed */ break; case BINDER_TYPE_FDA: { struct binder_fd_array_object *fda; struct binder_buffer_object *parent; struct binder_object ptr_object; binder_size_t fda_offset; size_t fd_index; binder_size_t fd_buf_size; binder_size_t num_valid; if (is_failure) { /* * The fd fixups have not been applied so no * fds need to be closed. */ continue; } num_valid = (buffer_offset - off_start_offset) / sizeof(binder_size_t); fda = to_binder_fd_array_object(hdr); parent = binder_validate_ptr(proc, buffer, &ptr_object, fda->parent, off_start_offset, NULL, num_valid); if (!parent) { pr_err("transaction release %d bad parent offset\n", debug_id); continue; } fd_buf_size = sizeof(u32) * fda->num_fds; if (fda->num_fds >= SIZE_MAX / sizeof(u32)) { pr_err("transaction release %d invalid number of fds (%lld)\n", debug_id, (u64)fda->num_fds); continue; } if (fd_buf_size > parent->length || fda->parent_offset > parent->length - fd_buf_size) { /* No space for all file descriptors here. */ pr_err("transaction release %d not enough space for %lld fds in buffer\n", debug_id, (u64)fda->num_fds); continue; } /* * the source data for binder_buffer_object is visible * to user-space and the @buffer element is the user * pointer to the buffer_object containing the fd_array. * Convert the address to an offset relative to * the base of the transaction buffer. */ fda_offset = parent->buffer - buffer->user_data + fda->parent_offset; for (fd_index = 0; fd_index < fda->num_fds; fd_index++) { u32 fd; int err; binder_size_t offset = fda_offset + fd_index * sizeof(fd); err = binder_alloc_copy_from_buffer( &proc->alloc, &fd, buffer, offset, sizeof(fd)); WARN_ON(err); if (!err) { binder_deferred_fd_close(fd); /* * Need to make sure the thread goes * back to userspace to complete the * deferred close */ if (thread) thread->looper_need_return = true; } } } break; default: pr_err("transaction release %d bad object type %x\n", debug_id, hdr->type); break; } } } /* Clean up all the objects in the buffer */ static inline void binder_release_entire_buffer(struct binder_proc *proc, struct binder_thread *thread, struct binder_buffer *buffer, bool is_failure) { binder_size_t off_end_offset; off_end_offset = ALIGN(buffer->data_size, sizeof(void *)); off_end_offset += buffer->offsets_size; binder_transaction_buffer_release(proc, thread, buffer, off_end_offset, is_failure); } static int binder_translate_binder(struct flat_binder_object *fp, struct binder_transaction *t, struct binder_thread *thread) { struct binder_node *node; struct binder_proc *proc = thread->proc; struct binder_proc *target_proc = t->to_proc; struct binder_ref_data rdata; int ret = 0; node = binder_get_node(proc, fp->binder); if (!node) { node = binder_new_node(proc, fp); if (!node) return -ENOMEM; } if (fp->cookie != node->cookie) { binder_user_error("%d:%d sending u%016llx node %d, cookie mismatch %016llx != %016llx\n", proc->pid, thread->pid, (u64)fp->binder, node->debug_id, (u64)fp->cookie, (u64)node->cookie); ret = -EINVAL; goto done; } if (security_binder_transfer_binder(proc->cred, target_proc->cred)) { ret = -EPERM; goto done; } ret = binder_inc_ref_for_node(target_proc, node, fp->hdr.type == BINDER_TYPE_BINDER, &thread->todo, &rdata); if (ret) goto done; if (fp->hdr.type == BINDER_TYPE_BINDER) fp->hdr.type = BINDER_TYPE_HANDLE; else fp->hdr.type = BINDER_TYPE_WEAK_HANDLE; fp->binder = 0; fp->handle = rdata.desc; fp->cookie = 0; trace_binder_transaction_node_to_ref(t, node, &rdata); binder_debug(BINDER_DEBUG_TRANSACTION, " node %d u%016llx -> ref %d desc %d\n", node->debug_id, (u64)node->ptr, rdata.debug_id, rdata.desc); done: binder_put_node(node); return ret; } static int binder_translate_handle(struct flat_binder_object *fp, struct binder_transaction *t, struct binder_thread *thread) { struct binder_proc *proc = thread->proc; struct binder_proc *target_proc = t->to_proc; struct binder_node *node; struct binder_ref_data src_rdata; int ret = 0; node = binder_get_node_from_ref(proc, fp->handle, fp->hdr.type == BINDER_TYPE_HANDLE, &src_rdata); if (!node) { binder_user_error("%d:%d got transaction with invalid handle, %d\n", proc->pid, thread->pid, fp->handle); return -EINVAL; } if (security_binder_transfer_binder(proc->cred, target_proc->cred)) { ret = -EPERM; goto done; } binder_node_lock(node); if (node->proc == target_proc) { if (fp->hdr.type == BINDER_TYPE_HANDLE) fp->hdr.type = BINDER_TYPE_BINDER; else fp->hdr.type = BINDER_TYPE_WEAK_BINDER; fp->binder = node->ptr; fp->cookie = node->cookie; if (node->proc) binder_inner_proc_lock(node->proc); else __acquire(&node->proc->inner_lock); binder_inc_node_nilocked(node, fp->hdr.type == BINDER_TYPE_BINDER, 0, NULL); if (node->proc) binder_inner_proc_unlock(node->proc); else __release(&node->proc->inner_lock); trace_binder_transaction_ref_to_node(t, node, &src_rdata); binder_debug(BINDER_DEBUG_TRANSACTION, " ref %d desc %d -> node %d u%016llx\n", src_rdata.debug_id, src_rdata.desc, node->debug_id, (u64)node->ptr); binder_node_unlock(node); } else { struct binder_ref_data dest_rdata; binder_node_unlock(node); ret = binder_inc_ref_for_node(target_proc, node, fp->hdr.type == BINDER_TYPE_HANDLE, NULL, &dest_rdata); if (ret) goto done; fp->binder = 0; fp->handle = dest_rdata.desc; fp->cookie = 0; trace_binder_transaction_ref_to_ref(t, node, &src_rdata, &dest_rdata); binder_debug(BINDER_DEBUG_TRANSACTION, " ref %d desc %d -> ref %d desc %d (node %d)\n", src_rdata.debug_id, src_rdata.desc, dest_rdata.debug_id, dest_rdata.desc, node->debug_id); } done: binder_put_node(node); return ret; } static int binder_translate_fd(u32 fd, binder_size_t fd_offset, struct binder_transaction *t, struct binder_thread *thread, struct binder_transaction *in_reply_to) { struct binder_proc *proc = thread->proc; struct binder_proc *target_proc = t->to_proc; struct binder_txn_fd_fixup *fixup; struct file *file; int ret = 0; bool target_allows_fd; if (in_reply_to) target_allows_fd = !!(in_reply_to->flags & TF_ACCEPT_FDS); else target_allows_fd = t->buffer->target_node->accept_fds; if (!target_allows_fd) { binder_user_error("%d:%d got %s with fd, %d, but target does not allow fds\n", proc->pid, thread->pid, in_reply_to ? "reply" : "transaction", fd); ret = -EPERM; goto err_fd_not_accepted; } file = fget(fd); if (!file) { binder_user_error("%d:%d got transaction with invalid fd, %d\n", proc->pid, thread->pid, fd); ret = -EBADF; goto err_fget; } ret = security_binder_transfer_file(proc->cred, target_proc->cred, file); if (ret < 0) { ret = -EPERM; goto err_security; } /* * Add fixup record for this transaction. The allocation * of the fd in the target needs to be done from a * target thread. */ fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); if (!fixup) { ret = -ENOMEM; goto err_alloc; } fixup->file = file; fixup->offset = fd_offset; fixup->target_fd = -1; trace_binder_transaction_fd_send(t, fd, fixup->offset); list_add_tail(&fixup->fixup_entry, &t->fd_fixups); return ret; err_alloc: err_security: fput(file); err_fget: err_fd_not_accepted: return ret; } /** * struct binder_ptr_fixup - data to be fixed-up in target buffer * @offset offset in target buffer to fixup * @skip_size bytes to skip in copy (fixup will be written later) * @fixup_data data to write at fixup offset * @node list node * * This is used for the pointer fixup list (pf) which is created and consumed * during binder_transaction() and is only accessed locally. No * locking is necessary. * * The list is ordered by @offset. */ struct binder_ptr_fixup { binder_size_t offset; size_t skip_size; binder_uintptr_t fixup_data; struct list_head node; }; /** * struct binder_sg_copy - scatter-gather data to be copied * @offset offset in target buffer * @sender_uaddr user address in source buffer * @length bytes to copy * @node list node * * This is used for the sg copy list (sgc) which is created and consumed * during binder_transaction() and is only accessed locally. No * locking is necessary. * * The list is ordered by @offset. */ struct binder_sg_copy { binder_size_t offset; const void __user *sender_uaddr; size_t length; struct list_head node; }; /** * binder_do_deferred_txn_copies() - copy and fixup scatter-gather data * @alloc: binder_alloc associated with @buffer * @buffer: binder buffer in target process * @sgc_head: list_head of scatter-gather copy list * @pf_head: list_head of pointer fixup list * * Processes all elements of @sgc_head, applying fixups from @pf_head * and copying the scatter-gather data from the source process' user * buffer to the target's buffer. It is expected that the list creation * and processing all occurs during binder_transaction() so these lists * are only accessed in local context. * * Return: 0=success, else -errno */ static int binder_do_deferred_txn_copies(struct binder_alloc *alloc, struct binder_buffer *buffer, struct list_head *sgc_head, struct list_head *pf_head) { int ret = 0; struct binder_sg_copy *sgc, *tmpsgc; struct binder_ptr_fixup *tmppf; struct binder_ptr_fixup *pf = list_first_entry_or_null(pf_head, struct binder_ptr_fixup, node); list_for_each_entry_safe(sgc, tmpsgc, sgc_head, node) { size_t bytes_copied = 0; while (bytes_copied < sgc->length) { size_t copy_size; size_t bytes_left = sgc->length - bytes_copied; size_t offset = sgc->offset + bytes_copied; /* * We copy up to the fixup (pointed to by pf) */ copy_size = pf ? min(bytes_left, (size_t)pf->offset - offset) : bytes_left; if (!ret && copy_size) ret = binder_alloc_copy_user_to_buffer( alloc, buffer, offset, sgc->sender_uaddr + bytes_copied, copy_size); bytes_copied += copy_size; if (copy_size != bytes_left) { BUG_ON(!pf); /* we stopped at a fixup offset */ if (pf->skip_size) { /* * we are just skipping. This is for * BINDER_TYPE_FDA where the translated * fds will be fixed up when we get * to target context. */ bytes_copied += pf->skip_size; } else { /* apply the fixup indicated by pf */ if (!ret) ret = binder_alloc_copy_to_buffer( alloc, buffer, pf->offset, &pf->fixup_data, sizeof(pf->fixup_data)); bytes_copied += sizeof(pf->fixup_data); } list_del(&pf->node); kfree(pf); pf = list_first_entry_or_null(pf_head, struct binder_ptr_fixup, node); } } list_del(&sgc->node); kfree(sgc); } list_for_each_entry_safe(pf, tmppf, pf_head, node) { BUG_ON(pf->skip_size == 0); list_del(&pf->node); kfree(pf); } BUG_ON(!list_empty(sgc_head)); return ret > 0 ? -EINVAL : ret; } /** * binder_cleanup_deferred_txn_lists() - free specified lists * @sgc_head: list_head of scatter-gather copy list * @pf_head: list_head of pointer fixup list * * Called to clean up @sgc_head and @pf_head if there is an * error. */ static void binder_cleanup_deferred_txn_lists(struct list_head *sgc_head, struct list_head *pf_head) { struct binder_sg_copy *sgc, *tmpsgc; struct binder_ptr_fixup *pf, *tmppf; list_for_each_entry_safe(sgc, tmpsgc, sgc_head, node) { list_del(&sgc->node); kfree(sgc); } list_for_each_entry_safe(pf, tmppf, pf_head, node) { list_del(&pf->node); kfree(pf); } } /** * binder_defer_copy() - queue a scatter-gather buffer for copy * @sgc_head: list_head of scatter-gather copy list * @offset: binder buffer offset in target process * @sender_uaddr: user address in source process * @length: bytes to copy * * Specify a scatter-gather block to be copied. The actual copy must * be deferred until all the needed fixups are identified and queued. * Then the copy and fixups are done together so un-translated values * from the source are never visible in the target buffer. * * We are guaranteed that repeated calls to this function will have * monotonically increasing @offset values so the list will naturally * be ordered. * * Return: 0=success, else -errno */ static int binder_defer_copy(struct list_head *sgc_head, binder_size_t offset, const void __user *sender_uaddr, size_t length) { struct binder_sg_copy *bc = kzalloc(sizeof(*bc), GFP_KERNEL); if (!bc) return -ENOMEM; bc->offset = offset; bc->sender_uaddr = sender_uaddr; bc->length = length; INIT_LIST_HEAD(&bc->node); /* * We are guaranteed that the deferred copies are in-order * so just add to the tail. */ list_add_tail(&bc->node, sgc_head); return 0; } /** * binder_add_fixup() - queue a fixup to be applied to sg copy * @pf_head: list_head of binder ptr fixup list * @offset: binder buffer offset in target process * @fixup: bytes to be copied for fixup * @skip_size: bytes to skip when copying (fixup will be applied later) * * Add the specified fixup to a list ordered by @offset. When copying * the scatter-gather buffers, the fixup will be copied instead of * data from the source buffer. For BINDER_TYPE_FDA fixups, the fixup * will be applied later (in target process context), so we just skip * the bytes specified by @skip_size. If @skip_size is 0, we copy the * value in @fixup. * * This function is called *mostly* in @offset order, but there are * exceptions. Since out-of-order inserts are relatively uncommon, * we insert the new element by searching backward from the tail of * the list. * * Return: 0=success, else -errno */ static int binder_add_fixup(struct list_head *pf_head, binder_size_t offset, binder_uintptr_t fixup, size_t skip_size) { struct binder_ptr_fixup *pf = kzalloc(sizeof(*pf), GFP_KERNEL); struct binder_ptr_fixup *tmppf; if (!pf) return -ENOMEM; pf->offset = offset; pf->fixup_data = fixup; pf->skip_size = skip_size; INIT_LIST_HEAD(&pf->node); /* Fixups are *mostly* added in-order, but there are some * exceptions. Look backwards through list for insertion point. */ list_for_each_entry_reverse(tmppf, pf_head, node) { if (tmppf->offset < pf->offset) { list_add(&pf->node, &tmppf->node); return 0; } } /* * if we get here, then the new offset is the lowest so * insert at the head */ list_add(&pf->node, pf_head); return 0; } static int binder_translate_fd_array(struct list_head *pf_head, struct binder_fd_array_object *fda, const void __user *sender_ubuffer, struct binder_buffer_object *parent, struct binder_buffer_object *sender_uparent, struct binder_transaction *t, struct binder_thread *thread, struct binder_transaction *in_reply_to) { binder_size_t fdi, fd_buf_size; binder_size_t fda_offset; const void __user *sender_ufda_base; struct binder_proc *proc = thread->proc; int ret; if (fda->num_fds == 0) return 0; fd_buf_size = sizeof(u32) * fda->num_fds; if (fda->num_fds >= SIZE_MAX / sizeof(u32)) { binder_user_error("%d:%d got transaction with invalid number of fds (%lld)\n", proc->pid, thread->pid, (u64)fda->num_fds); return -EINVAL; } if (fd_buf_size > parent->length || fda->parent_offset > parent->length - fd_buf_size) { /* No space for all file descriptors here. */ binder_user_error("%d:%d not enough space to store %lld fds in buffer\n", proc->pid, thread->pid, (u64)fda->num_fds); return -EINVAL; } /* * the source data for binder_buffer_object is visible * to user-space and the @buffer element is the user * pointer to the buffer_object containing the fd_array. * Convert the address to an offset relative to * the base of the transaction buffer. */ fda_offset = parent->buffer - t->buffer->user_data + fda->parent_offset; sender_ufda_base = (void __user *)(uintptr_t)sender_uparent->buffer + fda->parent_offset; if (!IS_ALIGNED((unsigned long)fda_offset, sizeof(u32)) || !IS_ALIGNED((unsigned long)sender_ufda_base, sizeof(u32))) { binder_user_error("%d:%d parent offset not aligned correctly.\n", proc->pid, thread->pid); return -EINVAL; } ret = binder_add_fixup(pf_head, fda_offset, 0, fda->num_fds * sizeof(u32)); if (ret) return ret; for (fdi = 0; fdi < fda->num_fds; fdi++) { u32 fd; binder_size_t offset = fda_offset + fdi * sizeof(fd); binder_size_t sender_uoffset = fdi * sizeof(fd); ret = copy_from_user(&fd, sender_ufda_base + sender_uoffset, sizeof(fd)); if (!ret) ret = binder_translate_fd(fd, offset, t, thread, in_reply_to); if (ret) return ret > 0 ? -EINVAL : ret; } return 0; } static int binder_fixup_parent(struct list_head *pf_head, struct binder_transaction *t, struct binder_thread *thread, struct binder_buffer_object *bp, binder_size_t off_start_offset, binder_size_t num_valid, binder_size_t last_fixup_obj_off, binder_size_t last_fixup_min_off) { struct binder_buffer_object *parent; struct binder_buffer *b = t->buffer; struct binder_proc *proc = thread->proc; struct binder_proc *target_proc = t->to_proc; struct binder_object object; binder_size_t buffer_offset; binder_size_t parent_offset; if (!(bp->flags & BINDER_BUFFER_FLAG_HAS_PARENT)) return 0; parent = binder_validate_ptr(target_proc, b, &object, bp->parent, off_start_offset, &parent_offset, num_valid); if (!parent) { binder_user_error("%d:%d got transaction with invalid parent offset or type\n", proc->pid, thread->pid); return -EINVAL; } if (!binder_validate_fixup(target_proc, b, off_start_offset, parent_offset, bp->parent_offset, last_fixup_obj_off, last_fixup_min_off)) { binder_user_error("%d:%d got transaction with out-of-order buffer fixup\n", proc->pid, thread->pid); return -EINVAL; } if (parent->length < sizeof(binder_uintptr_t) || bp->parent_offset > parent->length - sizeof(binder_uintptr_t)) { /* No space for a pointer here! */ binder_user_error("%d:%d got transaction with invalid parent offset\n", proc->pid, thread->pid); return -EINVAL; } buffer_offset = bp->parent_offset + parent->buffer - b->user_data; return binder_add_fixup(pf_head, buffer_offset, bp->buffer, 0); } /** * binder_can_update_transaction() - Can a txn be superseded by an updated one? * @t1: the pending async txn in the frozen process * @t2: the new async txn to supersede the outdated pending one * * Return: true if t2 can supersede t1 * false if t2 can not supersede t1 */ static bool binder_can_update_transaction(struct binder_transaction *t1, struct binder_transaction *t2) { if ((t1->flags & t2->flags & (TF_ONE_WAY | TF_UPDATE_TXN)) != (TF_ONE_WAY | TF_UPDATE_TXN) || !t1->to_proc || !t2->to_proc) return false; if (t1->to_proc->tsk == t2->to_proc->tsk && t1->code == t2->code && t1->flags == t2->flags && t1->buffer->pid == t2->buffer->pid && t1->buffer->target_node->ptr == t2->buffer->target_node->ptr && t1->buffer->target_node->cookie == t2->buffer->target_node->cookie) return true; return false; } /** * binder_find_outdated_transaction_ilocked() - Find the outdated transaction * @t: new async transaction * @target_list: list to find outdated transaction * * Return: the outdated transaction if found * NULL if no outdated transacton can be found * * Requires the proc->inner_lock to be held. */ static struct binder_transaction * binder_find_outdated_transaction_ilocked(struct binder_transaction *t, struct list_head *target_list) { struct binder_work *w; list_for_each_entry(w, target_list, entry) { struct binder_transaction *t_queued; if (w->type != BINDER_WORK_TRANSACTION) continue; t_queued = container_of(w, struct binder_transaction, work); if (binder_can_update_transaction(t_queued, t)) return t_queued; } return NULL; } /** * binder_proc_transaction() - sends a transaction to a process and wakes it up * @t: transaction to send * @proc: process to send the transaction to * @thread: thread in @proc to send the transaction to (may be NULL) * * This function queues a transaction to the specified process. It will try * to find a thread in the target process to handle the transaction and * wake it up. If no thread is found, the work is queued to the proc * waitqueue. * * If the @thread parameter is not NULL, the transaction is always queued * to the waitlist of that specific thread. * * Return: 0 if the transaction was successfully queued * BR_DEAD_REPLY if the target process or thread is dead * BR_FROZEN_REPLY if the target process or thread is frozen and * the sync transaction was rejected * BR_TRANSACTION_PENDING_FROZEN if the target process is frozen * and the async transaction was successfully queued */ static int binder_proc_transaction(struct binder_transaction *t, struct binder_proc *proc, struct binder_thread *thread) { struct binder_node *node = t->buffer->target_node; bool oneway = !!(t->flags & TF_ONE_WAY); bool pending_async = false; struct binder_transaction *t_outdated = NULL; bool frozen = false; BUG_ON(!node); binder_node_lock(node); if (oneway) { BUG_ON(thread); if (node->has_async_transaction) pending_async = true; else node->has_async_transaction = true; } binder_inner_proc_lock(proc); if (proc->is_frozen) { frozen = true; proc->sync_recv |= !oneway; proc->async_recv |= oneway; } if ((frozen && !oneway) || proc->is_dead || (thread && thread->is_dead)) { binder_inner_proc_unlock(proc); binder_node_unlock(node); return frozen ? BR_FROZEN_REPLY : BR_DEAD_REPLY; } if (!thread && !pending_async) thread = binder_select_thread_ilocked(proc); if (thread) { binder_enqueue_thread_work_ilocked(thread, &t->work); } else if (!pending_async) { binder_enqueue_work_ilocked(&t->work, &proc->todo); } else { if ((t->flags & TF_UPDATE_TXN) && frozen) { t_outdated = binder_find_outdated_transaction_ilocked(t, &node->async_todo); if (t_outdated) { binder_debug(BINDER_DEBUG_TRANSACTION, "txn %d supersedes %d\n", t->debug_id, t_outdated->debug_id); list_del_init(&t_outdated->work.entry); proc->outstanding_txns--; } } binder_enqueue_work_ilocked(&t->work, &node->async_todo); } if (!pending_async) binder_wakeup_thread_ilocked(proc, thread, !oneway /* sync */); proc->outstanding_txns++; binder_inner_proc_unlock(proc); binder_node_unlock(node); /* * To reduce potential contention, free the outdated transaction and * buffer after releasing the locks. */ if (t_outdated) { struct binder_buffer *buffer = t_outdated->buffer; t_outdated->buffer = NULL; buffer->transaction = NULL; trace_binder_transaction_update_buffer_release(buffer); binder_release_entire_buffer(proc, NULL, buffer, false); binder_alloc_free_buf(&proc->alloc, buffer); kfree(t_outdated); binder_stats_deleted(BINDER_STAT_TRANSACTION); } if (oneway && frozen) return BR_TRANSACTION_PENDING_FROZEN; return 0; } /** * binder_get_node_refs_for_txn() - Get required refs on node for txn * @node: struct binder_node for which to get refs * @procp: returns @node->proc if valid * @error: if no @procp then returns BR_DEAD_REPLY * * User-space normally keeps the node alive when creating a transaction * since it has a reference to the target. The local strong ref keeps it * alive if the sending process dies before the target process processes * the transaction. If the source process is malicious or has a reference * counting bug, relying on the local strong ref can fail. * * Since user-space can cause the local strong ref to go away, we also take * a tmpref on the node to ensure it survives while we are constructing * the transaction. We also need a tmpref on the proc while we are * constructing the transaction, so we take that here as well. * * Return: The target_node with refs taken or NULL if no @node->proc is NULL. * Also sets @procp if valid. If the @node->proc is NULL indicating that the * target proc has died, @error is set to BR_DEAD_REPLY. */ static struct binder_node *binder_get_node_refs_for_txn( struct binder_node *node, struct binder_proc **procp, uint32_t *error) { struct binder_node *target_node = NULL; binder_node_inner_lock(node); if (node->proc) { target_node = node; binder_inc_node_nilocked(node, 1, 0, NULL); binder_inc_node_tmpref_ilocked(node); node->proc->tmp_ref++; *procp = node->proc; } else *error = BR_DEAD_REPLY; binder_node_inner_unlock(node); return target_node; } static void binder_set_txn_from_error(struct binder_transaction *t, int id, uint32_t command, int32_t param) { struct binder_thread *from = binder_get_txn_from_and_acq_inner(t); if (!from) { /* annotation for sparse */ __release(&from->proc->inner_lock); return; } /* don't override existing errors */ if (from->ee.command == BR_OK) binder_set_extended_error(&from->ee, id, command, param); binder_inner_proc_unlock(from->proc); binder_thread_dec_tmpref(from); } static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply, binder_size_t extra_buffers_size) { int ret; struct binder_transaction *t; struct binder_work *w; struct binder_work *tcomplete; binder_size_t buffer_offset = 0; binder_size_t off_start_offset, off_end_offset; binder_size_t off_min; binder_size_t sg_buf_offset, sg_buf_end_offset; binder_size_t user_offset = 0; struct binder_proc *target_proc = NULL; struct binder_thread *target_thread = NULL; struct binder_node *target_node = NULL; struct binder_transaction *in_reply_to = NULL; struct binder_transaction_log_entry *e; uint32_t return_error = 0; uint32_t return_error_param = 0; uint32_t return_error_line = 0; binder_size_t last_fixup_obj_off = 0; binder_size_t last_fixup_min_off = 0; struct binder_context *context = proc->context; int t_debug_id = atomic_inc_return(&binder_last_id); ktime_t t_start_time = ktime_get(); struct lsm_context lsmctx = { }; struct list_head sgc_head; struct list_head pf_head; const void __user *user_buffer = (const void __user *) (uintptr_t)tr->data.ptr.buffer; INIT_LIST_HEAD(&sgc_head); INIT_LIST_HEAD(&pf_head); e = binder_transaction_log_add(&binder_transaction_log); e->debug_id = t_debug_id; e->call_type = reply ? 2 : !!(tr->flags & TF_ONE_WAY); e->from_proc = proc->pid; e->from_thread = thread->pid; e->target_handle = tr->target.handle; e->data_size = tr->data_size; e->offsets_size = tr->offsets_size; strscpy(e->context_name, proc->context->name, BINDERFS_MAX_NAME); binder_inner_proc_lock(proc); binder_set_extended_error(&thread->ee, t_debug_id, BR_OK, 0); binder_inner_proc_unlock(proc); if (reply) { binder_inner_proc_lock(proc); in_reply_to = thread->transaction_stack; if (in_reply_to == NULL) { binder_inner_proc_unlock(proc); binder_user_error("%d:%d got reply transaction with no transaction stack\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EPROTO; return_error_line = __LINE__; goto err_empty_call_stack; } if (in_reply_to->to_thread != thread) { spin_lock(&in_reply_to->lock); binder_user_error("%d:%d got reply transaction with bad transaction stack, transaction %d has target %d:%d\n", proc->pid, thread->pid, in_reply_to->debug_id, in_reply_to->to_proc ? in_reply_to->to_proc->pid : 0, in_reply_to->to_thread ? in_reply_to->to_thread->pid : 0); spin_unlock(&in_reply_to->lock); binder_inner_proc_unlock(proc); return_error = BR_FAILED_REPLY; return_error_param = -EPROTO; return_error_line = __LINE__; in_reply_to = NULL; goto err_bad_call_stack; } thread->transaction_stack = in_reply_to->to_parent; binder_inner_proc_unlock(proc); binder_set_nice(in_reply_to->saved_priority); target_thread = binder_get_txn_from_and_acq_inner(in_reply_to); if (target_thread == NULL) { /* annotation for sparse */ __release(&target_thread->proc->inner_lock); binder_txn_error("%d:%d reply target not found\n", thread->pid, proc->pid); return_error = BR_DEAD_REPLY; return_error_line = __LINE__; goto err_dead_binder; } if (target_thread->transaction_stack != in_reply_to) { binder_user_error("%d:%d got reply transaction with bad target transaction stack %d, expected %d\n", proc->pid, thread->pid, target_thread->transaction_stack ? target_thread->transaction_stack->debug_id : 0, in_reply_to->debug_id); binder_inner_proc_unlock(target_thread->proc); return_error = BR_FAILED_REPLY; return_error_param = -EPROTO; return_error_line = __LINE__; in_reply_to = NULL; target_thread = NULL; goto err_dead_binder; } target_proc = target_thread->proc; target_proc->tmp_ref++; binder_inner_proc_unlock(target_thread->proc); } else { if (tr->target.handle) { struct binder_ref *ref; /* * There must already be a strong ref * on this node. If so, do a strong * increment on the node to ensure it * stays alive until the transaction is * done. */ binder_proc_lock(proc); ref = binder_get_ref_olocked(proc, tr->target.handle, true); if (ref) { target_node = binder_get_node_refs_for_txn( ref->node, &target_proc, &return_error); } else { binder_user_error("%d:%d got transaction to invalid handle, %u\n", proc->pid, thread->pid, tr->target.handle); return_error = BR_FAILED_REPLY; } binder_proc_unlock(proc); } else { mutex_lock(&context->context_mgr_node_lock); target_node = context->binder_context_mgr_node; if (target_node) target_node = binder_get_node_refs_for_txn( target_node, &target_proc, &return_error); else return_error = BR_DEAD_REPLY; mutex_unlock(&context->context_mgr_node_lock); if (target_node && target_proc->pid == proc->pid) { binder_user_error("%d:%d got transaction to context manager from process owning it\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_invalid_target_handle; } } if (!target_node) { binder_txn_error("%d:%d cannot find target node\n", thread->pid, proc->pid); /* * return_error is set above */ return_error_param = -EINVAL; return_error_line = __LINE__; goto err_dead_binder; } e->to_node = target_node->debug_id; if (WARN_ON(proc == target_proc)) { binder_txn_error("%d:%d self transactions not allowed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_invalid_target_handle; } if (security_binder_transaction(proc->cred, target_proc->cred) < 0) { binder_txn_error("%d:%d transaction credentials failed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = -EPERM; return_error_line = __LINE__; goto err_invalid_target_handle; } binder_inner_proc_lock(proc); w = list_first_entry_or_null(&thread->todo, struct binder_work, entry); if (!(tr->flags & TF_ONE_WAY) && w && w->type == BINDER_WORK_TRANSACTION) { /* * Do not allow new outgoing transaction from a * thread that has a transaction at the head of * its todo list. Only need to check the head * because binder_select_thread_ilocked picks a * thread from proc->waiting_threads to enqueue * the transaction, and nothing is queued to the * todo list while the thread is on waiting_threads. */ binder_user_error("%d:%d new transaction not allowed when there is a transaction on thread todo\n", proc->pid, thread->pid); binder_inner_proc_unlock(proc); return_error = BR_FAILED_REPLY; return_error_param = -EPROTO; return_error_line = __LINE__; goto err_bad_todo_list; } if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) { struct binder_transaction *tmp; tmp = thread->transaction_stack; if (tmp->to_thread != thread) { spin_lock(&tmp->lock); binder_user_error("%d:%d got new transaction with bad transaction stack, transaction %d has target %d:%d\n", proc->pid, thread->pid, tmp->debug_id, tmp->to_proc ? tmp->to_proc->pid : 0, tmp->to_thread ? tmp->to_thread->pid : 0); spin_unlock(&tmp->lock); binder_inner_proc_unlock(proc); return_error = BR_FAILED_REPLY; return_error_param = -EPROTO; return_error_line = __LINE__; goto err_bad_call_stack; } while (tmp) { struct binder_thread *from; spin_lock(&tmp->lock); from = tmp->from; if (from && from->proc == target_proc) { atomic_inc(&from->tmp_ref); target_thread = from; spin_unlock(&tmp->lock); break; } spin_unlock(&tmp->lock); tmp = tmp->from_parent; } } binder_inner_proc_unlock(proc); } if (target_thread) e->to_thread = target_thread->pid; e->to_proc = target_proc->pid; /* TODO: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) { binder_txn_error("%d:%d cannot allocate transaction\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = -ENOMEM; return_error_line = __LINE__; goto err_alloc_t_failed; } INIT_LIST_HEAD(&t->fd_fixups); binder_stats_created(BINDER_STAT_TRANSACTION); spin_lock_init(&t->lock); tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); if (tcomplete == NULL) { binder_txn_error("%d:%d cannot allocate work for transaction\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = -ENOMEM; return_error_line = __LINE__; goto err_alloc_tcomplete_failed; } binder_stats_created(BINDER_STAT_TRANSACTION_COMPLETE); t->debug_id = t_debug_id; t->start_time = t_start_time; if (reply) binder_debug(BINDER_DEBUG_TRANSACTION, "%d:%d BC_REPLY %d -> %d:%d, data %016llx-%016llx size %lld-%lld-%lld\n", proc->pid, thread->pid, t->debug_id, target_proc->pid, target_thread->pid, (u64)tr->data.ptr.buffer, (u64)tr->data.ptr.offsets, (u64)tr->data_size, (u64)tr->offsets_size, (u64)extra_buffers_size); else binder_debug(BINDER_DEBUG_TRANSACTION, "%d:%d BC_TRANSACTION %d -> %d - node %d, data %016llx-%016llx size %lld-%lld-%lld\n", proc->pid, thread->pid, t->debug_id, target_proc->pid, target_node->debug_id, (u64)tr->data.ptr.buffer, (u64)tr->data.ptr.offsets, (u64)tr->data_size, (u64)tr->offsets_size, (u64)extra_buffers_size); if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->from_pid = proc->pid; t->from_tid = thread->pid; t->sender_euid = task_euid(proc->tsk); t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); if (target_node && target_node->txn_security_ctx) { u32 secid; size_t added_size; security_cred_getsecid(proc->cred, &secid); ret = security_secid_to_secctx(secid, &lsmctx); if (ret < 0) { binder_txn_error("%d:%d failed to get security context\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = ret; return_error_line = __LINE__; goto err_get_secctx_failed; } added_size = ALIGN(lsmctx.len, sizeof(u64)); extra_buffers_size += added_size; if (extra_buffers_size < added_size) { binder_txn_error("%d:%d integer overflow of extra_buffers_size\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_extra_size; } } trace_binder_transaction(reply, t, target_node); t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size, tr->offsets_size, extra_buffers_size, !reply && (t->flags & TF_ONE_WAY)); if (IS_ERR(t->buffer)) { char *s; ret = PTR_ERR(t->buffer); s = (ret == -ESRCH) ? ": vma cleared, target dead or dying" : (ret == -ENOSPC) ? ": no space left" : (ret == -ENOMEM) ? ": memory allocation failed" : ""; binder_txn_error("cannot allocate buffer%s", s); return_error_param = PTR_ERR(t->buffer); return_error = return_error_param == -ESRCH ? BR_DEAD_REPLY : BR_FAILED_REPLY; return_error_line = __LINE__; t->buffer = NULL; goto err_binder_alloc_buf_failed; } if (lsmctx.context) { int err; size_t buf_offset = ALIGN(tr->data_size, sizeof(void *)) + ALIGN(tr->offsets_size, sizeof(void *)) + ALIGN(extra_buffers_size, sizeof(void *)) - ALIGN(lsmctx.len, sizeof(u64)); t->security_ctx = t->buffer->user_data + buf_offset; err = binder_alloc_copy_to_buffer(&target_proc->alloc, t->buffer, buf_offset, lsmctx.context, lsmctx.len); if (err) { t->security_ctx = 0; WARN_ON(1); } security_release_secctx(&lsmctx); lsmctx.context = NULL; } t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; t->buffer->clear_on_free = !!(t->flags & TF_CLEAR_BUF); trace_binder_transaction_alloc_buf(t->buffer); if (binder_alloc_copy_user_to_buffer( &target_proc->alloc, t->buffer, ALIGN(tr->data_size, sizeof(void *)), (const void __user *) (uintptr_t)tr->data.ptr.offsets, tr->offsets_size)) { binder_user_error("%d:%d got transaction with invalid offsets ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EFAULT; return_error_line = __LINE__; goto err_copy_data_failed; } if (!IS_ALIGNED(tr->offsets_size, sizeof(binder_size_t))) { binder_user_error("%d:%d got transaction with invalid offsets size, %lld\n", proc->pid, thread->pid, (u64)tr->offsets_size); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_offset; } if (!IS_ALIGNED(extra_buffers_size, sizeof(u64))) { binder_user_error("%d:%d got transaction with unaligned buffers size, %lld\n", proc->pid, thread->pid, (u64)extra_buffers_size); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_offset; } off_start_offset = ALIGN(tr->data_size, sizeof(void *)); buffer_offset = off_start_offset; off_end_offset = off_start_offset + tr->offsets_size; sg_buf_offset = ALIGN(off_end_offset, sizeof(void *)); sg_buf_end_offset = sg_buf_offset + extra_buffers_size - ALIGN(lsmctx.len, sizeof(u64)); off_min = 0; for (buffer_offset = off_start_offset; buffer_offset < off_end_offset; buffer_offset += sizeof(binder_size_t)) { struct binder_object_header *hdr; size_t object_size; struct binder_object object; binder_size_t object_offset; binder_size_t copy_size; if (binder_alloc_copy_from_buffer(&target_proc->alloc, &object_offset, t->buffer, buffer_offset, sizeof(object_offset))) { binder_txn_error("%d:%d copy offset from buffer failed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_offset; } /* * Copy the source user buffer up to the next object * that will be processed. */ copy_size = object_offset - user_offset; if (copy_size && (user_offset > object_offset || object_offset > tr->data_size || binder_alloc_copy_user_to_buffer( &target_proc->alloc, t->buffer, user_offset, user_buffer + user_offset, copy_size))) { binder_user_error("%d:%d got transaction with invalid data ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EFAULT; return_error_line = __LINE__; goto err_copy_data_failed; } object_size = binder_get_object(target_proc, user_buffer, t->buffer, object_offset, &object); if (object_size == 0 || object_offset < off_min) { binder_user_error("%d:%d got transaction with invalid offset (%lld, min %lld max %lld) or object.\n", proc->pid, thread->pid, (u64)object_offset, (u64)off_min, (u64)t->buffer->data_size); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_offset; } /* * Set offset to the next buffer fragment to be * copied */ user_offset = object_offset + object_size; hdr = &object.hdr; off_min = object_offset + object_size; switch (hdr->type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: { struct flat_binder_object *fp; fp = to_flat_binder_object(hdr); ret = binder_translate_binder(fp, t, thread); if (ret < 0 || binder_alloc_copy_to_buffer(&target_proc->alloc, t->buffer, object_offset, fp, sizeof(*fp))) { binder_txn_error("%d:%d translate binder failed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = ret; return_error_line = __LINE__; goto err_translate_failed; } } break; case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { struct flat_binder_object *fp; fp = to_flat_binder_object(hdr); ret = binder_translate_handle(fp, t, thread); if (ret < 0 || binder_alloc_copy_to_buffer(&target_proc->alloc, t->buffer, object_offset, fp, sizeof(*fp))) { binder_txn_error("%d:%d translate handle failed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = ret; return_error_line = __LINE__; goto err_translate_failed; } } break; case BINDER_TYPE_FD: { struct binder_fd_object *fp = to_binder_fd_object(hdr); binder_size_t fd_offset = object_offset + (uintptr_t)&fp->fd - (uintptr_t)fp; int ret = binder_translate_fd(fp->fd, fd_offset, t, thread, in_reply_to); fp->pad_binder = 0; if (ret < 0 || binder_alloc_copy_to_buffer(&target_proc->alloc, t->buffer, object_offset, fp, sizeof(*fp))) { binder_txn_error("%d:%d translate fd failed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = ret; return_error_line = __LINE__; goto err_translate_failed; } } break; case BINDER_TYPE_FDA: { struct binder_object ptr_object; binder_size_t parent_offset; struct binder_object user_object; size_t user_parent_size; struct binder_fd_array_object *fda = to_binder_fd_array_object(hdr); size_t num_valid = (buffer_offset - off_start_offset) / sizeof(binder_size_t); struct binder_buffer_object *parent = binder_validate_ptr(target_proc, t->buffer, &ptr_object, fda->parent, off_start_offset, &parent_offset, num_valid); if (!parent) { binder_user_error("%d:%d got transaction with invalid parent offset or type\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_parent; } if (!binder_validate_fixup(target_proc, t->buffer, off_start_offset, parent_offset, fda->parent_offset, last_fixup_obj_off, last_fixup_min_off)) { binder_user_error("%d:%d got transaction with out-of-order buffer fixup\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_parent; } /* * We need to read the user version of the parent * object to get the original user offset */ user_parent_size = binder_get_object(proc, user_buffer, t->buffer, parent_offset, &user_object); if (user_parent_size != sizeof(user_object.bbo)) { binder_user_error("%d:%d invalid ptr object size: %zd vs %zd\n", proc->pid, thread->pid, user_parent_size, sizeof(user_object.bbo)); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_parent; } ret = binder_translate_fd_array(&pf_head, fda, user_buffer, parent, &user_object.bbo, t, thread, in_reply_to); if (!ret) ret = binder_alloc_copy_to_buffer(&target_proc->alloc, t->buffer, object_offset, fda, sizeof(*fda)); if (ret) { binder_txn_error("%d:%d translate fd array failed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = ret > 0 ? -EINVAL : ret; return_error_line = __LINE__; goto err_translate_failed; } last_fixup_obj_off = parent_offset; last_fixup_min_off = fda->parent_offset + sizeof(u32) * fda->num_fds; } break; case BINDER_TYPE_PTR: { struct binder_buffer_object *bp = to_binder_buffer_object(hdr); size_t buf_left = sg_buf_end_offset - sg_buf_offset; size_t num_valid; if (bp->length > buf_left) { binder_user_error("%d:%d got transaction with too large buffer\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_offset; } ret = binder_defer_copy(&sgc_head, sg_buf_offset, (const void __user *)(uintptr_t)bp->buffer, bp->length); if (ret) { binder_txn_error("%d:%d deferred copy failed\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = ret; return_error_line = __LINE__; goto err_translate_failed; } /* Fixup buffer pointer to target proc address space */ bp->buffer = t->buffer->user_data + sg_buf_offset; sg_buf_offset += ALIGN(bp->length, sizeof(u64)); num_valid = (buffer_offset - off_start_offset) / sizeof(binder_size_t); ret = binder_fixup_parent(&pf_head, t, thread, bp, off_start_offset, num_valid, last_fixup_obj_off, last_fixup_min_off); if (ret < 0 || binder_alloc_copy_to_buffer(&target_proc->alloc, t->buffer, object_offset, bp, sizeof(*bp))) { binder_txn_error("%d:%d failed to fixup parent\n", thread->pid, proc->pid); return_error = BR_FAILED_REPLY; return_error_param = ret; return_error_line = __LINE__; goto err_translate_failed; } last_fixup_obj_off = object_offset; last_fixup_min_off = 0; } break; default: binder_user_error("%d:%d got transaction with invalid object type, %x\n", proc->pid, thread->pid, hdr->type); return_error = BR_FAILED_REPLY; return_error_param = -EINVAL; return_error_line = __LINE__; goto err_bad_object_type; } } /* Done processing objects, copy the rest of the buffer */ if (binder_alloc_copy_user_to_buffer( &target_proc->alloc, t->buffer, user_offset, user_buffer + user_offset, tr->data_size - user_offset)) { binder_user_error("%d:%d got transaction with invalid data ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = -EFAULT; return_error_line = __LINE__; goto err_copy_data_failed; } ret = binder_do_deferred_txn_copies(&target_proc->alloc, t->buffer, &sgc_head, &pf_head); if (ret) { binder_user_error("%d:%d got transaction with invalid offsets ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; return_error_param = ret; return_error_line = __LINE__; goto err_copy_data_failed; } if (t->buffer->oneway_spam_suspect) tcomplete->type = BINDER_WORK_TRANSACTION_ONEWAY_SPAM_SUSPECT; else tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; t->work.type = BINDER_WORK_TRANSACTION; if (reply) { binder_enqueue_thread_work(thread, tcomplete); binder_inner_proc_lock(target_proc); if (target_thread->is_dead) { return_error = BR_DEAD_REPLY; binder_inner_proc_unlock(target_proc); goto err_dead_proc_or_thread; } BUG_ON(t->buffer->async_transaction != 0); binder_pop_transaction_ilocked(target_thread, in_reply_to); binder_enqueue_thread_work_ilocked(target_thread, &t->work); target_proc->outstanding_txns++; binder_inner_proc_unlock(target_proc); wake_up_interruptible_sync(&target_thread->wait); binder_free_transaction(in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) { BUG_ON(t->buffer->async_transaction != 0); binder_inner_proc_lock(proc); /* * Defer the TRANSACTION_COMPLETE, so we don't return to * userspace immediately; this allows the target process to * immediately start processing this transaction, reducing * latency. We will then return the TRANSACTION_COMPLETE when * the target replies (or there is an error). */ binder_enqueue_deferred_thread_work_ilocked(thread, tcomplete); t->need_reply = 1; t->from_parent = thread->transaction_stack; thread->transaction_stack = t; binder_inner_proc_unlock(proc); return_error = binder_proc_transaction(t, target_proc, target_thread); if (return_error) { binder_inner_proc_lock(proc); binder_pop_transaction_ilocked(thread, t); binder_inner_proc_unlock(proc); goto err_dead_proc_or_thread; } } else { BUG_ON(target_node == NULL); BUG_ON(t->buffer->async_transaction != 1); return_error = binder_proc_transaction(t, target_proc, NULL); /* * Let the caller know when async transaction reaches a frozen * process and is put in a pending queue, waiting for the target * process to be unfrozen. */ if (return_error == BR_TRANSACTION_PENDING_FROZEN) tcomplete->type = BINDER_WORK_TRANSACTION_PENDING; binder_enqueue_thread_work(thread, tcomplete); if (return_error && return_error != BR_TRANSACTION_PENDING_FROZEN) goto err_dead_proc_or_thread; } if (target_thread) binder_thread_dec_tmpref(target_thread); binder_proc_dec_tmpref(target_proc); if (target_node) binder_dec_node_tmpref(target_node); /* * write barrier to synchronize with initialization * of log entry */ smp_wmb(); WRITE_ONCE(e->debug_id_done, t_debug_id); return; err_dead_proc_or_thread: binder_txn_error("%d:%d dead process or thread\n", thread->pid, proc->pid); return_error_line = __LINE__; binder_dequeue_work(proc, tcomplete); err_translate_failed: err_bad_object_type: err_bad_offset: err_bad_parent: err_copy_data_failed: binder_cleanup_deferred_txn_lists(&sgc_head, &pf_head); binder_free_txn_fixups(t); trace_binder_transaction_failed_buffer_release(t->buffer); binder_transaction_buffer_release(target_proc, NULL, t->buffer, buffer_offset, true); if (target_node) binder_dec_node_tmpref(target_node); target_node = NULL; t->buffer->transaction = NULL; binder_alloc_free_buf(&target_proc->alloc, t->buffer); err_binder_alloc_buf_failed: err_bad_extra_size: if (lsmctx.context) security_release_secctx(&lsmctx); err_get_secctx_failed: kfree(tcomplete); binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE); err_alloc_tcomplete_failed: if (trace_binder_txn_latency_free_enabled()) binder_txn_latency_free(t); kfree(t); binder_stats_deleted(BINDER_STAT_TRANSACTION); err_alloc_t_failed: err_bad_todo_list: err_bad_call_stack: err_empty_call_stack: err_dead_binder: err_invalid_target_handle: if (target_node) { binder_dec_node(target_node, 1, 0); binder_dec_node_tmpref(target_node); } binder_debug(BINDER_DEBUG_FAILED_TRANSACTION, "%d:%d transaction %s to %d:%d failed %d/%d/%d, code %u size %lld-%lld line %d\n", proc->pid, thread->pid, reply ? "reply" : (tr->flags & TF_ONE_WAY ? "async" : "call"), target_proc ? target_proc->pid : 0, target_thread ? target_thread->pid : 0, t_debug_id, return_error, return_error_param, tr->code, (u64)tr->data_size, (u64)tr->offsets_size, return_error_line); if (target_thread) binder_thread_dec_tmpref(target_thread); if (target_proc) binder_proc_dec_tmpref(target_proc); { struct binder_transaction_log_entry *fe; e->return_error = return_error; e->return_error_param = return_error_param; e->return_error_line = return_error_line; fe = binder_transaction_log_add(&binder_transaction_log_failed); *fe = *e; /* * write barrier to synchronize with initialization * of log entry */ smp_wmb(); WRITE_ONCE(e->debug_id_done, t_debug_id); WRITE_ONCE(fe->debug_id_done, t_debug_id); } BUG_ON(thread->return_error.cmd != BR_OK); if (in_reply_to) { binder_set_txn_from_error(in_reply_to, t_debug_id, return_error, return_error_param); thread->return_error.cmd = BR_TRANSACTION_COMPLETE; binder_enqueue_thread_work(thread, &thread->return_error.work); binder_send_failed_reply(in_reply_to, return_error); } else { binder_inner_proc_lock(proc); binder_set_extended_error(&thread->ee, t_debug_id, return_error, return_error_param); binder_inner_proc_unlock(proc); thread->return_error.cmd = return_error; binder_enqueue_thread_work(thread, &thread->return_error.work); } } static int binder_request_freeze_notification(struct binder_proc *proc, struct binder_thread *thread, struct binder_handle_cookie *handle_cookie) { struct binder_ref_freeze *freeze; struct binder_ref *ref; freeze = kzalloc(sizeof(*freeze), GFP_KERNEL); if (!freeze) return -ENOMEM; binder_proc_lock(proc); ref = binder_get_ref_olocked(proc, handle_cookie->handle, false); if (!ref) { binder_user_error("%d:%d BC_REQUEST_FREEZE_NOTIFICATION invalid ref %d\n", proc->pid, thread->pid, handle_cookie->handle); binder_proc_unlock(proc); kfree(freeze); return -EINVAL; } binder_node_lock(ref->node); if (ref->freeze) { binder_user_error("%d:%d BC_REQUEST_FREEZE_NOTIFICATION already set\n", proc->pid, thread->pid); binder_node_unlock(ref->node); binder_proc_unlock(proc); kfree(freeze); return -EINVAL; } binder_stats_created(BINDER_STAT_FREEZE); INIT_LIST_HEAD(&freeze->work.entry); freeze->cookie = handle_cookie->cookie; freeze->work.type = BINDER_WORK_FROZEN_BINDER; ref->freeze = freeze; if (ref->node->proc) { binder_inner_proc_lock(ref->node->proc); freeze->is_frozen = ref->node->proc->is_frozen; binder_inner_proc_unlock(ref->node->proc); binder_inner_proc_lock(proc); binder_enqueue_work_ilocked(&freeze->work, &proc->todo); binder_wakeup_proc_ilocked(proc); binder_inner_proc_unlock(proc); } binder_node_unlock(ref->node); binder_proc_unlock(proc); return 0; } static int binder_clear_freeze_notification(struct binder_proc *proc, struct binder_thread *thread, struct binder_handle_cookie *handle_cookie) { struct binder_ref_freeze *freeze; struct binder_ref *ref; binder_proc_lock(proc); ref = binder_get_ref_olocked(proc, handle_cookie->handle, false); if (!ref) { binder_user_error("%d:%d BC_CLEAR_FREEZE_NOTIFICATION invalid ref %d\n", proc->pid, thread->pid, handle_cookie->handle); binder_proc_unlock(proc); return -EINVAL; } binder_node_lock(ref->node); if (!ref->freeze) { binder_user_error("%d:%d BC_CLEAR_FREEZE_NOTIFICATION freeze notification not active\n", proc->pid, thread->pid); binder_node_unlock(ref->node); binder_proc_unlock(proc); return -EINVAL; } freeze = ref->freeze; binder_inner_proc_lock(proc); if (freeze->cookie != handle_cookie->cookie) { binder_user_error("%d:%d BC_CLEAR_FREEZE_NOTIFICATION freeze notification cookie mismatch %016llx != %016llx\n", proc->pid, thread->pid, (u64)freeze->cookie, (u64)handle_cookie->cookie); binder_inner_proc_unlock(proc); binder_node_unlock(ref->node); binder_proc_unlock(proc); return -EINVAL; } ref->freeze = NULL; /* * Take the existing freeze object and overwrite its work type. There are three cases here: * 1. No pending notification. In this case just add the work to the queue. * 2. A notification was sent and is pending an ack from userspace. Once an ack arrives, we * should resend with the new work type. * 3. A notification is pending to be sent. Since the work is already in the queue, nothing * needs to be done here. */ freeze->work.type = BINDER_WORK_CLEAR_FREEZE_NOTIFICATION; if (list_empty(&freeze->work.entry)) { binder_enqueue_work_ilocked(&freeze->work, &proc->todo); binder_wakeup_proc_ilocked(proc); } else if (freeze->sent) { freeze->resend = true; } binder_inner_proc_unlock(proc); binder_node_unlock(ref->node); binder_proc_unlock(proc); return 0; } static int binder_freeze_notification_done(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t cookie) { struct binder_ref_freeze *freeze = NULL; struct binder_work *w; binder_inner_proc_lock(proc); list_for_each_entry(w, &proc->delivered_freeze, entry) { struct binder_ref_freeze *tmp_freeze = container_of(w, struct binder_ref_freeze, work); if (tmp_freeze->cookie == cookie) { freeze = tmp_freeze; break; } } if (!freeze) { binder_user_error("%d:%d BC_FREEZE_NOTIFICATION_DONE %016llx not found\n", proc->pid, thread->pid, (u64)cookie); binder_inner_proc_unlock(proc); return -EINVAL; } binder_dequeue_work_ilocked(&freeze->work); freeze->sent = false; if (freeze->resend) { freeze->resend = false; binder_enqueue_work_ilocked(&freeze->work, &proc->todo); binder_wakeup_proc_ilocked(proc); } binder_inner_proc_unlock(proc); return 0; } /** * binder_free_buf() - free the specified buffer * @proc: binder proc that owns buffer * @buffer: buffer to be freed * @is_failure: failed to send transaction * * If buffer for an async transaction, enqueue the next async * transaction from the node. * * Cleanup buffer and free it. */ static void binder_free_buf(struct binder_proc *proc, struct binder_thread *thread, struct binder_buffer *buffer, bool is_failure) { binder_inner_proc_lock(proc); if (buffer->transaction) { buffer->transaction->buffer = NULL; buffer->transaction = NULL; } binder_inner_proc_unlock(proc); if (buffer->async_transaction && buffer->target_node) { struct binder_node *buf_node; struct binder_work *w; buf_node = buffer->target_node; binder_node_inner_lock(buf_node); BUG_ON(!buf_node->has_async_transaction); BUG_ON(buf_node->proc != proc); w = binder_dequeue_work_head_ilocked( &buf_node->async_todo); if (!w) { buf_node->has_async_transaction = false; } else { binder_enqueue_work_ilocked( w, &proc->todo); binder_wakeup_proc_ilocked(proc); } binder_node_inner_unlock(buf_node); } trace_binder_transaction_buffer_release(buffer); binder_release_entire_buffer(proc, thread, buffer, is_failure); binder_alloc_free_buf(&proc->alloc, buffer); } static int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed) { uint32_t cmd; struct binder_context *context = proc->context; void __user *buffer = (void __user *)(uintptr_t)binder_buffer; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error.cmd == BR_OK) { int ret; if (get_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); trace_binder_command(cmd); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { atomic_inc(&binder_stats.bc[_IOC_NR(cmd)]); atomic_inc(&proc->stats.bc[_IOC_NR(cmd)]); atomic_inc(&thread->stats.bc[_IOC_NR(cmd)]); } switch (cmd) { case BC_INCREFS: case BC_ACQUIRE: case BC_RELEASE: case BC_DECREFS: { uint32_t target; const char *debug_string; bool strong = cmd == BC_ACQUIRE || cmd == BC_RELEASE; bool increment = cmd == BC_INCREFS || cmd == BC_ACQUIRE; struct binder_ref_data rdata; if (get_user(target, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); ret = -1; if (increment && !target) { struct binder_node *ctx_mgr_node; mutex_lock(&context->context_mgr_node_lock); ctx_mgr_node = context->binder_context_mgr_node; if (ctx_mgr_node) { if (ctx_mgr_node->proc == proc) { binder_user_error("%d:%d context manager tried to acquire desc 0\n", proc->pid, thread->pid); mutex_unlock(&context->context_mgr_node_lock); return -EINVAL; } ret = binder_inc_ref_for_node( proc, ctx_mgr_node, strong, NULL, &rdata); } mutex_unlock(&context->context_mgr_node_lock); } if (ret) ret = binder_update_ref_for_handle( proc, target, increment, strong, &rdata); if (!ret && rdata.desc != target) { binder_user_error("%d:%d tried to acquire reference to desc %d, got %d instead\n", proc->pid, thread->pid, target, rdata.desc); } switch (cmd) { case BC_INCREFS: debug_string = "IncRefs"; break; case BC_ACQUIRE: debug_string = "Acquire"; break; case BC_RELEASE: debug_string = "Release"; break; case BC_DECREFS: default: debug_string = "DecRefs"; break; } if (ret) { binder_user_error("%d:%d %s %d refcount change on invalid ref %d ret %d\n", proc->pid, thread->pid, debug_string, strong, target, ret); break; } binder_debug(BINDER_DEBUG_USER_REFS, "%d:%d %s ref %d desc %d s %d w %d\n", proc->pid, thread->pid, debug_string, rdata.debug_id, rdata.desc, rdata.strong, rdata.weak); break; } case BC_INCREFS_DONE: case BC_ACQUIRE_DONE: { binder_uintptr_t node_ptr; binder_uintptr_t cookie; struct binder_node *node; bool free_node; if (get_user(node_ptr, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); if (get_user(cookie, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); node = binder_get_node(proc, node_ptr); if (node == NULL) { binder_user_error("%d:%d %s u%016llx no match\n", proc->pid, thread->pid, cmd == BC_INCREFS_DONE ? "BC_INCREFS_DONE" : "BC_ACQUIRE_DONE", (u64)node_ptr); break; } if (cookie != node->cookie) { binder_user_error("%d:%d %s u%016llx node %d cookie mismatch %016llx != %016llx\n", proc->pid, thread->pid, cmd == BC_INCREFS_DONE ? "BC_INCREFS_DONE" : "BC_ACQUIRE_DONE", (u64)node_ptr, node->debug_id, (u64)cookie, (u64)node->cookie); binder_put_node(node); break; } binder_node_inner_lock(node); if (cmd == BC_ACQUIRE_DONE) { if (node->pending_strong_ref == 0) { binder_user_error("%d:%d BC_ACQUIRE_DONE node %d has no pending acquire request\n", proc->pid, thread->pid, node->debug_id); binder_node_inner_unlock(node); binder_put_node(node); break; } node->pending_strong_ref = 0; } else { if (node->pending_weak_ref == 0) { binder_user_error("%d:%d BC_INCREFS_DONE node %d has no pending increfs request\n", proc->pid, thread->pid, node->debug_id); binder_node_inner_unlock(node); binder_put_node(node); break; } node->pending_weak_ref = 0; } free_node = binder_dec_node_nilocked(node, cmd == BC_ACQUIRE_DONE, 0); WARN_ON(free_node); binder_debug(BINDER_DEBUG_USER_REFS, "%d:%d %s node %d ls %d lw %d tr %d\n", proc->pid, thread->pid, cmd == BC_INCREFS_DONE ? "BC_INCREFS_DONE" : "BC_ACQUIRE_DONE", node->debug_id, node->local_strong_refs, node->local_weak_refs, node->tmp_refs); binder_node_inner_unlock(node); binder_put_node(node); break; } case BC_ATTEMPT_ACQUIRE: pr_err("BC_ATTEMPT_ACQUIRE not supported\n"); return -EINVAL; case BC_ACQUIRE_RESULT: pr_err("BC_ACQUIRE_RESULT not supported\n"); return -EINVAL; case BC_FREE_BUFFER: { binder_uintptr_t data_ptr; struct binder_buffer *buffer; if (get_user(data_ptr, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); buffer = binder_alloc_prepare_to_free(&proc->alloc, data_ptr); if (IS_ERR_OR_NULL(buffer)) { if (PTR_ERR(buffer) == -EPERM) { binder_user_error( "%d:%d BC_FREE_BUFFER u%016llx matched unreturned or currently freeing buffer\n", proc->pid, thread->pid, (u64)data_ptr); } else { binder_user_error( "%d:%d BC_FREE_BUFFER u%016llx no match\n", proc->pid, thread->pid, (u64)data_ptr); } break; } binder_debug(BINDER_DEBUG_FREE_BUFFER, "%d:%d BC_FREE_BUFFER u%016llx found buffer %d for %s transaction\n", proc->pid, thread->pid, (u64)data_ptr, buffer->debug_id, buffer->transaction ? "active" : "finished"); binder_free_buf(proc, thread, buffer, false); break; } case BC_TRANSACTION_SG: case BC_REPLY_SG: { struct binder_transaction_data_sg tr; if (copy_from_user(&tr, ptr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); binder_transaction(proc, thread, &tr.transaction_data, cmd == BC_REPLY_SG, tr.buffers_size); break; } case BC_TRANSACTION: case BC_REPLY: { struct binder_transaction_data tr; if (copy_from_user(&tr, ptr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); binder_transaction(proc, thread, &tr, cmd == BC_REPLY, 0); break; } case BC_REGISTER_LOOPER: binder_debug(BINDER_DEBUG_THREADS, "%d:%d BC_REGISTER_LOOPER\n", proc->pid, thread->pid); binder_inner_proc_lock(proc); if (thread->looper & BINDER_LOOPER_STATE_ENTERED) { thread->looper |= BINDER_LOOPER_STATE_INVALID; binder_user_error("%d:%d ERROR: BC_REGISTER_LOOPER called after BC_ENTER_LOOPER\n", proc->pid, thread->pid); } else if (proc->requested_threads == 0) { thread->looper |= BINDER_LOOPER_STATE_INVALID; binder_user_error("%d:%d ERROR: BC_REGISTER_LOOPER called without request\n", proc->pid, thread->pid); } else { proc->requested_threads--; proc->requested_threads_started++; } thread->looper |= BINDER_LOOPER_STATE_REGISTERED; binder_inner_proc_unlock(proc); break; case BC_ENTER_LOOPER: binder_debug(BINDER_DEBUG_THREADS, "%d:%d BC_ENTER_LOOPER\n", proc->pid, thread->pid); if (thread->looper & BINDER_LOOPER_STATE_REGISTERED) { thread->looper |= BINDER_LOOPER_STATE_INVALID; binder_user_error("%d:%d ERROR: BC_ENTER_LOOPER called after BC_REGISTER_LOOPER\n", proc->pid, thread->pid); } thread->looper |= BINDER_LOOPER_STATE_ENTERED; break; case BC_EXIT_LOOPER: binder_debug(BINDER_DEBUG_THREADS, "%d:%d BC_EXIT_LOOPER\n", proc->pid, thread->pid); thread->looper |= BINDER_LOOPER_STATE_EXITED; break; case BC_REQUEST_DEATH_NOTIFICATION: case BC_CLEAR_DEATH_NOTIFICATION: { uint32_t target; binder_uintptr_t cookie; struct binder_ref *ref; struct binder_ref_death *death = NULL; if (get_user(target, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (get_user(cookie, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); if (cmd == BC_REQUEST_DEATH_NOTIFICATION) { /* * Allocate memory for death notification * before taking lock */ death = kzalloc(sizeof(*death), GFP_KERNEL); if (death == NULL) { WARN_ON(thread->return_error.cmd != BR_OK); thread->return_error.cmd = BR_ERROR; binder_enqueue_thread_work( thread, &thread->return_error.work); binder_debug( BINDER_DEBUG_FAILED_TRANSACTION, "%d:%d BC_REQUEST_DEATH_NOTIFICATION failed\n", proc->pid, thread->pid); break; } } binder_proc_lock(proc); ref = binder_get_ref_olocked(proc, target, false); if (ref == NULL) { binder_user_error("%d:%d %s invalid ref %d\n", proc->pid, thread->pid, cmd == BC_REQUEST_DEATH_NOTIFICATION ? "BC_REQUEST_DEATH_NOTIFICATION" : "BC_CLEAR_DEATH_NOTIFICATION", target); binder_proc_unlock(proc); kfree(death); break; } binder_debug(BINDER_DEBUG_DEATH_NOTIFICATION, "%d:%d %s %016llx ref %d desc %d s %d w %d for node %d\n", proc->pid, thread->pid, cmd == BC_REQUEST_DEATH_NOTIFICATION ? "BC_REQUEST_DEATH_NOTIFICATION" : "BC_CLEAR_DEATH_NOTIFICATION", (u64)cookie, ref->data.debug_id, ref->data.desc, ref->data.strong, ref->data.weak, ref->node->debug_id); binder_node_lock(ref->node); if (cmd == BC_REQUEST_DEATH_NOTIFICATION) { if (ref->death) { binder_user_error("%d:%d BC_REQUEST_DEATH_NOTIFICATION death notification already set\n", proc->pid, thread->pid); binder_node_unlock(ref->node); binder_proc_unlock(proc); kfree(death); break; } binder_stats_created(BINDER_STAT_DEATH); INIT_LIST_HEAD(&death->work.entry); death->cookie = cookie; ref->death = death; if (ref->node->proc == NULL) { ref->death->work.type = BINDER_WORK_DEAD_BINDER; binder_inner_proc_lock(proc); binder_enqueue_work_ilocked( &ref->death->work, &proc->todo); binder_wakeup_proc_ilocked(proc); binder_inner_proc_unlock(proc); } } else { if (ref->death == NULL) { binder_user_error("%d:%d BC_CLEAR_DEATH_NOTIFICATION death notification not active\n", proc->pid, thread->pid); binder_node_unlock(ref->node); binder_proc_unlock(proc); break; } death = ref->death; if (death->cookie != cookie) { binder_user_error("%d:%d BC_CLEAR_DEATH_NOTIFICATION death notification cookie mismatch %016llx != %016llx\n", proc->pid, thread->pid, (u64)death->cookie, (u64)cookie); binder_node_unlock(ref->node); binder_proc_unlock(proc); break; } ref->death = NULL; binder_inner_proc_lock(proc); if (list_empty(&death->work.entry)) { death->work.type = BINDER_WORK_CLEAR_DEATH_NOTIFICATION; if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) binder_enqueue_thread_work_ilocked( thread, &death->work); else { binder_enqueue_work_ilocked( &death->work, &proc->todo); binder_wakeup_proc_ilocked( proc); } } else { BUG_ON(death->work.type != BINDER_WORK_DEAD_BINDER); death->work.type = BINDER_WORK_DEAD_BINDER_AND_CLEAR; } binder_inner_proc_unlock(proc); } binder_node_unlock(ref->node); binder_proc_unlock(proc); } break; case BC_DEAD_BINDER_DONE: { struct binder_work *w; binder_uintptr_t cookie; struct binder_ref_death *death = NULL; if (get_user(cookie, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(cookie); binder_inner_proc_lock(proc); list_for_each_entry(w, &proc->delivered_death, entry) { struct binder_ref_death *tmp_death = container_of(w, struct binder_ref_death, work); if (tmp_death->cookie == cookie) { death = tmp_death; break; } } binder_debug(BINDER_DEBUG_DEAD_BINDER, "%d:%d BC_DEAD_BINDER_DONE %016llx found %pK\n", proc->pid, thread->pid, (u64)cookie, death); if (death == NULL) { binder_user_error("%d:%d BC_DEAD_BINDER_DONE %016llx not found\n", proc->pid, thread->pid, (u64)cookie); binder_inner_proc_unlock(proc); break; } binder_dequeue_work_ilocked(&death->work); if (death->work.type == BINDER_WORK_DEAD_BINDER_AND_CLEAR) { death->work.type = BINDER_WORK_CLEAR_DEATH_NOTIFICATION; if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) binder_enqueue_thread_work_ilocked( thread, &death->work); else { binder_enqueue_work_ilocked( &death->work, &proc->todo); binder_wakeup_proc_ilocked(proc); } } binder_inner_proc_unlock(proc); } break; case BC_REQUEST_FREEZE_NOTIFICATION: { struct binder_handle_cookie handle_cookie; int error; if (copy_from_user(&handle_cookie, ptr, sizeof(handle_cookie))) return -EFAULT; ptr += sizeof(handle_cookie); error = binder_request_freeze_notification(proc, thread, &handle_cookie); if (error) return error; } break; case BC_CLEAR_FREEZE_NOTIFICATION: { struct binder_handle_cookie handle_cookie; int error; if (copy_from_user(&handle_cookie, ptr, sizeof(handle_cookie))) return -EFAULT; ptr += sizeof(handle_cookie); error = binder_clear_freeze_notification(proc, thread, &handle_cookie); if (error) return error; } break; case BC_FREEZE_NOTIFICATION_DONE: { binder_uintptr_t cookie; int error; if (get_user(cookie, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(cookie); error = binder_freeze_notification_done(proc, thread, cookie); if (error) return error; } break; default: pr_err("%d:%d unknown command %u\n", proc->pid, thread->pid, cmd); return -EINVAL; } *consumed = ptr - buffer; } return 0; } static void binder_stat_br(struct binder_proc *proc, struct binder_thread *thread, uint32_t cmd) { trace_binder_return(cmd); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.br)) { atomic_inc(&binder_stats.br[_IOC_NR(cmd)]); atomic_inc(&proc->stats.br[_IOC_NR(cmd)]); atomic_inc(&thread->stats.br[_IOC_NR(cmd)]); } } static int binder_put_node_cmd(struct binder_proc *proc, struct binder_thread *thread, void __user **ptrp, binder_uintptr_t node_ptr, binder_uintptr_t node_cookie, int node_debug_id, uint32_t cmd, const char *cmd_name) { void __user *ptr = *ptrp; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (put_user(node_ptr, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); if (put_user(node_cookie, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); binder_stat_br(proc, thread, cmd); binder_debug(BINDER_DEBUG_USER_REFS, "%d:%d %s %d u%016llx c%016llx\n", proc->pid, thread->pid, cmd_name, node_debug_id, (u64)node_ptr, (u64)node_cookie); *ptrp = ptr; return 0; } static int binder_wait_for_work(struct binder_thread *thread, bool do_proc_work) { DEFINE_WAIT(wait); struct binder_proc *proc = thread->proc; int ret = 0; binder_inner_proc_lock(proc); for (;;) { prepare_to_wait(&thread->wait, &wait, TASK_INTERRUPTIBLE|TASK_FREEZABLE); if (binder_has_work_ilocked(thread, do_proc_work)) break; if (do_proc_work) list_add(&thread->waiting_thread_node, &proc->waiting_threads); binder_inner_proc_unlock(proc); schedule(); binder_inner_proc_lock(proc); list_del_init(&thread->waiting_thread_node); if (signal_pending(current)) { ret = -EINTR; break; } } finish_wait(&thread->wait, &wait); binder_inner_proc_unlock(proc); return ret; } /** * binder_apply_fd_fixups() - finish fd translation * @proc: binder_proc associated @t->buffer * @t: binder transaction with list of fd fixups * * Now that we are in the context of the transaction target * process, we can allocate and install fds. Process the * list of fds to translate and fixup the buffer with the * new fds first and only then install the files. * * If we fail to allocate an fd, skip the install and release * any fds that have already been allocated. */ static int binder_apply_fd_fixups(struct binder_proc *proc, struct binder_transaction *t) { struct binder_txn_fd_fixup *fixup, *tmp; int ret = 0; list_for_each_entry(fixup, &t->fd_fixups, fixup_entry) { int fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) { binder_debug(BINDER_DEBUG_TRANSACTION, "failed fd fixup txn %d fd %d\n", t->debug_id, fd); ret = -ENOMEM; goto err; } binder_debug(BINDER_DEBUG_TRANSACTION, "fd fixup txn %d fd %d\n", t->debug_id, fd); trace_binder_transaction_fd_recv(t, fd, fixup->offset); fixup->target_fd = fd; if (binder_alloc_copy_to_buffer(&proc->alloc, t->buffer, fixup->offset, &fd, sizeof(u32))) { ret = -EINVAL; goto err; } } list_for_each_entry_safe(fixup, tmp, &t->fd_fixups, fixup_entry) { fd_install(fixup->target_fd, fixup->file); list_del(&fixup->fixup_entry); kfree(fixup); } return ret; err: binder_free_txn_fixups(t); return ret; } static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed, int non_block) { void __user *buffer = (void __user *)(uintptr_t)binder_buffer; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: binder_inner_proc_lock(proc); wait_for_proc_work = binder_available_for_proc_work_ilocked(thread); binder_inner_proc_unlock(proc); thread->looper |= BINDER_LOOPER_STATE_WAITING; trace_binder_wait_for_work(wait_for_proc_work, !!thread->transaction_stack, !binder_worklist_empty(proc, &thread->todo)); if (wait_for_proc_work) { if (!(thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED))) { binder_user_error("%d:%d ERROR: Thread waiting for process work before calling BC_REGISTER_LOOPER or BC_ENTER_LOOPER (state %x)\n", proc->pid, thread->pid, thread->looper); wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); } binder_set_nice(proc->default_priority); } if (non_block) { if (!binder_has_work(thread, wait_for_proc_work)) ret = -EAGAIN; } else { ret = binder_wait_for_work(thread, wait_for_proc_work); } thread->looper &= ~BINDER_LOOPER_STATE_WAITING; if (ret) return ret; while (1) { uint32_t cmd; struct binder_transaction_data_secctx tr; struct binder_transaction_data *trd = &tr.transaction_data; struct binder_work *w = NULL; struct list_head *list = NULL; struct binder_transaction *t = NULL; struct binder_thread *t_from; size_t trsize = sizeof(*trd); binder_inner_proc_lock(proc); if (!binder_worklist_empty_ilocked(&thread->todo)) list = &thread->todo; else if (!binder_worklist_empty_ilocked(&proc->todo) && wait_for_proc_work) list = &proc->todo; else { binder_inner_proc_unlock(proc); /* no data added */ if (ptr - buffer == 4 && !thread->looper_need_return) goto retry; break; } if (end - ptr < sizeof(tr) + 4) { binder_inner_proc_unlock(proc); break; } w = binder_dequeue_work_head_ilocked(list); if (binder_worklist_empty_ilocked(&thread->todo)) thread->process_todo = false; switch (w->type) { case BINDER_WORK_TRANSACTION: { binder_inner_proc_unlock(proc); t = container_of(w, struct binder_transaction, work); } break; case BINDER_WORK_RETURN_ERROR: { struct binder_error *e = container_of( w, struct binder_error, work); WARN_ON(e->cmd == BR_OK); binder_inner_proc_unlock(proc); if (put_user(e->cmd, (uint32_t __user *)ptr)) return -EFAULT; cmd = e->cmd; e->cmd = BR_OK; ptr += sizeof(uint32_t); binder_stat_br(proc, thread, cmd); } break; case BINDER_WORK_TRANSACTION_COMPLETE: case BINDER_WORK_TRANSACTION_PENDING: case BINDER_WORK_TRANSACTION_ONEWAY_SPAM_SUSPECT: { if (proc->oneway_spam_detection_enabled && w->type == BINDER_WORK_TRANSACTION_ONEWAY_SPAM_SUSPECT) cmd = BR_ONEWAY_SPAM_SUSPECT; else if (w->type == BINDER_WORK_TRANSACTION_PENDING) cmd = BR_TRANSACTION_PENDING_FROZEN; else cmd = BR_TRANSACTION_COMPLETE; binder_inner_proc_unlock(proc); kfree(w); binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE); if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); binder_stat_br(proc, thread, cmd); binder_debug(BINDER_DEBUG_TRANSACTION_COMPLETE, "%d:%d BR_TRANSACTION_COMPLETE\n", proc->pid, thread->pid); } break; case BINDER_WORK_NODE: { struct binder_node *node = container_of(w, struct binder_node, work); int strong, weak; binder_uintptr_t node_ptr = node->ptr; binder_uintptr_t node_cookie = node->cookie; int node_debug_id = node->debug_id; int has_weak_ref; int has_strong_ref; void __user *orig_ptr = ptr; BUG_ON(proc != node->proc); strong = node->internal_strong_refs || node->local_strong_refs; weak = !hlist_empty(&node->refs) || node->local_weak_refs || node->tmp_refs || strong; has_strong_ref = node->has_strong_ref; has_weak_ref = node->has_weak_ref; if (weak && !has_weak_ref) { node->has_weak_ref = 1; node->pending_weak_ref = 1; node->local_weak_refs++; } if (strong && !has_strong_ref) { node->has_strong_ref = 1; node->pending_strong_ref = 1; node->local_strong_refs++; } if (!strong && has_strong_ref) node->has_strong_ref = 0; if (!weak && has_weak_ref) node->has_weak_ref = 0; if (!weak && !strong) { binder_debug(BINDER_DEBUG_INTERNAL_REFS, "%d:%d node %d u%016llx c%016llx deleted\n", proc->pid, thread->pid, node_debug_id, (u64)node_ptr, (u64)node_cookie); rb_erase(&node->rb_node, &proc->nodes); binder_inner_proc_unlock(proc); binder_node_lock(node); /* * Acquire the node lock before freeing the * node to serialize with other threads that * may have been holding the node lock while * decrementing this node (avoids race where * this thread frees while the other thread * is unlocking the node after the final * decrement) */ binder_node_unlock(node); binder_free_node(node); } else binder_inner_proc_unlock(proc); if (weak && !has_weak_ref) ret = binder_put_node_cmd( proc, thread, &ptr, node_ptr, node_cookie, node_debug_id, BR_INCREFS, "BR_INCREFS"); if (!ret && strong && !has_strong_ref) ret = binder_put_node_cmd( proc, thread, &ptr, node_ptr, node_cookie, node_debug_id, BR_ACQUIRE, "BR_ACQUIRE"); if (!ret && !strong && has_strong_ref) ret = binder_put_node_cmd( proc, thread, &ptr, node_ptr, node_cookie, node_debug_id, BR_RELEASE, "BR_RELEASE"); if (!ret && !weak && has_weak_ref) ret = binder_put_node_cmd( proc, thread, &ptr, node_ptr, node_cookie, node_debug_id, BR_DECREFS, "BR_DECREFS"); if (orig_ptr == ptr) binder_debug(BINDER_DEBUG_INTERNAL_REFS, "%d:%d node %d u%016llx c%016llx state unchanged\n", proc->pid, thread->pid, node_debug_id, (u64)node_ptr, (u64)node_cookie); if (ret) return ret; } break; case BINDER_WORK_DEAD_BINDER: case BINDER_WORK_DEAD_BINDER_AND_CLEAR: case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: { struct binder_ref_death *death; uint32_t cmd; binder_uintptr_t cookie; death = container_of(w, struct binder_ref_death, work); if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) cmd = BR_CLEAR_DEATH_NOTIFICATION_DONE; else cmd = BR_DEAD_BINDER; cookie = death->cookie; binder_debug(BINDER_DEBUG_DEATH_NOTIFICATION, "%d:%d %s %016llx\n", proc->pid, thread->pid, cmd == BR_DEAD_BINDER ? "BR_DEAD_BINDER" : "BR_CLEAR_DEATH_NOTIFICATION_DONE", (u64)cookie); if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) { binder_inner_proc_unlock(proc); kfree(death); binder_stats_deleted(BINDER_STAT_DEATH); } else { binder_enqueue_work_ilocked( w, &proc->delivered_death); binder_inner_proc_unlock(proc); } if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (put_user(cookie, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); binder_stat_br(proc, thread, cmd); if (cmd == BR_DEAD_BINDER) goto done; /* DEAD_BINDER notifications can cause transactions */ } break; case BINDER_WORK_FROZEN_BINDER: { struct binder_ref_freeze *freeze; struct binder_frozen_state_info info; memset(&info, 0, sizeof(info)); freeze = container_of(w, struct binder_ref_freeze, work); info.is_frozen = freeze->is_frozen; info.cookie = freeze->cookie; freeze->sent = true; binder_enqueue_work_ilocked(w, &proc->delivered_freeze); binder_inner_proc_unlock(proc); if (put_user(BR_FROZEN_BINDER, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &info, sizeof(info))) return -EFAULT; ptr += sizeof(info); binder_stat_br(proc, thread, BR_FROZEN_BINDER); goto done; /* BR_FROZEN_BINDER notifications can cause transactions */ } break; case BINDER_WORK_CLEAR_FREEZE_NOTIFICATION: { struct binder_ref_freeze *freeze = container_of(w, struct binder_ref_freeze, work); binder_uintptr_t cookie = freeze->cookie; binder_inner_proc_unlock(proc); kfree(freeze); binder_stats_deleted(BINDER_STAT_FREEZE); if (put_user(BR_CLEAR_FREEZE_NOTIFICATION_DONE, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (put_user(cookie, (binder_uintptr_t __user *)ptr)) return -EFAULT; ptr += sizeof(binder_uintptr_t); binder_stat_br(proc, thread, BR_CLEAR_FREEZE_NOTIFICATION_DONE); } break; default: binder_inner_proc_unlock(proc); pr_err("%d:%d: bad work type %d\n", proc->pid, thread->pid, w->type); break; } if (!t) continue; BUG_ON(t->buffer == NULL); if (t->buffer->target_node) { struct binder_node *target_node = t->buffer->target_node; trd->target.ptr = target_node->ptr; trd->cookie = target_node->cookie; t->saved_priority = task_nice(current); if (t->priority < target_node->min_priority && !(t->flags & TF_ONE_WAY)) binder_set_nice(t->priority); else if (!(t->flags & TF_ONE_WAY) || t->saved_priority > target_node->min_priority) binder_set_nice(target_node->min_priority); cmd = BR_TRANSACTION; } else { trd->target.ptr = 0; trd->cookie = 0; cmd = BR_REPLY; } trd->code = t->code; trd->flags = t->flags; trd->sender_euid = from_kuid(current_user_ns(), t->sender_euid); t_from = binder_get_txn_from(t); if (t_from) { struct task_struct *sender = t_from->proc->tsk; trd->sender_pid = task_tgid_nr_ns(sender, task_active_pid_ns(current)); } else { trd->sender_pid = 0; } ret = binder_apply_fd_fixups(proc, t); if (ret) { struct binder_buffer *buffer = t->buffer; bool oneway = !!(t->flags & TF_ONE_WAY); int tid = t->debug_id; if (t_from) binder_thread_dec_tmpref(t_from); buffer->transaction = NULL; binder_cleanup_transaction(t, "fd fixups failed", BR_FAILED_REPLY); binder_free_buf(proc, thread, buffer, true); binder_debug(BINDER_DEBUG_FAILED_TRANSACTION, "%d:%d %stransaction %d fd fixups failed %d/%d, line %d\n", proc->pid, thread->pid, oneway ? "async " : (cmd == BR_REPLY ? "reply " : ""), tid, BR_FAILED_REPLY, ret, __LINE__); if (cmd == BR_REPLY) { cmd = BR_FAILED_REPLY; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); binder_stat_br(proc, thread, cmd); break; } continue; } trd->data_size = t->buffer->data_size; trd->offsets_size = t->buffer->offsets_size; trd->data.ptr.buffer = t->buffer->user_data; trd->data.ptr.offsets = trd->data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); tr.secctx = t->security_ctx; if (t->security_ctx) { cmd = BR_TRANSACTION_SEC_CTX; trsize = sizeof(tr); } if (put_user(cmd, (uint32_t __user *)ptr)) { if (t_from) binder_thread_dec_tmpref(t_from); binder_cleanup_transaction(t, "put_user failed", BR_FAILED_REPLY); return -EFAULT; } ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, trsize)) { if (t_from) binder_thread_dec_tmpref(t_from); binder_cleanup_transaction(t, "copy_to_user failed", BR_FAILED_REPLY); return -EFAULT; } ptr += trsize; trace_binder_transaction_received(t); binder_stat_br(proc, thread, cmd); binder_debug(BINDER_DEBUG_TRANSACTION, "%d:%d %s %d %d:%d, cmd %u size %zd-%zd ptr %016llx-%016llx\n", proc->pid, thread->pid, (cmd == BR_TRANSACTION) ? "BR_TRANSACTION" : (cmd == BR_TRANSACTION_SEC_CTX) ? "BR_TRANSACTION_SEC_CTX" : "BR_REPLY", t->debug_id, t_from ? t_from->proc->pid : 0, t_from ? t_from->pid : 0, cmd, t->buffer->data_size, t->buffer->offsets_size, (u64)trd->data.ptr.buffer, (u64)trd->data.ptr.offsets); if (t_from) binder_thread_dec_tmpref(t_from); t->buffer->allow_user_free = 1; if (cmd != BR_REPLY && !(t->flags & TF_ONE_WAY)) { binder_inner_proc_lock(thread->proc); t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; binder_inner_proc_unlock(thread->proc); } else { binder_free_transaction(t); } break; } done: *consumed = ptr - buffer; binder_inner_proc_lock(proc); if (proc->requested_threads == 0 && list_empty(&thread->proc->waiting_threads) && proc->requested_threads_started < proc->max_threads && (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) /* the user-space code fails to */ /*spawn a new thread if we leave this out */) { proc->requested_threads++; binder_inner_proc_unlock(proc); binder_debug(BINDER_DEBUG_THREADS, "%d:%d BR_SPAWN_LOOPER\n", proc->pid, thread->pid); if (put_user(BR_SPAWN_LOOPER, (uint32_t __user *)buffer)) return -EFAULT; binder_stat_br(proc, thread, BR_SPAWN_LOOPER); } else binder_inner_proc_unlock(proc); return 0; } static void binder_release_work(struct binder_proc *proc, struct list_head *list) { struct binder_work *w; enum binder_work_type wtype; while (1) { binder_inner_proc_lock(proc); w = binder_dequeue_work_head_ilocked(list); wtype = w ? w->type : 0; binder_inner_proc_unlock(proc); if (!w) return; switch (wtype) { case BINDER_WORK_TRANSACTION: { struct binder_transaction *t; t = container_of(w, struct binder_transaction, work); binder_cleanup_transaction(t, "process died.", BR_DEAD_REPLY); } break; case BINDER_WORK_RETURN_ERROR: { struct binder_error *e = container_of( w, struct binder_error, work); binder_debug(BINDER_DEBUG_DEAD_TRANSACTION, "undelivered TRANSACTION_ERROR: %u\n", e->cmd); } break; case BINDER_WORK_TRANSACTION_PENDING: case BINDER_WORK_TRANSACTION_ONEWAY_SPAM_SUSPECT: case BINDER_WORK_TRANSACTION_COMPLETE: { binder_debug(BINDER_DEBUG_DEAD_TRANSACTION, "undelivered TRANSACTION_COMPLETE\n"); kfree(w); binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE); } break; case BINDER_WORK_DEAD_BINDER_AND_CLEAR: case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: { struct binder_ref_death *death; death = container_of(w, struct binder_ref_death, work); binder_debug(BINDER_DEBUG_DEAD_TRANSACTION, "undelivered death notification, %016llx\n", (u64)death->cookie); kfree(death); binder_stats_deleted(BINDER_STAT_DEATH); } break; case BINDER_WORK_NODE: break; case BINDER_WORK_CLEAR_FREEZE_NOTIFICATION: { struct binder_ref_freeze *freeze; freeze = container_of(w, struct binder_ref_freeze, work); binder_debug(BINDER_DEBUG_DEAD_TRANSACTION, "undelivered freeze notification, %016llx\n", (u64)freeze->cookie); kfree(freeze); binder_stats_deleted(BINDER_STAT_FREEZE); } break; default: pr_err("unexpected work type, %d, not freed\n", wtype); break; } } } static struct binder_thread *binder_get_thread_ilocked( struct binder_proc *proc, struct binder_thread *new_thread) { struct binder_thread *thread = NULL; struct rb_node *parent = NULL; struct rb_node **p = &proc->threads.rb_node; while (*p) { parent = *p; thread = rb_entry(parent, struct binder_thread, rb_node); if (current->pid < thread->pid) p = &(*p)->rb_left; else if (current->pid > thread->pid) p = &(*p)->rb_right; else return thread; } if (!new_thread) return NULL; thread = new_thread; binder_stats_created(BINDER_STAT_THREAD); thread->proc = proc; thread->pid = current->pid; atomic_set(&thread->tmp_ref, 0); init_waitqueue_head(&thread->wait); INIT_LIST_HEAD(&thread->todo); rb_link_node(&thread->rb_node, parent, p); rb_insert_color(&thread->rb_node, &proc->threads); thread->looper_need_return = true; thread->return_error.work.type = BINDER_WORK_RETURN_ERROR; thread->return_error.cmd = BR_OK; thread->reply_error.work.type = BINDER_WORK_RETURN_ERROR; thread->reply_error.cmd = BR_OK; thread->ee.command = BR_OK; INIT_LIST_HEAD(&new_thread->waiting_thread_node); return thread; } static struct binder_thread *binder_get_thread(struct binder_proc *proc) { struct binder_thread *thread; struct binder_thread *new_thread; binder_inner_proc_lock(proc); thread = binder_get_thread_ilocked(proc, NULL); binder_inner_proc_unlock(proc); if (!thread) { new_thread = kzalloc(sizeof(*thread), GFP_KERNEL); if (new_thread == NULL) return NULL; binder_inner_proc_lock(proc); thread = binder_get_thread_ilocked(proc, new_thread); binder_inner_proc_unlock(proc); if (thread != new_thread) kfree(new_thread); } return thread; } static void binder_free_proc(struct binder_proc *proc) { struct binder_device *device; BUG_ON(!list_empty(&proc->todo)); BUG_ON(!list_empty(&proc->delivered_death)); if (proc->outstanding_txns) pr_warn("%s: Unexpected outstanding_txns %d\n", __func__, proc->outstanding_txns); device = container_of(proc->context, struct binder_device, context); if (refcount_dec_and_test(&device->ref)) { kfree(proc->context->name); kfree(device); } binder_alloc_deferred_release(&proc->alloc); put_task_struct(proc->tsk); put_cred(proc->cred); binder_stats_deleted(BINDER_STAT_PROC); dbitmap_free(&proc->dmap); kfree(proc); } static void binder_free_thread(struct binder_thread *thread) { BUG_ON(!list_empty(&thread->todo)); binder_stats_deleted(BINDER_STAT_THREAD); binder_proc_dec_tmpref(thread->proc); kfree(thread); } static int binder_thread_release(struct binder_proc *proc, struct binder_thread *thread) { struct binder_transaction *t; struct binder_transaction *send_reply = NULL; int active_transactions = 0; struct binder_transaction *last_t = NULL; binder_inner_proc_lock(thread->proc); /* * take a ref on the proc so it survives * after we remove this thread from proc->threads. * The corresponding dec is when we actually * free the thread in binder_free_thread() */ proc->tmp_ref++; /* * take a ref on this thread to ensure it * survives while we are releasing it */ atomic_inc(&thread->tmp_ref); rb_erase(&thread->rb_node, &proc->threads); t = thread->transaction_stack; if (t) { spin_lock(&t->lock); if (t->to_thread == thread) send_reply = t; } else { __acquire(&t->lock); } thread->is_dead = true; while (t) { last_t = t; active_transactions++; binder_debug(BINDER_DEBUG_DEAD_TRANSACTION, "release %d:%d transaction %d %s, still active\n", proc->pid, thread->pid, t->debug_id, (t->to_thread == thread) ? "in" : "out"); if (t->to_thread == thread) { thread->proc->outstanding_txns--; t->to_proc = NULL; t->to_thread = NULL; if (t->buffer) { t->buffer->transaction = NULL; t->buffer = NULL; } t = t->to_parent; } else if (t->from == thread) { t->from = NULL; t = t->from_parent; } else BUG(); spin_unlock(&last_t->lock); if (t) spin_lock(&t->lock); else __acquire(&t->lock); } /* annotation for sparse, lock not acquired in last iteration above */ __release(&t->lock); /* * If this thread used poll, make sure we remove the waitqueue from any * poll data structures holding it. */ if (thread->looper & BINDER_LOOPER_STATE_POLL) wake_up_pollfree(&thread->wait); binder_inner_proc_unlock(thread->proc); /* * This is needed to avoid races between wake_up_pollfree() above and * someone else removing the last entry from the queue for other reasons * (e.g. ep_remove_wait_queue() being called due to an epoll file * descriptor being closed). Such other users hold an RCU read lock, so * we can be sure they're done after we call synchronize_rcu(). */ if (thread->looper & BINDER_LOOPER_STATE_POLL) synchronize_rcu(); if (send_reply) binder_send_failed_reply(send_reply, BR_DEAD_REPLY); binder_release_work(proc, &thread->todo); binder_thread_dec_tmpref(thread); return active_transactions; } static __poll_t binder_poll(struct file *filp, struct poll_table_struct *wait) { struct binder_proc *proc = filp->private_data; struct binder_thread *thread = NULL; bool wait_for_proc_work; thread = binder_get_thread(proc); if (!thread) return EPOLLERR; binder_inner_proc_lock(thread->proc); thread->looper |= BINDER_LOOPER_STATE_POLL; wait_for_proc_work = binder_available_for_proc_work_ilocked(thread); binder_inner_proc_unlock(thread->proc); poll_wait(filp, &thread->wait, wait); if (binder_has_work(thread, wait_for_proc_work)) return EPOLLIN; return 0; } static int binder_ioctl_write_read(struct file *filp, unsigned long arg, struct binder_thread *thread) { int ret = 0; struct binder_proc *proc = filp->private_data; void __user *ubuf = (void __user *)arg; struct binder_write_read bwr; if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { ret = -EFAULT; goto out; } binder_debug(BINDER_DEBUG_READ_WRITE, "%d:%d write %lld at %016llx, read %lld at %016llx\n", proc->pid, thread->pid, (u64)bwr.write_size, (u64)bwr.write_buffer, (u64)bwr.read_size, (u64)bwr.read_buffer); if (bwr.write_size > 0) { ret = binder_thread_write(proc, thread, bwr.write_buffer, bwr.write_size, &bwr.write_consumed); trace_binder_write_done(ret); if (ret < 0) { bwr.read_consumed = 0; if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto out; } } if (bwr.read_size > 0) { ret = binder_thread_read(proc, thread, bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); trace_binder_read_done(ret); binder_inner_proc_lock(proc); if (!binder_worklist_empty_ilocked(&proc->todo)) binder_wakeup_proc_ilocked(proc); binder_inner_proc_unlock(proc); if (ret < 0) { if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto out; } } binder_debug(BINDER_DEBUG_READ_WRITE, "%d:%d wrote %lld of %lld, read return %lld of %lld\n", proc->pid, thread->pid, (u64)bwr.write_consumed, (u64)bwr.write_size, (u64)bwr.read_consumed, (u64)bwr.read_size); if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto out; } out: return ret; } static int binder_ioctl_set_ctx_mgr(struct file *filp, struct flat_binder_object *fbo) { int ret = 0; struct binder_proc *proc = filp->private_data; struct binder_context *context = proc->context; struct binder_node *new_node; kuid_t curr_euid = current_euid(); mutex_lock(&context->context_mgr_node_lock); if (context->binder_context_mgr_node) { pr_err("BINDER_SET_CONTEXT_MGR already set\n"); ret = -EBUSY; goto out; } ret = security_binder_set_context_mgr(proc->cred); if (ret < 0) goto out; if (uid_valid(context->binder_context_mgr_uid)) { if (!uid_eq(context->binder_context_mgr_uid, curr_euid)) { pr_err("BINDER_SET_CONTEXT_MGR bad uid %d != %d\n", from_kuid(&init_user_ns, curr_euid), from_kuid(&init_user_ns, context->binder_context_mgr_uid)); ret = -EPERM; goto out; } } else { context->binder_context_mgr_uid = curr_euid; } new_node = binder_new_node(proc, fbo); if (!new_node) { ret = -ENOMEM; goto out; } binder_node_lock(new_node); new_node->local_weak_refs++; new_node->local_strong_refs++; new_node->has_strong_ref = 1; new_node->has_weak_ref = 1; context->binder_context_mgr_node = new_node; binder_node_unlock(new_node); binder_put_node(new_node); out: mutex_unlock(&context->context_mgr_node_lock); return ret; } static int binder_ioctl_get_node_info_for_ref(struct binder_proc *proc, struct binder_node_info_for_ref *info) { struct binder_node *node; struct binder_context *context = proc->context; __u32 handle = info->handle; if (info->strong_count || info->weak_count || info->reserved1 || info->reserved2 || info->reserved3) { binder_user_error("%d BINDER_GET_NODE_INFO_FOR_REF: only handle may be non-zero.", proc->pid); return -EINVAL; } /* This ioctl may only be used by the context manager */ mutex_lock(&context->context_mgr_node_lock); if (!context->binder_context_mgr_node || context->binder_context_mgr_node->proc != proc) { mutex_unlock(&context->context_mgr_node_lock); return -EPERM; } mutex_unlock(&context->context_mgr_node_lock); node = binder_get_node_from_ref(proc, handle, true, NULL); if (!node) return -EINVAL; info->strong_count = node->local_strong_refs + node->internal_strong_refs; info->weak_count = node->local_weak_refs; binder_put_node(node); return 0; } static int binder_ioctl_get_node_debug_info(struct binder_proc *proc, struct binder_node_debug_info *info) { struct rb_node *n; binder_uintptr_t ptr = info->ptr; memset(info, 0, sizeof(*info)); binder_inner_proc_lock(proc); for (n = rb_first(&proc->nodes); n != NULL; n = rb_next(n)) { struct binder_node *node = rb_entry(n, struct binder_node, rb_node); if (node->ptr > ptr) { info->ptr = node->ptr; info->cookie = node->cookie; info->has_strong_ref = node->has_strong_ref; info->has_weak_ref = node->has_weak_ref; break; } } binder_inner_proc_unlock(proc); return 0; } static bool binder_txns_pending_ilocked(struct binder_proc *proc) { struct rb_node *n; struct binder_thread *thread; if (proc->outstanding_txns > 0) return true; for (n = rb_first(&proc->threads); n; n = rb_next(n)) { thread = rb_entry(n, struct binder_thread, rb_node); if (thread->transaction_stack) return true; } return false; } static void binder_add_freeze_work(struct binder_proc *proc, bool is_frozen) { struct binder_node *prev = NULL; struct rb_node *n; struct binder_ref *ref; binder_inner_proc_lock(proc); for (n = rb_first(&proc->nodes); n; n = rb_next(n)) { struct binder_node *node; node = rb_entry(n, struct binder_node, rb_node); binder_inc_node_tmpref_ilocked(node); binder_inner_proc_unlock(proc); if (prev) binder_put_node(prev); binder_node_lock(node); hlist_for_each_entry(ref, &node->refs, node_entry) { /* * Need the node lock to synchronize * with new notification requests and the * inner lock to synchronize with queued * freeze notifications. */ binder_inner_proc_lock(ref->proc); if (!ref->freeze) { binder_inner_proc_unlock(ref->proc); continue; } ref->freeze->work.type = BINDER_WORK_FROZEN_BINDER; if (list_empty(&ref->freeze->work.entry)) { ref->freeze->is_frozen = is_frozen; binder_enqueue_work_ilocked(&ref->freeze->work, &ref->proc->todo); binder_wakeup_proc_ilocked(ref->proc); } else { if (ref->freeze->sent && ref->freeze->is_frozen != is_frozen) ref->freeze->resend = true; ref->freeze->is_frozen = is_frozen; } binder_inner_proc_unlock(ref->proc); } prev = node; binder_node_unlock(node); binder_inner_proc_lock(proc); if (proc->is_dead) break; } binder_inner_proc_unlock(proc); if (prev) binder_put_node(prev); } static int binder_ioctl_freeze(struct binder_freeze_info *info, struct binder_proc *target_proc) { int ret = 0; if (!info->enable) { binder_inner_proc_lock(target_proc); target_proc->sync_recv = false; target_proc->async_recv = false; target_proc->is_frozen = false; binder_inner_proc_unlock(target_proc); binder_add_freeze_work(target_proc, false); return 0; } /* * Freezing the target. Prevent new transactions by * setting frozen state. If timeout specified, wait * for transactions to drain. */ binder_inner_proc_lock(target_proc); target_proc->sync_recv = false; target_proc->async_recv = false; target_proc->is_frozen = true; binder_inner_proc_unlock(target_proc); if (info->timeout_ms > 0) ret = wait_event_interruptible_timeout( target_proc->freeze_wait, (!target_proc->outstanding_txns), msecs_to_jiffies(info->timeout_ms)); /* Check pending transactions that wait for reply */ if (ret >= 0) { binder_inner_proc_lock(target_proc); if (binder_txns_pending_ilocked(target_proc)) ret = -EAGAIN; binder_inner_proc_unlock(target_proc); } if (ret < 0) { binder_inner_proc_lock(target_proc); target_proc->is_frozen = false; binder_inner_proc_unlock(target_proc); } else { binder_add_freeze_work(target_proc, true); } return ret; } static int binder_ioctl_get_freezer_info( struct binder_frozen_status_info *info) { struct binder_proc *target_proc; bool found = false; __u32 txns_pending; info->sync_recv = 0; info->async_recv = 0; mutex_lock(&binder_procs_lock); hlist_for_each_entry(target_proc, &binder_procs, proc_node) { if (target_proc->pid == info->pid) { found = true; binder_inner_proc_lock(target_proc); txns_pending = binder_txns_pending_ilocked(target_proc); info->sync_recv |= target_proc->sync_recv | (txns_pending << 1); info->async_recv |= target_proc->async_recv; binder_inner_proc_unlock(target_proc); } } mutex_unlock(&binder_procs_lock); if (!found) return -EINVAL; return 0; } static int binder_ioctl_get_extended_error(struct binder_thread *thread, void __user *ubuf) { struct binder_extended_error ee; binder_inner_proc_lock(thread->proc); ee = thread->ee; binder_set_extended_error(&thread->ee, 0, BR_OK, 0); binder_inner_proc_unlock(thread->proc); if (copy_to_user(ubuf, &ee, sizeof(ee))) return -EFAULT; return 0; } static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int ret; struct binder_proc *proc = filp->private_data; struct binder_thread *thread; void __user *ubuf = (void __user *)arg; /*pr_info("binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ binder_selftest_alloc(&proc->alloc); trace_binder_ioctl(cmd, arg); ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); if (ret) goto err_unlocked; thread = binder_get_thread(proc); if (thread == NULL) { ret = -ENOMEM; goto err; } switch (cmd) { case BINDER_WRITE_READ: ret = binder_ioctl_write_read(filp, arg, thread); if (ret) goto err; break; case BINDER_SET_MAX_THREADS: { u32 max_threads; if (copy_from_user(&max_threads, ubuf, sizeof(max_threads))) { ret = -EINVAL; goto err; } binder_inner_proc_lock(proc); proc->max_threads = max_threads; binder_inner_proc_unlock(proc); break; } case BINDER_SET_CONTEXT_MGR_EXT: { struct flat_binder_object fbo; if (copy_from_user(&fbo, ubuf, sizeof(fbo))) { ret = -EINVAL; goto err; } ret = binder_ioctl_set_ctx_mgr(filp, &fbo); if (ret) goto err; break; } case BINDER_SET_CONTEXT_MGR: ret = binder_ioctl_set_ctx_mgr(filp, NULL); if (ret) goto err; break; case BINDER_THREAD_EXIT: binder_debug(BINDER_DEBUG_THREADS, "%d:%d exit\n", proc->pid, thread->pid); binder_thread_release(proc, thread); thread = NULL; break; case BINDER_VERSION: { struct binder_version __user *ver = ubuf; if (put_user(BINDER_CURRENT_PROTOCOL_VERSION, &ver->protocol_version)) { ret = -EINVAL; goto err; } break; } case BINDER_GET_NODE_INFO_FOR_REF: { struct binder_node_info_for_ref info; if (copy_from_user(&info, ubuf, sizeof(info))) { ret = -EFAULT; goto err; } ret = binder_ioctl_get_node_info_for_ref(proc, &info); if (ret < 0) goto err; if (copy_to_user(ubuf, &info, sizeof(info))) { ret = -EFAULT; goto err; } break; } case BINDER_GET_NODE_DEBUG_INFO: { struct binder_node_debug_info info; if (copy_from_user(&info, ubuf, sizeof(info))) { ret = -EFAULT; goto err; } ret = binder_ioctl_get_node_debug_info(proc, &info); if (ret < 0) goto err; if (copy_to_user(ubuf, &info, sizeof(info))) { ret = -EFAULT; goto err; } break; } case BINDER_FREEZE: { struct binder_freeze_info info; struct binder_proc **target_procs = NULL, *target_proc; int target_procs_count = 0, i = 0; ret = 0; if (copy_from_user(&info, ubuf, sizeof(info))) { ret = -EFAULT; goto err; } mutex_lock(&binder_procs_lock); hlist_for_each_entry(target_proc, &binder_procs, proc_node) { if (target_proc->pid == info.pid) target_procs_count++; } if (target_procs_count == 0) { mutex_unlock(&binder_procs_lock); ret = -EINVAL; goto err; } target_procs = kcalloc(target_procs_count, sizeof(struct binder_proc *), GFP_KERNEL); if (!target_procs) { mutex_unlock(&binder_procs_lock); ret = -ENOMEM; goto err; } hlist_for_each_entry(target_proc, &binder_procs, proc_node) { if (target_proc->pid != info.pid) continue; binder_inner_proc_lock(target_proc); target_proc->tmp_ref++; binder_inner_proc_unlock(target_proc); target_procs[i++] = target_proc; } mutex_unlock(&binder_procs_lock); for (i = 0; i < target_procs_count; i++) { if (ret >= 0) ret = binder_ioctl_freeze(&info, target_procs[i]); binder_proc_dec_tmpref(target_procs[i]); } kfree(target_procs); if (ret < 0) goto err; break; } case BINDER_GET_FROZEN_INFO: { struct binder_frozen_status_info info; if (copy_from_user(&info, ubuf, sizeof(info))) { ret = -EFAULT; goto err; } ret = binder_ioctl_get_freezer_info(&info); if (ret < 0) goto err; if (copy_to_user(ubuf, &info, sizeof(info))) { ret = -EFAULT; goto err; } break; } case BINDER_ENABLE_ONEWAY_SPAM_DETECTION: { uint32_t enable; if (copy_from_user(&enable, ubuf, sizeof(enable))) { ret = -EFAULT; goto err; } binder_inner_proc_lock(proc); proc->oneway_spam_detection_enabled = (bool)enable; binder_inner_proc_unlock(proc); break; } case BINDER_GET_EXTENDED_ERROR: ret = binder_ioctl_get_extended_error(thread, ubuf); if (ret < 0) goto err; break; default: ret = -EINVAL; goto err; } ret = 0; err: if (thread) thread->looper_need_return = false; wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); if (ret && ret != -EINTR) pr_info("%d:%d ioctl %x %lx returned %d\n", proc->pid, current->pid, cmd, arg, ret); err_unlocked: trace_binder_ioctl_done(ret); return ret; } static void binder_vma_open(struct vm_area_struct *vma) { struct binder_proc *proc = vma->vm_private_data; binder_debug(BINDER_DEBUG_OPEN_CLOSE, "%d open vm area %lx-%lx (%ld K) vma %lx pagep %lx\n", proc->pid, vma->vm_start, vma->vm_end, (vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags, (unsigned long)pgprot_val(vma->vm_page_prot)); } static void binder_vma_close(struct vm_area_struct *vma) { struct binder_proc *proc = vma->vm_private_data; binder_debug(BINDER_DEBUG_OPEN_CLOSE, "%d close vm area %lx-%lx (%ld K) vma %lx pagep %lx\n", proc->pid, vma->vm_start, vma->vm_end, (vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags, (unsigned long)pgprot_val(vma->vm_page_prot)); binder_alloc_vma_close(&proc->alloc); } static vm_fault_t binder_vm_fault(struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } static const struct vm_operations_struct binder_vm_ops = { .open = binder_vma_open, .close = binder_vma_close, .fault = binder_vm_fault, }; static int binder_mmap(struct file *filp, struct vm_area_struct *vma) { struct binder_proc *proc = filp->private_data; if (proc->tsk != current->group_leader) return -EINVAL; binder_debug(BINDER_DEBUG_OPEN_CLOSE, "%s: %d %lx-%lx (%ld K) vma %lx pagep %lx\n", __func__, proc->pid, vma->vm_start, vma->vm_end, (vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags, (unsigned long)pgprot_val(vma->vm_page_prot)); if (vma->vm_flags & FORBIDDEN_MMAP_FLAGS) { pr_err("%s: %d %lx-%lx %s failed %d\n", __func__, proc->pid, vma->vm_start, vma->vm_end, "bad vm_flags", -EPERM); return -EPERM; } vm_flags_mod(vma, VM_DONTCOPY | VM_MIXEDMAP, VM_MAYWRITE); vma->vm_ops = &binder_vm_ops; vma->vm_private_data = proc; return binder_alloc_mmap_handler(&proc->alloc, vma); } static int binder_open(struct inode *nodp, struct file *filp) { struct binder_proc *proc, *itr; struct binder_device *binder_dev; struct binderfs_info *info; struct dentry *binder_binderfs_dir_entry_proc = NULL; bool existing_pid = false; binder_debug(BINDER_DEBUG_OPEN_CLOSE, "%s: %d:%d\n", __func__, current->group_leader->pid, current->pid); proc = kzalloc(sizeof(*proc), GFP_KERNEL); if (proc == NULL) return -ENOMEM; dbitmap_init(&proc->dmap); spin_lock_init(&proc->inner_lock); spin_lock_init(&proc->outer_lock); get_task_struct(current->group_leader); proc->tsk = current->group_leader; proc->cred = get_cred(filp->f_cred); INIT_LIST_HEAD(&proc->todo); init_waitqueue_head(&proc->freeze_wait); proc->default_priority = task_nice(current); /* binderfs stashes devices in i_private */ if (is_binderfs_device(nodp)) { binder_dev = nodp->i_private; info = nodp->i_sb->s_fs_info; binder_binderfs_dir_entry_proc = info->proc_log_dir; } else { binder_dev = container_of(filp->private_data, struct binder_device, miscdev); } refcount_inc(&binder_dev->ref); proc->context = &binder_dev->context; binder_alloc_init(&proc->alloc); binder_stats_created(BINDER_STAT_PROC); proc->pid = current->group_leader->pid; INIT_LIST_HEAD(&proc->delivered_death); INIT_LIST_HEAD(&proc->delivered_freeze); INIT_LIST_HEAD(&proc->waiting_threads); filp->private_data = proc; mutex_lock(&binder_procs_lock); hlist_for_each_entry(itr, &binder_procs, proc_node) { if (itr->pid == proc->pid) { existing_pid = true; break; } } hlist_add_head(&proc->proc_node, &binder_procs); mutex_unlock(&binder_procs_lock); if (binder_debugfs_dir_entry_proc && !existing_pid) { char strbuf[11]; snprintf(strbuf, sizeof(strbuf), "%u", proc->pid); /* * proc debug entries are shared between contexts. * Only create for the first PID to avoid debugfs log spamming * The printing code will anyway print all contexts for a given * PID so this is not a problem. */ proc->debugfs_entry = debugfs_create_file(strbuf, 0444, binder_debugfs_dir_entry_proc, (void *)(unsigned long)proc->pid, &proc_fops); } if (binder_binderfs_dir_entry_proc && !existing_pid) { char strbuf[11]; struct dentry *binderfs_entry; snprintf(strbuf, sizeof(strbuf), "%u", proc->pid); /* * Similar to debugfs, the process specific log file is shared * between contexts. Only create for the first PID. * This is ok since same as debugfs, the log file will contain * information on all contexts of a given PID. */ binderfs_entry = binderfs_create_file(binder_binderfs_dir_entry_proc, strbuf, &proc_fops, (void *)(unsigned long)proc->pid); if (!IS_ERR(binderfs_entry)) { proc->binderfs_entry = binderfs_entry; } else { int error; error = PTR_ERR(binderfs_entry); pr_warn("Unable to create file %s in binderfs (error %d)\n", strbuf, error); } } return 0; } static int binder_flush(struct file *filp, fl_owner_t id) { struct binder_proc *proc = filp->private_data; binder_defer_work(proc, BINDER_DEFERRED_FLUSH); return 0; } static void binder_deferred_flush(struct binder_proc *proc) { struct rb_node *n; int wake_count = 0; binder_inner_proc_lock(proc); for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n)) { struct binder_thread *thread = rb_entry(n, struct binder_thread, rb_node); thread->looper_need_return = true; if (thread->looper & BINDER_LOOPER_STATE_WAITING) { wake_up_interruptible(&thread->wait); wake_count++; } } binder_inner_proc_unlock(proc); binder_debug(BINDER_DEBUG_OPEN_CLOSE, "binder_flush: %d woke %d threads\n", proc->pid, wake_count); } static int binder_release(struct inode *nodp, struct file *filp) { struct binder_proc *proc = filp->private_data; debugfs_remove(proc->debugfs_entry); if (proc->binderfs_entry) { binderfs_remove_file(proc->binderfs_entry); proc->binderfs_entry = NULL; } binder_defer_work(proc, BINDER_DEFERRED_RELEASE); return 0; } static int binder_node_release(struct binder_node *node, int refs) { struct binder_ref *ref; int death = 0; struct binder_proc *proc = node->proc; binder_release_work(proc, &node->async_todo); binder_node_lock(node); binder_inner_proc_lock(proc); binder_dequeue_work_ilocked(&node->work); /* * The caller must have taken a temporary ref on the node, */ BUG_ON(!node->tmp_refs); if (hlist_empty(&node->refs) && node->tmp_refs == 1) { binder_inner_proc_unlock(proc); binder_node_unlock(node); binder_free_node(node); return refs; } node->proc = NULL; node->local_strong_refs = 0; node->local_weak_refs = 0; binder_inner_proc_unlock(proc); spin_lock(&binder_dead_nodes_lock); hlist_add_head(&node->dead_node, &binder_dead_nodes); spin_unlock(&binder_dead_nodes_lock); hlist_for_each_entry(ref, &node->refs, node_entry) { refs++; /* * Need the node lock to synchronize * with new notification requests and the * inner lock to synchronize with queued * death notifications. */ binder_inner_proc_lock(ref->proc); if (!ref->death) { binder_inner_proc_unlock(ref->proc); continue; } death++; BUG_ON(!list_empty(&ref->death->work.entry)); ref->death->work.type = BINDER_WORK_DEAD_BINDER; binder_enqueue_work_ilocked(&ref->death->work, &ref->proc->todo); binder_wakeup_proc_ilocked(ref->proc); binder_inner_proc_unlock(ref->proc); } binder_debug(BINDER_DEBUG_DEAD_BINDER, "node %d now dead, refs %d, death %d\n", node->debug_id, refs, death); binder_node_unlock(node); binder_put_node(node); return refs; } static void binder_deferred_release(struct binder_proc *proc) { struct binder_context *context = proc->context; struct rb_node *n; int threads, nodes, incoming_refs, outgoing_refs, active_transactions; mutex_lock(&binder_procs_lock); hlist_del(&proc->proc_node); mutex_unlock(&binder_procs_lock); mutex_lock(&context->context_mgr_node_lock); if (context->binder_context_mgr_node && context->binder_context_mgr_node->proc == proc) { binder_debug(BINDER_DEBUG_DEAD_BINDER, "%s: %d context_mgr_node gone\n", __func__, proc->pid); context->binder_context_mgr_node = NULL; } mutex_unlock(&context->context_mgr_node_lock); binder_inner_proc_lock(proc); /* * Make sure proc stays alive after we * remove all the threads */ proc->tmp_ref++; proc->is_dead = true; proc->is_frozen = false; proc->sync_recv = false; proc->async_recv = false; threads = 0; active_transactions = 0; while ((n = rb_first(&proc->threads))) { struct binder_thread *thread; thread = rb_entry(n, struct binder_thread, rb_node); binder_inner_proc_unlock(proc); threads++; active_transactions += binder_thread_release(proc, thread); binder_inner_proc_lock(proc); } nodes = 0; incoming_refs = 0; while ((n = rb_first(&proc->nodes))) { struct binder_node *node; node = rb_entry(n, struct binder_node, rb_node); nodes++; /* * take a temporary ref on the node before * calling binder_node_release() which will either * kfree() the node or call binder_put_node() */ binder_inc_node_tmpref_ilocked(node); rb_erase(&node->rb_node, &proc->nodes); binder_inner_proc_unlock(proc); incoming_refs = binder_node_release(node, incoming_refs); binder_inner_proc_lock(proc); } binder_inner_proc_unlock(proc); outgoing_refs = 0; binder_proc_lock(proc); while ((n = rb_first(&proc->refs_by_desc))) { struct binder_ref *ref; ref = rb_entry(n, struct binder_ref, rb_node_desc); outgoing_refs++; binder_cleanup_ref_olocked(ref); binder_proc_unlock(proc); binder_free_ref(ref); binder_proc_lock(proc); } binder_proc_unlock(proc); binder_release_work(proc, &proc->todo); binder_release_work(proc, &proc->delivered_death); binder_release_work(proc, &proc->delivered_freeze); binder_debug(BINDER_DEBUG_OPEN_CLOSE, "%s: %d threads %d, nodes %d (ref %d), refs %d, active transactions %d\n", __func__, proc->pid, threads, nodes, incoming_refs, outgoing_refs, active_transactions); binder_proc_dec_tmpref(proc); } static void binder_deferred_func(struct work_struct *work) { struct binder_proc *proc; int defer; do { mutex_lock(&binder_deferred_lock); if (!hlist_empty(&binder_deferred_list)) { proc = hlist_entry(binder_deferred_list.first, struct binder_proc, deferred_work_node); hlist_del_init(&proc->deferred_work_node); defer = proc->deferred_work; proc->deferred_work = 0; } else { proc = NULL; defer = 0; } mutex_unlock(&binder_deferred_lock); if (defer & BINDER_DEFERRED_FLUSH) binder_deferred_flush(proc); if (defer & BINDER_DEFERRED_RELEASE) binder_deferred_release(proc); /* frees proc */ } while (proc); } static DECLARE_WORK(binder_deferred_work, binder_deferred_func); static void binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer) { mutex_lock(&binder_deferred_lock); proc->deferred_work |= defer; if (hlist_unhashed(&proc->deferred_work_node)) { hlist_add_head(&proc->deferred_work_node, &binder_deferred_list); schedule_work(&binder_deferred_work); } mutex_unlock(&binder_deferred_lock); } static void print_binder_transaction_ilocked(struct seq_file *m, struct binder_proc *proc, const char *prefix, struct binder_transaction *t) { struct binder_proc *to_proc; struct binder_buffer *buffer = t->buffer; ktime_t current_time = ktime_get(); spin_lock(&t->lock); to_proc = t->to_proc; seq_printf(m, "%s %d: %pK from %d:%d to %d:%d code %x flags %x pri %ld r%d elapsed %lldms", prefix, t->debug_id, t, t->from_pid, t->from_tid, to_proc ? to_proc->pid : 0, t->to_thread ? t->to_thread->pid : 0, t->code, t->flags, t->priority, t->need_reply, ktime_ms_delta(current_time, t->start_time)); spin_unlock(&t->lock); if (proc != to_proc) { /* * Can only safely deref buffer if we are holding the * correct proc inner lock for this node */ seq_puts(m, "\n"); return; } if (buffer == NULL) { seq_puts(m, " buffer free\n"); return; } if (buffer->target_node) seq_printf(m, " node %d", buffer->target_node->debug_id); seq_printf(m, " size %zd:%zd offset %lx\n", buffer->data_size, buffer->offsets_size, buffer->user_data - proc->alloc.vm_start); } static void print_binder_work_ilocked(struct seq_file *m, struct binder_proc *proc, const char *prefix, const char *transaction_prefix, struct binder_work *w) { struct binder_node *node; struct binder_transaction *t; switch (w->type) { case BINDER_WORK_TRANSACTION: t = container_of(w, struct binder_transaction, work); print_binder_transaction_ilocked( m, proc, transaction_prefix, t); break; case BINDER_WORK_RETURN_ERROR: { struct binder_error *e = container_of( w, struct binder_error, work); seq_printf(m, "%stransaction error: %u\n", prefix, e->cmd); } break; case BINDER_WORK_TRANSACTION_COMPLETE: seq_printf(m, "%stransaction complete\n", prefix); break; case BINDER_WORK_NODE: node = container_of(w, struct binder_node, work); seq_printf(m, "%snode work %d: u%016llx c%016llx\n", prefix, node->debug_id, (u64)node->ptr, (u64)node->cookie); break; case BINDER_WORK_DEAD_BINDER: seq_printf(m, "%shas dead binder\n", prefix); break; case BINDER_WORK_DEAD_BINDER_AND_CLEAR: seq_printf(m, "%shas cleared dead binder\n", prefix); break; case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: seq_printf(m, "%shas cleared death notification\n", prefix); break; case BINDER_WORK_FROZEN_BINDER: seq_printf(m, "%shas frozen binder\n", prefix); break; case BINDER_WORK_CLEAR_FREEZE_NOTIFICATION: seq_printf(m, "%shas cleared freeze notification\n", prefix); break; default: seq_printf(m, "%sunknown work: type %d\n", prefix, w->type); break; } } static void print_binder_thread_ilocked(struct seq_file *m, struct binder_thread *thread, int print_always) { struct binder_transaction *t; struct binder_work *w; size_t start_pos = m->count; size_t header_pos; seq_printf(m, " thread %d: l %02x need_return %d tr %d\n", thread->pid, thread->looper, thread->looper_need_return, atomic_read(&thread->tmp_ref)); header_pos = m->count; t = thread->transaction_stack; while (t) { if (t->from == thread) { print_binder_transaction_ilocked(m, thread->proc, " outgoing transaction", t); t = t->from_parent; } else if (t->to_thread == thread) { print_binder_transaction_ilocked(m, thread->proc, " incoming transaction", t); t = t->to_parent; } else { print_binder_transaction_ilocked(m, thread->proc, " bad transaction", t); t = NULL; } } list_for_each_entry(w, &thread->todo, entry) { print_binder_work_ilocked(m, thread->proc, " ", " pending transaction", w); } if (!print_always && m->count == header_pos) m->count = start_pos; } static void print_binder_node_nilocked(struct seq_file *m, struct binder_node *node) { struct binder_ref *ref; struct binder_work *w; int count; count = hlist_count_nodes(&node->refs); seq_printf(m, " node %d: u%016llx c%016llx hs %d hw %d ls %d lw %d is %d iw %d tr %d", node->debug_id, (u64)node->ptr, (u64)node->cookie, node->has_strong_ref, node->has_weak_ref, node->local_strong_refs, node->local_weak_refs, node->internal_strong_refs, count, node->tmp_refs); if (count) { seq_puts(m, " proc"); hlist_for_each_entry(ref, &node->refs, node_entry) seq_printf(m, " %d", ref->proc->pid); } seq_puts(m, "\n"); if (node->proc) { list_for_each_entry(w, &node->async_todo, entry) print_binder_work_ilocked(m, node->proc, " ", " pending async transaction", w); } } static void print_binder_ref_olocked(struct seq_file *m, struct binder_ref *ref) { binder_node_lock(ref->node); seq_printf(m, " ref %d: desc %d %snode %d s %d w %d d %pK\n", ref->data.debug_id, ref->data.desc, ref->node->proc ? "" : "dead ", ref->node->debug_id, ref->data.strong, ref->data.weak, ref->death); binder_node_unlock(ref->node); } static void print_binder_proc(struct seq_file *m, struct binder_proc *proc, int print_all) { struct binder_work *w; struct rb_node *n; size_t start_pos = m->count; size_t header_pos; struct binder_node *last_node = NULL; seq_printf(m, "proc %d\n", proc->pid); seq_printf(m, "context %s\n", proc->context->name); header_pos = m->count; binder_inner_proc_lock(proc); for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n)) print_binder_thread_ilocked(m, rb_entry(n, struct binder_thread, rb_node), print_all); for (n = rb_first(&proc->nodes); n != NULL; n = rb_next(n)) { struct binder_node *node = rb_entry(n, struct binder_node, rb_node); if (!print_all && !node->has_async_transaction) continue; /* * take a temporary reference on the node so it * survives and isn't removed from the tree * while we print it. */ binder_inc_node_tmpref_ilocked(node); /* Need to drop inner lock to take node lock */ binder_inner_proc_unlock(proc); if (last_node) binder_put_node(last_node); binder_node_inner_lock(node); print_binder_node_nilocked(m, node); binder_node_inner_unlock(node); last_node = node; binder_inner_proc_lock(proc); } binder_inner_proc_unlock(proc); if (last_node) binder_put_node(last_node); if (print_all) { binder_proc_lock(proc); for (n = rb_first(&proc->refs_by_desc); n != NULL; n = rb_next(n)) print_binder_ref_olocked(m, rb_entry(n, struct binder_ref, rb_node_desc)); binder_proc_unlock(proc); } binder_alloc_print_allocated(m, &proc->alloc); binder_inner_proc_lock(proc); list_for_each_entry(w, &proc->todo, entry) print_binder_work_ilocked(m, proc, " ", " pending transaction", w); list_for_each_entry(w, &proc->delivered_death, entry) { seq_puts(m, " has delivered dead binder\n"); break; } list_for_each_entry(w, &proc->delivered_freeze, entry) { seq_puts(m, " has delivered freeze binder\n"); break; } binder_inner_proc_unlock(proc); if (!print_all && m->count == header_pos) m->count = start_pos; } static const char * const binder_return_strings[] = { "BR_ERROR", "BR_OK", "BR_TRANSACTION", "BR_REPLY", "BR_ACQUIRE_RESULT", "BR_DEAD_REPLY", "BR_TRANSACTION_COMPLETE", "BR_INCREFS", "BR_ACQUIRE", "BR_RELEASE", "BR_DECREFS", "BR_ATTEMPT_ACQUIRE", "BR_NOOP", "BR_SPAWN_LOOPER", "BR_FINISHED", "BR_DEAD_BINDER", "BR_CLEAR_DEATH_NOTIFICATION_DONE", "BR_FAILED_REPLY", "BR_FROZEN_REPLY", "BR_ONEWAY_SPAM_SUSPECT", "BR_TRANSACTION_PENDING_FROZEN", "BR_FROZEN_BINDER", "BR_CLEAR_FREEZE_NOTIFICATION_DONE", }; static const char * const binder_command_strings[] = { "BC_TRANSACTION", "BC_REPLY", "BC_ACQUIRE_RESULT", "BC_FREE_BUFFER", "BC_INCREFS", "BC_ACQUIRE", "BC_RELEASE", "BC_DECREFS", "BC_INCREFS_DONE", "BC_ACQUIRE_DONE", "BC_ATTEMPT_ACQUIRE", "BC_REGISTER_LOOPER", "BC_ENTER_LOOPER", "BC_EXIT_LOOPER", "BC_REQUEST_DEATH_NOTIFICATION", "BC_CLEAR_DEATH_NOTIFICATION", "BC_DEAD_BINDER_DONE", "BC_TRANSACTION_SG", "BC_REPLY_SG", "BC_REQUEST_FREEZE_NOTIFICATION", "BC_CLEAR_FREEZE_NOTIFICATION", "BC_FREEZE_NOTIFICATION_DONE", }; static const char * const binder_objstat_strings[] = { "proc", "thread", "node", "ref", "death", "transaction", "transaction_complete", "freeze", }; static void print_binder_stats(struct seq_file *m, const char *prefix, struct binder_stats *stats) { int i; BUILD_BUG_ON(ARRAY_SIZE(stats->bc) != ARRAY_SIZE(binder_command_strings)); for (i = 0; i < ARRAY_SIZE(stats->bc); i++) { int temp = atomic_read(&stats->bc[i]); if (temp) seq_printf(m, "%s%s: %d\n", prefix, binder_command_strings[i], temp); } BUILD_BUG_ON(ARRAY_SIZE(stats->br) != ARRAY_SIZE(binder_return_strings)); for (i = 0; i < ARRAY_SIZE(stats->br); i++) { int temp = atomic_read(&stats->br[i]); if (temp) seq_printf(m, "%s%s: %d\n", prefix, binder_return_strings[i], temp); } BUILD_BUG_ON(ARRAY_SIZE(stats->obj_created) != ARRAY_SIZE(binder_objstat_strings)); BUILD_BUG_ON(ARRAY_SIZE(stats->obj_created) != ARRAY_SIZE(stats->obj_deleted)); for (i = 0; i < ARRAY_SIZE(stats->obj_created); i++) { int created = atomic_read(&stats->obj_created[i]); int deleted = atomic_read(&stats->obj_deleted[i]); if (created || deleted) seq_printf(m, "%s%s: active %d total %d\n", prefix, binder_objstat_strings[i], created - deleted, created); } } static void print_binder_proc_stats(struct seq_file *m, struct binder_proc *proc) { struct binder_work *w; struct binder_thread *thread; struct rb_node *n; int count, strong, weak, ready_threads; size_t free_async_space = binder_alloc_get_free_async_space(&proc->alloc); seq_printf(m, "proc %d\n", proc->pid); seq_printf(m, "context %s\n", proc->context->name); count = 0; ready_threads = 0; binder_inner_proc_lock(proc); for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n)) count++; list_for_each_entry(thread, &proc->waiting_threads, waiting_thread_node) ready_threads++; seq_printf(m, " threads: %d\n", count); seq_printf(m, " requested threads: %d+%d/%d\n" " ready threads %d\n" " free async space %zd\n", proc->requested_threads, proc->requested_threads_started, proc->max_threads, ready_threads, free_async_space); count = 0; for (n = rb_first(&proc->nodes); n != NULL; n = rb_next(n)) count++; binder_inner_proc_unlock(proc); seq_printf(m, " nodes: %d\n", count); count = 0; strong = 0; weak = 0; binder_proc_lock(proc); for (n = rb_first(&proc->refs_by_desc); n != NULL; n = rb_next(n)) { struct binder_ref *ref = rb_entry(n, struct binder_ref, rb_node_desc); count++; strong += ref->data.strong; weak += ref->data.weak; } binder_proc_unlock(proc); seq_printf(m, " refs: %d s %d w %d\n", count, strong, weak); count = binder_alloc_get_allocated_count(&proc->alloc); seq_printf(m, " buffers: %d\n", count); binder_alloc_print_pages(m, &proc->alloc); count = 0; binder_inner_proc_lock(proc); list_for_each_entry(w, &proc->todo, entry) { if (w->type == BINDER_WORK_TRANSACTION) count++; } binder_inner_proc_unlock(proc); seq_printf(m, " pending transactions: %d\n", count); print_binder_stats(m, " ", &proc->stats); } static int state_show(struct seq_file *m, void *unused) { struct binder_proc *proc; struct binder_node *node; struct binder_node *last_node = NULL; seq_puts(m, "binder state:\n"); spin_lock(&binder_dead_nodes_lock); if (!hlist_empty(&binder_dead_nodes)) seq_puts(m, "dead nodes:\n"); hlist_for_each_entry(node, &binder_dead_nodes, dead_node) { /* * take a temporary reference on the node so it * survives and isn't removed from the list * while we print it. */ node->tmp_refs++; spin_unlock(&binder_dead_nodes_lock); if (last_node) binder_put_node(last_node); binder_node_lock(node); print_binder_node_nilocked(m, node); binder_node_unlock(node); last_node = node; spin_lock(&binder_dead_nodes_lock); } spin_unlock(&binder_dead_nodes_lock); if (last_node) binder_put_node(last_node); mutex_lock(&binder_procs_lock); hlist_for_each_entry(proc, &binder_procs, proc_node) print_binder_proc(m, proc, 1); mutex_unlock(&binder_procs_lock); return 0; } static int stats_show(struct seq_file *m, void *unused) { struct binder_proc *proc; seq_puts(m, "binder stats:\n"); print_binder_stats(m, "", &binder_stats); mutex_lock(&binder_procs_lock); hlist_for_each_entry(proc, &binder_procs, proc_node) print_binder_proc_stats(m, proc); mutex_unlock(&binder_procs_lock); return 0; } static int transactions_show(struct seq_file *m, void *unused) { struct binder_proc *proc; seq_puts(m, "binder transactions:\n"); mutex_lock(&binder_procs_lock); hlist_for_each_entry(proc, &binder_procs, proc_node) print_binder_proc(m, proc, 0); mutex_unlock(&binder_procs_lock); return 0; } static int proc_show(struct seq_file *m, void *unused) { struct binder_proc *itr; int pid = (unsigned long)m->private; mutex_lock(&binder_procs_lock); hlist_for_each_entry(itr, &binder_procs, proc_node) { if (itr->pid == pid) { seq_puts(m, "binder proc state:\n"); print_binder_proc(m, itr, 1); } } mutex_unlock(&binder_procs_lock); return 0; } static void print_binder_transaction_log_entry(struct seq_file *m, struct binder_transaction_log_entry *e) { int debug_id = READ_ONCE(e->debug_id_done); /* * read barrier to guarantee debug_id_done read before * we print the log values */ smp_rmb(); seq_printf(m, "%d: %s from %d:%d to %d:%d context %s node %d handle %d size %d:%d ret %d/%d l=%d", e->debug_id, (e->call_type == 2) ? "reply" : ((e->call_type == 1) ? "async" : "call "), e->from_proc, e->from_thread, e->to_proc, e->to_thread, e->context_name, e->to_node, e->target_handle, e->data_size, e->offsets_size, e->return_error, e->return_error_param, e->return_error_line); /* * read-barrier to guarantee read of debug_id_done after * done printing the fields of the entry */ smp_rmb(); seq_printf(m, debug_id && debug_id == READ_ONCE(e->debug_id_done) ? "\n" : " (incomplete)\n"); } static int transaction_log_show(struct seq_file *m, void *unused) { struct binder_transaction_log *log = m->private; unsigned int log_cur = atomic_read(&log->cur); unsigned int count; unsigned int cur; int i; count = log_cur + 1; cur = count < ARRAY_SIZE(log->entry) && !log->full ? 0 : count % ARRAY_SIZE(log->entry); if (count > ARRAY_SIZE(log->entry) || log->full) count = ARRAY_SIZE(log->entry); for (i = 0; i < count; i++) { unsigned int index = cur++ % ARRAY_SIZE(log->entry); print_binder_transaction_log_entry(m, &log->entry[index]); } return 0; } const struct file_operations binder_fops = { .owner = THIS_MODULE, .poll = binder_poll, .unlocked_ioctl = binder_ioctl, .compat_ioctl = compat_ptr_ioctl, .mmap = binder_mmap, .open = binder_open, .flush = binder_flush, .release = binder_release, }; DEFINE_SHOW_ATTRIBUTE(state); DEFINE_SHOW_ATTRIBUTE(stats); DEFINE_SHOW_ATTRIBUTE(transactions); DEFINE_SHOW_ATTRIBUTE(transaction_log); const struct binder_debugfs_entry binder_debugfs_entries[] = { { .name = "state", .mode = 0444, .fops = &state_fops, .data = NULL, }, { .name = "stats", .mode = 0444, .fops = &stats_fops, .data = NULL, }, { .name = "transactions", .mode = 0444, .fops = &transactions_fops, .data = NULL, }, { .name = "transaction_log", .mode = 0444, .fops = &transaction_log_fops, .data = &binder_transaction_log, }, { .name = "failed_transaction_log", .mode = 0444, .fops = &transaction_log_fops, .data = &binder_transaction_log_failed, }, {} /* terminator */ }; void binder_add_device(struct binder_device *device) { hlist_add_head(&device->hlist, &binder_devices); } static int __init init_binder_device(const char *name) { int ret; struct binder_device *binder_device; binder_device = kzalloc(sizeof(*binder_device), GFP_KERNEL); if (!binder_device) return -ENOMEM; binder_device->miscdev.fops = &binder_fops; binder_device->miscdev.minor = MISC_DYNAMIC_MINOR; binder_device->miscdev.name = name; refcount_set(&binder_device->ref, 1); binder_device->context.binder_context_mgr_uid = INVALID_UID; binder_device->context.name = name; mutex_init(&binder_device->context.context_mgr_node_lock); ret = misc_register(&binder_device->miscdev); if (ret < 0) { kfree(binder_device); return ret; } hlist_add_head(&binder_device->hlist, &binder_devices); return ret; } static int __init binder_init(void) { int ret; char *device_name, *device_tmp; struct binder_device *device; struct hlist_node *tmp; char *device_names = NULL; const struct binder_debugfs_entry *db_entry; ret = binder_alloc_shrinker_init(); if (ret) return ret; atomic_set(&binder_transaction_log.cur, ~0U); atomic_set(&binder_transaction_log_failed.cur, ~0U); binder_debugfs_dir_entry_root = debugfs_create_dir("binder", NULL); binder_for_each_debugfs_entry(db_entry) debugfs_create_file(db_entry->name, db_entry->mode, binder_debugfs_dir_entry_root, db_entry->data, db_entry->fops); binder_debugfs_dir_entry_proc = debugfs_create_dir("proc", binder_debugfs_dir_entry_root); if (!IS_ENABLED(CONFIG_ANDROID_BINDERFS) && strcmp(binder_devices_param, "") != 0) { /* * Copy the module_parameter string, because we don't want to * tokenize it in-place. */ device_names = kstrdup(binder_devices_param, GFP_KERNEL); if (!device_names) { ret = -ENOMEM; goto err_alloc_device_names_failed; } device_tmp = device_names; while ((device_name = strsep(&device_tmp, ","))) { ret = init_binder_device(device_name); if (ret) goto err_init_binder_device_failed; } } ret = init_binderfs(); if (ret) goto err_init_binder_device_failed; return ret; err_init_binder_device_failed: hlist_for_each_entry_safe(device, tmp, &binder_devices, hlist) { misc_deregister(&device->miscdev); hlist_del(&device->hlist); kfree(device); } kfree(device_names); err_alloc_device_names_failed: debugfs_remove_recursive(binder_debugfs_dir_entry_root); binder_alloc_shrinker_exit(); return ret; } device_initcall(binder_init); #define CREATE_TRACE_POINTS #include "binder_trace.h" MODULE_LICENSE("GPL v2");
6 1 76 63 76 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 /* SPDX-License-Identifier: GPL-2.0-only */ /* * The NFC Controller Interface is the communication protocol between an * NFC Controller (NFCC) and a Device Host (DH). * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2013 Intel Corporation. All rights reserved. * Copyright (C) 2014 Marvell International Ltd. * * Written by Ilan Elias <ilane@ti.com> * * Acknowledgements: * This file is based on hci_core.h, which was written * by Maxim Krasnyansky. */ #ifndef __NCI_CORE_H #define __NCI_CORE_H #include <linux/interrupt.h> #include <linux/skbuff.h> #include <linux/tty.h> #include <net/nfc/nfc.h> #include <net/nfc/nci.h> /* NCI device flags */ enum nci_flag { NCI_INIT, NCI_UP, NCI_DATA_EXCHANGE, NCI_DATA_EXCHANGE_TO, NCI_UNREG, }; /* NCI device states */ enum nci_state { NCI_IDLE, NCI_DISCOVERY, NCI_W4_ALL_DISCOVERIES, NCI_W4_HOST_SELECT, NCI_POLL_ACTIVE, NCI_LISTEN_ACTIVE, NCI_LISTEN_SLEEP, }; /* NCI timeouts */ #define NCI_RESET_TIMEOUT 5000 #define NCI_INIT_TIMEOUT 5000 #define NCI_SET_CONFIG_TIMEOUT 5000 #define NCI_RF_DISC_TIMEOUT 5000 #define NCI_RF_DISC_SELECT_TIMEOUT 5000 #define NCI_RF_DEACTIVATE_TIMEOUT 30000 #define NCI_CMD_TIMEOUT 5000 #define NCI_DATA_TIMEOUT 700 struct nci_dev; struct nci_driver_ops { __u16 opcode; int (*rsp)(struct nci_dev *dev, struct sk_buff *skb); int (*ntf)(struct nci_dev *dev, struct sk_buff *skb); }; struct nci_ops { int (*init)(struct nci_dev *ndev); int (*open)(struct nci_dev *ndev); int (*close)(struct nci_dev *ndev); int (*send)(struct nci_dev *ndev, struct sk_buff *skb); int (*setup)(struct nci_dev *ndev); int (*post_setup)(struct nci_dev *ndev); int (*fw_download)(struct nci_dev *ndev, const char *firmware_name); __u32 (*get_rfprotocol)(struct nci_dev *ndev, __u8 rf_protocol); int (*discover_se)(struct nci_dev *ndev); int (*disable_se)(struct nci_dev *ndev, u32 se_idx); int (*enable_se)(struct nci_dev *ndev, u32 se_idx); int (*se_io)(struct nci_dev *ndev, u32 se_idx, u8 *apdu, size_t apdu_length, se_io_cb_t cb, void *cb_context); int (*hci_load_session)(struct nci_dev *ndev); void (*hci_event_received)(struct nci_dev *ndev, u8 pipe, u8 event, struct sk_buff *skb); void (*hci_cmd_received)(struct nci_dev *ndev, u8 pipe, u8 cmd, struct sk_buff *skb); const struct nci_driver_ops *prop_ops; size_t n_prop_ops; const struct nci_driver_ops *core_ops; size_t n_core_ops; }; #define NCI_MAX_SUPPORTED_RF_INTERFACES 4 #define NCI_MAX_DISCOVERED_TARGETS 10 #define NCI_MAX_NUM_NFCEE 255 #define NCI_MAX_CONN_ID 7 #define NCI_MAX_PROPRIETARY_CMD 64 struct nci_conn_info { struct list_head list; /* NCI specification 4.4.2 Connection Creation * The combination of destination type and destination specific * parameters shall uniquely identify a single destination for the * Logical Connection */ struct dest_spec_params *dest_params; __u8 dest_type; __u8 conn_id; __u8 max_pkt_payload_len; atomic_t credits_cnt; __u8 initial_num_credits; data_exchange_cb_t data_exchange_cb; void *data_exchange_cb_context; struct sk_buff *rx_skb; }; #define NCI_INVALID_CONN_ID 0x80 #define NCI_HCI_ANY_OPEN_PIPE 0x03 /* Gates */ #define NCI_HCI_ADMIN_GATE 0x00 #define NCI_HCI_LOOPBACK_GATE 0x04 #define NCI_HCI_IDENTITY_MGMT_GATE 0x05 #define NCI_HCI_LINK_MGMT_GATE 0x06 /* Pipes */ #define NCI_HCI_LINK_MGMT_PIPE 0x00 #define NCI_HCI_ADMIN_PIPE 0x01 /* Generic responses */ #define NCI_HCI_ANY_OK 0x00 #define NCI_HCI_ANY_E_NOT_CONNECTED 0x01 #define NCI_HCI_ANY_E_CMD_PAR_UNKNOWN 0x02 #define NCI_HCI_ANY_E_NOK 0x03 #define NCI_HCI_ANY_E_PIPES_FULL 0x04 #define NCI_HCI_ANY_E_REG_PAR_UNKNOWN 0x05 #define NCI_HCI_ANY_E_PIPE_NOT_OPENED 0x06 #define NCI_HCI_ANY_E_CMD_NOT_SUPPORTED 0x07 #define NCI_HCI_ANY_E_INHIBITED 0x08 #define NCI_HCI_ANY_E_TIMEOUT 0x09 #define NCI_HCI_ANY_E_REG_ACCESS_DENIED 0x0a #define NCI_HCI_ANY_E_PIPE_ACCESS_DENIED 0x0b #define NCI_HCI_DO_NOT_OPEN_PIPE 0x81 #define NCI_HCI_INVALID_PIPE 0x80 #define NCI_HCI_INVALID_GATE 0xFF #define NCI_HCI_INVALID_HOST 0x80 #define NCI_HCI_MAX_CUSTOM_GATES 50 /* * According to specification 102 622 chapter 4.4 Pipes, * the pipe identifier is 7 bits long. */ #define NCI_HCI_MAX_PIPES 128 struct nci_hci_gate { u8 gate; u8 pipe; u8 dest_host; } __packed; struct nci_hci_pipe { u8 gate; u8 host; } __packed; struct nci_hci_init_data { u8 gate_count; struct nci_hci_gate gates[NCI_HCI_MAX_CUSTOM_GATES]; char session_id[9]; }; #define NCI_HCI_MAX_GATES 256 struct nci_hci_dev { u8 nfcee_id; struct nci_dev *ndev; struct nci_conn_info *conn_info; struct nci_hci_init_data init_data; struct nci_hci_pipe pipes[NCI_HCI_MAX_PIPES]; u8 gate2pipe[NCI_HCI_MAX_GATES]; int expected_pipes; int count_pipes; struct sk_buff_head rx_hcp_frags; struct work_struct msg_rx_work; struct sk_buff_head msg_rx_queue; }; /* NCI Core structures */ struct nci_dev { struct nfc_dev *nfc_dev; const struct nci_ops *ops; struct nci_hci_dev *hci_dev; int tx_headroom; int tx_tailroom; atomic_t state; unsigned long flags; atomic_t cmd_cnt; __u8 cur_conn_id; struct list_head conn_info_list; struct nci_conn_info *rf_conn_info; struct timer_list cmd_timer; struct timer_list data_timer; struct workqueue_struct *cmd_wq; struct work_struct cmd_work; struct workqueue_struct *rx_wq; struct work_struct rx_work; struct workqueue_struct *tx_wq; struct work_struct tx_work; struct sk_buff_head cmd_q; struct sk_buff_head rx_q; struct sk_buff_head tx_q; struct mutex req_lock; struct completion req_completion; __u32 req_status; __u32 req_result; void *driver_data; __u32 poll_prots; __u32 target_active_prot; struct nfc_target targets[NCI_MAX_DISCOVERED_TARGETS]; int n_targets; /* received during NCI_OP_CORE_RESET_RSP */ __u8 nci_ver; /* received during NCI_OP_CORE_INIT_RSP */ __u32 nfcc_features; __u8 num_supported_rf_interfaces; __u8 supported_rf_interfaces [NCI_MAX_SUPPORTED_RF_INTERFACES]; __u8 max_logical_connections; __u16 max_routing_table_size; __u8 max_ctrl_pkt_payload_len; __u16 max_size_for_large_params; __u8 manufact_id; __u32 manufact_specific_info; /* Save RF Discovery ID or NFCEE ID under conn_create */ struct dest_spec_params cur_params; /* Save destination type under conn_create */ __u8 cur_dest_type; /* stored during nci_data_exchange */ struct sk_buff *rx_data_reassembly; /* stored during intf_activated_ntf */ __u8 remote_gb[NFC_MAX_GT_LEN]; __u8 remote_gb_len; /* stored during intf_activated_ntf */ __u8 target_ats[NFC_ATS_MAXSIZE]; __u8 target_ats_len; }; /* ----- NCI Devices ----- */ struct nci_dev *nci_allocate_device(const struct nci_ops *ops, __u32 supported_protocols, int tx_headroom, int tx_tailroom); void nci_free_device(struct nci_dev *ndev); int nci_register_device(struct nci_dev *ndev); void nci_unregister_device(struct nci_dev *ndev); int nci_request(struct nci_dev *ndev, void (*req)(struct nci_dev *ndev, const void *opt), const void *opt, __u32 timeout); int nci_prop_cmd(struct nci_dev *ndev, __u8 oid, size_t len, const __u8 *payload); int nci_core_cmd(struct nci_dev *ndev, __u16 opcode, size_t len, const __u8 *payload); int nci_core_reset(struct nci_dev *ndev); int nci_core_init(struct nci_dev *ndev); int nci_recv_frame(struct nci_dev *ndev, struct sk_buff *skb); int nci_send_frame(struct nci_dev *ndev, struct sk_buff *skb); int nci_set_config(struct nci_dev *ndev, __u8 id, size_t len, const __u8 *val); int nci_nfcee_discover(struct nci_dev *ndev, u8 action); int nci_nfcee_mode_set(struct nci_dev *ndev, u8 nfcee_id, u8 nfcee_mode); int nci_core_conn_create(struct nci_dev *ndev, u8 destination_type, u8 number_destination_params, size_t params_len, const struct core_conn_create_dest_spec_params *params); int nci_core_conn_close(struct nci_dev *ndev, u8 conn_id); int nci_nfcc_loopback(struct nci_dev *ndev, const void *data, size_t data_len, struct sk_buff **resp); struct nci_hci_dev *nci_hci_allocate(struct nci_dev *ndev); void nci_hci_deallocate(struct nci_dev *ndev); int nci_hci_send_event(struct nci_dev *ndev, u8 gate, u8 event, const u8 *param, size_t param_len); int nci_hci_send_cmd(struct nci_dev *ndev, u8 gate, u8 cmd, const u8 *param, size_t param_len, struct sk_buff **skb); int nci_hci_open_pipe(struct nci_dev *ndev, u8 pipe); int nci_hci_connect_gate(struct nci_dev *ndev, u8 dest_host, u8 dest_gate, u8 pipe); int nci_hci_set_param(struct nci_dev *ndev, u8 gate, u8 idx, const u8 *param, size_t param_len); int nci_hci_get_param(struct nci_dev *ndev, u8 gate, u8 idx, struct sk_buff **skb); int nci_hci_clear_all_pipes(struct nci_dev *ndev); int nci_hci_dev_session_init(struct nci_dev *ndev); static inline struct sk_buff *nci_skb_alloc(struct nci_dev *ndev, unsigned int len, gfp_t how) { struct sk_buff *skb; skb = alloc_skb(len + ndev->tx_headroom + ndev->tx_tailroom, how); if (skb) skb_reserve(skb, ndev->tx_headroom); return skb; } static inline void nci_set_parent_dev(struct nci_dev *ndev, struct device *dev) { nfc_set_parent_dev(ndev->nfc_dev, dev); } static inline void nci_set_drvdata(struct nci_dev *ndev, void *data) { ndev->driver_data = data; } static inline void *nci_get_drvdata(struct nci_dev *ndev) { return ndev->driver_data; } static inline int nci_set_vendor_cmds(struct nci_dev *ndev, const struct nfc_vendor_cmd *cmds, int n_cmds) { return nfc_set_vendor_cmds(ndev->nfc_dev, cmds, n_cmds); } void nci_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb); void nci_ntf_packet(struct nci_dev *ndev, struct sk_buff *skb); int nci_prop_rsp_packet(struct nci_dev *ndev, __u16 opcode, struct sk_buff *skb); int nci_prop_ntf_packet(struct nci_dev *ndev, __u16 opcode, struct sk_buff *skb); int nci_core_rsp_packet(struct nci_dev *ndev, __u16 opcode, struct sk_buff *skb); int nci_core_ntf_packet(struct nci_dev *ndev, __u16 opcode, struct sk_buff *skb); void nci_rx_data_packet(struct nci_dev *ndev, struct sk_buff *skb); int nci_send_cmd(struct nci_dev *ndev, __u16 opcode, __u8 plen, const void *payload); int nci_send_data(struct nci_dev *ndev, __u8 conn_id, struct sk_buff *skb); int nci_conn_max_data_pkt_payload_size(struct nci_dev *ndev, __u8 conn_id); void nci_data_exchange_complete(struct nci_dev *ndev, struct sk_buff *skb, __u8 conn_id, int err); void nci_hci_data_received_cb(void *context, struct sk_buff *skb, int err); void nci_clear_target_list(struct nci_dev *ndev); /* ----- NCI requests ----- */ #define NCI_REQ_DONE 0 #define NCI_REQ_PEND 1 #define NCI_REQ_CANCELED 2 void nci_req_complete(struct nci_dev *ndev, int result); struct nci_conn_info *nci_get_conn_info_by_conn_id(struct nci_dev *ndev, int conn_id); int nci_get_conn_info_by_dest_type_params(struct nci_dev *ndev, u8 dest_type, const struct dest_spec_params *params); /* ----- NCI status code ----- */ int nci_to_errno(__u8 code); /* ----- NCI over SPI acknowledge modes ----- */ #define NCI_SPI_CRC_DISABLED 0x00 #define NCI_SPI_CRC_ENABLED 0x01 /* ----- NCI SPI structures ----- */ struct nci_spi { struct nci_dev *ndev; struct spi_device *spi; unsigned int xfer_udelay; /* microseconds delay between transactions */ unsigned int xfer_speed_hz; /* * SPI clock frequency * 0 => default clock */ u8 acknowledge_mode; struct completion req_completion; u8 req_result; }; /* ----- NCI SPI ----- */ struct nci_spi *nci_spi_allocate_spi(struct spi_device *spi, u8 acknowledge_mode, unsigned int delay, struct nci_dev *ndev); int nci_spi_send(struct nci_spi *nspi, struct completion *write_handshake_completion, struct sk_buff *skb); struct sk_buff *nci_spi_read(struct nci_spi *nspi); /* ----- NCI UART ---- */ /* Ioctl */ #define NCIUARTSETDRIVER _IOW('U', 0, char *) enum nci_uart_driver { NCI_UART_DRIVER_MARVELL = 0, NCI_UART_DRIVER_MAX }; struct nci_uart; struct nci_uart_ops { int (*open)(struct nci_uart *nci_uart); void (*close)(struct nci_uart *nci_uart); int (*recv)(struct nci_uart *nci_uart, struct sk_buff *skb); int (*send)(struct nci_uart *nci_uart, struct sk_buff *skb); void (*tx_start)(struct nci_uart *nci_uart); void (*tx_done)(struct nci_uart *nci_uart); }; struct nci_uart { struct module *owner; struct nci_uart_ops ops; const char *name; enum nci_uart_driver driver; /* Dynamic data */ struct nci_dev *ndev; spinlock_t rx_lock; struct work_struct write_work; struct tty_struct *tty; unsigned long tx_state; struct sk_buff_head tx_q; struct sk_buff *tx_skb; struct sk_buff *rx_skb; int rx_packet_len; void *drv_data; }; int nci_uart_register(struct nci_uart *nu); void nci_uart_unregister(struct nci_uart *nu); void nci_uart_set_config(struct nci_uart *nu, int baudrate, int flow_ctrl); #endif /* __NCI_CORE_H */
834 186 2 186 292 292 57 195 195 192 195 195 195 153 153 153 2 153 52 195 194 2 2 2 2 2 195 195 195 195 2 195 52 194 195 195 836 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2002 International Business Machines, Corp. * * This file is part of the SCTP kernel implementation * * These functions are the methods for accessing the SCTP inqueue. * * An SCTP inqueue is a queue into which you push SCTP packets * (which might be bundles or fragments of chunks) and out of which you * pop SCTP whole chunks. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <net/sctp/sctp.h> #include <net/sctp/sm.h> #include <linux/interrupt.h> #include <linux/slab.h> /* Initialize an SCTP inqueue. */ void sctp_inq_init(struct sctp_inq *queue) { INIT_LIST_HEAD(&queue->in_chunk_list); queue->in_progress = NULL; /* Create a task for delivering data. */ INIT_WORK(&queue->immediate, NULL); } /* Properly release the chunk which is being worked on. */ static inline void sctp_inq_chunk_free(struct sctp_chunk *chunk) { if (chunk->head_skb) chunk->skb = chunk->head_skb; sctp_chunk_free(chunk); } /* Release the memory associated with an SCTP inqueue. */ void sctp_inq_free(struct sctp_inq *queue) { struct sctp_chunk *chunk, *tmp; /* Empty the queue. */ list_for_each_entry_safe(chunk, tmp, &queue->in_chunk_list, list) { list_del_init(&chunk->list); sctp_chunk_free(chunk); } /* If there is a packet which is currently being worked on, * free it as well. */ if (queue->in_progress) { sctp_inq_chunk_free(queue->in_progress); queue->in_progress = NULL; } } /* Put a new packet in an SCTP inqueue. * We assume that packet->sctp_hdr is set and in host byte order. */ void sctp_inq_push(struct sctp_inq *q, struct sctp_chunk *chunk) { /* Directly call the packet handling routine. */ if (chunk->rcvr->dead) { sctp_chunk_free(chunk); return; } /* We are now calling this either from the soft interrupt * or from the backlog processing. * Eventually, we should clean up inqueue to not rely * on the BH related data structures. */ list_add_tail(&chunk->list, &q->in_chunk_list); if (chunk->asoc) chunk->asoc->stats.ipackets++; q->immediate.func(&q->immediate); } /* Peek at the next chunk on the inqeue. */ struct sctp_chunkhdr *sctp_inq_peek(struct sctp_inq *queue) { struct sctp_chunk *chunk; struct sctp_chunkhdr *ch = NULL; chunk = queue->in_progress; /* If there is no more chunks in this packet, say so */ if (chunk->singleton || chunk->end_of_packet || chunk->pdiscard) return NULL; ch = (struct sctp_chunkhdr *)chunk->chunk_end; return ch; } /* Extract a chunk from an SCTP inqueue. * * WARNING: If you need to put the chunk on another queue, you need to * make a shallow copy (clone) of it. */ struct sctp_chunk *sctp_inq_pop(struct sctp_inq *queue) { struct sctp_chunk *chunk; struct sctp_chunkhdr *ch = NULL; /* The assumption is that we are safe to process the chunks * at this time. */ chunk = queue->in_progress; if (chunk) { /* There is a packet that we have been working on. * Any post processing work to do before we move on? */ if (chunk->singleton || chunk->end_of_packet || chunk->pdiscard) { if (chunk->head_skb == chunk->skb) { chunk->skb = skb_shinfo(chunk->skb)->frag_list; goto new_skb; } if (chunk->skb->next) { chunk->skb = chunk->skb->next; goto new_skb; } sctp_inq_chunk_free(chunk); chunk = queue->in_progress = NULL; } else { /* Nothing to do. Next chunk in the packet, please. */ ch = (struct sctp_chunkhdr *)chunk->chunk_end; /* Force chunk->skb->data to chunk->chunk_end. */ skb_pull(chunk->skb, chunk->chunk_end - chunk->skb->data); /* We are guaranteed to pull a SCTP header. */ } } /* Do we need to take the next packet out of the queue to process? */ if (!chunk) { struct list_head *entry; next_chunk: /* Is the queue empty? */ entry = sctp_list_dequeue(&queue->in_chunk_list); if (!entry) return NULL; chunk = list_entry(entry, struct sctp_chunk, list); if (skb_is_gso(chunk->skb) && skb_is_gso_sctp(chunk->skb)) { /* GSO-marked skbs but without frags, handle * them normally */ if (skb_shinfo(chunk->skb)->frag_list) chunk->head_skb = chunk->skb; /* skbs with "cover letter" */ if (chunk->head_skb && chunk->skb->data_len == chunk->skb->len) chunk->skb = skb_shinfo(chunk->skb)->frag_list; if (WARN_ON(!chunk->skb)) { __SCTP_INC_STATS(dev_net(chunk->skb->dev), SCTP_MIB_IN_PKT_DISCARDS); sctp_chunk_free(chunk); goto next_chunk; } } if (chunk->asoc) sock_rps_save_rxhash(chunk->asoc->base.sk, chunk->skb); queue->in_progress = chunk; new_skb: /* This is the first chunk in the packet. */ ch = (struct sctp_chunkhdr *)chunk->skb->data; chunk->singleton = 1; chunk->data_accepted = 0; chunk->pdiscard = 0; chunk->auth = 0; chunk->has_asconf = 0; chunk->end_of_packet = 0; if (chunk->head_skb) { struct sctp_input_cb *cb = SCTP_INPUT_CB(chunk->skb), *head_cb = SCTP_INPUT_CB(chunk->head_skb); cb->chunk = head_cb->chunk; cb->af = head_cb->af; } } chunk->chunk_hdr = ch; chunk->chunk_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); skb_pull(chunk->skb, sizeof(*ch)); chunk->subh.v = NULL; /* Subheader is no longer valid. */ if (chunk->chunk_end + sizeof(*ch) <= skb_tail_pointer(chunk->skb)) { /* This is not a singleton */ chunk->singleton = 0; } else if (chunk->chunk_end > skb_tail_pointer(chunk->skb)) { /* Discard inside state machine. */ chunk->pdiscard = 1; chunk->chunk_end = skb_tail_pointer(chunk->skb); } else { /* We are at the end of the packet, so mark the chunk * in case we need to send a SACK. */ chunk->end_of_packet = 1; } pr_debug("+++sctp_inq_pop+++ chunk:%p[%s], length:%d, skb->len:%d\n", chunk, sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)), ntohs(chunk->chunk_hdr->length), chunk->skb->len); return chunk; } /* Set a top-half handler. * * Originally, we the top-half handler was scheduled as a BH. We now * call the handler directly in sctp_inq_push() at a time that * we know we are lock safe. * The intent is that this routine will pull stuff out of the * inqueue and process it. */ void sctp_inq_set_th_handler(struct sctp_inq *q, work_func_t callback) { INIT_WORK(&q->immediate, callback); }
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 6 6 1 96 96 14 13 11 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/proc/root.c * * Copyright (C) 1991, 1992 Linus Torvalds * * proc root directory handling functions */ #include <linux/errno.h> #include <linux/time.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/sched/stat.h> #include <linux/module.h> #include <linux/bitops.h> #include <linux/user_namespace.h> #include <linux/fs_context.h> #include <linux/mount.h> #include <linux/pid_namespace.h> #include <linux/fs_parser.h> #include <linux/cred.h> #include <linux/magic.h> #include <linux/slab.h> #include "internal.h" struct proc_fs_context { struct pid_namespace *pid_ns; unsigned int mask; enum proc_hidepid hidepid; int gid; enum proc_pidonly pidonly; }; enum proc_param { Opt_gid, Opt_hidepid, Opt_subset, }; static const struct fs_parameter_spec proc_fs_parameters[] = { fsparam_u32("gid", Opt_gid), fsparam_string("hidepid", Opt_hidepid), fsparam_string("subset", Opt_subset), {} }; static inline int valid_hidepid(unsigned int value) { return (value == HIDEPID_OFF || value == HIDEPID_NO_ACCESS || value == HIDEPID_INVISIBLE || value == HIDEPID_NOT_PTRACEABLE); } static int proc_parse_hidepid_param(struct fs_context *fc, struct fs_parameter *param) { struct proc_fs_context *ctx = fc->fs_private; struct fs_parameter_spec hidepid_u32_spec = fsparam_u32("hidepid", Opt_hidepid); struct fs_parse_result result; int base = (unsigned long)hidepid_u32_spec.data; if (param->type != fs_value_is_string) return invalf(fc, "proc: unexpected type of hidepid value\n"); if (!kstrtouint(param->string, base, &result.uint_32)) { if (!valid_hidepid(result.uint_32)) return invalf(fc, "proc: unknown value of hidepid - %s\n", param->string); ctx->hidepid = result.uint_32; return 0; } if (!strcmp(param->string, "off")) ctx->hidepid = HIDEPID_OFF; else if (!strcmp(param->string, "noaccess")) ctx->hidepid = HIDEPID_NO_ACCESS; else if (!strcmp(param->string, "invisible")) ctx->hidepid = HIDEPID_INVISIBLE; else if (!strcmp(param->string, "ptraceable")) ctx->hidepid = HIDEPID_NOT_PTRACEABLE; else return invalf(fc, "proc: unknown value of hidepid - %s\n", param->string); return 0; } static int proc_parse_subset_param(struct fs_context *fc, char *value) { struct proc_fs_context *ctx = fc->fs_private; while (value) { char *ptr = strchr(value, ','); if (ptr != NULL) *ptr++ = '\0'; if (*value != '\0') { if (!strcmp(value, "pid")) { ctx->pidonly = PROC_PIDONLY_ON; } else { return invalf(fc, "proc: unsupported subset option - %s\n", value); } } value = ptr; } return 0; } static int proc_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct proc_fs_context *ctx = fc->fs_private; struct fs_parse_result result; int opt; opt = fs_parse(fc, proc_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_gid: ctx->gid = result.uint_32; break; case Opt_hidepid: if (proc_parse_hidepid_param(fc, param)) return -EINVAL; break; case Opt_subset: if (proc_parse_subset_param(fc, param->string) < 0) return -EINVAL; break; default: return -EINVAL; } ctx->mask |= 1 << opt; return 0; } static void proc_apply_options(struct proc_fs_info *fs_info, struct fs_context *fc, struct user_namespace *user_ns) { struct proc_fs_context *ctx = fc->fs_private; if (ctx->mask & (1 << Opt_gid)) fs_info->pid_gid = make_kgid(user_ns, ctx->gid); if (ctx->mask & (1 << Opt_hidepid)) fs_info->hide_pid = ctx->hidepid; if (ctx->mask & (1 << Opt_subset)) fs_info->pidonly = ctx->pidonly; } static int proc_fill_super(struct super_block *s, struct fs_context *fc) { struct proc_fs_context *ctx = fc->fs_private; struct inode *root_inode; struct proc_fs_info *fs_info; int ret; fs_info = kzalloc(sizeof(*fs_info), GFP_KERNEL); if (!fs_info) return -ENOMEM; fs_info->pid_ns = get_pid_ns(ctx->pid_ns); proc_apply_options(fs_info, fc, current_user_ns()); /* User space would break if executables or devices appear on proc */ s->s_iflags |= SB_I_USERNS_VISIBLE | SB_I_NOEXEC | SB_I_NODEV; s->s_flags |= SB_NODIRATIME | SB_NOSUID | SB_NOEXEC; s->s_blocksize = 1024; s->s_blocksize_bits = 10; s->s_magic = PROC_SUPER_MAGIC; s->s_op = &proc_sops; s->s_time_gran = 1; s->s_fs_info = fs_info; /* * procfs isn't actually a stacking filesystem; however, there is * too much magic going on inside it to permit stacking things on * top of it */ s->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; /* procfs dentries and inodes don't require IO to create */ s->s_shrink->seeks = 0; pde_get(&proc_root); root_inode = proc_get_inode(s, &proc_root); if (!root_inode) { pr_err("proc_fill_super: get root inode failed\n"); return -ENOMEM; } s->s_root = d_make_root(root_inode); if (!s->s_root) { pr_err("proc_fill_super: allocate dentry failed\n"); return -ENOMEM; } ret = proc_setup_self(s); if (ret) { return ret; } return proc_setup_thread_self(s); } static int proc_reconfigure(struct fs_context *fc) { struct super_block *sb = fc->root->d_sb; struct proc_fs_info *fs_info = proc_sb_info(sb); sync_filesystem(sb); proc_apply_options(fs_info, fc, current_user_ns()); return 0; } static int proc_get_tree(struct fs_context *fc) { return get_tree_nodev(fc, proc_fill_super); } static void proc_fs_context_free(struct fs_context *fc) { struct proc_fs_context *ctx = fc->fs_private; put_pid_ns(ctx->pid_ns); kfree(ctx); } static const struct fs_context_operations proc_fs_context_ops = { .free = proc_fs_context_free, .parse_param = proc_parse_param, .get_tree = proc_get_tree, .reconfigure = proc_reconfigure, }; static int proc_init_fs_context(struct fs_context *fc) { struct proc_fs_context *ctx; ctx = kzalloc(sizeof(struct proc_fs_context), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->pid_ns = get_pid_ns(task_active_pid_ns(current)); put_user_ns(fc->user_ns); fc->user_ns = get_user_ns(ctx->pid_ns->user_ns); fc->fs_private = ctx; fc->ops = &proc_fs_context_ops; return 0; } static void proc_kill_sb(struct super_block *sb) { struct proc_fs_info *fs_info = proc_sb_info(sb); if (!fs_info) { kill_anon_super(sb); return; } dput(fs_info->proc_self); dput(fs_info->proc_thread_self); kill_anon_super(sb); put_pid_ns(fs_info->pid_ns); kfree_rcu(fs_info, rcu); } static struct file_system_type proc_fs_type = { .name = "proc", .init_fs_context = proc_init_fs_context, .parameters = proc_fs_parameters, .kill_sb = proc_kill_sb, .fs_flags = FS_USERNS_MOUNT | FS_DISALLOW_NOTIFY_PERM, }; void __init proc_root_init(void) { proc_init_kmemcache(); set_proc_pid_nlink(); proc_self_init(); proc_thread_self_init(); proc_symlink("mounts", NULL, "self/mounts"); proc_net_init(); proc_mkdir("fs", NULL); proc_mkdir("driver", NULL); proc_create_mount_point("fs/nfsd"); /* somewhere for the nfsd filesystem to be mounted */ #if defined(CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE) /* just give it a mountpoint */ proc_create_mount_point("openprom"); #endif proc_tty_init(); proc_mkdir("bus", NULL); proc_sys_init(); /* * Last things last. It is not like userspace processes eager * to open /proc files exist at this point but register last * anyway. */ register_filesystem(&proc_fs_type); } static int proc_root_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { generic_fillattr(&nop_mnt_idmap, request_mask, d_inode(path->dentry), stat); stat->nlink = proc_root.nlink + nr_processes(); return 0; } static struct dentry *proc_root_lookup(struct inode * dir, struct dentry * dentry, unsigned int flags) { if (!proc_pid_lookup(dentry, flags)) return NULL; return proc_lookup(dir, dentry, flags); } static int proc_root_readdir(struct file *file, struct dir_context *ctx) { if (ctx->pos < FIRST_PROCESS_ENTRY) { int error = proc_readdir(file, ctx); if (unlikely(error <= 0)) return error; ctx->pos = FIRST_PROCESS_ENTRY; } return proc_pid_readdir(file, ctx); } /* * The root /proc directory is special, as it has the * <pid> directories. Thus we don't use the generic * directory handling functions for that.. */ static const struct file_operations proc_root_operations = { .read = generic_read_dir, .iterate_shared = proc_root_readdir, .llseek = generic_file_llseek, }; /* * proc root can do almost nothing.. */ static const struct inode_operations proc_root_inode_operations = { .lookup = proc_root_lookup, .getattr = proc_root_getattr, }; /* * This is the root "inode" in the /proc tree.. */ struct proc_dir_entry proc_root = { .low_ino = PROC_ROOT_INO, .namelen = 5, .mode = S_IFDIR | S_IRUGO | S_IXUGO, .nlink = 2, .refcnt = REFCOUNT_INIT(1), .proc_iops = &proc_root_inode_operations, .proc_dir_ops = &proc_root_operations, .parent = &proc_root, .subdir = RB_ROOT, .name = "/proc", };
12 2 371 8252 8251 62 2 63 7883 104 1098 2920 5035 5693 50 7 2 4216 145 8378 3 80 4128 54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Berkeley style UIO structures - Alan Cox 1994. */ #ifndef __LINUX_UIO_H #define __LINUX_UIO_H #include <linux/kernel.h> #include <linux/mm_types.h> #include <linux/ucopysize.h> #include <uapi/linux/uio.h> struct page; struct folio_queue; typedef unsigned int __bitwise iov_iter_extraction_t; struct kvec { void *iov_base; /* and that should *never* hold a userland pointer */ size_t iov_len; }; enum iter_type { /* iter types */ ITER_UBUF, ITER_IOVEC, ITER_BVEC, ITER_KVEC, ITER_FOLIOQ, ITER_XARRAY, ITER_DISCARD, }; #define ITER_SOURCE 1 // == WRITE #define ITER_DEST 0 // == READ struct iov_iter_state { size_t iov_offset; size_t count; unsigned long nr_segs; }; struct iov_iter { u8 iter_type; bool nofault; bool data_source; size_t iov_offset; /* * Hack alert: overlay ubuf_iovec with iovec + count, so * that the members resolve correctly regardless of the type * of iterator used. This means that you can use: * * &iter->__ubuf_iovec or iter->__iov * * interchangably for the user_backed cases, hence simplifying * some of the cases that need to deal with both. */ union { /* * This really should be a const, but we cannot do that without * also modifying any of the zero-filling iter init functions. * Leave it non-const for now, but it should be treated as such. */ struct iovec __ubuf_iovec; struct { union { /* use iter_iov() to get the current vec */ const struct iovec *__iov; const struct kvec *kvec; const struct bio_vec *bvec; const struct folio_queue *folioq; struct xarray *xarray; void __user *ubuf; }; size_t count; }; }; union { unsigned long nr_segs; u8 folioq_slot; loff_t xarray_start; }; }; typedef __u16 uio_meta_flags_t; struct uio_meta { uio_meta_flags_t flags; u16 app_tag; u64 seed; struct iov_iter iter; }; static inline const struct iovec *iter_iov(const struct iov_iter *iter) { if (iter->iter_type == ITER_UBUF) return (const struct iovec *) &iter->__ubuf_iovec; return iter->__iov; } #define iter_iov_addr(iter) (iter_iov(iter)->iov_base + (iter)->iov_offset) #define iter_iov_len(iter) (iter_iov(iter)->iov_len - (iter)->iov_offset) static inline enum iter_type iov_iter_type(const struct iov_iter *i) { return i->iter_type; } static inline void iov_iter_save_state(struct iov_iter *iter, struct iov_iter_state *state) { state->iov_offset = iter->iov_offset; state->count = iter->count; state->nr_segs = iter->nr_segs; } static inline bool iter_is_ubuf(const struct iov_iter *i) { return iov_iter_type(i) == ITER_UBUF; } static inline bool iter_is_iovec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_IOVEC; } static inline bool iov_iter_is_kvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_KVEC; } static inline bool iov_iter_is_bvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_BVEC; } static inline bool iov_iter_is_discard(const struct iov_iter *i) { return iov_iter_type(i) == ITER_DISCARD; } static inline bool iov_iter_is_folioq(const struct iov_iter *i) { return iov_iter_type(i) == ITER_FOLIOQ; } static inline bool iov_iter_is_xarray(const struct iov_iter *i) { return iov_iter_type(i) == ITER_XARRAY; } static inline unsigned char iov_iter_rw(const struct iov_iter *i) { return i->data_source ? WRITE : READ; } static inline bool user_backed_iter(const struct iov_iter *i) { return iter_is_ubuf(i) || iter_is_iovec(i); } /* * Total number of bytes covered by an iovec. * * NOTE that it is not safe to use this function until all the iovec's * segment lengths have been validated. Because the individual lengths can * overflow a size_t when added together. */ static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs) { unsigned long seg; size_t ret = 0; for (seg = 0; seg < nr_segs; seg++) ret += iov[seg].iov_len; return ret; } size_t copy_page_from_iter_atomic(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); void iov_iter_advance(struct iov_iter *i, size_t bytes); void iov_iter_revert(struct iov_iter *i, size_t bytes); size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t bytes); size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t bytes); size_t iov_iter_single_seg_count(const struct iov_iter *i); size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i); static inline size_t copy_folio_to_iter(struct folio *folio, size_t offset, size_t bytes, struct iov_iter *i) { return copy_page_to_iter(&folio->page, offset, bytes, i); } static inline size_t copy_folio_from_iter(struct folio *folio, size_t offset, size_t bytes, struct iov_iter *i) { return copy_page_from_iter(&folio->page, offset, bytes, i); } static inline size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset, size_t bytes, struct iov_iter *i) { return copy_page_from_iter_atomic(&folio->page, offset, bytes, i); } size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, struct iov_iter *i); static __always_inline __must_check size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (check_copy_size(addr, bytes, true)) return _copy_to_iter(addr, bytes, i); return 0; } static __always_inline __must_check size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { if (check_copy_size(addr, bytes, false)) return _copy_from_iter(addr, bytes, i); return 0; } static __always_inline __must_check bool copy_to_iter_full(const void *addr, size_t bytes, struct iov_iter *i) { size_t copied = copy_to_iter(addr, bytes, i); if (likely(copied == bytes)) return true; iov_iter_revert(i, copied); return false; } static __always_inline __must_check bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) { size_t copied = copy_from_iter(addr, bytes, i); if (likely(copied == bytes)) return true; iov_iter_revert(i, copied); return false; } static __always_inline __must_check size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (check_copy_size(addr, bytes, false)) return _copy_from_iter_nocache(addr, bytes, i); return 0; } static __always_inline __must_check bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) { size_t copied = copy_from_iter_nocache(addr, bytes, i); if (likely(copied == bytes)) return true; iov_iter_revert(i, copied); return false; } #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /* * Note, users like pmem that depend on the stricter semantics of * _copy_from_iter_flushcache() than _copy_from_iter_nocache() must check for * IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the * destination is flushed from the cache on return. */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_from_iter_flushcache _copy_from_iter_nocache #endif #ifdef CONFIG_ARCH_HAS_COPY_MC size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_mc_to_iter _copy_to_iter #endif size_t iov_iter_zero(size_t bytes, struct iov_iter *); bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, unsigned len_mask); unsigned long iov_iter_alignment(const struct iov_iter *i); unsigned long iov_iter_gap_alignment(const struct iov_iter *i); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count); void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count); void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, const struct folio_queue *folioq, unsigned int first_slot, unsigned int offset, size_t count); void iov_iter_xarray(struct iov_iter *i, unsigned int direction, struct xarray *xarray, loff_t start, size_t count); ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start); ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start); int iov_iter_npages(const struct iov_iter *i, int maxpages); void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags); static inline size_t iov_iter_count(const struct iov_iter *i) { return i->count; } /* * Cap the iov_iter by given limit; note that the second argument is * *not* the new size - it's upper limit for such. Passing it a value * greater than the amount of data in iov_iter is fine - it'll just do * nothing in that case. */ static inline void iov_iter_truncate(struct iov_iter *i, u64 count) { /* * count doesn't have to fit in size_t - comparison extends both * operands to u64 here and any value that would be truncated by * conversion in assignement is by definition greater than all * values of size_t, including old i->count. */ if (i->count > count) i->count = count; } /* * reexpand a previously truncated iterator; count must be no more than how much * we had shrunk it. */ static inline void iov_iter_reexpand(struct iov_iter *i, size_t count) { i->count = count; } static inline int iov_iter_npages_cap(struct iov_iter *i, int maxpages, size_t max_bytes) { size_t shorted = 0; int npages; if (iov_iter_count(i) > max_bytes) { shorted = iov_iter_count(i) - max_bytes; iov_iter_truncate(i, max_bytes); } npages = iov_iter_npages(i, maxpages); if (shorted) iov_iter_reexpand(i, iov_iter_count(i) + shorted); return npages; } struct iovec *iovec_from_user(const struct iovec __user *uvector, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat); ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i); ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat); int import_ubuf(int type, void __user *buf, size_t len, struct iov_iter *i); static inline void iov_iter_ubuf(struct iov_iter *i, unsigned int direction, void __user *buf, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter) { .iter_type = ITER_UBUF, .data_source = direction, .ubuf = buf, .count = count, .nr_segs = 1 }; } /* Flags for iov_iter_get/extract_pages*() */ /* Allow P2PDMA on the extracted pages */ #define ITER_ALLOW_P2PDMA ((__force iov_iter_extraction_t)0x01) ssize_t iov_iter_extract_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, iov_iter_extraction_t extraction_flags, size_t *offset0); /** * iov_iter_extract_will_pin - Indicate how pages from the iterator will be retained * @iter: The iterator * * Examine the iterator and indicate by returning true or false as to how, if * at all, pages extracted from the iterator will be retained by the extraction * function. * * %true indicates that the pages will have a pin placed in them that the * caller must unpin. This is must be done for DMA/async DIO to force fork() * to forcibly copy a page for the child (the parent must retain the original * page). * * %false indicates that no measures are taken and that it's up to the caller * to retain the pages. */ static inline bool iov_iter_extract_will_pin(const struct iov_iter *iter) { return user_backed_iter(iter); } struct sg_table; ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t len, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags); #endif
94 81 81 81 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* AF_RXRPC tracepoints * * Copyright (C) 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rxrpc #if !defined(_TRACE_RXRPC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RXRPC_H #include <linux/tracepoint.h> #include <linux/errqueue.h> /* * Declare tracing information enums and their string mappings for display. */ #define rxrpc_abort_reasons \ /* AFS errors */ \ EM(afs_abort_general_error, "afs-error") \ EM(afs_abort_interrupted, "afs-intr") \ EM(afs_abort_oom, "afs-oom") \ EM(afs_abort_op_not_supported, "afs-op-notsupp") \ EM(afs_abort_probeuuid_negative, "afs-probeuuid-neg") \ EM(afs_abort_send_data_error, "afs-send-data") \ EM(afs_abort_unmarshal_error, "afs-unmarshal") \ /* rxperf errors */ \ EM(rxperf_abort_general_error, "rxperf-error") \ EM(rxperf_abort_oom, "rxperf-oom") \ EM(rxperf_abort_op_not_supported, "rxperf-op-notsupp") \ EM(rxperf_abort_unmarshal_error, "rxperf-unmarshal") \ /* RxKAD security errors */ \ EM(rxkad_abort_1_short_check, "rxkad1-short-check") \ EM(rxkad_abort_1_short_data, "rxkad1-short-data") \ EM(rxkad_abort_1_short_encdata, "rxkad1-short-encdata") \ EM(rxkad_abort_1_short_header, "rxkad1-short-hdr") \ EM(rxkad_abort_2_short_check, "rxkad2-short-check") \ EM(rxkad_abort_2_short_data, "rxkad2-short-data") \ EM(rxkad_abort_2_short_header, "rxkad2-short-hdr") \ EM(rxkad_abort_2_short_len, "rxkad2-short-len") \ EM(rxkad_abort_bad_checksum, "rxkad2-bad-cksum") \ EM(rxkad_abort_chall_key_expired, "rxkad-chall-key-exp") \ EM(rxkad_abort_chall_level, "rxkad-chall-level") \ EM(rxkad_abort_chall_no_key, "rxkad-chall-nokey") \ EM(rxkad_abort_chall_short, "rxkad-chall-short") \ EM(rxkad_abort_chall_version, "rxkad-chall-version") \ EM(rxkad_abort_resp_bad_callid, "rxkad-resp-bad-callid") \ EM(rxkad_abort_resp_bad_checksum, "rxkad-resp-bad-cksum") \ EM(rxkad_abort_resp_bad_param, "rxkad-resp-bad-param") \ EM(rxkad_abort_resp_call_ctr, "rxkad-resp-call-ctr") \ EM(rxkad_abort_resp_call_state, "rxkad-resp-call-state") \ EM(rxkad_abort_resp_key_expired, "rxkad-resp-key-exp") \ EM(rxkad_abort_resp_key_rejected, "rxkad-resp-key-rej") \ EM(rxkad_abort_resp_level, "rxkad-resp-level") \ EM(rxkad_abort_resp_nokey, "rxkad-resp-nokey") \ EM(rxkad_abort_resp_ooseq, "rxkad-resp-ooseq") \ EM(rxkad_abort_resp_short, "rxkad-resp-short") \ EM(rxkad_abort_resp_short_tkt, "rxkad-resp-short-tkt") \ EM(rxkad_abort_resp_tkt_aname, "rxkad-resp-tk-aname") \ EM(rxkad_abort_resp_tkt_expired, "rxkad-resp-tk-exp") \ EM(rxkad_abort_resp_tkt_future, "rxkad-resp-tk-future") \ EM(rxkad_abort_resp_tkt_inst, "rxkad-resp-tk-inst") \ EM(rxkad_abort_resp_tkt_len, "rxkad-resp-tk-len") \ EM(rxkad_abort_resp_tkt_realm, "rxkad-resp-tk-realm") \ EM(rxkad_abort_resp_tkt_short, "rxkad-resp-tk-short") \ EM(rxkad_abort_resp_tkt_sinst, "rxkad-resp-tk-sinst") \ EM(rxkad_abort_resp_tkt_sname, "rxkad-resp-tk-sname") \ EM(rxkad_abort_resp_unknown_tkt, "rxkad-resp-unknown-tkt") \ EM(rxkad_abort_resp_version, "rxkad-resp-version") \ /* rxrpc errors */ \ EM(rxrpc_abort_call_improper_term, "call-improper-term") \ EM(rxrpc_abort_call_reset, "call-reset") \ EM(rxrpc_abort_call_sendmsg, "call-sendmsg") \ EM(rxrpc_abort_call_sock_release, "call-sock-rel") \ EM(rxrpc_abort_call_sock_release_tba, "call-sock-rel-tba") \ EM(rxrpc_abort_call_timeout, "call-timeout") \ EM(rxrpc_abort_no_service_key, "no-serv-key") \ EM(rxrpc_abort_nomem, "nomem") \ EM(rxrpc_abort_service_not_offered, "serv-not-offered") \ EM(rxrpc_abort_shut_down, "shut-down") \ EM(rxrpc_abort_unsupported_security, "unsup-sec") \ EM(rxrpc_badmsg_bad_abort, "bad-abort") \ EM(rxrpc_badmsg_bad_jumbo, "bad-jumbo") \ EM(rxrpc_badmsg_short_ack, "short-ack") \ EM(rxrpc_badmsg_short_ack_trailer, "short-ack-trailer") \ EM(rxrpc_badmsg_short_hdr, "short-hdr") \ EM(rxrpc_badmsg_unsupported_packet, "unsup-pkt") \ EM(rxrpc_badmsg_zero_call, "zero-call") \ EM(rxrpc_badmsg_zero_seq, "zero-seq") \ EM(rxrpc_badmsg_zero_service, "zero-service") \ EM(rxrpc_eproto_ackr_outside_window, "ackr-out-win") \ EM(rxrpc_eproto_ackr_sack_overflow, "ackr-sack-over") \ EM(rxrpc_eproto_ackr_short_sack, "ackr-short-sack") \ EM(rxrpc_eproto_ackr_zero, "ackr-zero") \ EM(rxrpc_eproto_bad_upgrade, "bad-upgrade") \ EM(rxrpc_eproto_data_after_last, "data-after-last") \ EM(rxrpc_eproto_different_last, "diff-last") \ EM(rxrpc_eproto_early_reply, "early-reply") \ EM(rxrpc_eproto_improper_term, "improper-term") \ EM(rxrpc_eproto_no_client_call, "no-cl-call") \ EM(rxrpc_eproto_no_client_conn, "no-cl-conn") \ EM(rxrpc_eproto_no_service_call, "no-sv-call") \ EM(rxrpc_eproto_reupgrade, "re-upgrade") \ EM(rxrpc_eproto_rxnull_challenge, "rxnull-chall") \ EM(rxrpc_eproto_rxnull_response, "rxnull-resp") \ EM(rxrpc_eproto_tx_rot_last, "tx-rot-last") \ EM(rxrpc_eproto_unexpected_ack, "unex-ack") \ EM(rxrpc_eproto_unexpected_ackall, "unex-ackall") \ EM(rxrpc_eproto_unexpected_implicit_end, "unex-impl-end") \ EM(rxrpc_eproto_unexpected_reply, "unex-reply") \ EM(rxrpc_eproto_wrong_security, "wrong-sec") \ EM(rxrpc_recvmsg_excess_data, "recvmsg-excess") \ EM(rxrpc_recvmsg_short_data, "recvmsg-short") \ E_(rxrpc_sendmsg_late_send, "sendmsg-late") #define rxrpc_call_poke_traces \ EM(rxrpc_call_poke_abort, "Abort") \ EM(rxrpc_call_poke_complete, "Compl") \ EM(rxrpc_call_poke_conn_abort, "Conn-abort") \ EM(rxrpc_call_poke_error, "Error") \ EM(rxrpc_call_poke_idle, "Idle") \ EM(rxrpc_call_poke_rx_packet, "Rx-packet") \ EM(rxrpc_call_poke_set_timeout, "Set-timo") \ EM(rxrpc_call_poke_start, "Start") \ EM(rxrpc_call_poke_timer, "Timer") \ E_(rxrpc_call_poke_timer_now, "Timer-now") #define rxrpc_skb_traces \ EM(rxrpc_skb_eaten_by_unshare, "ETN unshare ") \ EM(rxrpc_skb_eaten_by_unshare_nomem, "ETN unshar-nm") \ EM(rxrpc_skb_get_call_rx, "GET call-rx ") \ EM(rxrpc_skb_get_conn_secured, "GET conn-secd") \ EM(rxrpc_skb_get_conn_work, "GET conn-work") \ EM(rxrpc_skb_get_local_work, "GET locl-work") \ EM(rxrpc_skb_get_reject_work, "GET rej-work ") \ EM(rxrpc_skb_get_to_recvmsg, "GET to-recv ") \ EM(rxrpc_skb_get_to_recvmsg_oos, "GET to-recv-o") \ EM(rxrpc_skb_new_encap_rcv, "NEW encap-rcv") \ EM(rxrpc_skb_new_error_report, "NEW error-rpt") \ EM(rxrpc_skb_new_jumbo_subpacket, "NEW jumbo-sub") \ EM(rxrpc_skb_new_unshared, "NEW unshared ") \ EM(rxrpc_skb_put_call_rx, "PUT call-rx ") \ EM(rxrpc_skb_put_conn_secured, "PUT conn-secd") \ EM(rxrpc_skb_put_conn_work, "PUT conn-work") \ EM(rxrpc_skb_put_error_report, "PUT error-rep") \ EM(rxrpc_skb_put_input, "PUT input ") \ EM(rxrpc_skb_put_jumbo_subpacket, "PUT jumbo-sub") \ EM(rxrpc_skb_put_purge, "PUT purge ") \ EM(rxrpc_skb_put_rotate, "PUT rotate ") \ EM(rxrpc_skb_put_unknown, "PUT unknown ") \ EM(rxrpc_skb_see_conn_work, "SEE conn-work") \ EM(rxrpc_skb_see_recvmsg, "SEE recvmsg ") \ EM(rxrpc_skb_see_reject, "SEE reject ") \ EM(rxrpc_skb_see_rotate, "SEE rotate ") \ E_(rxrpc_skb_see_version, "SEE version ") #define rxrpc_local_traces \ EM(rxrpc_local_free, "FREE ") \ EM(rxrpc_local_get_call, "GET call ") \ EM(rxrpc_local_get_client_conn, "GET conn-cln") \ EM(rxrpc_local_get_for_use, "GET for-use ") \ EM(rxrpc_local_get_peer, "GET peer ") \ EM(rxrpc_local_get_prealloc_conn, "GET conn-pre") \ EM(rxrpc_local_new, "NEW ") \ EM(rxrpc_local_put_bind, "PUT bind ") \ EM(rxrpc_local_put_call, "PUT call ") \ EM(rxrpc_local_put_for_use, "PUT for-use ") \ EM(rxrpc_local_put_kill_conn, "PUT conn-kil") \ EM(rxrpc_local_put_peer, "PUT peer ") \ EM(rxrpc_local_put_prealloc_peer, "PUT peer-pre") \ EM(rxrpc_local_put_release_sock, "PUT rel-sock") \ EM(rxrpc_local_stop, "STOP ") \ EM(rxrpc_local_stopped, "STOPPED ") \ EM(rxrpc_local_unuse_bind, "UNU bind ") \ EM(rxrpc_local_unuse_conn_work, "UNU conn-wrk") \ EM(rxrpc_local_unuse_peer_keepalive, "UNU peer-kpa") \ EM(rxrpc_local_unuse_release_sock, "UNU rel-sock") \ EM(rxrpc_local_use_conn_work, "USE conn-wrk") \ EM(rxrpc_local_use_lookup, "USE lookup ") \ E_(rxrpc_local_use_peer_keepalive, "USE peer-kpa") #define rxrpc_peer_traces \ EM(rxrpc_peer_free, "FREE ") \ EM(rxrpc_peer_get_accept, "GET accept ") \ EM(rxrpc_peer_get_application, "GET app ") \ EM(rxrpc_peer_get_bundle, "GET bundle ") \ EM(rxrpc_peer_get_call, "GET call ") \ EM(rxrpc_peer_get_client_conn, "GET cln-conn") \ EM(rxrpc_peer_get_input, "GET input ") \ EM(rxrpc_peer_get_input_error, "GET inpt-err") \ EM(rxrpc_peer_get_keepalive, "GET keepaliv") \ EM(rxrpc_peer_get_lookup_client, "GET look-cln") \ EM(rxrpc_peer_get_service_conn, "GET srv-conn") \ EM(rxrpc_peer_new_client, "NEW client ") \ EM(rxrpc_peer_new_prealloc, "NEW prealloc") \ EM(rxrpc_peer_put_application, "PUT app ") \ EM(rxrpc_peer_put_bundle, "PUT bundle ") \ EM(rxrpc_peer_put_call, "PUT call ") \ EM(rxrpc_peer_put_conn, "PUT conn ") \ EM(rxrpc_peer_put_input, "PUT input ") \ EM(rxrpc_peer_put_input_error, "PUT inpt-err") \ E_(rxrpc_peer_put_keepalive, "PUT keepaliv") #define rxrpc_bundle_traces \ EM(rxrpc_bundle_free, "FREE ") \ EM(rxrpc_bundle_get_client_call, "GET clt-call") \ EM(rxrpc_bundle_get_client_conn, "GET clt-conn") \ EM(rxrpc_bundle_get_service_conn, "GET svc-conn") \ EM(rxrpc_bundle_put_call, "PUT call ") \ EM(rxrpc_bundle_put_conn, "PUT conn ") \ EM(rxrpc_bundle_put_discard, "PUT discard ") \ E_(rxrpc_bundle_new, "NEW ") #define rxrpc_conn_traces \ EM(rxrpc_conn_free, "FREE ") \ EM(rxrpc_conn_get_activate_call, "GET act-call") \ EM(rxrpc_conn_get_call_input, "GET inp-call") \ EM(rxrpc_conn_get_conn_input, "GET inp-conn") \ EM(rxrpc_conn_get_idle, "GET idle ") \ EM(rxrpc_conn_get_poke_abort, "GET pk-abort") \ EM(rxrpc_conn_get_poke_secured, "GET secured ") \ EM(rxrpc_conn_get_poke_timer, "GET poke ") \ EM(rxrpc_conn_get_service_conn, "GET svc-conn") \ EM(rxrpc_conn_new_client, "NEW client ") \ EM(rxrpc_conn_new_service, "NEW service ") \ EM(rxrpc_conn_put_call, "PUT call ") \ EM(rxrpc_conn_put_call_input, "PUT inp-call") \ EM(rxrpc_conn_put_conn_input, "PUT inp-conn") \ EM(rxrpc_conn_put_discard_idle, "PUT disc-idl") \ EM(rxrpc_conn_put_local_dead, "PUT loc-dead") \ EM(rxrpc_conn_put_noreuse, "PUT noreuse ") \ EM(rxrpc_conn_put_poke, "PUT poke ") \ EM(rxrpc_conn_put_service_reaped, "PUT svc-reap") \ EM(rxrpc_conn_put_unbundle, "PUT unbundle") \ EM(rxrpc_conn_put_unidle, "PUT unidle ") \ EM(rxrpc_conn_put_work, "PUT work ") \ EM(rxrpc_conn_queue_challenge, "QUE chall ") \ EM(rxrpc_conn_queue_retry_work, "QUE retry-wk") \ EM(rxrpc_conn_queue_rx_work, "QUE rx-work ") \ EM(rxrpc_conn_see_new_service_conn, "SEE new-svc ") \ EM(rxrpc_conn_see_reap_service, "SEE reap-svc") \ E_(rxrpc_conn_see_work, "SEE work ") #define rxrpc_client_traces \ EM(rxrpc_client_activate_chans, "Activa") \ EM(rxrpc_client_alloc, "Alloc ") \ EM(rxrpc_client_chan_activate, "ChActv") \ EM(rxrpc_client_chan_disconnect, "ChDisc") \ EM(rxrpc_client_chan_pass, "ChPass") \ EM(rxrpc_client_cleanup, "Clean ") \ EM(rxrpc_client_discard, "Discar") \ EM(rxrpc_client_exposed, "Expose") \ EM(rxrpc_client_replace, "Replac") \ EM(rxrpc_client_queue_new_call, "Q-Call") \ EM(rxrpc_client_to_active, "->Actv") \ E_(rxrpc_client_to_idle, "->Idle") #define rxrpc_call_traces \ EM(rxrpc_call_get_io_thread, "GET iothread") \ EM(rxrpc_call_get_input, "GET input ") \ EM(rxrpc_call_get_kernel_service, "GET krnl-srv") \ EM(rxrpc_call_get_notify_socket, "GET notify ") \ EM(rxrpc_call_get_poke, "GET poke ") \ EM(rxrpc_call_get_recvmsg, "GET recvmsg ") \ EM(rxrpc_call_get_release_sock, "GET rel-sock") \ EM(rxrpc_call_get_sendmsg, "GET sendmsg ") \ EM(rxrpc_call_get_userid, "GET user-id ") \ EM(rxrpc_call_new_client, "NEW client ") \ EM(rxrpc_call_new_prealloc_service, "NEW prealloc") \ EM(rxrpc_call_put_discard_prealloc, "PUT disc-pre") \ EM(rxrpc_call_put_discard_error, "PUT disc-err") \ EM(rxrpc_call_put_io_thread, "PUT iothread") \ EM(rxrpc_call_put_input, "PUT input ") \ EM(rxrpc_call_put_kernel, "PUT kernel ") \ EM(rxrpc_call_put_poke, "PUT poke ") \ EM(rxrpc_call_put_recvmsg, "PUT recvmsg ") \ EM(rxrpc_call_put_release_sock, "PUT rls-sock") \ EM(rxrpc_call_put_release_sock_tba, "PUT rls-sk-a") \ EM(rxrpc_call_put_sendmsg, "PUT sendmsg ") \ EM(rxrpc_call_put_unnotify, "PUT unnotify") \ EM(rxrpc_call_put_userid_exists, "PUT u-exists") \ EM(rxrpc_call_put_userid, "PUT user-id ") \ EM(rxrpc_call_see_accept, "SEE accept ") \ EM(rxrpc_call_see_activate_client, "SEE act-clnt") \ EM(rxrpc_call_see_connect_failed, "SEE con-fail") \ EM(rxrpc_call_see_connected, "SEE connect ") \ EM(rxrpc_call_see_conn_abort, "SEE conn-abt") \ EM(rxrpc_call_see_disconnected, "SEE disconn ") \ EM(rxrpc_call_see_distribute_error, "SEE dist-err") \ EM(rxrpc_call_see_input, "SEE input ") \ EM(rxrpc_call_see_release, "SEE release ") \ EM(rxrpc_call_see_userid_exists, "SEE u-exists") \ EM(rxrpc_call_see_waiting_call, "SEE q-conn ") \ E_(rxrpc_call_see_zap, "SEE zap ") #define rxrpc_txqueue_traces \ EM(rxrpc_txqueue_await_reply, "AWR") \ EM(rxrpc_txqueue_end, "END") \ EM(rxrpc_txqueue_queue, "QUE") \ EM(rxrpc_txqueue_queue_last, "QLS") \ EM(rxrpc_txqueue_rotate, "ROT") \ EM(rxrpc_txqueue_rotate_last, "RLS") \ E_(rxrpc_txqueue_wait, "WAI") #define rxrpc_txdata_traces \ EM(rxrpc_txdata_inject_loss, " *INJ-LOSS*") \ EM(rxrpc_txdata_new_data, " ") \ EM(rxrpc_txdata_retransmit, " *RETRANS*") \ EM(rxrpc_txdata_tlp_new_data, " *TLP-NEW*") \ E_(rxrpc_txdata_tlp_retransmit, " *TLP-RETRANS*") #define rxrpc_receive_traces \ EM(rxrpc_receive_end, "END") \ EM(rxrpc_receive_front, "FRN") \ EM(rxrpc_receive_incoming, "INC") \ EM(rxrpc_receive_queue, "QUE") \ EM(rxrpc_receive_queue_last, "QLS") \ EM(rxrpc_receive_queue_oos, "QUO") \ EM(rxrpc_receive_queue_oos_last, "QOL") \ EM(rxrpc_receive_oos, "OOS") \ EM(rxrpc_receive_oos_last, "OSL") \ EM(rxrpc_receive_rotate, "ROT") \ E_(rxrpc_receive_rotate_last, "RLS") #define rxrpc_recvmsg_traces \ EM(rxrpc_recvmsg_cont, "CONT") \ EM(rxrpc_recvmsg_data_return, "DATA") \ EM(rxrpc_recvmsg_dequeue, "DEQU") \ EM(rxrpc_recvmsg_enter, "ENTR") \ EM(rxrpc_recvmsg_full, "FULL") \ EM(rxrpc_recvmsg_hole, "HOLE") \ EM(rxrpc_recvmsg_next, "NEXT") \ EM(rxrpc_recvmsg_requeue, "REQU") \ EM(rxrpc_recvmsg_return, "RETN") \ EM(rxrpc_recvmsg_terminal, "TERM") \ EM(rxrpc_recvmsg_to_be_accepted, "TBAC") \ EM(rxrpc_recvmsg_unqueue, "UNQU") \ E_(rxrpc_recvmsg_wait, "WAIT") #define rxrpc_rtt_tx_traces \ EM(rxrpc_rtt_tx_cancel, "CNCE") \ EM(rxrpc_rtt_tx_data, "DATA") \ EM(rxrpc_rtt_tx_no_slot, "FULL") \ E_(rxrpc_rtt_tx_ping, "PING") #define rxrpc_rtt_rx_traces \ EM(rxrpc_rtt_rx_data_ack, "DACK") \ EM(rxrpc_rtt_rx_obsolete, "OBSL") \ EM(rxrpc_rtt_rx_lost, "LOST") \ E_(rxrpc_rtt_rx_ping_response, "PONG") #define rxrpc_timer_traces \ EM(rxrpc_timer_trace_delayed_ack, "DelayAck ") \ EM(rxrpc_timer_trace_expect_rx, "ExpectRx ") \ EM(rxrpc_timer_trace_hard, "HardLimit") \ EM(rxrpc_timer_trace_idle, "IdleLimit") \ EM(rxrpc_timer_trace_keepalive, "KeepAlive") \ EM(rxrpc_timer_trace_ping, "DelayPing") \ EM(rxrpc_timer_trace_rack_off, "RACK-OFF ") \ EM(rxrpc_timer_trace_rack_zwp, "RACK-ZWP ") \ EM(rxrpc_timer_trace_rack_reo, "RACK-Reo ") \ EM(rxrpc_timer_trace_rack_tlp_pto, "TLP-PTO ") \ E_(rxrpc_timer_trace_rack_rto, "RTO ") #define rxrpc_propose_ack_traces \ EM(rxrpc_propose_ack_client_tx_end, "ClTxEnd") \ EM(rxrpc_propose_ack_delayed_ack, "DlydAck") \ EM(rxrpc_propose_ack_input_data, "DataIn ") \ EM(rxrpc_propose_ack_input_data_hole, "DataInH") \ EM(rxrpc_propose_ack_ping_for_keepalive, "KeepAlv") \ EM(rxrpc_propose_ack_ping_for_lost_ack, "LostAck") \ EM(rxrpc_propose_ack_ping_for_lost_reply, "LostRpl") \ EM(rxrpc_propose_ack_ping_for_0_retrans, "0-Retrn") \ EM(rxrpc_propose_ack_ping_for_mtu_probe, "MTUProb") \ EM(rxrpc_propose_ack_ping_for_old_rtt, "OldRtt ") \ EM(rxrpc_propose_ack_ping_for_params, "Params ") \ EM(rxrpc_propose_ack_ping_for_rtt, "Rtt ") \ EM(rxrpc_propose_ack_processing_op, "ProcOp ") \ EM(rxrpc_propose_ack_respond_to_ack, "Rsp2Ack") \ EM(rxrpc_propose_ack_respond_to_ping, "Rsp2Png") \ EM(rxrpc_propose_ack_retransmit, "Retrans") \ EM(rxrpc_propose_ack_retry_tx, "RetryTx") \ EM(rxrpc_propose_ack_rotate_rx, "RxAck ") \ EM(rxrpc_propose_ack_rx_idle, "RxIdle ") \ E_(rxrpc_propose_ack_terminal_ack, "ClTerm ") #define rxrpc_ca_states \ EM(RXRPC_CA_CONGEST_AVOIDANCE, "CongAvoid") \ EM(RXRPC_CA_FAST_RETRANSMIT, "FastReTx ") \ EM(RXRPC_CA_PACKET_LOSS, "PktLoss ") \ E_(RXRPC_CA_SLOW_START, "SlowStart") #define rxrpc_congest_changes \ EM(rxrpc_cong_begin_retransmission, " Retrans") \ EM(rxrpc_cong_cleared_nacks, " Cleared") \ EM(rxrpc_cong_new_low_nack, " NewLowN") \ EM(rxrpc_cong_no_change, " -") \ EM(rxrpc_cong_progress, " Progres") \ EM(rxrpc_cong_idle_reset, " IdleRes") \ EM(rxrpc_cong_retransmit_again, " ReTxAgn") \ EM(rxrpc_cong_rtt_window_end, " RttWinE") \ E_(rxrpc_cong_saw_nack, " SawNack") #define rxrpc_pkts \ EM(0, "?00") \ EM(RXRPC_PACKET_TYPE_DATA, "DATA") \ EM(RXRPC_PACKET_TYPE_ACK, "ACK") \ EM(RXRPC_PACKET_TYPE_BUSY, "BUSY") \ EM(RXRPC_PACKET_TYPE_ABORT, "ABORT") \ EM(RXRPC_PACKET_TYPE_ACKALL, "ACKALL") \ EM(RXRPC_PACKET_TYPE_CHALLENGE, "CHALL") \ EM(RXRPC_PACKET_TYPE_RESPONSE, "RESP") \ EM(RXRPC_PACKET_TYPE_DEBUG, "DEBUG") \ EM(9, "?09") \ EM(10, "?10") \ EM(11, "?11") \ EM(12, "?12") \ EM(RXRPC_PACKET_TYPE_VERSION, "VERSION") \ EM(14, "?14") \ E_(15, "?15") #define rxrpc_ack_names \ EM(0, "-0-") \ EM(RXRPC_ACK_REQUESTED, "REQ") \ EM(RXRPC_ACK_DUPLICATE, "DUP") \ EM(RXRPC_ACK_OUT_OF_SEQUENCE, "OOS") \ EM(RXRPC_ACK_EXCEEDS_WINDOW, "WIN") \ EM(RXRPC_ACK_NOSPACE, "MEM") \ EM(RXRPC_ACK_PING, "PNG") \ EM(RXRPC_ACK_PING_RESPONSE, "PNR") \ EM(RXRPC_ACK_DELAY, "DLY") \ EM(RXRPC_ACK_IDLE, "IDL") \ E_(RXRPC_ACK__INVALID, "-?-") #define rxrpc_sack_traces \ EM(rxrpc_sack_advance, "ADV") \ EM(rxrpc_sack_fill, "FIL") \ EM(rxrpc_sack_nack, "NAK") \ EM(rxrpc_sack_none, "---") \ E_(rxrpc_sack_oos, "OOS") #define rxrpc_completions \ EM(RXRPC_CALL_SUCCEEDED, "Succeeded") \ EM(RXRPC_CALL_REMOTELY_ABORTED, "RemoteAbort") \ EM(RXRPC_CALL_LOCALLY_ABORTED, "LocalAbort") \ EM(RXRPC_CALL_LOCAL_ERROR, "LocalError") \ E_(RXRPC_CALL_NETWORK_ERROR, "NetError") #define rxrpc_tx_points \ EM(rxrpc_tx_point_call_abort, "CallAbort") \ EM(rxrpc_tx_point_call_ack, "CallAck") \ EM(rxrpc_tx_point_call_data_frag, "CallDataFrag") \ EM(rxrpc_tx_point_call_data_nofrag, "CallDataNofrag") \ EM(rxrpc_tx_point_call_final_resend, "CallFinalResend") \ EM(rxrpc_tx_point_conn_abort, "ConnAbort") \ EM(rxrpc_tx_point_reject, "Reject") \ EM(rxrpc_tx_point_rxkad_challenge, "RxkadChall") \ EM(rxrpc_tx_point_rxkad_response, "RxkadResp") \ EM(rxrpc_tx_point_version_keepalive, "VerKeepalive") \ E_(rxrpc_tx_point_version_reply, "VerReply") #define rxrpc_req_ack_traces \ EM(rxrpc_reqack_ack_lost, "ACK-LOST ") \ EM(rxrpc_reqack_app_stall, "APP-STALL ") \ EM(rxrpc_reqack_more_rtt, "MORE-RTT ") \ EM(rxrpc_reqack_no_srv_last, "NO-SRVLAST") \ EM(rxrpc_reqack_old_rtt, "OLD-RTT ") \ EM(rxrpc_reqack_retrans, "RETRANS ") \ EM(rxrpc_reqack_slow_start, "SLOW-START") \ E_(rxrpc_reqack_small_txwin, "SMALL-TXWN") /* ---- Must update size of stat_why_req_ack[] if more are added! */ #define rxrpc_txbuf_traces \ EM(rxrpc_txbuf_alloc_data, "ALLOC DATA ") \ EM(rxrpc_txbuf_free, "FREE ") \ EM(rxrpc_txbuf_get_buffer, "GET BUFFER ") \ EM(rxrpc_txbuf_get_trans, "GET TRANS ") \ EM(rxrpc_txbuf_get_retrans, "GET RETRANS") \ EM(rxrpc_txbuf_put_cleaned, "PUT CLEANED") \ EM(rxrpc_txbuf_put_nomem, "PUT NOMEM ") \ EM(rxrpc_txbuf_put_rotated, "PUT ROTATED") \ EM(rxrpc_txbuf_put_send_aborted, "PUT SEND-X ") \ EM(rxrpc_txbuf_put_trans, "PUT TRANS ") \ EM(rxrpc_txbuf_see_lost, "SEE LOST ") \ EM(rxrpc_txbuf_see_out_of_step, "OUT-OF-STEP") \ E_(rxrpc_txbuf_see_send_more, "SEE SEND+ ") #define rxrpc_tq_traces \ EM(rxrpc_tq_alloc, "ALLOC") \ EM(rxrpc_tq_cleaned, "CLEAN") \ EM(rxrpc_tq_decant, "DCNT ") \ EM(rxrpc_tq_decant_advance, "DCNT>") \ EM(rxrpc_tq_queue, "QUEUE") \ EM(rxrpc_tq_queue_dup, "QUE!!") \ EM(rxrpc_tq_rotate, "ROT ") \ EM(rxrpc_tq_rotate_and_free, "ROT-F") \ EM(rxrpc_tq_rotate_and_keep, "ROT-K") \ EM(rxrpc_tq_transmit, "XMIT ") \ E_(rxrpc_tq_transmit_advance, "XMIT>") #define rxrpc_pmtud_reduce_traces \ EM(rxrpc_pmtud_reduce_ack, "Ack ") \ EM(rxrpc_pmtud_reduce_icmp, "Icmp ") \ E_(rxrpc_pmtud_reduce_route, "Route") #define rxrpc_rotate_traces \ EM(rxrpc_rotate_trace_hack, "hard-ack") \ EM(rxrpc_rotate_trace_sack, "soft-ack") \ E_(rxrpc_rotate_trace_snak, "soft-nack") #define rxrpc_rack_timer_modes \ EM(RXRPC_CALL_RACKTIMER_OFF, "---") \ EM(RXRPC_CALL_RACKTIMER_RACK_REORDER, "REO") \ EM(RXRPC_CALL_RACKTIMER_TLP_PTO, "TLP") \ E_(RXRPC_CALL_RACKTIMER_RTO, "RTO") #define rxrpc_tlp_probe_traces \ EM(rxrpc_tlp_probe_trace_busy, "busy") \ EM(rxrpc_tlp_probe_trace_transmit_new, "transmit-new") \ E_(rxrpc_tlp_probe_trace_retransmit, "retransmit") #define rxrpc_tlp_ack_traces \ EM(rxrpc_tlp_ack_trace_acked, "acked") \ EM(rxrpc_tlp_ack_trace_dup_acked, "dup-acked") \ EM(rxrpc_tlp_ack_trace_hard_beyond, "hard-beyond") \ EM(rxrpc_tlp_ack_trace_incomplete, "incomplete") \ E_(rxrpc_tlp_ack_trace_new_data, "new-data") /* * Generate enums for tracing information. */ #ifndef __NETFS_DECLARE_TRACE_ENUMS_ONCE_ONLY #define __NETFS_DECLARE_TRACE_ENUMS_ONCE_ONLY #undef EM #undef E_ #define EM(a, b) a, #define E_(a, b) a enum rxrpc_abort_reason { rxrpc_abort_reasons } __mode(byte); enum rxrpc_bundle_trace { rxrpc_bundle_traces } __mode(byte); enum rxrpc_call_poke_trace { rxrpc_call_poke_traces } __mode(byte); enum rxrpc_call_trace { rxrpc_call_traces } __mode(byte); enum rxrpc_client_trace { rxrpc_client_traces } __mode(byte); enum rxrpc_congest_change { rxrpc_congest_changes } __mode(byte); enum rxrpc_conn_trace { rxrpc_conn_traces } __mode(byte); enum rxrpc_local_trace { rxrpc_local_traces } __mode(byte); enum rxrpc_peer_trace { rxrpc_peer_traces } __mode(byte); enum rxrpc_pmtud_reduce_trace { rxrpc_pmtud_reduce_traces } __mode(byte); enum rxrpc_propose_ack_outcome { rxrpc_propose_ack_outcomes } __mode(byte); enum rxrpc_propose_ack_trace { rxrpc_propose_ack_traces } __mode(byte); enum rxrpc_receive_trace { rxrpc_receive_traces } __mode(byte); enum rxrpc_recvmsg_trace { rxrpc_recvmsg_traces } __mode(byte); enum rxrpc_req_ack_trace { rxrpc_req_ack_traces } __mode(byte); enum rxrpc_rotate_trace { rxrpc_rotate_traces } __mode(byte); enum rxrpc_rtt_rx_trace { rxrpc_rtt_rx_traces } __mode(byte); enum rxrpc_rtt_tx_trace { rxrpc_rtt_tx_traces } __mode(byte); enum rxrpc_sack_trace { rxrpc_sack_traces } __mode(byte); enum rxrpc_skb_trace { rxrpc_skb_traces } __mode(byte); enum rxrpc_timer_trace { rxrpc_timer_traces } __mode(byte); enum rxrpc_tlp_ack_trace { rxrpc_tlp_ack_traces } __mode(byte); enum rxrpc_tlp_probe_trace { rxrpc_tlp_probe_traces } __mode(byte); enum rxrpc_tq_trace { rxrpc_tq_traces } __mode(byte); enum rxrpc_tx_point { rxrpc_tx_points } __mode(byte); enum rxrpc_txbuf_trace { rxrpc_txbuf_traces } __mode(byte); enum rxrpc_txdata_trace { rxrpc_txdata_traces } __mode(byte); enum rxrpc_txqueue_trace { rxrpc_txqueue_traces } __mode(byte); #endif /* end __RXRPC_DECLARE_TRACE_ENUMS_ONCE_ONLY */ /* * Export enum symbols via userspace. */ #undef EM #undef E_ #ifndef RXRPC_TRACE_ONLY_DEFINE_ENUMS #define EM(a, b) TRACE_DEFINE_ENUM(a); #define E_(a, b) TRACE_DEFINE_ENUM(a); rxrpc_abort_reasons; rxrpc_bundle_traces; rxrpc_ca_states; rxrpc_call_poke_traces; rxrpc_call_traces; rxrpc_client_traces; rxrpc_congest_changes; rxrpc_conn_traces; rxrpc_local_traces; rxrpc_pmtud_reduce_traces; rxrpc_propose_ack_traces; rxrpc_rack_timer_modes; rxrpc_receive_traces; rxrpc_recvmsg_traces; rxrpc_req_ack_traces; rxrpc_rotate_traces; rxrpc_rtt_rx_traces; rxrpc_rtt_tx_traces; rxrpc_sack_traces; rxrpc_skb_traces; rxrpc_timer_traces; rxrpc_tlp_ack_traces; rxrpc_tlp_probe_traces; rxrpc_tq_traces; rxrpc_tx_points; rxrpc_txbuf_traces; rxrpc_txdata_traces; rxrpc_txqueue_traces; /* * Now redefine the EM() and E_() macros to map the enums to the strings that * will be printed in the output. */ #undef EM #undef E_ #define EM(a, b) { a, b }, #define E_(a, b) { a, b } TRACE_EVENT(rxrpc_local, TP_PROTO(unsigned int local_debug_id, enum rxrpc_local_trace op, int ref, int usage), TP_ARGS(local_debug_id, op, ref, usage), TP_STRUCT__entry( __field(unsigned int, local) __field(int, op) __field(int, ref) __field(int, usage) ), TP_fast_assign( __entry->local = local_debug_id; __entry->op = op; __entry->ref = ref; __entry->usage = usage; ), TP_printk("L=%08x %s r=%d u=%d", __entry->local, __print_symbolic(__entry->op, rxrpc_local_traces), __entry->ref, __entry->usage) ); TRACE_EVENT(rxrpc_iothread_rx, TP_PROTO(struct rxrpc_local *local, unsigned int nr_rx), TP_ARGS(local, nr_rx), TP_STRUCT__entry( __field(unsigned int, local) __field(unsigned int, nr_rx) ), TP_fast_assign( __entry->local = local->debug_id; __entry->nr_rx = nr_rx; ), TP_printk("L=%08x nrx=%u", __entry->local, __entry->nr_rx) ); TRACE_EVENT(rxrpc_peer, TP_PROTO(unsigned int peer_debug_id, int ref, enum rxrpc_peer_trace why), TP_ARGS(peer_debug_id, ref, why), TP_STRUCT__entry( __field(unsigned int, peer) __field(int, ref) __field(enum rxrpc_peer_trace, why) ), TP_fast_assign( __entry->peer = peer_debug_id; __entry->ref = ref; __entry->why = why; ), TP_printk("P=%08x %s r=%d", __entry->peer, __print_symbolic(__entry->why, rxrpc_peer_traces), __entry->ref) ); TRACE_EVENT(rxrpc_bundle, TP_PROTO(unsigned int bundle_debug_id, int ref, enum rxrpc_bundle_trace why), TP_ARGS(bundle_debug_id, ref, why), TP_STRUCT__entry( __field(unsigned int, bundle) __field(int, ref) __field(int, why) ), TP_fast_assign( __entry->bundle = bundle_debug_id; __entry->ref = ref; __entry->why = why; ), TP_printk("CB=%08x %s r=%d", __entry->bundle, __print_symbolic(__entry->why, rxrpc_bundle_traces), __entry->ref) ); TRACE_EVENT(rxrpc_conn, TP_PROTO(unsigned int conn_debug_id, int ref, enum rxrpc_conn_trace why), TP_ARGS(conn_debug_id, ref, why), TP_STRUCT__entry( __field(unsigned int, conn) __field(int, ref) __field(int, why) ), TP_fast_assign( __entry->conn = conn_debug_id; __entry->ref = ref; __entry->why = why; ), TP_printk("C=%08x %s r=%d", __entry->conn, __print_symbolic(__entry->why, rxrpc_conn_traces), __entry->ref) ); TRACE_EVENT(rxrpc_client, TP_PROTO(struct rxrpc_connection *conn, int channel, enum rxrpc_client_trace op), TP_ARGS(conn, channel, op), TP_STRUCT__entry( __field(unsigned int, conn) __field(u32, cid) __field(int, channel) __field(int, usage) __field(enum rxrpc_client_trace, op) ), TP_fast_assign( __entry->conn = conn ? conn->debug_id : 0; __entry->channel = channel; __entry->usage = conn ? refcount_read(&conn->ref) : -2; __entry->op = op; __entry->cid = conn ? conn->proto.cid : 0; ), TP_printk("C=%08x h=%2d %s i=%08x u=%d", __entry->conn, __entry->channel, __print_symbolic(__entry->op, rxrpc_client_traces), __entry->cid, __entry->usage) ); TRACE_EVENT(rxrpc_call, TP_PROTO(unsigned int call_debug_id, int ref, unsigned long aux, enum rxrpc_call_trace why), TP_ARGS(call_debug_id, ref, aux, why), TP_STRUCT__entry( __field(unsigned int, call) __field(int, ref) __field(int, why) __field(unsigned long, aux) ), TP_fast_assign( __entry->call = call_debug_id; __entry->ref = ref; __entry->why = why; __entry->aux = aux; ), TP_printk("c=%08x %s r=%d a=%lx", __entry->call, __print_symbolic(__entry->why, rxrpc_call_traces), __entry->ref, __entry->aux) ); TRACE_EVENT(rxrpc_skb, TP_PROTO(struct sk_buff *skb, int usage, int mod_count, enum rxrpc_skb_trace why), TP_ARGS(skb, usage, mod_count, why), TP_STRUCT__entry( __field(struct sk_buff *, skb) __field(int, usage) __field(int, mod_count) __field(enum rxrpc_skb_trace, why) ), TP_fast_assign( __entry->skb = skb; __entry->usage = usage; __entry->mod_count = mod_count; __entry->why = why; ), TP_printk("s=%p Rx %s u=%d m=%d", __entry->skb, __print_symbolic(__entry->why, rxrpc_skb_traces), __entry->usage, __entry->mod_count) ); TRACE_EVENT(rxrpc_rx_packet, TP_PROTO(struct rxrpc_skb_priv *sp), TP_ARGS(sp), TP_STRUCT__entry( __field_struct(struct rxrpc_host_header, hdr) ), TP_fast_assign( memcpy(&__entry->hdr, &sp->hdr, sizeof(__entry->hdr)); ), TP_printk("%08x:%08x:%08x:%04x %08x %08x %02x %02x %s", __entry->hdr.epoch, __entry->hdr.cid, __entry->hdr.callNumber, __entry->hdr.serviceId, __entry->hdr.serial, __entry->hdr.seq, __entry->hdr.securityIndex, __entry->hdr.flags, __print_symbolic(__entry->hdr.type, rxrpc_pkts)) ); TRACE_EVENT(rxrpc_rx_done, TP_PROTO(int result, int abort_code), TP_ARGS(result, abort_code), TP_STRUCT__entry( __field(int, result) __field(int, abort_code) ), TP_fast_assign( __entry->result = result; __entry->abort_code = abort_code; ), TP_printk("r=%d a=%d", __entry->result, __entry->abort_code) ); TRACE_EVENT(rxrpc_abort_call, TP_PROTO(const struct rxrpc_call *call, int abort_code), TP_ARGS(call, abort_code), TP_STRUCT__entry( __field(unsigned int, call_nr) __field(enum rxrpc_abort_reason, why) __field(int, abort_code) __field(int, error) ), TP_fast_assign( __entry->call_nr = call->debug_id; __entry->why = call->send_abort_why; __entry->abort_code = abort_code; __entry->error = call->send_abort_err; ), TP_printk("c=%08x a=%d e=%d %s", __entry->call_nr, __entry->abort_code, __entry->error, __print_symbolic(__entry->why, rxrpc_abort_reasons)) ); TRACE_EVENT(rxrpc_abort, TP_PROTO(unsigned int call_nr, enum rxrpc_abort_reason why, u32 cid, u32 call_id, rxrpc_seq_t seq, int abort_code, int error), TP_ARGS(call_nr, why, cid, call_id, seq, abort_code, error), TP_STRUCT__entry( __field(unsigned int, call_nr) __field(enum rxrpc_abort_reason, why) __field(u32, cid) __field(u32, call_id) __field(rxrpc_seq_t, seq) __field(int, abort_code) __field(int, error) ), TP_fast_assign( __entry->call_nr = call_nr; __entry->why = why; __entry->cid = cid; __entry->call_id = call_id; __entry->abort_code = abort_code; __entry->error = error; __entry->seq = seq; ), TP_printk("c=%08x %08x:%08x s=%u a=%d e=%d %s", __entry->call_nr, __entry->cid, __entry->call_id, __entry->seq, __entry->abort_code, __entry->error, __print_symbolic(__entry->why, rxrpc_abort_reasons)) ); TRACE_EVENT(rxrpc_call_complete, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_call_completion, compl) __field(int, error) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->compl = call->completion; __entry->error = call->error; __entry->abort_code = call->abort_code; ), TP_printk("c=%08x %s r=%d ac=%d", __entry->call, __print_symbolic(__entry->compl, rxrpc_completions), __entry->error, __entry->abort_code) ); TRACE_EVENT(rxrpc_txqueue, TP_PROTO(struct rxrpc_call *call, enum rxrpc_txqueue_trace why), TP_ARGS(call, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_txqueue_trace, why) __field(rxrpc_seq_t, tx_bottom) __field(rxrpc_seq_t, acks_hard_ack) __field(rxrpc_seq_t, tx_top) __field(rxrpc_seq_t, send_top) __field(int, tx_winsize) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->tx_bottom = call->tx_bottom; __entry->acks_hard_ack = call->acks_hard_ack; __entry->tx_top = call->tx_top; __entry->send_top = call->send_top; __entry->tx_winsize = call->tx_winsize; ), TP_printk("c=%08x %s b=%08x h=%08x n=%u/%u/%u/%u", __entry->call, __print_symbolic(__entry->why, rxrpc_txqueue_traces), __entry->tx_bottom, __entry->acks_hard_ack, __entry->acks_hard_ack - __entry->tx_bottom, __entry->tx_top - __entry->acks_hard_ack, __entry->send_top - __entry->tx_top, __entry->tx_winsize) ); TRACE_EVENT(rxrpc_transmit, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t send_top, int space), TP_ARGS(call, send_top, space), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(u16, space) __field(u16, tx_winsize) __field(u16, cong_cwnd) __field(u16, cong_extra) __field(u16, in_flight) __field(u16, prepared) __field(u16, pmtud_jumbo) ), TP_fast_assign( __entry->call = call->debug_id; __entry->seq = call->tx_top + 1; __entry->space = space; __entry->tx_winsize = call->tx_winsize; __entry->cong_cwnd = call->cong_cwnd; __entry->cong_extra = call->cong_extra; __entry->prepared = send_top - call->tx_bottom; __entry->in_flight = call->tx_top - call->tx_bottom; __entry->pmtud_jumbo = call->peer->pmtud_jumbo; ), TP_printk("c=%08x q=%08x sp=%u tw=%u cw=%u+%u pr=%u if=%u pj=%u", __entry->call, __entry->seq, __entry->space, __entry->tx_winsize, __entry->cong_cwnd, __entry->cong_extra, __entry->prepared, __entry->in_flight, __entry->pmtud_jumbo) ); TRACE_EVENT(rxrpc_tx_rotate, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t seq, rxrpc_seq_t to), TP_ARGS(call, seq, to), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_seq_t, to) __field(rxrpc_seq_t, top) ), TP_fast_assign( __entry->call = call->debug_id; __entry->seq = seq; __entry->to = to; __entry->top = call->tx_top; ), TP_printk("c=%08x q=%08x-%08x-%08x", __entry->call, __entry->seq, __entry->to, __entry->top) ); TRACE_EVENT(rxrpc_rx_data, TP_PROTO(unsigned int call, rxrpc_seq_t seq, rxrpc_serial_t serial, u8 flags), TP_ARGS(call, seq, serial, flags), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_serial_t, serial) __field(u8, flags) ), TP_fast_assign( __entry->call = call; __entry->seq = seq; __entry->serial = serial; __entry->flags = flags; ), TP_printk("c=%08x DATA %08x q=%08x fl=%02x", __entry->call, __entry->serial, __entry->seq, __entry->flags) ); TRACE_EVENT(rxrpc_rx_ack, TP_PROTO(struct rxrpc_call *call, struct rxrpc_skb_priv *sp), TP_ARGS(call, sp), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, first) __field(rxrpc_seq_t, prev) __field(u8, reason) __field(u8, n_acks) __field(u8, user_status) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = sp->hdr.serial; __entry->user_status = sp->hdr.userStatus; __entry->ack_serial = sp->ack.acked_serial; __entry->first = sp->ack.first_ack; __entry->prev = sp->ack.prev_ack; __entry->reason = sp->ack.reason; __entry->n_acks = sp->ack.nr_acks; ), TP_printk("c=%08x %08x %s r=%08x us=%02x f=%08x p=%08x n=%u", __entry->call, __entry->serial, __print_symbolic(__entry->reason, rxrpc_ack_names), __entry->ack_serial, __entry->user_status, __entry->first, __entry->prev, __entry->n_acks) ); TRACE_EVENT(rxrpc_rx_abort, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t serial, u32 abort_code), TP_ARGS(call, serial, abort_code), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = serial; __entry->abort_code = abort_code; ), TP_printk("c=%08x ABORT %08x ac=%d", __entry->call, __entry->serial, __entry->abort_code) ); TRACE_EVENT(rxrpc_rx_conn_abort, TP_PROTO(const struct rxrpc_connection *conn, const struct sk_buff *skb), TP_ARGS(conn, skb), TP_STRUCT__entry( __field(unsigned int, conn) __field(rxrpc_serial_t, serial) __field(u32, abort_code) ), TP_fast_assign( __entry->conn = conn->debug_id; __entry->serial = rxrpc_skb(skb)->hdr.serial; __entry->abort_code = skb->priority; ), TP_printk("C=%08x ABORT %08x ac=%d", __entry->conn, __entry->serial, __entry->abort_code) ); TRACE_EVENT(rxrpc_rx_challenge, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t serial, u32 version, u32 nonce, u32 min_level), TP_ARGS(conn, serial, version, nonce, min_level), TP_STRUCT__entry( __field(unsigned int, conn) __field(rxrpc_serial_t, serial) __field(u32, version) __field(u32, nonce) __field(u32, min_level) ), TP_fast_assign( __entry->conn = conn->debug_id; __entry->serial = serial; __entry->version = version; __entry->nonce = nonce; __entry->min_level = min_level; ), TP_printk("C=%08x CHALLENGE %08x v=%x n=%x ml=%x", __entry->conn, __entry->serial, __entry->version, __entry->nonce, __entry->min_level) ); TRACE_EVENT(rxrpc_rx_response, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t serial, u32 version, u32 kvno, u32 ticket_len), TP_ARGS(conn, serial, version, kvno, ticket_len), TP_STRUCT__entry( __field(unsigned int, conn) __field(rxrpc_serial_t, serial) __field(u32, version) __field(u32, kvno) __field(u32, ticket_len) ), TP_fast_assign( __entry->conn = conn->debug_id; __entry->serial = serial; __entry->version = version; __entry->kvno = kvno; __entry->ticket_len = ticket_len; ), TP_printk("C=%08x RESPONSE %08x v=%x kvno=%x tl=%x", __entry->conn, __entry->serial, __entry->version, __entry->kvno, __entry->ticket_len) ); TRACE_EVENT(rxrpc_rx_rwind_change, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t serial, u32 rwind, bool wake), TP_ARGS(call, serial, rwind, wake), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(u32, rwind) __field(bool, wake) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = serial; __entry->rwind = rwind; __entry->wake = wake; ), TP_printk("c=%08x %08x rw=%u%s", __entry->call, __entry->serial, __entry->rwind, __entry->wake ? " wake" : "") ); TRACE_EVENT(rxrpc_tx_packet, TP_PROTO(unsigned int call_id, struct rxrpc_wire_header *whdr, enum rxrpc_tx_point where), TP_ARGS(call_id, whdr, where), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_tx_point, where) __field_struct(struct rxrpc_wire_header, whdr) ), TP_fast_assign( __entry->call = call_id; memcpy(&__entry->whdr, whdr, sizeof(__entry->whdr)); __entry->where = where; ), TP_printk("c=%08x %08x:%08x:%08x:%04x %08x %08x %02x %02x %s %s", __entry->call, ntohl(__entry->whdr.epoch), ntohl(__entry->whdr.cid), ntohl(__entry->whdr.callNumber), ntohs(__entry->whdr.serviceId), ntohl(__entry->whdr.serial), ntohl(__entry->whdr.seq), __entry->whdr.type, __entry->whdr.flags, __entry->whdr.type <= 15 ? __print_symbolic(__entry->whdr.type, rxrpc_pkts) : "?UNK", __print_symbolic(__entry->where, rxrpc_tx_points)) ); TRACE_EVENT(rxrpc_tx_data, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t seq, rxrpc_serial_t serial, unsigned int flags, enum rxrpc_txdata_trace trace), TP_ARGS(call, seq, serial, flags, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_serial_t, serial) __field(u32, cid) __field(u32, call_id) __field(u16, flags) __field(enum rxrpc_txdata_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->cid = call->cid; __entry->call_id = call->call_id; __entry->seq = seq; __entry->serial = serial; __entry->flags = flags; __entry->trace = trace; ), TP_printk("c=%08x DATA %08x:%08x %08x q=%08x fl=%02x%s", __entry->call, __entry->cid, __entry->call_id, __entry->serial, __entry->seq, __entry->flags & RXRPC_TXBUF_WIRE_FLAGS, __print_symbolic(__entry->trace, rxrpc_txdata_traces)) ); TRACE_EVENT(rxrpc_tx_ack, TP_PROTO(unsigned int call, rxrpc_serial_t serial, rxrpc_seq_t ack_first, rxrpc_serial_t ack_serial, u8 reason, u8 n_acks, u16 rwind, enum rxrpc_propose_ack_trace trace), TP_ARGS(call, serial, ack_first, ack_serial, reason, n_acks, rwind, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, ack_first) __field(rxrpc_serial_t, ack_serial) __field(u8, reason) __field(u8, n_acks) __field(u16, rwind) __field(enum rxrpc_propose_ack_trace, trace) ), TP_fast_assign( __entry->call = call; __entry->serial = serial; __entry->ack_first = ack_first; __entry->ack_serial = ack_serial; __entry->reason = reason; __entry->n_acks = n_acks; __entry->rwind = rwind; __entry->trace = trace; ), TP_printk(" c=%08x ACK %08x %s f=%08x r=%08x n=%u rw=%u %s", __entry->call, __entry->serial, __print_symbolic(__entry->reason, rxrpc_ack_names), __entry->ack_first, __entry->ack_serial, __entry->n_acks, __entry->rwind, __print_symbolic(__entry->trace, rxrpc_propose_ack_traces)) ); TRACE_EVENT(rxrpc_receive, TP_PROTO(struct rxrpc_call *call, enum rxrpc_receive_trace why, rxrpc_serial_t serial, rxrpc_seq_t seq), TP_ARGS(call, why, serial, seq), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_receive_trace, why) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, seq) __field(rxrpc_seq_t, window) __field(rxrpc_seq_t, wtop) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->seq = seq; __entry->window = call->ackr_window; __entry->wtop = call->ackr_wtop; ), TP_printk("c=%08x %s r=%08x q=%08x w=%08x-%08x", __entry->call, __print_symbolic(__entry->why, rxrpc_receive_traces), __entry->serial, __entry->seq, __entry->window, __entry->wtop) ); TRACE_EVENT(rxrpc_recvmsg, TP_PROTO(unsigned int call_debug_id, enum rxrpc_recvmsg_trace why, int ret), TP_ARGS(call_debug_id, why, ret), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_recvmsg_trace, why) __field(int, ret) ), TP_fast_assign( __entry->call = call_debug_id; __entry->why = why; __entry->ret = ret; ), TP_printk("c=%08x %s ret=%d", __entry->call, __print_symbolic(__entry->why, rxrpc_recvmsg_traces), __entry->ret) ); TRACE_EVENT(rxrpc_recvdata, TP_PROTO(struct rxrpc_call *call, enum rxrpc_recvmsg_trace why, rxrpc_seq_t seq, unsigned int offset, unsigned int len, int ret), TP_ARGS(call, why, seq, offset, len, ret), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_recvmsg_trace, why) __field(rxrpc_seq_t, seq) __field(unsigned int, offset) __field(unsigned int, len) __field(int, ret) ), TP_fast_assign( __entry->call = call ? call->debug_id : 0; __entry->why = why; __entry->seq = seq; __entry->offset = offset; __entry->len = len; __entry->ret = ret; ), TP_printk("c=%08x %s q=%08x o=%u l=%u ret=%d", __entry->call, __print_symbolic(__entry->why, rxrpc_recvmsg_traces), __entry->seq, __entry->offset, __entry->len, __entry->ret) ); TRACE_EVENT(rxrpc_rtt_tx, TP_PROTO(struct rxrpc_call *call, enum rxrpc_rtt_tx_trace why, int slot, rxrpc_serial_t send_serial), TP_ARGS(call, why, slot, send_serial), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_rtt_tx_trace, why) __field(int, slot) __field(rxrpc_serial_t, send_serial) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->slot = slot; __entry->send_serial = send_serial; ), TP_printk("c=%08x [%d] %s sr=%08x", __entry->call, __entry->slot, __print_symbolic(__entry->why, rxrpc_rtt_tx_traces), __entry->send_serial) ); TRACE_EVENT(rxrpc_rtt_rx, TP_PROTO(struct rxrpc_call *call, enum rxrpc_rtt_rx_trace why, int slot, rxrpc_serial_t send_serial, rxrpc_serial_t resp_serial, u32 rtt, u32 srtt, u32 rto), TP_ARGS(call, why, slot, send_serial, resp_serial, rtt, srtt, rto), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_rtt_rx_trace, why) __field(int, slot) __field(rxrpc_serial_t, send_serial) __field(rxrpc_serial_t, resp_serial) __field(u32, rtt) __field(u32, srtt) __field(u32, rto) __field(u32, min_rtt) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->slot = slot; __entry->send_serial = send_serial; __entry->resp_serial = resp_serial; __entry->rtt = rtt; __entry->srtt = srtt; __entry->rto = rto; __entry->min_rtt = minmax_get(&call->min_rtt) ), TP_printk("c=%08x [%d] %s sr=%08x rr=%08x rtt=%u srtt=%u rto=%u min=%u", __entry->call, __entry->slot, __print_symbolic(__entry->why, rxrpc_rtt_rx_traces), __entry->send_serial, __entry->resp_serial, __entry->rtt, __entry->srtt / 8, __entry->rto, __entry->min_rtt) ); TRACE_EVENT(rxrpc_timer_set, TP_PROTO(struct rxrpc_call *call, ktime_t delay, enum rxrpc_timer_trace why), TP_ARGS(call, delay, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_timer_trace, why) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->delay = delay; ), TP_printk("c=%08x %s to=%lld", __entry->call, __print_symbolic(__entry->why, rxrpc_timer_traces), ktime_to_us(__entry->delay)) ); TRACE_EVENT(rxrpc_timer_exp, TP_PROTO(struct rxrpc_call *call, ktime_t delay, enum rxrpc_timer_trace why), TP_ARGS(call, delay, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_timer_trace, why) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->delay = delay; ), TP_printk("c=%08x %s to=%lld", __entry->call, __print_symbolic(__entry->why, rxrpc_timer_traces), ktime_to_us(__entry->delay)) ); TRACE_EVENT(rxrpc_timer_can, TP_PROTO(struct rxrpc_call *call, enum rxrpc_timer_trace why), TP_ARGS(call, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_timer_trace, why) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; ), TP_printk("c=%08x %s", __entry->call, __print_symbolic(__entry->why, rxrpc_timer_traces)) ); TRACE_EVENT(rxrpc_timer_restart, TP_PROTO(struct rxrpc_call *call, ktime_t delay, unsigned long delayj), TP_ARGS(call, delay, delayj), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned long, delayj) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->delayj = delayj; __entry->delay = delay; ), TP_printk("c=%08x to=%lld j=%ld", __entry->call, ktime_to_us(__entry->delay), __entry->delayj) ); TRACE_EVENT(rxrpc_timer_expired, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) ), TP_fast_assign( __entry->call = call->debug_id; ), TP_printk("c=%08x EXPIRED", __entry->call) ); TRACE_EVENT(rxrpc_rx_lose, TP_PROTO(struct rxrpc_skb_priv *sp), TP_ARGS(sp), TP_STRUCT__entry( __field_struct(struct rxrpc_host_header, hdr) ), TP_fast_assign( memcpy(&__entry->hdr, &sp->hdr, sizeof(__entry->hdr)); ), TP_printk("%08x:%08x:%08x:%04x %08x %08x %02x %02x %s *LOSE*", __entry->hdr.epoch, __entry->hdr.cid, __entry->hdr.callNumber, __entry->hdr.serviceId, __entry->hdr.serial, __entry->hdr.seq, __entry->hdr.type, __entry->hdr.flags, __entry->hdr.type <= 15 ? __print_symbolic(__entry->hdr.type, rxrpc_pkts) : "?UNK") ); TRACE_EVENT(rxrpc_propose_ack, TP_PROTO(struct rxrpc_call *call, enum rxrpc_propose_ack_trace why, u8 ack_reason, rxrpc_serial_t serial), TP_ARGS(call, why, ack_reason, serial), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_propose_ack_trace, why) __field(rxrpc_serial_t, serial) __field(u8, ack_reason) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->ack_reason = ack_reason; ), TP_printk("c=%08x %s %s r=%08x", __entry->call, __print_symbolic(__entry->why, rxrpc_propose_ack_traces), __print_symbolic(__entry->ack_reason, rxrpc_ack_names), __entry->serial) ); TRACE_EVENT(rxrpc_send_ack, TP_PROTO(struct rxrpc_call *call, enum rxrpc_propose_ack_trace why, u8 ack_reason, rxrpc_serial_t serial), TP_ARGS(call, why, ack_reason, serial), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_propose_ack_trace, why) __field(rxrpc_serial_t, serial) __field(u8, ack_reason) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->ack_reason = ack_reason; ), TP_printk("c=%08x %s %s r=%08x", __entry->call, __print_symbolic(__entry->why, rxrpc_propose_ack_traces), __print_symbolic(__entry->ack_reason, rxrpc_ack_names), __entry->serial) ); TRACE_EVENT(rxrpc_drop_ack, TP_PROTO(struct rxrpc_call *call, enum rxrpc_propose_ack_trace why, u8 ack_reason, rxrpc_serial_t serial, bool nobuf), TP_ARGS(call, why, ack_reason, serial, nobuf), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_propose_ack_trace, why) __field(rxrpc_serial_t, serial) __field(u8, ack_reason) __field(bool, nobuf) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->ack_reason = ack_reason; __entry->nobuf = nobuf; ), TP_printk("c=%08x %s %s r=%08x nbf=%u", __entry->call, __print_symbolic(__entry->why, rxrpc_propose_ack_traces), __print_symbolic(__entry->ack_reason, rxrpc_ack_names), __entry->serial, __entry->nobuf) ); TRACE_EVENT(rxrpc_retransmit, TP_PROTO(struct rxrpc_call *call, struct rxrpc_send_data_req *req, struct rxrpc_txbuf *txb), TP_ARGS(call, req, txb), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned int, qbase) __field(rxrpc_seq_t, seq) __field(rxrpc_serial_t, serial) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = req->tq->qbase; __entry->seq = req->seq; __entry->serial = txb->serial; ), TP_printk("c=%08x tq=%x q=%x r=%x", __entry->call, __entry->qbase, __entry->seq, __entry->serial) ); TRACE_EVENT(rxrpc_congest, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary), TP_ARGS(call, summary), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_ca_state, ca_state) __field(rxrpc_seq_t, hard_ack) __field(rxrpc_seq_t, top) __field(rxrpc_seq_t, lowest_nak) __field(u16, nr_sacks) __field(u16, nr_snacks) __field(u16, cwnd) __field(u16, ssthresh) __field(u16, cumul_acks) __field(u16, dup_acks) __field_struct(struct rxrpc_ack_summary, sum) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ca_state = call->cong_ca_state; __entry->hard_ack = call->acks_hard_ack; __entry->top = call->tx_top; __entry->lowest_nak = call->acks_lowest_nak; __entry->nr_sacks = call->acks_nr_sacks; __entry->nr_snacks = call->acks_nr_snacks; __entry->cwnd = call->cong_cwnd; __entry->ssthresh = call->cong_ssthresh; __entry->cumul_acks = call->cong_cumul_acks; __entry->dup_acks = call->cong_dup_acks; memcpy(&__entry->sum, summary, sizeof(__entry->sum)); ), TP_printk("c=%08x r=%08x %s q=%08x %s cw=%u ss=%u A=%u+%u/%u+%u r=%u b=%u u=%u d=%u l=%x%s%s%s", __entry->call, __entry->sum.acked_serial, __print_symbolic(__entry->sum.ack_reason, rxrpc_ack_names), __entry->hard_ack, __print_symbolic(__entry->ca_state, rxrpc_ca_states), __entry->cwnd, __entry->ssthresh, __entry->nr_sacks, __entry->sum.nr_new_sacks, __entry->nr_snacks, __entry->sum.nr_new_snacks, __entry->sum.nr_new_hacks, __entry->top - __entry->hard_ack, __entry->cumul_acks, __entry->dup_acks, __entry->lowest_nak, __entry->sum.new_low_snack ? "!" : "", __print_symbolic(__entry->sum.change, rxrpc_congest_changes), __entry->sum.retrans_timeo ? " rTxTo" : "") ); TRACE_EVENT(rxrpc_reset_cwnd, TP_PROTO(struct rxrpc_call *call, ktime_t since_last_tx, ktime_t rtt), TP_ARGS(call, since_last_tx, rtt), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_ca_state, ca_state) __field(unsigned short, cwnd) __field(unsigned short, extra) __field(rxrpc_seq_t, hard_ack) __field(rxrpc_seq_t, prepared) __field(ktime_t, since_last_tx) __field(ktime_t, rtt) __field(bool, has_data) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ca_state = call->cong_ca_state; __entry->cwnd = call->cong_cwnd; __entry->extra = call->cong_extra; __entry->hard_ack = call->acks_hard_ack; __entry->prepared = call->send_top - call->tx_bottom; __entry->since_last_tx = since_last_tx; __entry->rtt = rtt; __entry->has_data = call->tx_bottom != call->tx_top; ), TP_printk("c=%08x q=%08x %s cw=%u+%u pr=%u tm=%llu/%llu d=%u", __entry->call, __entry->hard_ack, __print_symbolic(__entry->ca_state, rxrpc_ca_states), __entry->cwnd, __entry->extra, __entry->prepared, ktime_to_us(__entry->since_last_tx), ktime_to_us(__entry->rtt), __entry->has_data) ); TRACE_EVENT(rxrpc_disconnect_call, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->abort_code = call->abort_code; ), TP_printk("c=%08x ab=%08x", __entry->call, __entry->abort_code) ); TRACE_EVENT(rxrpc_improper_term, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->abort_code = call->abort_code; ), TP_printk("c=%08x ab=%08x", __entry->call, __entry->abort_code) ); TRACE_EVENT(rxrpc_connect_call, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned long, user_call_ID) __field(u32, cid) __field(u32, call_id) __field_struct(struct sockaddr_rxrpc, srx) ), TP_fast_assign( __entry->call = call->debug_id; __entry->user_call_ID = call->user_call_ID; __entry->cid = call->cid; __entry->call_id = call->call_id; __entry->srx = call->dest_srx; ), TP_printk("c=%08x u=%p %08x:%08x dst=%pISp", __entry->call, (void *)__entry->user_call_ID, __entry->cid, __entry->call_id, &__entry->srx.transport) ); TRACE_EVENT(rxrpc_apply_acks, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq), TP_ARGS(call, tq), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned int, nr_rep) __field(rxrpc_seq_t, qbase) __field(unsigned long, acks) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->acks = tq->segment_acked; __entry->nr_rep = tq->nr_reported_acks; ), TP_printk("c=%08x tq=%x acks=%016lx rep=%u", __entry->call, __entry->qbase, __entry->acks, __entry->nr_rep) ); TRACE_EVENT(rxrpc_resend, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t ack_serial), TP_ARGS(call, ack_serial), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_seq_t, transmitted) __field(rxrpc_serial_t, ack_serial) ), TP_fast_assign( __entry->call = call->debug_id; __entry->seq = call->acks_hard_ack; __entry->transmitted = call->tx_transmitted; __entry->ack_serial = ack_serial; ), TP_printk("c=%08x r=%x q=%x tq=%x", __entry->call, __entry->ack_serial, __entry->seq, __entry->transmitted) ); TRACE_EVENT(rxrpc_resend_lost, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq, unsigned long lost), TP_ARGS(call, tq, lost), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(u8, nr_rep) __field(unsigned long, lost) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->nr_rep = tq->nr_reported_acks; __entry->lost = lost; ), TP_printk("c=%08x tq=%x lost=%016lx nr=%u", __entry->call, __entry->qbase, __entry->lost, __entry->nr_rep) ); TRACE_EVENT(rxrpc_rotate, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq, struct rxrpc_ack_summary *summary, rxrpc_seq_t seq, enum rxrpc_rotate_trace trace), TP_ARGS(call, tq, summary, seq, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(rxrpc_seq_t, seq) __field(unsigned int, nr_rep) __field(enum rxrpc_rotate_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->seq = seq; __entry->nr_rep = tq->nr_reported_acks; __entry->trace = trace; ), TP_printk("c=%08x tq=%x q=%x nr=%x %s", __entry->call, __entry->qbase, __entry->seq, __entry->nr_rep, __print_symbolic(__entry->trace, rxrpc_rotate_traces)) ); TRACE_EVENT(rxrpc_rx_icmp, TP_PROTO(struct rxrpc_peer *peer, struct sock_extended_err *ee, struct sockaddr_rxrpc *srx), TP_ARGS(peer, ee, srx), TP_STRUCT__entry( __field(unsigned int, peer) __field_struct(struct sock_extended_err, ee) __field_struct(struct sockaddr_rxrpc, srx) ), TP_fast_assign( __entry->peer = peer->debug_id; memcpy(&__entry->ee, ee, sizeof(__entry->ee)); memcpy(&__entry->srx, srx, sizeof(__entry->srx)); ), TP_printk("P=%08x o=%u t=%u c=%u i=%u d=%u e=%d %pISp", __entry->peer, __entry->ee.ee_origin, __entry->ee.ee_type, __entry->ee.ee_code, __entry->ee.ee_info, __entry->ee.ee_data, __entry->ee.ee_errno, &__entry->srx.transport) ); TRACE_EVENT(rxrpc_tx_fail, TP_PROTO(unsigned int debug_id, rxrpc_serial_t serial, int ret, enum rxrpc_tx_point where), TP_ARGS(debug_id, serial, ret, where), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(rxrpc_serial_t, serial) __field(int, ret) __field(enum rxrpc_tx_point, where) ), TP_fast_assign( __entry->debug_id = debug_id; __entry->serial = serial; __entry->ret = ret; __entry->where = where; ), TP_printk("c=%08x r=%x ret=%d %s", __entry->debug_id, __entry->serial, __entry->ret, __print_symbolic(__entry->where, rxrpc_tx_points)) ); TRACE_EVENT(rxrpc_call_reset, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(u32, cid) __field(u32, call_id) __field(rxrpc_serial_t, call_serial) __field(rxrpc_serial_t, conn_serial) __field(rxrpc_seq_t, tx_seq) __field(rxrpc_seq_t, rx_seq) ), TP_fast_assign( __entry->debug_id = call->debug_id; __entry->cid = call->cid; __entry->call_id = call->call_id; __entry->call_serial = call->rx_serial; __entry->conn_serial = call->conn->hi_serial; __entry->tx_seq = call->acks_hard_ack; __entry->rx_seq = call->rx_highest_seq; ), TP_printk("c=%08x %08x:%08x r=%08x/%08x tx=%08x rx=%08x", __entry->debug_id, __entry->cid, __entry->call_id, __entry->call_serial, __entry->conn_serial, __entry->tx_seq, __entry->rx_seq) ); TRACE_EVENT(rxrpc_notify_socket, TP_PROTO(unsigned int debug_id, rxrpc_serial_t serial), TP_ARGS(debug_id, serial), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(rxrpc_serial_t, serial) ), TP_fast_assign( __entry->debug_id = debug_id; __entry->serial = serial; ), TP_printk("c=%08x r=%08x", __entry->debug_id, __entry->serial) ); TRACE_EVENT(rxrpc_rx_discard_ack, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t serial, rxrpc_seq_t hard_ack, rxrpc_seq_t prev_pkt), TP_ARGS(call, serial, hard_ack, prev_pkt), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, hard_ack) __field(rxrpc_seq_t, prev_pkt) __field(rxrpc_seq_t, acks_hard_ack) __field(rxrpc_seq_t, acks_prev_seq) ), TP_fast_assign( __entry->debug_id = call->debug_id; __entry->serial = serial; __entry->hard_ack = hard_ack; __entry->prev_pkt = prev_pkt; __entry->acks_hard_ack = call->acks_hard_ack; __entry->acks_prev_seq = call->acks_prev_seq; ), TP_printk("c=%08x r=%08x %08x<%08x %08x<%08x", __entry->debug_id, __entry->serial, __entry->hard_ack, __entry->acks_hard_ack, __entry->prev_pkt, __entry->acks_prev_seq) ); TRACE_EVENT(rxrpc_req_ack, TP_PROTO(unsigned int call_debug_id, rxrpc_seq_t seq, enum rxrpc_req_ack_trace why), TP_ARGS(call_debug_id, seq, why), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, seq) __field(enum rxrpc_req_ack_trace, why) ), TP_fast_assign( __entry->call_debug_id = call_debug_id; __entry->seq = seq; __entry->why = why; ), TP_printk("c=%08x q=%08x REQ-%s", __entry->call_debug_id, __entry->seq, __print_symbolic(__entry->why, rxrpc_req_ack_traces)) ); TRACE_EVENT(rxrpc_txbuf, TP_PROTO(unsigned int debug_id, unsigned int call_debug_id, rxrpc_seq_t seq, int ref, enum rxrpc_txbuf_trace what), TP_ARGS(debug_id, call_debug_id, seq, ref, what), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, seq) __field(int, ref) __field(enum rxrpc_txbuf_trace, what) ), TP_fast_assign( __entry->debug_id = debug_id; __entry->call_debug_id = call_debug_id; __entry->seq = seq; __entry->ref = ref; __entry->what = what; ), TP_printk("B=%08x c=%08x q=%08x %s r=%d", __entry->debug_id, __entry->call_debug_id, __entry->seq, __print_symbolic(__entry->what, rxrpc_txbuf_traces), __entry->ref) ); TRACE_EVENT(rxrpc_tq, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq, rxrpc_seq_t seq, enum rxrpc_tq_trace trace), TP_ARGS(call, tq, seq, trace), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, qbase) __field(rxrpc_seq_t, seq) __field(enum rxrpc_tq_trace, trace) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; __entry->qbase = tq ? tq->qbase : call->tx_qbase; __entry->seq = seq; __entry->trace = trace; ), TP_printk("c=%08x bq=%08x q=%08x %s", __entry->call_debug_id, __entry->qbase, __entry->seq, __print_symbolic(__entry->trace, rxrpc_tq_traces)) ); TRACE_EVENT(rxrpc_poke_call, TP_PROTO(struct rxrpc_call *call, bool busy, enum rxrpc_call_poke_trace what), TP_ARGS(call, busy, what), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(bool, busy) __field(enum rxrpc_call_poke_trace, what) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; __entry->busy = busy; __entry->what = what; ), TP_printk("c=%08x %s%s", __entry->call_debug_id, __print_symbolic(__entry->what, rxrpc_call_poke_traces), __entry->busy ? "!" : "") ); TRACE_EVENT(rxrpc_call_poked, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call_debug_id) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; ), TP_printk("c=%08x", __entry->call_debug_id) ); TRACE_EVENT(rxrpc_sack, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t seq, unsigned int sack, enum rxrpc_sack_trace what), TP_ARGS(call, seq, sack, what), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, seq) __field(unsigned int, sack) __field(enum rxrpc_sack_trace, what) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; __entry->seq = seq; __entry->sack = sack; __entry->what = what; ), TP_printk("c=%08x q=%08x %s k=%x", __entry->call_debug_id, __entry->seq, __print_symbolic(__entry->what, rxrpc_sack_traces), __entry->sack) ); TRACE_EVENT(rxrpc_pmtud_tx, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_serial_t, ping_serial) __field(unsigned short, pmtud_trial) __field(unsigned short, pmtud_good) __field(unsigned short, pmtud_bad) ), TP_fast_assign( __entry->peer_debug_id = call->peer->debug_id; __entry->call_debug_id = call->debug_id; __entry->ping_serial = call->conn->pmtud_probe; __entry->pmtud_trial = call->peer->pmtud_trial; __entry->pmtud_good = call->peer->pmtud_good; __entry->pmtud_bad = call->peer->pmtud_bad; ), TP_printk("P=%08x c=%08x pr=%08x %u-%u-%u", __entry->peer_debug_id, __entry->call_debug_id, __entry->ping_serial, __entry->pmtud_good, __entry->pmtud_trial, __entry->pmtud_bad) ); TRACE_EVENT(rxrpc_pmtud_rx, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t resp_serial), TP_ARGS(conn, resp_serial), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_serial_t, ping_serial) __field(rxrpc_serial_t, resp_serial) __field(unsigned short, max_data) __field(u8, jumbo_max) ), TP_fast_assign( __entry->peer_debug_id = conn->peer->debug_id; __entry->call_debug_id = conn->pmtud_call; __entry->ping_serial = conn->pmtud_probe; __entry->resp_serial = resp_serial; __entry->max_data = conn->peer->max_data; __entry->jumbo_max = conn->peer->pmtud_jumbo; ), TP_printk("P=%08x c=%08x pr=%08x rr=%08x max=%u jm=%u", __entry->peer_debug_id, __entry->call_debug_id, __entry->ping_serial, __entry->resp_serial, __entry->max_data, __entry->jumbo_max) ); TRACE_EVENT(rxrpc_pmtud_lost, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t resp_serial), TP_ARGS(conn, resp_serial), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_serial_t, ping_serial) __field(rxrpc_serial_t, resp_serial) ), TP_fast_assign( __entry->peer_debug_id = conn->peer->debug_id; __entry->call_debug_id = conn->pmtud_call; __entry->ping_serial = conn->pmtud_probe; __entry->resp_serial = resp_serial; ), TP_printk("P=%08x c=%08x pr=%08x rr=%08x", __entry->peer_debug_id, __entry->call_debug_id, __entry->ping_serial, __entry->resp_serial) ); TRACE_EVENT(rxrpc_pmtud_reduce, TP_PROTO(struct rxrpc_peer *peer, rxrpc_serial_t serial, unsigned int max_data, enum rxrpc_pmtud_reduce_trace reason), TP_ARGS(peer, serial, max_data, reason), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(rxrpc_serial_t, serial) __field(unsigned int, max_data) __field(enum rxrpc_pmtud_reduce_trace, reason) ), TP_fast_assign( __entry->peer_debug_id = peer->debug_id; __entry->serial = serial; __entry->max_data = max_data; __entry->reason = reason; ), TP_printk("P=%08x %s r=%08x m=%u", __entry->peer_debug_id, __print_symbolic(__entry->reason, rxrpc_pmtud_reduce_traces), __entry->serial, __entry->max_data) ); TRACE_EVENT(rxrpc_rack, TP_PROTO(struct rxrpc_call *call, ktime_t timo), TP_ARGS(call, timo), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, seq) __field(enum rxrpc_rack_timer_mode, mode) __field(unsigned short, nr_sent) __field(unsigned short, nr_lost) __field(unsigned short, nr_resent) __field(unsigned short, nr_sacked) __field(ktime_t, timo) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ack_serial = call->rx_serial; __entry->seq = call->rack_end_seq; __entry->mode = call->rack_timer_mode; __entry->nr_sent = call->tx_nr_sent; __entry->nr_lost = call->tx_nr_lost; __entry->nr_resent = call->tx_nr_resent; __entry->nr_sacked = call->acks_nr_sacks; __entry->timo = timo; ), TP_printk("c=%08x r=%08x q=%08x %s slrs=%u,%u,%u,%u t=%lld", __entry->call, __entry->ack_serial, __entry->seq, __print_symbolic(__entry->mode, rxrpc_rack_timer_modes), __entry->nr_sent, __entry->nr_lost, __entry->nr_resent, __entry->nr_sacked, ktime_to_us(__entry->timo)) ); TRACE_EVENT(rxrpc_rack_update, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary), TP_ARGS(call, summary), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, seq) __field(int, xmit_ts) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ack_serial = call->rx_serial; __entry->seq = call->rack_end_seq; __entry->xmit_ts = ktime_sub(call->acks_latest_ts, call->rack_xmit_ts); ), TP_printk("c=%08x r=%08x q=%08x xt=%lld", __entry->call, __entry->ack_serial, __entry->seq, ktime_to_us(__entry->xmit_ts)) ); TRACE_EVENT(rxrpc_rack_scan_loss, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(ktime_t, rack_rtt) __field(ktime_t, rack_reo_wnd) ), TP_fast_assign( __entry->call = call->debug_id; __entry->rack_rtt = call->rack_rtt; __entry->rack_reo_wnd = call->rack_reo_wnd; ), TP_printk("c=%08x rtt=%lld reow=%lld", __entry->call, ktime_to_us(__entry->rack_rtt), ktime_to_us(__entry->rack_reo_wnd)) ); TRACE_EVENT(rxrpc_rack_scan_loss_tq, TP_PROTO(struct rxrpc_call *call, const struct rxrpc_txqueue *tq, unsigned long nacks), TP_ARGS(call, tq, nacks), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(unsigned long, nacks) __field(unsigned long, lost) __field(unsigned long, retrans) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->nacks = nacks; __entry->lost = tq->segment_lost; __entry->retrans = tq->segment_retransmitted; ), TP_printk("c=%08x q=%08x n=%lx l=%lx r=%lx", __entry->call, __entry->qbase, __entry->nacks, __entry->lost, __entry->retrans) ); TRACE_EVENT(rxrpc_rack_detect_loss, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary, rxrpc_seq_t seq), TP_ARGS(call, summary, seq), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, seq) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ack_serial = call->rx_serial; __entry->seq = seq; ), TP_printk("c=%08x r=%08x q=%08x", __entry->call, __entry->ack_serial, __entry->seq) ); TRACE_EVENT(rxrpc_rack_mark_loss_tq, TP_PROTO(struct rxrpc_call *call, const struct rxrpc_txqueue *tq), TP_ARGS(call, tq), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(rxrpc_seq_t, trans) __field(unsigned long, acked) __field(unsigned long, lost) __field(unsigned long, retrans) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->trans = call->tx_transmitted; __entry->acked = tq->segment_acked; __entry->lost = tq->segment_lost; __entry->retrans = tq->segment_retransmitted; ), TP_printk("c=%08x tq=%08x txq=%08x a=%lx l=%lx r=%lx", __entry->call, __entry->qbase, __entry->trans, __entry->acked, __entry->lost, __entry->retrans) ); TRACE_EVENT(rxrpc_tlp_probe, TP_PROTO(struct rxrpc_call *call, enum rxrpc_tlp_probe_trace trace), TP_ARGS(call, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, seq) __field(enum rxrpc_tlp_probe_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = call->tlp_serial; __entry->seq = call->tlp_seq; __entry->trace = trace; ), TP_printk("c=%08x r=%08x pq=%08x %s", __entry->call, __entry->serial, __entry->seq, __print_symbolic(__entry->trace, rxrpc_tlp_probe_traces)) ); TRACE_EVENT(rxrpc_tlp_ack, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary, enum rxrpc_tlp_ack_trace trace), TP_ARGS(call, summary, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, tlp_seq) __field(rxrpc_seq_t, hard_ack) __field(enum rxrpc_tlp_ack_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = call->tlp_serial; __entry->tlp_seq = call->tlp_seq; __entry->hard_ack = call->acks_hard_ack; __entry->trace = trace; ), TP_printk("c=%08x r=%08x pq=%08x hq=%08x %s", __entry->call, __entry->serial, __entry->tlp_seq, __entry->hard_ack, __print_symbolic(__entry->trace, rxrpc_tlp_ack_traces)) ); TRACE_EVENT(rxrpc_rack_timer, TP_PROTO(struct rxrpc_call *call, ktime_t delay, bool exp), TP_ARGS(call, delay, exp), TP_STRUCT__entry( __field(unsigned int, call) __field(bool, exp) __field(enum rxrpc_rack_timer_mode, mode) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->exp = exp; __entry->mode = call->rack_timer_mode; __entry->delay = delay; ), TP_printk("c=%08x %s %s to=%lld", __entry->call, __entry->exp ? "Exp" : "Set", __print_symbolic(__entry->mode, rxrpc_rack_timer_modes), ktime_to_us(__entry->delay)) ); #undef EM #undef E_ #endif /* RXRPC_TRACE_ONLY_DEFINE_ENUMS */ #endif /* _TRACE_RXRPC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
13 3 3 3 3 3 3 3 4 4 4 12 33 30 29 32 31 34 34 34 34 33 34 30 4 34 138 139 139 130 139 138 127 139 29 2 2 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 26 8 26 26 26 13 13 126 126 126 126 20 19 20 9 9 9 9 9 9 18 18 113 113 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 // SPDX-License-Identifier: GPL-2.0-only /* * drivers/net/veth.c * * Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc * * Author: Pavel Emelianov <xemul@openvz.org> * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com> * */ #include <linux/netdevice.h> #include <linux/slab.h> #include <linux/ethtool.h> #include <linux/etherdevice.h> #include <linux/u64_stats_sync.h> #include <net/rtnetlink.h> #include <net/dst.h> #include <net/netdev_lock.h> #include <net/xfrm.h> #include <net/xdp.h> #include <linux/veth.h> #include <linux/module.h> #include <linux/bpf.h> #include <linux/filter.h> #include <linux/ptr_ring.h> #include <linux/bpf_trace.h> #include <linux/net_tstamp.h> #include <linux/skbuff_ref.h> #include <net/page_pool/helpers.h> #define DRV_NAME "veth" #define DRV_VERSION "1.0" #define VETH_XDP_FLAG BIT(0) #define VETH_RING_SIZE 256 #define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN) #define VETH_XDP_TX_BULK_SIZE 16 #define VETH_XDP_BATCH 16 struct veth_stats { u64 rx_drops; /* xdp */ u64 xdp_packets; u64 xdp_bytes; u64 xdp_redirect; u64 xdp_drops; u64 xdp_tx; u64 xdp_tx_err; u64 peer_tq_xdp_xmit; u64 peer_tq_xdp_xmit_err; }; struct veth_rq_stats { struct veth_stats vs; struct u64_stats_sync syncp; }; struct veth_rq { struct napi_struct xdp_napi; struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */ struct net_device *dev; struct bpf_prog __rcu *xdp_prog; struct xdp_mem_info xdp_mem; struct veth_rq_stats stats; bool rx_notify_masked; struct ptr_ring xdp_ring; struct xdp_rxq_info xdp_rxq; struct page_pool *page_pool; }; struct veth_priv { struct net_device __rcu *peer; atomic64_t dropped; struct bpf_prog *_xdp_prog; struct veth_rq *rq; unsigned int requested_headroom; }; struct veth_xdp_tx_bq { struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE]; unsigned int count; }; /* * ethtool interface */ struct veth_q_stat_desc { char desc[ETH_GSTRING_LEN]; size_t offset; }; #define VETH_RQ_STAT(m) offsetof(struct veth_stats, m) static const struct veth_q_stat_desc veth_rq_stats_desc[] = { { "xdp_packets", VETH_RQ_STAT(xdp_packets) }, { "xdp_bytes", VETH_RQ_STAT(xdp_bytes) }, { "drops", VETH_RQ_STAT(rx_drops) }, { "xdp_redirect", VETH_RQ_STAT(xdp_redirect) }, { "xdp_drops", VETH_RQ_STAT(xdp_drops) }, { "xdp_tx", VETH_RQ_STAT(xdp_tx) }, { "xdp_tx_errors", VETH_RQ_STAT(xdp_tx_err) }, }; #define VETH_RQ_STATS_LEN ARRAY_SIZE(veth_rq_stats_desc) static const struct veth_q_stat_desc veth_tq_stats_desc[] = { { "xdp_xmit", VETH_RQ_STAT(peer_tq_xdp_xmit) }, { "xdp_xmit_errors", VETH_RQ_STAT(peer_tq_xdp_xmit_err) }, }; #define VETH_TQ_STATS_LEN ARRAY_SIZE(veth_tq_stats_desc) static struct { const char string[ETH_GSTRING_LEN]; } ethtool_stats_keys[] = { { "peer_ifindex" }, }; struct veth_xdp_buff { struct xdp_buff xdp; struct sk_buff *skb; }; static int veth_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { cmd->base.speed = SPEED_10000; cmd->base.duplex = DUPLEX_FULL; cmd->base.port = PORT_TP; cmd->base.autoneg = AUTONEG_DISABLE; return 0; } static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); } static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf) { u8 *p = buf; int i, j; switch(stringset) { case ETH_SS_STATS: memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys)); p += sizeof(ethtool_stats_keys); for (i = 0; i < dev->real_num_rx_queues; i++) for (j = 0; j < VETH_RQ_STATS_LEN; j++) ethtool_sprintf(&p, "rx_queue_%u_%.18s", i, veth_rq_stats_desc[j].desc); for (i = 0; i < dev->real_num_tx_queues; i++) for (j = 0; j < VETH_TQ_STATS_LEN; j++) ethtool_sprintf(&p, "tx_queue_%u_%.18s", i, veth_tq_stats_desc[j].desc); page_pool_ethtool_stats_get_strings(p); break; } } static int veth_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(ethtool_stats_keys) + VETH_RQ_STATS_LEN * dev->real_num_rx_queues + VETH_TQ_STATS_LEN * dev->real_num_tx_queues + page_pool_ethtool_stats_get_count(); default: return -EOPNOTSUPP; } } static void veth_get_page_pool_stats(struct net_device *dev, u64 *data) { #ifdef CONFIG_PAGE_POOL_STATS struct veth_priv *priv = netdev_priv(dev); struct page_pool_stats pp_stats = {}; int i; for (i = 0; i < dev->real_num_rx_queues; i++) { if (!priv->rq[i].page_pool) continue; page_pool_get_stats(priv->rq[i].page_pool, &pp_stats); } page_pool_ethtool_stats_get(data, &pp_stats); #endif /* CONFIG_PAGE_POOL_STATS */ } static void veth_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct veth_priv *rcv_priv, *priv = netdev_priv(dev); struct net_device *peer = rtnl_dereference(priv->peer); int i, j, idx, pp_idx; data[0] = peer ? peer->ifindex : 0; idx = 1; for (i = 0; i < dev->real_num_rx_queues; i++) { const struct veth_rq_stats *rq_stats = &priv->rq[i].stats; const void *stats_base = (void *)&rq_stats->vs; unsigned int start; size_t offset; do { start = u64_stats_fetch_begin(&rq_stats->syncp); for (j = 0; j < VETH_RQ_STATS_LEN; j++) { offset = veth_rq_stats_desc[j].offset; data[idx + j] = *(u64 *)(stats_base + offset); } } while (u64_stats_fetch_retry(&rq_stats->syncp, start)); idx += VETH_RQ_STATS_LEN; } pp_idx = idx; if (!peer) goto page_pool_stats; rcv_priv = netdev_priv(peer); for (i = 0; i < peer->real_num_rx_queues; i++) { const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats; const void *base = (void *)&rq_stats->vs; unsigned int start, tx_idx = idx; size_t offset; tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN; do { start = u64_stats_fetch_begin(&rq_stats->syncp); for (j = 0; j < VETH_TQ_STATS_LEN; j++) { offset = veth_tq_stats_desc[j].offset; data[tx_idx + j] += *(u64 *)(base + offset); } } while (u64_stats_fetch_retry(&rq_stats->syncp, start)); } pp_idx = idx + dev->real_num_tx_queues * VETH_TQ_STATS_LEN; page_pool_stats: veth_get_page_pool_stats(dev, &data[pp_idx]); } static void veth_get_channels(struct net_device *dev, struct ethtool_channels *channels) { channels->tx_count = dev->real_num_tx_queues; channels->rx_count = dev->real_num_rx_queues; channels->max_tx = dev->num_tx_queues; channels->max_rx = dev->num_rx_queues; } static int veth_set_channels(struct net_device *dev, struct ethtool_channels *ch); static const struct ethtool_ops veth_ethtool_ops = { .get_drvinfo = veth_get_drvinfo, .get_link = ethtool_op_get_link, .get_strings = veth_get_strings, .get_sset_count = veth_get_sset_count, .get_ethtool_stats = veth_get_ethtool_stats, .get_link_ksettings = veth_get_link_ksettings, .get_ts_info = ethtool_op_get_ts_info, .get_channels = veth_get_channels, .set_channels = veth_set_channels, }; /* general routines */ static bool veth_is_xdp_frame(void *ptr) { return (unsigned long)ptr & VETH_XDP_FLAG; } static struct xdp_frame *veth_ptr_to_xdp(void *ptr) { return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG); } static void *veth_xdp_to_ptr(struct xdp_frame *xdp) { return (void *)((unsigned long)xdp | VETH_XDP_FLAG); } static void veth_ptr_free(void *ptr) { if (veth_is_xdp_frame(ptr)) xdp_return_frame(veth_ptr_to_xdp(ptr)); else kfree_skb(ptr); } static void __veth_xdp_flush(struct veth_rq *rq) { /* Write ptr_ring before reading rx_notify_masked */ smp_mb(); if (!READ_ONCE(rq->rx_notify_masked) && napi_schedule_prep(&rq->xdp_napi)) { WRITE_ONCE(rq->rx_notify_masked, true); __napi_schedule(&rq->xdp_napi); } } static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb) { if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) { dev_kfree_skb_any(skb); return NET_RX_DROP; } return NET_RX_SUCCESS; } static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb, struct veth_rq *rq, bool xdp) { return __dev_forward_skb(dev, skb) ?: xdp ? veth_xdp_rx(rq, skb) : __netif_rx(skb); } /* return true if the specified skb has chances of GRO aggregation * Don't strive for accuracy, but try to avoid GRO overhead in the most * common scenarios. * When XDP is enabled, all traffic is considered eligible, as the xmit * device has TSO off. * When TSO is enabled on the xmit device, we are likely interested only * in UDP aggregation, explicitly check for that if the skb is suspected * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets - * to belong to locally generated UDP traffic. */ static bool veth_skb_is_eligible_for_gro(const struct net_device *dev, const struct net_device *rcv, const struct sk_buff *skb) { return !(dev->features & NETIF_F_ALL_TSO) || (skb->destructor == sock_wfree && rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD)); } static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev) { struct veth_priv *rcv_priv, *priv = netdev_priv(dev); struct veth_rq *rq = NULL; int ret = NETDEV_TX_OK; struct net_device *rcv; int length = skb->len; bool use_napi = false; int rxq; rcu_read_lock(); rcv = rcu_dereference(priv->peer); if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) { kfree_skb(skb); goto drop; } rcv_priv = netdev_priv(rcv); rxq = skb_get_queue_mapping(skb); if (rxq < rcv->real_num_rx_queues) { rq = &rcv_priv->rq[rxq]; /* The napi pointer is available when an XDP program is * attached or when GRO is enabled * Don't bother with napi/GRO if the skb can't be aggregated */ use_napi = rcu_access_pointer(rq->napi) && veth_skb_is_eligible_for_gro(dev, rcv, skb); } skb_tx_timestamp(skb); if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) { if (!use_napi) dev_sw_netstats_tx_add(dev, 1, length); else __veth_xdp_flush(rq); } else { drop: atomic64_inc(&priv->dropped); ret = NET_XMIT_DROP; } rcu_read_unlock(); return ret; } static void veth_stats_rx(struct veth_stats *result, struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); int i; result->peer_tq_xdp_xmit_err = 0; result->xdp_packets = 0; result->xdp_tx_err = 0; result->xdp_bytes = 0; result->rx_drops = 0; for (i = 0; i < dev->num_rx_queues; i++) { u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err; struct veth_rq_stats *stats = &priv->rq[i].stats; unsigned int start; do { start = u64_stats_fetch_begin(&stats->syncp); peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err; xdp_tx_err = stats->vs.xdp_tx_err; packets = stats->vs.xdp_packets; bytes = stats->vs.xdp_bytes; drops = stats->vs.rx_drops; } while (u64_stats_fetch_retry(&stats->syncp, start)); result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err; result->xdp_tx_err += xdp_tx_err; result->xdp_packets += packets; result->xdp_bytes += bytes; result->rx_drops += drops; } } static void veth_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *tot) { struct veth_priv *priv = netdev_priv(dev); struct net_device *peer; struct veth_stats rx; tot->tx_dropped = atomic64_read(&priv->dropped); dev_fetch_sw_netstats(tot, dev->tstats); veth_stats_rx(&rx, dev); tot->tx_dropped += rx.xdp_tx_err; tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err; tot->rx_bytes += rx.xdp_bytes; tot->rx_packets += rx.xdp_packets; rcu_read_lock(); peer = rcu_dereference(priv->peer); if (peer) { struct rtnl_link_stats64 tot_peer = {}; dev_fetch_sw_netstats(&tot_peer, peer->tstats); tot->rx_bytes += tot_peer.tx_bytes; tot->rx_packets += tot_peer.tx_packets; veth_stats_rx(&rx, peer); tot->tx_dropped += rx.peer_tq_xdp_xmit_err; tot->rx_dropped += rx.xdp_tx_err; tot->tx_bytes += rx.xdp_bytes; tot->tx_packets += rx.xdp_packets; } rcu_read_unlock(); } /* fake multicast ability */ static void veth_set_multicast_list(struct net_device *dev) { } static int veth_select_rxq(struct net_device *dev) { return smp_processor_id() % dev->real_num_rx_queues; } static struct net_device *veth_peer_dev(struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); /* Callers must be under RCU read side. */ return rcu_dereference(priv->peer); } static int veth_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags, bool ndo_xmit) { struct veth_priv *rcv_priv, *priv = netdev_priv(dev); int i, ret = -ENXIO, nxmit = 0; struct net_device *rcv; unsigned int max_len; struct veth_rq *rq; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; rcu_read_lock(); rcv = rcu_dereference(priv->peer); if (unlikely(!rcv)) goto out; rcv_priv = netdev_priv(rcv); rq = &rcv_priv->rq[veth_select_rxq(rcv)]; /* The napi pointer is set if NAPI is enabled, which ensures that * xdp_ring is initialized on receive side and the peer device is up. */ if (!rcu_access_pointer(rq->napi)) goto out; max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN; spin_lock(&rq->xdp_ring.producer_lock); for (i = 0; i < n; i++) { struct xdp_frame *frame = frames[i]; void *ptr = veth_xdp_to_ptr(frame); if (unlikely(xdp_get_frame_len(frame) > max_len || __ptr_ring_produce(&rq->xdp_ring, ptr))) break; nxmit++; } spin_unlock(&rq->xdp_ring.producer_lock); if (flags & XDP_XMIT_FLUSH) __veth_xdp_flush(rq); ret = nxmit; if (ndo_xmit) { u64_stats_update_begin(&rq->stats.syncp); rq->stats.vs.peer_tq_xdp_xmit += nxmit; rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit; u64_stats_update_end(&rq->stats.syncp); } out: rcu_read_unlock(); return ret; } static int veth_ndo_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { int err; err = veth_xdp_xmit(dev, n, frames, flags, true); if (err < 0) { struct veth_priv *priv = netdev_priv(dev); atomic64_add(n, &priv->dropped); } return err; } static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq) { int sent, i, err = 0, drops; sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false); if (sent < 0) { err = sent; sent = 0; } for (i = sent; unlikely(i < bq->count); i++) xdp_return_frame(bq->q[i]); drops = bq->count - sent; trace_xdp_bulk_tx(rq->dev, sent, drops, err); u64_stats_update_begin(&rq->stats.syncp); rq->stats.vs.xdp_tx += sent; rq->stats.vs.xdp_tx_err += drops; u64_stats_update_end(&rq->stats.syncp); bq->count = 0; } static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq) { struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev); struct net_device *rcv; struct veth_rq *rcv_rq; rcu_read_lock(); veth_xdp_flush_bq(rq, bq); rcv = rcu_dereference(priv->peer); if (unlikely(!rcv)) goto out; rcv_priv = netdev_priv(rcv); rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)]; /* xdp_ring is initialized on receive side? */ if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog))) goto out; __veth_xdp_flush(rcv_rq); out: rcu_read_unlock(); } static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp, struct veth_xdp_tx_bq *bq) { struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp); if (unlikely(!frame)) return -EOVERFLOW; if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE)) veth_xdp_flush_bq(rq, bq); bq->q[bq->count++] = frame; return 0; } static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq, struct xdp_frame *frame, struct veth_xdp_tx_bq *bq, struct veth_stats *stats) { struct xdp_frame orig_frame; struct bpf_prog *xdp_prog; rcu_read_lock(); xdp_prog = rcu_dereference(rq->xdp_prog); if (likely(xdp_prog)) { struct veth_xdp_buff vxbuf; struct xdp_buff *xdp = &vxbuf.xdp; u32 act; xdp_convert_frame_to_buff(frame, xdp); xdp->rxq = &rq->xdp_rxq; vxbuf.skb = NULL; act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: if (xdp_update_frame_from_buff(xdp, frame)) goto err_xdp; break; case XDP_TX: orig_frame = *frame; xdp->rxq->mem.type = frame->mem_type; if (unlikely(veth_xdp_tx(rq, xdp, bq) < 0)) { trace_xdp_exception(rq->dev, xdp_prog, act); frame = &orig_frame; stats->rx_drops++; goto err_xdp; } stats->xdp_tx++; rcu_read_unlock(); goto xdp_xmit; case XDP_REDIRECT: orig_frame = *frame; xdp->rxq->mem.type = frame->mem_type; if (xdp_do_redirect(rq->dev, xdp, xdp_prog)) { frame = &orig_frame; stats->rx_drops++; goto err_xdp; } stats->xdp_redirect++; rcu_read_unlock(); goto xdp_xmit; default: bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(rq->dev, xdp_prog, act); fallthrough; case XDP_DROP: stats->xdp_drops++; goto err_xdp; } } rcu_read_unlock(); return frame; err_xdp: rcu_read_unlock(); xdp_return_frame(frame); xdp_xmit: return NULL; } /* frames array contains VETH_XDP_BATCH at most */ static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames, int n_xdpf, struct veth_xdp_tx_bq *bq, struct veth_stats *stats) { void *skbs[VETH_XDP_BATCH]; int i; if (unlikely(!napi_skb_cache_get_bulk(skbs, n_xdpf))) { for (i = 0; i < n_xdpf; i++) xdp_return_frame(frames[i]); stats->rx_drops += n_xdpf; return; } for (i = 0; i < n_xdpf; i++) { struct sk_buff *skb = skbs[i]; skb = __xdp_build_skb_from_frame(frames[i], skb, rq->dev); if (!skb) { xdp_return_frame(frames[i]); stats->rx_drops++; continue; } napi_gro_receive(&rq->xdp_napi, skb); } } static void veth_xdp_get(struct xdp_buff *xdp) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); int i; get_page(virt_to_page(xdp->data)); if (likely(!xdp_buff_has_frags(xdp))) return; for (i = 0; i < sinfo->nr_frags; i++) __skb_frag_ref(&sinfo->frags[i]); } static int veth_convert_skb_to_xdp_buff(struct veth_rq *rq, struct xdp_buff *xdp, struct sk_buff **pskb) { struct sk_buff *skb = *pskb; u32 frame_sz; if (skb_shared(skb) || skb_head_is_locked(skb) || skb_shinfo(skb)->nr_frags || skb_headroom(skb) < XDP_PACKET_HEADROOM) { if (skb_pp_cow_data(rq->page_pool, pskb, XDP_PACKET_HEADROOM)) goto drop; skb = *pskb; } /* SKB "head" area always have tailroom for skb_shared_info */ frame_sz = skb_end_pointer(skb) - skb->head; frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); xdp_init_buff(xdp, frame_sz, &rq->xdp_rxq); xdp_prepare_buff(xdp, skb->head, skb_headroom(skb), skb_headlen(skb), true); if (skb_is_nonlinear(skb)) { skb_shinfo(skb)->xdp_frags_size = skb->data_len; xdp_buff_set_frags_flag(xdp); } else { xdp_buff_clear_frags_flag(xdp); } *pskb = skb; return 0; drop: consume_skb(skb); *pskb = NULL; return -ENOMEM; } static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb, struct veth_xdp_tx_bq *bq, struct veth_stats *stats) { void *orig_data, *orig_data_end; struct bpf_prog *xdp_prog; struct veth_xdp_buff vxbuf; struct xdp_buff *xdp = &vxbuf.xdp; u32 act, metalen; int off; skb_prepare_for_gro(skb); rcu_read_lock(); xdp_prog = rcu_dereference(rq->xdp_prog); if (unlikely(!xdp_prog)) { rcu_read_unlock(); goto out; } __skb_push(skb, skb->data - skb_mac_header(skb)); if (veth_convert_skb_to_xdp_buff(rq, xdp, &skb)) goto drop; vxbuf.skb = skb; orig_data = xdp->data; orig_data_end = xdp->data_end; act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: break; case XDP_TX: veth_xdp_get(xdp); consume_skb(skb); xdp->rxq->mem = rq->xdp_mem; if (unlikely(veth_xdp_tx(rq, xdp, bq) < 0)) { trace_xdp_exception(rq->dev, xdp_prog, act); stats->rx_drops++; goto err_xdp; } stats->xdp_tx++; rcu_read_unlock(); goto xdp_xmit; case XDP_REDIRECT: veth_xdp_get(xdp); consume_skb(skb); xdp->rxq->mem = rq->xdp_mem; if (xdp_do_redirect(rq->dev, xdp, xdp_prog)) { stats->rx_drops++; goto err_xdp; } stats->xdp_redirect++; rcu_read_unlock(); goto xdp_xmit; default: bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(rq->dev, xdp_prog, act); fallthrough; case XDP_DROP: stats->xdp_drops++; goto xdp_drop; } rcu_read_unlock(); /* check if bpf_xdp_adjust_head was used */ off = orig_data - xdp->data; if (off > 0) __skb_push(skb, off); else if (off < 0) __skb_pull(skb, -off); skb_reset_mac_header(skb); /* check if bpf_xdp_adjust_tail was used */ off = xdp->data_end - orig_data_end; if (off != 0) __skb_put(skb, off); /* positive on grow, negative on shrink */ /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. */ if (xdp_buff_has_frags(xdp)) skb->data_len = skb_shinfo(skb)->xdp_frags_size; else skb->data_len = 0; skb->protocol = eth_type_trans(skb, rq->dev); metalen = xdp->data - xdp->data_meta; if (metalen) skb_metadata_set(skb, metalen); out: return skb; drop: stats->rx_drops++; xdp_drop: rcu_read_unlock(); kfree_skb(skb); return NULL; err_xdp: rcu_read_unlock(); xdp_return_buff(xdp); xdp_xmit: return NULL; } static int veth_xdp_rcv(struct veth_rq *rq, int budget, struct veth_xdp_tx_bq *bq, struct veth_stats *stats) { int i, done = 0, n_xdpf = 0; void *xdpf[VETH_XDP_BATCH]; for (i = 0; i < budget; i++) { void *ptr = __ptr_ring_consume(&rq->xdp_ring); if (!ptr) break; if (veth_is_xdp_frame(ptr)) { /* ndo_xdp_xmit */ struct xdp_frame *frame = veth_ptr_to_xdp(ptr); stats->xdp_bytes += xdp_get_frame_len(frame); frame = veth_xdp_rcv_one(rq, frame, bq, stats); if (frame) { /* XDP_PASS */ xdpf[n_xdpf++] = frame; if (n_xdpf == VETH_XDP_BATCH) { veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats); n_xdpf = 0; } } } else { /* ndo_start_xmit */ struct sk_buff *skb = ptr; stats->xdp_bytes += skb->len; skb = veth_xdp_rcv_skb(rq, skb, bq, stats); if (skb) { if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC)) netif_receive_skb(skb); else napi_gro_receive(&rq->xdp_napi, skb); } } done++; } if (n_xdpf) veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats); u64_stats_update_begin(&rq->stats.syncp); rq->stats.vs.xdp_redirect += stats->xdp_redirect; rq->stats.vs.xdp_bytes += stats->xdp_bytes; rq->stats.vs.xdp_drops += stats->xdp_drops; rq->stats.vs.rx_drops += stats->rx_drops; rq->stats.vs.xdp_packets += done; u64_stats_update_end(&rq->stats.syncp); return done; } static int veth_poll(struct napi_struct *napi, int budget) { struct veth_rq *rq = container_of(napi, struct veth_rq, xdp_napi); struct veth_stats stats = {}; struct veth_xdp_tx_bq bq; int done; bq.count = 0; xdp_set_return_frame_no_direct(); done = veth_xdp_rcv(rq, budget, &bq, &stats); if (stats.xdp_redirect > 0) xdp_do_flush(); if (done < budget && napi_complete_done(napi, done)) { /* Write rx_notify_masked before reading ptr_ring */ smp_store_mb(rq->rx_notify_masked, false); if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) { if (napi_schedule_prep(&rq->xdp_napi)) { WRITE_ONCE(rq->rx_notify_masked, true); __napi_schedule(&rq->xdp_napi); } } } if (stats.xdp_tx > 0) veth_xdp_flush(rq, &bq); xdp_clear_return_frame_no_direct(); return done; } static int veth_create_page_pool(struct veth_rq *rq) { struct page_pool_params pp_params = { .order = 0, .pool_size = VETH_RING_SIZE, .nid = NUMA_NO_NODE, .dev = &rq->dev->dev, }; rq->page_pool = page_pool_create(&pp_params); if (IS_ERR(rq->page_pool)) { int err = PTR_ERR(rq->page_pool); rq->page_pool = NULL; return err; } return 0; } static int __veth_napi_enable_range(struct net_device *dev, int start, int end) { struct veth_priv *priv = netdev_priv(dev); int err, i; for (i = start; i < end; i++) { err = veth_create_page_pool(&priv->rq[i]); if (err) goto err_page_pool; } for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL); if (err) goto err_xdp_ring; } for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; napi_enable(&rq->xdp_napi); rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi); } return 0; err_xdp_ring: for (i--; i >= start; i--) ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free); i = end; err_page_pool: for (i--; i >= start; i--) { page_pool_destroy(priv->rq[i].page_pool); priv->rq[i].page_pool = NULL; } return err; } static int __veth_napi_enable(struct net_device *dev) { return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues); } static void veth_napi_del_range(struct net_device *dev, int start, int end) { struct veth_priv *priv = netdev_priv(dev); int i; for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; rcu_assign_pointer(priv->rq[i].napi, NULL); napi_disable(&rq->xdp_napi); __netif_napi_del(&rq->xdp_napi); } synchronize_net(); for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; rq->rx_notify_masked = false; ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free); } for (i = start; i < end; i++) { page_pool_destroy(priv->rq[i].page_pool); priv->rq[i].page_pool = NULL; } } static void veth_napi_del(struct net_device *dev) { veth_napi_del_range(dev, 0, dev->real_num_rx_queues); } static bool veth_gro_requested(const struct net_device *dev) { return !!(dev->wanted_features & NETIF_F_GRO); } static int veth_enable_xdp_range(struct net_device *dev, int start, int end, bool napi_already_on) { struct veth_priv *priv = netdev_priv(dev); int err, i; for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; if (!napi_already_on) netif_napi_add(dev, &rq->xdp_napi, veth_poll); err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id); if (err < 0) goto err_rxq_reg; err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err < 0) goto err_reg_mem; /* Save original mem info as it can be overwritten */ rq->xdp_mem = rq->xdp_rxq.mem; } return 0; err_reg_mem: xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq); err_rxq_reg: for (i--; i >= start; i--) { struct veth_rq *rq = &priv->rq[i]; xdp_rxq_info_unreg(&rq->xdp_rxq); if (!napi_already_on) netif_napi_del(&rq->xdp_napi); } return err; } static void veth_disable_xdp_range(struct net_device *dev, int start, int end, bool delete_napi) { struct veth_priv *priv = netdev_priv(dev); int i; for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; rq->xdp_rxq.mem = rq->xdp_mem; xdp_rxq_info_unreg(&rq->xdp_rxq); if (delete_napi) netif_napi_del(&rq->xdp_napi); } } static int veth_enable_xdp(struct net_device *dev) { bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP); struct veth_priv *priv = netdev_priv(dev); int err, i; if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) { err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on); if (err) return err; if (!napi_already_on) { err = __veth_napi_enable(dev); if (err) { veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true); return err; } } } for (i = 0; i < dev->real_num_rx_queues; i++) { rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog); rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi); } return 0; } static void veth_disable_xdp(struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); int i; for (i = 0; i < dev->real_num_rx_queues; i++) rcu_assign_pointer(priv->rq[i].xdp_prog, NULL); if (!netif_running(dev) || !veth_gro_requested(dev)) veth_napi_del(dev); veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false); } static int veth_napi_enable_range(struct net_device *dev, int start, int end) { struct veth_priv *priv = netdev_priv(dev); int err, i; for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; netif_napi_add(dev, &rq->xdp_napi, veth_poll); } err = __veth_napi_enable_range(dev, start, end); if (err) { for (i = start; i < end; i++) { struct veth_rq *rq = &priv->rq[i]; netif_napi_del(&rq->xdp_napi); } return err; } return err; } static int veth_napi_enable(struct net_device *dev) { return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues); } static void veth_disable_range_safe(struct net_device *dev, int start, int end) { struct veth_priv *priv = netdev_priv(dev); if (start >= end) return; if (priv->_xdp_prog) { veth_napi_del_range(dev, start, end); veth_disable_xdp_range(dev, start, end, false); } else if (veth_gro_requested(dev)) { veth_napi_del_range(dev, start, end); } } static int veth_enable_range_safe(struct net_device *dev, int start, int end) { struct veth_priv *priv = netdev_priv(dev); int err; if (start >= end) return 0; if (priv->_xdp_prog) { /* these channels are freshly initialized, napi is not on there even * when GRO is requeste */ err = veth_enable_xdp_range(dev, start, end, false); if (err) return err; err = __veth_napi_enable_range(dev, start, end); if (err) { /* on error always delete the newly added napis */ veth_disable_xdp_range(dev, start, end, true); return err; } } else if (veth_gro_requested(dev)) { return veth_napi_enable_range(dev, start, end); } return 0; } static void veth_set_xdp_features(struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); struct net_device *peer; peer = rtnl_dereference(priv->peer); if (peer && peer->real_num_tx_queues <= dev->real_num_rx_queues) { struct veth_priv *priv_peer = netdev_priv(peer); xdp_features_t val = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_RX_SG; if (priv_peer->_xdp_prog || veth_gro_requested(peer)) val |= NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG; xdp_set_features_flag(dev, val); } else { xdp_clear_features_flag(dev); } } static int veth_set_channels(struct net_device *dev, struct ethtool_channels *ch) { struct veth_priv *priv = netdev_priv(dev); unsigned int old_rx_count, new_rx_count; struct veth_priv *peer_priv; struct net_device *peer; int err; /* sanity check. Upper bounds are already enforced by the caller */ if (!ch->rx_count || !ch->tx_count) return -EINVAL; /* avoid braking XDP, if that is enabled */ peer = rtnl_dereference(priv->peer); peer_priv = peer ? netdev_priv(peer) : NULL; if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues) return -EINVAL; if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues) return -EINVAL; old_rx_count = dev->real_num_rx_queues; new_rx_count = ch->rx_count; if (netif_running(dev)) { /* turn device off */ netif_carrier_off(dev); if (peer) netif_carrier_off(peer); /* try to allocate new resurces, as needed*/ err = veth_enable_range_safe(dev, old_rx_count, new_rx_count); if (err) goto out; } err = netif_set_real_num_rx_queues(dev, ch->rx_count); if (err) goto revert; err = netif_set_real_num_tx_queues(dev, ch->tx_count); if (err) { int err2 = netif_set_real_num_rx_queues(dev, old_rx_count); /* this error condition could happen only if rx and tx change * in opposite directions (e.g. tx nr raises, rx nr decreases) * and we can't do anything to fully restore the original * status */ if (err2) pr_warn("Can't restore rx queues config %d -> %d %d", new_rx_count, old_rx_count, err2); else goto revert; } out: if (netif_running(dev)) { /* note that we need to swap the arguments WRT the enable part * to identify the range we have to disable */ veth_disable_range_safe(dev, new_rx_count, old_rx_count); netif_carrier_on(dev); if (peer) netif_carrier_on(peer); } /* update XDP supported features */ veth_set_xdp_features(dev); if (peer) veth_set_xdp_features(peer); return err; revert: new_rx_count = old_rx_count; old_rx_count = ch->rx_count; goto out; } static int veth_open(struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); struct net_device *peer = rtnl_dereference(priv->peer); int err; if (!peer) return -ENOTCONN; if (priv->_xdp_prog) { err = veth_enable_xdp(dev); if (err) return err; } else if (veth_gro_requested(dev)) { err = veth_napi_enable(dev); if (err) return err; } if (peer->flags & IFF_UP) { netif_carrier_on(dev); netif_carrier_on(peer); } veth_set_xdp_features(dev); return 0; } static int veth_close(struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); struct net_device *peer = rtnl_dereference(priv->peer); netif_carrier_off(dev); if (peer) netif_carrier_off(peer); if (priv->_xdp_prog) veth_disable_xdp(dev); else if (veth_gro_requested(dev)) veth_napi_del(dev); return 0; } static int is_valid_veth_mtu(int mtu) { return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU; } static int veth_alloc_queues(struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); int i; priv->rq = kvcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); if (!priv->rq) return -ENOMEM; for (i = 0; i < dev->num_rx_queues; i++) { priv->rq[i].dev = dev; u64_stats_init(&priv->rq[i].stats.syncp); } return 0; } static void veth_free_queues(struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); kvfree(priv->rq); } static int veth_dev_init(struct net_device *dev) { netdev_lockdep_set_classes(dev); return veth_alloc_queues(dev); } static void veth_dev_free(struct net_device *dev) { veth_free_queues(dev); } #ifdef CONFIG_NET_POLL_CONTROLLER static void veth_poll_controller(struct net_device *dev) { /* veth only receives frames when its peer sends one * Since it has nothing to do with disabling irqs, we are guaranteed * never to have pending data when we poll for it so * there is nothing to do here. * * We need this though so netpoll recognizes us as an interface that * supports polling, which enables bridge devices in virt setups to * still use netconsole */ } #endif /* CONFIG_NET_POLL_CONTROLLER */ static int veth_get_iflink(const struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); struct net_device *peer; int iflink; rcu_read_lock(); peer = rcu_dereference(priv->peer); iflink = peer ? READ_ONCE(peer->ifindex) : 0; rcu_read_unlock(); return iflink; } static netdev_features_t veth_fix_features(struct net_device *dev, netdev_features_t features) { struct veth_priv *priv = netdev_priv(dev); struct net_device *peer; peer = rtnl_dereference(priv->peer); if (peer) { struct veth_priv *peer_priv = netdev_priv(peer); if (peer_priv->_xdp_prog) features &= ~NETIF_F_GSO_SOFTWARE; } return features; } static int veth_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = features ^ dev->features; struct veth_priv *priv = netdev_priv(dev); struct net_device *peer; int err; if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog) return 0; peer = rtnl_dereference(priv->peer); if (features & NETIF_F_GRO) { err = veth_napi_enable(dev); if (err) return err; if (peer) xdp_features_set_redirect_target(peer, true); } else { if (peer) xdp_features_clear_redirect_target(peer); veth_napi_del(dev); } return 0; } static void veth_set_rx_headroom(struct net_device *dev, int new_hr) { struct veth_priv *peer_priv, *priv = netdev_priv(dev); struct net_device *peer; if (new_hr < 0) new_hr = 0; rcu_read_lock(); peer = rcu_dereference(priv->peer); if (unlikely(!peer)) goto out; peer_priv = netdev_priv(peer); priv->requested_headroom = new_hr; new_hr = max(priv->requested_headroom, peer_priv->requested_headroom); dev->needed_headroom = new_hr; peer->needed_headroom = new_hr; out: rcu_read_unlock(); } static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog, struct netlink_ext_ack *extack) { struct veth_priv *priv = netdev_priv(dev); struct bpf_prog *old_prog; struct net_device *peer; unsigned int max_mtu; int err; old_prog = priv->_xdp_prog; priv->_xdp_prog = prog; peer = rtnl_dereference(priv->peer); if (prog) { if (!peer) { NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached"); err = -ENOTCONN; goto err; } max_mtu = SKB_WITH_OVERHEAD(PAGE_SIZE - VETH_XDP_HEADROOM) - peer->hard_header_len; /* Allow increasing the max_mtu if the program supports * XDP fragments. */ if (prog->aux->xdp_has_frags) max_mtu += PAGE_SIZE * MAX_SKB_FRAGS; if (peer->mtu > max_mtu) { NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP"); err = -ERANGE; goto err; } if (dev->real_num_rx_queues < peer->real_num_tx_queues) { NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues"); err = -ENOSPC; goto err; } if (dev->flags & IFF_UP) { err = veth_enable_xdp(dev); if (err) { NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed"); goto err; } } if (!old_prog) { peer->hw_features &= ~NETIF_F_GSO_SOFTWARE; peer->max_mtu = max_mtu; } xdp_features_set_redirect_target(peer, true); } if (old_prog) { if (!prog) { if (peer && !veth_gro_requested(dev)) xdp_features_clear_redirect_target(peer); if (dev->flags & IFF_UP) veth_disable_xdp(dev); if (peer) { peer->hw_features |= NETIF_F_GSO_SOFTWARE; peer->max_mtu = ETH_MAX_MTU; } } bpf_prog_put(old_prog); } if ((!!old_prog ^ !!prog) && peer) netdev_update_features(peer); return 0; err: priv->_xdp_prog = old_prog; return err; } static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return veth_xdp_set(dev, xdp->prog, xdp->extack); default: return -EINVAL; } } static int veth_xdp_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) { struct veth_xdp_buff *_ctx = (void *)ctx; if (!_ctx->skb) return -ENODATA; *timestamp = skb_hwtstamps(_ctx->skb)->hwtstamp; return 0; } static int veth_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash, enum xdp_rss_hash_type *rss_type) { struct veth_xdp_buff *_ctx = (void *)ctx; struct sk_buff *skb = _ctx->skb; if (!skb) return -ENODATA; *hash = skb_get_hash(skb); *rss_type = skb->l4_hash ? XDP_RSS_TYPE_L4_ANY : XDP_RSS_TYPE_NONE; return 0; } static int veth_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto, u16 *vlan_tci) { const struct veth_xdp_buff *_ctx = (void *)ctx; const struct sk_buff *skb = _ctx->skb; int err; if (!skb) return -ENODATA; err = __vlan_hwaccel_get_tag(skb, vlan_tci); if (err) return err; *vlan_proto = skb->vlan_proto; return err; } static const struct net_device_ops veth_netdev_ops = { .ndo_init = veth_dev_init, .ndo_open = veth_open, .ndo_stop = veth_close, .ndo_start_xmit = veth_xmit, .ndo_get_stats64 = veth_get_stats64, .ndo_set_rx_mode = veth_set_multicast_list, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = veth_poll_controller, #endif .ndo_get_iflink = veth_get_iflink, .ndo_fix_features = veth_fix_features, .ndo_set_features = veth_set_features, .ndo_features_check = passthru_features_check, .ndo_set_rx_headroom = veth_set_rx_headroom, .ndo_bpf = veth_xdp, .ndo_xdp_xmit = veth_ndo_xdp_xmit, .ndo_get_peer_dev = veth_peer_dev, }; static const struct xdp_metadata_ops veth_xdp_metadata_ops = { .xmo_rx_timestamp = veth_xdp_rx_timestamp, .xmo_rx_hash = veth_xdp_rx_hash, .xmo_rx_vlan_tag = veth_xdp_rx_vlan_tag, }; #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \ NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \ NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \ NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \ NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX ) static void veth_setup(struct net_device *dev) { ether_setup(dev); dev->priv_flags &= ~IFF_TX_SKB_SHARING; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; dev->priv_flags |= IFF_NO_QUEUE; dev->priv_flags |= IFF_PHONY_HEADROOM; dev->priv_flags |= IFF_DISABLE_NETPOLL; dev->lltx = true; dev->netdev_ops = &veth_netdev_ops; dev->xdp_metadata_ops = &veth_xdp_metadata_ops; dev->ethtool_ops = &veth_ethtool_ops; dev->features |= VETH_FEATURES; dev->vlan_features = dev->features & ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); dev->needs_free_netdev = true; dev->priv_destructor = veth_dev_free; dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS; dev->max_mtu = ETH_MAX_MTU; dev->hw_features = VETH_FEATURES; dev->hw_enc_features = VETH_FEATURES; dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE; netif_set_tso_max_size(dev, GSO_MAX_SIZE); } /* * netlink interface */ static int veth_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } if (tb[IFLA_MTU]) { if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU]))) return -EINVAL; } return 0; } static struct rtnl_link_ops veth_link_ops; static void veth_disable_gro(struct net_device *dev) { dev->features &= ~NETIF_F_GRO; dev->wanted_features &= ~NETIF_F_GRO; netdev_update_features(dev); } static int veth_init_queues(struct net_device *dev, struct nlattr *tb[]) { int err; if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) { err = netif_set_real_num_tx_queues(dev, 1); if (err) return err; } if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) { err = netif_set_real_num_rx_queues(dev, 1); if (err) return err; } return 0; } static int veth_newlink(struct net_device *dev, struct rtnl_newlink_params *params, struct netlink_ext_ack *extack) { struct net *peer_net = rtnl_newlink_peer_net(params); struct nlattr **data = params->data; struct nlattr **tb = params->tb; int err; struct net_device *peer; struct veth_priv *priv; char ifname[IFNAMSIZ]; struct nlattr *peer_tb[IFLA_MAX + 1], **tbp; unsigned char name_assign_type; struct ifinfomsg *ifmp; /* * create and register peer first */ if (data && data[VETH_INFO_PEER]) { struct nlattr *nla_peer = data[VETH_INFO_PEER]; ifmp = nla_data(nla_peer); rtnl_nla_parse_ifinfomsg(peer_tb, nla_peer, extack); tbp = peer_tb; } else { ifmp = NULL; tbp = tb; } if (ifmp && tbp[IFLA_IFNAME]) { nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ); name_assign_type = NET_NAME_USER; } else { snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d"); name_assign_type = NET_NAME_ENUM; } peer = rtnl_create_link(peer_net, ifname, name_assign_type, &veth_link_ops, tbp, extack); if (IS_ERR(peer)) return PTR_ERR(peer); if (!ifmp || !tbp[IFLA_ADDRESS]) eth_hw_addr_random(peer); if (ifmp && (dev->ifindex != 0)) peer->ifindex = ifmp->ifi_index; netif_inherit_tso_max(peer, dev); err = register_netdevice(peer); if (err < 0) goto err_register_peer; /* keep GRO disabled by default to be consistent with the established * veth behavior */ veth_disable_gro(peer); netif_carrier_off(peer); err = rtnl_configure_link(peer, ifmp, 0, NULL); if (err < 0) goto err_configure_peer; /* * register dev last * * note, that since we've registered new device the dev's name * should be re-allocated */ if (tb[IFLA_ADDRESS] == NULL) eth_hw_addr_random(dev); if (tb[IFLA_IFNAME]) nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ); else snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d"); err = register_netdevice(dev); if (err < 0) goto err_register_dev; netif_carrier_off(dev); /* * tie the deviced together */ priv = netdev_priv(dev); rcu_assign_pointer(priv->peer, peer); err = veth_init_queues(dev, tb); if (err) goto err_queues; priv = netdev_priv(peer); rcu_assign_pointer(priv->peer, dev); err = veth_init_queues(peer, tb); if (err) goto err_queues; veth_disable_gro(dev); /* update XDP supported features */ veth_set_xdp_features(dev); veth_set_xdp_features(peer); return 0; err_queues: unregister_netdevice(dev); err_register_dev: /* nothing to do */ err_configure_peer: unregister_netdevice(peer); return err; err_register_peer: free_netdev(peer); return err; } static void veth_dellink(struct net_device *dev, struct list_head *head) { struct veth_priv *priv; struct net_device *peer; priv = netdev_priv(dev); peer = rtnl_dereference(priv->peer); /* Note : dellink() is called from default_device_exit_batch(), * before a rcu_synchronize() point. The devices are guaranteed * not being freed before one RCU grace period. */ RCU_INIT_POINTER(priv->peer, NULL); unregister_netdevice_queue(dev, head); if (peer) { priv = netdev_priv(peer); RCU_INIT_POINTER(priv->peer, NULL); unregister_netdevice_queue(peer, head); } } static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = { [VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) }, }; static struct net *veth_get_link_net(const struct net_device *dev) { struct veth_priv *priv = netdev_priv(dev); struct net_device *peer = rtnl_dereference(priv->peer); return peer ? dev_net(peer) : dev_net(dev); } static unsigned int veth_get_num_queues(void) { /* enforce the same queue limit as rtnl_create_link */ int queues = num_possible_cpus(); if (queues > 4096) queues = 4096; return queues; } static struct rtnl_link_ops veth_link_ops = { .kind = DRV_NAME, .priv_size = sizeof(struct veth_priv), .setup = veth_setup, .validate = veth_validate, .newlink = veth_newlink, .dellink = veth_dellink, .policy = veth_policy, .peer_type = VETH_INFO_PEER, .maxtype = VETH_INFO_MAX, .get_link_net = veth_get_link_net, .get_num_tx_queues = veth_get_num_queues, .get_num_rx_queues = veth_get_num_queues, }; /* * init/fini */ static __init int veth_init(void) { return rtnl_link_register(&veth_link_ops); } static __exit void veth_exit(void) { rtnl_link_unregister(&veth_link_ops); } module_init(veth_init); module_exit(veth_exit); MODULE_DESCRIPTION("Virtual Ethernet Tunnel"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_RTNL_LINK(DRV_NAME);
178 14 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 // SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2001-2002 by David Brownell */ #ifndef __USB_CORE_HCD_H #define __USB_CORE_HCD_H #ifdef __KERNEL__ #include <linux/rwsem.h> #include <linux/interrupt.h> #include <linux/idr.h> #define MAX_TOPO_LEVEL 6 /* This file contains declarations of usbcore internals that are mostly * used or exposed by Host Controller Drivers. */ /* * USB Packet IDs (PIDs) */ #define USB_PID_EXT 0xf0 /* USB 2.0 LPM ECN */ #define USB_PID_OUT 0xe1 #define USB_PID_ACK 0xd2 #define USB_PID_DATA0 0xc3 #define USB_PID_PING 0xb4 /* USB 2.0 */ #define USB_PID_SOF 0xa5 #define USB_PID_NYET 0x96 /* USB 2.0 */ #define USB_PID_DATA2 0x87 /* USB 2.0 */ #define USB_PID_SPLIT 0x78 /* USB 2.0 */ #define USB_PID_IN 0x69 #define USB_PID_NAK 0x5a #define USB_PID_DATA1 0x4b #define USB_PID_PREAMBLE 0x3c /* Token mode */ #define USB_PID_ERR 0x3c /* USB 2.0: handshake mode */ #define USB_PID_SETUP 0x2d #define USB_PID_STALL 0x1e #define USB_PID_MDATA 0x0f /* USB 2.0 */ /*-------------------------------------------------------------------------*/ /* * USB Host Controller Driver (usb_hcd) framework * * Since "struct usb_bus" is so thin, you can't share much code in it. * This framework is a layer over that, and should be more shareable. */ /*-------------------------------------------------------------------------*/ struct giveback_urb_bh { bool running; bool high_prio; spinlock_t lock; struct list_head head; struct work_struct bh; struct usb_host_endpoint *completing_ep; }; enum usb_dev_authorize_policy { USB_DEVICE_AUTHORIZE_NONE = 0, USB_DEVICE_AUTHORIZE_ALL = 1, USB_DEVICE_AUTHORIZE_INTERNAL = 2, }; struct usb_hcd { /* * housekeeping */ struct usb_bus self; /* hcd is-a bus */ struct kref kref; /* reference counter */ const char *product_desc; /* product/vendor string */ int speed; /* Speed for this roothub. * May be different from * hcd->driver->flags & HCD_MASK */ char irq_descr[24]; /* driver + bus # */ struct timer_list rh_timer; /* drives root-hub polling */ struct urb *status_urb; /* the current status urb */ #ifdef CONFIG_PM struct work_struct wakeup_work; /* for remote wakeup */ #endif struct work_struct died_work; /* for when the device dies */ /* * hardware info/state */ const struct hc_driver *driver; /* hw-specific hooks */ /* * OTG and some Host controllers need software interaction with phys; * other external phys should be software-transparent */ struct usb_phy *usb_phy; struct usb_phy_roothub *phy_roothub; /* Flags that need to be manipulated atomically because they can * change while the host controller is running. Always use * set_bit() or clear_bit() to change their values. */ unsigned long flags; #define HCD_FLAG_HW_ACCESSIBLE 0 /* at full power */ #define HCD_FLAG_POLL_RH 2 /* poll for rh status? */ #define HCD_FLAG_POLL_PENDING 3 /* status has changed? */ #define HCD_FLAG_WAKEUP_PENDING 4 /* root hub is resuming? */ #define HCD_FLAG_RH_RUNNING 5 /* root hub is running? */ #define HCD_FLAG_DEAD 6 /* controller has died? */ #define HCD_FLAG_INTF_AUTHORIZED 7 /* authorize interfaces? */ #define HCD_FLAG_DEFER_RH_REGISTER 8 /* Defer roothub registration */ /* The flags can be tested using these macros; they are likely to * be slightly faster than test_bit(). */ #define HCD_HW_ACCESSIBLE(hcd) ((hcd)->flags & (1U << HCD_FLAG_HW_ACCESSIBLE)) #define HCD_POLL_RH(hcd) ((hcd)->flags & (1U << HCD_FLAG_POLL_RH)) #define HCD_POLL_PENDING(hcd) ((hcd)->flags & (1U << HCD_FLAG_POLL_PENDING)) #define HCD_WAKEUP_PENDING(hcd) ((hcd)->flags & (1U << HCD_FLAG_WAKEUP_PENDING)) #define HCD_RH_RUNNING(hcd) ((hcd)->flags & (1U << HCD_FLAG_RH_RUNNING)) #define HCD_DEAD(hcd) ((hcd)->flags & (1U << HCD_FLAG_DEAD)) #define HCD_DEFER_RH_REGISTER(hcd) ((hcd)->flags & (1U << HCD_FLAG_DEFER_RH_REGISTER)) /* * Specifies if interfaces are authorized by default * or they require explicit user space authorization; this bit is * settable through /sys/class/usb_host/X/interface_authorized_default */ #define HCD_INTF_AUTHORIZED(hcd) \ ((hcd)->flags & (1U << HCD_FLAG_INTF_AUTHORIZED)) /* * Specifies if devices are authorized by default * or they require explicit user space authorization; this bit is * settable through /sys/class/usb_host/X/authorized_default */ enum usb_dev_authorize_policy dev_policy; /* Flags that get set only during HCD registration or removal. */ unsigned rh_registered:1;/* is root hub registered? */ unsigned rh_pollable:1; /* may we poll the root hub? */ unsigned msix_enabled:1; /* driver has MSI-X enabled? */ unsigned msi_enabled:1; /* driver has MSI enabled? */ /* * do not manage the PHY state in the HCD core, instead let the driver * handle this (for example if the PHY can only be turned on after a * specific event) */ unsigned skip_phy_initialization:1; /* The next flag is a stopgap, to be removed when all the HCDs * support the new root-hub polling mechanism. */ unsigned uses_new_polling:1; unsigned has_tt:1; /* Integrated TT in root hub */ unsigned amd_resume_bug:1; /* AMD remote wakeup quirk */ unsigned can_do_streams:1; /* HC supports streams */ unsigned tpl_support:1; /* OTG & EH TPL support */ unsigned cant_recv_wakeups:1; /* wakeup requests from downstream aren't received */ unsigned int irq; /* irq allocated */ void __iomem *regs; /* device memory/io */ resource_size_t rsrc_start; /* memory/io resource start */ resource_size_t rsrc_len; /* memory/io resource length */ unsigned power_budget; /* in mA, 0 = no limit */ struct giveback_urb_bh high_prio_bh; struct giveback_urb_bh low_prio_bh; /* bandwidth_mutex should be taken before adding or removing * any new bus bandwidth constraints: * 1. Before adding a configuration for a new device. * 2. Before removing the configuration to put the device into * the addressed state. * 3. Before selecting a different configuration. * 4. Before selecting an alternate interface setting. * * bandwidth_mutex should be dropped after a successful control message * to the device, or resetting the bandwidth after a failed attempt. */ struct mutex *address0_mutex; struct mutex *bandwidth_mutex; struct usb_hcd *shared_hcd; struct usb_hcd *primary_hcd; #define HCD_BUFFER_POOLS 4 struct dma_pool *pool[HCD_BUFFER_POOLS]; int state; # define __ACTIVE 0x01 # define __SUSPEND 0x04 # define __TRANSIENT 0x80 # define HC_STATE_HALT 0 # define HC_STATE_RUNNING (__ACTIVE) # define HC_STATE_QUIESCING (__SUSPEND|__TRANSIENT|__ACTIVE) # define HC_STATE_RESUMING (__SUSPEND|__TRANSIENT) # define HC_STATE_SUSPENDED (__SUSPEND) #define HC_IS_RUNNING(state) ((state) & __ACTIVE) #define HC_IS_SUSPENDED(state) ((state) & __SUSPEND) /* memory pool for HCs having local memory, or %NULL */ struct gen_pool *localmem_pool; /* more shared queuing code would be good; it should support * smarter scheduling, handle transaction translators, etc; * input size of periodic table to an interrupt scheduler. * (ohci 32, uhci 1024, ehci 256/512/1024). */ /* The HC driver's private data is stored at the end of * this structure. */ unsigned long hcd_priv[] __attribute__ ((aligned(sizeof(s64)))); }; /* 2.4 does this a bit differently ... */ static inline struct usb_bus *hcd_to_bus(struct usb_hcd *hcd) { return &hcd->self; } static inline struct usb_hcd *bus_to_hcd(struct usb_bus *bus) { return container_of(bus, struct usb_hcd, self); } /*-------------------------------------------------------------------------*/ struct hc_driver { const char *description; /* "ehci-hcd" etc */ const char *product_desc; /* product/vendor string */ size_t hcd_priv_size; /* size of private data */ /* irq handler */ irqreturn_t (*irq) (struct usb_hcd *hcd); int flags; #define HCD_MEMORY 0x0001 /* HC regs use memory (else I/O) */ #define HCD_DMA 0x0002 /* HC uses DMA */ #define HCD_SHARED 0x0004 /* Two (or more) usb_hcds share HW */ #define HCD_USB11 0x0010 /* USB 1.1 */ #define HCD_USB2 0x0020 /* USB 2.0 */ #define HCD_USB3 0x0040 /* USB 3.0 */ #define HCD_USB31 0x0050 /* USB 3.1 */ #define HCD_USB32 0x0060 /* USB 3.2 */ #define HCD_MASK 0x0070 #define HCD_BH 0x0100 /* URB complete in BH context */ /* called to init HCD and root hub */ int (*reset) (struct usb_hcd *hcd); int (*start) (struct usb_hcd *hcd); /* NOTE: these suspend/resume calls relate to the HC as * a whole, not just the root hub; they're for PCI bus glue. */ /* called after suspending the hub, before entering D3 etc */ int (*pci_suspend)(struct usb_hcd *hcd, bool do_wakeup); /* called after entering D0 (etc), before resuming the hub */ int (*pci_resume)(struct usb_hcd *hcd, pm_message_t state); /* called just before hibernate final D3 state, allows host to poweroff parts */ int (*pci_poweroff_late)(struct usb_hcd *hcd, bool do_wakeup); /* cleanly make HCD stop writing memory and doing I/O */ void (*stop) (struct usb_hcd *hcd); /* shutdown HCD */ void (*shutdown) (struct usb_hcd *hcd); /* return current frame number */ int (*get_frame_number) (struct usb_hcd *hcd); /* manage i/o requests, device state */ int (*urb_enqueue)(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags); int (*urb_dequeue)(struct usb_hcd *hcd, struct urb *urb, int status); /* * (optional) these hooks allow an HCD to override the default DMA * mapping and unmapping routines. In general, they shouldn't be * necessary unless the host controller has special DMA requirements, * such as alignment constraints. If these are not specified, the * general usb_hcd_(un)?map_urb_for_dma functions will be used instead * (and it may be a good idea to call these functions in your HCD * implementation) */ int (*map_urb_for_dma)(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags); void (*unmap_urb_for_dma)(struct usb_hcd *hcd, struct urb *urb); /* hw synch, freeing endpoint resources that urb_dequeue can't */ void (*endpoint_disable)(struct usb_hcd *hcd, struct usb_host_endpoint *ep); /* (optional) reset any endpoint state such as sequence number and current window */ void (*endpoint_reset)(struct usb_hcd *hcd, struct usb_host_endpoint *ep); /* root hub support */ int (*hub_status_data) (struct usb_hcd *hcd, char *buf); int (*hub_control) (struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength); int (*bus_suspend)(struct usb_hcd *); int (*bus_resume)(struct usb_hcd *); int (*start_port_reset)(struct usb_hcd *, unsigned port_num); unsigned long (*get_resuming_ports)(struct usb_hcd *); /* force handover of high-speed port to full-speed companion */ void (*relinquish_port)(struct usb_hcd *, int); /* has a port been handed over to a companion? */ int (*port_handed_over)(struct usb_hcd *, int); /* CLEAR_TT_BUFFER completion callback */ void (*clear_tt_buffer_complete)(struct usb_hcd *, struct usb_host_endpoint *); /* xHCI specific functions */ /* Called by usb_alloc_dev to alloc HC device structures */ int (*alloc_dev)(struct usb_hcd *, struct usb_device *); /* Called by usb_disconnect to free HC device structures */ void (*free_dev)(struct usb_hcd *, struct usb_device *); /* Change a group of bulk endpoints to support multiple stream IDs */ int (*alloc_streams)(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags); /* Reverts a group of bulk endpoints back to not using stream IDs. * Can fail if we run out of memory. */ int (*free_streams)(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags); /* Bandwidth computation functions */ /* Note that add_endpoint() can only be called once per endpoint before * check_bandwidth() or reset_bandwidth() must be called. * drop_endpoint() can only be called once per endpoint also. * A call to xhci_drop_endpoint() followed by a call to * xhci_add_endpoint() will add the endpoint to the schedule with * possibly new parameters denoted by a different endpoint descriptor * in usb_host_endpoint. A call to xhci_add_endpoint() followed by a * call to xhci_drop_endpoint() is not allowed. */ /* Allocate endpoint resources and add them to a new schedule */ int (*add_endpoint)(struct usb_hcd *, struct usb_device *, struct usb_host_endpoint *); /* Drop an endpoint from a new schedule */ int (*drop_endpoint)(struct usb_hcd *, struct usb_device *, struct usb_host_endpoint *); /* Check that a new hardware configuration, set using * endpoint_enable and endpoint_disable, does not exceed bus * bandwidth. This must be called before any set configuration * or set interface requests are sent to the device. */ int (*check_bandwidth)(struct usb_hcd *, struct usb_device *); /* Reset the device schedule to the last known good schedule, * which was set from a previous successful call to * check_bandwidth(). This reverts any add_endpoint() and * drop_endpoint() calls since that last successful call. * Used for when a check_bandwidth() call fails due to resource * or bandwidth constraints. */ void (*reset_bandwidth)(struct usb_hcd *, struct usb_device *); /* Set the hardware-chosen device address */ int (*address_device)(struct usb_hcd *, struct usb_device *udev, unsigned int timeout_ms); /* prepares the hardware to send commands to the device */ int (*enable_device)(struct usb_hcd *, struct usb_device *udev); /* Notifies the HCD after a hub descriptor is fetched. * Will block. */ int (*update_hub_device)(struct usb_hcd *, struct usb_device *hdev, struct usb_tt *tt, gfp_t mem_flags); int (*reset_device)(struct usb_hcd *, struct usb_device *); /* Notifies the HCD after a device is connected and its * address is set */ int (*update_device)(struct usb_hcd *, struct usb_device *); int (*set_usb2_hw_lpm)(struct usb_hcd *, struct usb_device *, int); /* USB 3.0 Link Power Management */ /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ int (*enable_usb3_lpm_timeout)(struct usb_hcd *, struct usb_device *, enum usb3_link_state state); /* The xHCI host controller can still fail the command to * disable the LPM timeouts, so this can return an error code. */ int (*disable_usb3_lpm_timeout)(struct usb_hcd *, struct usb_device *, enum usb3_link_state state); int (*find_raw_port_number)(struct usb_hcd *, int); /* Call for power on/off the port if necessary */ int (*port_power)(struct usb_hcd *hcd, int portnum, bool enable); /* Call for SINGLE_STEP_SET_FEATURE Test for USB2 EH certification */ #define EHSET_TEST_SINGLE_STEP_SET_FEATURE 0x06 int (*submit_single_step_set_feature)(struct usb_hcd *, struct urb *, int); }; static inline int hcd_giveback_urb_in_bh(struct usb_hcd *hcd) { return hcd->driver->flags & HCD_BH; } static inline bool hcd_periodic_completion_in_progress(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { return hcd->high_prio_bh.completing_ep == ep; } static inline bool hcd_uses_dma(struct usb_hcd *hcd) { return IS_ENABLED(CONFIG_HAS_DMA) && (hcd->driver->flags & HCD_DMA); } extern int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb); extern int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, int status); extern void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb); extern int usb_hcd_submit_urb(struct urb *urb, gfp_t mem_flags); extern int usb_hcd_unlink_urb(struct urb *urb, int status); extern void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status); extern int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags); extern void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *, struct urb *); extern void usb_hcd_unmap_urb_for_dma(struct usb_hcd *, struct urb *); extern void usb_hcd_flush_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep); extern void usb_hcd_disable_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep); extern void usb_hcd_reset_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep); extern void usb_hcd_synchronize_unlinks(struct usb_device *udev); extern int usb_hcd_alloc_bandwidth(struct usb_device *udev, struct usb_host_config *new_config, struct usb_host_interface *old_alt, struct usb_host_interface *new_alt); extern int usb_hcd_get_frame_number(struct usb_device *udev); struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, struct device *sysdev, struct device *dev, const char *bus_name, struct usb_hcd *primary_hcd); extern struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, struct device *dev, const char *bus_name); extern struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, struct device *dev, const char *bus_name, struct usb_hcd *shared_hcd); extern struct usb_hcd *usb_get_hcd(struct usb_hcd *hcd); extern void usb_put_hcd(struct usb_hcd *hcd); extern int usb_hcd_is_primary_hcd(struct usb_hcd *hcd); extern int usb_add_hcd(struct usb_hcd *hcd, unsigned int irqnum, unsigned long irqflags); extern void usb_remove_hcd(struct usb_hcd *hcd); extern int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1); int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, dma_addr_t dma, size_t size); struct platform_device; extern void usb_hcd_platform_shutdown(struct platform_device *dev); #ifdef CONFIG_USB_HCD_TEST_MODE extern int ehset_single_step_set_feature(struct usb_hcd *hcd, int port); #else static inline int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) { return 0; } #endif /* CONFIG_USB_HCD_TEST_MODE */ #ifdef CONFIG_USB_PCI struct pci_dev; struct pci_device_id; extern int usb_hcd_pci_probe(struct pci_dev *dev, const struct hc_driver *driver); extern void usb_hcd_pci_remove(struct pci_dev *dev); extern void usb_hcd_pci_shutdown(struct pci_dev *dev); #ifdef CONFIG_USB_PCI_AMD extern int usb_hcd_amd_remote_wakeup_quirk(struct pci_dev *dev); static inline bool usb_hcd_amd_resume_bug(struct pci_dev *dev, const struct hc_driver *driver) { if (!usb_hcd_amd_remote_wakeup_quirk(dev)) return false; if (driver->flags & (HCD_USB11 | HCD_USB3)) return true; return false; } #else /* CONFIG_USB_PCI_AMD */ static inline bool usb_hcd_amd_resume_bug(struct pci_dev *dev, const struct hc_driver *driver) { return false; } #endif extern const struct dev_pm_ops usb_hcd_pci_pm_ops; #endif /* CONFIG_USB_PCI */ /* pci-ish (pdev null is ok) buffer alloc/mapping support */ void usb_init_pool_max(void); int hcd_buffer_create(struct usb_hcd *hcd); void hcd_buffer_destroy(struct usb_hcd *hcd); void *hcd_buffer_alloc(struct usb_bus *bus, size_t size, gfp_t mem_flags, dma_addr_t *dma); void hcd_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma); void *hcd_buffer_alloc_pages(struct usb_hcd *hcd, size_t size, gfp_t mem_flags, dma_addr_t *dma); void hcd_buffer_free_pages(struct usb_hcd *hcd, size_t size, void *addr, dma_addr_t dma); /* generic bus glue, needed for host controllers that don't use PCI */ extern irqreturn_t usb_hcd_irq(int irq, void *__hcd); extern void usb_hc_died(struct usb_hcd *hcd); extern void usb_hcd_poll_rh_status(struct usb_hcd *hcd); extern void usb_wakeup_notification(struct usb_device *hdev, unsigned int portnum); extern void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum); extern void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum); /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) #define usb_settoggle(dev, ep, out, bit) \ ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ ((bit) << (ep))) /* -------------------------------------------------------------------------- */ /* Enumeration is only for the hub driver, or HCD virtual root hubs */ extern struct usb_device *usb_alloc_dev(struct usb_device *parent, struct usb_bus *, unsigned port); extern int usb_new_device(struct usb_device *dev); extern void usb_disconnect(struct usb_device **); extern int usb_get_configuration(struct usb_device *dev); extern void usb_destroy_configuration(struct usb_device *dev); /*-------------------------------------------------------------------------*/ /* * HCD Root Hub support */ #include <linux/usb/ch11.h> /* * As of USB 2.0, full/low speed devices are segregated into trees. * One type grows from USB 1.1 host controllers (OHCI, UHCI etc). * The other type grows from high speed hubs when they connect to * full/low speed devices using "Transaction Translators" (TTs). * * TTs should only be known to the hub driver, and high speed bus * drivers (only EHCI for now). They affect periodic scheduling and * sometimes control/bulk error recovery. */ struct usb_device; struct usb_tt { struct usb_device *hub; /* upstream highspeed hub */ int multi; /* true means one TT per port */ unsigned think_time; /* think time in ns */ void *hcpriv; /* HCD private data */ /* for control/bulk error recovery (CLEAR_TT_BUFFER) */ spinlock_t lock; struct list_head clear_list; /* of usb_tt_clear */ struct work_struct clear_work; }; struct usb_tt_clear { struct list_head clear_list; unsigned tt; u16 devinfo; struct usb_hcd *hcd; struct usb_host_endpoint *ep; }; extern int usb_hub_clear_tt_buffer(struct urb *urb); extern void usb_ep0_reinit(struct usb_device *); /* (shifted) direction/type/recipient from the USB 2.0 spec, table 9.2 */ #define DeviceRequest \ ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_DEVICE)<<8) #define DeviceOutRequest \ ((USB_DIR_OUT|USB_TYPE_STANDARD|USB_RECIP_DEVICE)<<8) #define InterfaceRequest \ ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_INTERFACE)<<8) #define EndpointRequest \ ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_ENDPOINT)<<8) #define EndpointOutRequest \ ((USB_DIR_OUT|USB_TYPE_STANDARD|USB_RECIP_ENDPOINT)<<8) /* class requests from the USB 2.0 hub spec, table 11-15 */ #define HUB_CLASS_REQ(dir, type, request) ((((dir) | (type)) << 8) | (request)) /* GetBusState and SetHubDescriptor are optional, omitted */ #define ClearHubFeature HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_HUB, USB_REQ_CLEAR_FEATURE) #define ClearPortFeature HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_PORT, USB_REQ_CLEAR_FEATURE) #define GetHubDescriptor HUB_CLASS_REQ(USB_DIR_IN, USB_RT_HUB, USB_REQ_GET_DESCRIPTOR) #define GetHubStatus HUB_CLASS_REQ(USB_DIR_IN, USB_RT_HUB, USB_REQ_GET_STATUS) #define GetPortStatus HUB_CLASS_REQ(USB_DIR_IN, USB_RT_PORT, USB_REQ_GET_STATUS) #define SetHubFeature HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_HUB, USB_REQ_SET_FEATURE) #define SetPortFeature HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_PORT, USB_REQ_SET_FEATURE) #define ClearTTBuffer HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_PORT, HUB_CLEAR_TT_BUFFER) #define ResetTT HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_PORT, HUB_RESET_TT) #define GetTTState HUB_CLASS_REQ(USB_DIR_IN, USB_RT_PORT, HUB_GET_TT_STATE) #define StopTT HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_PORT, HUB_STOP_TT) /*-------------------------------------------------------------------------*/ /* class requests from USB 3.1 hub spec, table 10-7 */ #define SetHubDepth HUB_CLASS_REQ(USB_DIR_OUT, USB_RT_HUB, HUB_SET_DEPTH) #define GetPortErrorCount HUB_CLASS_REQ(USB_DIR_IN, USB_RT_PORT, HUB_GET_PORT_ERR_COUNT) /* * Generic bandwidth allocation constants/support */ #define FRAME_TIME_USECS 1000L #define BitTime(bytecount) (7 * 8 * bytecount / 6) /* with integer truncation */ /* Trying not to use worst-case bit-stuffing * of (7/6 * 8 * bytecount) = 9.33 * bytecount */ /* bytecount = data payload byte count */ #define NS_TO_US(ns) DIV_ROUND_UP(ns, 1000L) /* convert nanoseconds to microseconds, rounding up */ /* * Full/low speed bandwidth allocation constants/support. */ #define BW_HOST_DELAY 1000L /* nanoseconds */ #define BW_HUB_LS_SETUP 333L /* nanoseconds */ /* 4 full-speed bit times (est.) */ #define FRAME_TIME_BITS 12000L /* frame = 1 millisecond */ #define FRAME_TIME_MAX_BITS_ALLOC (90L * FRAME_TIME_BITS / 100L) #define FRAME_TIME_MAX_USECS_ALLOC (90L * FRAME_TIME_USECS / 100L) /* * Ceiling [nano/micro]seconds (typical) for that many bytes at high speed * ISO is a bit less, no ACK ... from USB 2.0 spec, 5.11.3 (and needed * to preallocate bandwidth) */ #define USB2_HOST_DELAY 5 /* nsec, guess */ #define HS_NSECS(bytes) (((55 * 8 * 2083) \ + (2083UL * (3 + BitTime(bytes))))/1000 \ + USB2_HOST_DELAY) #define HS_NSECS_ISO(bytes) (((38 * 8 * 2083) \ + (2083UL * (3 + BitTime(bytes))))/1000 \ + USB2_HOST_DELAY) #define HS_USECS(bytes) NS_TO_US(HS_NSECS(bytes)) #define HS_USECS_ISO(bytes) NS_TO_US(HS_NSECS_ISO(bytes)) extern long usb_calc_bus_time(int speed, int is_input, int isoc, int bytecount); /*-------------------------------------------------------------------------*/ extern void usb_set_device_state(struct usb_device *udev, enum usb_device_state new_state); /*-------------------------------------------------------------------------*/ /* exported only within usbcore */ extern struct idr usb_bus_idr; extern struct mutex usb_bus_idr_lock; extern wait_queue_head_t usb_kill_urb_queue; #define usb_endpoint_out(ep_dir) (!((ep_dir) & USB_DIR_IN)) #ifdef CONFIG_PM extern unsigned usb_wakeup_enabled_descendants(struct usb_device *udev); extern void usb_root_hub_lost_power(struct usb_device *rhdev); extern int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg); extern int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg); extern void usb_hcd_resume_root_hub(struct usb_hcd *hcd); #else static inline unsigned usb_wakeup_enabled_descendants(struct usb_device *udev) { return 0; } static inline void usb_hcd_resume_root_hub(struct usb_hcd *hcd) { return; } #endif /* CONFIG_PM */ /*-------------------------------------------------------------------------*/ #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) struct usb_mon_operations { void (*urb_submit)(struct usb_bus *bus, struct urb *urb); void (*urb_submit_error)(struct usb_bus *bus, struct urb *urb, int err); void (*urb_complete)(struct usb_bus *bus, struct urb *urb, int status); /* void (*urb_unlink)(struct usb_bus *bus, struct urb *urb); */ }; extern const struct usb_mon_operations *mon_ops; static inline void usbmon_urb_submit(struct usb_bus *bus, struct urb *urb) { if (bus->monitored) (*mon_ops->urb_submit)(bus, urb); } static inline void usbmon_urb_submit_error(struct usb_bus *bus, struct urb *urb, int error) { if (bus->monitored) (*mon_ops->urb_submit_error)(bus, urb, error); } static inline void usbmon_urb_complete(struct usb_bus *bus, struct urb *urb, int status) { if (bus->monitored) (*mon_ops->urb_complete)(bus, urb, status); } int usb_mon_register(const struct usb_mon_operations *ops); void usb_mon_deregister(void); #else static inline void usbmon_urb_submit(struct usb_bus *bus, struct urb *urb) {} static inline void usbmon_urb_submit_error(struct usb_bus *bus, struct urb *urb, int error) {} static inline void usbmon_urb_complete(struct usb_bus *bus, struct urb *urb, int status) {} #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ /*-------------------------------------------------------------------------*/ /* random stuff */ /* This rwsem is for use only by the hub driver and ehci-hcd. * Nobody else should touch it. */ extern struct rw_semaphore ehci_cf_port_reset_rwsem; /* Keep track of which host controller drivers are loaded */ #define USB_UHCI_LOADED 0 #define USB_OHCI_LOADED 1 #define USB_EHCI_LOADED 2 extern unsigned long usb_hcds_loaded; #endif /* __KERNEL__ */ #endif /* __USB_CORE_HCD_H */
5 5 5 10 8 9 9 7 6 6 9 4 2 10 7 7 7 7 53 47 52 53 17 2 3 3 1 1 2 2 2 1 1 2 2 13 12 3 1 2 1 3 6 2 2 2 3 3 5 3 6 1 5 2 2 1 1 1 1 1 3 3 1 1 1 3 18 1 2 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 // SPDX-License-Identifier: GPL-2.0 /* * RTC subsystem, dev interface * * Copyright (C) 2005 Tower Technologies * Author: Alessandro Zummo <a.zummo@towertech.it> * * based on arch/arm/common/rtctime.c */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/compat.h> #include <linux/module.h> #include <linux/rtc.h> #include <linux/sched/signal.h> #include "rtc-core.h" static dev_t rtc_devt; #define RTC_DEV_MAX 16 /* 16 RTCs should be enough for everyone... */ static int rtc_dev_open(struct inode *inode, struct file *file) { struct rtc_device *rtc = container_of(inode->i_cdev, struct rtc_device, char_dev); if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) return -EBUSY; file->private_data = rtc; spin_lock_irq(&rtc->irq_lock); rtc->irq_data = 0; spin_unlock_irq(&rtc->irq_lock); return 0; } #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL /* * Routine to poll RTC seconds field for change as often as possible, * after first RTC_UIE use timer to reduce polling */ static void rtc_uie_task(struct work_struct *work) { struct rtc_device *rtc = container_of(work, struct rtc_device, uie_task); struct rtc_time tm; int num = 0; int err; err = rtc_read_time(rtc, &tm); spin_lock_irq(&rtc->irq_lock); if (rtc->stop_uie_polling || err) { rtc->uie_task_active = 0; } else if (rtc->oldsecs != tm.tm_sec) { num = (tm.tm_sec + 60 - rtc->oldsecs) % 60; rtc->oldsecs = tm.tm_sec; rtc->uie_timer.expires = jiffies + HZ - (HZ / 10); rtc->uie_timer_active = 1; rtc->uie_task_active = 0; add_timer(&rtc->uie_timer); } else if (schedule_work(&rtc->uie_task) == 0) { rtc->uie_task_active = 0; } spin_unlock_irq(&rtc->irq_lock); if (num) rtc_handle_legacy_irq(rtc, num, RTC_UF); } static void rtc_uie_timer(struct timer_list *t) { struct rtc_device *rtc = from_timer(rtc, t, uie_timer); unsigned long flags; spin_lock_irqsave(&rtc->irq_lock, flags); rtc->uie_timer_active = 0; rtc->uie_task_active = 1; if ((schedule_work(&rtc->uie_task) == 0)) rtc->uie_task_active = 0; spin_unlock_irqrestore(&rtc->irq_lock, flags); } static int clear_uie(struct rtc_device *rtc) { spin_lock_irq(&rtc->irq_lock); if (rtc->uie_irq_active) { rtc->stop_uie_polling = 1; if (rtc->uie_timer_active) { spin_unlock_irq(&rtc->irq_lock); timer_delete_sync(&rtc->uie_timer); spin_lock_irq(&rtc->irq_lock); rtc->uie_timer_active = 0; } if (rtc->uie_task_active) { spin_unlock_irq(&rtc->irq_lock); flush_work(&rtc->uie_task); spin_lock_irq(&rtc->irq_lock); } rtc->uie_irq_active = 0; } spin_unlock_irq(&rtc->irq_lock); return 0; } static int set_uie(struct rtc_device *rtc) { struct rtc_time tm; int err; err = rtc_read_time(rtc, &tm); if (err) return err; spin_lock_irq(&rtc->irq_lock); if (!rtc->uie_irq_active) { rtc->uie_irq_active = 1; rtc->stop_uie_polling = 0; rtc->oldsecs = tm.tm_sec; rtc->uie_task_active = 1; if (schedule_work(&rtc->uie_task) == 0) rtc->uie_task_active = 0; } rtc->irq_data = 0; spin_unlock_irq(&rtc->irq_lock); return 0; } int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, unsigned int enabled) { if (enabled) return set_uie(rtc); else return clear_uie(rtc); } EXPORT_SYMBOL(rtc_dev_update_irq_enable_emul); #endif /* CONFIG_RTC_INTF_DEV_UIE_EMUL */ static ssize_t rtc_dev_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct rtc_device *rtc = file->private_data; DECLARE_WAITQUEUE(wait, current); unsigned long data; ssize_t ret; if (count != sizeof(unsigned int) && count < sizeof(unsigned long)) return -EINVAL; add_wait_queue(&rtc->irq_queue, &wait); do { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irq(&rtc->irq_lock); data = rtc->irq_data; rtc->irq_data = 0; spin_unlock_irq(&rtc->irq_lock); if (data != 0) { ret = 0; break; } if (file->f_flags & O_NONBLOCK) { ret = -EAGAIN; break; } if (signal_pending(current)) { ret = -ERESTARTSYS; break; } schedule(); } while (1); set_current_state(TASK_RUNNING); remove_wait_queue(&rtc->irq_queue, &wait); if (ret == 0) { if (sizeof(int) != sizeof(long) && count == sizeof(unsigned int)) ret = put_user(data, (unsigned int __user *)buf) ?: sizeof(unsigned int); else ret = put_user(data, (unsigned long __user *)buf) ?: sizeof(unsigned long); } return ret; } static __poll_t rtc_dev_poll(struct file *file, poll_table *wait) { struct rtc_device *rtc = file->private_data; unsigned long data; poll_wait(file, &rtc->irq_queue, wait); data = rtc->irq_data; return (data != 0) ? (EPOLLIN | EPOLLRDNORM) : 0; } static long rtc_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int err = 0; struct rtc_device *rtc = file->private_data; const struct rtc_class_ops *ops = rtc->ops; struct rtc_time tm; struct rtc_wkalrm alarm; struct rtc_param param; void __user *uarg = (void __user *)arg; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; /* check that the calling task has appropriate permissions * for certain ioctls. doing this check here is useful * to avoid duplicate code in each driver. */ switch (cmd) { case RTC_EPOCH_SET: case RTC_SET_TIME: case RTC_PARAM_SET: if (!capable(CAP_SYS_TIME)) err = -EACCES; break; case RTC_IRQP_SET: if (arg > rtc->max_user_freq && !capable(CAP_SYS_RESOURCE)) err = -EACCES; break; case RTC_PIE_ON: if (rtc->irq_freq > rtc->max_user_freq && !capable(CAP_SYS_RESOURCE)) err = -EACCES; break; } if (err) goto done; /* * Drivers *SHOULD NOT* provide ioctl implementations * for these requests. Instead, provide methods to * support the following code, so that the RTC's main * features are accessible without using ioctls. * * RTC and alarm times will be in UTC, by preference, * but dual-booting with MS-Windows implies RTCs must * use the local wall clock time. */ switch (cmd) { case RTC_ALM_READ: mutex_unlock(&rtc->ops_lock); err = rtc_read_alarm(rtc, &alarm); if (err < 0) return err; if (copy_to_user(uarg, &alarm.time, sizeof(tm))) err = -EFAULT; return err; case RTC_ALM_SET: mutex_unlock(&rtc->ops_lock); if (copy_from_user(&alarm.time, uarg, sizeof(tm))) return -EFAULT; alarm.enabled = 0; alarm.pending = 0; alarm.time.tm_wday = -1; alarm.time.tm_yday = -1; alarm.time.tm_isdst = -1; /* RTC_ALM_SET alarms may be up to 24 hours in the future. * Rather than expecting every RTC to implement "don't care" * for day/month/year fields, just force the alarm to have * the right values for those fields. * * RTC_WKALM_SET should be used instead. Not only does it * eliminate the need for a separate RTC_AIE_ON call, it * doesn't have the "alarm 23:59:59 in the future" race. * * NOTE: some legacy code may have used invalid fields as * wildcards, exposing hardware "periodic alarm" capabilities. * Not supported here. */ { time64_t now, then; err = rtc_read_time(rtc, &tm); if (err < 0) return err; now = rtc_tm_to_time64(&tm); alarm.time.tm_mday = tm.tm_mday; alarm.time.tm_mon = tm.tm_mon; alarm.time.tm_year = tm.tm_year; err = rtc_valid_tm(&alarm.time); if (err < 0) return err; then = rtc_tm_to_time64(&alarm.time); /* alarm may need to wrap into tomorrow */ if (then < now) { rtc_time64_to_tm(now + 24 * 60 * 60, &tm); alarm.time.tm_mday = tm.tm_mday; alarm.time.tm_mon = tm.tm_mon; alarm.time.tm_year = tm.tm_year; } } return rtc_set_alarm(rtc, &alarm); case RTC_RD_TIME: mutex_unlock(&rtc->ops_lock); err = rtc_read_time(rtc, &tm); if (err < 0) return err; if (copy_to_user(uarg, &tm, sizeof(tm))) err = -EFAULT; return err; case RTC_SET_TIME: mutex_unlock(&rtc->ops_lock); if (copy_from_user(&tm, uarg, sizeof(tm))) return -EFAULT; return rtc_set_time(rtc, &tm); case RTC_PIE_ON: err = rtc_irq_set_state(rtc, 1); break; case RTC_PIE_OFF: err = rtc_irq_set_state(rtc, 0); break; case RTC_AIE_ON: mutex_unlock(&rtc->ops_lock); return rtc_alarm_irq_enable(rtc, 1); case RTC_AIE_OFF: mutex_unlock(&rtc->ops_lock); return rtc_alarm_irq_enable(rtc, 0); case RTC_UIE_ON: mutex_unlock(&rtc->ops_lock); return rtc_update_irq_enable(rtc, 1); case RTC_UIE_OFF: mutex_unlock(&rtc->ops_lock); return rtc_update_irq_enable(rtc, 0); case RTC_IRQP_SET: err = rtc_irq_set_freq(rtc, arg); break; case RTC_IRQP_READ: err = put_user(rtc->irq_freq, (unsigned long __user *)uarg); break; case RTC_WKALM_SET: mutex_unlock(&rtc->ops_lock); if (copy_from_user(&alarm, uarg, sizeof(alarm))) return -EFAULT; return rtc_set_alarm(rtc, &alarm); case RTC_WKALM_RD: mutex_unlock(&rtc->ops_lock); err = rtc_read_alarm(rtc, &alarm); if (err < 0) return err; if (copy_to_user(uarg, &alarm, sizeof(alarm))) err = -EFAULT; return err; case RTC_PARAM_GET: if (copy_from_user(&param, uarg, sizeof(param))) { mutex_unlock(&rtc->ops_lock); return -EFAULT; } switch(param.param) { case RTC_PARAM_FEATURES: if (param.index != 0) err = -EINVAL; param.uvalue = rtc->features[0]; break; case RTC_PARAM_CORRECTION: { long offset; mutex_unlock(&rtc->ops_lock); if (param.index != 0) return -EINVAL; err = rtc_read_offset(rtc, &offset); mutex_lock(&rtc->ops_lock); if (err == 0) param.svalue = offset; break; } default: if (rtc->ops->param_get) err = rtc->ops->param_get(rtc->dev.parent, &param); else err = -EINVAL; } if (!err) if (copy_to_user(uarg, &param, sizeof(param))) err = -EFAULT; break; case RTC_PARAM_SET: if (copy_from_user(&param, uarg, sizeof(param))) { mutex_unlock(&rtc->ops_lock); return -EFAULT; } switch(param.param) { case RTC_PARAM_FEATURES: err = -EINVAL; break; case RTC_PARAM_CORRECTION: mutex_unlock(&rtc->ops_lock); if (param.index != 0) return -EINVAL; return rtc_set_offset(rtc, param.svalue); default: if (rtc->ops->param_set) err = rtc->ops->param_set(rtc->dev.parent, &param); else err = -EINVAL; } break; default: /* Finally try the driver's ioctl interface */ if (ops->ioctl) { err = ops->ioctl(rtc->dev.parent, cmd, arg); if (err == -ENOIOCTLCMD) err = -ENOTTY; } else { err = -ENOTTY; } break; } done: mutex_unlock(&rtc->ops_lock); return err; } #ifdef CONFIG_COMPAT #define RTC_IRQP_SET32 _IOW('p', 0x0c, __u32) #define RTC_IRQP_READ32 _IOR('p', 0x0b, __u32) #define RTC_EPOCH_SET32 _IOW('p', 0x0e, __u32) static long rtc_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct rtc_device *rtc = file->private_data; void __user *uarg = compat_ptr(arg); switch (cmd) { case RTC_IRQP_READ32: return put_user(rtc->irq_freq, (__u32 __user *)uarg); case RTC_IRQP_SET32: /* arg is a plain integer, not pointer */ return rtc_dev_ioctl(file, RTC_IRQP_SET, arg); case RTC_EPOCH_SET32: /* arg is a plain integer, not pointer */ return rtc_dev_ioctl(file, RTC_EPOCH_SET, arg); } return rtc_dev_ioctl(file, cmd, (unsigned long)uarg); } #endif static int rtc_dev_fasync(int fd, struct file *file, int on) { struct rtc_device *rtc = file->private_data; return fasync_helper(fd, file, on, &rtc->async_queue); } static int rtc_dev_release(struct inode *inode, struct file *file) { struct rtc_device *rtc = file->private_data; /* We shut down the repeating IRQs that userspace enabled, * since nothing is listening to them. * - Update (UIE) ... currently only managed through ioctls * - Periodic (PIE) ... also used through rtc_*() interface calls * * Leave the alarm alone; it may be set to trigger a system wakeup * later, or be used by kernel code, and is a one-shot event anyway. */ /* Keep ioctl until all drivers are converted */ rtc_dev_ioctl(file, RTC_UIE_OFF, 0); rtc_update_irq_enable(rtc, 0); rtc_irq_set_state(rtc, 0); clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); return 0; } static const struct file_operations rtc_dev_fops = { .owner = THIS_MODULE, .read = rtc_dev_read, .poll = rtc_dev_poll, .unlocked_ioctl = rtc_dev_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = rtc_dev_compat_ioctl, #endif .open = rtc_dev_open, .release = rtc_dev_release, .fasync = rtc_dev_fasync, }; /* insertion/removal hooks */ void rtc_dev_prepare(struct rtc_device *rtc) { if (!rtc_devt) return; if (rtc->id >= RTC_DEV_MAX) { dev_dbg(&rtc->dev, "too many RTC devices\n"); return; } rtc->dev.devt = MKDEV(MAJOR(rtc_devt), rtc->id); #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL INIT_WORK(&rtc->uie_task, rtc_uie_task); timer_setup(&rtc->uie_timer, rtc_uie_timer, 0); #endif cdev_init(&rtc->char_dev, &rtc_dev_fops); rtc->char_dev.owner = rtc->owner; } void __init rtc_dev_init(void) { int err; err = alloc_chrdev_region(&rtc_devt, 0, RTC_DEV_MAX, "rtc"); if (err < 0) pr_err("failed to allocate char dev region\n"); }
1 1 13 13 12 11 11 10 10 9 3 2 1 6 6 3 2 4 3 2 5 2 10 11 13 17 17 16 2 14 14 7 1 7 7 7 6 5 5 6 6 6 1 7 16 49 7 6 6 6 1 6 1 5 3 2 2 2 5 5 1 5 5 47 49 14 3 15 15 14 14 14 14 14 1 14 14 13 13 13 13 13 13 13 3 3 3 5 4 3 5 3 20 6 6 5 6 19 20 81 81 81 80 80 80 13 12 12 3 10 10 10 1 10 9 2 75 69 79 78 78 12 3 12 12 79 78 79 55 47 8 78 70 8 78 69 78 70 36 35 78 24 77 2 78 78 78 69 81 52 2 53 49 53 65 58 79 60 16 10 10 2 11 5 4 3 2 2 2 7 7 2 2 4 3 2 1 2 88 4 3 80 89 11 5 4 3 2 1 5 44 6 5 35 45 5 9 1 5 4 1 4 4 47 8 47 47 551 538 1 551 5 5 5 3 5 535 535 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 // SPDX-License-Identifier: GPL-2.0-or-later /* * RAW sockets for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Adapted from linux/net/ipv4/raw.c * * Fixes: * Hideaki YOSHIFUJI : sin6_scope_id support * YOSHIFUJI,H.@USAGI : raw checksum (RFC2292(bis) compliance) * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/slab.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/icmpv6.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <linux/skbuff.h> #include <linux/compat.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <net/net_namespace.h> #include <net/ip.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/ip6_route.h> #include <net/ip6_checksum.h> #include <net/addrconf.h> #include <net/transp_v6.h> #include <net/udp.h> #include <net/inet_common.h> #include <net/tcp_states.h> #if IS_ENABLED(CONFIG_IPV6_MIP6) #include <net/mip6.h> #endif #include <linux/mroute6.h> #include <net/raw.h> #include <net/rawv6.h> #include <net/xfrm.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/export.h> #define ICMPV6_HDRLEN 4 /* ICMPv6 header, RFC 4443 Section 2.1 */ struct raw_hashinfo raw_v6_hashinfo; EXPORT_SYMBOL_GPL(raw_v6_hashinfo); bool raw_v6_match(struct net *net, const struct sock *sk, unsigned short num, const struct in6_addr *loc_addr, const struct in6_addr *rmt_addr, int dif, int sdif) { if (inet_sk(sk)->inet_num != num || !net_eq(sock_net(sk), net) || (!ipv6_addr_any(&sk->sk_v6_daddr) && !ipv6_addr_equal(&sk->sk_v6_daddr, rmt_addr)) || !raw_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) return false; if (ipv6_addr_any(&sk->sk_v6_rcv_saddr) || ipv6_addr_equal(&sk->sk_v6_rcv_saddr, loc_addr) || (ipv6_addr_is_multicast(loc_addr) && inet6_mc_check(sk, loc_addr, rmt_addr))) return true; return false; } EXPORT_SYMBOL_GPL(raw_v6_match); /* * 0 - deliver * 1 - block */ static int icmpv6_filter(const struct sock *sk, const struct sk_buff *skb) { struct icmp6hdr _hdr; const struct icmp6hdr *hdr; /* We require only the four bytes of the ICMPv6 header, not any * additional bytes of message body in "struct icmp6hdr". */ hdr = skb_header_pointer(skb, skb_transport_offset(skb), ICMPV6_HDRLEN, &_hdr); if (hdr) { const __u32 *data = &raw6_sk(sk)->filter.data[0]; unsigned int type = hdr->icmp6_type; return (data[type >> 5] & (1U << (type & 31))) != 0; } return 1; } #if IS_ENABLED(CONFIG_IPV6_MIP6) typedef int mh_filter_t(struct sock *sock, struct sk_buff *skb); static mh_filter_t __rcu *mh_filter __read_mostly; int rawv6_mh_filter_register(mh_filter_t filter) { rcu_assign_pointer(mh_filter, filter); return 0; } EXPORT_SYMBOL(rawv6_mh_filter_register); int rawv6_mh_filter_unregister(mh_filter_t filter) { RCU_INIT_POINTER(mh_filter, NULL); synchronize_rcu(); return 0; } EXPORT_SYMBOL(rawv6_mh_filter_unregister); #endif /* * demultiplex raw sockets. * (should consider queueing the skb in the sock receive_queue * without calling rawv6.c) * * Caller owns SKB so we must make clones. */ static bool ipv6_raw_deliver(struct sk_buff *skb, int nexthdr) { struct net *net = dev_net(skb->dev); const struct in6_addr *saddr; const struct in6_addr *daddr; struct hlist_head *hlist; struct sock *sk; bool delivered = false; __u8 hash; saddr = &ipv6_hdr(skb)->saddr; daddr = saddr + 1; hash = raw_hashfunc(net, nexthdr); hlist = &raw_v6_hashinfo.ht[hash]; rcu_read_lock(); sk_for_each_rcu(sk, hlist) { int filtered; if (!raw_v6_match(net, sk, nexthdr, daddr, saddr, inet6_iif(skb), inet6_sdif(skb))) continue; if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { atomic_inc(&sk->sk_drops); continue; } delivered = true; switch (nexthdr) { case IPPROTO_ICMPV6: filtered = icmpv6_filter(sk, skb); break; #if IS_ENABLED(CONFIG_IPV6_MIP6) case IPPROTO_MH: { /* XXX: To validate MH only once for each packet, * this is placed here. It should be after checking * xfrm policy, however it doesn't. The checking xfrm * policy is placed in rawv6_rcv() because it is * required for each socket. */ mh_filter_t *filter; filter = rcu_dereference(mh_filter); filtered = filter ? (*filter)(sk, skb) : 0; break; } #endif default: filtered = 0; break; } if (filtered < 0) break; if (filtered == 0) { struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC); /* Not releasing hash table! */ if (clone) rawv6_rcv(sk, clone); } } rcu_read_unlock(); return delivered; } bool raw6_local_deliver(struct sk_buff *skb, int nexthdr) { return ipv6_raw_deliver(skb, nexthdr); } /* This cleans up af_inet6 a bit. -DaveM */ static int rawv6_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct sockaddr_in6 *addr = (struct sockaddr_in6 *) uaddr; __be32 v4addr = 0; int addr_type; int err; if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (addr->sin6_family != AF_INET6) return -EINVAL; addr_type = ipv6_addr_type(&addr->sin6_addr); /* Raw sockets are IPv6 only */ if (addr_type == IPV6_ADDR_MAPPED) return -EADDRNOTAVAIL; lock_sock(sk); err = -EINVAL; if (sk->sk_state != TCP_CLOSE) goto out; rcu_read_lock(); /* Check if the address belongs to the host. */ if (addr_type != IPV6_ADDR_ANY) { struct net_device *dev = NULL; if (__ipv6_addr_needs_scope_id(addr_type)) { if (addr_len >= sizeof(struct sockaddr_in6) && addr->sin6_scope_id) { /* Override any existing binding, if another * one is supplied by user. */ sk->sk_bound_dev_if = addr->sin6_scope_id; } /* Binding to link-local address requires an interface */ if (!sk->sk_bound_dev_if) goto out_unlock; } if (sk->sk_bound_dev_if) { err = -ENODEV; dev = dev_get_by_index_rcu(sock_net(sk), sk->sk_bound_dev_if); if (!dev) goto out_unlock; } /* ipv4 addr of the socket is invalid. Only the * unspecified and mapped address have a v4 equivalent. */ v4addr = LOOPBACK4_IPV6; if (!(addr_type & IPV6_ADDR_MULTICAST) && !ipv6_can_nonlocal_bind(sock_net(sk), inet)) { err = -EADDRNOTAVAIL; if (!ipv6_chk_addr(sock_net(sk), &addr->sin6_addr, dev, 0)) { goto out_unlock; } } } inet->inet_rcv_saddr = inet->inet_saddr = v4addr; sk->sk_v6_rcv_saddr = addr->sin6_addr; if (!(addr_type & IPV6_ADDR_MULTICAST)) np->saddr = addr->sin6_addr; err = 0; out_unlock: rcu_read_unlock(); out: release_sock(sk); return err; } static void rawv6_err(struct sock *sk, struct sk_buff *skb, u8 type, u8 code, int offset, __be32 info) { bool recverr = inet6_test_bit(RECVERR6, sk); struct ipv6_pinfo *np = inet6_sk(sk); int err; int harderr; /* Report error on raw socket, if: 1. User requested recverr. 2. Socket is connected (otherwise the error indication is useless without recverr and error is hard. */ if (!recverr && sk->sk_state != TCP_ESTABLISHED) return; harderr = icmpv6_err_convert(type, code, &err); if (type == ICMPV6_PKT_TOOBIG) { ip6_sk_update_pmtu(skb, sk, info); harderr = (READ_ONCE(np->pmtudisc) == IPV6_PMTUDISC_DO); } if (type == NDISC_REDIRECT) { ip6_sk_redirect(skb, sk); return; } if (recverr) { u8 *payload = skb->data; if (!inet_test_bit(HDRINCL, sk)) payload += offset; ipv6_icmp_error(sk, skb, err, 0, ntohl(info), payload); } if (recverr || harderr) { sk->sk_err = err; sk_error_report(sk); } } void raw6_icmp_error(struct sk_buff *skb, int nexthdr, u8 type, u8 code, int inner_offset, __be32 info) { struct net *net = dev_net(skb->dev); struct hlist_head *hlist; struct sock *sk; int hash; hash = raw_hashfunc(net, nexthdr); hlist = &raw_v6_hashinfo.ht[hash]; rcu_read_lock(); sk_for_each_rcu(sk, hlist) { /* Note: ipv6_hdr(skb) != skb->data */ const struct ipv6hdr *ip6h = (const struct ipv6hdr *)skb->data; if (!raw_v6_match(net, sk, nexthdr, &ip6h->saddr, &ip6h->daddr, inet6_iif(skb), inet6_iif(skb))) continue; rawv6_err(sk, skb, type, code, inner_offset, info); } rcu_read_unlock(); } static inline int rawv6_rcv_skb(struct sock *sk, struct sk_buff *skb) { enum skb_drop_reason reason; if ((raw6_sk(sk)->checksum || rcu_access_pointer(sk->sk_filter)) && skb_checksum_complete(skb)) { atomic_inc(&sk->sk_drops); sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_SKB_CSUM); return NET_RX_DROP; } /* Charge it to the socket. */ skb_dst_drop(skb); if (sock_queue_rcv_skb_reason(sk, skb, &reason) < 0) { sk_skb_reason_drop(sk, skb, reason); return NET_RX_DROP; } return 0; } /* * This is next to useless... * if we demultiplex in network layer we don't need the extra call * just to queue the skb... * maybe we could have the network decide upon a hint if it * should call raw_rcv for demultiplexing */ int rawv6_rcv(struct sock *sk, struct sk_buff *skb) { struct inet_sock *inet = inet_sk(sk); struct raw6_sock *rp = raw6_sk(sk); if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) { atomic_inc(&sk->sk_drops); sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_XFRM_POLICY); return NET_RX_DROP; } nf_reset_ct(skb); if (!rp->checksum) skb->ip_summed = CHECKSUM_UNNECESSARY; if (skb->ip_summed == CHECKSUM_COMPLETE) { skb_postpull_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); if (!csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, inet->inet_num, skb->csum)) skb->ip_summed = CHECKSUM_UNNECESSARY; } if (!skb_csum_unnecessary(skb)) skb->csum = ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, inet->inet_num, 0)); if (inet_test_bit(HDRINCL, sk)) { if (skb_checksum_complete(skb)) { atomic_inc(&sk->sk_drops); sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_SKB_CSUM); return NET_RX_DROP; } } rawv6_rcv_skb(sk, skb); return 0; } /* * This should be easy, if there is something there * we return it, otherwise we block. */ static int rawv6_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); struct sk_buff *skb; size_t copied; int err; if (flags & MSG_OOB) return -EOPNOTSUPP; if (flags & MSG_ERRQUEUE) return ipv6_recv_error(sk, msg, len, addr_len); if (np->rxpmtu && np->rxopt.bits.rxpmtu) return ipv6_recv_rxpmtu(sk, msg, len, addr_len); skb = skb_recv_datagram(sk, flags, &err); if (!skb) goto out; copied = skb->len; if (copied > len) { copied = len; msg->msg_flags |= MSG_TRUNC; } if (skb_csum_unnecessary(skb)) { err = skb_copy_datagram_msg(skb, 0, msg, copied); } else if (msg->msg_flags&MSG_TRUNC) { if (__skb_checksum_complete(skb)) goto csum_copy_err; err = skb_copy_datagram_msg(skb, 0, msg, copied); } else { err = skb_copy_and_csum_datagram_msg(skb, 0, msg); if (err == -EINVAL) goto csum_copy_err; } if (err) goto out_free; /* Copy the address. */ if (sin6) { sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_addr = ipv6_hdr(skb)->saddr; sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, inet6_iif(skb)); *addr_len = sizeof(*sin6); } sock_recv_cmsgs(msg, sk, skb); if (np->rxopt.all) ip6_datagram_recv_ctl(sk, msg, skb); err = copied; if (flags & MSG_TRUNC) err = skb->len; out_free: skb_free_datagram(sk, skb); out: return err; csum_copy_err: skb_kill_datagram(sk, skb, flags); /* Error for blocking case is chosen to masquerade as some normal condition. */ err = (flags&MSG_DONTWAIT) ? -EAGAIN : -EHOSTUNREACH; goto out; } static int rawv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, struct raw6_sock *rp) { struct ipv6_txoptions *opt; struct sk_buff *skb; int err = 0; int offset; int len; int total_len; __wsum tmp_csum; __sum16 csum; if (!rp->checksum) goto send; skb = skb_peek(&sk->sk_write_queue); if (!skb) goto out; offset = rp->offset; total_len = inet_sk(sk)->cork.base.length; opt = inet6_sk(sk)->cork.opt; total_len -= opt ? opt->opt_flen : 0; if (offset >= total_len - 1) { err = -EINVAL; ip6_flush_pending_frames(sk); goto out; } /* should be check HW csum miyazawa */ if (skb_queue_len(&sk->sk_write_queue) == 1) { /* * Only one fragment on the socket. */ tmp_csum = skb->csum; } else { struct sk_buff *csum_skb = NULL; tmp_csum = 0; skb_queue_walk(&sk->sk_write_queue, skb) { tmp_csum = csum_add(tmp_csum, skb->csum); if (csum_skb) continue; len = skb->len - skb_transport_offset(skb); if (offset >= len) { offset -= len; continue; } csum_skb = skb; } skb = csum_skb; } offset += skb_transport_offset(skb); err = skb_copy_bits(skb, offset, &csum, 2); if (err < 0) { ip6_flush_pending_frames(sk); goto out; } /* in case cksum was not initialized */ if (unlikely(csum)) tmp_csum = csum_sub(tmp_csum, csum_unfold(csum)); csum = csum_ipv6_magic(&fl6->saddr, &fl6->daddr, total_len, fl6->flowi6_proto, tmp_csum); if (csum == 0 && fl6->flowi6_proto == IPPROTO_UDP) csum = CSUM_MANGLED_0; BUG_ON(skb_store_bits(skb, offset, &csum, 2)); send: err = ip6_push_pending_frames(sk); out: return err; } static int rawv6_send_hdrinc(struct sock *sk, struct msghdr *msg, int length, struct flowi6 *fl6, struct dst_entry **dstp, unsigned int flags, const struct sockcm_cookie *sockc) { struct net *net = sock_net(sk); struct ipv6hdr *iph; struct sk_buff *skb; int err; struct rt6_info *rt = dst_rt6_info(*dstp); int hlen = LL_RESERVED_SPACE(rt->dst.dev); int tlen = rt->dst.dev->needed_tailroom; if (length > rt->dst.dev->mtu) { ipv6_local_error(sk, EMSGSIZE, fl6, rt->dst.dev->mtu); return -EMSGSIZE; } if (length < sizeof(struct ipv6hdr)) return -EINVAL; if (flags&MSG_PROBE) goto out; skb = sock_alloc_send_skb(sk, length + hlen + tlen + 15, flags & MSG_DONTWAIT, &err); if (!skb) goto error; skb_reserve(skb, hlen); skb->protocol = htons(ETH_P_IPV6); skb->priority = sockc->priority; skb->mark = sockc->mark; skb_set_delivery_type_by_clockid(skb, sockc->transmit_time, sk->sk_clockid); skb_put(skb, length); skb_reset_network_header(skb); iph = ipv6_hdr(skb); skb->ip_summed = CHECKSUM_NONE; skb_setup_tx_timestamp(skb, sockc); if (flags & MSG_CONFIRM) skb_set_dst_pending_confirm(skb, 1); skb->transport_header = skb->network_header; err = memcpy_from_msg(iph, msg, length); if (err) { err = -EFAULT; kfree_skb(skb); goto error; } skb_dst_set(skb, &rt->dst); *dstp = NULL; /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_out(sk, skb); if (unlikely(!skb)) return 0; /* Acquire rcu_read_lock() in case we need to use rt->rt6i_idev * in the error path. Since skb has been freed, the dst could * have been queued for deletion. */ rcu_read_lock(); IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTREQUESTS); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, rt->dst.dev, dst_output); if (err > 0) err = net_xmit_errno(err); if (err) { IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); rcu_read_unlock(); goto error_check; } rcu_read_unlock(); out: return 0; error: IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); error_check: if (err == -ENOBUFS && !inet6_test_bit(RECVERR6, sk)) err = 0; return err; } struct raw6_frag_vec { struct msghdr *msg; int hlen; char c[4]; }; static int rawv6_probe_proto_opt(struct raw6_frag_vec *rfv, struct flowi6 *fl6) { int err = 0; switch (fl6->flowi6_proto) { case IPPROTO_ICMPV6: rfv->hlen = 2; err = memcpy_from_msg(rfv->c, rfv->msg, rfv->hlen); if (!err) { fl6->fl6_icmp_type = rfv->c[0]; fl6->fl6_icmp_code = rfv->c[1]; } break; case IPPROTO_MH: rfv->hlen = 4; err = memcpy_from_msg(rfv->c, rfv->msg, rfv->hlen); if (!err) fl6->fl6_mh_type = rfv->c[2]; } return err; } static int raw6_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct raw6_frag_vec *rfv = from; if (offset < rfv->hlen) { int copy = min(rfv->hlen - offset, len); if (skb->ip_summed == CHECKSUM_PARTIAL) memcpy(to, rfv->c + offset, copy); else skb->csum = csum_block_add( skb->csum, csum_partial_copy_nocheck(rfv->c + offset, to, copy), odd); odd = 0; offset += copy; to += copy; len -= copy; if (!len) return 0; } offset -= rfv->hlen; return ip_generic_getfrag(rfv->msg, to, offset, len, odd, skb); } static int rawv6_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct ipv6_txoptions *opt_to_free = NULL; struct ipv6_txoptions opt_space; DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); struct in6_addr *daddr, *final_p, final; struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct raw6_sock *rp = raw6_sk(sk); struct ipv6_txoptions *opt = NULL; struct ip6_flowlabel *flowlabel = NULL; struct dst_entry *dst = NULL; struct raw6_frag_vec rfv; struct flowi6 fl6; struct ipcm6_cookie ipc6; int addr_len = msg->msg_namelen; int hdrincl; u16 proto; int err; /* Rough check on arithmetic overflow, better check is made in ip6_append_data(). */ if (len > INT_MAX) return -EMSGSIZE; /* Mirror BSD error message compatibility */ if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; hdrincl = inet_test_bit(HDRINCL, sk); ipcm6_init_sk(&ipc6, sk); /* * Get and verify the address. */ memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_mark = ipc6.sockc.mark; fl6.flowi6_uid = sk->sk_uid; if (sin6) { if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (sin6->sin6_family && sin6->sin6_family != AF_INET6) return -EAFNOSUPPORT; /* port is the proto value [0..255] carried in nexthdr */ proto = ntohs(sin6->sin6_port); if (!proto) proto = inet->inet_num; else if (proto != inet->inet_num && inet->inet_num != IPPROTO_RAW) return -EINVAL; if (proto > 255) return -EINVAL; daddr = &sin6->sin6_addr; if (inet6_test_bit(SNDFLOW, sk)) { fl6.flowlabel = sin6->sin6_flowinfo&IPV6_FLOWINFO_MASK; if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) { flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } } /* * Otherwise it will be difficult to maintain * sk->sk_dst_cache. */ if (sk->sk_state == TCP_ESTABLISHED && ipv6_addr_equal(daddr, &sk->sk_v6_daddr)) daddr = &sk->sk_v6_daddr; if (addr_len >= sizeof(struct sockaddr_in6) && sin6->sin6_scope_id && __ipv6_addr_needs_scope_id(__ipv6_addr_type(daddr))) fl6.flowi6_oif = sin6->sin6_scope_id; } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; proto = inet->inet_num; daddr = &sk->sk_v6_daddr; fl6.flowlabel = np->flow_label; } if (fl6.flowi6_oif == 0) fl6.flowi6_oif = sk->sk_bound_dev_if; if (msg->msg_controllen) { opt = &opt_space; memset(opt, 0, sizeof(struct ipv6_txoptions)); opt->tot_len = sizeof(struct ipv6_txoptions); ipc6.opt = opt; err = ip6_datagram_send_ctl(sock_net(sk), sk, msg, &fl6, &ipc6); if (err < 0) { fl6_sock_release(flowlabel); return err; } if ((fl6.flowlabel&IPV6_FLOWLABEL_MASK) && !flowlabel) { flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } if (!(opt->opt_nflen|opt->opt_flen)) opt = NULL; } if (!opt) { opt = txopt_get(np); opt_to_free = opt; } if (flowlabel) opt = fl6_merge_options(&opt_space, flowlabel, opt); opt = ipv6_fixup_options(&opt_space, opt); fl6.flowi6_proto = proto; fl6.flowi6_mark = ipc6.sockc.mark; if (!hdrincl) { rfv.msg = msg; rfv.hlen = 0; err = rawv6_probe_proto_opt(&rfv, &fl6); if (err) goto out; } if (!ipv6_addr_any(daddr)) fl6.daddr = *daddr; else fl6.daddr.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */ if (ipv6_addr_any(&fl6.saddr) && !ipv6_addr_any(&np->saddr)) fl6.saddr = np->saddr; final_p = fl6_update_dst(&fl6, opt, &final); if (!fl6.flowi6_oif && ipv6_addr_is_multicast(&fl6.daddr)) fl6.flowi6_oif = READ_ONCE(np->mcast_oif); else if (!fl6.flowi6_oif) fl6.flowi6_oif = READ_ONCE(np->ucast_oif); security_sk_classify_flow(sk, flowi6_to_flowi_common(&fl6)); if (hdrincl) fl6.flowi6_flags |= FLOWI_FLAG_KNOWN_NH; fl6.flowlabel = ip6_make_flowinfo(ipc6.tclass, fl6.flowlabel); dst = ip6_dst_lookup_flow(sock_net(sk), sk, &fl6, final_p); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto out; } if (ipc6.hlimit < 0) ipc6.hlimit = ip6_sk_dst_hoplimit(np, &fl6, dst); if (msg->msg_flags&MSG_CONFIRM) goto do_confirm; back_from_confirm: if (hdrincl) err = rawv6_send_hdrinc(sk, msg, len, &fl6, &dst, msg->msg_flags, &ipc6.sockc); else { ipc6.opt = opt; lock_sock(sk); err = ip6_append_data(sk, raw6_getfrag, &rfv, len, 0, &ipc6, &fl6, dst_rt6_info(dst), msg->msg_flags); if (err) ip6_flush_pending_frames(sk); else if (!(msg->msg_flags & MSG_MORE)) err = rawv6_push_pending_frames(sk, &fl6, rp); release_sock(sk); } done: dst_release(dst); out: fl6_sock_release(flowlabel); txopt_put(opt_to_free); return err < 0 ? err : len; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(dst, &fl6.daddr); if (!(msg->msg_flags & MSG_PROBE) || len) goto back_from_confirm; err = 0; goto done; } static int rawv6_seticmpfilter(struct sock *sk, int optname, sockptr_t optval, int optlen) { switch (optname) { case ICMPV6_FILTER: if (optlen > sizeof(struct icmp6_filter)) optlen = sizeof(struct icmp6_filter); if (copy_from_sockptr(&raw6_sk(sk)->filter, optval, optlen)) return -EFAULT; return 0; default: return -ENOPROTOOPT; } return 0; } static int rawv6_geticmpfilter(struct sock *sk, int optname, char __user *optval, int __user *optlen) { int len; switch (optname) { case ICMPV6_FILTER: if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; if (len > sizeof(struct icmp6_filter)) len = sizeof(struct icmp6_filter); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &raw6_sk(sk)->filter, len)) return -EFAULT; return 0; default: return -ENOPROTOOPT; } return 0; } static int do_rawv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct raw6_sock *rp = raw6_sk(sk); int val; if (optlen < sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; switch (optname) { case IPV6_HDRINCL: if (sk->sk_type != SOCK_RAW) return -EINVAL; inet_assign_bit(HDRINCL, sk, val); return 0; case IPV6_CHECKSUM: if (inet_sk(sk)->inet_num == IPPROTO_ICMPV6 && level == IPPROTO_IPV6) { /* * RFC3542 tells that IPV6_CHECKSUM socket * option in the IPPROTO_IPV6 level is not * allowed on ICMPv6 sockets. * If you want to set it, use IPPROTO_RAW * level IPV6_CHECKSUM socket option * (Linux extension). */ return -EINVAL; } /* You may get strange result with a positive odd offset; RFC2292bis agrees with me. */ if (val > 0 && (val&1)) return -EINVAL; if (val < 0) { rp->checksum = 0; } else { rp->checksum = 1; rp->offset = val; } return 0; default: return -ENOPROTOOPT; } } static int rawv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { switch (level) { case SOL_RAW: break; case SOL_ICMPV6: if (inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; return rawv6_seticmpfilter(sk, optname, optval, optlen); case SOL_IPV6: if (optname == IPV6_CHECKSUM || optname == IPV6_HDRINCL) break; fallthrough; default: return ipv6_setsockopt(sk, level, optname, optval, optlen); } return do_rawv6_setsockopt(sk, level, optname, optval, optlen); } static int do_rawv6_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct raw6_sock *rp = raw6_sk(sk); int val, len; if (get_user(len, optlen)) return -EFAULT; switch (optname) { case IPV6_HDRINCL: val = inet_test_bit(HDRINCL, sk); break; case IPV6_CHECKSUM: /* * We allow getsockopt() for IPPROTO_IPV6-level * IPV6_CHECKSUM socket option on ICMPv6 sockets * since RFC3542 is silent about it. */ if (rp->checksum == 0) val = -1; else val = rp->offset; break; default: return -ENOPROTOOPT; } len = min_t(unsigned int, sizeof(int), len); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int rawv6_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { switch (level) { case SOL_RAW: break; case SOL_ICMPV6: if (inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; return rawv6_geticmpfilter(sk, optname, optval, optlen); case SOL_IPV6: if (optname == IPV6_CHECKSUM || optname == IPV6_HDRINCL) break; fallthrough; default: return ipv6_getsockopt(sk, level, optname, optval, optlen); } return do_rawv6_getsockopt(sk, level, optname, optval, optlen); } static int rawv6_ioctl(struct sock *sk, int cmd, int *karg) { switch (cmd) { case SIOCOUTQ: { *karg = sk_wmem_alloc_get(sk); return 0; } case SIOCINQ: { struct sk_buff *skb; spin_lock_bh(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); if (skb) *karg = skb->len; else *karg = 0; spin_unlock_bh(&sk->sk_receive_queue.lock); return 0; } default: #ifdef CONFIG_IPV6_MROUTE return ip6mr_ioctl(sk, cmd, karg); #else return -ENOIOCTLCMD; #endif } } #ifdef CONFIG_COMPAT static int compat_rawv6_ioctl(struct sock *sk, unsigned int cmd, unsigned long arg) { switch (cmd) { case SIOCOUTQ: case SIOCINQ: return -ENOIOCTLCMD; default: #ifdef CONFIG_IPV6_MROUTE return ip6mr_compat_ioctl(sk, cmd, compat_ptr(arg)); #else return -ENOIOCTLCMD; #endif } } #endif static void rawv6_close(struct sock *sk, long timeout) { if (inet_sk(sk)->inet_num == IPPROTO_RAW) ip6_ra_control(sk, -1); ip6mr_sk_done(sk); sk_common_release(sk); } static void raw6_destroy(struct sock *sk) { lock_sock(sk); ip6_flush_pending_frames(sk); release_sock(sk); } static int rawv6_init_sk(struct sock *sk) { struct raw6_sock *rp = raw6_sk(sk); switch (inet_sk(sk)->inet_num) { case IPPROTO_ICMPV6: rp->checksum = 1; rp->offset = 2; break; case IPPROTO_MH: rp->checksum = 1; rp->offset = 4; break; default: break; } return 0; } struct proto rawv6_prot = { .name = "RAWv6", .owner = THIS_MODULE, .close = rawv6_close, .destroy = raw6_destroy, .connect = ip6_datagram_connect_v6_only, .disconnect = __udp_disconnect, .ioctl = rawv6_ioctl, .init = rawv6_init_sk, .setsockopt = rawv6_setsockopt, .getsockopt = rawv6_getsockopt, .sendmsg = rawv6_sendmsg, .recvmsg = rawv6_recvmsg, .bind = rawv6_bind, .backlog_rcv = rawv6_rcv_skb, .hash = raw_hash_sk, .unhash = raw_unhash_sk, .obj_size = sizeof(struct raw6_sock), .ipv6_pinfo_offset = offsetof(struct raw6_sock, inet6), .useroffset = offsetof(struct raw6_sock, filter), .usersize = sizeof_field(struct raw6_sock, filter), .h.raw_hash = &raw_v6_hashinfo, #ifdef CONFIG_COMPAT .compat_ioctl = compat_rawv6_ioctl, #endif .diag_destroy = raw_abort, }; #ifdef CONFIG_PROC_FS static int raw6_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, IPV6_SEQ_DGRAM_HEADER); } else { struct sock *sp = v; __u16 srcp = inet_sk(sp)->inet_num; ip6_dgram_sock_seq_show(seq, v, srcp, 0, raw_seq_private(seq)->bucket); } return 0; } static const struct seq_operations raw6_seq_ops = { .start = raw_seq_start, .next = raw_seq_next, .stop = raw_seq_stop, .show = raw6_seq_show, }; static int __net_init raw6_init_net(struct net *net) { if (!proc_create_net_data("raw6", 0444, net->proc_net, &raw6_seq_ops, sizeof(struct raw_iter_state), &raw_v6_hashinfo)) return -ENOMEM; return 0; } static void __net_exit raw6_exit_net(struct net *net) { remove_proc_entry("raw6", net->proc_net); } static struct pernet_operations raw6_net_ops = { .init = raw6_init_net, .exit = raw6_exit_net, }; int __init raw6_proc_init(void) { return register_pernet_subsys(&raw6_net_ops); } void raw6_proc_exit(void) { unregister_pernet_subsys(&raw6_net_ops); } #endif /* CONFIG_PROC_FS */ /* Same as inet6_dgram_ops, sans udp_poll. */ const struct proto_ops inet6_sockraw_ops = { .family = PF_INET6, .owner = THIS_MODULE, .release = inet6_release, .bind = inet6_bind, .connect = inet_dgram_connect, /* ok */ .socketpair = sock_no_socketpair, /* a do nothing */ .accept = sock_no_accept, /* a do nothing */ .getname = inet6_getname, .poll = datagram_poll, /* ok */ .ioctl = inet6_ioctl, /* must change */ .gettstamp = sock_gettstamp, .listen = sock_no_listen, /* ok */ .shutdown = inet_shutdown, /* ok */ .setsockopt = sock_common_setsockopt, /* ok */ .getsockopt = sock_common_getsockopt, /* ok */ .sendmsg = inet_sendmsg, /* ok */ .recvmsg = sock_common_recvmsg, /* ok */ .mmap = sock_no_mmap, #ifdef CONFIG_COMPAT .compat_ioctl = inet6_compat_ioctl, #endif }; static struct inet_protosw rawv6_protosw = { .type = SOCK_RAW, .protocol = IPPROTO_IP, /* wild card */ .prot = &rawv6_prot, .ops = &inet6_sockraw_ops, .flags = INET_PROTOSW_REUSE, }; int __init rawv6_init(void) { return inet6_register_protosw(&rawv6_protosw); } void rawv6_exit(void) { inet6_unregister_protosw(&rawv6_protosw); }
4 4 3 5 5 5 3 1 1 1 1 1 1 1 5 5 5 5 13 13 13 13 14 4 4 4 14 14 14 13 13 13 13 13 13 5 5 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 // SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/module.h> #include <linux/backing-dev.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/smp.h> #include "blk.h" #include "blk-mq.h" static void blk_mq_sysfs_release(struct kobject *kobj) { struct blk_mq_ctxs *ctxs = container_of(kobj, struct blk_mq_ctxs, kobj); free_percpu(ctxs->queue_ctx); kfree(ctxs); } static void blk_mq_ctx_sysfs_release(struct kobject *kobj) { struct blk_mq_ctx *ctx = container_of(kobj, struct blk_mq_ctx, kobj); /* ctx->ctxs won't be released until all ctx are freed */ kobject_put(&ctx->ctxs->kobj); } static void blk_mq_hw_sysfs_release(struct kobject *kobj) { struct blk_mq_hw_ctx *hctx = container_of(kobj, struct blk_mq_hw_ctx, kobj); blk_free_flush_queue(hctx->fq); sbitmap_free(&hctx->ctx_map); free_cpumask_var(hctx->cpumask); kfree(hctx->ctxs); kfree(hctx); } struct blk_mq_hw_ctx_sysfs_entry { struct attribute attr; ssize_t (*show)(struct blk_mq_hw_ctx *, char *); }; static ssize_t blk_mq_hw_sysfs_show(struct kobject *kobj, struct attribute *attr, char *page) { struct blk_mq_hw_ctx_sysfs_entry *entry; struct blk_mq_hw_ctx *hctx; struct request_queue *q; ssize_t res; entry = container_of(attr, struct blk_mq_hw_ctx_sysfs_entry, attr); hctx = container_of(kobj, struct blk_mq_hw_ctx, kobj); q = hctx->queue; if (!entry->show) return -EIO; mutex_lock(&q->elevator_lock); res = entry->show(hctx, page); mutex_unlock(&q->elevator_lock); return res; } static ssize_t blk_mq_hw_sysfs_nr_tags_show(struct blk_mq_hw_ctx *hctx, char *page) { return sprintf(page, "%u\n", hctx->tags->nr_tags); } static ssize_t blk_mq_hw_sysfs_nr_reserved_tags_show(struct blk_mq_hw_ctx *hctx, char *page) { return sprintf(page, "%u\n", hctx->tags->nr_reserved_tags); } static ssize_t blk_mq_hw_sysfs_cpus_show(struct blk_mq_hw_ctx *hctx, char *page) { const size_t size = PAGE_SIZE - 1; unsigned int i, first = 1; int ret = 0, pos = 0; for_each_cpu(i, hctx->cpumask) { if (first) ret = snprintf(pos + page, size - pos, "%u", i); else ret = snprintf(pos + page, size - pos, ", %u", i); if (ret >= size - pos) break; first = 0; pos += ret; } ret = snprintf(pos + page, size + 1 - pos, "\n"); return pos + ret; } static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_nr_tags = { .attr = {.name = "nr_tags", .mode = 0444 }, .show = blk_mq_hw_sysfs_nr_tags_show, }; static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_nr_reserved_tags = { .attr = {.name = "nr_reserved_tags", .mode = 0444 }, .show = blk_mq_hw_sysfs_nr_reserved_tags_show, }; static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_cpus = { .attr = {.name = "cpu_list", .mode = 0444 }, .show = blk_mq_hw_sysfs_cpus_show, }; static struct attribute *default_hw_ctx_attrs[] = { &blk_mq_hw_sysfs_nr_tags.attr, &blk_mq_hw_sysfs_nr_reserved_tags.attr, &blk_mq_hw_sysfs_cpus.attr, NULL, }; ATTRIBUTE_GROUPS(default_hw_ctx); static const struct sysfs_ops blk_mq_hw_sysfs_ops = { .show = blk_mq_hw_sysfs_show, }; static const struct kobj_type blk_mq_ktype = { .release = blk_mq_sysfs_release, }; static const struct kobj_type blk_mq_ctx_ktype = { .release = blk_mq_ctx_sysfs_release, }; static const struct kobj_type blk_mq_hw_ktype = { .sysfs_ops = &blk_mq_hw_sysfs_ops, .default_groups = default_hw_ctx_groups, .release = blk_mq_hw_sysfs_release, }; static void blk_mq_unregister_hctx(struct blk_mq_hw_ctx *hctx) { struct blk_mq_ctx *ctx; int i; if (!hctx->nr_ctx) return; hctx_for_each_ctx(hctx, ctx, i) kobject_del(&ctx->kobj); kobject_del(&hctx->kobj); } static int blk_mq_register_hctx(struct blk_mq_hw_ctx *hctx) { struct request_queue *q = hctx->queue; struct blk_mq_ctx *ctx; int i, j, ret; if (!hctx->nr_ctx) return 0; ret = kobject_add(&hctx->kobj, q->mq_kobj, "%u", hctx->queue_num); if (ret) return ret; hctx_for_each_ctx(hctx, ctx, i) { ret = kobject_add(&ctx->kobj, &hctx->kobj, "cpu%u", ctx->cpu); if (ret) goto out; } return 0; out: hctx_for_each_ctx(hctx, ctx, j) { if (j < i) kobject_del(&ctx->kobj); } kobject_del(&hctx->kobj); return ret; } void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx) { kobject_init(&hctx->kobj, &blk_mq_hw_ktype); } void blk_mq_sysfs_deinit(struct request_queue *q) { struct blk_mq_ctx *ctx; int cpu; for_each_possible_cpu(cpu) { ctx = per_cpu_ptr(q->queue_ctx, cpu); kobject_put(&ctx->kobj); } kobject_put(q->mq_kobj); } void blk_mq_sysfs_init(struct request_queue *q) { struct blk_mq_ctx *ctx; int cpu; kobject_init(q->mq_kobj, &blk_mq_ktype); for_each_possible_cpu(cpu) { ctx = per_cpu_ptr(q->queue_ctx, cpu); kobject_get(q->mq_kobj); kobject_init(&ctx->kobj, &blk_mq_ctx_ktype); } } int blk_mq_sysfs_register(struct gendisk *disk) { struct request_queue *q = disk->queue; struct blk_mq_hw_ctx *hctx; unsigned long i, j; int ret; ret = kobject_add(q->mq_kobj, &disk_to_dev(disk)->kobj, "mq"); if (ret < 0) return ret; kobject_uevent(q->mq_kobj, KOBJ_ADD); mutex_lock(&q->tag_set->tag_list_lock); queue_for_each_hw_ctx(q, hctx, i) { ret = blk_mq_register_hctx(hctx); if (ret) goto out_unreg; } mutex_unlock(&q->tag_set->tag_list_lock); return 0; out_unreg: queue_for_each_hw_ctx(q, hctx, j) { if (j < i) blk_mq_unregister_hctx(hctx); } mutex_unlock(&q->tag_set->tag_list_lock); kobject_uevent(q->mq_kobj, KOBJ_REMOVE); kobject_del(q->mq_kobj); return ret; } void blk_mq_sysfs_unregister(struct gendisk *disk) { struct request_queue *q = disk->queue; struct blk_mq_hw_ctx *hctx; unsigned long i; mutex_lock(&q->tag_set->tag_list_lock); queue_for_each_hw_ctx(q, hctx, i) blk_mq_unregister_hctx(hctx); mutex_unlock(&q->tag_set->tag_list_lock); kobject_uevent(q->mq_kobj, KOBJ_REMOVE); kobject_del(q->mq_kobj); } void blk_mq_sysfs_unregister_hctxs(struct request_queue *q) { struct blk_mq_hw_ctx *hctx; unsigned long i; if (!blk_queue_registered(q)) return; queue_for_each_hw_ctx(q, hctx, i) blk_mq_unregister_hctx(hctx); } int blk_mq_sysfs_register_hctxs(struct request_queue *q) { struct blk_mq_hw_ctx *hctx; unsigned long i; int ret = 0; if (!blk_queue_registered(q)) goto out; queue_for_each_hw_ctx(q, hctx, i) { ret = blk_mq_register_hctx(hctx); if (ret) break; } out: return ret; }
2 3 6128 6010 3581 71 3449 3568 3188 66 4 29 224 152 25 30 156 6 2283 28 22 2 304 27 21 33 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* audit.h -- Auditing support * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> */ #ifndef _LINUX_AUDIT_H_ #define _LINUX_AUDIT_H_ #include <linux/sched.h> #include <linux/ptrace.h> #include <linux/audit_arch.h> #include <uapi/linux/audit.h> #include <uapi/linux/netfilter/nf_tables.h> #include <uapi/linux/fanotify.h> #define AUDIT_INO_UNSET ((unsigned long)-1) #define AUDIT_DEV_UNSET ((dev_t)-1) struct audit_sig_info { uid_t uid; pid_t pid; char ctx[]; }; struct audit_buffer; struct audit_context; struct inode; struct netlink_skb_parms; struct path; struct linux_binprm; struct mq_attr; struct mqstat; struct audit_watch; struct audit_tree; struct sk_buff; struct kern_ipc_perm; struct audit_krule { u32 pflags; u32 flags; u32 listnr; u32 action; u32 mask[AUDIT_BITMASK_SIZE]; u32 buflen; /* for data alloc on list rules */ u32 field_count; char *filterkey; /* ties events to rules */ struct audit_field *fields; struct audit_field *arch_f; /* quick access to arch field */ struct audit_field *inode_f; /* quick access to an inode field */ struct audit_watch *watch; /* associated watch */ struct audit_tree *tree; /* associated watched tree */ struct audit_fsnotify_mark *exe; struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ struct list_head list; /* for AUDIT_LIST* purposes only */ u64 prio; }; /* Flag to indicate legacy AUDIT_LOGINUID unset usage */ #define AUDIT_LOGINUID_LEGACY 0x1 struct audit_field { u32 type; union { u32 val; kuid_t uid; kgid_t gid; struct { char *lsm_str; void *lsm_rule; }; }; u32 op; }; enum audit_ntp_type { AUDIT_NTP_OFFSET, AUDIT_NTP_FREQ, AUDIT_NTP_STATUS, AUDIT_NTP_TAI, AUDIT_NTP_TICK, AUDIT_NTP_ADJUST, AUDIT_NTP_NVALS /* count */ }; #ifdef CONFIG_AUDITSYSCALL struct audit_ntp_val { long long oldval, newval; }; struct audit_ntp_data { struct audit_ntp_val vals[AUDIT_NTP_NVALS]; }; #else struct audit_ntp_data {}; #endif enum audit_nfcfgop { AUDIT_XT_OP_REGISTER, AUDIT_XT_OP_REPLACE, AUDIT_XT_OP_UNREGISTER, AUDIT_NFT_OP_TABLE_REGISTER, AUDIT_NFT_OP_TABLE_UNREGISTER, AUDIT_NFT_OP_CHAIN_REGISTER, AUDIT_NFT_OP_CHAIN_UNREGISTER, AUDIT_NFT_OP_RULE_REGISTER, AUDIT_NFT_OP_RULE_UNREGISTER, AUDIT_NFT_OP_SET_REGISTER, AUDIT_NFT_OP_SET_UNREGISTER, AUDIT_NFT_OP_SETELEM_REGISTER, AUDIT_NFT_OP_SETELEM_UNREGISTER, AUDIT_NFT_OP_GEN_REGISTER, AUDIT_NFT_OP_OBJ_REGISTER, AUDIT_NFT_OP_OBJ_UNREGISTER, AUDIT_NFT_OP_OBJ_RESET, AUDIT_NFT_OP_FLOWTABLE_REGISTER, AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, AUDIT_NFT_OP_SETELEM_RESET, AUDIT_NFT_OP_RULE_RESET, AUDIT_NFT_OP_INVALID, }; extern int __init audit_register_class(int class, unsigned *list); extern int audit_classify_syscall(int abi, unsigned syscall); extern int audit_classify_arch(int arch); /* only for compat system calls */ extern unsigned compat_write_class[]; extern unsigned compat_read_class[]; extern unsigned compat_dir_class[]; extern unsigned compat_chattr_class[]; extern unsigned compat_signal_class[]; /* audit_names->type values */ #define AUDIT_TYPE_UNKNOWN 0 /* we don't know yet */ #define AUDIT_TYPE_NORMAL 1 /* a "normal" audit record */ #define AUDIT_TYPE_PARENT 2 /* a parent audit record */ #define AUDIT_TYPE_CHILD_DELETE 3 /* a child being deleted */ #define AUDIT_TYPE_CHILD_CREATE 4 /* a child being created */ /* maximized args number that audit_socketcall can process */ #define AUDITSC_ARGS 6 /* bit values for ->signal->audit_tty */ #define AUDIT_TTY_ENABLE BIT(0) #define AUDIT_TTY_LOG_PASSWD BIT(1) struct filename; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 #ifdef CONFIG_AUDIT /* These are defined in audit.c */ /* Public API */ extern __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...); extern struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type); extern __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...); extern void audit_log_end(struct audit_buffer *ab); extern bool audit_string_contains_control(const char *string, size_t len); extern void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len); extern void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n); extern void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n); extern void audit_log_untrustedstring(struct audit_buffer *ab, const char *string); extern void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path); extern void audit_log_key(struct audit_buffer *ab, char *key); extern void audit_log_path_denied(int type, const char *operation); extern void audit_log_lost(const char *message); extern int audit_log_task_context(struct audit_buffer *ab); extern void audit_log_task_info(struct audit_buffer *ab); extern int audit_update_lsm_rules(void); /* Private API (for audit.c only) */ extern int audit_rule_change(int type, int seq, void *data, size_t datasz); extern int audit_list_rules_send(struct sk_buff *request_skb, int seq); extern int audit_set_loginuid(kuid_t loginuid); static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return tsk->loginuid; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return tsk->sessionid; } extern u32 audit_enabled; extern int audit_signal_info(int sig, struct task_struct *t); #else /* CONFIG_AUDIT */ static inline __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { } static inline struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { return NULL; } static inline __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { } static inline void audit_log_end(struct audit_buffer *ab) { } static inline void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { } static inline void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n) { } static inline void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n) { } static inline void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { } static inline void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { } static inline void audit_log_key(struct audit_buffer *ab, char *key) { } static inline void audit_log_path_denied(int type, const char *operation) { } static inline int audit_log_task_context(struct audit_buffer *ab) { return 0; } static inline void audit_log_task_info(struct audit_buffer *ab) { } static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return INVALID_UID; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return AUDIT_SID_UNSET; } #define audit_enabled AUDIT_OFF static inline int audit_signal_info(int sig, struct task_struct *t) { return 0; } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_AUDIT_COMPAT_GENERIC #define audit_is_compat(arch) (!((arch) & __AUDIT_ARCH_64BIT)) #else #define audit_is_compat(arch) false #endif #define AUDIT_INODE_PARENT 1 /* dentry represents the parent */ #define AUDIT_INODE_HIDDEN 2 /* audit record should be hidden */ #define AUDIT_INODE_NOEVAL 4 /* audit record incomplete */ #ifdef CONFIG_AUDITSYSCALL #include <asm/syscall.h> /* for syscall_get_arch() */ /* These are defined in auditsc.c */ /* Public API */ extern int audit_alloc(struct task_struct *task); extern void __audit_free(struct task_struct *task); extern void __audit_uring_entry(u8 op); extern void __audit_uring_exit(int success, long code); extern void __audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3); extern void __audit_syscall_exit(int ret_success, long ret_value); extern struct filename *__audit_reusename(const __user char *uptr); extern void __audit_getname(struct filename *name); extern void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags); extern void __audit_file(const struct file *); extern void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type); extern void audit_seccomp(unsigned long syscall, long signr, int code); extern void audit_seccomp_actions_logged(const char *names, const char *old_names, int res); extern void __audit_ptrace(struct task_struct *t); static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { task->audit_context = ctx; } static inline struct audit_context *audit_context(void) { return current->audit_context; } static inline bool audit_dummy_context(void) { void *p = audit_context(); return !p || *(int *)p; } static inline void audit_free(struct task_struct *task) { if (unlikely(task->audit_context)) __audit_free(task); } static inline void audit_uring_entry(u8 op) { /* * We intentionally check audit_context() before audit_enabled as most * Linux systems (as of ~2021) rely on systemd which forces audit to * be enabled regardless of the user's audit configuration. */ if (unlikely(audit_context() && audit_enabled)) __audit_uring_entry(op); } static inline void audit_uring_exit(int success, long code) { if (unlikely(audit_context())) __audit_uring_exit(success, code); } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { if (unlikely(audit_context())) __audit_syscall_entry(major, a0, a1, a2, a3); } static inline void audit_syscall_exit(void *pt_regs) { if (unlikely(audit_context())) { int success = is_syscall_success(pt_regs); long return_code = regs_return_value(pt_regs); __audit_syscall_exit(success, return_code); } } static inline struct filename *audit_reusename(const __user char *name) { if (unlikely(!audit_dummy_context())) return __audit_reusename(name); return NULL; } static inline void audit_getname(struct filename *name) { if (unlikely(!audit_dummy_context())) __audit_getname(name); } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, aflags); } static inline void audit_file(struct file *file) { if (unlikely(!audit_dummy_context())) __audit_file(file); } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, AUDIT_INODE_PARENT | AUDIT_INODE_HIDDEN); } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { if (unlikely(!audit_dummy_context())) __audit_inode_child(parent, dentry, type); } void audit_core_dumps(long signr); static inline void audit_ptrace(struct task_struct *t) { if (unlikely(!audit_dummy_context())) __audit_ptrace(t); } /* Private API (for audit.c only) */ extern void __audit_ipc_obj(struct kern_ipc_perm *ipcp); extern void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode); extern void __audit_bprm(struct linux_binprm *bprm); extern int __audit_socketcall(int nargs, unsigned long *args); extern int __audit_sockaddr(int len, void *addr); extern void __audit_fd_pair(int fd1, int fd2); extern void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr); extern void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout); extern void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification); extern void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat); extern int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old); extern void __audit_log_capset(const struct cred *new, const struct cred *old); extern void __audit_mmap_fd(int fd, int flags); extern void __audit_openat2_how(struct open_how *how); extern void __audit_log_kern_module(char *name); extern void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar); extern void __audit_tk_injoffset(struct timespec64 offset); extern void __audit_ntp_log(const struct audit_ntp_data *ad); extern void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp); static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { if (unlikely(!audit_dummy_context())) __audit_ipc_obj(ipcp); } static inline void audit_fd_pair(int fd1, int fd2) { if (unlikely(!audit_dummy_context())) __audit_fd_pair(fd1, fd2); } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { if (unlikely(!audit_dummy_context())) __audit_ipc_set_perm(qbytes, uid, gid, mode); } static inline void audit_bprm(struct linux_binprm *bprm) { if (unlikely(!audit_dummy_context())) __audit_bprm(bprm); } static inline int audit_socketcall(int nargs, unsigned long *args) { if (unlikely(!audit_dummy_context())) return __audit_socketcall(nargs, args); return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { unsigned long a[AUDITSC_ARGS]; int i; if (audit_dummy_context()) return 0; for (i = 0; i < nargs; i++) a[i] = (unsigned long)args[i]; return __audit_socketcall(nargs, a); } static inline int audit_sockaddr(int len, void *addr) { if (unlikely(!audit_dummy_context())) return __audit_sockaddr(len, addr); return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { if (unlikely(!audit_dummy_context())) __audit_mq_open(oflag, mode, attr); } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { if (unlikely(!audit_dummy_context())) __audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout); } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { if (unlikely(!audit_dummy_context())) __audit_mq_notify(mqdes, notification); } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { if (unlikely(!audit_dummy_context())) __audit_mq_getsetattr(mqdes, mqstat); } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) return __audit_log_bprm_fcaps(bprm, new, old); return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) __audit_log_capset(new, old); } static inline void audit_mmap_fd(int fd, int flags) { if (unlikely(!audit_dummy_context())) __audit_mmap_fd(fd, flags); } static inline void audit_openat2_how(struct open_how *how) { if (unlikely(!audit_dummy_context())) __audit_openat2_how(how); } static inline void audit_log_kern_module(char *name) { if (!audit_dummy_context()) __audit_log_kern_module(name); } static inline void audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) { if (!audit_dummy_context()) __audit_fanotify(response, friar); } static inline void audit_tk_injoffset(struct timespec64 offset) { /* ignore no-op events */ if (offset.tv_sec == 0 && offset.tv_nsec == 0) return; if (!audit_dummy_context()) __audit_tk_injoffset(offset); } static inline void audit_ntp_init(struct audit_ntp_data *ad) { memset(ad, 0, sizeof(*ad)); } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].oldval = val; } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].newval = val; } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { if (!audit_dummy_context()) __audit_ntp_log(ad); } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { if (audit_enabled) __audit_log_nfcfg(name, af, nentries, op, gfp); } extern int audit_n_rules; extern int audit_signals; #else /* CONFIG_AUDITSYSCALL */ static inline int audit_alloc(struct task_struct *task) { return 0; } static inline void audit_free(struct task_struct *task) { } static inline void audit_uring_entry(u8 op) { } static inline void audit_uring_exit(int success, long code) { } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { } static inline void audit_syscall_exit(void *pt_regs) { } static inline bool audit_dummy_context(void) { return true; } static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { } static inline struct audit_context *audit_context(void) { return NULL; } static inline struct filename *audit_reusename(const __user char *name) { return NULL; } static inline void audit_getname(struct filename *name) { } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { } static inline void audit_file(struct file *file) { } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { } static inline void audit_core_dumps(long signr) { } static inline void audit_seccomp(unsigned long syscall, long signr, int code) { } static inline void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { } static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { } static inline void audit_bprm(struct linux_binprm *bprm) { } static inline int audit_socketcall(int nargs, unsigned long *args) { return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { return 0; } static inline void audit_fd_pair(int fd1, int fd2) { } static inline int audit_sockaddr(int len, void *addr) { return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { } static inline void audit_mmap_fd(int fd, int flags) { } static inline void audit_openat2_how(struct open_how *how) { } static inline void audit_log_kern_module(char *name) { } static inline void audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) { } static inline void audit_tk_injoffset(struct timespec64 offset) { } static inline void audit_ntp_init(struct audit_ntp_data *ad) { } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { } static inline void audit_ptrace(struct task_struct *t) { } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { } #define audit_n_rules 0 #define audit_signals 0 #endif /* CONFIG_AUDITSYSCALL */ static inline bool audit_loginuid_set(struct task_struct *tsk) { return uid_valid(audit_get_loginuid(tsk)); } #endif
8993 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0-only */ /* * AppArmor security module * * This file contains AppArmor network mediation definitions. * * Copyright (C) 1998-2008 Novell/SUSE * Copyright 2009-2017 Canonical Ltd. */ #ifndef __AA_NET_H #define __AA_NET_H #include <net/sock.h> #include <linux/path.h> #include "apparmorfs.h" #include "label.h" #include "perms.h" #include "policy.h" #define AA_MAY_SEND AA_MAY_WRITE #define AA_MAY_RECEIVE AA_MAY_READ #define AA_MAY_SHUTDOWN AA_MAY_DELETE #define AA_MAY_CONNECT AA_MAY_OPEN #define AA_MAY_ACCEPT 0x00100000 #define AA_MAY_BIND 0x00200000 #define AA_MAY_LISTEN 0x00400000 #define AA_MAY_SETOPT 0x01000000 #define AA_MAY_GETOPT 0x02000000 #define NET_PERMS_MASK (AA_MAY_SEND | AA_MAY_RECEIVE | AA_MAY_CREATE | \ AA_MAY_SHUTDOWN | AA_MAY_BIND | AA_MAY_LISTEN | \ AA_MAY_CONNECT | AA_MAY_ACCEPT | AA_MAY_SETATTR | \ AA_MAY_GETATTR | AA_MAY_SETOPT | AA_MAY_GETOPT) #define NET_FS_PERMS (AA_MAY_SEND | AA_MAY_RECEIVE | AA_MAY_CREATE | \ AA_MAY_SHUTDOWN | AA_MAY_CONNECT | AA_MAY_RENAME |\ AA_MAY_SETATTR | AA_MAY_GETATTR | AA_MAY_CHMOD | \ AA_MAY_CHOWN | AA_MAY_CHGRP | AA_MAY_LOCK | \ AA_MAY_MPROT) #define NET_PEER_MASK (AA_MAY_SEND | AA_MAY_RECEIVE | AA_MAY_CONNECT | \ AA_MAY_ACCEPT) struct aa_sk_ctx { struct aa_label *label; struct aa_label *peer; }; static inline struct aa_sk_ctx *aa_sock(const struct sock *sk) { return sk->sk_security + apparmor_blob_sizes.lbs_sock; } #define DEFINE_AUDIT_NET(NAME, OP, SK, F, T, P) \ struct lsm_network_audit NAME ## _net = { .sk = (SK), \ .family = (F)}; \ DEFINE_AUDIT_DATA(NAME, \ ((SK) && (F) != AF_UNIX) ? LSM_AUDIT_DATA_NET : \ LSM_AUDIT_DATA_NONE, \ AA_CLASS_NET, \ OP); \ NAME.common.u.net = &(NAME ## _net); \ NAME.net.type = (T); \ NAME.net.protocol = (P) #define DEFINE_AUDIT_SK(NAME, OP, SK) \ DEFINE_AUDIT_NET(NAME, OP, SK, (SK)->sk_family, (SK)->sk_type, \ (SK)->sk_protocol) #define af_select(FAMILY, FN, DEF_FN) \ ({ \ int __e; \ switch ((FAMILY)) { \ default: \ __e = DEF_FN; \ } \ __e; \ }) struct aa_secmark { u8 audit; u8 deny; u32 secid; char *label; }; extern struct aa_sfs_entry aa_sfs_entry_network[]; void audit_net_cb(struct audit_buffer *ab, void *va); int aa_profile_af_perm(struct aa_profile *profile, struct apparmor_audit_data *ad, u32 request, u16 family, int type); int aa_af_perm(const struct cred *subj_cred, struct aa_label *label, const char *op, u32 request, u16 family, int type, int protocol); static inline int aa_profile_af_sk_perm(struct aa_profile *profile, struct apparmor_audit_data *ad, u32 request, struct sock *sk) { return aa_profile_af_perm(profile, ad, request, sk->sk_family, sk->sk_type); } int aa_sk_perm(const char *op, u32 request, struct sock *sk); int aa_sock_file_perm(const struct cred *subj_cred, struct aa_label *label, const char *op, u32 request, struct socket *sock); int apparmor_secmark_check(struct aa_label *label, char *op, u32 request, u32 secid, const struct sock *sk); #endif /* __AA_NET_H */
3 3 3 3 3 3 3 3 3 13 3 3 3 3 3 3 3 3 3 3 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2021 Microsoft Corporation * * Author: Tushar Sugandhi <tusharsu@linux.microsoft.com> * * Enables IMA measurements for DM targets */ #include "dm-core.h" #include "dm-ima.h" #include <linux/ima.h> #include <linux/sched/mm.h> #include <crypto/hash.h> #include <linux/crypto.h> #include <crypto/hash_info.h> #define DM_MSG_PREFIX "ima" /* * Internal function to prefix separator characters in input buffer with escape * character, so that they don't interfere with the construction of key-value pairs, * and clients can split the key1=val1,key2=val2,key3=val3; pairs properly. */ static void fix_separator_chars(char **buf) { int l = strlen(*buf); int i, j, sp = 0; for (i = 0; i < l; i++) if ((*buf)[i] == '\\' || (*buf)[i] == ';' || (*buf)[i] == '=' || (*buf)[i] == ',') sp++; if (!sp) return; for (i = l-1, j = i+sp; i >= 0; i--) { (*buf)[j--] = (*buf)[i]; if ((*buf)[i] == '\\' || (*buf)[i] == ';' || (*buf)[i] == '=' || (*buf)[i] == ',') (*buf)[j--] = '\\'; } } /* * Internal function to allocate memory for IMA measurements. */ static void *dm_ima_alloc(size_t len, gfp_t flags, bool noio) { unsigned int noio_flag; void *ptr; if (noio) noio_flag = memalloc_noio_save(); ptr = kzalloc(len, flags); if (noio) memalloc_noio_restore(noio_flag); return ptr; } /* * Internal function to allocate and copy name and uuid for IMA measurements. */ static int dm_ima_alloc_and_copy_name_uuid(struct mapped_device *md, char **dev_name, char **dev_uuid, bool noio) { int r; *dev_name = dm_ima_alloc(DM_NAME_LEN*2, GFP_KERNEL, noio); if (!(*dev_name)) { r = -ENOMEM; goto error; } *dev_uuid = dm_ima_alloc(DM_UUID_LEN*2, GFP_KERNEL, noio); if (!(*dev_uuid)) { r = -ENOMEM; goto error; } r = dm_copy_name_and_uuid(md, *dev_name, *dev_uuid); if (r) goto error; fix_separator_chars(dev_name); fix_separator_chars(dev_uuid); return 0; error: kfree(*dev_name); kfree(*dev_uuid); *dev_name = NULL; *dev_uuid = NULL; return r; } /* * Internal function to allocate and copy device data for IMA measurements. */ static int dm_ima_alloc_and_copy_device_data(struct mapped_device *md, char **device_data, unsigned int num_targets, bool noio) { char *dev_name = NULL, *dev_uuid = NULL; int r; r = dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio); if (r) return r; *device_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio); if (!(*device_data)) { r = -ENOMEM; goto error; } scnprintf(*device_data, DM_IMA_DEVICE_BUF_LEN, "name=%s,uuid=%s,major=%d,minor=%d,minor_count=%d,num_targets=%u;", dev_name, dev_uuid, md->disk->major, md->disk->first_minor, md->disk->minors, num_targets); error: kfree(dev_name); kfree(dev_uuid); return r; } /* * Internal wrapper function to call IMA to measure DM data. */ static void dm_ima_measure_data(const char *event_name, const void *buf, size_t buf_len, bool noio) { unsigned int noio_flag; if (noio) noio_flag = memalloc_noio_save(); ima_measure_critical_data(DM_NAME, event_name, buf, buf_len, false, NULL, 0); if (noio) memalloc_noio_restore(noio_flag); } /* * Internal function to allocate and copy current device capacity for IMA measurements. */ static int dm_ima_alloc_and_copy_capacity_str(struct mapped_device *md, char **capacity_str, bool noio) { sector_t capacity; capacity = get_capacity(md->disk); *capacity_str = dm_ima_alloc(DM_IMA_DEVICE_CAPACITY_BUF_LEN, GFP_KERNEL, noio); if (!(*capacity_str)) return -ENOMEM; scnprintf(*capacity_str, DM_IMA_DEVICE_BUF_LEN, "current_device_capacity=%llu;", capacity); return 0; } /* * Initialize/reset the dm ima related data structure variables. */ void dm_ima_reset_data(struct mapped_device *md) { memset(&(md->ima), 0, sizeof(md->ima)); md->ima.dm_version_str_len = strlen(DM_IMA_VERSION_STR); } /* * Build up the IMA data for each target, and finally measure. */ void dm_ima_measure_on_table_load(struct dm_table *table, unsigned int status_flags) { size_t device_data_buf_len, target_metadata_buf_len, target_data_buf_len, l = 0; char *target_metadata_buf = NULL, *target_data_buf = NULL, *digest_buf = NULL; char *ima_buf = NULL, *device_data_buf = NULL; int digest_size, last_target_measured = -1, r; status_type_t type = STATUSTYPE_IMA; size_t cur_total_buf_len = 0; unsigned int num_targets, i; SHASH_DESC_ON_STACK(shash, NULL); struct crypto_shash *tfm = NULL; u8 *digest = NULL; bool noio = false; /* * In below hash_alg_prefix_len assignment +1 is for the additional char (':'), * when prefixing the hash value with the hash algorithm name. e.g. sha256:<hash_value>. */ const size_t hash_alg_prefix_len = strlen(DM_IMA_TABLE_HASH_ALG) + 1; char table_load_event_name[] = "dm_table_load"; ima_buf = dm_ima_alloc(DM_IMA_MEASUREMENT_BUF_LEN, GFP_KERNEL, noio); if (!ima_buf) return; target_metadata_buf = dm_ima_alloc(DM_IMA_TARGET_METADATA_BUF_LEN, GFP_KERNEL, noio); if (!target_metadata_buf) goto error; target_data_buf = dm_ima_alloc(DM_IMA_TARGET_DATA_BUF_LEN, GFP_KERNEL, noio); if (!target_data_buf) goto error; num_targets = table->num_targets; if (dm_ima_alloc_and_copy_device_data(table->md, &device_data_buf, num_targets, noio)) goto error; tfm = crypto_alloc_shash(DM_IMA_TABLE_HASH_ALG, 0, 0); if (IS_ERR(tfm)) goto error; shash->tfm = tfm; digest_size = crypto_shash_digestsize(tfm); digest = dm_ima_alloc(digest_size, GFP_KERNEL, noio); if (!digest) goto error; r = crypto_shash_init(shash); if (r) goto error; memcpy(ima_buf + l, DM_IMA_VERSION_STR, table->md->ima.dm_version_str_len); l += table->md->ima.dm_version_str_len; device_data_buf_len = strlen(device_data_buf); memcpy(ima_buf + l, device_data_buf, device_data_buf_len); l += device_data_buf_len; for (i = 0; i < num_targets; i++) { struct dm_target *ti = dm_table_get_target(table, i); last_target_measured = 0; /* * First retrieve the target metadata. */ scnprintf(target_metadata_buf, DM_IMA_TARGET_METADATA_BUF_LEN, "target_index=%d,target_begin=%llu,target_len=%llu,", i, ti->begin, ti->len); target_metadata_buf_len = strlen(target_metadata_buf); /* * Then retrieve the actual target data. */ if (ti->type->status) ti->type->status(ti, type, status_flags, target_data_buf, DM_IMA_TARGET_DATA_BUF_LEN); else target_data_buf[0] = '\0'; target_data_buf_len = strlen(target_data_buf); /* * Check if the total data can fit into the IMA buffer. */ cur_total_buf_len = l + target_metadata_buf_len + target_data_buf_len; /* * IMA measurements for DM targets are best-effort. * If the total data buffered so far, including the current target, * is too large to fit into DM_IMA_MEASUREMENT_BUF_LEN, measure what * we have in the current buffer, and continue measuring the remaining * targets by prefixing the device metadata again. */ if (unlikely(cur_total_buf_len >= DM_IMA_MEASUREMENT_BUF_LEN)) { dm_ima_measure_data(table_load_event_name, ima_buf, l, noio); r = crypto_shash_update(shash, (const u8 *)ima_buf, l); if (r < 0) goto error; memset(ima_buf, 0, DM_IMA_MEASUREMENT_BUF_LEN); l = 0; /* * Each new "dm_table_load" entry in IMA log should have device data * prefix, so that multiple records from the same "dm_table_load" for * a given device can be linked together. */ memcpy(ima_buf + l, DM_IMA_VERSION_STR, table->md->ima.dm_version_str_len); l += table->md->ima.dm_version_str_len; memcpy(ima_buf + l, device_data_buf, device_data_buf_len); l += device_data_buf_len; /* * If this iteration of the for loop turns out to be the last target * in the table, dm_ima_measure_data("dm_table_load", ...) doesn't need * to be called again, just the hash needs to be finalized. * "last_target_measured" tracks this state. */ last_target_measured = 1; } /* * Fill-in all the target metadata, so that multiple targets for the same * device can be linked together. */ memcpy(ima_buf + l, target_metadata_buf, target_metadata_buf_len); l += target_metadata_buf_len; memcpy(ima_buf + l, target_data_buf, target_data_buf_len); l += target_data_buf_len; } if (!last_target_measured) { dm_ima_measure_data(table_load_event_name, ima_buf, l, noio); r = crypto_shash_update(shash, (const u8 *)ima_buf, l); if (r < 0) goto error; } /* * Finalize the table hash, and store it in table->md->ima.inactive_table.hash, * so that the table data can be verified against the future device state change * events, e.g. resume, rename, remove, table-clear etc. */ r = crypto_shash_final(shash, digest); if (r < 0) goto error; digest_buf = dm_ima_alloc((digest_size*2) + hash_alg_prefix_len + 1, GFP_KERNEL, noio); if (!digest_buf) goto error; snprintf(digest_buf, hash_alg_prefix_len + 1, "%s:", DM_IMA_TABLE_HASH_ALG); for (i = 0; i < digest_size; i++) snprintf((digest_buf + hash_alg_prefix_len + (i*2)), 3, "%02x", digest[i]); if (table->md->ima.active_table.hash != table->md->ima.inactive_table.hash) kfree(table->md->ima.inactive_table.hash); table->md->ima.inactive_table.hash = digest_buf; table->md->ima.inactive_table.hash_len = strlen(digest_buf); table->md->ima.inactive_table.num_targets = num_targets; if (table->md->ima.active_table.device_metadata != table->md->ima.inactive_table.device_metadata) kfree(table->md->ima.inactive_table.device_metadata); table->md->ima.inactive_table.device_metadata = device_data_buf; table->md->ima.inactive_table.device_metadata_len = device_data_buf_len; goto exit; error: kfree(digest_buf); kfree(device_data_buf); exit: kfree(digest); if (tfm) crypto_free_shash(tfm); kfree(ima_buf); kfree(target_metadata_buf); kfree(target_data_buf); } /* * Measure IMA data on device resume. */ void dm_ima_measure_on_device_resume(struct mapped_device *md, bool swap) { char *device_table_data, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL; char active[] = "active_table_hash="; unsigned int active_len = strlen(active), capacity_len = 0; unsigned int l = 0; bool noio = true; bool nodata = true; int r; device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio); if (!device_table_data) return; r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio); if (r) goto error; memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len); l += md->ima.dm_version_str_len; if (swap) { if (md->ima.active_table.hash != md->ima.inactive_table.hash) kfree(md->ima.active_table.hash); md->ima.active_table.hash = NULL; md->ima.active_table.hash_len = 0; if (md->ima.active_table.device_metadata != md->ima.inactive_table.device_metadata) kfree(md->ima.active_table.device_metadata); md->ima.active_table.device_metadata = NULL; md->ima.active_table.device_metadata_len = 0; md->ima.active_table.num_targets = 0; if (md->ima.inactive_table.hash) { md->ima.active_table.hash = md->ima.inactive_table.hash; md->ima.active_table.hash_len = md->ima.inactive_table.hash_len; md->ima.inactive_table.hash = NULL; md->ima.inactive_table.hash_len = 0; } if (md->ima.inactive_table.device_metadata) { md->ima.active_table.device_metadata = md->ima.inactive_table.device_metadata; md->ima.active_table.device_metadata_len = md->ima.inactive_table.device_metadata_len; md->ima.active_table.num_targets = md->ima.inactive_table.num_targets; md->ima.inactive_table.device_metadata = NULL; md->ima.inactive_table.device_metadata_len = 0; md->ima.inactive_table.num_targets = 0; } } if (md->ima.active_table.device_metadata) { memcpy(device_table_data + l, md->ima.active_table.device_metadata, md->ima.active_table.device_metadata_len); l += md->ima.active_table.device_metadata_len; nodata = false; } if (md->ima.active_table.hash) { memcpy(device_table_data + l, active, active_len); l += active_len; memcpy(device_table_data + l, md->ima.active_table.hash, md->ima.active_table.hash_len); l += md->ima.active_table.hash_len; memcpy(device_table_data + l, ";", 1); l++; nodata = false; } if (nodata) { r = dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio); if (r) goto error; scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN, "%sname=%s,uuid=%s;device_resume=no_data;", DM_IMA_VERSION_STR, dev_name, dev_uuid); l = strlen(device_table_data); } capacity_len = strlen(capacity_str); memcpy(device_table_data + l, capacity_str, capacity_len); l += capacity_len; dm_ima_measure_data("dm_device_resume", device_table_data, l, noio); kfree(dev_name); kfree(dev_uuid); error: kfree(capacity_str); kfree(device_table_data); } /* * Measure IMA data on remove. */ void dm_ima_measure_on_device_remove(struct mapped_device *md, bool remove_all) { char *device_table_data, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL; char active_table_str[] = "active_table_hash="; char inactive_table_str[] = "inactive_table_hash="; char device_active_str[] = "device_active_metadata="; char device_inactive_str[] = "device_inactive_metadata="; char remove_all_str[] = "remove_all="; unsigned int active_table_len = strlen(active_table_str); unsigned int inactive_table_len = strlen(inactive_table_str); unsigned int device_active_len = strlen(device_active_str); unsigned int device_inactive_len = strlen(device_inactive_str); unsigned int remove_all_len = strlen(remove_all_str); unsigned int capacity_len = 0; unsigned int l = 0; bool noio = true; bool nodata = true; int r; device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN*2, GFP_KERNEL, noio); if (!device_table_data) goto exit; r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio); if (r) { kfree(device_table_data); goto exit; } memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len); l += md->ima.dm_version_str_len; if (md->ima.active_table.device_metadata) { memcpy(device_table_data + l, device_active_str, device_active_len); l += device_active_len; memcpy(device_table_data + l, md->ima.active_table.device_metadata, md->ima.active_table.device_metadata_len); l += md->ima.active_table.device_metadata_len; nodata = false; } if (md->ima.inactive_table.device_metadata) { memcpy(device_table_data + l, device_inactive_str, device_inactive_len); l += device_inactive_len; memcpy(device_table_data + l, md->ima.inactive_table.device_metadata, md->ima.inactive_table.device_metadata_len); l += md->ima.inactive_table.device_metadata_len; nodata = false; } if (md->ima.active_table.hash) { memcpy(device_table_data + l, active_table_str, active_table_len); l += active_table_len; memcpy(device_table_data + l, md->ima.active_table.hash, md->ima.active_table.hash_len); l += md->ima.active_table.hash_len; memcpy(device_table_data + l, ",", 1); l++; nodata = false; } if (md->ima.inactive_table.hash) { memcpy(device_table_data + l, inactive_table_str, inactive_table_len); l += inactive_table_len; memcpy(device_table_data + l, md->ima.inactive_table.hash, md->ima.inactive_table.hash_len); l += md->ima.inactive_table.hash_len; memcpy(device_table_data + l, ",", 1); l++; nodata = false; } /* * In case both active and inactive tables, and corresponding * device metadata is cleared/missing - record the name and uuid * in IMA measurements. */ if (nodata) { if (dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio)) goto error; scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN, "%sname=%s,uuid=%s;device_remove=no_data;", DM_IMA_VERSION_STR, dev_name, dev_uuid); l = strlen(device_table_data); } memcpy(device_table_data + l, remove_all_str, remove_all_len); l += remove_all_len; memcpy(device_table_data + l, remove_all ? "y;" : "n;", 2); l += 2; capacity_len = strlen(capacity_str); memcpy(device_table_data + l, capacity_str, capacity_len); l += capacity_len; dm_ima_measure_data("dm_device_remove", device_table_data, l, noio); error: kfree(device_table_data); kfree(capacity_str); exit: kfree(md->ima.active_table.device_metadata); if (md->ima.active_table.device_metadata != md->ima.inactive_table.device_metadata) kfree(md->ima.inactive_table.device_metadata); kfree(md->ima.active_table.hash); if (md->ima.active_table.hash != md->ima.inactive_table.hash) kfree(md->ima.inactive_table.hash); dm_ima_reset_data(md); kfree(dev_name); kfree(dev_uuid); } /* * Measure ima data on table clear. */ void dm_ima_measure_on_table_clear(struct mapped_device *md, bool new_map) { unsigned int l = 0, capacity_len = 0; char *device_table_data = NULL, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL; char inactive_str[] = "inactive_table_hash="; unsigned int inactive_len = strlen(inactive_str); bool noio = true; bool nodata = true; int r; device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio); if (!device_table_data) return; r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio); if (r) goto error1; memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len); l += md->ima.dm_version_str_len; if (md->ima.inactive_table.device_metadata_len && md->ima.inactive_table.hash_len) { memcpy(device_table_data + l, md->ima.inactive_table.device_metadata, md->ima.inactive_table.device_metadata_len); l += md->ima.inactive_table.device_metadata_len; memcpy(device_table_data + l, inactive_str, inactive_len); l += inactive_len; memcpy(device_table_data + l, md->ima.inactive_table.hash, md->ima.inactive_table.hash_len); l += md->ima.inactive_table.hash_len; memcpy(device_table_data + l, ";", 1); l++; nodata = false; } if (nodata) { if (dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio)) goto error2; scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN, "%sname=%s,uuid=%s;table_clear=no_data;", DM_IMA_VERSION_STR, dev_name, dev_uuid); l = strlen(device_table_data); } capacity_len = strlen(capacity_str); memcpy(device_table_data + l, capacity_str, capacity_len); l += capacity_len; dm_ima_measure_data("dm_table_clear", device_table_data, l, noio); if (new_map) { if (md->ima.inactive_table.hash && md->ima.inactive_table.hash != md->ima.active_table.hash) kfree(md->ima.inactive_table.hash); md->ima.inactive_table.hash = NULL; md->ima.inactive_table.hash_len = 0; if (md->ima.inactive_table.device_metadata && md->ima.inactive_table.device_metadata != md->ima.active_table.device_metadata) kfree(md->ima.inactive_table.device_metadata); md->ima.inactive_table.device_metadata = NULL; md->ima.inactive_table.device_metadata_len = 0; md->ima.inactive_table.num_targets = 0; if (md->ima.active_table.hash) { md->ima.inactive_table.hash = md->ima.active_table.hash; md->ima.inactive_table.hash_len = md->ima.active_table.hash_len; } if (md->ima.active_table.device_metadata) { md->ima.inactive_table.device_metadata = md->ima.active_table.device_metadata; md->ima.inactive_table.device_metadata_len = md->ima.active_table.device_metadata_len; md->ima.inactive_table.num_targets = md->ima.active_table.num_targets; } } kfree(dev_name); kfree(dev_uuid); error2: kfree(capacity_str); error1: kfree(device_table_data); } /* * Measure IMA data on device rename. */ void dm_ima_measure_on_device_rename(struct mapped_device *md) { char *old_device_data = NULL, *new_device_data = NULL, *combined_device_data = NULL; char *new_dev_name = NULL, *new_dev_uuid = NULL, *capacity_str = NULL; bool noio = true; int r; if (dm_ima_alloc_and_copy_device_data(md, &new_device_data, md->ima.active_table.num_targets, noio)) return; if (dm_ima_alloc_and_copy_name_uuid(md, &new_dev_name, &new_dev_uuid, noio)) goto error; combined_device_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN * 2, GFP_KERNEL, noio); if (!combined_device_data) goto error; r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio); if (r) goto error; old_device_data = md->ima.active_table.device_metadata; md->ima.active_table.device_metadata = new_device_data; md->ima.active_table.device_metadata_len = strlen(new_device_data); scnprintf(combined_device_data, DM_IMA_DEVICE_BUF_LEN * 2, "%s%snew_name=%s,new_uuid=%s;%s", DM_IMA_VERSION_STR, old_device_data, new_dev_name, new_dev_uuid, capacity_str); dm_ima_measure_data("dm_device_rename", combined_device_data, strlen(combined_device_data), noio); goto exit; error: kfree(new_device_data); exit: kfree(capacity_str); kfree(combined_device_data); kfree(old_device_data); kfree(new_dev_name); kfree(new_dev_uuid); }
1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2017-2018 HUAWEI, Inc. * https://www.huawei.com/ * Copyright (C) 2021, Alibaba Cloud */ #include <linux/statfs.h> #include <linux/seq_file.h> #include <linux/crc32c.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/exportfs.h> #include <linux/backing-dev.h> #include "xattr.h" #define CREATE_TRACE_POINTS #include <trace/events/erofs.h> static struct kmem_cache *erofs_inode_cachep __read_mostly; void _erofs_printk(struct super_block *sb, const char *fmt, ...) { struct va_format vaf; va_list args; int level; va_start(args, fmt); level = printk_get_level(fmt); vaf.fmt = printk_skip_level(fmt); vaf.va = &args; if (sb) printk("%c%cerofs (device %s): %pV", KERN_SOH_ASCII, level, sb->s_id, &vaf); else printk("%c%cerofs: %pV", KERN_SOH_ASCII, level, &vaf); va_end(args); } static int erofs_superblock_csum_verify(struct super_block *sb, void *sbdata) { struct erofs_super_block *dsb = sbdata + EROFS_SUPER_OFFSET; u32 len = 1 << EROFS_SB(sb)->blkszbits, crc; if (len > EROFS_SUPER_OFFSET) len -= EROFS_SUPER_OFFSET; len -= offsetof(struct erofs_super_block, checksum) + sizeof(dsb->checksum); /* skip .magic(pre-verified) and .checksum(0) fields */ crc = crc32c(0x5045B54A, (&dsb->checksum) + 1, len); if (crc == le32_to_cpu(dsb->checksum)) return 0; erofs_err(sb, "invalid checksum 0x%08x, 0x%08x expected", crc, le32_to_cpu(dsb->checksum)); return -EBADMSG; } static void erofs_inode_init_once(void *ptr) { struct erofs_inode *vi = ptr; inode_init_once(&vi->vfs_inode); } static struct inode *erofs_alloc_inode(struct super_block *sb) { struct erofs_inode *vi = alloc_inode_sb(sb, erofs_inode_cachep, GFP_KERNEL); if (!vi) return NULL; /* zero out everything except vfs_inode */ memset(vi, 0, offsetof(struct erofs_inode, vfs_inode)); return &vi->vfs_inode; } static void erofs_free_inode(struct inode *inode) { struct erofs_inode *vi = EROFS_I(inode); if (inode->i_op == &erofs_fast_symlink_iops) kfree(inode->i_link); kfree(vi->xattr_shared_xattrs); kmem_cache_free(erofs_inode_cachep, vi); } /* read variable-sized metadata, offset will be aligned by 4-byte */ void *erofs_read_metadata(struct super_block *sb, struct erofs_buf *buf, erofs_off_t *offset, int *lengthp) { u8 *buffer, *ptr; int len, i, cnt; *offset = round_up(*offset, 4); ptr = erofs_bread(buf, *offset, true); if (IS_ERR(ptr)) return ptr; len = le16_to_cpu(*(__le16 *)ptr); if (!len) len = U16_MAX + 1; buffer = kmalloc(len, GFP_KERNEL); if (!buffer) return ERR_PTR(-ENOMEM); *offset += sizeof(__le16); *lengthp = len; for (i = 0; i < len; i += cnt) { cnt = min_t(int, sb->s_blocksize - erofs_blkoff(sb, *offset), len - i); ptr = erofs_bread(buf, *offset, true); if (IS_ERR(ptr)) { kfree(buffer); return ptr; } memcpy(buffer + i, ptr, cnt); *offset += cnt; } return buffer; } #ifndef CONFIG_EROFS_FS_ZIP static int z_erofs_parse_cfgs(struct super_block *sb, struct erofs_super_block *dsb) { if (!dsb->u1.available_compr_algs) return 0; erofs_err(sb, "compression disabled, unable to mount compressed EROFS"); return -EOPNOTSUPP; } #endif static int erofs_init_device(struct erofs_buf *buf, struct super_block *sb, struct erofs_device_info *dif, erofs_off_t *pos) { struct erofs_sb_info *sbi = EROFS_SB(sb); struct erofs_fscache *fscache; struct erofs_deviceslot *dis; struct file *file; dis = erofs_read_metabuf(buf, sb, *pos, true); if (IS_ERR(dis)) return PTR_ERR(dis); if (!sbi->devs->flatdev && !dif->path) { if (!dis->tag[0]) { erofs_err(sb, "empty device tag @ pos %llu", *pos); return -EINVAL; } dif->path = kmemdup_nul(dis->tag, sizeof(dis->tag), GFP_KERNEL); if (!dif->path) return -ENOMEM; } if (erofs_is_fscache_mode(sb)) { fscache = erofs_fscache_register_cookie(sb, dif->path, 0); if (IS_ERR(fscache)) return PTR_ERR(fscache); dif->fscache = fscache; } else if (!sbi->devs->flatdev) { file = erofs_is_fileio_mode(sbi) ? filp_open(dif->path, O_RDONLY | O_LARGEFILE, 0) : bdev_file_open_by_path(dif->path, BLK_OPEN_READ, sb->s_type, NULL); if (IS_ERR(file)) return PTR_ERR(file); if (!erofs_is_fileio_mode(sbi)) { dif->dax_dev = fs_dax_get_by_bdev(file_bdev(file), &dif->dax_part_off, NULL, NULL); } else if (!S_ISREG(file_inode(file)->i_mode)) { fput(file); return -EINVAL; } dif->file = file; } dif->blocks = le32_to_cpu(dis->blocks_lo); dif->uniaddr = le32_to_cpu(dis->uniaddr_lo); sbi->total_blocks += dif->blocks; *pos += EROFS_DEVT_SLOT_SIZE; return 0; } static int erofs_scan_devices(struct super_block *sb, struct erofs_super_block *dsb) { struct erofs_sb_info *sbi = EROFS_SB(sb); unsigned int ondisk_extradevs; erofs_off_t pos; struct erofs_buf buf = __EROFS_BUF_INITIALIZER; struct erofs_device_info *dif; int id, err = 0; sbi->total_blocks = sbi->dif0.blocks; if (!erofs_sb_has_device_table(sbi)) ondisk_extradevs = 0; else ondisk_extradevs = le16_to_cpu(dsb->extra_devices); if (sbi->devs->extra_devices && ondisk_extradevs != sbi->devs->extra_devices) { erofs_err(sb, "extra devices don't match (ondisk %u, given %u)", ondisk_extradevs, sbi->devs->extra_devices); return -EINVAL; } if (!ondisk_extradevs) return 0; if (!sbi->devs->extra_devices && !erofs_is_fscache_mode(sb)) sbi->devs->flatdev = true; sbi->device_id_mask = roundup_pow_of_two(ondisk_extradevs + 1) - 1; pos = le16_to_cpu(dsb->devt_slotoff) * EROFS_DEVT_SLOT_SIZE; down_read(&sbi->devs->rwsem); if (sbi->devs->extra_devices) { idr_for_each_entry(&sbi->devs->tree, dif, id) { err = erofs_init_device(&buf, sb, dif, &pos); if (err) break; } } else { for (id = 0; id < ondisk_extradevs; id++) { dif = kzalloc(sizeof(*dif), GFP_KERNEL); if (!dif) { err = -ENOMEM; break; } err = idr_alloc(&sbi->devs->tree, dif, 0, 0, GFP_KERNEL); if (err < 0) { kfree(dif); break; } ++sbi->devs->extra_devices; err = erofs_init_device(&buf, sb, dif, &pos); if (err) break; } } up_read(&sbi->devs->rwsem); erofs_put_metabuf(&buf); return err; } static int erofs_read_superblock(struct super_block *sb) { struct erofs_sb_info *sbi = EROFS_SB(sb); struct erofs_buf buf = __EROFS_BUF_INITIALIZER; struct erofs_super_block *dsb; void *data; int ret; data = erofs_read_metabuf(&buf, sb, 0, true); if (IS_ERR(data)) { erofs_err(sb, "cannot read erofs superblock"); return PTR_ERR(data); } dsb = (struct erofs_super_block *)(data + EROFS_SUPER_OFFSET); ret = -EINVAL; if (le32_to_cpu(dsb->magic) != EROFS_SUPER_MAGIC_V1) { erofs_err(sb, "cannot find valid erofs superblock"); goto out; } sbi->blkszbits = dsb->blkszbits; if (sbi->blkszbits < 9 || sbi->blkszbits > PAGE_SHIFT) { erofs_err(sb, "blkszbits %u isn't supported", sbi->blkszbits); goto out; } if (dsb->dirblkbits) { erofs_err(sb, "dirblkbits %u isn't supported", dsb->dirblkbits); goto out; } sbi->feature_compat = le32_to_cpu(dsb->feature_compat); if (erofs_sb_has_sb_chksum(sbi)) { ret = erofs_superblock_csum_verify(sb, data); if (ret) goto out; } ret = -EINVAL; sbi->feature_incompat = le32_to_cpu(dsb->feature_incompat); if (sbi->feature_incompat & ~EROFS_ALL_FEATURE_INCOMPAT) { erofs_err(sb, "unidentified incompatible feature %x, please upgrade kernel", sbi->feature_incompat & ~EROFS_ALL_FEATURE_INCOMPAT); goto out; } sbi->sb_size = 128 + dsb->sb_extslots * EROFS_SB_EXTSLOT_SIZE; if (sbi->sb_size > PAGE_SIZE - EROFS_SUPER_OFFSET) { erofs_err(sb, "invalid sb_extslots %u (more than a fs block)", sbi->sb_size); goto out; } sbi->dif0.blocks = le32_to_cpu(dsb->blocks_lo); sbi->meta_blkaddr = le32_to_cpu(dsb->meta_blkaddr); #ifdef CONFIG_EROFS_FS_XATTR sbi->xattr_blkaddr = le32_to_cpu(dsb->xattr_blkaddr); sbi->xattr_prefix_start = le32_to_cpu(dsb->xattr_prefix_start); sbi->xattr_prefix_count = dsb->xattr_prefix_count; sbi->xattr_filter_reserved = dsb->xattr_filter_reserved; #endif sbi->islotbits = ilog2(sizeof(struct erofs_inode_compact)); if (erofs_sb_has_48bit(sbi) && dsb->rootnid_8b) { sbi->root_nid = le64_to_cpu(dsb->rootnid_8b); sbi->dif0.blocks = (sbi->dif0.blocks << 32) | le16_to_cpu(dsb->rb.blocks_hi); } else { sbi->root_nid = le16_to_cpu(dsb->rb.rootnid_2b); } sbi->packed_nid = le64_to_cpu(dsb->packed_nid); sbi->inos = le64_to_cpu(dsb->inos); sbi->epoch = (s64)le64_to_cpu(dsb->epoch); sbi->fixed_nsec = le32_to_cpu(dsb->fixed_nsec); super_set_uuid(sb, (void *)dsb->uuid, sizeof(dsb->uuid)); /* parse on-disk compression configurations */ ret = z_erofs_parse_cfgs(sb, dsb); if (ret < 0) goto out; /* handle multiple devices */ ret = erofs_scan_devices(sb, dsb); if (erofs_sb_has_48bit(sbi)) erofs_info(sb, "EXPERIMENTAL 48-bit layout support in use. Use at your own risk!"); if (erofs_is_fscache_mode(sb)) erofs_info(sb, "[deprecated] fscache-based on-demand read feature in use. Use at your own risk!"); out: erofs_put_metabuf(&buf); return ret; } static void erofs_default_options(struct erofs_sb_info *sbi) { #ifdef CONFIG_EROFS_FS_ZIP sbi->opt.cache_strategy = EROFS_ZIP_CACHE_READAROUND; sbi->opt.max_sync_decompress_pages = 3; sbi->opt.sync_decompress = EROFS_SYNC_DECOMPRESS_AUTO; #endif #ifdef CONFIG_EROFS_FS_XATTR set_opt(&sbi->opt, XATTR_USER); #endif #ifdef CONFIG_EROFS_FS_POSIX_ACL set_opt(&sbi->opt, POSIX_ACL); #endif } enum { Opt_user_xattr, Opt_acl, Opt_cache_strategy, Opt_dax, Opt_dax_enum, Opt_device, Opt_fsid, Opt_domain_id, Opt_directio, }; static const struct constant_table erofs_param_cache_strategy[] = { {"disabled", EROFS_ZIP_CACHE_DISABLED}, {"readahead", EROFS_ZIP_CACHE_READAHEAD}, {"readaround", EROFS_ZIP_CACHE_READAROUND}, {} }; static const struct constant_table erofs_dax_param_enums[] = { {"always", EROFS_MOUNT_DAX_ALWAYS}, {"never", EROFS_MOUNT_DAX_NEVER}, {} }; static const struct fs_parameter_spec erofs_fs_parameters[] = { fsparam_flag_no("user_xattr", Opt_user_xattr), fsparam_flag_no("acl", Opt_acl), fsparam_enum("cache_strategy", Opt_cache_strategy, erofs_param_cache_strategy), fsparam_flag("dax", Opt_dax), fsparam_enum("dax", Opt_dax_enum, erofs_dax_param_enums), fsparam_string("device", Opt_device), fsparam_string("fsid", Opt_fsid), fsparam_string("domain_id", Opt_domain_id), fsparam_flag_no("directio", Opt_directio), {} }; static bool erofs_fc_set_dax_mode(struct fs_context *fc, unsigned int mode) { #ifdef CONFIG_FS_DAX struct erofs_sb_info *sbi = fc->s_fs_info; switch (mode) { case EROFS_MOUNT_DAX_ALWAYS: set_opt(&sbi->opt, DAX_ALWAYS); clear_opt(&sbi->opt, DAX_NEVER); return true; case EROFS_MOUNT_DAX_NEVER: set_opt(&sbi->opt, DAX_NEVER); clear_opt(&sbi->opt, DAX_ALWAYS); return true; default: DBG_BUGON(1); return false; } #else errorfc(fc, "dax options not supported"); return false; #endif } static int erofs_fc_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct erofs_sb_info *sbi = fc->s_fs_info; struct fs_parse_result result; struct erofs_device_info *dif; int opt, ret; opt = fs_parse(fc, erofs_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_user_xattr: #ifdef CONFIG_EROFS_FS_XATTR if (result.boolean) set_opt(&sbi->opt, XATTR_USER); else clear_opt(&sbi->opt, XATTR_USER); #else errorfc(fc, "{,no}user_xattr options not supported"); #endif break; case Opt_acl: #ifdef CONFIG_EROFS_FS_POSIX_ACL if (result.boolean) set_opt(&sbi->opt, POSIX_ACL); else clear_opt(&sbi->opt, POSIX_ACL); #else errorfc(fc, "{,no}acl options not supported"); #endif break; case Opt_cache_strategy: #ifdef CONFIG_EROFS_FS_ZIP sbi->opt.cache_strategy = result.uint_32; #else errorfc(fc, "compression not supported, cache_strategy ignored"); #endif break; case Opt_dax: if (!erofs_fc_set_dax_mode(fc, EROFS_MOUNT_DAX_ALWAYS)) return -EINVAL; break; case Opt_dax_enum: if (!erofs_fc_set_dax_mode(fc, result.uint_32)) return -EINVAL; break; case Opt_device: dif = kzalloc(sizeof(*dif), GFP_KERNEL); if (!dif) return -ENOMEM; dif->path = kstrdup(param->string, GFP_KERNEL); if (!dif->path) { kfree(dif); return -ENOMEM; } down_write(&sbi->devs->rwsem); ret = idr_alloc(&sbi->devs->tree, dif, 0, 0, GFP_KERNEL); up_write(&sbi->devs->rwsem); if (ret < 0) { kfree(dif->path); kfree(dif); return ret; } ++sbi->devs->extra_devices; break; #ifdef CONFIG_EROFS_FS_ONDEMAND case Opt_fsid: kfree(sbi->fsid); sbi->fsid = kstrdup(param->string, GFP_KERNEL); if (!sbi->fsid) return -ENOMEM; break; case Opt_domain_id: kfree(sbi->domain_id); sbi->domain_id = kstrdup(param->string, GFP_KERNEL); if (!sbi->domain_id) return -ENOMEM; break; #else case Opt_fsid: case Opt_domain_id: errorfc(fc, "%s option not supported", erofs_fs_parameters[opt].name); break; #endif case Opt_directio: #ifdef CONFIG_EROFS_FS_BACKED_BY_FILE if (result.boolean) set_opt(&sbi->opt, DIRECT_IO); else clear_opt(&sbi->opt, DIRECT_IO); #else errorfc(fc, "%s option not supported", erofs_fs_parameters[opt].name); #endif break; } return 0; } static struct inode *erofs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { return erofs_iget(sb, ino); } static struct dentry *erofs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, erofs_nfs_get_inode); } static struct dentry *erofs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, erofs_nfs_get_inode); } static struct dentry *erofs_get_parent(struct dentry *child) { erofs_nid_t nid; unsigned int d_type; int err; err = erofs_namei(d_inode(child), &dotdot_name, &nid, &d_type); if (err) return ERR_PTR(err); return d_obtain_alias(erofs_iget(child->d_sb, nid)); } static const struct export_operations erofs_export_ops = { .encode_fh = generic_encode_ino32_fh, .fh_to_dentry = erofs_fh_to_dentry, .fh_to_parent = erofs_fh_to_parent, .get_parent = erofs_get_parent, }; static void erofs_set_sysfs_name(struct super_block *sb) { struct erofs_sb_info *sbi = EROFS_SB(sb); if (sbi->domain_id) super_set_sysfs_name_generic(sb, "%s,%s", sbi->domain_id, sbi->fsid); else if (sbi->fsid) super_set_sysfs_name_generic(sb, "%s", sbi->fsid); else if (erofs_is_fileio_mode(sbi)) super_set_sysfs_name_generic(sb, "%s", bdi_dev_name(sb->s_bdi)); else super_set_sysfs_name_id(sb); } static int erofs_fc_fill_super(struct super_block *sb, struct fs_context *fc) { struct inode *inode; struct erofs_sb_info *sbi = EROFS_SB(sb); int err; sb->s_magic = EROFS_SUPER_MAGIC; sb->s_flags |= SB_RDONLY | SB_NOATIME; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_op = &erofs_sops; sbi->blkszbits = PAGE_SHIFT; if (!sb->s_bdev) { sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; if (erofs_is_fscache_mode(sb)) { err = erofs_fscache_register_fs(sb); if (err) return err; } err = super_setup_bdi(sb); if (err) return err; } else { if (!sb_set_blocksize(sb, PAGE_SIZE)) { errorfc(fc, "failed to set initial blksize"); return -EINVAL; } sbi->dif0.dax_dev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->dif0.dax_part_off, NULL, NULL); } err = erofs_read_superblock(sb); if (err) return err; if (sb->s_blocksize_bits != sbi->blkszbits) { if (erofs_is_fscache_mode(sb)) { errorfc(fc, "unsupported blksize for fscache mode"); return -EINVAL; } if (erofs_is_fileio_mode(sbi)) { sb->s_blocksize = 1 << sbi->blkszbits; sb->s_blocksize_bits = sbi->blkszbits; } else if (!sb_set_blocksize(sb, 1 << sbi->blkszbits)) { errorfc(fc, "failed to set erofs blksize"); return -EINVAL; } } if (test_opt(&sbi->opt, DAX_ALWAYS)) { if (!sbi->dif0.dax_dev) { errorfc(fc, "DAX unsupported by block device. Turning off DAX."); clear_opt(&sbi->opt, DAX_ALWAYS); } else if (sbi->blkszbits != PAGE_SHIFT) { errorfc(fc, "unsupported blocksize for DAX"); clear_opt(&sbi->opt, DAX_ALWAYS); } } sb->s_time_gran = 1; sb->s_xattr = erofs_xattr_handlers; sb->s_export_op = &erofs_export_ops; if (test_opt(&sbi->opt, POSIX_ACL)) sb->s_flags |= SB_POSIXACL; else sb->s_flags &= ~SB_POSIXACL; err = z_erofs_init_super(sb); if (err) return err; if (erofs_sb_has_fragments(sbi) && sbi->packed_nid) { inode = erofs_iget(sb, sbi->packed_nid); if (IS_ERR(inode)) return PTR_ERR(inode); sbi->packed_inode = inode; } inode = erofs_iget(sb, sbi->root_nid); if (IS_ERR(inode)) return PTR_ERR(inode); if (!S_ISDIR(inode->i_mode)) { erofs_err(sb, "rootino(nid %llu) is not a directory(i_mode %o)", sbi->root_nid, inode->i_mode); iput(inode); return -EINVAL; } sb->s_root = d_make_root(inode); if (!sb->s_root) return -ENOMEM; erofs_shrinker_register(sb); err = erofs_xattr_prefixes_init(sb); if (err) return err; erofs_set_sysfs_name(sb); err = erofs_register_sysfs(sb); if (err) return err; erofs_info(sb, "mounted with root inode @ nid %llu.", sbi->root_nid); return 0; } static int erofs_fc_get_tree(struct fs_context *fc) { struct erofs_sb_info *sbi = fc->s_fs_info; int ret; if (IS_ENABLED(CONFIG_EROFS_FS_ONDEMAND) && sbi->fsid) return get_tree_nodev(fc, erofs_fc_fill_super); ret = get_tree_bdev_flags(fc, erofs_fc_fill_super, IS_ENABLED(CONFIG_EROFS_FS_BACKED_BY_FILE) ? GET_TREE_BDEV_QUIET_LOOKUP : 0); #ifdef CONFIG_EROFS_FS_BACKED_BY_FILE if (ret == -ENOTBLK) { struct file *file; if (!fc->source) return invalf(fc, "No source specified"); file = filp_open(fc->source, O_RDONLY | O_LARGEFILE, 0); if (IS_ERR(file)) return PTR_ERR(file); sbi->dif0.file = file; if (S_ISREG(file_inode(sbi->dif0.file)->i_mode) && sbi->dif0.file->f_mapping->a_ops->read_folio) return get_tree_nodev(fc, erofs_fc_fill_super); } #endif return ret; } static int erofs_fc_reconfigure(struct fs_context *fc) { struct super_block *sb = fc->root->d_sb; struct erofs_sb_info *sbi = EROFS_SB(sb); struct erofs_sb_info *new_sbi = fc->s_fs_info; DBG_BUGON(!sb_rdonly(sb)); if (new_sbi->fsid || new_sbi->domain_id) erofs_info(sb, "ignoring reconfiguration for fsid|domain_id."); if (test_opt(&new_sbi->opt, POSIX_ACL)) fc->sb_flags |= SB_POSIXACL; else fc->sb_flags &= ~SB_POSIXACL; sbi->opt = new_sbi->opt; fc->sb_flags |= SB_RDONLY; return 0; } static int erofs_release_device_info(int id, void *ptr, void *data) { struct erofs_device_info *dif = ptr; fs_put_dax(dif->dax_dev, NULL); if (dif->file) fput(dif->file); erofs_fscache_unregister_cookie(dif->fscache); dif->fscache = NULL; kfree(dif->path); kfree(dif); return 0; } static void erofs_free_dev_context(struct erofs_dev_context *devs) { if (!devs) return; idr_for_each(&devs->tree, &erofs_release_device_info, NULL); idr_destroy(&devs->tree); kfree(devs); } static void erofs_sb_free(struct erofs_sb_info *sbi) { erofs_free_dev_context(sbi->devs); kfree(sbi->fsid); kfree(sbi->domain_id); if (sbi->dif0.file) fput(sbi->dif0.file); kfree(sbi); } static void erofs_fc_free(struct fs_context *fc) { struct erofs_sb_info *sbi = fc->s_fs_info; if (sbi) /* free here if an error occurs before transferring to sb */ erofs_sb_free(sbi); } static const struct fs_context_operations erofs_context_ops = { .parse_param = erofs_fc_parse_param, .get_tree = erofs_fc_get_tree, .reconfigure = erofs_fc_reconfigure, .free = erofs_fc_free, }; static int erofs_init_fs_context(struct fs_context *fc) { struct erofs_sb_info *sbi; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; sbi->devs = kzalloc(sizeof(struct erofs_dev_context), GFP_KERNEL); if (!sbi->devs) { kfree(sbi); return -ENOMEM; } fc->s_fs_info = sbi; idr_init(&sbi->devs->tree); init_rwsem(&sbi->devs->rwsem); erofs_default_options(sbi); fc->ops = &erofs_context_ops; return 0; } static void erofs_drop_internal_inodes(struct erofs_sb_info *sbi) { iput(sbi->packed_inode); sbi->packed_inode = NULL; #ifdef CONFIG_EROFS_FS_ZIP iput(sbi->managed_cache); sbi->managed_cache = NULL; #endif } static void erofs_kill_sb(struct super_block *sb) { struct erofs_sb_info *sbi = EROFS_SB(sb); if ((IS_ENABLED(CONFIG_EROFS_FS_ONDEMAND) && sbi->fsid) || sbi->dif0.file) kill_anon_super(sb); else kill_block_super(sb); erofs_drop_internal_inodes(sbi); fs_put_dax(sbi->dif0.dax_dev, NULL); erofs_fscache_unregister_fs(sb); erofs_sb_free(sbi); sb->s_fs_info = NULL; } static void erofs_put_super(struct super_block *sb) { struct erofs_sb_info *const sbi = EROFS_SB(sb); erofs_unregister_sysfs(sb); erofs_shrinker_unregister(sb); erofs_xattr_prefixes_cleanup(sb); erofs_drop_internal_inodes(sbi); erofs_free_dev_context(sbi->devs); sbi->devs = NULL; erofs_fscache_unregister_fs(sb); } static struct file_system_type erofs_fs_type = { .owner = THIS_MODULE, .name = "erofs", .init_fs_context = erofs_init_fs_context, .kill_sb = erofs_kill_sb, .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, }; MODULE_ALIAS_FS("erofs"); static int __init erofs_module_init(void) { int err; erofs_check_ondisk_layout_definitions(); erofs_inode_cachep = kmem_cache_create("erofs_inode", sizeof(struct erofs_inode), 0, SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, erofs_inode_init_once); if (!erofs_inode_cachep) return -ENOMEM; err = erofs_init_shrinker(); if (err) goto shrinker_err; err = z_erofs_init_subsystem(); if (err) goto zip_err; err = erofs_init_sysfs(); if (err) goto sysfs_err; err = register_filesystem(&erofs_fs_type); if (err) goto fs_err; return 0; fs_err: erofs_exit_sysfs(); sysfs_err: z_erofs_exit_subsystem(); zip_err: erofs_exit_shrinker(); shrinker_err: kmem_cache_destroy(erofs_inode_cachep); return err; } static void __exit erofs_module_exit(void) { unregister_filesystem(&erofs_fs_type); /* Ensure all RCU free inodes / pclusters are safe to be destroyed. */ rcu_barrier(); erofs_exit_sysfs(); z_erofs_exit_subsystem(); erofs_exit_shrinker(); kmem_cache_destroy(erofs_inode_cachep); } static int erofs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct erofs_sb_info *sbi = EROFS_SB(sb); buf->f_type = sb->s_magic; buf->f_bsize = sb->s_blocksize; buf->f_blocks = sbi->total_blocks; buf->f_bfree = buf->f_bavail = 0; buf->f_files = ULLONG_MAX; buf->f_ffree = ULLONG_MAX - sbi->inos; buf->f_namelen = EROFS_NAME_LEN; if (uuid_is_null(&sb->s_uuid)) buf->f_fsid = u64_to_fsid(!sb->s_bdev ? 0 : huge_encode_dev(sb->s_bdev->bd_dev)); else buf->f_fsid = uuid_to_fsid(sb->s_uuid.b); return 0; } static int erofs_show_options(struct seq_file *seq, struct dentry *root) { struct erofs_sb_info *sbi = EROFS_SB(root->d_sb); struct erofs_mount_opts *opt = &sbi->opt; if (IS_ENABLED(CONFIG_EROFS_FS_XATTR)) seq_puts(seq, test_opt(opt, XATTR_USER) ? ",user_xattr" : ",nouser_xattr"); if (IS_ENABLED(CONFIG_EROFS_FS_POSIX_ACL)) seq_puts(seq, test_opt(opt, POSIX_ACL) ? ",acl" : ",noacl"); if (IS_ENABLED(CONFIG_EROFS_FS_ZIP)) seq_printf(seq, ",cache_strategy=%s", erofs_param_cache_strategy[opt->cache_strategy].name); if (test_opt(opt, DAX_ALWAYS)) seq_puts(seq, ",dax=always"); if (test_opt(opt, DAX_NEVER)) seq_puts(seq, ",dax=never"); if (erofs_is_fileio_mode(sbi) && test_opt(opt, DIRECT_IO)) seq_puts(seq, ",directio"); #ifdef CONFIG_EROFS_FS_ONDEMAND if (sbi->fsid) seq_printf(seq, ",fsid=%s", sbi->fsid); if (sbi->domain_id) seq_printf(seq, ",domain_id=%s", sbi->domain_id); #endif return 0; } const struct super_operations erofs_sops = { .put_super = erofs_put_super, .alloc_inode = erofs_alloc_inode, .free_inode = erofs_free_inode, .statfs = erofs_statfs, .show_options = erofs_show_options, }; module_init(erofs_module_init); module_exit(erofs_module_exit); MODULE_DESCRIPTION("Enhanced ROM File System"); MODULE_AUTHOR("Gao Xiang, Chao Yu, Miao Xie, CONSUMER BG, HUAWEI Inc."); MODULE_LICENSE("GPL");
189 187 5 5 5 156 156 155 155 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* SCTP kernel implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * These are the definitions needed for the sctp_ulpevent type. The * sctp_ulpevent type is used to carry information from the state machine * upwards to the ULP. * * This file is part of the SCTP kernel implementation * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * Jon Grimm <jgrimm@us.ibm.com> * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Sridhar Samudrala <sri@us.ibm.com> */ #ifndef __sctp_ulpevent_h__ #define __sctp_ulpevent_h__ /* A structure to carry information to the ULP (e.g. Sockets API) */ /* Warning: This sits inside an skb.cb[] area. Be very careful of * growing this structure as it is at the maximum limit now. * * sctp_ulpevent is saved in sk->cb(48 bytes), whose last 4 bytes * have been taken by sock_skb_cb, So here it has to use 'packed' * to make sctp_ulpevent fit into the rest 44 bytes. */ struct sctp_ulpevent { struct sctp_association *asoc; struct sctp_chunk *chunk; unsigned int rmem_len; union { __u32 mid; __u16 ssn; }; union { __u32 ppid; __u32 fsn; }; __u32 tsn; __u32 cumtsn; __u16 stream; __u16 flags; __u16 msg_flags; } __packed; /* Retrieve the skb this event sits inside of. */ static inline struct sk_buff *sctp_event2skb(const struct sctp_ulpevent *ev) { return container_of((void *)ev, struct sk_buff, cb); } /* Retrieve & cast the event sitting inside the skb. */ static inline struct sctp_ulpevent *sctp_skb2event(struct sk_buff *skb) { return (struct sctp_ulpevent *)skb->cb; } void sctp_ulpevent_free(struct sctp_ulpevent *); int sctp_ulpevent_is_notification(const struct sctp_ulpevent *); unsigned int sctp_queue_purge_ulpevents(struct sk_buff_head *list); struct sctp_ulpevent *sctp_ulpevent_make_assoc_change( const struct sctp_association *asoc, __u16 flags, __u16 state, __u16 error, __u16 outbound, __u16 inbound, struct sctp_chunk *chunk, gfp_t gfp); void sctp_ulpevent_notify_peer_addr_change(struct sctp_transport *transport, int state, int error); struct sctp_ulpevent *sctp_ulpevent_make_remote_error( const struct sctp_association *asoc, struct sctp_chunk *chunk, __u16 flags, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_send_failed( const struct sctp_association *asoc, struct sctp_chunk *chunk, __u16 flags, __u32 error, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_send_failed_event( const struct sctp_association *asoc, struct sctp_chunk *chunk, __u16 flags, __u32 error, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_shutdown_event( const struct sctp_association *asoc, __u16 flags, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_pdapi( const struct sctp_association *asoc, __u32 indication, __u32 sid, __u32 seq, __u32 flags, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_adaptation_indication( const struct sctp_association *asoc, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_rcvmsg(struct sctp_association *asoc, struct sctp_chunk *chunk, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_authkey( const struct sctp_association *asoc, __u16 key_id, __u32 indication, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_sender_dry_event( const struct sctp_association *asoc, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_stream_reset_event( const struct sctp_association *asoc, __u16 flags, __u16 stream_num, __be16 *stream_list, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_assoc_reset_event( const struct sctp_association *asoc, __u16 flags, __u32 local_tsn, __u32 remote_tsn, gfp_t gfp); struct sctp_ulpevent *sctp_ulpevent_make_stream_change_event( const struct sctp_association *asoc, __u16 flags, __u32 strchange_instrms, __u32 strchange_outstrms, gfp_t gfp); struct sctp_ulpevent *sctp_make_reassembled_event( struct net *net, struct sk_buff_head *queue, struct sk_buff *f_frag, struct sk_buff *l_frag); void sctp_ulpevent_read_sndrcvinfo(const struct sctp_ulpevent *event, struct msghdr *); void sctp_ulpevent_read_rcvinfo(const struct sctp_ulpevent *event, struct msghdr *); void sctp_ulpevent_read_nxtinfo(const struct sctp_ulpevent *event, struct msghdr *, struct sock *sk); __u16 sctp_ulpevent_get_notification_type(const struct sctp_ulpevent *event); static inline void sctp_ulpevent_type_set(__u16 *subscribe, __u16 sn_type, __u8 on) { if (sn_type > SCTP_SN_TYPE_MAX) return; if (on) *subscribe |= (1 << (sn_type - SCTP_SN_TYPE_BASE)); else *subscribe &= ~(1 << (sn_type - SCTP_SN_TYPE_BASE)); } /* Is this event type enabled? */ static inline bool sctp_ulpevent_type_enabled(__u16 subscribe, __u16 sn_type) { if (sn_type > SCTP_SN_TYPE_MAX) return false; return subscribe & (1 << (sn_type - SCTP_SN_TYPE_BASE)); } /* Given an event subscription, is this event enabled? */ static inline bool sctp_ulpevent_is_enabled(const struct sctp_ulpevent *event, __u16 subscribe) { __u16 sn_type; if (!sctp_ulpevent_is_notification(event)) return true; sn_type = sctp_ulpevent_get_notification_type(event); return sctp_ulpevent_type_enabled(subscribe, sn_type); } #endif /* __sctp_ulpevent_h__ */
13 13 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * RSA internal helpers * * Copyright (c) 2015, Intel Corporation * Authors: Tadeusz Struk <tadeusz.struk@intel.com> */ #ifndef _RSA_HELPER_ #define _RSA_HELPER_ #include <linux/types.h> #include <crypto/akcipher.h> /** * rsa_key - RSA key structure * @n : RSA modulus raw byte stream * @e : RSA public exponent raw byte stream * @d : RSA private exponent raw byte stream * @p : RSA prime factor p of n raw byte stream * @q : RSA prime factor q of n raw byte stream * @dp : RSA exponent d mod (p - 1) raw byte stream * @dq : RSA exponent d mod (q - 1) raw byte stream * @qinv : RSA CRT coefficient q^(-1) mod p raw byte stream * @n_sz : length in bytes of RSA modulus n * @e_sz : length in bytes of RSA public exponent * @d_sz : length in bytes of RSA private exponent * @p_sz : length in bytes of p field * @q_sz : length in bytes of q field * @dp_sz : length in bytes of dp field * @dq_sz : length in bytes of dq field * @qinv_sz : length in bytes of qinv field */ struct rsa_key { const u8 *n; const u8 *e; const u8 *d; const u8 *p; const u8 *q; const u8 *dp; const u8 *dq; const u8 *qinv; size_t n_sz; size_t e_sz; size_t d_sz; size_t p_sz; size_t q_sz; size_t dp_sz; size_t dq_sz; size_t qinv_sz; }; int rsa_parse_pub_key(struct rsa_key *rsa_key, const void *key, unsigned int key_len); int rsa_parse_priv_key(struct rsa_key *rsa_key, const void *key, unsigned int key_len); #define RSA_PUB (true) #define RSA_PRIV (false) static inline int rsa_set_key(struct crypto_akcipher *child, unsigned int *key_size, bool is_pubkey, const void *key, unsigned int keylen) { int err; *key_size = 0; if (is_pubkey) err = crypto_akcipher_set_pub_key(child, key, keylen); else err = crypto_akcipher_set_priv_key(child, key, keylen); if (err) return err; /* Find out new modulus size from rsa implementation */ err = crypto_akcipher_maxsize(child); if (err > PAGE_SIZE) return -ENOTSUPP; *key_size = err; return 0; } extern struct crypto_template rsa_pkcs1pad_tmpl; extern struct crypto_template rsassa_pkcs1_tmpl; #endif
132 175 261 262 151 137 292 20 20 291 4 4 2 2 121 123 123 122 122 60 40 40 40 7 105 105 104 105 105 4 105 105 40 40 40 39 33 7 40 40 34 40 40 28 26 28 1 7 1 11 2 43 43 43 28 15 8 7 40 30 30 30 30 30 20 30 30 22 22 30 11 6 4 1 1 7 4 7 7 73 26 73 3 3 2 1 1 1 2 5 1 72 2 5 1 4 3 2 4 7 7 10 3 4 1 1 1 6 93 16 16 6 6 1 7 2 6 8 10 10 83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines * which can be dynamically activated and de-activated by the line * discipline handling modules (like SLIP). */ #include <linux/bits.h> #include <linux/types.h> #include <linux/termios.h> #include <linux/errno.h> #include <linux/sched/signal.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/tty.h> #include <linux/fcntl.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/bitops.h> #include <linux/mutex.h> #include <linux/compat.h> #include <linux/termios_internal.h> #include "tty.h" #include <asm/io.h> #include <linux/uaccess.h> #undef DEBUG /* * Internal flag options for termios setting behavior */ #define TERMIOS_FLUSH BIT(0) #define TERMIOS_WAIT BIT(1) #define TERMIOS_TERMIO BIT(2) #define TERMIOS_OLD BIT(3) /** * tty_chars_in_buffer - characters pending * @tty: terminal * * Returns: the number of bytes of data in the device private output queue. If * no private method is supplied there is assumed to be no queue on the device. */ unsigned int tty_chars_in_buffer(struct tty_struct *tty) { if (tty->ops->chars_in_buffer) return tty->ops->chars_in_buffer(tty); return 0; } EXPORT_SYMBOL(tty_chars_in_buffer); /** * tty_write_room - write queue space * @tty: terminal * * Returns: the number of bytes that can be queued to this device at the present * time. The result should be treated as a guarantee and the driver cannot * offer a value it later shrinks by more than the number of bytes written. If * no method is provided, 2K is always returned and data may be lost as there * will be no flow control. */ unsigned int tty_write_room(struct tty_struct *tty) { if (tty->ops->write_room) return tty->ops->write_room(tty); return 2048; } EXPORT_SYMBOL(tty_write_room); /** * tty_driver_flush_buffer - discard internal buffer * @tty: terminal * * Discard the internal output buffer for this device. If no method is provided, * then either the buffer cannot be hardware flushed or there is no buffer * driver side. */ void tty_driver_flush_buffer(struct tty_struct *tty) { if (tty->ops->flush_buffer) tty->ops->flush_buffer(tty); } EXPORT_SYMBOL(tty_driver_flush_buffer); /** * tty_unthrottle - flow control * @tty: terminal * * Indicate that a @tty may continue transmitting data down the stack. Takes * the &tty_struct->termios_rwsem to protect against parallel * throttle/unthrottle and also to ensure the driver can consistently reference * its own termios data at this point when implementing software flow control. * * Drivers should however remember that the stack can issue a throttle, then * change flow control method, then unthrottle. */ void tty_unthrottle(struct tty_struct *tty) { down_write(&tty->termios_rwsem); if (test_and_clear_bit(TTY_THROTTLED, &tty->flags) && tty->ops->unthrottle) tty->ops->unthrottle(tty); tty->flow_change = TTY_FLOW_NO_CHANGE; up_write(&tty->termios_rwsem); } EXPORT_SYMBOL(tty_unthrottle); /** * tty_throttle_safe - flow control * @tty: terminal * * Indicate that a @tty should stop transmitting data down the stack. * tty_throttle_safe() will only attempt throttle if @tty->flow_change is * %TTY_THROTTLE_SAFE. Prevents an accidental throttle due to race conditions * when throttling is conditional on factors evaluated prior to throttling. * * Returns: %true if @tty is throttled (or was already throttled) */ bool tty_throttle_safe(struct tty_struct *tty) { bool ret = true; mutex_lock(&tty->throttle_mutex); if (!tty_throttled(tty)) { if (tty->flow_change != TTY_THROTTLE_SAFE) ret = false; else { set_bit(TTY_THROTTLED, &tty->flags); if (tty->ops->throttle) tty->ops->throttle(tty); } } mutex_unlock(&tty->throttle_mutex); return ret; } /** * tty_unthrottle_safe - flow control * @tty: terminal * * Similar to tty_unthrottle() but will only attempt unthrottle if * @tty->flow_change is %TTY_UNTHROTTLE_SAFE. Prevents an accidental unthrottle * due to race conditions when unthrottling is conditional on factors evaluated * prior to unthrottling. * * Returns: %true if @tty is unthrottled (or was already unthrottled) */ bool tty_unthrottle_safe(struct tty_struct *tty) { bool ret = true; mutex_lock(&tty->throttle_mutex); if (tty_throttled(tty)) { if (tty->flow_change != TTY_UNTHROTTLE_SAFE) ret = false; else { clear_bit(TTY_THROTTLED, &tty->flags); if (tty->ops->unthrottle) tty->ops->unthrottle(tty); } } mutex_unlock(&tty->throttle_mutex); return ret; } /** * tty_wait_until_sent - wait for I/O to finish * @tty: tty we are waiting for * @timeout: how long we will wait * * Wait for characters pending in a tty driver to hit the wire, or for a * timeout to occur (eg due to flow control). * * Locking: none */ void tty_wait_until_sent(struct tty_struct *tty, long timeout) { if (!timeout) timeout = MAX_SCHEDULE_TIMEOUT; timeout = wait_event_interruptible_timeout(tty->write_wait, !tty_chars_in_buffer(tty), timeout); if (timeout <= 0) return; if (timeout == MAX_SCHEDULE_TIMEOUT) timeout = 0; if (tty->ops->wait_until_sent) tty->ops->wait_until_sent(tty, timeout); } EXPORT_SYMBOL(tty_wait_until_sent); /* * Termios Helper Methods */ static void unset_locked_termios(struct tty_struct *tty, const struct ktermios *old) { struct ktermios *termios = &tty->termios; struct ktermios *locked = &tty->termios_locked; int i; #define NOSET_MASK(x, y, z) (x = ((x) & ~(z)) | ((y) & (z))) NOSET_MASK(termios->c_iflag, old->c_iflag, locked->c_iflag); NOSET_MASK(termios->c_oflag, old->c_oflag, locked->c_oflag); NOSET_MASK(termios->c_cflag, old->c_cflag, locked->c_cflag); NOSET_MASK(termios->c_lflag, old->c_lflag, locked->c_lflag); termios->c_line = locked->c_line ? old->c_line : termios->c_line; for (i = 0; i < NCCS; i++) termios->c_cc[i] = locked->c_cc[i] ? old->c_cc[i] : termios->c_cc[i]; /* FIXME: What should we do for i/ospeed */ } /** * tty_termios_copy_hw - copy hardware settings * @new: new termios * @old: old termios * * Propagate the hardware specific terminal setting bits from the @old termios * structure to the @new one. This is used in cases where the hardware does not * support reconfiguration or as a helper in some cases where only minimal * reconfiguration is supported. */ void tty_termios_copy_hw(struct ktermios *new, const struct ktermios *old) { /* The bits a dumb device handles in software. Smart devices need to always provide a set_termios method */ new->c_cflag &= HUPCL | CREAD | CLOCAL; new->c_cflag |= old->c_cflag & ~(HUPCL | CREAD | CLOCAL); new->c_ispeed = old->c_ispeed; new->c_ospeed = old->c_ospeed; } EXPORT_SYMBOL(tty_termios_copy_hw); /** * tty_termios_hw_change - check for setting change * @a: termios * @b: termios to compare * * Check if any of the bits that affect a dumb device have changed between the * two termios structures, or a speed change is needed. * * Returns: %true if change is needed */ bool tty_termios_hw_change(const struct ktermios *a, const struct ktermios *b) { if (a->c_ispeed != b->c_ispeed || a->c_ospeed != b->c_ospeed) return true; if ((a->c_cflag ^ b->c_cflag) & ~(HUPCL | CREAD | CLOCAL)) return true; return false; } EXPORT_SYMBOL(tty_termios_hw_change); /** * tty_get_char_size - get size of a character * @cflag: termios cflag value * * Returns: size (in bits) of a character depending on @cflag's %CSIZE setting */ unsigned char tty_get_char_size(unsigned int cflag) { switch (cflag & CSIZE) { case CS5: return 5; case CS6: return 6; case CS7: return 7; case CS8: default: return 8; } } EXPORT_SYMBOL_GPL(tty_get_char_size); /** * tty_get_frame_size - get size of a frame * @cflag: termios cflag value * * Get the size (in bits) of a frame depending on @cflag's %CSIZE, %CSTOPB, and * %PARENB setting. The result is a sum of character size, start and stop bits * -- one bit each -- second stop bit (if set), and parity bit (if set). * * Returns: size (in bits) of a frame depending on @cflag's setting. */ unsigned char tty_get_frame_size(unsigned int cflag) { unsigned char bits = 2 + tty_get_char_size(cflag); if (cflag & CSTOPB) bits++; if (cflag & PARENB) bits++; if (cflag & ADDRB) bits++; return bits; } EXPORT_SYMBOL_GPL(tty_get_frame_size); /** * tty_set_termios - update termios values * @tty: tty to update * @new_termios: desired new value * * Perform updates to the termios values set on this @tty. A master pty's * termios should never be set. * * Locking: &tty_struct->termios_rwsem */ int tty_set_termios(struct tty_struct *tty, struct ktermios *new_termios) { struct ktermios old_termios; struct tty_ldisc *ld; WARN_ON(tty->driver->type == TTY_DRIVER_TYPE_PTY && tty->driver->subtype == PTY_TYPE_MASTER); /* * Perform the actual termios internal changes under lock. */ /* FIXME: we need to decide on some locking/ordering semantics for the set_termios notification eventually */ down_write(&tty->termios_rwsem); old_termios = tty->termios; tty->termios = *new_termios; unset_locked_termios(tty, &old_termios); /* Reset any ADDRB changes, ADDRB is changed through ->rs485_config() */ tty->termios.c_cflag ^= (tty->termios.c_cflag ^ old_termios.c_cflag) & ADDRB; if (tty->ops->set_termios) tty->ops->set_termios(tty, &old_termios); else tty_termios_copy_hw(&tty->termios, &old_termios); ld = tty_ldisc_ref(tty); if (ld != NULL) { if (ld->ops->set_termios) ld->ops->set_termios(tty, &old_termios); tty_ldisc_deref(ld); } up_write(&tty->termios_rwsem); return 0; } EXPORT_SYMBOL_GPL(tty_set_termios); /* * Translate a "termio" structure into a "termios". Ugh. */ __weak int user_termio_to_kernel_termios(struct ktermios *termios, struct termio __user *termio) { struct termio v; if (copy_from_user(&v, termio, sizeof(struct termio))) return -EFAULT; termios->c_iflag = (0xffff0000 & termios->c_iflag) | v.c_iflag; termios->c_oflag = (0xffff0000 & termios->c_oflag) | v.c_oflag; termios->c_cflag = (0xffff0000 & termios->c_cflag) | v.c_cflag; termios->c_lflag = (0xffff0000 & termios->c_lflag) | v.c_lflag; termios->c_line = (0xffff0000 & termios->c_lflag) | v.c_line; memcpy(termios->c_cc, v.c_cc, NCC); return 0; } /* * Translate a "termios" structure into a "termio". Ugh. */ __weak int kernel_termios_to_user_termio(struct termio __user *termio, struct ktermios *termios) { struct termio v; memset(&v, 0, sizeof(struct termio)); v.c_iflag = termios->c_iflag; v.c_oflag = termios->c_oflag; v.c_cflag = termios->c_cflag; v.c_lflag = termios->c_lflag; v.c_line = termios->c_line; memcpy(v.c_cc, termios->c_cc, NCC); return copy_to_user(termio, &v, sizeof(struct termio)); } #ifdef TCGETS2 __weak int user_termios_to_kernel_termios(struct ktermios *k, struct termios2 __user *u) { return copy_from_user(k, u, sizeof(struct termios2)); } __weak int kernel_termios_to_user_termios(struct termios2 __user *u, struct ktermios *k) { return copy_to_user(u, k, sizeof(struct termios2)); } __weak int user_termios_to_kernel_termios_1(struct ktermios *k, struct termios __user *u) { return copy_from_user(k, u, sizeof(struct termios)); } __weak int kernel_termios_to_user_termios_1(struct termios __user *u, struct ktermios *k) { return copy_to_user(u, k, sizeof(struct termios)); } #else __weak int user_termios_to_kernel_termios(struct ktermios *k, struct termios __user *u) { return copy_from_user(k, u, sizeof(struct termios)); } __weak int kernel_termios_to_user_termios(struct termios __user *u, struct ktermios *k) { return copy_to_user(u, k, sizeof(struct termios)); } #endif /* TCGETS2 */ /** * set_termios - set termios values for a tty * @tty: terminal device * @arg: user data * @opt: option information * * Helper function to prepare termios data and run necessary other functions * before using tty_set_termios() to do the actual changes. * * Locking: called functions take &tty_struct->ldisc_sem and * &tty_struct->termios_rwsem locks * * Returns: 0 on success, an error otherwise */ static int set_termios(struct tty_struct *tty, void __user *arg, int opt) { struct ktermios tmp_termios; struct tty_ldisc *ld; int retval = tty_check_change(tty); if (retval) return retval; down_read(&tty->termios_rwsem); tmp_termios = tty->termios; up_read(&tty->termios_rwsem); if (opt & TERMIOS_TERMIO) { if (user_termio_to_kernel_termios(&tmp_termios, (struct termio __user *)arg)) return -EFAULT; #ifdef TCGETS2 } else if (opt & TERMIOS_OLD) { if (user_termios_to_kernel_termios_1(&tmp_termios, (struct termios __user *)arg)) return -EFAULT; } else { if (user_termios_to_kernel_termios(&tmp_termios, (struct termios2 __user *)arg)) return -EFAULT; } #else } else if (user_termios_to_kernel_termios(&tmp_termios, (struct termios __user *)arg)) return -EFAULT; #endif /* If old style Bfoo values are used then load c_ispeed/c_ospeed * with the real speed so its unconditionally usable */ tmp_termios.c_ispeed = tty_termios_input_baud_rate(&tmp_termios); tmp_termios.c_ospeed = tty_termios_baud_rate(&tmp_termios); if (opt & (TERMIOS_FLUSH|TERMIOS_WAIT)) { retry_write_wait: retval = wait_event_interruptible(tty->write_wait, !tty_chars_in_buffer(tty)); if (retval < 0) return retval; if (tty_write_lock(tty, false) < 0) goto retry_write_wait; /* Racing writer? */ if (tty_chars_in_buffer(tty)) { tty_write_unlock(tty); goto retry_write_wait; } ld = tty_ldisc_ref(tty); if (ld != NULL) { if ((opt & TERMIOS_FLUSH) && ld->ops->flush_buffer) ld->ops->flush_buffer(tty); tty_ldisc_deref(ld); } if ((opt & TERMIOS_WAIT) && tty->ops->wait_until_sent) { tty->ops->wait_until_sent(tty, 0); if (signal_pending(current)) { tty_write_unlock(tty); return -ERESTARTSYS; } } tty_set_termios(tty, &tmp_termios); tty_write_unlock(tty); } else { tty_set_termios(tty, &tmp_termios); } /* FIXME: Arguably if tmp_termios == tty->termios AND the actual requested termios was not tmp_termios then we may want to return an error as no user requested change has succeeded */ return 0; } static void copy_termios(struct tty_struct *tty, struct ktermios *kterm) { down_read(&tty->termios_rwsem); *kterm = tty->termios; up_read(&tty->termios_rwsem); } static void copy_termios_locked(struct tty_struct *tty, struct ktermios *kterm) { down_read(&tty->termios_rwsem); *kterm = tty->termios_locked; up_read(&tty->termios_rwsem); } static int get_termio(struct tty_struct *tty, struct termio __user *termio) { struct ktermios kterm; copy_termios(tty, &kterm); if (kernel_termios_to_user_termio(termio, &kterm)) return -EFAULT; return 0; } #ifdef TIOCGETP /* * These are deprecated, but there is limited support.. * * The "sg_flags" translation is a joke.. */ static int get_sgflags(struct tty_struct *tty) { int flags = 0; if (!L_ICANON(tty)) { if (L_ISIG(tty)) flags |= 0x02; /* cbreak */ else flags |= 0x20; /* raw */ } if (L_ECHO(tty)) flags |= 0x08; /* echo */ if (O_OPOST(tty)) if (O_ONLCR(tty)) flags |= 0x10; /* crmod */ return flags; } static int get_sgttyb(struct tty_struct *tty, struct sgttyb __user *sgttyb) { struct sgttyb tmp; down_read(&tty->termios_rwsem); tmp.sg_ispeed = tty->termios.c_ispeed; tmp.sg_ospeed = tty->termios.c_ospeed; tmp.sg_erase = tty->termios.c_cc[VERASE]; tmp.sg_kill = tty->termios.c_cc[VKILL]; tmp.sg_flags = get_sgflags(tty); up_read(&tty->termios_rwsem); return copy_to_user(sgttyb, &tmp, sizeof(tmp)) ? -EFAULT : 0; } static void set_sgflags(struct ktermios *termios, int flags) { termios->c_iflag = ICRNL | IXON; termios->c_oflag = 0; termios->c_lflag = ISIG | ICANON; if (flags & 0x02) { /* cbreak */ termios->c_iflag = 0; termios->c_lflag &= ~ICANON; } if (flags & 0x08) { /* echo */ termios->c_lflag |= ECHO | ECHOE | ECHOK | ECHOCTL | ECHOKE | IEXTEN; } if (flags & 0x10) { /* crmod */ termios->c_oflag |= OPOST | ONLCR; } if (flags & 0x20) { /* raw */ termios->c_iflag = 0; termios->c_lflag &= ~(ISIG | ICANON); } if (!(termios->c_lflag & ICANON)) { termios->c_cc[VMIN] = 1; termios->c_cc[VTIME] = 0; } } /** * set_sgttyb - set legacy terminal values * @tty: tty structure * @sgttyb: pointer to old style terminal structure * * Updates a terminal from the legacy BSD style terminal information structure. * * Locking: &tty_struct->termios_rwsem * * Returns: 0 on success, an error otherwise */ static int set_sgttyb(struct tty_struct *tty, struct sgttyb __user *sgttyb) { int retval; struct sgttyb tmp; struct ktermios termios; retval = tty_check_change(tty); if (retval) return retval; if (copy_from_user(&tmp, sgttyb, sizeof(tmp))) return -EFAULT; down_write(&tty->termios_rwsem); termios = tty->termios; termios.c_cc[VERASE] = tmp.sg_erase; termios.c_cc[VKILL] = tmp.sg_kill; set_sgflags(&termios, tmp.sg_flags); /* Try and encode into Bfoo format */ tty_termios_encode_baud_rate(&termios, termios.c_ispeed, termios.c_ospeed); up_write(&tty->termios_rwsem); tty_set_termios(tty, &termios); return 0; } #endif #ifdef TIOCGETC static int get_tchars(struct tty_struct *tty, struct tchars __user *tchars) { struct tchars tmp; down_read(&tty->termios_rwsem); tmp.t_intrc = tty->termios.c_cc[VINTR]; tmp.t_quitc = tty->termios.c_cc[VQUIT]; tmp.t_startc = tty->termios.c_cc[VSTART]; tmp.t_stopc = tty->termios.c_cc[VSTOP]; tmp.t_eofc = tty->termios.c_cc[VEOF]; tmp.t_brkc = tty->termios.c_cc[VEOL2]; /* what is brkc anyway? */ up_read(&tty->termios_rwsem); return copy_to_user(tchars, &tmp, sizeof(tmp)) ? -EFAULT : 0; } static int set_tchars(struct tty_struct *tty, struct tchars __user *tchars) { struct tchars tmp; if (copy_from_user(&tmp, tchars, sizeof(tmp))) return -EFAULT; down_write(&tty->termios_rwsem); tty->termios.c_cc[VINTR] = tmp.t_intrc; tty->termios.c_cc[VQUIT] = tmp.t_quitc; tty->termios.c_cc[VSTART] = tmp.t_startc; tty->termios.c_cc[VSTOP] = tmp.t_stopc; tty->termios.c_cc[VEOF] = tmp.t_eofc; tty->termios.c_cc[VEOL2] = tmp.t_brkc; /* what is brkc anyway? */ up_write(&tty->termios_rwsem); return 0; } #endif #ifdef TIOCGLTC static int get_ltchars(struct tty_struct *tty, struct ltchars __user *ltchars) { struct ltchars tmp; down_read(&tty->termios_rwsem); tmp.t_suspc = tty->termios.c_cc[VSUSP]; /* what is dsuspc anyway? */ tmp.t_dsuspc = tty->termios.c_cc[VSUSP]; tmp.t_rprntc = tty->termios.c_cc[VREPRINT]; /* what is flushc anyway? */ tmp.t_flushc = tty->termios.c_cc[VEOL2]; tmp.t_werasc = tty->termios.c_cc[VWERASE]; tmp.t_lnextc = tty->termios.c_cc[VLNEXT]; up_read(&tty->termios_rwsem); return copy_to_user(ltchars, &tmp, sizeof(tmp)) ? -EFAULT : 0; } static int set_ltchars(struct tty_struct *tty, struct ltchars __user *ltchars) { struct ltchars tmp; if (copy_from_user(&tmp, ltchars, sizeof(tmp))) return -EFAULT; down_write(&tty->termios_rwsem); tty->termios.c_cc[VSUSP] = tmp.t_suspc; /* what is dsuspc anyway? */ tty->termios.c_cc[VEOL2] = tmp.t_dsuspc; tty->termios.c_cc[VREPRINT] = tmp.t_rprntc; /* what is flushc anyway? */ tty->termios.c_cc[VEOL2] = tmp.t_flushc; tty->termios.c_cc[VWERASE] = tmp.t_werasc; tty->termios.c_cc[VLNEXT] = tmp.t_lnextc; up_write(&tty->termios_rwsem); return 0; } #endif /** * tty_change_softcar - carrier change ioctl helper * @tty: tty to update * @enable: enable/disable %CLOCAL * * Perform a change to the %CLOCAL state and call into the driver layer to make * it visible. * * Locking: &tty_struct->termios_rwsem. * * Returns: 0 on success, an error otherwise */ static int tty_change_softcar(struct tty_struct *tty, bool enable) { int ret = 0; struct ktermios old; tcflag_t bit = enable ? CLOCAL : 0; down_write(&tty->termios_rwsem); old = tty->termios; tty->termios.c_cflag &= ~CLOCAL; tty->termios.c_cflag |= bit; if (tty->ops->set_termios) tty->ops->set_termios(tty, &old); if (C_CLOCAL(tty) != bit) ret = -EINVAL; up_write(&tty->termios_rwsem); return ret; } /** * tty_mode_ioctl - mode related ioctls * @tty: tty for the ioctl * @cmd: command * @arg: ioctl argument * * Perform non-line discipline specific mode control ioctls. This is designed * to be called by line disciplines to ensure they provide consistent mode * setting. */ int tty_mode_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct tty_struct *real_tty; void __user *p = (void __user *)arg; int ret = 0; struct ktermios kterm; if (tty->driver->type == TTY_DRIVER_TYPE_PTY && tty->driver->subtype == PTY_TYPE_MASTER) real_tty = tty->link; else real_tty = tty; switch (cmd) { #ifdef TIOCGETP case TIOCGETP: return get_sgttyb(real_tty, (struct sgttyb __user *) arg); case TIOCSETP: case TIOCSETN: return set_sgttyb(real_tty, (struct sgttyb __user *) arg); #endif #ifdef TIOCGETC case TIOCGETC: return get_tchars(real_tty, p); case TIOCSETC: return set_tchars(real_tty, p); #endif #ifdef TIOCGLTC case TIOCGLTC: return get_ltchars(real_tty, p); case TIOCSLTC: return set_ltchars(real_tty, p); #endif case TCSETSF: return set_termios(real_tty, p, TERMIOS_FLUSH | TERMIOS_WAIT | TERMIOS_OLD); case TCSETSW: return set_termios(real_tty, p, TERMIOS_WAIT | TERMIOS_OLD); case TCSETS: return set_termios(real_tty, p, TERMIOS_OLD); #ifndef TCGETS2 case TCGETS: copy_termios(real_tty, &kterm); if (kernel_termios_to_user_termios((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; #else case TCGETS: copy_termios(real_tty, &kterm); if (kernel_termios_to_user_termios_1((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; case TCGETS2: copy_termios(real_tty, &kterm); if (kernel_termios_to_user_termios((struct termios2 __user *)arg, &kterm)) ret = -EFAULT; return ret; case TCSETSF2: return set_termios(real_tty, p, TERMIOS_FLUSH | TERMIOS_WAIT); case TCSETSW2: return set_termios(real_tty, p, TERMIOS_WAIT); case TCSETS2: return set_termios(real_tty, p, 0); #endif case TCGETA: return get_termio(real_tty, p); case TCSETAF: return set_termios(real_tty, p, TERMIOS_FLUSH | TERMIOS_WAIT | TERMIOS_TERMIO); case TCSETAW: return set_termios(real_tty, p, TERMIOS_WAIT | TERMIOS_TERMIO); case TCSETA: return set_termios(real_tty, p, TERMIOS_TERMIO); #ifndef TCGETS2 case TIOCGLCKTRMIOS: copy_termios_locked(real_tty, &kterm); if (kernel_termios_to_user_termios((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; case TIOCSLCKTRMIOS: if (!checkpoint_restore_ns_capable(&init_user_ns)) return -EPERM; copy_termios_locked(real_tty, &kterm); if (user_termios_to_kernel_termios(&kterm, (struct termios __user *) arg)) return -EFAULT; down_write(&real_tty->termios_rwsem); real_tty->termios_locked = kterm; up_write(&real_tty->termios_rwsem); return 0; #else case TIOCGLCKTRMIOS: copy_termios_locked(real_tty, &kterm); if (kernel_termios_to_user_termios_1((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; case TIOCSLCKTRMIOS: if (!checkpoint_restore_ns_capable(&init_user_ns)) return -EPERM; copy_termios_locked(real_tty, &kterm); if (user_termios_to_kernel_termios_1(&kterm, (struct termios __user *) arg)) return -EFAULT; down_write(&real_tty->termios_rwsem); real_tty->termios_locked = kterm; up_write(&real_tty->termios_rwsem); return ret; #endif #ifdef TCGETX case TCGETX: case TCSETX: case TCSETXW: case TCSETXF: return -ENOTTY; #endif case TIOCGSOFTCAR: copy_termios(real_tty, &kterm); ret = put_user((kterm.c_cflag & CLOCAL) ? 1 : 0, (int __user *)arg); return ret; case TIOCSSOFTCAR: if (get_user(arg, (unsigned int __user *) arg)) return -EFAULT; return tty_change_softcar(real_tty, arg); default: return -ENOIOCTLCMD; } } EXPORT_SYMBOL_GPL(tty_mode_ioctl); /* Caller guarantees ldisc reference is held */ static int __tty_perform_flush(struct tty_struct *tty, unsigned long arg) { struct tty_ldisc *ld = tty->ldisc; switch (arg) { case TCIFLUSH: if (ld && ld->ops->flush_buffer) { ld->ops->flush_buffer(tty); tty_unthrottle(tty); } break; case TCIOFLUSH: if (ld && ld->ops->flush_buffer) { ld->ops->flush_buffer(tty); tty_unthrottle(tty); } fallthrough; case TCOFLUSH: tty_driver_flush_buffer(tty); break; default: return -EINVAL; } return 0; } int tty_perform_flush(struct tty_struct *tty, unsigned long arg) { struct tty_ldisc *ld; int retval = tty_check_change(tty); if (retval) return retval; ld = tty_ldisc_ref_wait(tty); retval = __tty_perform_flush(tty, arg); if (ld) tty_ldisc_deref(ld); return retval; } EXPORT_SYMBOL_GPL(tty_perform_flush); int n_tty_ioctl_helper(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { int retval; switch (cmd) { case TCXONC: retval = tty_check_change(tty); if (retval) return retval; switch (arg) { case TCOOFF: spin_lock_irq(&tty->flow.lock); if (!tty->flow.tco_stopped) { tty->flow.tco_stopped = true; __stop_tty(tty); } spin_unlock_irq(&tty->flow.lock); break; case TCOON: spin_lock_irq(&tty->flow.lock); if (tty->flow.tco_stopped) { tty->flow.tco_stopped = false; __start_tty(tty); } spin_unlock_irq(&tty->flow.lock); break; case TCIOFF: if (STOP_CHAR(tty) != __DISABLED_CHAR) retval = tty_send_xchar(tty, STOP_CHAR(tty)); break; case TCION: if (START_CHAR(tty) != __DISABLED_CHAR) retval = tty_send_xchar(tty, START_CHAR(tty)); break; default: return -EINVAL; } return retval; case TCFLSH: retval = tty_check_change(tty); if (retval) return retval; return __tty_perform_flush(tty, arg); default: /* Try the mode commands */ return tty_mode_ioctl(tty, cmd, arg); } } EXPORT_SYMBOL(n_tty_ioctl_helper);
13 8 6 17 17 17 1 17 1314 17 1314 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cgroup #if !defined(_TRACE_CGROUP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_CGROUP_H #include <linux/cgroup.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(cgroup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root), TP_STRUCT__entry( __field( int, root ) __field( u16, ss_mask ) __string( name, root->name ) ), TP_fast_assign( __entry->root = root->hierarchy_id; __entry->ss_mask = root->subsys_mask; __assign_str(name); ), TP_printk("root=%d ss_mask=%#x name=%s", __entry->root, __entry->ss_mask, __get_str(name)) ); DEFINE_EVENT(cgroup_root, cgroup_setup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_destroy_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_remount, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DECLARE_EVENT_CLASS(cgroup, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path), TP_STRUCT__entry( __field( int, root ) __field( int, level ) __field( u64, id ) __string( path, path ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path); ), TP_printk("root=%d id=%llu level=%d path=%s", __entry->root, __entry->id, __entry->level, __get_str(path)) ); DEFINE_EVENT(cgroup, cgroup_mkdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rmdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_release, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rename, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_freeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_unfreeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DECLARE_EVENT_CLASS(cgroup_migrate, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup), TP_STRUCT__entry( __field( int, dst_root ) __field( int, dst_level ) __field( u64, dst_id ) __field( int, pid ) __string( dst_path, path ) __string( comm, task->comm ) ), TP_fast_assign( __entry->dst_root = dst_cgrp->root->hierarchy_id; __entry->dst_id = cgroup_id(dst_cgrp); __entry->dst_level = dst_cgrp->level; __assign_str(dst_path); __entry->pid = task->pid; __assign_str(comm); ), TP_printk("dst_root=%d dst_id=%llu dst_level=%d dst_path=%s pid=%d comm=%s", __entry->dst_root, __entry->dst_id, __entry->dst_level, __get_str(dst_path), __entry->pid, __get_str(comm)) ); DEFINE_EVENT(cgroup_migrate, cgroup_attach_task, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DEFINE_EVENT(cgroup_migrate, cgroup_transfer_tasks, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DECLARE_EVENT_CLASS(cgroup_event, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val), TP_STRUCT__entry( __field( int, root ) __field( int, level ) __field( u64, id ) __string( path, path ) __field( int, val ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path); __entry->val = val; ), TP_printk("root=%d id=%llu level=%d path=%s val=%d", __entry->root, __entry->id, __entry->level, __get_str(path), __entry->val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_populated, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_frozen, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); DECLARE_EVENT_CLASS(cgroup_rstat, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended), TP_STRUCT__entry( __field( int, root ) __field( int, level ) __field( u64, id ) __field( int, cpu ) __field( bool, contended ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __entry->cpu = cpu; __entry->contended = contended; ), TP_printk("root=%d id=%llu level=%d cpu=%d lock contended:%d", __entry->root, __entry->id, __entry->level, __entry->cpu, __entry->contended) ); /* Related to global: cgroup_rstat_lock */ DEFINE_EVENT(cgroup_rstat, cgroup_rstat_lock_contended, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); DEFINE_EVENT(cgroup_rstat, cgroup_rstat_locked, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); DEFINE_EVENT(cgroup_rstat, cgroup_rstat_unlock, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); /* Related to per CPU: cgroup_rstat_cpu_lock */ DEFINE_EVENT(cgroup_rstat, cgroup_rstat_cpu_lock_contended, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); DEFINE_EVENT(cgroup_rstat, cgroup_rstat_cpu_lock_contended_fastpath, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); DEFINE_EVENT(cgroup_rstat, cgroup_rstat_cpu_locked, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); DEFINE_EVENT(cgroup_rstat, cgroup_rstat_cpu_locked_fastpath, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); DEFINE_EVENT(cgroup_rstat, cgroup_rstat_cpu_unlock, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); DEFINE_EVENT(cgroup_rstat, cgroup_rstat_cpu_unlock_fastpath, TP_PROTO(struct cgroup *cgrp, int cpu, bool contended), TP_ARGS(cgrp, cpu, contended) ); #endif /* _TRACE_CGROUP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
2 2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 // SPDX-License-Identifier: GPL-2.0-only #include "netlink.h" #include "common.h" #include "bitset.h" struct wol_req_info { struct ethnl_req_info base; }; struct wol_reply_data { struct ethnl_reply_data base; struct ethtool_wolinfo wol; bool show_sopass; }; #define WOL_REPDATA(__reply_base) \ container_of(__reply_base, struct wol_reply_data, base) const struct nla_policy ethnl_wol_get_policy[] = { [ETHTOOL_A_WOL_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), }; static int wol_prepare_data(const struct ethnl_req_info *req_base, struct ethnl_reply_data *reply_base, const struct genl_info *info) { struct wol_reply_data *data = WOL_REPDATA(reply_base); struct net_device *dev = reply_base->dev; int ret; if (!dev->ethtool_ops->get_wol) return -EOPNOTSUPP; ret = ethnl_ops_begin(dev); if (ret < 0) return ret; dev->ethtool_ops->get_wol(dev, &data->wol); ethnl_ops_complete(dev); /* do not include password in notifications */ data->show_sopass = !genl_info_is_ntf(info) && (data->wol.supported & WAKE_MAGICSECURE); return 0; } static int wol_reply_size(const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct wol_reply_data *data = WOL_REPDATA(reply_base); int len; len = ethnl_bitset32_size(&data->wol.wolopts, &data->wol.supported, WOL_MODE_COUNT, wol_mode_names, compact); if (len < 0) return len; if (data->show_sopass) len += nla_total_size(sizeof(data->wol.sopass)); return len; } static int wol_fill_reply(struct sk_buff *skb, const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct wol_reply_data *data = WOL_REPDATA(reply_base); int ret; ret = ethnl_put_bitset32(skb, ETHTOOL_A_WOL_MODES, &data->wol.wolopts, &data->wol.supported, WOL_MODE_COUNT, wol_mode_names, compact); if (ret < 0) return ret; if (data->show_sopass && nla_put(skb, ETHTOOL_A_WOL_SOPASS, sizeof(data->wol.sopass), data->wol.sopass)) return -EMSGSIZE; return 0; } /* WOL_SET */ const struct nla_policy ethnl_wol_set_policy[] = { [ETHTOOL_A_WOL_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), [ETHTOOL_A_WOL_MODES] = { .type = NLA_NESTED }, [ETHTOOL_A_WOL_SOPASS] = { .type = NLA_BINARY, .len = SOPASS_MAX }, }; static int ethnl_set_wol_validate(struct ethnl_req_info *req_info, struct genl_info *info) { const struct ethtool_ops *ops = req_info->dev->ethtool_ops; return ops->get_wol && ops->set_wol ? 1 : -EOPNOTSUPP; } static int ethnl_set_wol(struct ethnl_req_info *req_info, struct genl_info *info) { struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; struct net_device *dev = req_info->dev; struct nlattr **tb = info->attrs; bool mod = false; int ret; dev->ethtool_ops->get_wol(dev, &wol); ret = ethnl_update_bitset32(&wol.wolopts, WOL_MODE_COUNT, tb[ETHTOOL_A_WOL_MODES], wol_mode_names, info->extack, &mod); if (ret < 0) return ret; if (wol.wolopts & ~wol.supported) { NL_SET_ERR_MSG_ATTR(info->extack, tb[ETHTOOL_A_WOL_MODES], "cannot enable unsupported WoL mode"); return -EINVAL; } if (tb[ETHTOOL_A_WOL_SOPASS]) { if (!(wol.supported & WAKE_MAGICSECURE)) { NL_SET_ERR_MSG_ATTR(info->extack, tb[ETHTOOL_A_WOL_SOPASS], "magicsecure not supported, cannot set password"); return -EINVAL; } ethnl_update_binary(wol.sopass, sizeof(wol.sopass), tb[ETHTOOL_A_WOL_SOPASS], &mod); } if (!mod) return 0; ret = dev->ethtool_ops->set_wol(dev, &wol); if (ret) return ret; dev->ethtool->wol_enabled = !!wol.wolopts; return 1; } const struct ethnl_request_ops ethnl_wol_request_ops = { .request_cmd = ETHTOOL_MSG_WOL_GET, .reply_cmd = ETHTOOL_MSG_WOL_GET_REPLY, .hdr_attr = ETHTOOL_A_WOL_HEADER, .req_info_size = sizeof(struct wol_req_info), .reply_data_size = sizeof(struct wol_reply_data), .prepare_data = wol_prepare_data, .reply_size = wol_reply_size, .fill_reply = wol_fill_reply, .set_validate = ethnl_set_wol_validate, .set = ethnl_set_wol, .set_ntf_cmd = ETHTOOL_MSG_WOL_NTF, };
2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 1 4 4 4 4 4 4 4 5 4 4 4 4 1 3 4 5 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 // SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi * Copyright (C) 2015-2016 Nobuo Iwata */ #include <linux/kthread.h> #include <linux/file.h> #include <linux/net.h> #include <linux/platform_device.h> #include <linux/slab.h> /* Hardening for Spectre-v1 */ #include <linux/nospec.h> #include "usbip_common.h" #include "vhci.h" /* TODO: refine locking ?*/ /* * output example: * hub port sta spd dev sockfd local_busid * hs 0000 004 000 00000000 000003 1-2.3 * ................................................ * ss 0008 004 000 00000000 000004 2-3.4 * ................................................ * * Output includes socket fd instead of socket pointer address to avoid * leaking kernel memory address in: * /sys/devices/platform/vhci_hcd.0/status and in debug output. * The socket pointer address is not used at the moment and it was made * visible as a convenient way to find IP address from socket pointer * address by looking up /proc/net/{tcp,tcp6}. As this opens a security * hole, the change is made to use sockfd instead. * */ static void port_show_vhci(char **out, int hub, int port, struct vhci_device *vdev) { if (hub == HUB_SPEED_HIGH) *out += sprintf(*out, "hs %04u %03u ", port, vdev->ud.status); else /* hub == HUB_SPEED_SUPER */ *out += sprintf(*out, "ss %04u %03u ", port, vdev->ud.status); if (vdev->ud.status == VDEV_ST_USED) { *out += sprintf(*out, "%03u %08x ", vdev->speed, vdev->devid); *out += sprintf(*out, "%06u %s", vdev->ud.sockfd, dev_name(&vdev->udev->dev)); } else { *out += sprintf(*out, "000 00000000 "); *out += sprintf(*out, "000000 0-0"); } *out += sprintf(*out, "\n"); } /* Sysfs entry to show port status */ static ssize_t status_show_vhci(int pdev_nr, char *out) { struct platform_device *pdev = vhcis[pdev_nr].pdev; struct vhci *vhci; struct usb_hcd *hcd; struct vhci_hcd *vhci_hcd; char *s = out; int i; unsigned long flags; if (!pdev || !out) { usbip_dbg_vhci_sysfs("show status error\n"); return 0; } hcd = platform_get_drvdata(pdev); vhci_hcd = hcd_to_vhci_hcd(hcd); vhci = vhci_hcd->vhci; spin_lock_irqsave(&vhci->lock, flags); for (i = 0; i < VHCI_HC_PORTS; i++) { struct vhci_device *vdev = &vhci->vhci_hcd_hs->vdev[i]; spin_lock(&vdev->ud.lock); port_show_vhci(&out, HUB_SPEED_HIGH, pdev_nr * VHCI_PORTS + i, vdev); spin_unlock(&vdev->ud.lock); } for (i = 0; i < VHCI_HC_PORTS; i++) { struct vhci_device *vdev = &vhci->vhci_hcd_ss->vdev[i]; spin_lock(&vdev->ud.lock); port_show_vhci(&out, HUB_SPEED_SUPER, pdev_nr * VHCI_PORTS + VHCI_HC_PORTS + i, vdev); spin_unlock(&vdev->ud.lock); } spin_unlock_irqrestore(&vhci->lock, flags); return out - s; } static ssize_t status_show_not_ready(int pdev_nr, char *out) { char *s = out; int i = 0; for (i = 0; i < VHCI_HC_PORTS; i++) { out += sprintf(out, "hs %04u %03u ", (pdev_nr * VHCI_PORTS) + i, VDEV_ST_NOTASSIGNED); out += sprintf(out, "000 00000000 0000000000000000 0-0"); out += sprintf(out, "\n"); } for (i = 0; i < VHCI_HC_PORTS; i++) { out += sprintf(out, "ss %04u %03u ", (pdev_nr * VHCI_PORTS) + VHCI_HC_PORTS + i, VDEV_ST_NOTASSIGNED); out += sprintf(out, "000 00000000 0000000000000000 0-0"); out += sprintf(out, "\n"); } return out - s; } static int status_name_to_id(const char *name) { char *c; long val; int ret; c = strchr(name, '.'); if (c == NULL) return 0; ret = kstrtol(c+1, 10, &val); if (ret < 0) return ret; return val; } static ssize_t status_show(struct device *dev, struct device_attribute *attr, char *out) { char *s = out; int pdev_nr; out += sprintf(out, "hub port sta spd dev sockfd local_busid\n"); pdev_nr = status_name_to_id(attr->attr.name); if (pdev_nr < 0) out += status_show_not_ready(pdev_nr, out); else out += status_show_vhci(pdev_nr, out); return out - s; } static ssize_t nports_show(struct device *dev, struct device_attribute *attr, char *out) { char *s = out; /* * Half the ports are for SPEED_HIGH and half for SPEED_SUPER, * thus the * 2. */ out += sprintf(out, "%d\n", VHCI_PORTS * vhci_num_controllers); return out - s; } static DEVICE_ATTR_RO(nports); /* Sysfs entry to shutdown a virtual connection */ static int vhci_port_disconnect(struct vhci_hcd *vhci_hcd, __u32 rhport) { struct vhci_device *vdev = &vhci_hcd->vdev[rhport]; struct vhci *vhci = vhci_hcd->vhci; unsigned long flags; usbip_dbg_vhci_sysfs("enter\n"); mutex_lock(&vdev->ud.sysfs_lock); /* lock */ spin_lock_irqsave(&vhci->lock, flags); spin_lock(&vdev->ud.lock); if (vdev->ud.status == VDEV_ST_NULL) { pr_err("not connected %d\n", vdev->ud.status); /* unlock */ spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); mutex_unlock(&vdev->ud.sysfs_lock); return -EINVAL; } /* unlock */ spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); usbip_event_add(&vdev->ud, VDEV_EVENT_DOWN); mutex_unlock(&vdev->ud.sysfs_lock); return 0; } static int valid_port(__u32 *pdev_nr, __u32 *rhport) { if (*pdev_nr >= vhci_num_controllers) { pr_err("pdev %u\n", *pdev_nr); return 0; } *pdev_nr = array_index_nospec(*pdev_nr, vhci_num_controllers); if (*rhport >= VHCI_HC_PORTS) { pr_err("rhport %u\n", *rhport); return 0; } *rhport = array_index_nospec(*rhport, VHCI_HC_PORTS); return 1; } static ssize_t detach_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { __u32 port = 0, pdev_nr = 0, rhport = 0; struct usb_hcd *hcd; struct vhci_hcd *vhci_hcd; int ret; if (kstrtoint(buf, 10, &port) < 0) return -EINVAL; pdev_nr = port_to_pdev_nr(port); rhport = port_to_rhport(port); if (!valid_port(&pdev_nr, &rhport)) return -EINVAL; hcd = platform_get_drvdata(vhcis[pdev_nr].pdev); if (hcd == NULL) { dev_err(dev, "port is not ready %u\n", port); return -EAGAIN; } usbip_dbg_vhci_sysfs("rhport %d\n", rhport); if ((port / VHCI_HC_PORTS) % 2) vhci_hcd = hcd_to_vhci_hcd(hcd)->vhci->vhci_hcd_ss; else vhci_hcd = hcd_to_vhci_hcd(hcd)->vhci->vhci_hcd_hs; ret = vhci_port_disconnect(vhci_hcd, rhport); if (ret < 0) return -EINVAL; usbip_dbg_vhci_sysfs("Leave\n"); return count; } static DEVICE_ATTR_WO(detach); static int valid_args(__u32 *pdev_nr, __u32 *rhport, enum usb_device_speed speed) { if (!valid_port(pdev_nr, rhport)) { return 0; } switch (speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: case USB_SPEED_WIRELESS: case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: break; default: pr_err("Failed attach request for unsupported USB speed: %s\n", usb_speed_string(speed)); return 0; } return 1; } /* Sysfs entry to establish a virtual connection */ /* * To start a new USB/IP attachment, a userland program needs to setup a TCP * connection and then write its socket descriptor with remote device * information into this sysfs file. * * A remote device is virtually attached to the root-hub port of @rhport with * @speed. @devid is embedded into a request to specify the remote device in a * server host. * * write() returns 0 on success, else negative errno. */ static ssize_t attach_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct socket *socket; int sockfd = 0; __u32 port = 0, pdev_nr = 0, rhport = 0, devid = 0, speed = 0; struct usb_hcd *hcd; struct vhci_hcd *vhci_hcd; struct vhci_device *vdev; struct vhci *vhci; int err; unsigned long flags; struct task_struct *tcp_rx = NULL; struct task_struct *tcp_tx = NULL; /* * @rhport: port number of vhci_hcd * @sockfd: socket descriptor of an established TCP connection * @devid: unique device identifier in a remote host * @speed: usb device speed in a remote host */ if (sscanf(buf, "%u %u %u %u", &port, &sockfd, &devid, &speed) != 4) return -EINVAL; pdev_nr = port_to_pdev_nr(port); rhport = port_to_rhport(port); usbip_dbg_vhci_sysfs("port(%u) pdev(%d) rhport(%u)\n", port, pdev_nr, rhport); usbip_dbg_vhci_sysfs("sockfd(%u) devid(%u) speed(%u)\n", sockfd, devid, speed); /* check received parameters */ if (!valid_args(&pdev_nr, &rhport, speed)) return -EINVAL; hcd = platform_get_drvdata(vhcis[pdev_nr].pdev); if (hcd == NULL) { dev_err(dev, "port %d is not ready\n", port); return -EAGAIN; } vhci_hcd = hcd_to_vhci_hcd(hcd); vhci = vhci_hcd->vhci; if (speed >= USB_SPEED_SUPER) vdev = &vhci->vhci_hcd_ss->vdev[rhport]; else vdev = &vhci->vhci_hcd_hs->vdev[rhport]; mutex_lock(&vdev->ud.sysfs_lock); /* Extract socket from fd. */ socket = sockfd_lookup(sockfd, &err); if (!socket) { dev_err(dev, "failed to lookup sock"); err = -EINVAL; goto unlock_mutex; } if (socket->type != SOCK_STREAM) { dev_err(dev, "Expecting SOCK_STREAM - found %d", socket->type); sockfd_put(socket); err = -EINVAL; goto unlock_mutex; } /* create threads before locking */ tcp_rx = kthread_create(vhci_rx_loop, &vdev->ud, "vhci_rx"); if (IS_ERR(tcp_rx)) { sockfd_put(socket); err = -EINVAL; goto unlock_mutex; } tcp_tx = kthread_create(vhci_tx_loop, &vdev->ud, "vhci_tx"); if (IS_ERR(tcp_tx)) { kthread_stop(tcp_rx); sockfd_put(socket); err = -EINVAL; goto unlock_mutex; } /* get task structs now */ get_task_struct(tcp_rx); get_task_struct(tcp_tx); /* now begin lock until setting vdev status set */ spin_lock_irqsave(&vhci->lock, flags); spin_lock(&vdev->ud.lock); if (vdev->ud.status != VDEV_ST_NULL) { /* end of the lock */ spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); sockfd_put(socket); kthread_stop_put(tcp_rx); kthread_stop_put(tcp_tx); dev_err(dev, "port %d already used\n", rhport); /* * Will be retried from userspace * if there's another free port. */ err = -EBUSY; goto unlock_mutex; } dev_info(dev, "pdev(%u) rhport(%u) sockfd(%d)\n", pdev_nr, rhport, sockfd); dev_info(dev, "devid(%u) speed(%u) speed_str(%s)\n", devid, speed, usb_speed_string(speed)); vdev->devid = devid; vdev->speed = speed; vdev->ud.sockfd = sockfd; vdev->ud.tcp_socket = socket; vdev->ud.tcp_rx = tcp_rx; vdev->ud.tcp_tx = tcp_tx; vdev->ud.status = VDEV_ST_NOTASSIGNED; usbip_kcov_handle_init(&vdev->ud); spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); /* end the lock */ wake_up_process(vdev->ud.tcp_rx); wake_up_process(vdev->ud.tcp_tx); rh_port_connect(vdev, speed); dev_info(dev, "Device attached\n"); mutex_unlock(&vdev->ud.sysfs_lock); return count; unlock_mutex: mutex_unlock(&vdev->ud.sysfs_lock); return err; } static DEVICE_ATTR_WO(attach); #define MAX_STATUS_NAME 16 struct status_attr { struct device_attribute attr; char name[MAX_STATUS_NAME+1]; }; static struct status_attr *status_attrs; static void set_status_attr(int id) { struct status_attr *status; status = status_attrs + id; if (id == 0) strcpy(status->name, "status"); else snprintf(status->name, MAX_STATUS_NAME+1, "status.%d", id); status->attr.attr.name = status->name; status->attr.attr.mode = S_IRUGO; status->attr.show = status_show; sysfs_attr_init(&status->attr.attr); } static int init_status_attrs(void) { int id; status_attrs = kcalloc(vhci_num_controllers, sizeof(struct status_attr), GFP_KERNEL); if (status_attrs == NULL) return -ENOMEM; for (id = 0; id < vhci_num_controllers; id++) set_status_attr(id); return 0; } static void finish_status_attrs(void) { kfree(status_attrs); } struct attribute_group vhci_attr_group = { .attrs = NULL, }; int vhci_init_attr_group(void) { struct attribute **attrs; int ret, i; attrs = kcalloc((vhci_num_controllers + 5), sizeof(struct attribute *), GFP_KERNEL); if (attrs == NULL) return -ENOMEM; ret = init_status_attrs(); if (ret) { kfree(attrs); return ret; } *attrs = &dev_attr_nports.attr; *(attrs + 1) = &dev_attr_detach.attr; *(attrs + 2) = &dev_attr_attach.attr; *(attrs + 3) = &dev_attr_usbip_debug.attr; for (i = 0; i < vhci_num_controllers; i++) *(attrs + i + 4) = &((status_attrs + i)->attr.attr); vhci_attr_group.attrs = attrs; return 0; } void vhci_finish_attr_group(void) { finish_status_attrs(); kfree(vhci_attr_group.attrs); }
1249 1043 1247 1228 132 1144 1028 1030 1032 1004 955 864 590 57 26 164 17 123 124 124 124 124 124 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 // SPDX-License-Identifier: GPL-2.0-only /* * IPv6 library code, needed by static components when full IPv6 support is * not configured or static. */ #include <linux/export.h> #include <net/ipv6.h> #include <net/ipv6_stubs.h> #include <net/addrconf.h> #include <net/ip.h> /* if ipv6 module registers this function is used by xfrm to force all * sockets to relookup their nodes - this is fairly expensive, be * careful */ void (*__fib6_flush_trees)(struct net *); EXPORT_SYMBOL(__fib6_flush_trees); #define IPV6_ADDR_SCOPE_TYPE(scope) ((scope) << 16) static inline unsigned int ipv6_addr_scope2type(unsigned int scope) { switch (scope) { case IPV6_ADDR_SCOPE_NODELOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_NODELOCAL) | IPV6_ADDR_LOOPBACK); case IPV6_ADDR_SCOPE_LINKLOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL) | IPV6_ADDR_LINKLOCAL); case IPV6_ADDR_SCOPE_SITELOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_SITELOCAL) | IPV6_ADDR_SITELOCAL); } return IPV6_ADDR_SCOPE_TYPE(scope); } int __ipv6_addr_type(const struct in6_addr *addr) { __be32 st; st = addr->s6_addr32[0]; /* Consider all addresses with the first three bits different of 000 and 111 as unicasts. */ if ((st & htonl(0xE0000000)) != htonl(0x00000000) && (st & htonl(0xE0000000)) != htonl(0xE0000000)) return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); if ((st & htonl(0xFF000000)) == htonl(0xFF000000)) { /* multicast */ /* addr-select 3.1 */ return (IPV6_ADDR_MULTICAST | ipv6_addr_scope2type(IPV6_ADDR_MC_SCOPE(addr))); } if ((st & htonl(0xFFC00000)) == htonl(0xFE800000)) return (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL)); /* addr-select 3.1 */ if ((st & htonl(0xFFC00000)) == htonl(0xFEC00000)) return (IPV6_ADDR_SITELOCAL | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_SITELOCAL)); /* addr-select 3.1 */ if ((st & htonl(0xFE000000)) == htonl(0xFC000000)) return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* RFC 4193 */ if ((addr->s6_addr32[0] | addr->s6_addr32[1]) == 0) { if (addr->s6_addr32[2] == 0) { if (addr->s6_addr32[3] == 0) return IPV6_ADDR_ANY; if (addr->s6_addr32[3] == htonl(0x00000001)) return (IPV6_ADDR_LOOPBACK | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL)); /* addr-select 3.4 */ return (IPV6_ADDR_COMPATv4 | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.3 */ } if (addr->s6_addr32[2] == htonl(0x0000ffff)) return (IPV6_ADDR_MAPPED | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.3 */ } return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.4 */ } EXPORT_SYMBOL(__ipv6_addr_type); static ATOMIC_NOTIFIER_HEAD(inet6addr_chain); static BLOCKING_NOTIFIER_HEAD(inet6addr_validator_chain); int register_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&inet6addr_chain, nb); } EXPORT_SYMBOL(register_inet6addr_notifier); int unregister_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&inet6addr_chain, nb); } EXPORT_SYMBOL(unregister_inet6addr_notifier); int inet6addr_notifier_call_chain(unsigned long val, void *v) { return atomic_notifier_call_chain(&inet6addr_chain, val, v); } EXPORT_SYMBOL(inet6addr_notifier_call_chain); int register_inet6addr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&inet6addr_validator_chain, nb); } EXPORT_SYMBOL(register_inet6addr_validator_notifier); int unregister_inet6addr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&inet6addr_validator_chain, nb); } EXPORT_SYMBOL(unregister_inet6addr_validator_notifier); int inet6addr_validator_notifier_call_chain(unsigned long val, void *v) { return blocking_notifier_call_chain(&inet6addr_validator_chain, val, v); } EXPORT_SYMBOL(inet6addr_validator_notifier_call_chain); static struct dst_entry *eafnosupport_ipv6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { return ERR_PTR(-EAFNOSUPPORT); } static int eafnosupport_ipv6_route_input(struct sk_buff *skb) { return -EAFNOSUPPORT; } static struct fib6_table *eafnosupport_fib6_get_table(struct net *net, u32 id) { return NULL; } static int eafnosupport_fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags) { return -EAFNOSUPPORT; } static int eafnosupport_fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags) { return -EAFNOSUPPORT; } static void eafnosupport_fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict) { } static u32 eafnosupport_ip6_mtu_from_fib6(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { return 0; } static int eafnosupport_fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "IPv6 support not enabled in kernel"); return -EAFNOSUPPORT; } static int eafnosupport_ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) { return -EAFNOSUPPORT; } static int eafnosupport_ipv6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { kfree_skb(skb); return -EAFNOSUPPORT; } static struct net_device *eafnosupport_ipv6_dev_find(struct net *net, const struct in6_addr *addr, struct net_device *dev) { return ERR_PTR(-EAFNOSUPPORT); } const struct ipv6_stub *ipv6_stub __read_mostly = &(struct ipv6_stub) { .ipv6_dst_lookup_flow = eafnosupport_ipv6_dst_lookup_flow, .ipv6_route_input = eafnosupport_ipv6_route_input, .fib6_get_table = eafnosupport_fib6_get_table, .fib6_table_lookup = eafnosupport_fib6_table_lookup, .fib6_lookup = eafnosupport_fib6_lookup, .fib6_select_path = eafnosupport_fib6_select_path, .ip6_mtu_from_fib6 = eafnosupport_ip6_mtu_from_fib6, .fib6_nh_init = eafnosupport_fib6_nh_init, .ip6_del_rt = eafnosupport_ip6_del_rt, .ipv6_fragment = eafnosupport_ipv6_fragment, .ipv6_dev_find = eafnosupport_ipv6_dev_find, }; EXPORT_SYMBOL_GPL(ipv6_stub); /* IPv6 Wildcard Address and Loopback Address defined by RFC2553 */ const struct in6_addr in6addr_loopback __aligned(BITS_PER_LONG/8) = IN6ADDR_LOOPBACK_INIT; EXPORT_SYMBOL(in6addr_loopback); const struct in6_addr in6addr_any __aligned(BITS_PER_LONG/8) = IN6ADDR_ANY_INIT; EXPORT_SYMBOL(in6addr_any); const struct in6_addr in6addr_linklocal_allnodes __aligned(BITS_PER_LONG/8) = IN6ADDR_LINKLOCAL_ALLNODES_INIT; EXPORT_SYMBOL(in6addr_linklocal_allnodes); const struct in6_addr in6addr_linklocal_allrouters __aligned(BITS_PER_LONG/8) = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_linklocal_allrouters); const struct in6_addr in6addr_interfacelocal_allnodes __aligned(BITS_PER_LONG/8) = IN6ADDR_INTERFACELOCAL_ALLNODES_INIT; EXPORT_SYMBOL(in6addr_interfacelocal_allnodes); const struct in6_addr in6addr_interfacelocal_allrouters __aligned(BITS_PER_LONG/8) = IN6ADDR_INTERFACELOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_interfacelocal_allrouters); const struct in6_addr in6addr_sitelocal_allrouters __aligned(BITS_PER_LONG/8) = IN6ADDR_SITELOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_sitelocal_allrouters); static void snmp6_free_dev(struct inet6_dev *idev) { kfree(idev->stats.icmpv6msgdev); kfree(idev->stats.icmpv6dev); free_percpu(idev->stats.ipv6); } static void in6_dev_finish_destroy_rcu(struct rcu_head *head) { struct inet6_dev *idev = container_of(head, struct inet6_dev, rcu); snmp6_free_dev(idev); kfree(idev); } /* Nobody refers to this device, we may destroy it. */ void in6_dev_finish_destroy(struct inet6_dev *idev) { struct net_device *dev = idev->dev; WARN_ON(!list_empty(&idev->addr_list)); WARN_ON(rcu_access_pointer(idev->mc_list)); WARN_ON(timer_pending(&idev->rs_timer)); #ifdef NET_REFCNT_DEBUG pr_debug("%s: %s\n", __func__, dev ? dev->name : "NIL"); #endif netdev_put(dev, &idev->dev_tracker); if (!idev->dead) { pr_warn("Freeing alive inet6 device %p\n", idev); return; } call_rcu(&idev->rcu, in6_dev_finish_destroy_rcu); } EXPORT_SYMBOL(in6_dev_finish_destroy);
537 537 537 536 1 16 16 16 537 537 537 1 16 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 // SPDX-License-Identifier: GPL-2.0 /* * xfrm4_policy.c * * Changes: * Kazunori MIYAZAWA @USAGI * YOSHIFUJI Hideaki @USAGI * Split up af-specific portion * */ #include <linux/err.h> #include <linux/kernel.h> #include <linux/inetdevice.h> #include <net/dst.h> #include <net/xfrm.h> #include <net/inet_dscp.h> #include <net/ip.h> #include <net/l3mdev.h> static struct dst_entry *__xfrm4_dst_lookup(struct flowi4 *fl4, const struct xfrm_dst_lookup_params *params) { struct rtable *rt; memset(fl4, 0, sizeof(*fl4)); fl4->daddr = params->daddr->a4; fl4->flowi4_tos = inet_dscp_to_dsfield(params->dscp); fl4->flowi4_l3mdev = l3mdev_master_ifindex_by_index(params->net, params->oif); fl4->flowi4_mark = params->mark; if (params->saddr) fl4->saddr = params->saddr->a4; fl4->flowi4_proto = params->ipproto; fl4->uli = params->uli; rt = __ip_route_output_key(params->net, fl4); if (!IS_ERR(rt)) return &rt->dst; return ERR_CAST(rt); } static struct dst_entry *xfrm4_dst_lookup(const struct xfrm_dst_lookup_params *params) { struct flowi4 fl4; return __xfrm4_dst_lookup(&fl4, params); } static int xfrm4_get_saddr(xfrm_address_t *saddr, const struct xfrm_dst_lookup_params *params) { struct dst_entry *dst; struct flowi4 fl4; dst = __xfrm4_dst_lookup(&fl4, params); if (IS_ERR(dst)) return -EHOSTUNREACH; saddr->a4 = fl4.saddr; dst_release(dst); return 0; } static int xfrm4_fill_dst(struct xfrm_dst *xdst, struct net_device *dev, const struct flowi *fl) { struct rtable *rt = dst_rtable(xdst->route); const struct flowi4 *fl4 = &fl->u.ip4; xdst->u.rt.rt_iif = fl4->flowi4_iif; xdst->u.dst.dev = dev; netdev_hold(dev, &xdst->u.dst.dev_tracker, GFP_ATOMIC); /* Sheit... I remember I did this right. Apparently, * it was magically lost, so this code needs audit */ xdst->u.rt.rt_is_input = rt->rt_is_input; xdst->u.rt.rt_flags = rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL); xdst->u.rt.rt_type = rt->rt_type; xdst->u.rt.rt_uses_gateway = rt->rt_uses_gateway; xdst->u.rt.rt_gw_family = rt->rt_gw_family; if (rt->rt_gw_family == AF_INET) xdst->u.rt.rt_gw4 = rt->rt_gw4; else if (rt->rt_gw_family == AF_INET6) xdst->u.rt.rt_gw6 = rt->rt_gw6; xdst->u.rt.rt_pmtu = rt->rt_pmtu; xdst->u.rt.rt_mtu_locked = rt->rt_mtu_locked; rt_add_uncached_list(&xdst->u.rt); return 0; } static void xfrm4_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh) { struct xfrm_dst *xdst = (struct xfrm_dst *)dst; struct dst_entry *path = xdst->route; path->ops->update_pmtu(path, sk, skb, mtu, confirm_neigh); } static void xfrm4_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) { struct xfrm_dst *xdst = (struct xfrm_dst *)dst; struct dst_entry *path = xdst->route; path->ops->redirect(path, sk, skb); } static void xfrm4_dst_destroy(struct dst_entry *dst) { struct xfrm_dst *xdst = (struct xfrm_dst *)dst; dst_destroy_metrics_generic(dst); rt_del_uncached_list(&xdst->u.rt); xfrm_dst_destroy(xdst); } static struct dst_ops xfrm4_dst_ops_template = { .family = AF_INET, .update_pmtu = xfrm4_update_pmtu, .redirect = xfrm4_redirect, .cow_metrics = dst_cow_metrics_generic, .destroy = xfrm4_dst_destroy, .ifdown = xfrm_dst_ifdown, .local_out = __ip_local_out, .gc_thresh = 32768, }; static const struct xfrm_policy_afinfo xfrm4_policy_afinfo = { .dst_ops = &xfrm4_dst_ops_template, .dst_lookup = xfrm4_dst_lookup, .get_saddr = xfrm4_get_saddr, .fill_dst = xfrm4_fill_dst, .blackhole_route = ipv4_blackhole_route, }; #ifdef CONFIG_SYSCTL static struct ctl_table xfrm4_policy_table[] = { { .procname = "xfrm4_gc_thresh", .data = &init_net.xfrm.xfrm4_dst_ops.gc_thresh, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, }; static __net_init int xfrm4_net_sysctl_init(struct net *net) { struct ctl_table *table; struct ctl_table_header *hdr; table = xfrm4_policy_table; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(xfrm4_policy_table), GFP_KERNEL); if (!table) goto err_alloc; table[0].data = &net->xfrm.xfrm4_dst_ops.gc_thresh; } hdr = register_net_sysctl_sz(net, "net/ipv4", table, ARRAY_SIZE(xfrm4_policy_table)); if (!hdr) goto err_reg; net->ipv4.xfrm4_hdr = hdr; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } static __net_exit void xfrm4_net_sysctl_exit(struct net *net) { const struct ctl_table *table; if (!net->ipv4.xfrm4_hdr) return; table = net->ipv4.xfrm4_hdr->ctl_table_arg; unregister_net_sysctl_table(net->ipv4.xfrm4_hdr); if (!net_eq(net, &init_net)) kfree(table); } #else /* CONFIG_SYSCTL */ static inline int xfrm4_net_sysctl_init(struct net *net) { return 0; } static inline void xfrm4_net_sysctl_exit(struct net *net) { } #endif static int __net_init xfrm4_net_init(struct net *net) { int ret; memcpy(&net->xfrm.xfrm4_dst_ops, &xfrm4_dst_ops_template, sizeof(xfrm4_dst_ops_template)); ret = dst_entries_init(&net->xfrm.xfrm4_dst_ops); if (ret) return ret; ret = xfrm4_net_sysctl_init(net); if (ret) dst_entries_destroy(&net->xfrm.xfrm4_dst_ops); return ret; } static void __net_exit xfrm4_net_exit(struct net *net) { xfrm4_net_sysctl_exit(net); dst_entries_destroy(&net->xfrm.xfrm4_dst_ops); } static struct pernet_operations __net_initdata xfrm4_net_ops = { .init = xfrm4_net_init, .exit = xfrm4_net_exit, }; static void __init xfrm4_policy_init(void) { xfrm_policy_register_afinfo(&xfrm4_policy_afinfo, AF_INET); } void __init xfrm4_init(void) { xfrm4_state_init(); xfrm4_policy_init(); xfrm4_protocol_init(); register_pernet_subsys(&xfrm4_net_ops); }
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 /******************************************************************************* * * Module Name: dsutils - Dispatcher utilities * ******************************************************************************/ #include <acpi/acpi.h> #include "accommon.h" #include "acparser.h" #include "amlcode.h" #include "acdispat.h" #include "acinterp.h" #include "acnamesp.h" #include "acdebug.h" #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME("dsutils") /******************************************************************************* * * FUNCTION: acpi_ds_clear_implicit_return * * PARAMETERS: walk_state - Current State * * RETURN: None. * * DESCRIPTION: Clear and remove a reference on an implicit return value. Used * to delete "stale" return values (if enabled, the return value * from every operator is saved at least momentarily, in case the * parent method exits.) * ******************************************************************************/ void acpi_ds_clear_implicit_return(struct acpi_walk_state *walk_state) { ACPI_FUNCTION_NAME(ds_clear_implicit_return); /* * Slack must be enabled for this feature */ if (!acpi_gbl_enable_interpreter_slack) { return; } if (walk_state->implicit_return_obj) { /* * Delete any "stale" implicit return. However, in * complex statements, the implicit return value can be * bubbled up several levels. */ ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "Removing reference on stale implicit return obj %p\n", walk_state->implicit_return_obj)); acpi_ut_remove_reference(walk_state->implicit_return_obj); walk_state->implicit_return_obj = NULL; } } /******************************************************************************* * * FUNCTION: acpi_ds_do_implicit_return * * PARAMETERS: return_desc - The return value * walk_state - Current State * add_reference - True if a reference should be added to the * return object * * RETURN: TRUE if implicit return enabled, FALSE otherwise * * DESCRIPTION: Implements the optional "implicit return". We save the result * of every ASL operator and control method invocation in case the * parent method exit. Before storing a new return value, we * delete the previous return value. * ******************************************************************************/ u8 acpi_ds_do_implicit_return(union acpi_operand_object *return_desc, struct acpi_walk_state *walk_state, u8 add_reference) { ACPI_FUNCTION_NAME(ds_do_implicit_return); /* * Slack must be enabled for this feature, and we must * have a valid return object */ if ((!acpi_gbl_enable_interpreter_slack) || (!return_desc)) { return (FALSE); } ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "Result %p will be implicitly returned; Prev=%p\n", return_desc, walk_state->implicit_return_obj)); /* * Delete any "stale" implicit return value first. However, in * complex statements, the implicit return value can be * bubbled up several levels, so we don't clear the value if it * is the same as the return_desc. */ if (walk_state->implicit_return_obj) { if (walk_state->implicit_return_obj == return_desc) { return (TRUE); } acpi_ds_clear_implicit_return(walk_state); } /* Save the implicit return value, add a reference if requested */ walk_state->implicit_return_obj = return_desc; if (add_reference) { acpi_ut_add_reference(return_desc); } return (TRUE); } /******************************************************************************* * * FUNCTION: acpi_ds_is_result_used * * PARAMETERS: op - Current Op * walk_state - Current State * * RETURN: TRUE if result is used, FALSE otherwise * * DESCRIPTION: Check if a result object will be used by the parent * ******************************************************************************/ u8 acpi_ds_is_result_used(union acpi_parse_object * op, struct acpi_walk_state * walk_state) { const struct acpi_opcode_info *parent_info; ACPI_FUNCTION_TRACE_PTR(ds_is_result_used, op); /* Must have both an Op and a Result Object */ if (!op) { ACPI_ERROR((AE_INFO, "Null Op")); return_UINT8(TRUE); } /* * We know that this operator is not a * Return() operator (would not come here.) The following code is the * optional support for a so-called "implicit return". Some AML code * assumes that the last value of the method is "implicitly" returned * to the caller. Just save the last result as the return value. * NOTE: this is optional because the ASL language does not actually * support this behavior. */ (void)acpi_ds_do_implicit_return(walk_state->result_obj, walk_state, TRUE); /* * Now determine if the parent will use the result * * If there is no parent, or the parent is a scope_op, we are executing * at the method level. An executing method typically has no parent, * since each method is parsed separately. A method invoked externally * via execute_control_method has a scope_op as the parent. */ if ((!op->common.parent) || (op->common.parent->common.aml_opcode == AML_SCOPE_OP)) { /* No parent, the return value cannot possibly be used */ ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "At Method level, result of [%s] not used\n", acpi_ps_get_opcode_name(op->common. aml_opcode))); return_UINT8(FALSE); } /* Get info on the parent. The root_op is AML_SCOPE */ parent_info = acpi_ps_get_opcode_info(op->common.parent->common.aml_opcode); if (parent_info->class == AML_CLASS_UNKNOWN) { ACPI_ERROR((AE_INFO, "Unknown parent opcode Op=%p", op)); return_UINT8(FALSE); } /* * Decide what to do with the result based on the parent. If * the parent opcode will not use the result, delete the object. * Otherwise leave it as is, it will be deleted when it is used * as an operand later. */ switch (parent_info->class) { case AML_CLASS_CONTROL: switch (op->common.parent->common.aml_opcode) { case AML_RETURN_OP: /* Never delete the return value associated with a return opcode */ goto result_used; case AML_IF_OP: case AML_WHILE_OP: /* * If we are executing the predicate AND this is the predicate op, * we will use the return value */ if ((walk_state->control_state->common.state == ACPI_CONTROL_PREDICATE_EXECUTING) && (walk_state->control_state->control.predicate_op == op)) { goto result_used; } break; default: /* Ignore other control opcodes */ break; } /* The general control opcode returns no result */ goto result_not_used; case AML_CLASS_CREATE: /* * These opcodes allow term_arg(s) as operands and therefore * the operands can be method calls. The result is used. */ goto result_used; case AML_CLASS_NAMED_OBJECT: if ((op->common.parent->common.aml_opcode == AML_REGION_OP) || (op->common.parent->common.aml_opcode == AML_DATA_REGION_OP) || (op->common.parent->common.aml_opcode == AML_PACKAGE_OP) || (op->common.parent->common.aml_opcode == AML_BUFFER_OP) || (op->common.parent->common.aml_opcode == AML_VARIABLE_PACKAGE_OP) || (op->common.parent->common.aml_opcode == AML_INT_EVAL_SUBTREE_OP) || (op->common.parent->common.aml_opcode == AML_BANK_FIELD_OP)) { /* * These opcodes allow term_arg(s) as operands and therefore * the operands can be method calls. The result is used. */ goto result_used; } goto result_not_used; default: /* * In all other cases. the parent will actually use the return * object, so keep it. */ goto result_used; } result_used: ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "Result of [%s] used by Parent [%s] Op=%p\n", acpi_ps_get_opcode_name(op->common.aml_opcode), acpi_ps_get_opcode_name(op->common.parent->common. aml_opcode), op)); return_UINT8(TRUE); result_not_used: ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "Result of [%s] not used by Parent [%s] Op=%p\n", acpi_ps_get_opcode_name(op->common.aml_opcode), acpi_ps_get_opcode_name(op->common.parent->common. aml_opcode), op)); return_UINT8(FALSE); } /******************************************************************************* * * FUNCTION: acpi_ds_delete_result_if_not_used * * PARAMETERS: op - Current parse Op * result_obj - Result of the operation * walk_state - Current state * * RETURN: Status * * DESCRIPTION: Used after interpretation of an opcode. If there is an internal * result descriptor, check if the parent opcode will actually use * this result. If not, delete the result now so that it will * not become orphaned. * ******************************************************************************/ void acpi_ds_delete_result_if_not_used(union acpi_parse_object *op, union acpi_operand_object *result_obj, struct acpi_walk_state *walk_state) { union acpi_operand_object *obj_desc; acpi_status status; ACPI_FUNCTION_TRACE_PTR(ds_delete_result_if_not_used, result_obj); if (!op) { ACPI_ERROR((AE_INFO, "Null Op")); return_VOID; } if (!result_obj) { return_VOID; } if (!acpi_ds_is_result_used(op, walk_state)) { /* Must pop the result stack (obj_desc should be equal to result_obj) */ status = acpi_ds_result_pop(&obj_desc, walk_state); if (ACPI_SUCCESS(status)) { acpi_ut_remove_reference(result_obj); } } return_VOID; } /******************************************************************************* * * FUNCTION: acpi_ds_resolve_operands * * PARAMETERS: walk_state - Current walk state with operands on stack * * RETURN: Status * * DESCRIPTION: Resolve all operands to their values. Used to prepare * arguments to a control method invocation (a call from one * method to another.) * ******************************************************************************/ acpi_status acpi_ds_resolve_operands(struct acpi_walk_state *walk_state) { u32 i; acpi_status status = AE_OK; ACPI_FUNCTION_TRACE_PTR(ds_resolve_operands, walk_state); /* * Attempt to resolve each of the valid operands * Method arguments are passed by reference, not by value. This means * that the actual objects are passed, not copies of the objects. */ for (i = 0; i < walk_state->num_operands; i++) { status = acpi_ex_resolve_to_value(&walk_state->operands[i], walk_state); if (ACPI_FAILURE(status)) { break; } } return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_ds_clear_operands * * PARAMETERS: walk_state - Current walk state with operands on stack * * RETURN: None * * DESCRIPTION: Clear all operands on the current walk state operand stack. * ******************************************************************************/ void acpi_ds_clear_operands(struct acpi_walk_state *walk_state) { u32 i; ACPI_FUNCTION_TRACE_PTR(ds_clear_operands, walk_state); /* Remove a reference on each operand on the stack */ for (i = 0; i < walk_state->num_operands; i++) { /* * Remove a reference to all operands, including both * "Arguments" and "Targets". */ acpi_ut_remove_reference(walk_state->operands[i]); walk_state->operands[i] = NULL; } walk_state->num_operands = 0; return_VOID; } /******************************************************************************* * * FUNCTION: acpi_ds_create_operand * * PARAMETERS: walk_state - Current walk state * arg - Parse object for the argument * arg_index - Which argument (zero based) * * RETURN: Status * * DESCRIPTION: Translate a parse tree object that is an argument to an AML * opcode to the equivalent interpreter object. This may include * looking up a name or entering a new name into the internal * namespace. * ******************************************************************************/ acpi_status acpi_ds_create_operand(struct acpi_walk_state *walk_state, union acpi_parse_object *arg, u32 arg_index) { acpi_status status = AE_OK; char *name_string; u32 name_length; union acpi_operand_object *obj_desc; union acpi_parse_object *parent_op; u16 opcode; acpi_interpreter_mode interpreter_mode; const struct acpi_opcode_info *op_info; ACPI_FUNCTION_TRACE_PTR(ds_create_operand, arg); /* A valid name must be looked up in the namespace */ if ((arg->common.aml_opcode == AML_INT_NAMEPATH_OP) && (arg->common.value.string) && !(arg->common.flags & ACPI_PARSEOP_IN_STACK)) { ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "Getting a name: Arg=%p\n", arg)); /* Get the entire name string from the AML stream */ status = acpi_ex_get_name_string(ACPI_TYPE_ANY, arg->common.value.buffer, &name_string, &name_length); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* All prefixes have been handled, and the name is in name_string */ /* * Special handling for buffer_field declarations. This is a deferred * opcode that unfortunately defines the field name as the last * parameter instead of the first. We get here when we are performing * the deferred execution, so the actual name of the field is already * in the namespace. We don't want to attempt to look it up again * because we may be executing in a different scope than where the * actual opcode exists. */ if ((walk_state->deferred_node) && (walk_state->deferred_node->type == ACPI_TYPE_BUFFER_FIELD) && (arg_index == (u32) ((walk_state->opcode == AML_CREATE_FIELD_OP) ? 3 : 2))) { obj_desc = ACPI_CAST_PTR(union acpi_operand_object, walk_state->deferred_node); status = AE_OK; } else { /* All other opcodes */ /* * Differentiate between a namespace "create" operation * versus a "lookup" operation (IMODE_LOAD_PASS2 vs. * IMODE_EXECUTE) in order to support the creation of * namespace objects during the execution of control methods. */ parent_op = arg->common.parent; op_info = acpi_ps_get_opcode_info(parent_op->common. aml_opcode); if ((op_info->flags & AML_NSNODE) && (parent_op->common.aml_opcode != AML_INT_METHODCALL_OP) && (parent_op->common.aml_opcode != AML_REGION_OP) && (parent_op->common.aml_opcode != AML_INT_NAMEPATH_OP)) { /* Enter name into namespace if not found */ interpreter_mode = ACPI_IMODE_LOAD_PASS2; } else { /* Return a failure if name not found */ interpreter_mode = ACPI_IMODE_EXECUTE; } status = acpi_ns_lookup(walk_state->scope_info, name_string, ACPI_TYPE_ANY, interpreter_mode, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, walk_state, ACPI_CAST_INDIRECT_PTR(struct acpi_namespace_node, &obj_desc)); /* * The only case where we pass through (ignore) a NOT_FOUND * error is for the cond_ref_of opcode. */ if (status == AE_NOT_FOUND) { if (parent_op->common.aml_opcode == AML_CONDITIONAL_REF_OF_OP) { /* * For the Conditional Reference op, it's OK if * the name is not found; We just need a way to * indicate this to the interpreter, set the * object to the root */ obj_desc = ACPI_CAST_PTR(union acpi_operand_object, acpi_gbl_root_node); status = AE_OK; } else if (parent_op->common.aml_opcode == AML_EXTERNAL_OP) { /* * This opcode should never appear here. It is used only * by AML disassemblers and is surrounded by an If(0) * by the ASL compiler. * * Therefore, if we see it here, it is a serious error. */ status = AE_AML_BAD_OPCODE; } else { /* * We just plain didn't find it -- which is a * very serious error at this point */ status = AE_AML_NAME_NOT_FOUND; } } if (ACPI_FAILURE(status)) { ACPI_ERROR_NAMESPACE(walk_state->scope_info, name_string, status); } } /* Free the namestring created above */ ACPI_FREE(name_string); /* Check status from the lookup */ if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* Put the resulting object onto the current object stack */ status = acpi_ds_obj_stack_push(obj_desc, walk_state); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } acpi_db_display_argument_object(obj_desc, walk_state); } else { /* Check for null name case */ if ((arg->common.aml_opcode == AML_INT_NAMEPATH_OP) && !(arg->common.flags & ACPI_PARSEOP_IN_STACK)) { /* * If the name is null, this means that this is an * optional result parameter that was not specified * in the original ASL. Create a Zero Constant for a * placeholder. (Store to a constant is a Noop.) */ opcode = AML_ZERO_OP; /* Has no arguments! */ ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "Null namepath: Arg=%p\n", arg)); } else { opcode = arg->common.aml_opcode; } /* Get the object type of the argument */ op_info = acpi_ps_get_opcode_info(opcode); if (op_info->object_type == ACPI_TYPE_INVALID) { return_ACPI_STATUS(AE_NOT_IMPLEMENTED); } if ((op_info->flags & AML_HAS_RETVAL) || (arg->common.flags & ACPI_PARSEOP_IN_STACK)) { /* * Use value that was already previously returned * by the evaluation of this argument */ status = acpi_ds_result_pop(&obj_desc, walk_state); if (ACPI_FAILURE(status)) { /* * Only error is underflow, and this indicates * a missing or null operand! */ ACPI_EXCEPTION((AE_INFO, status, "Missing or null operand")); return_ACPI_STATUS(status); } } else { /* Create an ACPI_INTERNAL_OBJECT for the argument */ obj_desc = acpi_ut_create_internal_object(op_info-> object_type); if (!obj_desc) { return_ACPI_STATUS(AE_NO_MEMORY); } /* Initialize the new object */ status = acpi_ds_init_object_from_op(walk_state, arg, opcode, &obj_desc); if (ACPI_FAILURE(status)) { acpi_ut_delete_object_desc(obj_desc); return_ACPI_STATUS(status); } } /* Put the operand object on the object stack */ status = acpi_ds_obj_stack_push(obj_desc, walk_state); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } acpi_db_display_argument_object(obj_desc, walk_state); } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ds_create_operands * * PARAMETERS: walk_state - Current state * first_arg - First argument of a parser argument tree * * RETURN: Status * * DESCRIPTION: Convert an operator's arguments from a parse tree format to * namespace objects and place those argument object on the object * stack in preparation for evaluation by the interpreter. * ******************************************************************************/ acpi_status acpi_ds_create_operands(struct acpi_walk_state *walk_state, union acpi_parse_object *first_arg) { acpi_status status = AE_OK; union acpi_parse_object *arg; union acpi_parse_object *arguments[ACPI_OBJ_NUM_OPERANDS]; u32 arg_count = 0; u32 index = walk_state->num_operands; u32 i; ACPI_FUNCTION_TRACE_PTR(ds_create_operands, first_arg); /* Get all arguments in the list */ arg = first_arg; while (arg) { if (index >= ACPI_OBJ_NUM_OPERANDS) { return_ACPI_STATUS(AE_BAD_DATA); } arguments[index] = arg; walk_state->operands[index] = NULL; /* Move on to next argument, if any */ arg = arg->common.next; arg_count++; index++; } ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "NumOperands %d, ArgCount %d, Index %d\n", walk_state->num_operands, arg_count, index)); /* Create the interpreter arguments, in reverse order */ index--; for (i = 0; i < arg_count; i++) { arg = arguments[index]; walk_state->operand_index = (u8)index; status = acpi_ds_create_operand(walk_state, arg, index); if (ACPI_FAILURE(status)) { goto cleanup; } ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH, "Created Arg #%u (%p) %u args total\n", index, arg, arg_count)); index--; } return_ACPI_STATUS(status); cleanup: /* * We must undo everything done above; meaning that we must * pop everything off of the operand stack and delete those * objects */ acpi_ds_obj_stack_pop_and_delete(arg_count, walk_state); ACPI_EXCEPTION((AE_INFO, status, "While creating Arg %u", index)); return_ACPI_STATUS(status); } /***************************************************************************** * * FUNCTION: acpi_ds_evaluate_name_path * * PARAMETERS: walk_state - Current state of the parse tree walk, * the opcode of current operation should be * AML_INT_NAMEPATH_OP * * RETURN: Status * * DESCRIPTION: Translate the -name_path- parse tree object to the equivalent * interpreter object, convert it to value, if needed, duplicate * it, if needed, and push it onto the current result stack. * ****************************************************************************/ acpi_status acpi_ds_evaluate_name_path(struct acpi_walk_state *walk_state) { acpi_status status = AE_OK; union acpi_parse_object *op = walk_state->op; union acpi_operand_object **operand = &walk_state->operands[0]; union acpi_operand_object *new_obj_desc; u8 type; ACPI_FUNCTION_TRACE_PTR(ds_evaluate_name_path, walk_state); if (!op->common.parent) { /* This happens after certain exception processing */ goto exit; } if ((op->common.parent->common.aml_opcode == AML_PACKAGE_OP) || (op->common.parent->common.aml_opcode == AML_VARIABLE_PACKAGE_OP) || (op->common.parent->common.aml_opcode == AML_REF_OF_OP)) { /* TBD: Should we specify this feature as a bit of op_info->Flags of these opcodes? */ goto exit; } status = acpi_ds_create_operand(walk_state, op, 0); if (ACPI_FAILURE(status)) { goto exit; } if (op->common.flags & ACPI_PARSEOP_TARGET) { new_obj_desc = *operand; goto push_result; } type = (*operand)->common.type; status = acpi_ex_resolve_to_value(operand, walk_state); if (ACPI_FAILURE(status)) { goto exit; } if (type == ACPI_TYPE_INTEGER) { /* It was incremented by acpi_ex_resolve_to_value */ acpi_ut_remove_reference(*operand); status = acpi_ut_copy_iobject_to_iobject(*operand, &new_obj_desc, walk_state); if (ACPI_FAILURE(status)) { goto exit; } } else { /* * The object either was anew created or is * a Namespace node - don't decrement it. */ new_obj_desc = *operand; } /* Cleanup for name-path operand */ status = acpi_ds_obj_stack_pop(1, walk_state); if (ACPI_FAILURE(status)) { walk_state->result_obj = new_obj_desc; goto exit; } push_result: walk_state->result_obj = new_obj_desc; status = acpi_ds_result_push(walk_state->result_obj, walk_state); if (ACPI_SUCCESS(status)) { /* Force to take it from stack */ op->common.flags |= ACPI_PARSEOP_IN_STACK; } exit: return_ACPI_STATUS(status); }
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 /* * Copyright (c) 2016 Intel Corporation * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #ifndef __DRM_BRIDGE_H__ #define __DRM_BRIDGE_H__ #include <linux/ctype.h> #include <linux/list.h> #include <linux/mutex.h> #include <drm/drm_atomic.h> #include <drm/drm_encoder.h> #include <drm/drm_mode_object.h> #include <drm/drm_modes.h> struct device_node; struct drm_bridge; struct drm_bridge_timings; struct drm_connector; struct drm_display_info; struct drm_minor; struct drm_panel; struct edid; struct hdmi_codec_daifmt; struct hdmi_codec_params; struct i2c_adapter; /** * enum drm_bridge_attach_flags - Flags for &drm_bridge_funcs.attach */ enum drm_bridge_attach_flags { /** * @DRM_BRIDGE_ATTACH_NO_CONNECTOR: When this flag is set the bridge * shall not create a drm_connector. */ DRM_BRIDGE_ATTACH_NO_CONNECTOR = BIT(0), }; /** * struct drm_bridge_funcs - drm_bridge control functions */ struct drm_bridge_funcs { /** * @attach: * * This callback is invoked whenever our bridge is being attached to a * &drm_encoder. The flags argument tunes the behaviour of the attach * operation (see DRM_BRIDGE_ATTACH_*). * * The @attach callback is optional. * * RETURNS: * * Zero on success, error code on failure. */ int (*attach)(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags); /** * @detach: * * This callback is invoked whenever our bridge is being detached from a * &drm_encoder. * * The @detach callback is optional. */ void (*detach)(struct drm_bridge *bridge); /** * @mode_valid: * * This callback is used to check if a specific mode is valid in this * bridge. This should be implemented if the bridge has some sort of * restriction in the modes it can display. For example, a given bridge * may be responsible to set a clock value. If the clock can not * produce all the values for the available modes then this callback * can be used to restrict the number of modes to only the ones that * can be displayed. * * This hook is used by the probe helpers to filter the mode list in * drm_helper_probe_single_connector_modes(), and it is used by the * atomic helpers to validate modes supplied by userspace in * drm_atomic_helper_check_modeset(). * * The @mode_valid callback is optional. * * NOTE: * * Since this function is both called from the check phase of an atomic * commit, and the mode validation in the probe paths it is not allowed * to look at anything else but the passed-in mode, and validate it * against configuration-invariant hardware constraints. Any further * limits which depend upon the configuration can only be checked in * @mode_fixup. * * RETURNS: * * drm_mode_status Enum */ enum drm_mode_status (*mode_valid)(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode); /** * @mode_fixup: * * This callback is used to validate and adjust a mode. The parameter * mode is the display mode that should be fed to the next element in * the display chain, either the final &drm_connector or the next * &drm_bridge. The parameter adjusted_mode is the input mode the bridge * requires. It can be modified by this callback and does not need to * match mode. See also &drm_crtc_state.adjusted_mode for more details. * * This is the only hook that allows a bridge to reject a modeset. If * this function passes all other callbacks must succeed for this * configuration. * * The mode_fixup callback is optional. &drm_bridge_funcs.mode_fixup() * is not called when &drm_bridge_funcs.atomic_check() is implemented, * so only one of them should be provided. * * NOTE: * * This function is called in the check phase of atomic modesets, which * can be aborted for any reason (including on userspace's request to * just check whether a configuration would be possible). Drivers MUST * NOT touch any persistent state (hardware or software) or data * structures except the passed in @state parameter. * * Also beware that userspace can request its own custom modes, neither * core nor helpers filter modes to the list of probe modes reported by * the GETCONNECTOR IOCTL and stored in &drm_connector.modes. To ensure * that modes are filtered consistently put any bridge constraints and * limits checks into @mode_valid. * * RETURNS: * * True if an acceptable configuration is possible, false if the modeset * operation should be rejected. */ bool (*mode_fixup)(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode); /** * @disable: * * This callback should disable the bridge. It is called right before * the preceding element in the display pipe is disabled. If the * preceding element is a bridge this means it's called before that * bridge's @disable vfunc. If the preceding element is a &drm_encoder * it's called right before the &drm_encoder_helper_funcs.disable, * &drm_encoder_helper_funcs.prepare or &drm_encoder_helper_funcs.dpms * hook. * * The bridge can assume that the display pipe (i.e. clocks and timing * signals) feeding it is still running when this callback is called. * * The @disable callback is optional. * * NOTE: * * This is deprecated, do not use! * New drivers shall use &drm_bridge_funcs.atomic_disable. */ void (*disable)(struct drm_bridge *bridge); /** * @post_disable: * * This callback should disable the bridge. It is called right after the * preceding element in the display pipe is disabled. If the preceding * element is a bridge this means it's called after that bridge's * @post_disable function. If the preceding element is a &drm_encoder * it's called right after the encoder's * &drm_encoder_helper_funcs.disable, &drm_encoder_helper_funcs.prepare * or &drm_encoder_helper_funcs.dpms hook. * * The bridge must assume that the display pipe (i.e. clocks and timing * signals) feeding it is no longer running when this callback is * called. * * The @post_disable callback is optional. * * NOTE: * * This is deprecated, do not use! * New drivers shall use &drm_bridge_funcs.atomic_post_disable. */ void (*post_disable)(struct drm_bridge *bridge); /** * @mode_set: * * This callback should set the given mode on the bridge. It is called * after the @mode_set callback for the preceding element in the display * pipeline has been called already. If the bridge is the first element * then this would be &drm_encoder_helper_funcs.mode_set. The display * pipe (i.e. clocks and timing signals) is off when this function is * called. * * The adjusted_mode parameter is the mode output by the CRTC for the * first bridge in the chain. It can be different from the mode * parameter that contains the desired mode for the connector at the end * of the bridges chain, for instance when the first bridge in the chain * performs scaling. The adjusted mode is mostly useful for the first * bridge in the chain and is likely irrelevant for the other bridges. * * For atomic drivers the adjusted_mode is the mode stored in * &drm_crtc_state.adjusted_mode. * * NOTE: * * This is deprecated, do not use! * New drivers shall set their mode in the * &drm_bridge_funcs.atomic_enable operation. */ void (*mode_set)(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode); /** * @pre_enable: * * This callback should enable the bridge. It is called right before * the preceding element in the display pipe is enabled. If the * preceding element is a bridge this means it's called before that * bridge's @pre_enable function. If the preceding element is a * &drm_encoder it's called right before the encoder's * &drm_encoder_helper_funcs.enable, &drm_encoder_helper_funcs.commit or * &drm_encoder_helper_funcs.dpms hook. * * The display pipe (i.e. clocks and timing signals) feeding this bridge * will not yet be running when this callback is called. The bridge must * not enable the display link feeding the next bridge in the chain (if * there is one) when this callback is called. * * The @pre_enable callback is optional. * * NOTE: * * This is deprecated, do not use! * New drivers shall use &drm_bridge_funcs.atomic_pre_enable. */ void (*pre_enable)(struct drm_bridge *bridge); /** * @enable: * * This callback should enable the bridge. It is called right after * the preceding element in the display pipe is enabled. If the * preceding element is a bridge this means it's called after that * bridge's @enable function. If the preceding element is a * &drm_encoder it's called right after the encoder's * &drm_encoder_helper_funcs.enable, &drm_encoder_helper_funcs.commit or * &drm_encoder_helper_funcs.dpms hook. * * The bridge can assume that the display pipe (i.e. clocks and timing * signals) feeding it is running when this callback is called. This * callback must enable the display link feeding the next bridge in the * chain if there is one. * * The @enable callback is optional. * * NOTE: * * This is deprecated, do not use! * New drivers shall use &drm_bridge_funcs.atomic_enable. */ void (*enable)(struct drm_bridge *bridge); /** * @atomic_pre_enable: * * This callback should enable the bridge. It is called right before * the preceding element in the display pipe is enabled. If the * preceding element is a bridge this means it's called before that * bridge's @atomic_pre_enable or @pre_enable function. If the preceding * element is a &drm_encoder it's called right before the encoder's * &drm_encoder_helper_funcs.atomic_enable hook. * * The display pipe (i.e. clocks and timing signals) feeding this bridge * will not yet be running when this callback is called. The bridge must * not enable the display link feeding the next bridge in the chain (if * there is one) when this callback is called. * * The @atomic_pre_enable callback is optional. */ void (*atomic_pre_enable)(struct drm_bridge *bridge, struct drm_atomic_state *state); /** * @atomic_enable: * * This callback should enable the bridge. It is called right after * the preceding element in the display pipe is enabled. If the * preceding element is a bridge this means it's called after that * bridge's @atomic_enable or @enable function. If the preceding element * is a &drm_encoder it's called right after the encoder's * &drm_encoder_helper_funcs.atomic_enable hook. * * The bridge can assume that the display pipe (i.e. clocks and timing * signals) feeding it is running when this callback is called. This * callback must enable the display link feeding the next bridge in the * chain if there is one. * * The @atomic_enable callback is optional. */ void (*atomic_enable)(struct drm_bridge *bridge, struct drm_atomic_state *state); /** * @atomic_disable: * * This callback should disable the bridge. It is called right before * the preceding element in the display pipe is disabled. If the * preceding element is a bridge this means it's called before that * bridge's @atomic_disable or @disable vfunc. If the preceding element * is a &drm_encoder it's called right before the * &drm_encoder_helper_funcs.atomic_disable hook. * * The bridge can assume that the display pipe (i.e. clocks and timing * signals) feeding it is still running when this callback is called. * * The @atomic_disable callback is optional. */ void (*atomic_disable)(struct drm_bridge *bridge, struct drm_atomic_state *state); /** * @atomic_post_disable: * * This callback should disable the bridge. It is called right after the * preceding element in the display pipe is disabled. If the preceding * element is a bridge this means it's called after that bridge's * @atomic_post_disable or @post_disable function. If the preceding * element is a &drm_encoder it's called right after the encoder's * &drm_encoder_helper_funcs.atomic_disable hook. * * The bridge must assume that the display pipe (i.e. clocks and timing * signals) feeding it is no longer running when this callback is * called. * * The @atomic_post_disable callback is optional. */ void (*atomic_post_disable)(struct drm_bridge *bridge, struct drm_atomic_state *state); /** * @atomic_duplicate_state: * * Duplicate the current bridge state object (which is guaranteed to be * non-NULL). * * The atomic_duplicate_state hook is mandatory if the bridge * implements any of the atomic hooks, and should be left unassigned * otherwise. For bridges that don't subclass &drm_bridge_state, the * drm_atomic_helper_bridge_duplicate_state() helper function shall be * used to implement this hook. * * RETURNS: * A valid drm_bridge_state object or NULL if the allocation fails. */ struct drm_bridge_state *(*atomic_duplicate_state)(struct drm_bridge *bridge); /** * @atomic_destroy_state: * * Destroy a bridge state object previously allocated by * &drm_bridge_funcs.atomic_duplicate_state(). * * The atomic_destroy_state hook is mandatory if the bridge implements * any of the atomic hooks, and should be left unassigned otherwise. * For bridges that don't subclass &drm_bridge_state, the * drm_atomic_helper_bridge_destroy_state() helper function shall be * used to implement this hook. */ void (*atomic_destroy_state)(struct drm_bridge *bridge, struct drm_bridge_state *state); /** * @atomic_get_output_bus_fmts: * * Return the supported bus formats on the output end of a bridge. * The returned array must be allocated with kmalloc() and will be * freed by the caller. If the allocation fails, NULL should be * returned. num_output_fmts must be set to the returned array size. * Formats listed in the returned array should be listed in decreasing * preference order (the core will try all formats until it finds one * that works). * * This method is only called on the last element of the bridge chain * as part of the bus format negotiation process that happens in * &drm_atomic_bridge_chain_select_bus_fmts(). * This method is optional. When not implemented, the core will * fall back to &drm_connector.display_info.bus_formats[0] if * &drm_connector.display_info.num_bus_formats > 0, * or to MEDIA_BUS_FMT_FIXED otherwise. */ u32 *(*atomic_get_output_bus_fmts)(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, unsigned int *num_output_fmts); /** * @atomic_get_input_bus_fmts: * * Return the supported bus formats on the input end of a bridge for * a specific output bus format. * * The returned array must be allocated with kmalloc() and will be * freed by the caller. If the allocation fails, NULL should be * returned. num_input_fmts must be set to the returned array size. * Formats listed in the returned array should be listed in decreasing * preference order (the core will try all formats until it finds one * that works). When the format is not supported NULL should be * returned and num_input_fmts should be set to 0. * * This method is called on all elements of the bridge chain as part of * the bus format negotiation process that happens in * drm_atomic_bridge_chain_select_bus_fmts(). * This method is optional. When not implemented, the core will bypass * bus format negotiation on this element of the bridge without * failing, and the previous element in the chain will be passed * MEDIA_BUS_FMT_FIXED as its output bus format. * * Bridge drivers that need to support being linked to bridges that are * not supporting bus format negotiation should handle the * output_fmt == MEDIA_BUS_FMT_FIXED case appropriately, by selecting a * sensible default value or extracting this information from somewhere * else (FW property, &drm_display_mode, &drm_display_info, ...) * * Note: Even if input format selection on the first bridge has no * impact on the negotiation process (bus format negotiation stops once * we reach the first element of the chain), drivers are expected to * return accurate input formats as the input format may be used to * configure the CRTC output appropriately. */ u32 *(*atomic_get_input_bus_fmts)(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts); /** * @atomic_check: * * This method is responsible for checking bridge state correctness. * It can also check the state of the surrounding components in chain * to make sure the whole pipeline can work properly. * * &drm_bridge_funcs.atomic_check() hooks are called in reverse * order (from the last to the first bridge). * * This method is optional. &drm_bridge_funcs.mode_fixup() is not * called when &drm_bridge_funcs.atomic_check() is implemented, so only * one of them should be provided. * * If drivers need to tweak &drm_bridge_state.input_bus_cfg.flags or * &drm_bridge_state.output_bus_cfg.flags it should happen in * this function. By default the &drm_bridge_state.output_bus_cfg.flags * field is set to the next bridge * &drm_bridge_state.input_bus_cfg.flags value or * &drm_connector.display_info.bus_flags if the bridge is the last * element in the chain. * * RETURNS: * zero if the check passed, a negative error code otherwise. */ int (*atomic_check)(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state); /** * @atomic_reset: * * Reset the bridge to a predefined state (or retrieve its current * state) and return a &drm_bridge_state object matching this state. * This function is called at attach time. * * The atomic_reset hook is mandatory if the bridge implements any of * the atomic hooks, and should be left unassigned otherwise. For * bridges that don't subclass &drm_bridge_state, the * drm_atomic_helper_bridge_reset() helper function shall be used to * implement this hook. * * Note that the atomic_reset() semantics is not exactly matching the * reset() semantics found on other components (connector, plane, ...). * * 1. The reset operation happens when the bridge is attached, not when * drm_mode_config_reset() is called * 2. It's meant to be used exclusively on bridges that have been * converted to the ATOMIC API * * RETURNS: * A valid drm_bridge_state object in case of success, an ERR_PTR() * giving the reason of the failure otherwise. */ struct drm_bridge_state *(*atomic_reset)(struct drm_bridge *bridge); /** * @detect: * * Check if anything is attached to the bridge output. * * This callback is optional, if not implemented the bridge will be * considered as always having a component attached to its output. * Bridges that implement this callback shall set the * DRM_BRIDGE_OP_DETECT flag in their &drm_bridge->ops. * * RETURNS: * * drm_connector_status indicating the bridge output status. */ enum drm_connector_status (*detect)(struct drm_bridge *bridge); /** * @get_modes: * * Fill all modes currently valid for the sink into the &drm_connector * with drm_mode_probed_add(). * * The @get_modes callback is mostly intended to support non-probeable * displays such as many fixed panels. Bridges that support reading * EDID shall leave @get_modes unimplemented and implement the * &drm_bridge_funcs->edid_read callback instead. * * This callback is optional. Bridges that implement it shall set the * DRM_BRIDGE_OP_MODES flag in their &drm_bridge->ops. * * The connector parameter shall be used for the sole purpose of * filling modes, and shall not be stored internally by bridge drivers * for future usage. * * RETURNS: * * The number of modes added by calling drm_mode_probed_add(). */ int (*get_modes)(struct drm_bridge *bridge, struct drm_connector *connector); /** * @edid_read: * * Read the EDID data of the connected display. * * The @edid_read callback is the preferred way of reporting mode * information for a display connected to the bridge output. Bridges * that support reading EDID shall implement this callback and leave * the @get_modes callback unimplemented. * * The caller of this operation shall first verify the output * connection status and refrain from reading EDID from a disconnected * output. * * This callback is optional. Bridges that implement it shall set the * DRM_BRIDGE_OP_EDID flag in their &drm_bridge->ops. * * The connector parameter shall be used for the sole purpose of EDID * retrieval, and shall not be stored internally by bridge drivers for * future usage. * * RETURNS: * * An edid structure newly allocated with drm_edid_alloc() or returned * from drm_edid_read() family of functions on success, or NULL * otherwise. The caller is responsible for freeing the returned edid * structure with drm_edid_free(). */ const struct drm_edid *(*edid_read)(struct drm_bridge *bridge, struct drm_connector *connector); /** * @hpd_notify: * * Notify the bridge of hot plug detection. * * This callback is optional, it may be implemented by bridges that * need to be notified of display connection or disconnection for * internal reasons. One use case is to reset the internal state of CEC * controllers for HDMI bridges. */ void (*hpd_notify)(struct drm_bridge *bridge, enum drm_connector_status status); /** * @hpd_enable: * * Enable hot plug detection. From now on the bridge shall call * drm_bridge_hpd_notify() each time a change is detected in the output * connection status, until hot plug detection gets disabled with * @hpd_disable. * * This callback is optional and shall only be implemented by bridges * that support hot-plug notification without polling. Bridges that * implement it shall also implement the @hpd_disable callback and set * the DRM_BRIDGE_OP_HPD flag in their &drm_bridge->ops. */ void (*hpd_enable)(struct drm_bridge *bridge); /** * @hpd_disable: * * Disable hot plug detection. Once this function returns the bridge * shall not call drm_bridge_hpd_notify() when a change in the output * connection status occurs. * * This callback is optional and shall only be implemented by bridges * that support hot-plug notification without polling. Bridges that * implement it shall also implement the @hpd_enable callback and set * the DRM_BRIDGE_OP_HPD flag in their &drm_bridge->ops. */ void (*hpd_disable)(struct drm_bridge *bridge); /** * @hdmi_tmds_char_rate_valid: * * Check whether a particular TMDS character rate is supported by the * driver. * * This callback is optional and should only be implemented by the * bridges that take part in the HDMI connector implementation. Bridges * that implement it shall set the DRM_BRIDGE_OP_HDMI flag in their * &drm_bridge->ops. * * Returns: * * Either &drm_mode_status.MODE_OK or one of the failure reasons * in &enum drm_mode_status. */ enum drm_mode_status (*hdmi_tmds_char_rate_valid)(const struct drm_bridge *bridge, const struct drm_display_mode *mode, unsigned long long tmds_rate); /** * @hdmi_clear_infoframe: * * This callback clears the infoframes in the hardware during commit. * It will be called multiple times, once for every disabled infoframe * type. * * This callback is optional but it must be implemented by bridges that * set the DRM_BRIDGE_OP_HDMI flag in their &drm_bridge->ops. */ int (*hdmi_clear_infoframe)(struct drm_bridge *bridge, enum hdmi_infoframe_type type); /** * @hdmi_write_infoframe: * * Program the infoframe into the hardware. It will be called multiple * times, once for every updated infoframe type. * * This callback is optional but it must be implemented by bridges that * set the DRM_BRIDGE_OP_HDMI flag in their &drm_bridge->ops. */ int (*hdmi_write_infoframe)(struct drm_bridge *bridge, enum hdmi_infoframe_type type, const u8 *buffer, size_t len); /** * @hdmi_audio_startup: * * Called when ASoC starts an audio stream setup. The * @hdmi_audio_startup() is optional. * * Returns: * 0 on success, a negative error code otherwise */ int (*hdmi_audio_startup)(struct drm_connector *connector, struct drm_bridge *bridge); /** * @hdmi_audio_prepare: * Configures HDMI-encoder for audio stream. Can be called multiple * times for each setup. Mandatory if HDMI audio is enabled in the * bridge's configuration. * * Returns: * 0 on success, a negative error code otherwise */ int (*hdmi_audio_prepare)(struct drm_connector *connector, struct drm_bridge *bridge, struct hdmi_codec_daifmt *fmt, struct hdmi_codec_params *hparms); /** * @hdmi_audio_shutdown: * * Shut down the audio stream. Mandatory if HDMI audio is enabled in * the bridge's configuration. * * Returns: * 0 on success, a negative error code otherwise */ void (*hdmi_audio_shutdown)(struct drm_connector *connector, struct drm_bridge *bridge); /** * @hdmi_audio_mute_stream: * * Mute/unmute HDMI audio stream. The @hdmi_audio_mute_stream callback * is optional. * * Returns: * 0 on success, a negative error code otherwise */ int (*hdmi_audio_mute_stream)(struct drm_connector *connector, struct drm_bridge *bridge, bool enable, int direction); /** * @debugfs_init: * * Allows bridges to create bridge-specific debugfs files. */ void (*debugfs_init)(struct drm_bridge *bridge, struct dentry *root); }; /** * struct drm_bridge_timings - timing information for the bridge */ struct drm_bridge_timings { /** * @input_bus_flags: * * Tells what additional settings for the pixel data on the bus * this bridge requires (like pixel signal polarity). See also * &drm_display_info->bus_flags. */ u32 input_bus_flags; /** * @setup_time_ps: * * Defines the time in picoseconds the input data lines must be * stable before the clock edge. */ u32 setup_time_ps; /** * @hold_time_ps: * * Defines the time in picoseconds taken for the bridge to sample the * input signal after the clock edge. */ u32 hold_time_ps; /** * @dual_link: * * True if the bus operates in dual-link mode. The exact meaning is * dependent on the bus type. For LVDS buses, this indicates that even- * and odd-numbered pixels are received on separate links. */ bool dual_link; }; /** * enum drm_bridge_ops - Bitmask of operations supported by the bridge */ enum drm_bridge_ops { /** * @DRM_BRIDGE_OP_DETECT: The bridge can detect displays connected to * its output. Bridges that set this flag shall implement the * &drm_bridge_funcs->detect callback. */ DRM_BRIDGE_OP_DETECT = BIT(0), /** * @DRM_BRIDGE_OP_EDID: The bridge can retrieve the EDID of the display * connected to its output. Bridges that set this flag shall implement * the &drm_bridge_funcs->edid_read callback. */ DRM_BRIDGE_OP_EDID = BIT(1), /** * @DRM_BRIDGE_OP_HPD: The bridge can detect hot-plug and hot-unplug * without requiring polling. Bridges that set this flag shall * implement the &drm_bridge_funcs->hpd_enable and * &drm_bridge_funcs->hpd_disable callbacks if they support enabling * and disabling hot-plug detection dynamically. */ DRM_BRIDGE_OP_HPD = BIT(2), /** * @DRM_BRIDGE_OP_MODES: The bridge can retrieve the modes supported * by the display at its output. This does not include reading EDID * which is separately covered by @DRM_BRIDGE_OP_EDID. Bridges that set * this flag shall implement the &drm_bridge_funcs->get_modes callback. */ DRM_BRIDGE_OP_MODES = BIT(3), /** * @DRM_BRIDGE_OP_HDMI: The bridge provides HDMI connector operations, * including infoframes support. Bridges that set this flag must * implement the &drm_bridge_funcs->write_infoframe callback. * * Note: currently there can be at most one bridge in a chain that sets * this bit. This is to simplify corresponding glue code in connector * drivers. */ DRM_BRIDGE_OP_HDMI = BIT(4), }; /** * struct drm_bridge - central DRM bridge control structure */ struct drm_bridge { /** @base: inherit from &drm_private_object */ struct drm_private_obj base; /** @dev: DRM device this bridge belongs to */ struct drm_device *dev; /** @encoder: encoder to which this bridge is connected */ struct drm_encoder *encoder; /** @chain_node: used to form a bridge chain */ struct list_head chain_node; /** @of_node: device node pointer to the bridge */ struct device_node *of_node; /** @list: to keep track of all added bridges */ struct list_head list; /** * @timings: * * the timing specification for the bridge, if any (may be NULL) */ const struct drm_bridge_timings *timings; /** @funcs: control functions */ const struct drm_bridge_funcs *funcs; /** @driver_private: pointer to the bridge driver's internal context */ void *driver_private; /** @ops: bitmask of operations supported by the bridge */ enum drm_bridge_ops ops; /** * @type: Type of the connection at the bridge output * (DRM_MODE_CONNECTOR_*). For bridges at the end of this chain this * identifies the type of connected display. */ int type; /** * @interlace_allowed: Indicate that the bridge can handle interlaced * modes. */ bool interlace_allowed; /** * @ycbcr_420_allowed: Indicate that the bridge can handle YCbCr 420 * output. */ bool ycbcr_420_allowed; /** * @pre_enable_prev_first: The bridge requires that the prev * bridge @pre_enable function is called before its @pre_enable, * and conversely for post_disable. This is most frequently a * requirement for DSI devices which need the host to be initialised * before the peripheral. */ bool pre_enable_prev_first; /** * @ddc: Associated I2C adapter for DDC access, if any. */ struct i2c_adapter *ddc; /** private: */ /** * @hpd_mutex: Protects the @hpd_cb and @hpd_data fields. */ struct mutex hpd_mutex; /** * @hpd_cb: Hot plug detection callback, registered with * drm_bridge_hpd_enable(). */ void (*hpd_cb)(void *data, enum drm_connector_status status); /** * @hpd_data: Private data passed to the Hot plug detection callback * @hpd_cb. */ void *hpd_data; /** * @vendor: Vendor of the product to be used for the SPD InfoFrame * generation. This is required if @DRM_BRIDGE_OP_HDMI is set. */ const char *vendor; /** * @product: Name of the product to be used for the SPD InfoFrame * generation. This is required if @DRM_BRIDGE_OP_HDMI is set. */ const char *product; /** * @supported_formats: Bitmask of @hdmi_colorspace listing supported * output formats. This is only relevant if @DRM_BRIDGE_OP_HDMI is set. */ unsigned int supported_formats; /** * @max_bpc: Maximum bits per char the HDMI bridge supports. Allowed * values are 8, 10 and 12. This is only relevant if * @DRM_BRIDGE_OP_HDMI is set. */ unsigned int max_bpc; /** * @hdmi_audio_dev: device to be used as a parent for the HDMI Codec */ struct device *hdmi_audio_dev; /** * @hdmi_audio_max_i2s_playback_channels: maximum number of playback * I2S channels for the HDMI codec */ int hdmi_audio_max_i2s_playback_channels; /** * @hdmi_audio_spdif_playback: set if HDMI codec has S/PDIF playback port */ unsigned int hdmi_audio_spdif_playback : 1; /** * @hdmi_audio_dai_port: sound DAI port, -1 if it is not enabled */ int hdmi_audio_dai_port; }; static inline struct drm_bridge * drm_priv_to_bridge(struct drm_private_obj *priv) { return container_of(priv, struct drm_bridge, base); } void drm_bridge_add(struct drm_bridge *bridge); int devm_drm_bridge_add(struct device *dev, struct drm_bridge *bridge); void drm_bridge_remove(struct drm_bridge *bridge); int drm_bridge_attach(struct drm_encoder *encoder, struct drm_bridge *bridge, struct drm_bridge *previous, enum drm_bridge_attach_flags flags); #ifdef CONFIG_OF struct drm_bridge *of_drm_find_bridge(struct device_node *np); #else static inline struct drm_bridge *of_drm_find_bridge(struct device_node *np) { return NULL; } #endif /** * drm_bridge_get_next_bridge() - Get the next bridge in the chain * @bridge: bridge object * * RETURNS: * the next bridge in the chain after @bridge, or NULL if @bridge is the last. */ static inline struct drm_bridge * drm_bridge_get_next_bridge(struct drm_bridge *bridge) { if (list_is_last(&bridge->chain_node, &bridge->encoder->bridge_chain)) return NULL; return list_next_entry(bridge, chain_node); } /** * drm_bridge_get_prev_bridge() - Get the previous bridge in the chain * @bridge: bridge object * * RETURNS: * the previous bridge in the chain, or NULL if @bridge is the first. */ static inline struct drm_bridge * drm_bridge_get_prev_bridge(struct drm_bridge *bridge) { if (list_is_first(&bridge->chain_node, &bridge->encoder->bridge_chain)) return NULL; return list_prev_entry(bridge, chain_node); } /** * drm_bridge_chain_get_first_bridge() - Get the first bridge in the chain * @encoder: encoder object * * RETURNS: * the first bridge in the chain, or NULL if @encoder has no bridge attached * to it. */ static inline struct drm_bridge * drm_bridge_chain_get_first_bridge(struct drm_encoder *encoder) { return list_first_entry_or_null(&encoder->bridge_chain, struct drm_bridge, chain_node); } /** * drm_for_each_bridge_in_chain() - Iterate over all bridges present in a chain * @encoder: the encoder to iterate bridges on * @bridge: a bridge pointer updated to point to the current bridge at each * iteration * * Iterate over all bridges present in the bridge chain attached to @encoder. */ #define drm_for_each_bridge_in_chain(encoder, bridge) \ list_for_each_entry(bridge, &(encoder)->bridge_chain, chain_node) enum drm_mode_status drm_bridge_chain_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode); void drm_bridge_chain_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode); int drm_atomic_bridge_chain_check(struct drm_bridge *bridge, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state); void drm_atomic_bridge_chain_disable(struct drm_bridge *bridge, struct drm_atomic_state *state); void drm_atomic_bridge_chain_post_disable(struct drm_bridge *bridge, struct drm_atomic_state *state); void drm_atomic_bridge_chain_pre_enable(struct drm_bridge *bridge, struct drm_atomic_state *state); void drm_atomic_bridge_chain_enable(struct drm_bridge *bridge, struct drm_atomic_state *state); u32 * drm_atomic_helper_bridge_propagate_bus_fmt(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts); enum drm_connector_status drm_bridge_detect(struct drm_bridge *bridge); int drm_bridge_get_modes(struct drm_bridge *bridge, struct drm_connector *connector); const struct drm_edid *drm_bridge_edid_read(struct drm_bridge *bridge, struct drm_connector *connector); void drm_bridge_hpd_enable(struct drm_bridge *bridge, void (*cb)(void *data, enum drm_connector_status status), void *data); void drm_bridge_hpd_disable(struct drm_bridge *bridge); void drm_bridge_hpd_notify(struct drm_bridge *bridge, enum drm_connector_status status); #ifdef CONFIG_DRM_PANEL_BRIDGE bool drm_bridge_is_panel(const struct drm_bridge *bridge); struct drm_bridge *drm_panel_bridge_add(struct drm_panel *panel); struct drm_bridge *drm_panel_bridge_add_typed(struct drm_panel *panel, u32 connector_type); void drm_panel_bridge_remove(struct drm_bridge *bridge); int drm_panel_bridge_set_orientation(struct drm_connector *connector, struct drm_bridge *bridge); struct drm_bridge *devm_drm_panel_bridge_add(struct device *dev, struct drm_panel *panel); struct drm_bridge *devm_drm_panel_bridge_add_typed(struct device *dev, struct drm_panel *panel, u32 connector_type); struct drm_bridge *drmm_panel_bridge_add(struct drm_device *drm, struct drm_panel *panel); struct drm_connector *drm_panel_bridge_connector(struct drm_bridge *bridge); #else static inline bool drm_bridge_is_panel(const struct drm_bridge *bridge) { return false; } static inline int drm_panel_bridge_set_orientation(struct drm_connector *connector, struct drm_bridge *bridge) { return -EINVAL; } #endif #if defined(CONFIG_OF) && defined(CONFIG_DRM_PANEL_BRIDGE) struct drm_bridge *devm_drm_of_get_bridge(struct device *dev, struct device_node *node, u32 port, u32 endpoint); struct drm_bridge *drmm_of_get_bridge(struct drm_device *drm, struct device_node *node, u32 port, u32 endpoint); #else static inline struct drm_bridge *devm_drm_of_get_bridge(struct device *dev, struct device_node *node, u32 port, u32 endpoint) { return ERR_PTR(-ENODEV); } static inline struct drm_bridge *drmm_of_get_bridge(struct drm_device *drm, struct device_node *node, u32 port, u32 endpoint) { return ERR_PTR(-ENODEV); } #endif #endif
20 19 7 20 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 // SPDX-License-Identifier: GPL-2.0 #ifndef NO_BCACHEFS_CHARDEV #include "bcachefs.h" #include "bcachefs_ioctl.h" #include "buckets.h" #include "chardev.h" #include "disk_accounting.h" #include "fsck.h" #include "journal.h" #include "move.h" #include "recovery_passes.h" #include "replicas.h" #include "sb-counters.h" #include "super-io.h" #include "thread_with_file.h" #include <linux/cdev.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/ioctl.h> #include <linux/major.h> #include <linux/sched/task.h> #include <linux/slab.h> #include <linux/uaccess.h> /* returns with ref on ca->ref */ static struct bch_dev *bch2_device_lookup(struct bch_fs *c, u64 dev, unsigned flags) { struct bch_dev *ca; if (flags & BCH_BY_INDEX) { if (dev >= c->sb.nr_devices) return ERR_PTR(-EINVAL); ca = bch2_dev_tryget_noerror(c, dev); if (!ca) return ERR_PTR(-EINVAL); } else { char *path; path = strndup_user((const char __user *) (unsigned long) dev, PATH_MAX); if (IS_ERR(path)) return ERR_CAST(path); ca = bch2_dev_lookup(c, path); kfree(path); } return ca; } #if 0 static long bch2_ioctl_assemble(struct bch_ioctl_assemble __user *user_arg) { struct bch_ioctl_assemble arg; struct bch_fs *c; u64 *user_devs = NULL; char **devs = NULL; unsigned i; int ret = -EFAULT; if (copy_from_user(&arg, user_arg, sizeof(arg))) return -EFAULT; if (arg.flags || arg.pad) return -EINVAL; user_devs = kmalloc_array(arg.nr_devs, sizeof(u64), GFP_KERNEL); if (!user_devs) return -ENOMEM; devs = kcalloc(arg.nr_devs, sizeof(char *), GFP_KERNEL); if (copy_from_user(user_devs, user_arg->devs, sizeof(u64) * arg.nr_devs)) goto err; for (i = 0; i < arg.nr_devs; i++) { devs[i] = strndup_user((const char __user *)(unsigned long) user_devs[i], PATH_MAX); ret= PTR_ERR_OR_ZERO(devs[i]); if (ret) goto err; } c = bch2_fs_open(devs, arg.nr_devs, bch2_opts_empty()); ret = PTR_ERR_OR_ZERO(c); if (!ret) closure_put(&c->cl); err: if (devs) for (i = 0; i < arg.nr_devs; i++) kfree(devs[i]); kfree(devs); return ret; } static long bch2_ioctl_incremental(struct bch_ioctl_incremental __user *user_arg) { struct bch_ioctl_incremental arg; const char *err; char *path; if (copy_from_user(&arg, user_arg, sizeof(arg))) return -EFAULT; if (arg.flags || arg.pad) return -EINVAL; path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ret = PTR_ERR_OR_ZERO(path); if (ret) return ret; err = bch2_fs_open_incremental(path); kfree(path); if (err) { pr_err("Could not register bcachefs devices: %s", err); return -EINVAL; } return 0; } #endif static long bch2_global_ioctl(unsigned cmd, void __user *arg) { long ret; switch (cmd) { #if 0 case BCH_IOCTL_ASSEMBLE: return bch2_ioctl_assemble(arg); case BCH_IOCTL_INCREMENTAL: return bch2_ioctl_incremental(arg); #endif case BCH_IOCTL_FSCK_OFFLINE: { ret = bch2_ioctl_fsck_offline(arg); break; } default: ret = -ENOTTY; break; } if (ret < 0) ret = bch2_err_class(ret); return ret; } static long bch2_ioctl_query_uuid(struct bch_fs *c, struct bch_ioctl_query_uuid __user *user_arg) { return copy_to_user_errcode(&user_arg->uuid, &c->sb.user_uuid, sizeof(c->sb.user_uuid)); } #if 0 static long bch2_ioctl_start(struct bch_fs *c, struct bch_ioctl_start arg) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (arg.flags || arg.pad) return -EINVAL; return bch2_fs_start(c); } static long bch2_ioctl_stop(struct bch_fs *c) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; bch2_fs_stop(c); return 0; } #endif static long bch2_ioctl_disk_add(struct bch_fs *c, struct bch_ioctl_disk arg) { char *path; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (arg.flags || arg.pad) return -EINVAL; path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ret = PTR_ERR_OR_ZERO(path); if (ret) return ret; ret = bch2_dev_add(c, path); if (!IS_ERR(path)) kfree(path); return ret; } static long bch2_ioctl_disk_remove(struct bch_fs *c, struct bch_ioctl_disk arg) { struct bch_dev *ca; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| BCH_FORCE_IF_METADATA_LOST| BCH_FORCE_IF_DEGRADED| BCH_BY_INDEX)) || arg.pad) return -EINVAL; ca = bch2_device_lookup(c, arg.dev, arg.flags); if (IS_ERR(ca)) return PTR_ERR(ca); return bch2_dev_remove(c, ca, arg.flags); } static long bch2_ioctl_disk_online(struct bch_fs *c, struct bch_ioctl_disk arg) { char *path; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (arg.flags || arg.pad) return -EINVAL; path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ret = PTR_ERR_OR_ZERO(path); if (ret) return ret; ret = bch2_dev_online(c, path); kfree(path); return ret; } static long bch2_ioctl_disk_offline(struct bch_fs *c, struct bch_ioctl_disk arg) { struct bch_dev *ca; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| BCH_FORCE_IF_METADATA_LOST| BCH_FORCE_IF_DEGRADED| BCH_BY_INDEX)) || arg.pad) return -EINVAL; ca = bch2_device_lookup(c, arg.dev, arg.flags); if (IS_ERR(ca)) return PTR_ERR(ca); ret = bch2_dev_offline(c, ca, arg.flags); bch2_dev_put(ca); return ret; } static long bch2_ioctl_disk_set_state(struct bch_fs *c, struct bch_ioctl_disk_set_state arg) { struct bch_dev *ca; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| BCH_FORCE_IF_METADATA_LOST| BCH_FORCE_IF_DEGRADED| BCH_BY_INDEX)) || arg.pad[0] || arg.pad[1] || arg.pad[2] || arg.new_state >= BCH_MEMBER_STATE_NR) return -EINVAL; ca = bch2_device_lookup(c, arg.dev, arg.flags); if (IS_ERR(ca)) return PTR_ERR(ca); ret = bch2_dev_set_state(c, ca, arg.new_state, arg.flags); if (ret) bch_err(c, "Error setting device state: %s", bch2_err_str(ret)); bch2_dev_put(ca); return ret; } struct bch_data_ctx { struct thread_with_file thr; struct bch_fs *c; struct bch_ioctl_data arg; struct bch_move_stats stats; }; static int bch2_data_thread(void *arg) { struct bch_data_ctx *ctx = container_of(arg, struct bch_data_ctx, thr); ctx->thr.ret = bch2_data_job(ctx->c, &ctx->stats, ctx->arg); if (ctx->thr.ret == -BCH_ERR_device_offline) ctx->stats.ret = BCH_IOCTL_DATA_EVENT_RET_device_offline; else { ctx->stats.ret = BCH_IOCTL_DATA_EVENT_RET_done; ctx->stats.data_type = (int) DATA_PROGRESS_DATA_TYPE_done; } return 0; } static int bch2_data_job_release(struct inode *inode, struct file *file) { struct bch_data_ctx *ctx = container_of(file->private_data, struct bch_data_ctx, thr); bch2_thread_with_file_exit(&ctx->thr); kfree(ctx); return 0; } static ssize_t bch2_data_job_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct bch_data_ctx *ctx = container_of(file->private_data, struct bch_data_ctx, thr); struct bch_fs *c = ctx->c; struct bch_ioctl_data_event e = { .type = BCH_DATA_EVENT_PROGRESS, .ret = ctx->stats.ret, .p.data_type = ctx->stats.data_type, .p.btree_id = ctx->stats.pos.btree, .p.pos = ctx->stats.pos.pos, .p.sectors_done = atomic64_read(&ctx->stats.sectors_seen), .p.sectors_error_corrected = atomic64_read(&ctx->stats.sectors_error_corrected), .p.sectors_error_uncorrected = atomic64_read(&ctx->stats.sectors_error_uncorrected), }; if (ctx->arg.op == BCH_DATA_OP_scrub) { struct bch_dev *ca = bch2_dev_tryget(c, ctx->arg.scrub.dev); if (ca) { struct bch_dev_usage_full u; bch2_dev_usage_full_read_fast(ca, &u); for (unsigned i = BCH_DATA_btree; i < ARRAY_SIZE(u.d); i++) if (ctx->arg.scrub.data_types & BIT(i)) e.p.sectors_total += u.d[i].sectors; bch2_dev_put(ca); } } else { e.p.sectors_total = bch2_fs_usage_read_short(c).used; } if (len < sizeof(e)) return -EINVAL; return copy_to_user_errcode(buf, &e, sizeof(e)) ?: sizeof(e); } static const struct file_operations bcachefs_data_ops = { .release = bch2_data_job_release, .read = bch2_data_job_read, }; static long bch2_ioctl_data(struct bch_fs *c, struct bch_ioctl_data arg) { struct bch_data_ctx *ctx; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (arg.op >= BCH_DATA_OP_NR || arg.flags) return -EINVAL; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->c = c; ctx->arg = arg; ret = bch2_run_thread_with_file(&ctx->thr, &bcachefs_data_ops, bch2_data_thread); if (ret < 0) kfree(ctx); return ret; } static long bch2_ioctl_fs_usage(struct bch_fs *c, struct bch_ioctl_fs_usage __user *user_arg) { struct bch_ioctl_fs_usage arg = {}; darray_char replicas = {}; u32 replica_entries_bytes; int ret = 0; if (!test_bit(BCH_FS_started, &c->flags)) return -EINVAL; if (get_user(replica_entries_bytes, &user_arg->replica_entries_bytes)) return -EFAULT; ret = bch2_fs_replicas_usage_read(c, &replicas) ?: (replica_entries_bytes < replicas.nr ? -ERANGE : 0) ?: copy_to_user_errcode(&user_arg->replicas, replicas.data, replicas.nr); if (ret) goto err; struct bch_fs_usage_short u = bch2_fs_usage_read_short(c); arg.capacity = c->capacity; arg.used = u.used; arg.online_reserved = percpu_u64_get(c->online_reserved); arg.replica_entries_bytes = replicas.nr; for (unsigned i = 0; i < BCH_REPLICAS_MAX; i++) { struct disk_accounting_pos k; disk_accounting_key_init(k, persistent_reserved, .nr_replicas = i); bch2_accounting_mem_read(c, disk_accounting_pos_to_bpos(&k), &arg.persistent_reserved[i], 1); } ret = copy_to_user_errcode(user_arg, &arg, sizeof(arg)); err: darray_exit(&replicas); return ret; } static long bch2_ioctl_query_accounting(struct bch_fs *c, struct bch_ioctl_query_accounting __user *user_arg) { struct bch_ioctl_query_accounting arg; darray_char accounting = {}; int ret = 0; if (!test_bit(BCH_FS_started, &c->flags)) return -EINVAL; ret = copy_from_user_errcode(&arg, user_arg, sizeof(arg)) ?: bch2_fs_accounting_read(c, &accounting, arg.accounting_types_mask) ?: (arg.accounting_u64s * sizeof(u64) < accounting.nr ? -ERANGE : 0) ?: copy_to_user_errcode(&user_arg->accounting, accounting.data, accounting.nr); if (ret) goto err; arg.capacity = c->capacity; arg.used = bch2_fs_usage_read_short(c).used; arg.online_reserved = percpu_u64_get(c->online_reserved); arg.accounting_u64s = accounting.nr / sizeof(u64); ret = copy_to_user_errcode(user_arg, &arg, sizeof(arg)); err: darray_exit(&accounting); return ret; } /* obsolete, didn't allow for new data types: */ static long bch2_ioctl_dev_usage(struct bch_fs *c, struct bch_ioctl_dev_usage __user *user_arg) { struct bch_ioctl_dev_usage arg; struct bch_dev_usage_full src; struct bch_dev *ca; unsigned i; if (!test_bit(BCH_FS_started, &c->flags)) return -EINVAL; if (copy_from_user(&arg, user_arg, sizeof(arg))) return -EFAULT; if ((arg.flags & ~BCH_BY_INDEX) || arg.pad[0] || arg.pad[1] || arg.pad[2]) return -EINVAL; ca = bch2_device_lookup(c, arg.dev, arg.flags); if (IS_ERR(ca)) return PTR_ERR(ca); src = bch2_dev_usage_full_read(ca); arg.state = ca->mi.state; arg.bucket_size = ca->mi.bucket_size; arg.nr_buckets = ca->mi.nbuckets - ca->mi.first_bucket; for (i = 0; i < ARRAY_SIZE(arg.d); i++) { arg.d[i].buckets = src.d[i].buckets; arg.d[i].sectors = src.d[i].sectors; arg.d[i].fragmented = src.d[i].fragmented; } bch2_dev_put(ca); return copy_to_user_errcode(user_arg, &arg, sizeof(arg)); } static long bch2_ioctl_dev_usage_v2(struct bch_fs *c, struct bch_ioctl_dev_usage_v2 __user *user_arg) { struct bch_ioctl_dev_usage_v2 arg; struct bch_dev_usage_full src; struct bch_dev *ca; int ret = 0; if (!test_bit(BCH_FS_started, &c->flags)) return -EINVAL; if (copy_from_user(&arg, user_arg, sizeof(arg))) return -EFAULT; if ((arg.flags & ~BCH_BY_INDEX) || arg.pad[0] || arg.pad[1] || arg.pad[2]) return -EINVAL; ca = bch2_device_lookup(c, arg.dev, arg.flags); if (IS_ERR(ca)) return PTR_ERR(ca); src = bch2_dev_usage_full_read(ca); arg.state = ca->mi.state; arg.bucket_size = ca->mi.bucket_size; arg.nr_data_types = min(arg.nr_data_types, BCH_DATA_NR); arg.nr_buckets = ca->mi.nbuckets - ca->mi.first_bucket; ret = copy_to_user_errcode(user_arg, &arg, sizeof(arg)); if (ret) goto err; for (unsigned i = 0; i < arg.nr_data_types; i++) { struct bch_ioctl_dev_usage_type t = { .buckets = src.d[i].buckets, .sectors = src.d[i].sectors, .fragmented = src.d[i].fragmented, }; ret = copy_to_user_errcode(&user_arg->d[i], &t, sizeof(t)); if (ret) goto err; } err: bch2_dev_put(ca); return ret; } static long bch2_ioctl_read_super(struct bch_fs *c, struct bch_ioctl_read_super arg) { struct bch_dev *ca = NULL; struct bch_sb *sb; int ret = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if ((arg.flags & ~(BCH_BY_INDEX|BCH_READ_DEV)) || arg.pad) return -EINVAL; mutex_lock(&c->sb_lock); if (arg.flags & BCH_READ_DEV) { ca = bch2_device_lookup(c, arg.dev, arg.flags); ret = PTR_ERR_OR_ZERO(ca); if (ret) goto err_unlock; sb = ca->disk_sb.sb; } else { sb = c->disk_sb.sb; } if (vstruct_bytes(sb) > arg.size) { ret = -ERANGE; goto err; } ret = copy_to_user_errcode((void __user *)(unsigned long)arg.sb, sb, vstruct_bytes(sb)); err: bch2_dev_put(ca); err_unlock: mutex_unlock(&c->sb_lock); return ret; } static long bch2_ioctl_disk_get_idx(struct bch_fs *c, struct bch_ioctl_disk_get_idx arg) { dev_t dev = huge_decode_dev(arg.dev); if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!dev) return -EINVAL; for_each_online_member(c, ca) if (ca->dev == dev) { percpu_ref_put(&ca->io_ref[READ]); return ca->dev_idx; } return -BCH_ERR_ENOENT_dev_idx_not_found; } static long bch2_ioctl_disk_resize(struct bch_fs *c, struct bch_ioctl_disk_resize arg) { struct bch_dev *ca; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if ((arg.flags & ~BCH_BY_INDEX) || arg.pad) return -EINVAL; ca = bch2_device_lookup(c, arg.dev, arg.flags); if (IS_ERR(ca)) return PTR_ERR(ca); ret = bch2_dev_resize(c, ca, arg.nbuckets); bch2_dev_put(ca); return ret; } static long bch2_ioctl_disk_resize_journal(struct bch_fs *c, struct bch_ioctl_disk_resize_journal arg) { struct bch_dev *ca; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if ((arg.flags & ~BCH_BY_INDEX) || arg.pad) return -EINVAL; if (arg.nbuckets > U32_MAX) return -EINVAL; ca = bch2_device_lookup(c, arg.dev, arg.flags); if (IS_ERR(ca)) return PTR_ERR(ca); ret = bch2_set_nr_journal_buckets(c, ca, arg.nbuckets); bch2_dev_put(ca); return ret; } #define BCH_IOCTL(_name, _argtype) \ do { \ _argtype i; \ \ if (copy_from_user(&i, arg, sizeof(i))) \ return -EFAULT; \ ret = bch2_ioctl_##_name(c, i); \ goto out; \ } while (0) long bch2_fs_ioctl(struct bch_fs *c, unsigned cmd, void __user *arg) { long ret; switch (cmd) { case BCH_IOCTL_QUERY_UUID: return bch2_ioctl_query_uuid(c, arg); case BCH_IOCTL_FS_USAGE: return bch2_ioctl_fs_usage(c, arg); case BCH_IOCTL_DEV_USAGE: return bch2_ioctl_dev_usage(c, arg); case BCH_IOCTL_DEV_USAGE_V2: return bch2_ioctl_dev_usage_v2(c, arg); #if 0 case BCH_IOCTL_START: BCH_IOCTL(start, struct bch_ioctl_start); case BCH_IOCTL_STOP: return bch2_ioctl_stop(c); #endif case BCH_IOCTL_READ_SUPER: BCH_IOCTL(read_super, struct bch_ioctl_read_super); case BCH_IOCTL_DISK_GET_IDX: BCH_IOCTL(disk_get_idx, struct bch_ioctl_disk_get_idx); } if (!test_bit(BCH_FS_started, &c->flags)) return -EINVAL; switch (cmd) { case BCH_IOCTL_DISK_ADD: BCH_IOCTL(disk_add, struct bch_ioctl_disk); case BCH_IOCTL_DISK_REMOVE: BCH_IOCTL(disk_remove, struct bch_ioctl_disk); case BCH_IOCTL_DISK_ONLINE: BCH_IOCTL(disk_online, struct bch_ioctl_disk); case BCH_IOCTL_DISK_OFFLINE: BCH_IOCTL(disk_offline, struct bch_ioctl_disk); case BCH_IOCTL_DISK_SET_STATE: BCH_IOCTL(disk_set_state, struct bch_ioctl_disk_set_state); case BCH_IOCTL_DATA: BCH_IOCTL(data, struct bch_ioctl_data); case BCH_IOCTL_DISK_RESIZE: BCH_IOCTL(disk_resize, struct bch_ioctl_disk_resize); case BCH_IOCTL_DISK_RESIZE_JOURNAL: BCH_IOCTL(disk_resize_journal, struct bch_ioctl_disk_resize_journal); case BCH_IOCTL_FSCK_ONLINE: BCH_IOCTL(fsck_online, struct bch_ioctl_fsck_online); case BCH_IOCTL_QUERY_ACCOUNTING: return bch2_ioctl_query_accounting(c, arg); case BCH_IOCTL_QUERY_COUNTERS: return bch2_ioctl_query_counters(c, arg); default: return -ENOTTY; } out: if (ret < 0) ret = bch2_err_class(ret); return ret; } static DEFINE_IDR(bch_chardev_minor); static long bch2_chardev_ioctl(struct file *filp, unsigned cmd, unsigned long v) { unsigned minor = iminor(file_inode(filp)); struct bch_fs *c = minor < U8_MAX ? idr_find(&bch_chardev_minor, minor) : NULL; void __user *arg = (void __user *) v; return c ? bch2_fs_ioctl(c, cmd, arg) : bch2_global_ioctl(cmd, arg); } static const struct file_operations bch_chardev_fops = { .owner = THIS_MODULE, .unlocked_ioctl = bch2_chardev_ioctl, .open = nonseekable_open, }; static int bch_chardev_major; static const struct class bch_chardev_class = { .name = "bcachefs", }; static struct device *bch_chardev; void bch2_fs_chardev_exit(struct bch_fs *c) { if (!IS_ERR_OR_NULL(c->chardev)) device_unregister(c->chardev); if (c->minor >= 0) idr_remove(&bch_chardev_minor, c->minor); } int bch2_fs_chardev_init(struct bch_fs *c) { c->minor = idr_alloc(&bch_chardev_minor, c, 0, 0, GFP_KERNEL); if (c->minor < 0) return c->minor; c->chardev = device_create(&bch_chardev_class, NULL, MKDEV(bch_chardev_major, c->minor), c, "bcachefs%u-ctl", c->minor); if (IS_ERR(c->chardev)) return PTR_ERR(c->chardev); return 0; } void bch2_chardev_exit(void) { device_destroy(&bch_chardev_class, MKDEV(bch_chardev_major, U8_MAX)); class_unregister(&bch_chardev_class); if (bch_chardev_major > 0) unregister_chrdev(bch_chardev_major, "bcachefs"); } int __init bch2_chardev_init(void) { int ret; bch_chardev_major = register_chrdev(0, "bcachefs-ctl", &bch_chardev_fops); if (bch_chardev_major < 0) return bch_chardev_major; ret = class_register(&bch_chardev_class); if (ret) goto major_out; bch_chardev = device_create(&bch_chardev_class, NULL, MKDEV(bch_chardev_major, U8_MAX), NULL, "bcachefs-ctl"); if (IS_ERR(bch_chardev)) { ret = PTR_ERR(bch_chardev); goto class_out; } return 0; class_out: class_unregister(&bch_chardev_class); major_out: unregister_chrdev(bch_chardev_major, "bcachefs-ctl"); return ret; } #endif /* NO_BCACHEFS_CHARDEV */
10 10 43 43 43 43 43 43 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 // SPDX-License-Identifier: GPL-2.0-only /* * VLAN netlink control interface * * Copyright (c) 2007 Patrick McHardy <kaber@trash.net> */ #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/if_vlan.h> #include <linux/module.h> #include <net/net_namespace.h> #include <net/netlink.h> #include <net/rtnetlink.h> #include "vlan.h" static const struct nla_policy vlan_policy[IFLA_VLAN_MAX + 1] = { [IFLA_VLAN_ID] = { .type = NLA_U16 }, [IFLA_VLAN_FLAGS] = { .len = sizeof(struct ifla_vlan_flags) }, [IFLA_VLAN_EGRESS_QOS] = { .type = NLA_NESTED }, [IFLA_VLAN_INGRESS_QOS] = { .type = NLA_NESTED }, [IFLA_VLAN_PROTOCOL] = { .type = NLA_U16 }, }; static const struct nla_policy vlan_map_policy[IFLA_VLAN_QOS_MAX + 1] = { [IFLA_VLAN_QOS_MAPPING] = { .len = sizeof(struct ifla_vlan_qos_mapping) }, }; static inline int vlan_validate_qos_map(struct nlattr *attr) { if (!attr) return 0; return nla_validate_nested_deprecated(attr, IFLA_VLAN_QOS_MAX, vlan_map_policy, NULL); } static int vlan_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ifla_vlan_flags *flags; u16 id; int err; if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { NL_SET_ERR_MSG_MOD(extack, "Invalid link address"); return -EINVAL; } if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { NL_SET_ERR_MSG_MOD(extack, "Invalid link address"); return -EADDRNOTAVAIL; } } if (!data) { NL_SET_ERR_MSG_MOD(extack, "VLAN properties not specified"); return -EINVAL; } if (data[IFLA_VLAN_PROTOCOL]) { switch (nla_get_be16(data[IFLA_VLAN_PROTOCOL])) { case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): break; default: NL_SET_ERR_MSG_MOD(extack, "Invalid VLAN protocol"); return -EPROTONOSUPPORT; } } if (data[IFLA_VLAN_ID]) { id = nla_get_u16(data[IFLA_VLAN_ID]); if (id >= VLAN_VID_MASK) { NL_SET_ERR_MSG_MOD(extack, "Invalid VLAN id"); return -ERANGE; } } if (data[IFLA_VLAN_FLAGS]) { flags = nla_data(data[IFLA_VLAN_FLAGS]); if ((flags->flags & flags->mask) & ~(VLAN_FLAG_REORDER_HDR | VLAN_FLAG_GVRP | VLAN_FLAG_LOOSE_BINDING | VLAN_FLAG_MVRP | VLAN_FLAG_BRIDGE_BINDING)) { NL_SET_ERR_MSG_MOD(extack, "Invalid VLAN flags"); return -EINVAL; } } err = vlan_validate_qos_map(data[IFLA_VLAN_INGRESS_QOS]); if (err < 0) { NL_SET_ERR_MSG_MOD(extack, "Invalid ingress QOS map"); return err; } err = vlan_validate_qos_map(data[IFLA_VLAN_EGRESS_QOS]); if (err < 0) { NL_SET_ERR_MSG_MOD(extack, "Invalid egress QOS map"); return err; } return 0; } static int vlan_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ifla_vlan_flags *flags; struct ifla_vlan_qos_mapping *m; struct nlattr *attr; int rem, err; if (data[IFLA_VLAN_FLAGS]) { flags = nla_data(data[IFLA_VLAN_FLAGS]); err = vlan_dev_change_flags(dev, flags->flags, flags->mask); if (err) return err; } if (data[IFLA_VLAN_INGRESS_QOS]) { nla_for_each_nested_type(attr, IFLA_VLAN_QOS_MAPPING, data[IFLA_VLAN_INGRESS_QOS], rem) { m = nla_data(attr); vlan_dev_set_ingress_priority(dev, m->to, m->from); } } if (data[IFLA_VLAN_EGRESS_QOS]) { nla_for_each_nested_type(attr, IFLA_VLAN_QOS_MAPPING, data[IFLA_VLAN_EGRESS_QOS], rem) { m = nla_data(attr); err = vlan_dev_set_egress_priority(dev, m->from, m->to); if (err) return err; } } return 0; } static int vlan_newlink(struct net_device *dev, struct rtnl_newlink_params *params, struct netlink_ext_ack *extack) { struct net *link_net = rtnl_newlink_link_net(params); struct vlan_dev_priv *vlan = vlan_dev_priv(dev); struct nlattr **data = params->data; struct nlattr **tb = params->tb; struct net_device *real_dev; unsigned int max_mtu; __be16 proto; int err; if (!data[IFLA_VLAN_ID]) { NL_SET_ERR_MSG_MOD(extack, "VLAN id not specified"); return -EINVAL; } if (!tb[IFLA_LINK]) { NL_SET_ERR_MSG_MOD(extack, "link not specified"); return -EINVAL; } real_dev = __dev_get_by_index(link_net, nla_get_u32(tb[IFLA_LINK])); if (!real_dev) { NL_SET_ERR_MSG_MOD(extack, "link does not exist"); return -ENODEV; } proto = nla_get_be16_default(data[IFLA_VLAN_PROTOCOL], htons(ETH_P_8021Q)); vlan->vlan_proto = proto; vlan->vlan_id = nla_get_u16(data[IFLA_VLAN_ID]); vlan->real_dev = real_dev; dev->priv_flags |= (real_dev->priv_flags & IFF_XMIT_DST_RELEASE); vlan->flags = VLAN_FLAG_REORDER_HDR; err = vlan_check_real_dev(real_dev, vlan->vlan_proto, vlan->vlan_id, extack); if (err < 0) return err; max_mtu = netif_reduces_vlan_mtu(real_dev) ? real_dev->mtu - VLAN_HLEN : real_dev->mtu; if (!tb[IFLA_MTU]) dev->mtu = max_mtu; else if (dev->mtu > max_mtu) return -EINVAL; /* Note: If this initial vlan_changelink() fails, we need * to call vlan_dev_free_egress_priority() to free memory. */ err = vlan_changelink(dev, tb, data, extack); if (!err) err = register_vlan_dev(dev, extack); if (err) vlan_dev_free_egress_priority(dev); return err; } static inline size_t vlan_qos_map_size(unsigned int n) { if (n == 0) return 0; /* IFLA_VLAN_{EGRESS,INGRESS}_QOS + n * IFLA_VLAN_QOS_MAPPING */ return nla_total_size(sizeof(struct nlattr)) + nla_total_size(sizeof(struct ifla_vlan_qos_mapping)) * n; } static size_t vlan_get_size(const struct net_device *dev) { struct vlan_dev_priv *vlan = vlan_dev_priv(dev); return nla_total_size(2) + /* IFLA_VLAN_PROTOCOL */ nla_total_size(2) + /* IFLA_VLAN_ID */ nla_total_size(sizeof(struct ifla_vlan_flags)) + /* IFLA_VLAN_FLAGS */ vlan_qos_map_size(vlan->nr_ingress_mappings) + vlan_qos_map_size(vlan->nr_egress_mappings); } static int vlan_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct vlan_dev_priv *vlan = vlan_dev_priv(dev); struct vlan_priority_tci_mapping *pm; struct ifla_vlan_flags f; struct ifla_vlan_qos_mapping m; struct nlattr *nest; unsigned int i; if (nla_put_be16(skb, IFLA_VLAN_PROTOCOL, vlan->vlan_proto) || nla_put_u16(skb, IFLA_VLAN_ID, vlan->vlan_id)) goto nla_put_failure; if (vlan->flags) { f.flags = vlan->flags; f.mask = ~0; if (nla_put(skb, IFLA_VLAN_FLAGS, sizeof(f), &f)) goto nla_put_failure; } if (vlan->nr_ingress_mappings) { nest = nla_nest_start_noflag(skb, IFLA_VLAN_INGRESS_QOS); if (nest == NULL) goto nla_put_failure; for (i = 0; i < ARRAY_SIZE(vlan->ingress_priority_map); i++) { if (!vlan->ingress_priority_map[i]) continue; m.from = i; m.to = vlan->ingress_priority_map[i]; if (nla_put(skb, IFLA_VLAN_QOS_MAPPING, sizeof(m), &m)) goto nla_put_failure; } nla_nest_end(skb, nest); } if (vlan->nr_egress_mappings) { nest = nla_nest_start_noflag(skb, IFLA_VLAN_EGRESS_QOS); if (nest == NULL) goto nla_put_failure; for (i = 0; i < ARRAY_SIZE(vlan->egress_priority_map); i++) { for (pm = vlan->egress_priority_map[i]; pm; pm = pm->next) { if (!pm->vlan_qos) continue; m.from = pm->priority; m.to = (pm->vlan_qos >> 13) & 0x7; if (nla_put(skb, IFLA_VLAN_QOS_MAPPING, sizeof(m), &m)) goto nla_put_failure; } } nla_nest_end(skb, nest); } return 0; nla_put_failure: return -EMSGSIZE; } static struct net *vlan_get_link_net(const struct net_device *dev) { struct net_device *real_dev = vlan_dev_priv(dev)->real_dev; return dev_net(real_dev); } struct rtnl_link_ops vlan_link_ops __read_mostly = { .kind = "vlan", .maxtype = IFLA_VLAN_MAX, .policy = vlan_policy, .priv_size = sizeof(struct vlan_dev_priv), .setup = vlan_setup, .validate = vlan_validate, .newlink = vlan_newlink, .changelink = vlan_changelink, .dellink = unregister_vlan_dev, .get_size = vlan_get_size, .fill_info = vlan_fill_info, .get_link_net = vlan_get_link_net, }; int __init vlan_netlink_init(void) { return rtnl_link_register(&vlan_link_ops); } void __exit vlan_netlink_fini(void) { rtnl_link_unregister(&vlan_link_ops); } MODULE_ALIAS_RTNL_LINK("vlan");
1 1 1 1 1 1 2 2 90 90 92 93 93 92 92 178 99 1 1 1 26 26 26 26 26 26 26 26 120 58 11 11 9 10 11 11 11 11 11 11 11 11 11 11 11 94 94 94 94 94 94 94 94 94 9 9 9 9 98 98 98 98 98 98 98 98 98 97 98 97 98 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 270 120 120 120 120 120 271 132 132 132 132 269 120 120 120 120 271 272 272 269 9 271 95 12 9 9 12 93 93 9 9 9 9 98 98 98 98 98 98 98 98 98 98 98 98 90 1 1 25 25 17 57 1 1 1 57 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 52 1 52 2 142 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 143 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 135 1 135 133 1 9 9 90 90 90 90 26 26 26 26 26 26 90 90 90 90 90 90 96 96 96 96 9 9 9 9 9 9 9 9 9 9 9 9 5 5 95 94 95 94 95 95 95 95 9 9 9 9 9 9 9 9 9 9 9 5 95 95 95 95 94 94 94 95 95 95 95 11 11 11 9 9 9 9 9 9 9 5 5 5 5 5 5 5 5 5 5 5 9 2 5 5 2 5 5 90 90 90 90 90 90 90 90 89 26 26 93 91 91 90 91 90 91 91 91 91 91 91 91 90 91 92 92 92 92 92 92 92 2 2 2 2 2 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 92 92 91 92 90 90 90 90 90 90 90 90 90 90 90 90 90 83 90 8 83 90 90 90 90 92 92 92 92 92 92 92 92 92 92 85 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 58 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 1 1 1 1 1 1 1 1 9 9 9 9 9 9 1 2 7 92 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 7 9 9 9 9 9 9 2 2 2 2 2 2 2 2 2 90 7 7 9 9 7 9 9 9 7 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 26 26 26 26 90 90 90 90 90 90 90 90 90 90 8 90 90 90 90 174 174 174 174 174 115 174 174 90 92 92 92 92 92 92 92 92 92 91 92 92 92 92 92 92 92 92 92 1 1 1 1 9 58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 // SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity <avi@qumranet.com> * Yaniv Kamay <yaniv@qumranet.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/highmem.h> #include <linux/hrtimer.h> #include <linux/kernel.h> #include <linux/kvm_host.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mod_devicetable.h> #include <linux/mm.h> #include <linux/objtool.h> #include <linux/sched.h> #include <linux/sched/smt.h> #include <linux/slab.h> #include <linux/tboot.h> #include <linux/trace_events.h> #include <linux/entry-kvm.h> #include <asm/apic.h> #include <asm/asm.h> #include <asm/cpu.h> #include <asm/cpu_device_id.h> #include <asm/debugreg.h> #include <asm/desc.h> #include <asm/fpu/api.h> #include <asm/fpu/xstate.h> #include <asm/fred.h> #include <asm/idtentry.h> #include <asm/io.h> #include <asm/irq_remapping.h> #include <asm/reboot.h> #include <asm/perf_event.h> #include <asm/mmu_context.h> #include <asm/mshyperv.h> #include <asm/mwait.h> #include <asm/spec-ctrl.h> #include <asm/vmx.h> #include <trace/events/ipi.h> #include "capabilities.h" #include "cpuid.h" #include "hyperv.h" #include "kvm_onhyperv.h" #include "irq.h" #include "kvm_cache_regs.h" #include "lapic.h" #include "mmu.h" #include "nested.h" #include "pmu.h" #include "sgx.h" #include "trace.h" #include "vmcs.h" #include "vmcs12.h" #include "vmx.h" #include "x86.h" #include "x86_ops.h" #include "smm.h" #include "vmx_onhyperv.h" #include "posted_intr.h" MODULE_AUTHOR("Qumranet"); MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions"); MODULE_LICENSE("GPL"); #ifdef MODULE static const struct x86_cpu_id vmx_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); #endif bool __read_mostly enable_vpid = 1; module_param_named(vpid, enable_vpid, bool, 0444); static bool __read_mostly enable_vnmi = 1; module_param_named(vnmi, enable_vnmi, bool, 0444); bool __read_mostly flexpriority_enabled = 1; module_param_named(flexpriority, flexpriority_enabled, bool, 0444); bool __read_mostly enable_ept = 1; module_param_named(ept, enable_ept, bool, 0444); bool __read_mostly enable_unrestricted_guest = 1; module_param_named(unrestricted_guest, enable_unrestricted_guest, bool, 0444); bool __read_mostly enable_ept_ad_bits = 1; module_param_named(eptad, enable_ept_ad_bits, bool, 0444); static bool __read_mostly emulate_invalid_guest_state = true; module_param(emulate_invalid_guest_state, bool, 0444); static bool __read_mostly fasteoi = 1; module_param(fasteoi, bool, 0444); module_param(enable_apicv, bool, 0444); bool __read_mostly enable_ipiv = true; module_param(enable_ipiv, bool, 0444); /* * If nested=1, nested virtualization is supported, i.e., guests may use * VMX and be a hypervisor for its own guests. If nested=0, guests may not * use VMX instructions. */ static bool __read_mostly nested = 1; module_param(nested, bool, 0444); bool __read_mostly enable_pml = 1; module_param_named(pml, enable_pml, bool, 0444); static bool __read_mostly error_on_inconsistent_vmcs_config = true; module_param(error_on_inconsistent_vmcs_config, bool, 0444); static bool __read_mostly dump_invalid_vmcs = 0; module_param(dump_invalid_vmcs, bool, 0644); #define MSR_BITMAP_MODE_X2APIC 1 #define MSR_BITMAP_MODE_X2APIC_APICV 2 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ static int __read_mostly cpu_preemption_timer_multi; static bool __read_mostly enable_preemption_timer = 1; #ifdef CONFIG_X86_64 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); #endif extern bool __read_mostly allow_smaller_maxphyaddr; module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE #define KVM_VM_CR0_ALWAYS_ON \ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ RTIT_STATUS_BYTECNT)) /* * List of MSRs that can be directly passed to the guest. * In addition to these x2apic, PT and LBR MSRs are handled specially. */ static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { MSR_IA32_SPEC_CTRL, MSR_IA32_PRED_CMD, MSR_IA32_FLUSH_CMD, MSR_IA32_TSC, #ifdef CONFIG_X86_64 MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE, MSR_IA32_XFD, MSR_IA32_XFD_ERR, #endif MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_CORE_C1_RES, MSR_CORE_C3_RESIDENCY, MSR_CORE_C6_RESIDENCY, MSR_CORE_C7_RESIDENCY, }; /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * ple_gap: upper bound on the amount of time between two successive * executions of PAUSE in a loop. Also indicate if ple enabled. * According to test, this time is usually smaller than 128 cycles. * ple_window: upper bound on the amount of time a guest is allowed to execute * in a PAUSE loop. Tests indicate that most spinlocks are held for * less than 2^12 cycles * Time is measured based on a counter that runs at the same rate as the TSC, * refer SDM volume 3b section 21.6.13 & 22.1.3. */ static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; module_param(ple_gap, uint, 0444); static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; module_param(ple_window, uint, 0444); /* Default doubles per-vcpu window every exit. */ static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; module_param(ple_window_grow, uint, 0444); /* Default resets per-vcpu window every exit to ple_window. */ static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; module_param(ple_window_shrink, uint, 0444); /* Default is to compute the maximum so we can never overflow. */ static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; module_param(ple_window_max, uint, 0444); /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */ int __read_mostly pt_mode = PT_MODE_SYSTEM; #ifdef CONFIG_BROKEN module_param(pt_mode, int, S_IRUGO); #endif struct x86_pmu_lbr __ro_after_init vmx_lbr_caps; static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); static DEFINE_MUTEX(vmx_l1d_flush_mutex); /* Storage for pre module init parameter parsing */ static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; static const struct { const char *option; bool for_parse; } vmentry_l1d_param[] = { [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, [VMENTER_L1D_FLUSH_COND] = {"cond", true}, [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, }; #define L1D_CACHE_ORDER 4 static void *vmx_l1d_flush_pages; static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) { struct page *page; unsigned int i; if (!boot_cpu_has_bug(X86_BUG_L1TF)) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; return 0; } if (!enable_ept) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; return 0; } if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; return 0; } /* If set to auto use the default l1tf mitigation method */ if (l1tf == VMENTER_L1D_FLUSH_AUTO) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: l1tf = VMENTER_L1D_FLUSH_NEVER; break; case L1TF_MITIGATION_FLUSH_NOWARN: case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: l1tf = VMENTER_L1D_FLUSH_COND; break; case L1TF_MITIGATION_FULL: case L1TF_MITIGATION_FULL_FORCE: l1tf = VMENTER_L1D_FLUSH_ALWAYS; break; } } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { l1tf = VMENTER_L1D_FLUSH_ALWAYS; } if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { /* * This allocation for vmx_l1d_flush_pages is not tied to a VM * lifetime and so should not be charged to a memcg. */ page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); if (!page) return -ENOMEM; vmx_l1d_flush_pages = page_address(page); /* * Initialize each page with a different pattern in * order to protect against KSM in the nested * virtualization case. */ for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, PAGE_SIZE); } } l1tf_vmx_mitigation = l1tf; if (l1tf != VMENTER_L1D_FLUSH_NEVER) static_branch_enable(&vmx_l1d_should_flush); else static_branch_disable(&vmx_l1d_should_flush); if (l1tf == VMENTER_L1D_FLUSH_COND) static_branch_enable(&vmx_l1d_flush_cond); else static_branch_disable(&vmx_l1d_flush_cond); return 0; } static int vmentry_l1d_flush_parse(const char *s) { unsigned int i; if (s) { for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { if (vmentry_l1d_param[i].for_parse && sysfs_streq(s, vmentry_l1d_param[i].option)) return i; } } return -EINVAL; } static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) { int l1tf, ret; l1tf = vmentry_l1d_flush_parse(s); if (l1tf < 0) return l1tf; if (!boot_cpu_has(X86_BUG_L1TF)) return 0; /* * Has vmx_init() run already? If not then this is the pre init * parameter parsing. In that case just store the value and let * vmx_init() do the proper setup after enable_ept has been * established. */ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { vmentry_l1d_flush_param = l1tf; return 0; } mutex_lock(&vmx_l1d_flush_mutex); ret = vmx_setup_l1d_flush(l1tf); mutex_unlock(&vmx_l1d_flush_mutex); return ret; } static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) { if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) return sysfs_emit(s, "???\n"); return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); } static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) { u64 msr; if (!vmx->disable_fb_clear) return; msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); msr |= FB_CLEAR_DIS; native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); /* Cache the MSR value to avoid reading it later */ vmx->msr_ia32_mcu_opt_ctrl = msr; } static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) { if (!vmx->disable_fb_clear) return; vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); } static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) { /* * Disable VERW's behavior of clearing CPU buffers for the guest if the * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled * the mitigation. Disabling the clearing behavior provides a * performance boost for guests that aren't aware that manually clearing * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry * and VM-Exit. */ vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && !boot_cpu_has_bug(X86_BUG_MDS) && !boot_cpu_has_bug(X86_BUG_TAA); /* * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS * at VMEntry. Skip the MSR read/write when a guest has no use case to * execute VERW. */ if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) vmx->disable_fb_clear = false; } static const struct kernel_param_ops vmentry_l1d_flush_ops = { .set = vmentry_l1d_flush_set, .get = vmentry_l1d_flush_get, }; module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); static u32 vmx_segment_access_rights(struct kvm_segment *var); void vmx_vmexit(void); #define vmx_insn_failed(fmt...) \ do { \ WARN_ONCE(1, fmt); \ pr_warn_ratelimited(fmt); \ } while (0) noinline void vmread_error(unsigned long field) { vmx_insn_failed("vmread failed: field=%lx\n", field); } #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT noinstr void vmread_error_trampoline2(unsigned long field, bool fault) { if (fault) { kvm_spurious_fault(); } else { instrumentation_begin(); vmread_error(field); instrumentation_end(); } } #endif noinline void vmwrite_error(unsigned long field, unsigned long value) { vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); } noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) { vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); } noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) { vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); } noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) { vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", ext, vpid, gva); } noinline void invept_error(unsigned long ext, u64 eptp) { vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp); } static DEFINE_PER_CPU(struct vmcs *, vmxarea); DEFINE_PER_CPU(struct vmcs *, current_vmcs); /* * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. */ static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); static DEFINE_SPINLOCK(vmx_vpid_lock); struct vmcs_config vmcs_config __ro_after_init; struct vmx_capability vmx_capability __ro_after_init; #define VMX_SEGMENT_FIELD(seg) \ [VCPU_SREG_##seg] = { \ .selector = GUEST_##seg##_SELECTOR, \ .base = GUEST_##seg##_BASE, \ .limit = GUEST_##seg##_LIMIT, \ .ar_bytes = GUEST_##seg##_AR_BYTES, \ } static const struct kvm_vmx_segment_field { unsigned selector; unsigned base; unsigned limit; unsigned ar_bytes; } kvm_vmx_segment_fields[] = { VMX_SEGMENT_FIELD(CS), VMX_SEGMENT_FIELD(DS), VMX_SEGMENT_FIELD(ES), VMX_SEGMENT_FIELD(FS), VMX_SEGMENT_FIELD(GS), VMX_SEGMENT_FIELD(SS), VMX_SEGMENT_FIELD(TR), VMX_SEGMENT_FIELD(LDTR), }; static unsigned long host_idt_base; #if IS_ENABLED(CONFIG_HYPERV) static bool __read_mostly enlightened_vmcs = true; module_param(enlightened_vmcs, bool, 0444); static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) { struct hv_enlightened_vmcs *evmcs; hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); if (partition_assist_page == INVALID_PAGE) return -ENOMEM; evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; evmcs->partition_assist_page = partition_assist_page; evmcs->hv_vm_id = (unsigned long)vcpu->kvm; evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; return 0; } static __init void hv_init_evmcs(void) { int cpu; if (!enlightened_vmcs) return; /* * Enlightened VMCS usage should be recommended and the host needs * to support eVMCS v1 or above. */ if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= KVM_EVMCS_VERSION) { /* Check that we have assist pages on all online CPUs */ for_each_online_cpu(cpu) { if (!hv_get_vp_assist_page(cpu)) { enlightened_vmcs = false; break; } } if (enlightened_vmcs) { pr_info("Using Hyper-V Enlightened VMCS\n"); static_branch_enable(&__kvm_is_using_evmcs); } if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) vt_x86_ops.enable_l2_tlb_flush = hv_enable_l2_tlb_flush; } else { enlightened_vmcs = false; } } static void hv_reset_evmcs(void) { struct hv_vp_assist_page *vp_ap; if (!kvm_is_using_evmcs()) return; /* * KVM should enable eVMCS if and only if all CPUs have a VP assist * page, and should reject CPU onlining if eVMCS is enabled the CPU * doesn't have a VP assist page allocated. */ vp_ap = hv_get_vp_assist_page(smp_processor_id()); if (WARN_ON_ONCE(!vp_ap)) return; /* * Reset everything to support using non-enlightened VMCS access later * (e.g. when we reload the module with enlightened_vmcs=0) */ vp_ap->nested_control.features.directhypercall = 0; vp_ap->current_nested_vmcs = 0; vp_ap->enlighten_vmentry = 0; } #else /* IS_ENABLED(CONFIG_HYPERV) */ static void hv_init_evmcs(void) {} static void hv_reset_evmcs(void) {} #endif /* IS_ENABLED(CONFIG_HYPERV) */ /* * Comment's format: document - errata name - stepping - processor name. * Refer from * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp */ static u32 vmx_preemption_cpu_tfms[] = { /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 0x000206E6, /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020652, /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020655, /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ /* * 320767.pdf - AAP86 - B1 - * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile */ 0x000106E5, /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 0x000106A0, /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 0x000106A1, /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 0x000106A4, /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 0x000106A5, /* Xeon E3-1220 V2 */ 0x000306A8, }; static inline bool cpu_has_broken_vmx_preemption_timer(void) { u32 eax = cpuid_eax(0x00000001), i; /* Clear the reserved bits */ eax &= ~(0x3U << 14 | 0xfU << 28); for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) if (eax == vmx_preemption_cpu_tfms[i]) return true; return false; } static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) { return flexpriority_enabled && lapic_in_kernel(vcpu); } static int vmx_get_passthrough_msr_slot(u32 msr) { int i; switch (msr) { case 0x800 ... 0x8ff: /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ return -ENOENT; case MSR_IA32_RTIT_STATUS: case MSR_IA32_RTIT_OUTPUT_BASE: case MSR_IA32_RTIT_OUTPUT_MASK: case MSR_IA32_RTIT_CR3_MATCH: case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ case MSR_LBR_SELECT: case MSR_LBR_TOS: case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ return -ENOENT; } for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { if (vmx_possible_passthrough_msrs[i] == msr) return i; } WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); return -ENOENT; } struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) { int i; i = kvm_find_user_return_msr(msr); if (i >= 0) return &vmx->guest_uret_msrs[i]; return NULL; } static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, struct vmx_uret_msr *msr, u64 data) { unsigned int slot = msr - vmx->guest_uret_msrs; int ret = 0; if (msr->load_into_hardware) { preempt_disable(); ret = kvm_set_user_return_msr(slot, data, msr->mask); preempt_enable(); } if (!ret) msr->data = data; return ret; } /* * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) * * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to * atomically track post-VMXON state, e.g. this may be called in NMI context. * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. * faults are guaranteed to be due to the !post-VMXON check unless the CPU is * magically in RM, VM86, compat mode, or at CPL>0. */ static int kvm_cpu_vmxoff(void) { asm goto("1: vmxoff\n\t" _ASM_EXTABLE(1b, %l[fault]) ::: "cc", "memory" : fault); cr4_clear_bits(X86_CR4_VMXE); return 0; fault: cr4_clear_bits(X86_CR4_VMXE); return -EIO; } void vmx_emergency_disable_virtualization_cpu(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v; kvm_rebooting = true; /* * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be * set in task context. If this races with VMX is disabled by an NMI, * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to * kvm_rebooting set. */ if (!(__read_cr4() & X86_CR4_VMXE)) return; list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) vmcs_clear(v->vmcs); kvm_cpu_vmxoff(); } static void __loaded_vmcs_clear(void *arg) { struct loaded_vmcs *loaded_vmcs = arg; int cpu = raw_smp_processor_id(); if (loaded_vmcs->cpu != cpu) return; /* vcpu migration can race with cpu offline */ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) per_cpu(current_vmcs, cpu) = NULL; vmcs_clear(loaded_vmcs->vmcs); if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) vmcs_clear(loaded_vmcs->shadow_vmcs); list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); /* * Ensure all writes to loaded_vmcs, including deleting it from its * current percpu list, complete before setting loaded_vmcs->cpu to * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first * and add loaded_vmcs to its percpu list before it's deleted from this * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). */ smp_wmb(); loaded_vmcs->cpu = -1; loaded_vmcs->launched = 0; } void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) { int cpu = loaded_vmcs->cpu; if (cpu != -1) smp_call_function_single(cpu, __loaded_vmcs_clear, loaded_vmcs, 1); } static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, unsigned field) { bool ret; u32 mask = 1 << (seg * SEG_FIELD_NR + field); if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); vmx->segment_cache.bitmask = 0; } ret = vmx->segment_cache.bitmask & mask; vmx->segment_cache.bitmask |= mask; return ret; } static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) { u16 *p = &vmx->segment_cache.seg[seg].selector; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); return *p; } static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) { ulong *p = &vmx->segment_cache.seg[seg].base; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); return *p; } static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].limit; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); return *p; } static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].ar; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); return *p; } void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) { u32 eb; eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR); /* * #VE isn't used for VMX. To test against unexpected changes * related to #VE for VMX, intercept unexpected #VE and warn on it. */ if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) eb |= 1u << VE_VECTOR; /* * Guest access to VMware backdoor ports could legitimately * trigger #GP because of TSS I/O permission bitmap. * We intercept those #GP and allow access to them anyway * as VMware does. */ if (enable_vmware_backdoor) eb |= (1u << GP_VECTOR); if ((vcpu->guest_debug & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) eb |= 1u << BP_VECTOR; if (to_vmx(vcpu)->rmode.vm86_active) eb = ~0; if (!vmx_need_pf_intercept(vcpu)) eb &= ~(1u << PF_VECTOR); /* When we are running a nested L2 guest and L1 specified for it a * certain exception bitmap, we must trap the same exceptions and pass * them to L1. When running L2, we will only handle the exceptions * specified above if L1 did not want them. */ if (is_guest_mode(vcpu)) eb |= get_vmcs12(vcpu)->exception_bitmap; else { int mask = 0, match = 0; if (enable_ept && (eb & (1u << PF_VECTOR))) { /* * If EPT is enabled, #PF is currently only intercepted * if MAXPHYADDR is smaller on the guest than on the * host. In that case we only care about present, * non-reserved faults. For vmcs02, however, PFEC_MASK * and PFEC_MATCH are set in prepare_vmcs02_rare. */ mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; match = PFERR_PRESENT_MASK; } vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); } /* * Disabling xfd interception indicates that dynamic xfeatures * might be used in the guest. Always trap #NM in this case * to save guest xfd_err timely. */ if (vcpu->arch.xfd_no_write_intercept) eb |= (1u << NM_VECTOR); vmcs_write32(EXCEPTION_BITMAP, eb); } /* * Check if MSR is intercepted for currently loaded MSR bitmap. */ static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) { if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) return true; return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); } unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) { unsigned int flags = 0; if (vmx->loaded_vmcs->launched) flags |= VMX_RUN_VMRESUME; /* * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free * to change it directly without causing a vmexit. In that case read * it after vmexit and store it in vmx->spec_ctrl. */ if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) flags |= VMX_RUN_SAVE_SPEC_CTRL; return flags; } static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit) { vm_entry_controls_clearbit(vmx, entry); vm_exit_controls_clearbit(vmx, exit); } int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) { unsigned int i; for (i = 0; i < m->nr; ++i) { if (m->val[i].index == msr) return i; } return -ENOENT; } static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) { int i; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer()) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl()) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); return; } break; } i = vmx_find_loadstore_msr_slot(&m->guest, msr); if (i < 0) goto skip_guest; --m->guest.nr; m->guest.val[i] = m->guest.val[m->guest.nr]; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); skip_guest: i = vmx_find_loadstore_msr_slot(&m->host, msr); if (i < 0) return; --m->host.nr; m->host.val[i] = m->host.val[m->host.nr]; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit, unsigned long guest_val_vmcs, unsigned long host_val_vmcs, u64 guest_val, u64 host_val) { vmcs_write64(guest_val_vmcs, guest_val); if (host_val_vmcs != HOST_IA32_EFER) vmcs_write64(host_val_vmcs, host_val); vm_entry_controls_setbit(vmx, entry); vm_exit_controls_setbit(vmx, exit); } static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, u64 guest_val, u64 host_val, bool entry_only) { int i, j = 0; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer()) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER, GUEST_IA32_EFER, HOST_IA32_EFER, guest_val, host_val); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl()) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, GUEST_IA32_PERF_GLOBAL_CTRL, HOST_IA32_PERF_GLOBAL_CTRL, guest_val, host_val); return; } break; case MSR_IA32_PEBS_ENABLE: /* PEBS needs a quiescent period after being disabled (to write * a record). Disabling PEBS through VMX MSR swapping doesn't * provide that period, so a CPU could write host's record into * guest's memory. */ wrmsrl(MSR_IA32_PEBS_ENABLE, 0); } i = vmx_find_loadstore_msr_slot(&m->guest, msr); if (!entry_only) j = vmx_find_loadstore_msr_slot(&m->host, msr); if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { printk_once(KERN_WARNING "Not enough msr switch entries. " "Can't add msr %x\n", msr); return; } if (i < 0) { i = m->guest.nr++; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); } m->guest.val[i].index = msr; m->guest.val[i].value = guest_val; if (entry_only) return; if (j < 0) { j = m->host.nr++; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } m->host.val[j].index = msr; m->host.val[j].value = host_val; } static bool update_transition_efer(struct vcpu_vmx *vmx) { u64 guest_efer = vmx->vcpu.arch.efer; u64 ignore_bits = 0; int i; /* Shadow paging assumes NX to be available. */ if (!enable_ept) guest_efer |= EFER_NX; /* * LMA and LME handled by hardware; SCE meaningless outside long mode. */ ignore_bits |= EFER_SCE; #ifdef CONFIG_X86_64 ignore_bits |= EFER_LMA | EFER_LME; /* SCE is meaningful only in long mode on Intel */ if (guest_efer & EFER_LMA) ignore_bits &= ~(u64)EFER_SCE; #endif /* * On EPT, we can't emulate NX, so we must switch EFER atomically. * On CPUs that support "load IA32_EFER", always switch EFER * atomically, since it's faster than switching it manually. */ if (cpu_has_load_ia32_efer() || (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) { if (!(guest_efer & EFER_LMA)) guest_efer &= ~EFER_LME; if (guest_efer != kvm_host.efer) add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, kvm_host.efer, false); else clear_atomic_switch_msr(vmx, MSR_EFER); return false; } i = kvm_find_user_return_msr(MSR_EFER); if (i < 0) return false; clear_atomic_switch_msr(vmx, MSR_EFER); guest_efer &= ~ignore_bits; guest_efer |= kvm_host.efer & ignore_bits; vmx->guest_uret_msrs[i].data = guest_efer; vmx->guest_uret_msrs[i].mask = ~ignore_bits; return true; } #ifdef CONFIG_X86_32 /* * On 32-bit kernels, VM exits still load the FS and GS bases from the * VMCS rather than the segment table. KVM uses this helper to figure * out the current bases to poke them into the VMCS before entry. */ static unsigned long segment_base(u16 selector) { struct desc_struct *table; unsigned long v; if (!(selector & ~SEGMENT_RPL_MASK)) return 0; table = get_current_gdt_ro(); if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { u16 ldt_selector = kvm_read_ldt(); if (!(ldt_selector & ~SEGMENT_RPL_MASK)) return 0; table = (struct desc_struct *)segment_base(ldt_selector); } v = get_desc_base(&table[selector >> 3]); return v; } #endif static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) { return vmx_pt_mode_is_host_guest() && !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); } static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) { /* The base must be 128-byte aligned and a legal physical address. */ return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); } static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) { u32 i; wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); for (i = 0; i < addr_range; i++) { wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); } } static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) { u32 i; rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); for (i = 0; i < addr_range; i++) { rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); } } static void pt_guest_enter(struct vcpu_vmx *vmx) { if (vmx_pt_mode_is_system()) return; /* * GUEST_IA32_RTIT_CTL is already set in the VMCS. * Save host state before VM entry. */ rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { wrmsrl(MSR_IA32_RTIT_CTL, 0); pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); } } static void pt_guest_exit(struct vcpu_vmx *vmx) { if (vmx_pt_mode_is_system()) return; if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); } /* * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. */ if (vmx->pt_desc.host.ctl) wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); } void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, unsigned long fs_base, unsigned long gs_base) { if (unlikely(fs_sel != host->fs_sel)) { if (!(fs_sel & 7)) vmcs_write16(HOST_FS_SELECTOR, fs_sel); else vmcs_write16(HOST_FS_SELECTOR, 0); host->fs_sel = fs_sel; } if (unlikely(gs_sel != host->gs_sel)) { if (!(gs_sel & 7)) vmcs_write16(HOST_GS_SELECTOR, gs_sel); else vmcs_write16(HOST_GS_SELECTOR, 0); host->gs_sel = gs_sel; } if (unlikely(fs_base != host->fs_base)) { vmcs_writel(HOST_FS_BASE, fs_base); host->fs_base = fs_base; } if (unlikely(gs_base != host->gs_base)) { vmcs_writel(HOST_GS_BASE, gs_base); host->gs_base = gs_base; } } void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs_host_state *host_state; #ifdef CONFIG_X86_64 int cpu = raw_smp_processor_id(); #endif unsigned long fs_base, gs_base; u16 fs_sel, gs_sel; int i; /* * Note that guest MSRs to be saved/restored can also be changed * when guest state is loaded. This happens when guest transitions * to/from long-mode by setting MSR_EFER.LMA. */ if (!vmx->guest_uret_msrs_loaded) { vmx->guest_uret_msrs_loaded = true; for (i = 0; i < kvm_nr_uret_msrs; ++i) { if (!vmx->guest_uret_msrs[i].load_into_hardware) continue; kvm_set_user_return_msr(i, vmx->guest_uret_msrs[i].data, vmx->guest_uret_msrs[i].mask); } } if (vmx->nested.need_vmcs12_to_shadow_sync) nested_sync_vmcs12_to_shadow(vcpu); if (vmx->guest_state_loaded) return; host_state = &vmx->loaded_vmcs->host_state; /* * Set host fs and gs selectors. Unfortunately, 22.2.3 does not * allow segment selectors with cpl > 0 or ti == 1. */ host_state->ldt_sel = kvm_read_ldt(); #ifdef CONFIG_X86_64 savesegment(ds, host_state->ds_sel); savesegment(es, host_state->es_sel); gs_base = cpu_kernelmode_gs_base(cpu); if (likely(is_64bit_mm(current->mm))) { current_save_fsgs(); fs_sel = current->thread.fsindex; gs_sel = current->thread.gsindex; fs_base = current->thread.fsbase; vmx->msr_host_kernel_gs_base = current->thread.gsbase; } else { savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = read_msr(MSR_FS_BASE); vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); } wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #else savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = segment_base(fs_sel); gs_base = segment_base(gs_sel); #endif vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); vmx->guest_state_loaded = true; } static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) { struct vmcs_host_state *host_state; if (!vmx->guest_state_loaded) return; host_state = &vmx->loaded_vmcs->host_state; ++vmx->vcpu.stat.host_state_reload; #ifdef CONFIG_X86_64 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #endif if (host_state->ldt_sel || (host_state->gs_sel & 7)) { kvm_load_ldt(host_state->ldt_sel); #ifdef CONFIG_X86_64 load_gs_index(host_state->gs_sel); #else loadsegment(gs, host_state->gs_sel); #endif } if (host_state->fs_sel & 7) loadsegment(fs, host_state->fs_sel); #ifdef CONFIG_X86_64 if (unlikely(host_state->ds_sel | host_state->es_sel)) { loadsegment(ds, host_state->ds_sel); loadsegment(es, host_state->es_sel); } #endif invalidate_tss_limit(); #ifdef CONFIG_X86_64 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); #endif load_fixmap_gdt(raw_smp_processor_id()); vmx->guest_state_loaded = false; vmx->guest_uret_msrs_loaded = false; } #ifdef CONFIG_X86_64 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) { preempt_disable(); if (vmx->guest_state_loaded) rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); preempt_enable(); return vmx->msr_guest_kernel_gs_base; } static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) { preempt_disable(); if (vmx->guest_state_loaded) wrmsrl(MSR_KERNEL_GS_BASE, data); preempt_enable(); vmx->msr_guest_kernel_gs_base = data; } #endif static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned int old = vmx->ple_window; vmx->ple_window = __grow_ple_window(old, ple_window, ple_window_grow, ple_window_max); if (vmx->ple_window != old) { vmx->ple_window_dirty = true; trace_kvm_ple_window_update(vcpu->vcpu_id, vmx->ple_window, old); } } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned int old = vmx->ple_window; vmx->ple_window = __shrink_ple_window(old, ple_window, ple_window_shrink, ple_window); if (vmx->ple_window != old) { vmx->ple_window_dirty = true; trace_kvm_ple_window_update(vcpu->vcpu_id, vmx->ple_window, old); } } void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, struct loaded_vmcs *buddy) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool already_loaded = vmx->loaded_vmcs->cpu == cpu; struct vmcs *prev; if (!already_loaded) { loaded_vmcs_clear(vmx->loaded_vmcs); local_irq_disable(); /* * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to * this cpu's percpu list, otherwise it may not yet be deleted * from its previous cpu's percpu list. Pairs with the * smb_wmb() in __loaded_vmcs_clear(). */ smp_rmb(); list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, &per_cpu(loaded_vmcss_on_cpu, cpu)); local_irq_enable(); } prev = per_cpu(current_vmcs, cpu); if (prev != vmx->loaded_vmcs->vmcs) { per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; vmcs_load(vmx->loaded_vmcs->vmcs); /* * No indirect branch prediction barrier needed when switching * the active VMCS within a vCPU, unless IBRS is advertised to * the vCPU. To minimize the number of IBPBs executed, KVM * performs IBPB on nested VM-Exit (a single nested transition * may switch the active VMCS multiple times). */ if (static_branch_likely(&switch_vcpu_ibpb) && (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))) indirect_branch_prediction_barrier(); } if (!already_loaded) { void *gdt = get_current_gdt_ro(); /* * Flush all EPTP/VPID contexts, the new pCPU may have stale * TLB entries from its previous association with the vCPU. */ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); /* * Linux uses per-cpu TSS and GDT, so set these when switching * processors. See 22.2.4. */ vmcs_writel(HOST_TR_BASE, (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { /* 22.2.3 */ vmcs_writel(HOST_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1)); } vmx->loaded_vmcs->cpu = cpu; } } /* * Switches to specified vcpu, until a matching vcpu_put(), but assumes * vcpu mutex is already taken. */ void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) shrink_ple_window(vcpu); vmx_vcpu_load_vmcs(vcpu, cpu, NULL); vmx_vcpu_pi_load(vcpu, cpu); } void vmx_vcpu_put(struct kvm_vcpu *vcpu) { vmx_vcpu_pi_put(vcpu); vmx_prepare_switch_to_host(to_vmx(vcpu)); } bool vmx_emulation_required(struct kvm_vcpu *vcpu) { return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); } unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long rflags, save_rflags; if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); rflags = vmcs_readl(GUEST_RFLAGS); if (vmx->rmode.vm86_active) { rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; save_rflags = vmx->rmode.save_rflags; rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; } vmx->rflags = rflags; } return vmx->rflags; } void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long old_rflags; /* * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU * is an unrestricted guest in order to mark L2 as needing emulation * if L1 runs L2 as a restricted guest. */ if (is_unrestricted_guest(vcpu)) { kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); vmx->rflags = rflags; vmcs_writel(GUEST_RFLAGS, rflags); return; } old_rflags = vmx_get_rflags(vcpu); vmx->rflags = rflags; if (vmx->rmode.vm86_active) { vmx->rmode.save_rflags = rflags; rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; } vmcs_writel(GUEST_RFLAGS, rflags); if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) vmx->emulation_required = vmx_emulation_required(vcpu); } bool vmx_get_if_flag(struct kvm_vcpu *vcpu) { return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; } u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) { u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); int ret = 0; if (interruptibility & GUEST_INTR_STATE_STI) ret |= KVM_X86_SHADOW_INT_STI; if (interruptibility & GUEST_INTR_STATE_MOV_SS) ret |= KVM_X86_SHADOW_INT_MOV_SS; return ret; } void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); u32 interruptibility = interruptibility_old; interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); if (mask & KVM_X86_SHADOW_INT_MOV_SS) interruptibility |= GUEST_INTR_STATE_MOV_SS; else if (mask & KVM_X86_SHADOW_INT_STI) interruptibility |= GUEST_INTR_STATE_STI; if ((interruptibility != interruptibility_old)) vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); } static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long value; /* * Any MSR write that attempts to change bits marked reserved will * case a #GP fault. */ if (data & vmx->pt_desc.ctl_bitmask) return 1; /* * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will * result in a #GP unless the same write also clears TraceEn. */ if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && (data & RTIT_CTL_TRACEEN) && data != vmx->pt_desc.guest.ctl) return 1; /* * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit * and FabricEn would cause #GP, if * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 */ if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && !(data & RTIT_CTL_FABRIC_EN) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output)) return 1; /* * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that * utilize encodings marked reserved will cause a #GP fault. */ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && !test_bit((data & RTIT_CTL_MTC_RANGE) >> RTIT_CTL_MTC_RANGE_OFFSET, &value)) return 1; value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cycle_thresholds); if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && !test_bit((data & RTIT_CTL_CYC_THRESH) >> RTIT_CTL_CYC_THRESH_OFFSET, &value)) return 1; value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && !test_bit((data & RTIT_CTL_PSB_FREQ) >> RTIT_CTL_PSB_FREQ_OFFSET, &value)) return 1; /* * If ADDRx_CFG is reserved or the encodings is >2 will * cause a #GP fault. */ value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) return 1; value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) return 1; value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) return 1; value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) return 1; return 0; } int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, void *insn, int insn_len) { /* * Emulation of instructions in SGX enclaves is impossible as RIP does * not point at the failing instruction, and even if it did, the code * stream is inaccessible. Inject #UD instead of exiting to userspace * so that guest userspace can't DoS the guest simply by triggering * emulation (enclaves are CPL3 only). */ if (to_vmx(vcpu)->exit_reason.enclave_mode) { kvm_queue_exception(vcpu, UD_VECTOR); return X86EMUL_PROPAGATE_FAULT; } /* Check that emulation is possible during event vectoring */ if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && !kvm_can_emulate_event_vectoring(emul_type)) return X86EMUL_UNHANDLEABLE_VECTORING; return X86EMUL_CONTINUE; } static int skip_emulated_instruction(struct kvm_vcpu *vcpu) { union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; unsigned long rip, orig_rip; u32 instr_len; /* * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on * undefined behavior: Intel's SDM doesn't mandate the VMCS field be * set when EPT misconfig occurs. In practice, real hardware updates * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors * (namely Hyper-V) don't set it due to it being undefined behavior, * i.e. we end up advancing IP with some random value. */ if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); /* * Emulating an enclave's instructions isn't supported as KVM * cannot access the enclave's memory or its true RIP, e.g. the * vmcs.GUEST_RIP points at the exit point of the enclave, not * the RIP that actually triggered the VM-Exit. But, because * most instructions that cause VM-Exit will #UD in an enclave, * most instruction-based VM-Exits simply do not occur. * * There are a few exceptions, notably the debug instructions * INT1ICEBRK and INT3, as they are allowed in debug enclaves * and generate #DB/#BP as expected, which KVM might intercept. * But again, the CPU does the dirty work and saves an instr * length of zero so VMMs don't shoot themselves in the foot. * WARN if KVM tries to skip a non-zero length instruction on * a VM-Exit from an enclave. */ if (!instr_len) goto rip_updated; WARN_ONCE(exit_reason.enclave_mode, "skipping instruction after SGX enclave VM-Exit"); orig_rip = kvm_rip_read(vcpu); rip = orig_rip + instr_len; #ifdef CONFIG_X86_64 /* * We need to mask out the high 32 bits of RIP if not in 64-bit * mode, but just finding out that we are in 64-bit mode is * quite expensive. Only do it if there was a carry. */ if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) rip = (u32)rip; #endif kvm_rip_write(vcpu, rip); } else { if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) return 0; } rip_updated: /* skipping an emulated instruction also counts */ vmx_set_interrupt_shadow(vcpu, 0); return 1; } /* * Recognizes a pending MTF VM-exit and records the nested state for later * delivery. */ void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); if (!is_guest_mode(vcpu)) return; /* * Per the SDM, MTF takes priority over debug-trap exceptions besides * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps * or ICEBP (in the emulator proper), and skipping of ICEBP after an * intercepted #DB deliberately avoids single-step #DB and MTF updates * as ICEBP is higher priority than both. As instruction emulation is * completed at this point (i.e. KVM is at the instruction boundary), * any #DB exception pending delivery must be a debug-trap of lower * priority than MTF. Record the pending MTF state to be delivered in * vmx_check_nested_events(). */ if (nested_cpu_has_mtf(vmcs12) && (!vcpu->arch.exception.pending || vcpu->arch.exception.vector == DB_VECTOR) && (!vcpu->arch.exception_vmexit.pending || vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { vmx->nested.mtf_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); } else { vmx->nested.mtf_pending = false; } } int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) { vmx_update_emulated_instruction(vcpu); return skip_emulated_instruction(vcpu); } static void vmx_clear_hlt(struct kvm_vcpu *vcpu) { /* * Ensure that we clear the HLT state in the VMCS. We don't need to * explicitly skip the instruction because if the HLT state is set, * then the instruction is already executing and RIP has already been * advanced. */ if (kvm_hlt_in_guest(vcpu->kvm) && vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); } void vmx_inject_exception(struct kvm_vcpu *vcpu) { struct kvm_queued_exception *ex = &vcpu->arch.exception; u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; struct vcpu_vmx *vmx = to_vmx(vcpu); kvm_deliver_exception_payload(vcpu, ex); if (ex->has_error_code) { /* * Despite the error code being architecturally defined as 32 * bits, and the VMCS field being 32 bits, Intel CPUs and thus * VMX don't actually supporting setting bits 31:16. Hardware * will (should) never provide a bogus error code, but AMD CPUs * do generate error codes with bits 31:16 set, and so KVM's * ABI lets userspace shove in arbitrary 32-bit values. Drop * the upper bits to avoid VM-Fail, losing information that * doesn't really exist is preferable to killing the VM. */ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); intr_info |= INTR_INFO_DELIVER_CODE_MASK; } if (vmx->rmode.vm86_active) { int inc_eip = 0; if (kvm_exception_is_soft(ex->vector)) inc_eip = vcpu->arch.event_exit_inst_len; kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); return; } WARN_ON_ONCE(vmx->emulation_required); if (kvm_exception_is_soft(ex->vector)) { vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); intr_info |= INTR_TYPE_SOFT_EXCEPTION; } else intr_info |= INTR_TYPE_HARD_EXCEPTION; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); vmx_clear_hlt(vcpu); } static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, bool load_into_hardware) { struct vmx_uret_msr *uret_msr; uret_msr = vmx_find_uret_msr(vmx, msr); if (!uret_msr) return; uret_msr->load_into_hardware = load_into_hardware; } /* * Configuring user return MSRs to automatically save, load, and restore MSRs * that need to be shoved into hardware when running the guest. Note, omitting * an MSR here does _NOT_ mean it's not emulated, only that it will not be * loaded into hardware when running the guest. */ static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) { #ifdef CONFIG_X86_64 bool load_syscall_msrs; /* * The SYSCALL MSRs are only needed on long mode guests, and only * when EFER.SCE is set. */ load_syscall_msrs = is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE); vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); #endif vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); vmx_setup_uret_msr(vmx, MSR_TSC_AUX, guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID)); /* * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new * kernel and old userspace. If those guests run on a tsx=off host, do * allow guests to use TSX_CTRL, but don't change the value in hardware * so that TSX remains always disabled. */ vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); /* * The set of MSRs to load may have changed, reload MSRs before the * next VM-Enter. */ vmx->guest_uret_msrs_loaded = false; } u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) return vmcs12->tsc_offset; return 0; } u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) return vmcs12->tsc_multiplier; return kvm_caps.default_tsc_scaling_ratio; } void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) { vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); } void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) { vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); } /* * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain * backwards compatibility even though KVM doesn't support emulating SMX. And * because userspace set "VMX in SMX", the guest must also be allowed to set it, * e.g. if the MSR is left unlocked and the guest does a RMW operation. */ #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ FEAT_CTL_SGX_LC_ENABLED | \ FEAT_CTL_SGX_ENABLED | \ FEAT_CTL_LMCE_ENABLED) static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, struct msr_data *msr) { uint64_t valid_bits; /* * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are * exposed to the guest. */ WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & ~KVM_SUPPORTED_FEATURE_CONTROL); if (!msr->host_initiated && (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) return false; if (msr->host_initiated) valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; else valid_bits = vmx->msr_ia32_feature_control_valid_bits; return !(msr->data & ~valid_bits); } int vmx_get_feature_msr(u32 msr, u64 *data) { switch (msr) { case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: if (!nested) return 1; return vmx_get_vmx_msr(&vmcs_config.nested, msr, data); default: return KVM_MSR_RET_UNSUPPORTED; } } /* * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmx_uret_msr *msr; u32 index; switch (msr_info->index) { #ifdef CONFIG_X86_64 case MSR_FS_BASE: msr_info->data = vmcs_readl(GUEST_FS_BASE); break; case MSR_GS_BASE: msr_info->data = vmcs_readl(GUEST_GS_BASE); break; case MSR_KERNEL_GS_BASE: msr_info->data = vmx_read_guest_kernel_gs_base(vmx); break; #endif case MSR_EFER: return kvm_get_msr_common(vcpu, msr_info); case MSR_IA32_TSX_CTRL: if (!msr_info->host_initiated && !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) return 1; goto find_uret_msr; case MSR_IA32_UMWAIT_CONTROL: if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) return 1; msr_info->data = vmx->msr_ia32_umwait_control; break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; msr_info->data = to_vmx(vcpu)->spec_ctrl; break; case MSR_IA32_SYSENTER_CS: msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); break; case MSR_IA32_SYSENTER_EIP: msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); break; case MSR_IA32_SYSENTER_ESP: msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX))) return 1; msr_info->data = vmcs_read64(GUEST_BNDCFGS); break; case MSR_IA32_MCG_EXT_CTL: if (!msr_info->host_initiated && !(vmx->msr_ia32_feature_control & FEAT_CTL_LMCE_ENABLED)) return 1; msr_info->data = vcpu->arch.mcg_ext_ctl; break; case MSR_IA32_FEAT_CTL: msr_info->data = vmx->msr_ia32_feature_control; break; case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: if (!msr_info->host_initiated && !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC)) return 1; msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; break; case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) return 1; if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, &msr_info->data)) return 1; #ifdef CONFIG_KVM_HYPERV /* * Enlightened VMCS v1 doesn't have certain VMCS fields but * instead of just ignoring the features, different Hyper-V * versions are either trying to use them and fail or do some * sanity checking and refuse to boot. Filter all unsupported * features out. */ if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu)) nested_evmcs_filter_control_msr(vcpu, msr_info->index, &msr_info->data); #endif break; case MSR_IA32_RTIT_CTL: if (!vmx_pt_mode_is_host_guest()) return 1; msr_info->data = vmx->pt_desc.guest.ctl; break; case MSR_IA32_RTIT_STATUS: if (!vmx_pt_mode_is_host_guest()) return 1; msr_info->data = vmx->pt_desc.guest.status; break; case MSR_IA32_RTIT_CR3_MATCH: if (!vmx_pt_mode_is_host_guest() || !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) return 1; msr_info->data = vmx->pt_desc.guest.cr3_match; break; case MSR_IA32_RTIT_OUTPUT_BASE: if (!vmx_pt_mode_is_host_guest() || (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output))) return 1; msr_info->data = vmx->pt_desc.guest.output_base; break; case MSR_IA32_RTIT_OUTPUT_MASK: if (!vmx_pt_mode_is_host_guest() || (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output))) return 1; msr_info->data = vmx->pt_desc.guest.output_mask; break; case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; if (!vmx_pt_mode_is_host_guest() || (index >= 2 * vmx->pt_desc.num_address_ranges)) return 1; if (index % 2) msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; else msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; break; case MSR_IA32_DEBUGCTLMSR: msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); break; default: find_uret_msr: msr = vmx_find_uret_msr(vmx, msr_info->index); if (msr) { msr_info->data = msr->data; break; } return kvm_get_msr_common(vcpu, msr_info); } return 0; } static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, u64 data) { #ifdef CONFIG_X86_64 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) return (u32)data; #endif return (unsigned long)data; } static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) { u64 debugctl = 0; if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; return debugctl; } /* * Writes msr value into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmx_uret_msr *msr; int ret = 0; u32 msr_index = msr_info->index; u64 data = msr_info->data; u32 index; switch (msr_index) { case MSR_EFER: ret = kvm_set_msr_common(vcpu, msr_info); break; #ifdef CONFIG_X86_64 case MSR_FS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_FS_BASE, data); break; case MSR_GS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_GS_BASE, data); break; case MSR_KERNEL_GS_BASE: vmx_write_guest_kernel_gs_base(vmx, data); break; case MSR_IA32_XFD: ret = kvm_set_msr_common(vcpu, msr_info); /* * Always intercepting WRMSR could incur non-negligible * overhead given xfd might be changed frequently in * guest context switch. Disable write interception * upon the first write with a non-zero value (indicating * potential usage on dynamic xfeatures). Also update * exception bitmap to trap #NM for proper virtualization * of guest xfd_err. */ if (!ret && data) { vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW); vcpu->arch.xfd_no_write_intercept = true; vmx_update_exception_bitmap(vcpu); } break; #endif case MSR_IA32_SYSENTER_CS: if (is_guest_mode(vcpu)) get_vmcs12(vcpu)->guest_sysenter_cs = data; vmcs_write32(GUEST_SYSENTER_CS, data); break; case MSR_IA32_SYSENTER_EIP: if (is_guest_mode(vcpu)) { data = nested_vmx_truncate_sysenter_addr(vcpu, data); get_vmcs12(vcpu)->guest_sysenter_eip = data; } vmcs_writel(GUEST_SYSENTER_EIP, data); break; case MSR_IA32_SYSENTER_ESP: if (is_guest_mode(vcpu)) { data = nested_vmx_truncate_sysenter_addr(vcpu, data); get_vmcs12(vcpu)->guest_sysenter_esp = data; } vmcs_writel(GUEST_SYSENTER_ESP, data); break; case MSR_IA32_DEBUGCTLMSR: { u64 invalid; invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); } if (invalid) return 1; if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) get_vmcs12(vcpu)->guest_ia32_debugctl = data; vmcs_write64(GUEST_IA32_DEBUGCTL, data); if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && (data & DEBUGCTLMSR_LBR)) intel_pmu_create_guest_lbr_event(vcpu); return 0; } case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX))) return 1; if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) || (data & MSR_IA32_BNDCFGS_RSVD)) return 1; if (is_guest_mode(vcpu) && ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) get_vmcs12(vcpu)->guest_bndcfgs = data; vmcs_write64(GUEST_BNDCFGS, data); break; case MSR_IA32_UMWAIT_CONTROL: if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) return 1; /* The reserved bit 1 and non-32 bit [63:32] should be zero */ if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) return 1; vmx->msr_ia32_umwait_control = data; break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; if (kvm_spec_ctrl_test_value(data)) return 1; vmx->spec_ctrl = data; if (!data) break; /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_vmx_prepare_msr_bitmap. We should not touch the * vmcs02.msr_bitmap here since it gets completely overwritten * in the merging. We update the vmcs01 here for L1 as well * since it will end up touching the MSR anyway now. */ vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); break; case MSR_IA32_TSX_CTRL: if (!msr_info->host_initiated && !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) return 1; if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) return 1; goto find_uret_msr; case MSR_IA32_CR_PAT: ret = kvm_set_msr_common(vcpu, msr_info); if (ret) break; if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) get_vmcs12(vcpu)->guest_ia32_pat = data; if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, data); break; case MSR_IA32_MCG_EXT_CTL: if ((!msr_info->host_initiated && !(to_vmx(vcpu)->msr_ia32_feature_control & FEAT_CTL_LMCE_ENABLED)) || (data & ~MCG_EXT_CTL_LMCE_EN)) return 1; vcpu->arch.mcg_ext_ctl = data; break; case MSR_IA32_FEAT_CTL: if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) return 1; vmx->msr_ia32_feature_control = data; if (msr_info->host_initiated && data == 0) vmx_leave_nested(vcpu); /* SGX may be enabled/disabled by guest's firmware */ vmx_write_encls_bitmap(vcpu, NULL); break; case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: /* * On real hardware, the LE hash MSRs are writable before * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), * at which point SGX related bits in IA32_FEATURE_CONTROL * become writable. * * KVM does not emulate SGX activation for simplicity, so * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL * is unlocked. This is technically not architectural * behavior, but it's close enough. */ if (!msr_info->host_initiated && (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) || ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) return 1; vmx->msr_ia32_sgxlepubkeyhash [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; break; case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: if (!msr_info->host_initiated) return 1; /* they are read-only */ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) return 1; return vmx_set_vmx_msr(vcpu, msr_index, data); case MSR_IA32_RTIT_CTL: if (!vmx_pt_mode_is_host_guest() || vmx_rtit_ctl_check(vcpu, data) || vmx->nested.vmxon) return 1; vmcs_write64(GUEST_IA32_RTIT_CTL, data); vmx->pt_desc.guest.ctl = data; pt_update_intercept_for_msr(vcpu); break; case MSR_IA32_RTIT_STATUS: if (!pt_can_write_msr(vmx)) return 1; if (data & MSR_IA32_RTIT_STATUS_MASK) return 1; vmx->pt_desc.guest.status = data; break; case MSR_IA32_RTIT_CR3_MATCH: if (!pt_can_write_msr(vmx)) return 1; if (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) return 1; vmx->pt_desc.guest.cr3_match = data; break; case MSR_IA32_RTIT_OUTPUT_BASE: if (!pt_can_write_msr(vmx)) return 1; if (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output)) return 1; if (!pt_output_base_valid(vcpu, data)) return 1; vmx->pt_desc.guest.output_base = data; break; case MSR_IA32_RTIT_OUTPUT_MASK: if (!pt_can_write_msr(vmx)) return 1; if (!intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output) && !intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_single_range_output)) return 1; vmx->pt_desc.guest.output_mask = data; break; case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: if (!pt_can_write_msr(vmx)) return 1; index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; if (index >= 2 * vmx->pt_desc.num_address_ranges) return 1; if (is_noncanonical_msr_address(data, vcpu)) return 1; if (index % 2) vmx->pt_desc.guest.addr_b[index / 2] = data; else vmx->pt_desc.guest.addr_a[index / 2] = data; break; case MSR_IA32_PERF_CAPABILITIES: if (data & PMU_CAP_LBR_FMT) { if ((data & PMU_CAP_LBR_FMT) != (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) return 1; if (!cpuid_model_is_consistent(vcpu)) return 1; } if (data & PERF_CAP_PEBS_FORMAT) { if ((data & PERF_CAP_PEBS_MASK) != (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) return 1; if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS)) return 1; if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64)) return 1; if (!cpuid_model_is_consistent(vcpu)) return 1; } ret = kvm_set_msr_common(vcpu, msr_info); break; default: find_uret_msr: msr = vmx_find_uret_msr(vmx, msr_index); if (msr) ret = vmx_set_guest_uret_msr(vmx, msr, data); else ret = kvm_set_msr_common(vcpu, msr_info); } /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ if (msr_index == MSR_IA32_ARCH_CAPABILITIES) vmx_update_fb_clear_dis(vcpu, vmx); return ret; } void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { unsigned long guest_owned_bits; kvm_register_mark_available(vcpu, reg); switch (reg) { case VCPU_REGS_RSP: vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); break; case VCPU_REGS_RIP: vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); break; case VCPU_EXREG_PDPTR: if (enable_ept) ept_save_pdptrs(vcpu); break; case VCPU_EXREG_CR0: guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; vcpu->arch.cr0 &= ~guest_owned_bits; vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; break; case VCPU_EXREG_CR3: /* * When intercepting CR3 loads, e.g. for shadowing paging, KVM's * CR3 is loaded into hardware, not the guest's CR3. */ if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); break; case VCPU_EXREG_CR4: guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; vcpu->arch.cr4 &= ~guest_owned_bits; vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; break; default: KVM_BUG_ON(1, vcpu->kvm); break; } } /* * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID * directly instead of going through cpu_has(), to ensure KVM is trapping * ENCLS whenever it's supported in hardware. It does not matter whether * the host OS supports or has enabled SGX. */ static bool cpu_has_sgx(void) { return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); } static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) { u32 vmx_msr_low, vmx_msr_high; u32 ctl = ctl_min | ctl_opt; rdmsr(msr, vmx_msr_low, vmx_msr_high); ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ /* Ensure minimum (required) set of control bits are supported. */ if (ctl_min & ~ctl) return -EIO; *result = ctl; return 0; } static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) { u64 allowed; rdmsrl(msr, allowed); return ctl_opt & allowed; } #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls) \ ({ \ int i, r = 0; \ \ BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls)); \ BUILD_BUG_ON(sizeof(pairs[0].exit_control) != sizeof(exit_controls)); \ \ for (i = 0; i < ARRAY_SIZE(pairs); i++) { \ typeof(entry_controls) n_ctrl = pairs[i].entry_control; \ typeof(exit_controls) x_ctrl = pairs[i].exit_control; \ \ if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl)) \ continue; \ \ pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, " \ "entry = %llx (%llx), exit = %llx (%llx)\n", \ (u64)(entry_controls & n_ctrl), (u64)n_ctrl, \ (u64)(exit_controls & x_ctrl), (u64)x_ctrl); \ \ if (error_on_inconsistent_vmcs_config) \ r = -EIO; \ \ entry_controls &= ~n_ctrl; \ exit_controls &= ~x_ctrl; \ } \ r; \ }) static int setup_vmcs_config(struct vmcs_config *vmcs_conf, struct vmx_capability *vmx_cap) { u32 _pin_based_exec_control = 0; u32 _cpu_based_exec_control = 0; u32 _cpu_based_2nd_exec_control = 0; u64 _cpu_based_3rd_exec_control = 0; u32 _vmexit_control = 0; u32 _vmentry_control = 0; u64 basic_msr; u64 misc_msr; /* * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always * intercepts writes to PAT and EFER, i.e. never enables those controls. */ struct { u32 entry_control; u32 exit_control; } const vmcs_entry_exit_pairs[] = { { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, }; memset(vmcs_conf, 0, sizeof(*vmcs_conf)); if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, MSR_IA32_VMX_PROCBASED_CTLS, &_cpu_based_exec_control)) return -EIO; if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, MSR_IA32_VMX_PROCBASED_CTLS2, &_cpu_based_2nd_exec_control)) return -EIO; } if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; #ifndef CONFIG_X86_64 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; #endif if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_2nd_exec_control &= ~( SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, &vmx_cap->ept, &vmx_cap->vpid); if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && vmx_cap->ept) { pr_warn_once("EPT CAP should not exist if not support " "1-setting enable EPT VM-execution control\n"); if (error_on_inconsistent_vmcs_config) return -EIO; vmx_cap->ept = 0; _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; } if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && vmx_cap->vpid) { pr_warn_once("VPID CAP should not exist if not support " "1-setting enable VPID VM-execution control\n"); if (error_on_inconsistent_vmcs_config) return -EIO; vmx_cap->vpid = 0; } if (!cpu_has_sgx()) _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) _cpu_based_3rd_exec_control = adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, MSR_IA32_VMX_PROCBASED_CTLS3); if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, MSR_IA32_VMX_EXIT_CTLS, &_vmexit_control)) return -EIO; if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, MSR_IA32_VMX_PINBASED_CTLS, &_pin_based_exec_control)) return -EIO; if (cpu_has_broken_vmx_preemption_timer()) _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, MSR_IA32_VMX_ENTRY_CTLS, &_vmentry_control)) return -EIO; if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs, _vmentry_control, _vmexit_control)) return -EIO; /* * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they * can't be used due to an errata where VM Exit may incorrectly clear * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. */ switch (boot_cpu_data.x86_vfm) { case INTEL_NEHALEM_EP: /* AAK155 */ case INTEL_NEHALEM: /* AAP115 */ case INTEL_WESTMERE: /* AAT100 */ case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */ case INTEL_NEHALEM_EX: /* BA97 */ _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " "does not work properly. Using workaround\n"); break; default: break; } rdmsrl(MSR_IA32_VMX_BASIC, basic_msr); /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE) return -EIO; #ifdef CONFIG_X86_64 /* * KVM expects to be able to shove all legal physical addresses into * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always * 0 for processors that support Intel 64 architecture". */ if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY) return -EIO; #endif /* Require Write-Back (WB) memory type for VMCS accesses. */ if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB) return -EIO; rdmsrl(MSR_IA32_VMX_MISC, misc_msr); vmcs_conf->basic = basic_msr; vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; vmcs_conf->vmexit_ctrl = _vmexit_control; vmcs_conf->vmentry_ctrl = _vmentry_control; vmcs_conf->misc = misc_msr; #if IS_ENABLED(CONFIG_HYPERV) if (enlightened_vmcs) evmcs_sanitize_exec_ctrls(vmcs_conf); #endif return 0; } static bool __kvm_is_vmx_supported(void) { int cpu = smp_processor_id(); if (!(cpuid_ecx(1) & feature_bit(VMX))) { pr_err("VMX not supported by CPU %d\n", cpu); return false; } if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || !this_cpu_has(X86_FEATURE_VMX)) { pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); return false; } return true; } static bool kvm_is_vmx_supported(void) { bool supported; migrate_disable(); supported = __kvm_is_vmx_supported(); migrate_enable(); return supported; } int vmx_check_processor_compat(void) { int cpu = raw_smp_processor_id(); struct vmcs_config vmcs_conf; struct vmx_capability vmx_cap; if (!__kvm_is_vmx_supported()) return -EIO; if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { pr_err("Failed to setup VMCS config on CPU %d\n", cpu); return -EIO; } if (nested) nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { pr_err("Inconsistent VMCS config on CPU %d\n", cpu); return -EIO; } return 0; } static int kvm_cpu_vmxon(u64 vmxon_pointer) { u64 msr; cr4_set_bits(X86_CR4_VMXE); asm goto("1: vmxon %[vmxon_pointer]\n\t" _ASM_EXTABLE(1b, %l[fault]) : : [vmxon_pointer] "m"(vmxon_pointer) : : fault); return 0; fault: WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); cr4_clear_bits(X86_CR4_VMXE); return -EFAULT; } int vmx_enable_virtualization_cpu(void) { int cpu = raw_smp_processor_id(); u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); int r; if (cr4_read_shadow() & X86_CR4_VMXE) return -EBUSY; /* * This can happen if we hot-added a CPU but failed to allocate * VP assist page for it. */ if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) return -EFAULT; intel_pt_handle_vmx(1); r = kvm_cpu_vmxon(phys_addr); if (r) { intel_pt_handle_vmx(0); return r; } return 0; } static void vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v, *n; list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) __loaded_vmcs_clear(v); } void vmx_disable_virtualization_cpu(void) { vmclear_local_loaded_vmcss(); if (kvm_cpu_vmxoff()) kvm_spurious_fault(); hv_reset_evmcs(); intel_pt_handle_vmx(0); } struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) { int node = cpu_to_node(cpu); struct page *pages; struct vmcs *vmcs; pages = __alloc_pages_node(node, flags, 0); if (!pages) return NULL; vmcs = page_address(pages); memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic)); /* KVM supports Enlightened VMCS v1 only */ if (kvm_is_using_evmcs()) vmcs->hdr.revision_id = KVM_EVMCS_VERSION; else vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); if (shadow) vmcs->hdr.shadow_vmcs = 1; return vmcs; } void free_vmcs(struct vmcs *vmcs) { free_page((unsigned long)vmcs); } /* * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded */ void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { if (!loaded_vmcs->vmcs) return; loaded_vmcs_clear(loaded_vmcs); free_vmcs(loaded_vmcs->vmcs); loaded_vmcs->vmcs = NULL; if (loaded_vmcs->msr_bitmap) free_page((unsigned long)loaded_vmcs->msr_bitmap); WARN_ON(loaded_vmcs->shadow_vmcs != NULL); } int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { loaded_vmcs->vmcs = alloc_vmcs(false); if (!loaded_vmcs->vmcs) return -ENOMEM; vmcs_clear(loaded_vmcs->vmcs); loaded_vmcs->shadow_vmcs = NULL; loaded_vmcs->hv_timer_soft_disabled = false; loaded_vmcs->cpu = -1; loaded_vmcs->launched = 0; if (cpu_has_vmx_msr_bitmap()) { loaded_vmcs->msr_bitmap = (unsigned long *) __get_free_page(GFP_KERNEL_ACCOUNT); if (!loaded_vmcs->msr_bitmap) goto out_vmcs; memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); } memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); memset(&loaded_vmcs->controls_shadow, 0, sizeof(struct vmcs_controls_shadow)); return 0; out_vmcs: free_loaded_vmcs(loaded_vmcs); return -ENOMEM; } static void free_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { free_vmcs(per_cpu(vmxarea, cpu)); per_cpu(vmxarea, cpu) = NULL; } } static __init int alloc_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { struct vmcs *vmcs; vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); if (!vmcs) { free_kvm_area(); return -ENOMEM; } /* * When eVMCS is enabled, alloc_vmcs_cpu() sets * vmcs->revision_id to KVM_EVMCS_VERSION instead of * revision_id reported by MSR_IA32_VMX_BASIC. * * However, even though not explicitly documented by * TLFS, VMXArea passed as VMXON argument should * still be marked with revision_id reported by * physical CPU. */ if (kvm_is_using_evmcs()) vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); per_cpu(vmxarea, cpu) = vmcs; } return 0; } static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save) { if (!emulate_invalid_guest_state) { /* * CS and SS RPL should be equal during guest entry according * to VMX spec, but in reality it is not always so. Since vcpu * is in the middle of the transition from real mode to * protected mode it is safe to assume that RPL 0 is a good * default value. */ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) save->selector &= ~SEGMENT_RPL_MASK; save->dpl = save->selector & SEGMENT_RPL_MASK; save->s = 1; } __vmx_set_segment(vcpu, save, seg); } static void enter_pmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Update real mode segment cache. It may be not up-to-date if segment * register was written while vcpu was in a guest mode. */ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 0; __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); flags = vmcs_readl(GUEST_RFLAGS); flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); vmx_update_exception_bitmap(vcpu); fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); } static void fix_rmode_seg(int seg, struct kvm_segment *save) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; struct kvm_segment var = *save; var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; if (!emulate_invalid_guest_state) { var.selector = var.base >> 4; var.base = var.base & 0xffff0; var.limit = 0xffff; var.g = 0; var.db = 0; var.present = 1; var.s = 1; var.l = 0; var.unusable = 0; var.type = 0x3; var.avl = 0; if (save->base & 0xf) pr_warn_once("segment base is not paragraph aligned " "when entering protected mode (seg=%d)", seg); } vmcs_write16(sf->selector, var.selector); vmcs_writel(sf->base, var.base); vmcs_write32(sf->limit, var.limit); vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); } static void enter_rmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); /* * KVM should never use VM86 to virtualize Real Mode when L2 is active, * as using VM86 is unnecessary if unrestricted guest is enabled, and * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 * should VM-Fail and KVM should reject userspace attempts to stuff * CR0.PG=0 when L2 is active. */ WARN_ON_ONCE(is_guest_mode(vcpu)); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 1; vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); flags = vmcs_readl(GUEST_RFLAGS); vmx->rmode.save_rflags = flags; flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); vmx_update_exception_bitmap(vcpu); fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); } int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* Nothing to do if hardware doesn't support EFER. */ if (!vmx_find_uret_msr(vmx, MSR_EFER)) return 0; vcpu->arch.efer = efer; #ifdef CONFIG_X86_64 if (efer & EFER_LMA) vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); else vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); #else if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) return 1; #endif vmx_setup_uret_msrs(vmx); return 0; } #ifdef CONFIG_X86_64 static void enter_lmode(struct kvm_vcpu *vcpu) { u32 guest_tr_ar; vmx_segment_cache_clear(to_vmx(vcpu)); guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { pr_debug_ratelimited("%s: tss fixup for long mode. \n", __func__); vmcs_write32(GUEST_TR_AR_BYTES, (guest_tr_ar & ~VMX_AR_TYPE_MASK) | VMX_AR_TYPE_BUSY_64_TSS); } vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); } static void exit_lmode(struct kvm_vcpu *vcpu) { vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); } #endif void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * INVEPT must be issued when EPT is enabled, irrespective of VPID, as * the CPU is not required to invalidate guest-physical mappings on * VM-Entry, even if VPID is disabled. Guest-physical mappings are * associated with the root EPT structure and not any particular VPID * (INVVPID also isn't required to invalidate guest-physical mappings). */ if (enable_ept) { ept_sync_global(); } else if (enable_vpid) { if (cpu_has_vmx_invvpid_global()) { vpid_sync_vcpu_global(); } else { vpid_sync_vcpu_single(vmx->vpid); vpid_sync_vcpu_single(vmx->nested.vpid02); } } } static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu))) return nested_get_vpid02(vcpu); return to_vmx(vcpu)->vpid; } void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.mmu; u64 root_hpa = mmu->root.hpa; /* No flush required if the current context is invalid. */ if (!VALID_PAGE(root_hpa)) return; if (enable_ept) ept_sync_context(construct_eptp(vcpu, root_hpa, mmu->root_role.level)); else vpid_sync_context(vmx_get_current_vpid(vcpu)); } void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) { /* * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in * vmx_flush_tlb_guest() for an explanation of why this is ok. */ vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); } void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) { /* * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are * required to flush GVA->{G,H}PA mappings from the TLB if vpid is * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), * i.e. no explicit INVVPID is necessary. */ vpid_sync_context(vmx_get_current_vpid(vcpu)); } void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) return; if (is_pae_paging(vcpu)) { vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); } } void ept_save_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (WARN_ON_ONCE(!is_pae_paging(vcpu))) return; mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); } #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ CPU_BASED_CR3_STORE_EXITING) bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { if (is_guest_mode(vcpu)) return nested_guest_cr0_valid(vcpu, cr0); if (to_vmx(vcpu)->nested.vmxon) return nested_host_cr0_valid(vcpu, cr0); return true; } void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long hw_cr0, old_cr0_pg; u32 tmp; old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); if (enable_unrestricted_guest) hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; else { hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; if (!enable_ept) hw_cr0 |= X86_CR0_WP; if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) enter_pmode(vcpu); if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) enter_rmode(vcpu); } vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, hw_cr0); vcpu->arch.cr0 = cr0; kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME) { if (!old_cr0_pg && (cr0 & X86_CR0_PG)) enter_lmode(vcpu); else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) exit_lmode(vcpu); } #endif if (enable_ept && !enable_unrestricted_guest) { /* * Ensure KVM has an up-to-date snapshot of the guest's CR3. If * the below code _enables_ CR3 exiting, vmx_cache_reg() will * (correctly) stop reading vmcs.GUEST_CR3 because it thinks * KVM's CR3 is installed. */ if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) vmx_cache_reg(vcpu, VCPU_EXREG_CR3); /* * When running with EPT but not unrestricted guest, KVM must * intercept CR3 accesses when paging is _disabled_. This is * necessary because restricted guests can't actually run with * paging disabled, and so KVM stuffs its own CR3 in order to * run the guest when identity mapped page tables. * * Do _NOT_ check the old CR0.PG, e.g. to optimize away the * update, it may be stale with respect to CR3 interception, * e.g. after nested VM-Enter. * * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or * stores to forward them to L1, even if KVM does not need to * intercept them to preserve its identity mapped page tables. */ if (!(cr0 & X86_CR0_PG)) { exec_controls_setbit(vmx, CR3_EXITING_BITS); } else if (!is_guest_mode(vcpu)) { exec_controls_clearbit(vmx, CR3_EXITING_BITS); } else { tmp = exec_controls_get(vmx); tmp &= ~CR3_EXITING_BITS; tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; exec_controls_set(vmx, tmp); } /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ if ((old_cr0_pg ^ cr0) & X86_CR0_PG) vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); /* * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. */ if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); } /* depends on vcpu->arch.cr0 to be set to a new value */ vmx->emulation_required = vmx_emulation_required(vcpu); } static int vmx_get_max_ept_level(void) { if (cpu_has_vmx_ept_5levels()) return 5; return 4; } u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) { u64 eptp = VMX_EPTP_MT_WB; eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; if (enable_ept_ad_bits && (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) eptp |= VMX_EPTP_AD_ENABLE_BIT; eptp |= root_hpa; return eptp; } void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) { struct kvm *kvm = vcpu->kvm; bool update_guest_cr3 = true; unsigned long guest_cr3; u64 eptp; if (enable_ept) { eptp = construct_eptp(vcpu, root_hpa, root_level); vmcs_write64(EPT_POINTER, eptp); hv_track_root_tdp(vcpu, root_hpa); if (!enable_unrestricted_guest && !is_paging(vcpu)) guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) guest_cr3 = vcpu->arch.cr3; else /* vmcs.GUEST_CR3 is already up-to-date. */ update_guest_cr3 = false; vmx_ept_load_pdptrs(vcpu); } else { guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | kvm_get_active_cr3_lam_bits(vcpu); } if (update_guest_cr3) vmcs_writel(GUEST_CR3, guest_cr3); } bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { /* * We operate under the default treatment of SMM, so VMX cannot be * enabled under SMM. Note, whether or not VMXE is allowed at all, * i.e. is a reserved bit, is handled by common x86 code. */ if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) return false; if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) return false; return true; } void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long old_cr4 = kvm_read_cr4(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long hw_cr4; /* * Pass through host's Machine Check Enable value to hw_cr4, which * is in force while we are in guest mode. Do not let guests control * this bit, even if host CR4.MCE == 0. */ hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); if (enable_unrestricted_guest) hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; else if (vmx->rmode.vm86_active) hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; else hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; if (vmx_umip_emulated()) { if (cr4 & X86_CR4_UMIP) { secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); hw_cr4 &= ~X86_CR4_UMIP; } else if (!is_guest_mode(vcpu) || !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); } } vcpu->arch.cr4 = cr4; kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); if (!enable_unrestricted_guest) { if (enable_ept) { if (!is_paging(vcpu)) { hw_cr4 &= ~X86_CR4_PAE; hw_cr4 |= X86_CR4_PSE; } else if (!(cr4 & X86_CR4_PAE)) { hw_cr4 &= ~X86_CR4_PAE; } } /* * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in * hardware. To emulate this behavior, SMEP/SMAP/PKU needs * to be manually disabled when guest switches to non-paging * mode. * * If !enable_unrestricted_guest, the CPU is always running * with CR0.PG=1 and CR4 needs to be modified. * If enable_unrestricted_guest, the CPU automatically * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. */ if (!is_paging(vcpu)) hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); } vmcs_writel(CR4_READ_SHADOW, cr4); vmcs_writel(GUEST_CR4, hw_cr4); if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) vcpu->arch.cpuid_dynamic_bits_dirty = true; } void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 ar; if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { *var = vmx->rmode.segs[seg]; if (seg == VCPU_SREG_TR || var->selector == vmx_read_guest_seg_selector(vmx, seg)) return; var->base = vmx_read_guest_seg_base(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); return; } var->base = vmx_read_guest_seg_base(vmx, seg); var->limit = vmx_read_guest_seg_limit(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); ar = vmx_read_guest_seg_ar(vmx, seg); var->unusable = (ar >> 16) & 1; var->type = ar & 15; var->s = (ar >> 4) & 1; var->dpl = (ar >> 5) & 3; /* * Some userspaces do not preserve unusable property. Since usable * segment has to be present according to VMX spec we can use present * property to amend userspace bug by making unusable segment always * nonpresent. vmx_segment_access_rights() already marks nonpresent * segment as unusable. */ var->present = !var->unusable; var->avl = (ar >> 12) & 1; var->l = (ar >> 13) & 1; var->db = (ar >> 14) & 1; var->g = (ar >> 15) & 1; } u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment s; if (to_vmx(vcpu)->rmode.vm86_active) { vmx_get_segment(vcpu, &s, seg); return s.base; } return vmx_read_guest_seg_base(to_vmx(vcpu), seg); } static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache) { struct vcpu_vmx *vmx = to_vmx(vcpu); int ar; if (unlikely(vmx->rmode.vm86_active)) return 0; if (no_cache) ar = vmcs_read32(GUEST_SS_AR_BYTES); else ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); return VMX_AR_DPL(ar); } int vmx_get_cpl(struct kvm_vcpu *vcpu) { return __vmx_get_cpl(vcpu, false); } int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu) { return __vmx_get_cpl(vcpu, true); } static u32 vmx_segment_access_rights(struct kvm_segment *var) { u32 ar; ar = var->type & 15; ar |= (var->s & 1) << 4; ar |= (var->dpl & 3) << 5; ar |= (var->present & 1) << 7; ar |= (var->avl & 1) << 12; ar |= (var->l & 1) << 13; ar |= (var->db & 1) << 14; ar |= (var->g & 1) << 15; ar |= (var->unusable || !var->present) << 16; return ar; } void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; vmx_segment_cache_clear(vmx); if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { vmx->rmode.segs[seg] = *var; if (seg == VCPU_SREG_TR) vmcs_write16(sf->selector, var->selector); else if (var->s) fix_rmode_seg(seg, &vmx->rmode.segs[seg]); return; } vmcs_writel(sf->base, var->base); vmcs_write32(sf->limit, var->limit); vmcs_write16(sf->selector, var->selector); /* * Fix the "Accessed" bit in AR field of segment registers for older * qemu binaries. * IA32 arch specifies that at the time of processor reset the * "Accessed" bit in the AR field of segment registers is 1. And qemu * is setting it to 0 in the userland code. This causes invalid guest * state vmexit when "unrestricted guest" mode is turned on. * Fix for this setup issue in cpu_reset is being pushed in the qemu * tree. Newer qemu binaries with that qemu fix would not need this * kvm hack. */ if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) var->type |= 0x1; /* Accessed */ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); } void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { __vmx_set_segment(vcpu, var, seg); to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); } void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); *db = (ar >> 14) & 1; *l = (ar >> 13) & 1; } void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_IDTR_LIMIT); dt->address = vmcs_readl(GUEST_IDTR_BASE); } void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_IDTR_LIMIT, dt->size); vmcs_writel(GUEST_IDTR_BASE, dt->address); } void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_GDTR_LIMIT); dt->address = vmcs_readl(GUEST_GDTR_BASE); } void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_GDTR_LIMIT, dt->size); vmcs_writel(GUEST_GDTR_BASE, dt->address); } static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; u32 ar; vmx_get_segment(vcpu, &var, seg); var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; ar = vmx_segment_access_rights(&var); if (var.base != (var.selector << 4)) return false; if (var.limit != 0xffff) return false; if (ar != 0xf3) return false; return true; } static bool code_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment cs; unsigned int cs_rpl; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); cs_rpl = cs.selector & SEGMENT_RPL_MASK; if (cs.unusable) return false; if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) return false; if (!cs.s) return false; if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { if (cs.dpl > cs_rpl) return false; } else { if (cs.dpl != cs_rpl) return false; } if (!cs.present) return false; /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ return true; } static bool stack_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ss; unsigned int ss_rpl; vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); ss_rpl = ss.selector & SEGMENT_RPL_MASK; if (ss.unusable) return true; if (ss.type != 3 && ss.type != 7) return false; if (!ss.s) return false; if (ss.dpl != ss_rpl) /* DPL != RPL */ return false; if (!ss.present) return false; return true; } static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; unsigned int rpl; vmx_get_segment(vcpu, &var, seg); rpl = var.selector & SEGMENT_RPL_MASK; if (var.unusable) return true; if (!var.s) return false; if (!var.present) return false; if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { if (var.dpl < rpl) /* DPL < RPL */ return false; } /* TODO: Add other members to kvm_segment_field to allow checking for other access * rights flags */ return true; } static bool tr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment tr; vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); if (tr.unusable) return false; if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ return false; if (!tr.present) return false; return true; } static bool ldtr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ldtr; vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); if (ldtr.unusable) return true; if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (ldtr.type != 2) return false; if (!ldtr.present) return false; return true; } static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) { struct kvm_segment cs, ss; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); return ((cs.selector & SEGMENT_RPL_MASK) == (ss.selector & SEGMENT_RPL_MASK)); } /* * Check if guest state is valid. Returns true if valid, false if * not. * We assume that registers are always usable */ bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) { /* real mode guest state checks */ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) return false; } else { /* protected mode guest state checks */ if (!cs_ss_rpl_check(vcpu)) return false; if (!code_segment_valid(vcpu)) return false; if (!stack_segment_valid(vcpu)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_GS)) return false; if (!tr_valid(vcpu)) return false; if (!ldtr_valid(vcpu)) return false; } /* TODO: * - Add checks on RIP * - Add checks on RFLAGS */ return true; } static int init_rmode_tss(struct kvm *kvm, void __user *ua) { const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); u16 data; int i; for (i = 0; i < 3; i++) { if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) return -EFAULT; } data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) return -EFAULT; data = ~0; if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) return -EFAULT; return 0; } static int init_rmode_identity_map(struct kvm *kvm) { struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); int i, r = 0; void __user *uaddr; u32 tmp; /* Protect kvm_vmx->ept_identity_pagetable_done. */ mutex_lock(&kvm->slots_lock); if (likely(kvm_vmx->ept_identity_pagetable_done)) goto out; if (!kvm_vmx->ept_identity_map_addr) kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; uaddr = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, kvm_vmx->ept_identity_map_addr, PAGE_SIZE); if (IS_ERR(uaddr)) { r = PTR_ERR(uaddr); goto out; } /* Set up identity-mapping pagetable for EPT in real mode */ for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { r = -EFAULT; goto out; } } kvm_vmx->ept_identity_pagetable_done = true; out: mutex_unlock(&kvm->slots_lock); return r; } static void seg_setup(int seg) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; unsigned int ar; vmcs_write16(sf->selector, 0); vmcs_writel(sf->base, 0); vmcs_write32(sf->limit, 0xffff); ar = 0x93; if (seg == VCPU_SREG_CS) ar |= 0x08; /* code segment */ vmcs_write32(sf->ar_bytes, ar); } int allocate_vpid(void) { int vpid; if (!enable_vpid) return 0; spin_lock(&vmx_vpid_lock); vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); if (vpid < VMX_NR_VPIDS) __set_bit(vpid, vmx_vpid_bitmap); else vpid = 0; spin_unlock(&vmx_vpid_lock); return vpid; } void free_vpid(int vpid) { if (!enable_vpid || vpid == 0) return; spin_lock(&vmx_vpid_lock); __clear_bit(vpid, vmx_vpid_bitmap); spin_unlock(&vmx_vpid_lock); } static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) { /* * When KVM is a nested hypervisor on top of Hyper-V and uses * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR * bitmap has changed. */ if (kvm_is_using_evmcs()) { struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; if (evmcs->hv_enlightenments_control.msr_bitmap) evmcs->hv_clean_fields &= ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; } vmx->nested.force_msr_bitmap_recalc = true; } void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; int idx; if (!cpu_has_vmx_msr_bitmap()) return; vmx_msr_bitmap_l01_changed(vmx); /* * Mark the desired intercept state in shadow bitmap, this is needed * for resync when the MSR filters change. */ idx = vmx_get_passthrough_msr_slot(msr); if (idx >= 0) { if (type & MSR_TYPE_R) clear_bit(idx, vmx->shadow_msr_intercept.read); if (type & MSR_TYPE_W) clear_bit(idx, vmx->shadow_msr_intercept.write); } if ((type & MSR_TYPE_R) && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { vmx_set_msr_bitmap_read(msr_bitmap, msr); type &= ~MSR_TYPE_R; } if ((type & MSR_TYPE_W) && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { vmx_set_msr_bitmap_write(msr_bitmap, msr); type &= ~MSR_TYPE_W; } if (type & MSR_TYPE_R) vmx_clear_msr_bitmap_read(msr_bitmap, msr); if (type & MSR_TYPE_W) vmx_clear_msr_bitmap_write(msr_bitmap, msr); } void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; int idx; if (!cpu_has_vmx_msr_bitmap()) return; vmx_msr_bitmap_l01_changed(vmx); /* * Mark the desired intercept state in shadow bitmap, this is needed * for resync when the MSR filter changes. */ idx = vmx_get_passthrough_msr_slot(msr); if (idx >= 0) { if (type & MSR_TYPE_R) set_bit(idx, vmx->shadow_msr_intercept.read); if (type & MSR_TYPE_W) set_bit(idx, vmx->shadow_msr_intercept.write); } if (type & MSR_TYPE_R) vmx_set_msr_bitmap_read(msr_bitmap, msr); if (type & MSR_TYPE_W) vmx_set_msr_bitmap_write(msr_bitmap, msr); } static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) { /* * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. */ const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; const int write_idx = read_idx + (0x800 / sizeof(u64)); struct vcpu_vmx *vmx = to_vmx(vcpu); u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; u8 mode; if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) return; if (cpu_has_secondary_exec_ctrls() && (secondary_exec_controls_get(vmx) & SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { mode = MSR_BITMAP_MODE_X2APIC; if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) mode |= MSR_BITMAP_MODE_X2APIC_APICV; } else { mode = 0; } if (mode == vmx->x2apic_msr_bitmap_mode) return; vmx->x2apic_msr_bitmap_mode = mode; /* * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended * registers (0x840 and above) intercepted, KVM doesn't support them. * Intercept all writes by default and poke holes as needed. Pass * through reads for all valid registers by default in x2APIC+APICv * mode, only the current timer count needs on-demand emulation by KVM. */ if (mode & MSR_BITMAP_MODE_X2APIC_APICV) msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); else msr_bitmap[read_idx] = ~0ull; msr_bitmap[write_idx] = ~0ull; /* * TPR reads and writes can be virtualized even if virtual interrupt * delivery is not in use. */ vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, !(mode & MSR_BITMAP_MODE_X2APIC)); if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); if (enable_ipiv) vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); } } void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); u32 i; vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); } } void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 i; if (!cpu_has_vmx_msr_bitmap()) return; /* * Redo intercept permissions for MSRs that KVM is passing through to * the guest. Disabling interception will check the new MSR filter and * ensure that KVM enables interception if usersepace wants to filter * the MSR. MSRs that KVM is already intercepting don't need to be * refreshed since KVM is going to intercept them regardless of what * userspace wants. */ for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { u32 msr = vmx_possible_passthrough_msrs[i]; if (!test_bit(i, vmx->shadow_msr_intercept.read)) vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); if (!test_bit(i, vmx->shadow_msr_intercept.write)) vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); } /* PT MSRs can be passed through iff PT is exposed to the guest. */ if (vmx_pt_mode_is_host_guest()) pt_update_intercept_for_msr(vcpu); } static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, int pi_vec) { #ifdef CONFIG_SMP if (vcpu->mode == IN_GUEST_MODE) { /* * The vector of the virtual has already been set in the PIR. * Send a notification event to deliver the virtual interrupt * unless the vCPU is the currently running vCPU, i.e. the * event is being sent from a fastpath VM-Exit handler, in * which case the PIR will be synced to the vIRR before * re-entering the guest. * * When the target is not the running vCPU, the following * possibilities emerge: * * Case 1: vCPU stays in non-root mode. Sending a notification * event posts the interrupt to the vCPU. * * Case 2: vCPU exits to root mode and is still runnable. The * PIR will be synced to the vIRR before re-entering the guest. * Sending a notification event is ok as the host IRQ handler * will ignore the spurious event. * * Case 3: vCPU exits to root mode and is blocked. vcpu_block() * has already synced PIR to vIRR and never blocks the vCPU if * the vIRR is not empty. Therefore, a blocked vCPU here does * not wait for any requested interrupts in PIR, and sending a * notification event also results in a benign, spurious event. */ if (vcpu != kvm_get_running_vcpu()) __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); return; } #endif /* * The vCPU isn't in the guest; wake the vCPU in case it is blocking, * otherwise do nothing as KVM will grab the highest priority pending * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). */ kvm_vcpu_wake_up(vcpu); } static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated * and freed, and must not be accessed outside of vcpu->mutex. The * vCPU's cached PI NV is valid if and only if posted interrupts * enabled in its vmcs12, i.e. checking the vector also checks that * L1 has enabled posted interrupts for L2. */ if (is_guest_mode(vcpu) && vector == vmx->nested.posted_intr_nv) { /* * If a posted intr is not recognized by hardware, * we will accomplish it in the next vmentry. */ vmx->nested.pi_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); /* * This pairs with the smp_mb_*() after setting vcpu->mode in * vcpu_enter_guest() to guarantee the vCPU sees the event * request if triggering a posted interrupt "fails" because * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as * the smb_wmb() in kvm_make_request() only ensures everything * done before making the request is visible when the request * is visible, it doesn't ensure ordering between the store to * vcpu->requests and the load from vcpu->mode. */ smp_mb__after_atomic(); /* the PIR and ON have been set by L1. */ kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); return 0; } return -1; } /* * Send interrupt to vcpu via posted interrupt way. * 1. If target vcpu is running(non-root mode), send posted interrupt * notification to vcpu and hardware will sync PIR to vIRR atomically. * 2. If target vcpu isn't running(root mode), kick it to pick up the * interrupt from PIR in next vmentry. */ static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); int r; r = vmx_deliver_nested_posted_interrupt(vcpu, vector); if (!r) return 0; /* Note, this is called iff the local APIC is in-kernel. */ if (!vcpu->arch.apic->apicv_active) return -1; if (pi_test_and_set_pir(vector, &vmx->pi_desc)) return 0; /* If a previous notification has sent the IPI, nothing to do. */ if (pi_test_and_set_on(&vmx->pi_desc)) return 0; /* * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. */ kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); return 0; } void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, int trig_mode, int vector) { struct kvm_vcpu *vcpu = apic->vcpu; if (vmx_deliver_posted_interrupt(vcpu, vector)) { kvm_lapic_set_irr(vector, apic); kvm_make_request(KVM_REQ_EVENT, vcpu); kvm_vcpu_kick(vcpu); } else { trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); } } /* * Set up the vmcs's constant host-state fields, i.e., host-state fields that * will not change in the lifetime of the guest. * Note that host-state that does change is set elsewhere. E.g., host-state * that is set differently for each CPU is set in vmx_vcpu_load(), not here. */ void vmx_set_constant_host_state(struct vcpu_vmx *vmx) { u32 low32, high32; unsigned long tmpl; unsigned long cr0, cr3, cr4; cr0 = read_cr0(); WARN_ON(cr0 & X86_CR0_TS); vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ /* * Save the most likely value for this task's CR3 in the VMCS. * We can't use __get_current_cr3_fast() because we're not atomic. */ cr3 = __read_cr3(); vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ vmx->loaded_vmcs->host_state.cr3 = cr3; /* Save the most likely value for this task's CR4 in the VMCS. */ cr4 = cr4_read_shadow(); vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ vmx->loaded_vmcs->host_state.cr4 = cr4; vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ #ifdef CONFIG_X86_64 /* * Load null selectors, so we can avoid reloading them in * vmx_prepare_switch_to_host(), in case userspace uses * the null selectors too (the expected case). */ vmcs_write16(HOST_DS_SELECTOR, 0); vmcs_write16(HOST_ES_SELECTOR, 0); #else vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ #endif vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); vmcs_write32(HOST_IA32_SYSENTER_CS, low32); /* * SYSENTER is used for 32-bit system calls on either 32-bit or * 64-bit kernels. It is always zero If neither is allowed, otherwise * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may * have already done so!). */ if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { rdmsr(MSR_IA32_CR_PAT, low32, high32); vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); } if (cpu_has_load_ia32_efer()) vmcs_write64(HOST_IA32_EFER, kvm_host.efer); } void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) { struct kvm_vcpu *vcpu = &vmx->vcpu; vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & ~vcpu->arch.cr4_guest_rsvd_bits; if (!enable_ept) { vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; } if (is_guest_mode(&vmx->vcpu)) vcpu->arch.cr4_guest_owned_bits &= ~get_vmcs12(vcpu)->cr4_guest_host_mask; vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); } static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) { u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; if (!kvm_vcpu_apicv_active(&vmx->vcpu)) pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; if (!enable_vnmi) pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; if (!enable_preemption_timer) pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; return pin_based_exec_ctrl; } static u32 vmx_vmentry_ctrl(void) { u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; if (vmx_pt_mode_is_system()) vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | VM_ENTRY_LOAD_IA32_RTIT_CTL); /* * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. */ vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER | VM_ENTRY_IA32E_MODE); return vmentry_ctrl; } static u32 vmx_vmexit_ctrl(void) { u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; /* * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for * nested virtualization and thus allowed to be set in vmcs12. */ vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); if (vmx_pt_mode_is_system()) vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | VM_EXIT_CLEAR_IA32_RTIT_CTL); /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ return vmexit_ctrl & ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); } void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (is_guest_mode(vcpu)) { vmx->nested.update_vmcs01_apicv_status = true; return; } pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); if (kvm_vcpu_apicv_active(vcpu)) { secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); if (enable_ipiv) tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); } else { secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); if (enable_ipiv) tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); } vmx_update_msr_bitmap_x2apic(vcpu); } static u32 vmx_exec_control(struct vcpu_vmx *vmx) { u32 exec_control = vmcs_config.cpu_based_exec_ctrl; /* * Not used by KVM, but fully supported for nesting, i.e. are allowed in * vmcs12 and propagated to vmcs02 when set in vmcs12. */ exec_control &= ~(CPU_BASED_RDTSC_EXITING | CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | CPU_BASED_PAUSE_EXITING); /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING); if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) exec_control &= ~CPU_BASED_MOV_DR_EXITING; if (!cpu_need_tpr_shadow(&vmx->vcpu)) exec_control &= ~CPU_BASED_TPR_SHADOW; #ifdef CONFIG_X86_64 if (exec_control & CPU_BASED_TPR_SHADOW) exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING); else exec_control |= CPU_BASED_CR8_STORE_EXITING | CPU_BASED_CR8_LOAD_EXITING; #endif /* No need to intercept CR3 access or INVPLG when using EPT. */ if (enable_ept) exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_INVLPG_EXITING); if (kvm_mwait_in_guest(vmx->vcpu.kvm)) exec_control &= ~(CPU_BASED_MWAIT_EXITING | CPU_BASED_MONITOR_EXITING); if (kvm_hlt_in_guest(vmx->vcpu.kvm)) exec_control &= ~CPU_BASED_HLT_EXITING; return exec_control; } static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) { u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; /* * IPI virtualization relies on APICv. Disable IPI virtualization if * APICv is inhibited. */ if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) exec_control &= ~TERTIARY_EXEC_IPI_VIRT; return exec_control; } /* * Adjust a single secondary execution control bit to intercept/allow an * instruction in the guest. This is usually done based on whether or not a * feature has been exposed to the guest in order to correctly emulate faults. */ static inline void vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, u32 control, bool enabled, bool exiting) { /* * If the control is for an opt-in feature, clear the control if the * feature is not exposed to the guest, i.e. not enabled. If the * control is opt-out, i.e. an exiting control, clear the control if * the feature _is_ exposed to the guest, i.e. exiting/interception is * disabled for the associated instruction. Note, the caller is * responsible presetting exec_control to set all supported bits. */ if (enabled == exiting) *exec_control &= ~control; /* * Update the nested MSR settings so that a nested VMM can/can't set * controls for features that are/aren't exposed to the guest. */ if (nested && kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { /* * All features that can be added or removed to VMX MSRs must * be supported in the first place for nested virtualization. */ if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) enabled = false; if (enabled) vmx->nested.msrs.secondary_ctls_high |= control; else vmx->nested.msrs.secondary_ctls_high &= ~control; } } /* * Wrapper macro for the common case of adjusting a secondary execution control * based on a single guest CPUID bit, with a dedicated feature bit. This also * verifies that the control is actually supported by KVM and hardware. */ #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ ({ \ struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ bool __enabled; \ \ if (cpu_has_vmx_##name()) { \ __enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \ vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ __enabled, exiting); \ } \ }) /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) { struct kvm_vcpu *vcpu = &vmx->vcpu; u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; if (vmx_pt_mode_is_system()) exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); if (!cpu_need_virtualize_apic_accesses(vcpu)) exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; if (vmx->vpid == 0) exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; if (!enable_ept) { exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; enable_unrestricted_guest = 0; } if (!enable_unrestricted_guest) exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; if (kvm_pause_in_guest(vmx->vcpu.kvm)) exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; if (!kvm_vcpu_apicv_active(vcpu)) exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; /* * KVM doesn't support VMFUNC for L1, but the control is set in KVM's * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. */ exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, * in vmx_set_cr4. */ exec_control &= ~SECONDARY_EXEC_DESC; /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD (handle_vmptrld). We can NOT enable shadow_vmcs here because we don't have yet a current VMCS12 */ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; /* * PML is enabled/disabled when dirty logging of memsmlots changes, but * it needs to be set here when dirty logging is already active, e.g. * if this vCPU was created after dirty logging was enabled. */ if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) exec_control &= ~SECONDARY_EXEC_ENABLE_PML; vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); /* * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either * feature is exposed to the guest. This creates a virtualization hole * if both are supported in hardware but only one is exposed to the * guest, but letting the guest execute RDTSCP or RDPID when either one * is advertised is preferable to emulating the advertised instruction * in KVM on #UD, and obviously better than incorrectly injecting #UD. */ if (cpu_has_vmx_rdtscp()) { bool rdpid_or_rdtscp_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) || guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID); vmx_adjust_secondary_exec_control(vmx, &exec_control, SECONDARY_EXEC_ENABLE_RDTSCP, rdpid_or_rdtscp_enabled, false); } vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, ENABLE_USR_WAIT_PAUSE, false); if (!vcpu->kvm->arch.bus_lock_detection_enabled) exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; if (!kvm_notify_vmexit_enabled(vcpu->kvm)) exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; return exec_control; } static inline int vmx_get_pid_table_order(struct kvm *kvm) { return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); } static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) { struct page *pages; struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); if (!irqchip_in_kernel(kvm) || !enable_ipiv) return 0; if (kvm_vmx->pid_table) return 0; pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, vmx_get_pid_table_order(kvm)); if (!pages) return -ENOMEM; kvm_vmx->pid_table = (void *)page_address(pages); return 0; } int vmx_vcpu_precreate(struct kvm *kvm) { return vmx_alloc_ipiv_pid_table(kvm); } #define VMX_XSS_EXIT_BITMAP 0 static void init_vmcs(struct vcpu_vmx *vmx) { struct kvm *kvm = vmx->vcpu.kvm; struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); if (nested) nested_vmx_set_vmcs_shadowing_bitmap(); if (cpu_has_vmx_msr_bitmap()) vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ /* Control */ pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); exec_controls_set(vmx, vmx_exec_control(vmx)); if (cpu_has_secondary_exec_ctrls()) { secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); if (vmx->ve_info) vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info)); } if (cpu_has_tertiary_exec_ctrls()) tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { vmcs_write64(EOI_EXIT_BITMAP0, 0); vmcs_write64(EOI_EXIT_BITMAP1, 0); vmcs_write64(EOI_EXIT_BITMAP2, 0); vmcs_write64(EOI_EXIT_BITMAP3, 0); vmcs_write16(GUEST_INTR_STATUS, 0); vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); } if (vmx_can_use_ipiv(&vmx->vcpu)) { vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); } if (!kvm_pause_in_guest(kvm)) { vmcs_write32(PLE_GAP, ple_gap); vmx->ple_window = ple_window; vmx->ple_window_dirty = true; } if (kvm_notify_vmexit_enabled(kvm)) vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ vmx_set_constant_host_state(vmx); vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ if (cpu_has_vmx_vmfunc()) vmcs_write64(VM_FUNCTION_CONTROL, 0); vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); /* 22.2.1, 20.8.1 */ vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); set_cr4_guest_host_mask(vmx); if (vmx->vpid != 0) vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); if (cpu_has_vmx_xsaves()) vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); if (enable_pml) { vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX); } vmx_write_encls_bitmap(&vmx->vcpu, NULL); if (vmx_pt_mode_is_host_guest()) { memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); /* Bit[6~0] are forced to 1, writes are ignored. */ vmx->pt_desc.guest.output_mask = 0x7F; vmcs_write64(GUEST_IA32_RTIT_CTL, 0); } vmcs_write32(GUEST_SYSENTER_CS, 0); vmcs_writel(GUEST_SYSENTER_ESP, 0); vmcs_writel(GUEST_SYSENTER_EIP, 0); vmcs_write64(GUEST_IA32_DEBUGCTL, 0); if (cpu_has_vmx_tpr_shadow()) { vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); if (cpu_need_tpr_shadow(&vmx->vcpu)) vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, __pa(vmx->vcpu.arch.apic->regs)); vmcs_write32(TPR_THRESHOLD, 0); } vmx_setup_uret_msrs(vmx); } static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); init_vmcs(vmx); if (nested && kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); vcpu_setup_sgx_lepubkeyhash(vcpu); vmx->nested.posted_intr_nv = -1; vmx->nested.vmxon_ptr = INVALID_GPA; vmx->nested.current_vmptr = INVALID_GPA; #ifdef CONFIG_KVM_HYPERV vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; #endif if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) vcpu->arch.microcode_version = 0x100000000ULL; vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; /* * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR * or POSTED_INTR_WAKEUP_VECTOR. */ vmx->pi_desc.nv = POSTED_INTR_VECTOR; __pi_set_sn(&vmx->pi_desc); } void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!init_event) __vmx_vcpu_reset(vcpu); vmx->rmode.vm86_active = 0; vmx->spec_ctrl = 0; vmx->msr_ia32_umwait_control = 0; vmx->hv_deadline_tsc = -1; kvm_set_cr8(vcpu, 0); seg_setup(VCPU_SREG_CS); vmcs_write16(GUEST_CS_SELECTOR, 0xf000); vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); seg_setup(VCPU_SREG_DS); seg_setup(VCPU_SREG_ES); seg_setup(VCPU_SREG_FS); seg_setup(VCPU_SREG_GS); seg_setup(VCPU_SREG_SS); vmcs_write16(GUEST_TR_SELECTOR, 0); vmcs_writel(GUEST_TR_BASE, 0); vmcs_write32(GUEST_TR_LIMIT, 0xffff); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); vmcs_write16(GUEST_LDTR_SELECTOR, 0); vmcs_writel(GUEST_LDTR_BASE, 0); vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); vmcs_writel(GUEST_GDTR_BASE, 0); vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); vmcs_writel(GUEST_IDTR_BASE, 0); vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); vmx_segment_cache_clear(vmx); kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); if (kvm_mpx_supported()) vmcs_write64(GUEST_BNDCFGS, 0); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); vpid_sync_context(vmx->vpid); vmx_update_fb_clear_dis(vcpu, vmx); } void vmx_enable_irq_window(struct kvm_vcpu *vcpu) { exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); } void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) { if (!enable_vnmi || vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { vmx_enable_irq_window(vcpu); return; } exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); } void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) { struct vcpu_vmx *vmx = to_vmx(vcpu); uint32_t intr; int irq = vcpu->arch.interrupt.nr; trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); ++vcpu->stat.irq_injections; if (vmx->rmode.vm86_active) { int inc_eip = 0; if (vcpu->arch.interrupt.soft) inc_eip = vcpu->arch.event_exit_inst_len; kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); return; } intr = irq | INTR_INFO_VALID_MASK; if (vcpu->arch.interrupt.soft) { intr |= INTR_TYPE_SOFT_INTR; vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); } else intr |= INTR_TYPE_EXT_INTR; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); vmx_clear_hlt(vcpu); } void vmx_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { /* * Tracking the NMI-blocked state in software is built upon * finding the next open IRQ window. This, in turn, depends on * well-behaving guests: They have to keep IRQs disabled at * least as long as the NMI handler runs. Otherwise we may * cause NMI nesting, maybe breaking the guest. But as this is * highly unlikely, we can live with the residual risk. */ vmx->loaded_vmcs->soft_vnmi_blocked = 1; vmx->loaded_vmcs->vnmi_blocked_time = 0; } ++vcpu->stat.nmi_injections; vmx->loaded_vmcs->nmi_known_unmasked = false; if (vmx->rmode.vm86_active) { kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); return; } vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); vmx_clear_hlt(vcpu); } bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool masked; if (!enable_vnmi) return vmx->loaded_vmcs->soft_vnmi_blocked; if (vmx->loaded_vmcs->nmi_known_unmasked) return false; masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; vmx->loaded_vmcs->nmi_known_unmasked = !masked; return masked; } void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { vmx->loaded_vmcs->soft_vnmi_blocked = masked; vmx->loaded_vmcs->vnmi_blocked_time = 0; } } else { vmx->loaded_vmcs->nmi_known_unmasked = !masked; if (masked) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); } } bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) return false; if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) return true; return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | GUEST_INTR_STATE_NMI)); } int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { if (to_vmx(vcpu)->nested.nested_run_pending) return -EBUSY; /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) return -EBUSY; return !vmx_nmi_blocked(vcpu); } bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu) { return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); } bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) return false; return __vmx_interrupt_blocked(vcpu); } int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) { if (to_vmx(vcpu)->nested.nested_run_pending) return -EBUSY; /* * An IRQ must not be injected into L2 if it's supposed to VM-Exit, * e.g. if the IRQ arrived asynchronously after checking nested events. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) return -EBUSY; return !vmx_interrupt_blocked(vcpu); } int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) { void __user *ret; if (enable_unrestricted_guest) return 0; mutex_lock(&kvm->slots_lock); ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, PAGE_SIZE * 3); mutex_unlock(&kvm->slots_lock); if (IS_ERR(ret)) return PTR_ERR(ret); to_kvm_vmx(kvm)->tss_addr = addr; return init_rmode_tss(kvm, ret); } int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; return 0; } static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) { switch (vec) { case BP_VECTOR: /* * Update instruction length as we may reinject the exception * from user space while in guest debugging mode. */ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) return false; fallthrough; case DB_VECTOR: return !(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); case DE_VECTOR: case OF_VECTOR: case BR_VECTOR: case UD_VECTOR: case DF_VECTOR: case SS_VECTOR: case GP_VECTOR: case MF_VECTOR: return true; } return false; } static int handle_rmode_exception(struct kvm_vcpu *vcpu, int vec, u32 err_code) { /* * Instruction with address size override prefix opcode 0x67 * Cause the #SS fault with 0 error code in VM86 mode. */ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { if (kvm_emulate_instruction(vcpu, 0)) { if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; return kvm_emulate_halt_noskip(vcpu); } return 1; } return 0; } /* * Forward all other exceptions that are valid in real mode. * FIXME: Breaks guest debugging in real mode, needs to be fixed with * the required debugging infrastructure rework. */ kvm_queue_exception(vcpu, vec); return 1; } static int handle_machine_check(struct kvm_vcpu *vcpu) { /* handled by vmx_vcpu_run() */ return 1; } /* * If the host has split lock detection disabled, then #AC is * unconditionally injected into the guest, which is the pre split lock * detection behaviour. * * If the host has split lock detection enabled then #AC is * only injected into the guest when: * - Guest CPL == 3 (user mode) * - Guest has #AC detection enabled in CR0 * - Guest EFLAGS has AC bit set */ bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) { if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) return true; return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); } static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu) { return vcpu->arch.guest_fpu.fpstate->xfd && !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS); } static int handle_exception_nmi(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 intr_info, ex_no, error_code; unsigned long cr2, dr6; u32 vect_info; vect_info = vmx->idt_vectoring_info; intr_info = vmx_get_intr_info(vcpu); /* * Machine checks are handled by handle_exception_irqoff(), or by * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by * vmx_vcpu_enter_exit(). */ if (is_machine_check(intr_info) || is_nmi(intr_info)) return 1; /* * Queue the exception here instead of in handle_nm_fault_irqoff(). * This ensures the nested_vmx check is not skipped so vmexit can * be reflected to L1 (when it intercepts #NM) before reaching this * point. */ if (is_nm_fault(intr_info)) { kvm_queue_exception_p(vcpu, NM_VECTOR, is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0); return 1; } if (is_invalid_opcode(intr_info)) return handle_ud(vcpu); if (WARN_ON_ONCE(is_ve_fault(intr_info))) { struct vmx_ve_information *ve_info = vmx->ve_info; WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION, "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason); dump_vmcs(vcpu); kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE"); return 1; } error_code = 0; if (intr_info & INTR_INFO_DELIVER_CODE_MASK) error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { WARN_ON_ONCE(!enable_vmware_backdoor); /* * VMware backdoor emulation on #GP interception only handles * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero * error code on #GP. */ if (error_code) { kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); return 1; } return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); } /* * The #PF with PFEC.RSVD = 1 indicates the guest is accessing * MMIO, it is better to report an internal error. * See the comments in vmx_handle_exit. */ if ((vect_info & VECTORING_INFO_VALID_MASK) && !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; vcpu->run->internal.ndata = 4; vcpu->run->internal.data[0] = vect_info; vcpu->run->internal.data[1] = intr_info; vcpu->run->internal.data[2] = error_code; vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; return 0; } if (is_page_fault(intr_info)) { cr2 = vmx_get_exit_qual(vcpu); if (enable_ept && !vcpu->arch.apf.host_apf_flags) { /* * EPT will cause page fault only if we need to * detect illegal GPAs. */ WARN_ON_ONCE(!allow_smaller_maxphyaddr); kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); return 1; } else return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); } ex_no = intr_info & INTR_INFO_VECTOR_MASK; if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) return handle_rmode_exception(vcpu, ex_no, error_code); switch (ex_no) { case DB_VECTOR: dr6 = vmx_get_exit_qual(vcpu); if (!(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { /* * If the #DB was due to ICEBP, a.k.a. INT1, skip the * instruction. ICEBP generates a trap-like #DB, but * despite its interception control being tied to #DB, * is an instruction intercept, i.e. the VM-Exit occurs * on the ICEBP itself. Use the inner "skip" helper to * avoid single-step #DB and MTF updates, as ICEBP is * higher priority. Note, skipping ICEBP still clears * STI and MOVSS blocking. * * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS * if single-step is enabled in RFLAGS and STI or MOVSS * blocking is active, as the CPU doesn't set the bit * on VM-Exit due to #DB interception. VM-Entry has a * consistency check that a single-step #DB is pending * in this scenario as the previous instruction cannot * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV * don't modify RFLAGS), therefore the one instruction * delay when activating single-step breakpoints must * have already expired. Note, the CPU sets/clears BS * as appropriate for all other VM-Exits types. */ if (is_icebp(intr_info)) WARN_ON(!skip_emulated_instruction(vcpu)); else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); return 1; } kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); fallthrough; case BP_VECTOR: /* * Update instruction length as we may reinject #BP from * user space while in guest debugging mode. Reading it for * #DB as well causes no harm, it is not used in that case. */ vmx->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); kvm_run->debug.arch.exception = ex_no; break; case AC_VECTOR: if (vmx_guest_inject_ac(vcpu)) { kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); return 1; } /* * Handle split lock. Depending on detection mode this will * either warn and disable split lock detection for this * task or force SIGBUS on it. */ if (handle_guest_split_lock(kvm_rip_read(vcpu))) return 1; fallthrough; default: kvm_run->exit_reason = KVM_EXIT_EXCEPTION; kvm_run->ex.exception = ex_no; kvm_run->ex.error_code = error_code; break; } return 0; } static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) { ++vcpu->stat.irq_exits; return 1; } static int handle_triple_fault(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; vcpu->mmio_needed = 0; return 0; } static int handle_io(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int size, in, string; unsigned port; exit_qualification = vmx_get_exit_qual(vcpu); string = (exit_qualification & 16) != 0; ++vcpu->stat.io_exits; if (string) return kvm_emulate_instruction(vcpu, 0); port = exit_qualification >> 16; size = (exit_qualification & 7) + 1; in = (exit_qualification & 8) != 0; return kvm_fast_pio(vcpu, size, port, in); } void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xc1; } /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* * We get here when L2 changed cr0 in a way that did not change * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), * but did change L0 shadowed bits. So we first calculate the * effective cr0 value that L1 would like to write into the * hardware. It consists of the L2-owned bits from the new * value combined with the L1-owned bits from L1's guest_cr0. */ val = (val & ~vmcs12->cr0_guest_host_mask) | (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); if (kvm_set_cr0(vcpu, val)) return 1; vmcs_writel(CR0_READ_SHADOW, orig_val); return 0; } else { return kvm_set_cr0(vcpu, val); } } static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* analogously to handle_set_cr0 */ val = (val & ~vmcs12->cr4_guest_host_mask) | (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); if (kvm_set_cr4(vcpu, val)) return 1; vmcs_writel(CR4_READ_SHADOW, orig_val); return 0; } else return kvm_set_cr4(vcpu, val); } static int handle_desc(struct kvm_vcpu *vcpu) { /* * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this * and other code needs to be updated if UMIP can be guest owned. */ BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); return kvm_emulate_instruction(vcpu, 0); } static int handle_cr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification, val; int cr; int reg; int err; int ret; exit_qualification = vmx_get_exit_qual(vcpu); cr = exit_qualification & 15; reg = (exit_qualification >> 8) & 15; switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ val = kvm_register_read(vcpu, reg); trace_kvm_cr_write(cr, val); switch (cr) { case 0: err = handle_set_cr0(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 3: WARN_ON_ONCE(enable_unrestricted_guest); err = kvm_set_cr3(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 4: err = handle_set_cr4(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 8: { u8 cr8_prev = kvm_get_cr8(vcpu); u8 cr8 = (u8)val; err = kvm_set_cr8(vcpu, cr8); ret = kvm_complete_insn_gp(vcpu, err); if (lapic_in_kernel(vcpu)) return ret; if (cr8_prev <= cr8) return ret; /* * TODO: we might be squashing a * KVM_GUESTDBG_SINGLESTEP-triggered * KVM_EXIT_DEBUG here. */ vcpu->run->exit_reason = KVM_EXIT_SET_TPR; return 0; } } break; case 2: /* clts */ KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); return -EIO; case 1: /*mov from cr*/ switch (cr) { case 3: WARN_ON_ONCE(enable_unrestricted_guest); val = kvm_read_cr3(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); case 8: val = kvm_get_cr8(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); } break; case 3: /* lmsw */ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); kvm_lmsw(vcpu, val); return kvm_skip_emulated_instruction(vcpu); default: break; } vcpu->run->exit_reason = 0; vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", (int)(exit_qualification >> 4) & 3, cr); return 0; } static int handle_dr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int dr, dr7, reg; int err = 1; exit_qualification = vmx_get_exit_qual(vcpu); dr = exit_qualification & DEBUG_REG_ACCESS_NUM; /* First, if DR does not exist, trigger UD */ if (!kvm_require_dr(vcpu, dr)) return 1; if (vmx_get_cpl(vcpu) > 0) goto out; dr7 = vmcs_readl(GUEST_DR7); if (dr7 & DR7_GD) { /* * As the vm-exit takes precedence over the debug trap, we * need to emulate the latter, either for the host or the * guest debugging itself. */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; vcpu->run->debug.arch.dr7 = dr7; vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); vcpu->run->debug.arch.exception = DB_VECTOR; vcpu->run->exit_reason = KVM_EXIT_DEBUG; return 0; } else { kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); return 1; } } if (vcpu->guest_debug == 0) { exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } reg = DEBUG_REG_ACCESS_REG(exit_qualification); if (exit_qualification & TYPE_MOV_FROM_DR) { kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); err = 0; } else { err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); } out: return kvm_complete_insn_gp(vcpu, err); } void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); get_debugreg(vcpu->arch.dr6, 6); vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); /* * exc_debug expects dr6 to be cleared after it runs, avoid that it sees * a stale dr6 from the guest. */ set_debugreg(DR6_RESERVED, 6); } void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) { lockdep_assert_irqs_disabled(); set_debugreg(vcpu->arch.dr6, 6); } void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) { vmcs_writel(GUEST_DR7, val); } static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) { kvm_apic_update_ppr(vcpu); return 1; } static int handle_interrupt_window(struct kvm_vcpu *vcpu) { exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); kvm_make_request(KVM_REQ_EVENT, vcpu); ++vcpu->stat.irq_window_exits; return 1; } static int handle_invlpg(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); kvm_mmu_invlpg(vcpu, exit_qualification); return kvm_skip_emulated_instruction(vcpu); } static int handle_apic_access(struct kvm_vcpu *vcpu) { if (likely(fasteoi)) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); int access_type, offset; access_type = exit_qualification & APIC_ACCESS_TYPE; offset = exit_qualification & APIC_ACCESS_OFFSET; /* * Sane guest uses MOV to write EOI, with written value * not cared. So make a short-circuit here by avoiding * heavy instruction emulation. */ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && (offset == APIC_EOI)) { kvm_lapic_set_eoi(vcpu); return kvm_skip_emulated_instruction(vcpu); } } return kvm_emulate_instruction(vcpu, 0); } static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); int vector = exit_qualification & 0xff; /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ kvm_apic_set_eoi_accelerated(vcpu, vector); return 1; } static int handle_apic_write(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmx_get_exit_qual(vcpu); /* * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and * hardware has done any necessary aliasing, offset adjustments, etc... * for the access. I.e. the correct value has already been written to * the vAPIC page for the correct 16-byte chunk. KVM needs only to * retrieve the register value and emulate the access. */ u32 offset = exit_qualification & 0xff0; kvm_apic_write_nodecode(vcpu, offset); return 1; } static int handle_task_switch(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long exit_qualification; bool has_error_code = false; u32 error_code = 0; u16 tss_selector; int reason, type, idt_v, idt_index; idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); exit_qualification = vmx_get_exit_qual(vcpu); reason = (u32)exit_qualification >> 30; if (reason == TASK_SWITCH_GATE && idt_v) { switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = false; vmx_set_nmi_mask(vcpu, true); break; case INTR_TYPE_EXT_INTR: case INTR_TYPE_SOFT_INTR: kvm_clear_interrupt_queue(vcpu); break; case INTR_TYPE_HARD_EXCEPTION: if (vmx->idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { has_error_code = true; error_code = vmcs_read32(IDT_VECTORING_ERROR_CODE); } fallthrough; case INTR_TYPE_SOFT_EXCEPTION: kvm_clear_exception_queue(vcpu); break; default: break; } } tss_selector = exit_qualification; if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && type != INTR_TYPE_EXT_INTR && type != INTR_TYPE_NMI_INTR)) WARN_ON(!skip_emulated_instruction(vcpu)); /* * TODO: What about debug traps on tss switch? * Are we supposed to inject them and update dr6? */ return kvm_task_switch(vcpu, tss_selector, type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, has_error_code, error_code); } static int handle_ept_violation(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; gpa_t gpa; u64 error_code; exit_qualification = vmx_get_exit_qual(vcpu); /* * EPT violation happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. * There are errata that may cause this bit to not be set: * AAK134, BY25. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); trace_kvm_page_fault(vcpu, gpa, exit_qualification); /* Is it a read fault? */ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) ? PFERR_USER_MASK : 0; /* Is it a write fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) ? PFERR_WRITE_MASK : 0; /* Is it a fetch fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) ? PFERR_FETCH_MASK : 0; /* ept page table entry is present? */ error_code |= (exit_qualification & EPT_VIOLATION_PROT_MASK) ? PFERR_PRESENT_MASK : 0; if (error_code & EPT_VIOLATION_GVA_IS_VALID) error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ? PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; /* * Check that the GPA doesn't exceed physical memory limits, as that is * a guest page fault. We have to emulate the instruction here, because * if the illegal address is that of a paging structure, then * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we * would also use advanced VM-exit information for EPT violations to * reconstruct the page fault error code. */ if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) return kvm_emulate_instruction(vcpu, 0); return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); } static int handle_ept_misconfig(struct kvm_vcpu *vcpu) { gpa_t gpa; if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) return 1; /* * A nested guest cannot optimize MMIO vmexits, because we have an * nGPA here instead of the required GPA. */ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); if (!is_guest_mode(vcpu) && !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { trace_kvm_fast_mmio(gpa); return kvm_skip_emulated_instruction(vcpu); } return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); } static int handle_nmi_window(struct kvm_vcpu *vcpu) { if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) return -EIO; exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); ++vcpu->stat.nmi_window_exits; kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } /* * Returns true if emulation is required (due to the vCPU having invalid state * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the * current vCPU state. */ static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!vmx->emulation_required) return false; /* * It is architecturally impossible for emulation to be required when a * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if * guest state is invalid and unrestricted guest is disabled, i.e. KVM * should synthesize VM-Fail instead emulation L2 code. This path is * only reachable if userspace modifies L2 guest state after KVM has * performed the nested VM-Enter consistency checks. */ if (vmx->nested.nested_run_pending) return true; /* * KVM only supports emulating exceptions if the vCPU is in Real Mode. * If emulation is required, KVM can't perform a successful VM-Enter to * inject the exception. */ return !vmx->rmode.vm86_active && (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); } static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool intr_window_requested; unsigned count = 130; intr_window_requested = exec_controls_get(vmx) & CPU_BASED_INTR_WINDOW_EXITING; while (vmx->emulation_required && count-- != 0) { if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) return handle_interrupt_window(&vmx->vcpu); if (kvm_test_request(KVM_REQ_EVENT, vcpu)) return 1; if (!kvm_emulate_instruction(vcpu, 0)) return 0; if (vmx_unhandleable_emulation_required(vcpu)) { kvm_prepare_emulation_failure_exit(vcpu); return 0; } if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; return kvm_emulate_halt_noskip(vcpu); } /* * Note, return 1 and not 0, vcpu_run() will invoke * xfer_to_guest_mode() which will create a proper return * code. */ if (__xfer_to_guest_mode_work_pending()) return 1; } return 1; } int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) { if (vmx_unhandleable_emulation_required(vcpu)) { kvm_prepare_emulation_failure_exit(vcpu); return 0; } return 1; } /* * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE * exiting, so only get here on cpu with PAUSE-Loop-Exiting. */ static int handle_pause(struct kvm_vcpu *vcpu) { if (!kvm_pause_in_guest(vcpu->kvm)) grow_ple_window(vcpu); /* * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" * VM-execution control is ignored if CPL > 0. OTOH, KVM * never set PAUSE_EXITING and just set PLE if supported, * so the vcpu must be CPL=0 if it gets a PAUSE exit. */ kvm_vcpu_on_spin(vcpu, true); return kvm_skip_emulated_instruction(vcpu); } static int handle_monitor_trap(struct kvm_vcpu *vcpu) { return 1; } static int handle_invpcid(struct kvm_vcpu *vcpu) { u32 vmx_instruction_info; unsigned long type; gva_t gva; struct { u64 pcid; u64 gla; } operand; int gpr_index; if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); type = kvm_register_read(vcpu, gpr_index); /* According to the Intel instruction reference, the memory operand * is read even if it isn't needed (e.g., for type==all) */ if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), vmx_instruction_info, false, sizeof(operand), &gva)) return 1; return kvm_handle_invpcid(vcpu, type, gva); } static int handle_pml_full(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; trace_kvm_pml_full(vcpu->vcpu_id); exit_qualification = vmx_get_exit_qual(vcpu); /* * PML buffer FULL happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); /* * PML buffer already flushed at beginning of VMEXIT. Nothing to do * here.., and there's no userspace involvement needed for PML. */ return 1; } static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * In the *extremely* unlikely scenario that this is a spurious VM-Exit * due to the timer expiring while it was "soft" disabled, just eat the * exit and re-enter the guest. */ if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) return EXIT_FASTPATH_REENTER_GUEST; /* * If the timer expired because KVM used it to force an immediate exit, * then mission accomplished. */ if (force_immediate_exit) return EXIT_FASTPATH_EXIT_HANDLED; /* * If L2 is active, go down the slow path as emulating the guest timer * expiration likely requires synthesizing a nested VM-Exit. */ if (is_guest_mode(vcpu)) return EXIT_FASTPATH_NONE; kvm_lapic_expired_hv_timer(vcpu); return EXIT_FASTPATH_REENTER_GUEST; } static int handle_preemption_timer(struct kvm_vcpu *vcpu) { /* * This non-fastpath handler is reached if and only if the preemption * timer was being used to emulate a guest timer while L2 is active. * All other scenarios are supposed to be handled in the fastpath. */ WARN_ON_ONCE(!is_guest_mode(vcpu)); kvm_lapic_expired_hv_timer(vcpu); return 1; } /* * When nested=0, all VMX instruction VM Exits filter here. The handlers * are overwritten by nested_vmx_hardware_setup() when nested=1. */ static int handle_vmx_instruction(struct kvm_vcpu *vcpu) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } #ifndef CONFIG_X86_SGX_KVM static int handle_encls(struct kvm_vcpu *vcpu) { /* * SGX virtualization is disabled. There is no software enable bit for * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent * the guest from executing ENCLS (when SGX is supported by hardware). */ kvm_queue_exception(vcpu, UD_VECTOR); return 1; } #endif /* CONFIG_X86_SGX_KVM */ static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) { /* * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK * VM-Exits. Unconditionally set the flag here and leave the handling to * vmx_handle_exit(). */ to_vmx(vcpu)->exit_reason.bus_lock_detected = true; return 1; } static int handle_notify(struct kvm_vcpu *vcpu) { unsigned long exit_qual = vmx_get_exit_qual(vcpu); bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; ++vcpu->stat.notify_window_exits; /* * Notify VM exit happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. */ if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || context_invalid) { vcpu->run->exit_reason = KVM_EXIT_NOTIFY; vcpu->run->notify.flags = context_invalid ? KVM_NOTIFY_CONTEXT_INVALID : 0; return 0; } return 1; } /* * The exit handlers return 1 if the exit was handled fully and guest execution * may resume. Otherwise they set the kvm_run parameter to indicate what needs * to be done to userspace and return 0. */ static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, [EXIT_REASON_IO_INSTRUCTION] = handle_io, [EXIT_REASON_CR_ACCESS] = handle_cr, [EXIT_REASON_DR_ACCESS] = handle_dr, [EXIT_REASON_CPUID] = kvm_emulate_cpuid, [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, [EXIT_REASON_HLT] = kvm_emulate_halt, [EXIT_REASON_INVD] = kvm_emulate_invd, [EXIT_REASON_INVLPG] = handle_invlpg, [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, [EXIT_REASON_VMPTRST] = handle_vmx_instruction, [EXIT_REASON_VMREAD] = handle_vmx_instruction, [EXIT_REASON_VMRESUME] = handle_vmx_instruction, [EXIT_REASON_VMWRITE] = handle_vmx_instruction, [EXIT_REASON_VMOFF] = handle_vmx_instruction, [EXIT_REASON_VMON] = handle_vmx_instruction, [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, [EXIT_REASON_APIC_ACCESS] = handle_apic_access, [EXIT_REASON_APIC_WRITE] = handle_apic_write, [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, [EXIT_REASON_TASK_SWITCH] = handle_task_switch, [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, [EXIT_REASON_GDTR_IDTR] = handle_desc, [EXIT_REASON_LDTR_TR] = handle_desc, [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, [EXIT_REASON_INVEPT] = handle_vmx_instruction, [EXIT_REASON_INVVPID] = handle_vmx_instruction, [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, [EXIT_REASON_PML_FULL] = handle_pml_full, [EXIT_REASON_INVPCID] = handle_invpcid, [EXIT_REASON_VMFUNC] = handle_vmx_instruction, [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, [EXIT_REASON_ENCLS] = handle_encls, [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, [EXIT_REASON_NOTIFY] = handle_notify, }; static const int kvm_vmx_max_exit_handlers = ARRAY_SIZE(kvm_vmx_exit_handlers); void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) { struct vcpu_vmx *vmx = to_vmx(vcpu); *reason = vmx->exit_reason.full; *info1 = vmx_get_exit_qual(vcpu); if (!(vmx->exit_reason.failed_vmentry)) { *info2 = vmx->idt_vectoring_info; *intr_info = vmx_get_intr_info(vcpu); if (is_exception_with_error_code(*intr_info)) *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); else *error_code = 0; } else { *info2 = 0; *intr_info = 0; *error_code = 0; } } void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code) { *intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD); if (is_exception_with_error_code(*intr_info)) *error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE); else *error_code = 0; } static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) { if (vmx->pml_pg) { __free_page(vmx->pml_pg); vmx->pml_pg = NULL; } } static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u16 pml_idx, pml_tail_index; u64 *pml_buf; int i; pml_idx = vmcs_read16(GUEST_PML_INDEX); /* Do nothing if PML buffer is empty */ if (pml_idx == PML_HEAD_INDEX) return; /* * PML index always points to the next available PML buffer entity * unless PML log has just overflowed. */ pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1; /* * PML log is written backwards: the CPU first writes the entry 511 * then the entry 510, and so on. * * Read the entries in the same order they were written, to ensure that * the dirty ring is filled in the same order the CPU wrote them. */ pml_buf = page_address(vmx->pml_pg); for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) { u64 gpa; gpa = pml_buf[i]; WARN_ON(gpa & (PAGE_SIZE - 1)); kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); } /* reset PML index */ vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX); } static void vmx_dump_sel(char *name, uint32_t sel) { pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", name, vmcs_read16(sel), vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); } static void vmx_dump_dtsel(char *name, uint32_t limit) { pr_err("%s limit=0x%08x, base=0x%016lx\n", name, vmcs_read32(limit), vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); } static void vmx_dump_msrs(char *name, struct vmx_msrs *m) { unsigned int i; struct vmx_msr_entry *e; pr_err("MSR %s:\n", name); for (i = 0, e = m->val; i < m->nr; ++i, ++e) pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); } void dump_vmcs(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 vmentry_ctl, vmexit_ctl; u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; u64 tertiary_exec_control; unsigned long cr4; int efer_slot; if (!dump_invalid_vmcs) { pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); return; } vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); cr4 = vmcs_readl(GUEST_CR4); if (cpu_has_secondary_exec_ctrls()) secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); else secondary_exec_control = 0; if (cpu_has_tertiary_exec_ctrls()) tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); else tertiary_exec_control = 0; pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); pr_err("*** Guest State ***\n"); pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), vmcs_readl(CR0_GUEST_HOST_MASK)); pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); if (cpu_has_vmx_ept()) { pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); } pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(GUEST_SYSENTER_ESP), vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); else if (efer_slot >= 0) pr_err("EFER= 0x%016llx (autoload)\n", vmx->msr_autoload.guest.val[efer_slot].value); else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) pr_err("EFER= 0x%016llx (effective)\n", vcpu->arch.efer | (EFER_LMA | EFER_LME)); else pr_err("EFER= 0x%016llx (effective)\n", vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", vmcs_read64(GUEST_IA32_DEBUGCTL), vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); if (cpu_has_load_perf_global_ctrl() && vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); pr_err("Interruptibility = %08x ActivityState = %08x\n", vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), vmcs_read32(GUEST_ACTIVITY_STATE)); if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) pr_err("InterruptStatus = %04x\n", vmcs_read16(GUEST_INTR_STATUS)); if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); pr_err("*** Host State ***\n"); pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), vmcs_read16(HOST_TR_SELECTOR)); pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), vmcs_readl(HOST_TR_BASE)); pr_err("GDTBase=%016lx IDTBase=%016lx\n", vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), vmcs_readl(HOST_CR4)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(HOST_IA32_SYSENTER_ESP), vmcs_read32(HOST_IA32_SYSENTER_CS), vmcs_readl(HOST_IA32_SYSENTER_EIP)); if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); if (cpu_has_load_perf_global_ctrl() && vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); pr_err("*** Control State ***\n"); pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", vmcs_read32(EXCEPTION_BITMAP), vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_EXIT_INTR_INFO), vmcs_read32(VM_EXIT_INTR_ERROR_CODE), vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); pr_err(" reason=%08x qualification=%016lx\n", vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); pr_err("IDTVectoring: info=%08x errcode=%08x\n", vmcs_read32(IDT_VECTORING_INFO_FIELD), vmcs_read32(IDT_VECTORING_ERROR_CODE)); pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) pr_err("TSC Multiplier = 0x%016llx\n", vmcs_read64(TSC_MULTIPLIER)); if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { u16 status = vmcs_read16(GUEST_INTR_STATUS); pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); } pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); } if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) pr_err("PLE Gap=%08x Window=%08x\n", vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) pr_err("Virtual processor ID = 0x%04x\n", vmcs_read16(VIRTUAL_PROCESSOR_ID)); if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) { struct vmx_ve_information *ve_info = vmx->ve_info; u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS); /* * If KVM is dumping the VMCS, then something has gone wrong * already. Derefencing an address from the VMCS, which could * very well be corrupted, is a terrible idea. The virtual * address is known so use it. */ pr_err("VE info address = 0x%016llx%s\n", ve_info_pa, ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)"); pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n", ve_info->exit_reason, ve_info->delivery, ve_info->exit_qualification, ve_info->guest_linear_address, ve_info->guest_physical_address, ve_info->eptp_index); } } /* * The guest has exited. See if we can fix it or if we need userspace * assistance. */ static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) { struct vcpu_vmx *vmx = to_vmx(vcpu); union vmx_exit_reason exit_reason = vmx->exit_reason; u32 vectoring_info = vmx->idt_vectoring_info; u16 exit_handler_index; /* * Flush logged GPAs PML buffer, this will make dirty_bitmap more * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before * querying dirty_bitmap, we only need to kick all vcpus out of guest * mode as if vcpus is in root mode, the PML buffer must has been * flushed already. Note, PML is never enabled in hardware while * running L2. */ if (enable_pml && !is_guest_mode(vcpu)) vmx_flush_pml_buffer(vcpu); /* * KVM should never reach this point with a pending nested VM-Enter. * More specifically, short-circuiting VM-Entry to emulate L2 due to * invalid guest state should never happen as that means KVM knowingly * allowed a nested VM-Enter with an invalid vmcs12. More below. */ if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) return -EIO; if (is_guest_mode(vcpu)) { /* * PML is never enabled when running L2, bail immediately if a * PML full exit occurs as something is horribly wrong. */ if (exit_reason.basic == EXIT_REASON_PML_FULL) goto unexpected_vmexit; /* * The host physical addresses of some pages of guest memory * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC * Page). The CPU may write to these pages via their host * physical address while L2 is running, bypassing any * address-translation-based dirty tracking (e.g. EPT write * protection). * * Mark them dirty on every exit from L2 to prevent them from * getting out of sync with dirty tracking. */ nested_mark_vmcs12_pages_dirty(vcpu); /* * Synthesize a triple fault if L2 state is invalid. In normal * operation, nested VM-Enter rejects any attempt to enter L2 * with invalid state. However, those checks are skipped if * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If * L2 state is invalid, it means either L1 modified SMRAM state * or userspace provided bad state. Synthesize TRIPLE_FAULT as * doing so is architecturally allowed in the RSM case, and is * the least awful solution for the userspace case without * risking false positives. */ if (vmx->emulation_required) { nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); return 1; } if (nested_vmx_reflect_vmexit(vcpu)) return 1; } /* If guest state is invalid, start emulating. L2 is handled above. */ if (vmx->emulation_required) return handle_invalid_guest_state(vcpu); if (exit_reason.failed_vmentry) { dump_vmcs(vcpu); vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full; vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; return 0; } if (unlikely(vmx->fail)) { dump_vmcs(vcpu); vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = vmcs_read32(VM_INSTRUCTION_ERROR); vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; return 0; } if ((vectoring_info & VECTORING_INFO_VALID_MASK) && (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && exit_reason.basic != EXIT_REASON_EPT_VIOLATION && exit_reason.basic != EXIT_REASON_PML_FULL && exit_reason.basic != EXIT_REASON_APIC_ACCESS && exit_reason.basic != EXIT_REASON_TASK_SWITCH && exit_reason.basic != EXIT_REASON_NOTIFY && exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) { kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA); return 0; } if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) { if (!vmx_interrupt_blocked(vcpu)) { vmx->loaded_vmcs->soft_vnmi_blocked = 0; } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && vcpu->arch.nmi_pending) { /* * This CPU don't support us in finding the end of an * NMI-blocked window if the guest runs with IRQs * disabled. So we pull the trigger after 1 s of * futile waiting, but inform the user about this. */ printk(KERN_WARNING "%s: Breaking out of NMI-blocked " "state on VCPU %d after 1 s timeout\n", __func__, vcpu->vcpu_id); vmx->loaded_vmcs->soft_vnmi_blocked = 0; } } if (exit_fastpath != EXIT_FASTPATH_NONE) return 1; if (exit_reason.basic >= kvm_vmx_max_exit_handlers) goto unexpected_vmexit; #ifdef CONFIG_MITIGATION_RETPOLINE if (exit_reason.basic == EXIT_REASON_MSR_WRITE) return kvm_emulate_wrmsr(vcpu); else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) return handle_preemption_timer(vcpu); else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) return handle_interrupt_window(vcpu); else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) return handle_external_interrupt(vcpu); else if (exit_reason.basic == EXIT_REASON_HLT) return kvm_emulate_halt(vcpu); else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) return handle_ept_misconfig(vcpu); #endif exit_handler_index = array_index_nospec((u16)exit_reason.basic, kvm_vmx_max_exit_handlers); if (!kvm_vmx_exit_handlers[exit_handler_index]) goto unexpected_vmexit; return kvm_vmx_exit_handlers[exit_handler_index](vcpu); unexpected_vmexit: vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason.full); dump_vmcs(vcpu); vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; vcpu->run->internal.ndata = 2; vcpu->run->internal.data[0] = exit_reason.full; vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; return 0; } int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) { int ret = __vmx_handle_exit(vcpu, exit_fastpath); /* * Exit to user space when bus lock detected to inform that there is * a bus lock in guest. */ if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { if (ret > 0) vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; return 0; } return ret; } /* * Software based L1D cache flush which is used when microcode providing * the cache control MSR is not loaded. * * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to * flush it is required to read in 64 KiB because the replacement algorithm * is not exactly LRU. This could be sized at runtime via topology * information but as all relevant affected CPUs have 32KiB L1D cache size * there is no point in doing so. */ static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) { int size = PAGE_SIZE << L1D_CACHE_ORDER; /* * This code is only executed when the flush mode is 'cond' or * 'always' */ if (static_branch_likely(&vmx_l1d_flush_cond)) { bool flush_l1d; /* * Clear the per-vcpu flush bit, it gets set again if the vCPU * is reloaded, i.e. if the vCPU is scheduled out or if KVM * exits to userspace, or if KVM reaches one of the unsafe * VMEXIT handlers, e.g. if KVM calls into the emulator. */ flush_l1d = vcpu->arch.l1tf_flush_l1d; vcpu->arch.l1tf_flush_l1d = false; /* * Clear the per-cpu flush bit, it gets set again from * the interrupt handlers. */ flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); kvm_clear_cpu_l1tf_flush_l1d(); if (!flush_l1d) return; } vcpu->stat.l1d_flush++; if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); return; } asm volatile( /* First ensure the pages are in the TLB */ "xorl %%eax, %%eax\n" ".Lpopulate_tlb:\n\t" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $4096, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lpopulate_tlb\n\t" "xorl %%eax, %%eax\n\t" "cpuid\n\t" /* Now fill the cache */ "xorl %%eax, %%eax\n" ".Lfill_cache:\n" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $64, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lfill_cache\n\t" "lfence\n" :: [flush_pages] "r" (vmx_l1d_flush_pages), [size] "r" (size) : "eax", "ebx", "ecx", "edx"); } void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); int tpr_threshold; if (is_guest_mode(vcpu) && nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return; tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; if (is_guest_mode(vcpu)) to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; else vmcs_write32(TPR_THRESHOLD, tpr_threshold); } void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 sec_exec_control; if (!lapic_in_kernel(vcpu)) return; if (!flexpriority_enabled && !cpu_has_vmx_virtualize_x2apic_mode()) return; /* Postpone execution until vmcs01 is the current VMCS. */ if (is_guest_mode(vcpu)) { vmx->nested.change_vmcs01_virtual_apic_mode = true; return; } sec_exec_control = secondary_exec_controls_get(vmx); sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); switch (kvm_get_apic_mode(vcpu)) { case LAPIC_MODE_INVALID: WARN_ONCE(true, "Invalid local APIC state"); break; case LAPIC_MODE_DISABLED: break; case LAPIC_MODE_XAPIC: if (flexpriority_enabled) { sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); /* * Flush the TLB, reloading the APIC access page will * only do so if its physical address has changed, but * the guest may have inserted a non-APIC mapping into * the TLB while the APIC access page was disabled. */ kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); } break; case LAPIC_MODE_X2APIC: if (cpu_has_vmx_virtualize_x2apic_mode()) sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; break; } secondary_exec_controls_set(vmx, sec_exec_control); vmx_update_msr_bitmap_x2apic(vcpu); } void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) { const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; struct kvm *kvm = vcpu->kvm; struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memory_slot *slot; struct page *refcounted_page; unsigned long mmu_seq; kvm_pfn_t pfn; bool writable; /* Defer reload until vmcs01 is the current VMCS. */ if (is_guest_mode(vcpu)) { to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; return; } if (!(secondary_exec_controls_get(to_vmx(vcpu)) & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) return; /* * Explicitly grab the memslot using KVM's internal slot ID to ensure * KVM doesn't unintentionally grab a userspace memslot. It _should_ * be impossible for userspace to create a memslot for the APIC when * APICv is enabled, but paranoia won't hurt in this case. */ slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); if (!slot || slot->flags & KVM_MEMSLOT_INVALID) return; /* * Ensure that the mmu_notifier sequence count is read before KVM * retrieves the pfn from the primary MMU. Note, the memslot is * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() * in kvm_mmu_invalidate_end(). */ mmu_seq = kvm->mmu_invalidate_seq; smp_rmb(); /* * No need to retry if the memslot does not exist or is invalid. KVM * controls the APIC-access page memslot, and only deletes the memslot * if APICv is permanently inhibited, i.e. the memslot won't reappear. */ pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page); if (is_error_noslot_pfn(pfn)) return; read_lock(&vcpu->kvm->mmu_lock); if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); else vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); /* * Do not pin the APIC access page in memory so that it can be freely * migrated, the MMU notifier will call us again if it is migrated or * swapped out. KVM backs the memslot with anonymous memory, the pfn * should always point at a refcounted page (if the pfn is valid). */ if (!WARN_ON_ONCE(!refcounted_page)) kvm_release_page_clean(refcounted_page); /* * No need for a manual TLB flush at this point, KVM has already done a * flush if there were SPTEs pointing at the previous page. */ read_unlock(&vcpu->kvm->mmu_lock); } void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) { u16 status; u8 old; /* * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI * is only relevant for if and only if Virtual Interrupt Delivery is * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested * VM-Exit, otherwise L1 with run with a stale SVI. */ if (is_guest_mode(vcpu)) { /* * KVM is supposed to forward intercepted L2 EOIs to L1 if VID * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC. * Note, userspace can stuff state while L2 is active; assert * that VID is disabled if and only if the vCPU is in KVM_RUN * to avoid false positives if userspace is setting APIC state. */ WARN_ON_ONCE(vcpu->wants_to_run && nested_cpu_has_vid(get_vmcs12(vcpu))); to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true; return; } if (max_isr == -1) max_isr = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = status >> 8; if (max_isr != old) { status &= 0xff; status |= max_isr << 8; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_set_rvi(int vector) { u16 status; u8 old; if (vector == -1) vector = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = (u8)status & 0xff; if ((u8)vector != old) { status &= ~0xff; status |= (u8)vector; vmcs_write16(GUEST_INTR_STATUS, status); } } int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; bool got_posted_interrupt; if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) return -EIO; if (pi_test_on(&vmx->pi_desc)) { pi_clear_on(&vmx->pi_desc); /* * IOMMU can write to PID.ON, so the barrier matters even on UP. * But on x86 this is just a compiler barrier anyway. */ smp_mb__after_atomic(); got_posted_interrupt = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); } else { max_irr = kvm_lapic_find_highest_irr(vcpu); got_posted_interrupt = false; } /* * Newly recognized interrupts are injected via either virtual interrupt * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is * disabled in two cases: * * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected * into L2, but KVM doesn't use virtual interrupt delivery to inject * interrupts into L2, and so KVM_REQ_EVENT is again needed. * * 2) If APICv is disabled for this vCPU, assigned devices may still * attempt to post interrupts. The posted interrupt vector will cause * a VM-Exit and the subsequent entry will call sync_pir_to_irr. */ if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) vmx_set_rvi(max_irr); else if (got_posted_interrupt) kvm_make_request(KVM_REQ_EVENT, vcpu); return max_irr; } void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) { if (!kvm_vcpu_apicv_active(vcpu)) return; vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); } void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); pi_clear_on(&vmx->pi_desc); memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); } void vmx_do_interrupt_irqoff(unsigned long entry); void vmx_do_nmi_irqoff(void); static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) { /* * Save xfd_err to guest_fpu before interrupt is enabled, so the * MSR value is not clobbered by the host activity before the guest * has chance to consume it. * * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM * interception may have been caused by L1 interception. Per the SDM, * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1. * * Note, XFD_ERR is updated _before_ the #NM interception check, i.e. * unlike CR2 and DR6, the value is not a payload that is attached to * the #NM exception. */ if (is_xfd_nm_fault(vcpu)) rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); } static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) { /* if exit due to PF check for async PF */ if (is_page_fault(intr_info)) vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); /* if exit due to NM, handle before interrupts are enabled */ else if (is_nm_fault(intr_info)) handle_nm_fault_irqoff(vcpu); /* Handle machine checks before interrupts are enabled */ else if (is_machine_check(intr_info)) kvm_machine_check(); } static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) { unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, "unexpected VM-Exit interrupt info: 0x%x", intr_info)) return; kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); if (cpu_feature_enabled(X86_FEATURE_FRED)) fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); else vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); kvm_after_interrupt(vcpu); vcpu->arch.at_instruction_boundary = true; } void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (vmx->emulation_required) return; if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu)); else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu)); } /* * The kvm parameter can be NULL (module initialization, or invocation before * VM creation). Be sure to check the kvm parameter before using it. */ bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) { switch (index) { case MSR_IA32_SMBASE: if (!IS_ENABLED(CONFIG_KVM_SMM)) return false; /* * We cannot do SMM unless we can run the guest in big * real mode. */ return enable_unrestricted_guest || emulate_invalid_guest_state; case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: return nested; case MSR_AMD64_VIRT_SPEC_CTRL: case MSR_AMD64_TSC_RATIO: /* This is AMD only. */ return false; default: return true; } } static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) { u32 exit_intr_info; bool unblock_nmi; u8 vector; bool idtv_info_valid; idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; if (enable_vnmi) { if (vmx->loaded_vmcs->nmi_known_unmasked) return; exit_intr_info = vmx_get_intr_info(&vmx->vcpu); unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; vector = exit_intr_info & INTR_INFO_VECTOR_MASK; /* * SDM 3: 27.7.1.2 (September 2008) * Re-set bit "block by NMI" before VM entry if vmexit caused by * a guest IRET fault. * SDM 3: 23.2.2 (September 2008) * Bit 12 is undefined in any of the following cases: * If the VM exit sets the valid bit in the IDT-vectoring * information field. * If the VM exit is due to a double fault. */ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && vector != DF_VECTOR && !idtv_info_valid) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmx->loaded_vmcs->nmi_known_unmasked = !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI); } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->vnmi_blocked_time += ktime_to_ns(ktime_sub(ktime_get(), vmx->loaded_vmcs->entry_time)); } static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, u32 idt_vectoring_info, int instr_len_field, int error_code_field) { u8 vector; int type; bool idtv_info_valid; idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); if (!idtv_info_valid) return; kvm_make_request(KVM_REQ_EVENT, vcpu); vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = true; /* * SDM 3: 27.7.1.2 (September 2008) * Clear bit "block by NMI" before VM entry if a NMI * delivery faulted. */ vmx_set_nmi_mask(vcpu, false); break; case INTR_TYPE_SOFT_EXCEPTION: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); fallthrough; case INTR_TYPE_HARD_EXCEPTION: { u32 error_code = 0; if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) error_code = vmcs_read32(error_code_field); kvm_requeue_exception(vcpu, vector, idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK, error_code); break; } case INTR_TYPE_SOFT_INTR: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); fallthrough; case INTR_TYPE_EXT_INTR: kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); break; default: break; } } static void vmx_complete_interrupts(struct vcpu_vmx *vmx) { __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, VM_EXIT_INSTRUCTION_LEN, IDT_VECTORING_ERROR_CODE); } void vmx_cancel_injection(struct kvm_vcpu *vcpu) { __vmx_complete_interrupts(vcpu, vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), VM_ENTRY_INSTRUCTION_LEN, VM_ENTRY_EXCEPTION_ERROR_CODE); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); } static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) { int i, nr_msrs; struct perf_guest_switch_msr *msrs; struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); pmu->host_cross_mapped_mask = 0; if (pmu->pebs_enable & pmu->global_ctrl) intel_pmu_cross_mapped_check(pmu); /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); if (!msrs) return; for (i = 0; i < nr_msrs; i++) if (msrs[i].host == msrs[i].guest) clear_atomic_switch_msr(vmx, msrs[i].msr); else add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, msrs[i].host, false); } static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 tscl; u32 delta_tsc; if (force_immediate_exit) { vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); vmx->loaded_vmcs->hv_timer_soft_disabled = false; } else if (vmx->hv_deadline_tsc != -1) { tscl = rdtsc(); if (vmx->hv_deadline_tsc > tscl) /* set_hv_timer ensures the delta fits in 32-bits */ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> cpu_preemption_timer_multi); else delta_tsc = 0; vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); vmx->loaded_vmcs->hv_timer_soft_disabled = false; } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); vmx->loaded_vmcs->hv_timer_soft_disabled = true; } } void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) { if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { vmx->loaded_vmcs->host_state.rsp = host_rsp; vmcs_writel(HOST_RSP, host_rsp); } } void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags) { u64 hostval = this_cpu_read(x86_spec_ctrl_current); if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) return; if (flags & VMX_RUN_SAVE_SPEC_CTRL) vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); /* * If the guest/host SPEC_CTRL values differ, restore the host value. * * For legacy IBRS, the IBRS bit always needs to be written after * transitioning from a less privileged predictor mode, regardless of * whether the guest/host values differ. */ if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || vmx->spec_ctrl != hostval) native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); barrier_nospec(); } static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, bool force_immediate_exit) { /* * If L2 is active, some VMX preemption timer exits can be handled in * the fastpath even, all other exits must use the slow path. */ if (is_guest_mode(vcpu) && to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER) return EXIT_FASTPATH_NONE; switch (to_vmx(vcpu)->exit_reason.basic) { case EXIT_REASON_MSR_WRITE: return handle_fastpath_set_msr_irqoff(vcpu); case EXIT_REASON_PREEMPTION_TIMER: return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); case EXIT_REASON_HLT: return handle_fastpath_hlt(vcpu); default: return EXIT_FASTPATH_NONE; } } static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, unsigned int flags) { struct vcpu_vmx *vmx = to_vmx(vcpu); guest_state_enter_irqoff(); /* * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW * mitigation for MDS is done late in VMentry and is still * executed in spite of L1D Flush. This is because an extra VERW * should not matter much after the big hammer L1D Flush. */ if (static_branch_unlikely(&vmx_l1d_should_flush)) vmx_l1d_flush(vcpu); else if (static_branch_unlikely(&mmio_stale_data_clear) && kvm_arch_has_assigned_device(vcpu->kvm)) mds_clear_cpu_buffers(); vmx_disable_fb_clear(vmx); if (vcpu->arch.cr2 != native_read_cr2()) native_write_cr2(vcpu->arch.cr2); vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, flags); vcpu->arch.cr2 = native_read_cr2(); vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; vmx->idt_vectoring_info = 0; vmx_enable_fb_clear(vmx); if (unlikely(vmx->fail)) { vmx->exit_reason.full = 0xdead; goto out; } vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); if (likely(!vmx->exit_reason.failed_vmentry)) vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && is_nmi(vmx_get_intr_info(vcpu))) { kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); if (cpu_feature_enabled(X86_FEATURE_FRED)) fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); else vmx_do_nmi_irqoff(); kvm_after_interrupt(vcpu); } out: guest_state_exit_irqoff(); } fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long cr3, cr4; /* Record the guest's net vcpu time for enforced NMI injections. */ if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->entry_time = ktime_get(); /* * Don't enter VMX if guest state is invalid, let the exit handler * start emulation until we arrive back to a valid state. Synthesize a * consistency check VM-Exit due to invalid guest state and bail. */ if (unlikely(vmx->emulation_required)) { vmx->fail = 0; vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; vmx->exit_reason.failed_vmentry = 1; kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); vmx->exit_qualification = ENTRY_FAIL_DEFAULT; kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); vmx->exit_intr_info = 0; return EXIT_FASTPATH_NONE; } trace_kvm_entry(vcpu, force_immediate_exit); if (vmx->ple_window_dirty) { vmx->ple_window_dirty = false; vmcs_write32(PLE_WINDOW, vmx->ple_window); } /* * We did this in prepare_switch_to_guest, because it needs to * be within srcu_read_lock. */ WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); vcpu->arch.regs_dirty = 0; /* * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time * it switches back to the current->mm, which can occur in KVM context * when switching to a temporary mm to patch kernel code, e.g. if KVM * toggles a static key while handling a VM-Exit. */ cr3 = __get_current_cr3_fast(); if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { vmcs_writel(HOST_CR3, cr3); vmx->loaded_vmcs->host_state.cr3 = cr3; } cr4 = cr4_read_shadow(); if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { vmcs_writel(HOST_CR4, cr4); vmx->loaded_vmcs->host_state.cr4 = cr4; } /* When single-stepping over STI and MOV SS, we must clear the * corresponding interruptibility bits in the guest state. Otherwise * vmentry fails as it then expects bit 14 (BS) in pending debug * exceptions being set, but that's not correct for the guest debugging * case. */ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vmx_set_interrupt_shadow(vcpu, 0); kvm_load_guest_xsave_state(vcpu); pt_guest_enter(vmx); atomic_switch_perf_msrs(vmx); if (intel_pmu_lbr_is_enabled(vcpu)) vmx_passthrough_lbr_msrs(vcpu); if (enable_preemption_timer) vmx_update_hv_timer(vcpu, force_immediate_exit); else if (force_immediate_exit) smp_send_reschedule(vcpu->cpu); kvm_wait_lapic_expire(vcpu); /* The actual VMENTER/EXIT is in the .noinstr.text section. */ vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); /* All fields are clean at this point */ if (kvm_is_using_evmcs()) { current_evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); } /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ if (vcpu->arch.host_debugctl) update_debugctlmsr(vcpu->arch.host_debugctl); #ifndef CONFIG_X86_64 /* * The sysexit path does not restore ds/es, so we must set them to * a reasonable value ourselves. * * We can't defer this to vmx_prepare_switch_to_host() since that * function may be executed in interrupt context, which saves and * restore segments around it, nullifying its effect. */ loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); #endif pt_guest_exit(vmx); kvm_load_host_xsave_state(vcpu); if (is_guest_mode(vcpu)) { /* * Track VMLAUNCH/VMRESUME that have made past guest state * checking. */ if (vmx->nested.nested_run_pending && !vmx->exit_reason.failed_vmentry) ++vcpu->stat.nested_run; vmx->nested.nested_run_pending = 0; } if (unlikely(vmx->fail)) return EXIT_FASTPATH_NONE; if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) kvm_machine_check(); trace_kvm_exit(vcpu, KVM_ISA_VMX); if (unlikely(vmx->exit_reason.failed_vmentry)) return EXIT_FASTPATH_NONE; vmx->loaded_vmcs->launched = 1; vmx_recover_nmi_blocking(vmx); vmx_complete_interrupts(vmx); return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); } void vmx_vcpu_free(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (enable_pml) vmx_destroy_pml_buffer(vmx); free_vpid(vmx->vpid); nested_vmx_free_vcpu(vcpu); free_loaded_vmcs(vmx->loaded_vmcs); free_page((unsigned long)vmx->ve_info); } int vmx_vcpu_create(struct kvm_vcpu *vcpu) { struct vmx_uret_msr *tsx_ctrl; struct vcpu_vmx *vmx; int i, err; BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); vmx = to_vmx(vcpu); INIT_LIST_HEAD(&vmx->pi_wakeup_list); err = -ENOMEM; vmx->vpid = allocate_vpid(); /* * If PML is turned on, failure on enabling PML just results in failure * of creating the vcpu, therefore we can simplify PML logic (by * avoiding dealing with cases, such as enabling PML partially on vcpus * for the guest), etc. */ if (enable_pml) { vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!vmx->pml_pg) goto free_vpid; } for (i = 0; i < kvm_nr_uret_msrs; ++i) vmx->guest_uret_msrs[i].mask = -1ull; if (boot_cpu_has(X86_FEATURE_RTM)) { /* * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. * Keep the host value unchanged to avoid changing CPUID bits * under the host kernel's feet. */ tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); if (tsx_ctrl) tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; } err = alloc_loaded_vmcs(&vmx->vmcs01); if (err < 0) goto free_pml; /* * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the * feature only for vmcs01, KVM currently isn't equipped to realize any * performance benefits from enabling it for vmcs02. */ if (kvm_is_using_evmcs() && (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; evmcs->hv_enlightenments_control.msr_bitmap = 1; } /* The MSR bitmap starts with all ones */ bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); #ifdef CONFIG_X86_64 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); #endif vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); if (kvm_cstate_in_guest(vcpu->kvm)) { vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); } vmx->loaded_vmcs = &vmx->vmcs01; if (cpu_need_virtualize_apic_accesses(vcpu)) { err = kvm_alloc_apic_access_page(vcpu->kvm); if (err) goto free_vmcs; } if (enable_ept && !enable_unrestricted_guest) { err = init_rmode_identity_map(vcpu->kvm); if (err) goto free_vmcs; } err = -ENOMEM; if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) { struct page *page; BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE); /* ve_info must be page aligned. */ page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!page) goto free_vmcs; vmx->ve_info = page_to_virt(page); } if (vmx_can_use_ipiv(vcpu)) WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); return 0; free_vmcs: free_loaded_vmcs(vmx->loaded_vmcs); free_pml: vmx_destroy_pml_buffer(vmx); free_vpid: free_vpid(vmx->vpid); return err; } #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" int vmx_vm_init(struct kvm *kvm) { if (!ple_gap) kvm->arch.pause_in_guest = true; if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: case L1TF_MITIGATION_FLUSH_NOWARN: /* 'I explicitly don't care' is set */ break; case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: case L1TF_MITIGATION_FULL: /* * Warn upon starting the first VM in a potentially * insecure environment. */ if (sched_smt_active()) pr_warn_once(L1TF_MSG_SMT); if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) pr_warn_once(L1TF_MSG_L1D); break; case L1TF_MITIGATION_FULL_FORCE: /* Flush is enforced */ break; } } return 0; } u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { /* * Force UC for host MMIO regions, as allowing the guest to access MMIO * with cacheable accesses will result in Machine Checks. */ if (is_mmio) return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; /* * Force WB and ignore guest PAT if the VM does NOT have a non-coherent * device attached. Letting the guest control memory types on Intel * CPUs may result in unexpected behavior, and so KVM's ABI is to trust * the guest to behave only as a last resort. */ if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT); } static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) { /* * These bits in the secondary execution controls field * are dynamic, the others are mostly based on the hypervisor * architecture and the guest's CPUID. Do not touch the * dynamic bits. */ u32 mask = SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_DESC; u32 cur_ctl = secondary_exec_controls_get(vmx); secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); } /* * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits * (indicating "allowed-1") if they are supported in the guest's CPUID. */ static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_cpuid_entry2 *entry; vmx->nested.msrs.cr0_fixed1 = 0xffffffff; vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ if (entry && (entry->_reg & (_cpuid_mask))) \ vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ } while (0) entry = kvm_find_cpuid_entry(vcpu, 0x1); cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); #undef cr4_fixed1_update } static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_cpuid_entry2 *best = NULL; int i; for (i = 0; i < PT_CPUID_LEAVES; i++) { best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); if (!best) return; vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; } /* Get the number of configurable Address Ranges for filtering */ vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_num_address_ranges); /* Initialize and clear the no dependency bits */ vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | RTIT_CTL_BRANCH_EN); /* * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise * will inject an #GP */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; /* * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and * PSBFreq can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); /* * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | RTIT_CTL_MTC_RANGE); /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | RTIT_CTL_PTW_EN); /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; /* unmask address range configure area */ for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); } void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * XSAVES is effectively enabled if and only if XSAVE is also exposed * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be * set if and only if XSAVE is supported. */ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)) guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES); vmx_setup_uret_msrs(vmx); if (cpu_has_secondary_exec_ctrls()) vmcs_set_secondary_exec_control(vmx, vmx_secondary_exec_control(vmx)); if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_VMX_ENABLED_INSIDE_SMX | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; else vmx->msr_ia32_feature_control_valid_bits &= ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) nested_vmx_cr_fixed1_bits_update(vcpu); if (boot_cpu_has(X86_FEATURE_INTEL_PT) && guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT)) update_intel_pt_cfg(vcpu); if (boot_cpu_has(X86_FEATURE_RTM)) { struct vmx_uret_msr *msr; msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); if (msr) { bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM); vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); } } if (kvm_cpu_cap_has(X86_FEATURE_XFD)) vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)); if (boot_cpu_has(X86_FEATURE_IBPB)) vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, !guest_has_pred_cmd_msr(vcpu)); if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); set_cr4_guest_host_mask(vmx); vmx_write_encls_bitmap(vcpu, NULL); if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX)) vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; else vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC)) vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_LC_ENABLED; else vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_LC_ENABLED; /* Refresh #PF interception to account for MAXPHYADDR changes. */ vmx_update_exception_bitmap(vcpu); } static __init u64 vmx_get_perf_capabilities(void) { u64 perf_cap = PMU_CAP_FW_WRITES; u64 host_perf_cap = 0; if (!enable_pmu) return 0; if (boot_cpu_has(X86_FEATURE_PDCM)) rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { x86_perf_get_lbr(&vmx_lbr_caps); /* * KVM requires LBR callstack support, as the overhead due to * context switching LBRs without said support is too high. * See intel_pmu_create_guest_lbr_event() for more info. */ if (!vmx_lbr_caps.has_callstack) memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps)); else if (vmx_lbr_caps.nr) perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; } if (vmx_pebs_supported()) { perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; /* * Disallow adaptive PEBS as it is functionally broken, can be * used by the guest to read *host* LBRs, and can be used to * bypass userspace event filters. To correctly and safely * support adaptive PEBS, KVM needs to: * * 1. Account for the ADAPTIVE flag when (re)programming fixed * counters. * * 2. Gain support from perf (or take direct control of counter * programming) to support events without adaptive PEBS * enabled for the hardware counter. * * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. * * 4. Document which PMU events are effectively exposed to the * guest via adaptive PEBS, and make adaptive PEBS mutually * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. */ perf_cap &= ~PERF_CAP_PEBS_BASELINE; } return perf_cap; } static __init void vmx_set_cpu_caps(void) { kvm_set_cpu_caps(); /* CPUID 0x1 */ if (nested) kvm_cpu_cap_set(X86_FEATURE_VMX); /* CPUID 0x7 */ if (kvm_mpx_supported()) kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); if (!cpu_has_vmx_invpcid()) kvm_cpu_cap_clear(X86_FEATURE_INVPCID); if (vmx_pt_mode_is_host_guest()) kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); if (vmx_pebs_supported()) { kvm_cpu_cap_check_and_set(X86_FEATURE_DS); kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); } if (!enable_pmu) kvm_cpu_cap_clear(X86_FEATURE_PDCM); kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); if (!enable_sgx) { kvm_cpu_cap_clear(X86_FEATURE_SGX); kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); kvm_cpu_cap_clear(X86_FEATURE_SGX1); kvm_cpu_cap_clear(X86_FEATURE_SGX2); kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA); } if (vmx_umip_emulated()) kvm_cpu_cap_set(X86_FEATURE_UMIP); /* CPUID 0xD.1 */ kvm_caps.supported_xss = 0; if (!cpu_has_vmx_xsaves()) kvm_cpu_cap_clear(X86_FEATURE_XSAVES); /* CPUID 0x80000001 and 0x7 (RDPID) */ if (!cpu_has_vmx_rdtscp()) { kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); kvm_cpu_cap_clear(X86_FEATURE_RDPID); } if (cpu_has_vmx_waitpkg()) kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); } static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, unsigned long *exit_qualification) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned short port; int size; bool imm; /* * If the 'use IO bitmaps' VM-execution control is 0, IO instruction * VM-exits depend on the 'unconditional IO exiting' VM-execution * control. * * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. */ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); if (info->intercept == x86_intercept_in || info->intercept == x86_intercept_ins) { port = info->src_val; size = info->dst_bytes; imm = info->src_type == OP_IMM; } else { port = info->dst_val; size = info->src_bytes; imm = info->dst_type == OP_IMM; } *exit_qualification = ((unsigned long)port << 16) | (size - 1); if (info->intercept == x86_intercept_ins || info->intercept == x86_intercept_outs) *exit_qualification |= BIT(4); if (info->rep_prefix) *exit_qualification |= BIT(5); if (imm) *exit_qualification |= BIT(6); return nested_vmx_check_io_bitmaps(vcpu, port, size); } int vmx_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage, struct x86_exception *exception) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long exit_qualification = 0; u32 vm_exit_reason; u64 exit_insn_len; switch (info->intercept) { case x86_intercept_rdpid: /* * RDPID causes #UD if not enabled through secondary execution * controls (ENABLE_RDTSCP). Note, the implicit MSR access to * TSC_AUX is NOT subject to interception, i.e. checking only * the dedicated execution control is architecturally correct. */ if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { exception->vector = UD_VECTOR; exception->error_code_valid = false; return X86EMUL_PROPAGATE_FAULT; } return X86EMUL_CONTINUE; case x86_intercept_in: case x86_intercept_ins: case x86_intercept_out: case x86_intercept_outs: if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification)) return X86EMUL_CONTINUE; vm_exit_reason = EXIT_REASON_IO_INSTRUCTION; break; case x86_intercept_lgdt: case x86_intercept_lidt: case x86_intercept_lldt: case x86_intercept_ltr: case x86_intercept_sgdt: case x86_intercept_sidt: case x86_intercept_sldt: case x86_intercept_str: if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) return X86EMUL_CONTINUE; if (info->intercept == x86_intercept_lldt || info->intercept == x86_intercept_ltr || info->intercept == x86_intercept_sldt || info->intercept == x86_intercept_str) vm_exit_reason = EXIT_REASON_LDTR_TR; else vm_exit_reason = EXIT_REASON_GDTR_IDTR; /* * FIXME: Decode the ModR/M to generate the correct exit * qualification for memory operands. */ break; case x86_intercept_hlt: if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING)) return X86EMUL_CONTINUE; vm_exit_reason = EXIT_REASON_HLT; break; case x86_intercept_pause: /* * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides * with vanilla NOPs in the emulator. Apply the interception * check only to actual PAUSE instructions. Don't check * PAUSE-loop-exiting, software can't expect a given PAUSE to * exit, i.e. KVM is within its rights to allow L2 to execute * the PAUSE. */ if ((info->rep_prefix != REPE_PREFIX) || !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING)) return X86EMUL_CONTINUE; vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION; break; /* TODO: check more intercepts... */ default: return X86EMUL_UNHANDLEABLE; } exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip); if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH) return X86EMUL_UNHANDLEABLE; __nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification, exit_insn_len); return X86EMUL_INTERCEPTED; } #ifdef CONFIG_X86_64 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ static inline int u64_shl_div_u64(u64 a, unsigned int shift, u64 divisor, u64 *result) { u64 low = a << shift, high = a >> (64 - shift); /* To avoid the overflow on divq */ if (high >= divisor) return 1; /* Low hold the result, high hold rem which is discarded */ asm("divq %2\n\t" : "=a" (low), "=d" (high) : "rm" (divisor), "0" (low), "1" (high)); *result = low; return 0; } int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, bool *expired) { struct vcpu_vmx *vmx; u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; vmx = to_vmx(vcpu); tscl = rdtsc(); guest_tscl = kvm_read_l1_tsc(vcpu, tscl); delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; lapic_timer_advance_cycles = nsec_to_cycles(vcpu, ktimer->timer_advance_ns); if (delta_tsc > lapic_timer_advance_cycles) delta_tsc -= lapic_timer_advance_cycles; else delta_tsc = 0; /* Convert to host delta tsc if tsc scaling is enabled */ if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && delta_tsc && u64_shl_div_u64(delta_tsc, kvm_caps.tsc_scaling_ratio_frac_bits, vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) return -ERANGE; /* * If the delta tsc can't fit in the 32 bit after the multi shift, * we can't use the preemption timer. * It's possible that it fits on later vmentries, but checking * on every vmentry is costly so we just use an hrtimer. */ if (delta_tsc >> (cpu_preemption_timer_multi + 32)) return -ERANGE; vmx->hv_deadline_tsc = tscl + delta_tsc; *expired = !delta_tsc; return 0; } void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) { to_vmx(vcpu)->hv_deadline_tsc = -1; } #endif void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (WARN_ON_ONCE(!enable_pml)) return; if (is_guest_mode(vcpu)) { vmx->nested.update_vmcs01_cpu_dirty_logging = true; return; } /* * Note, nr_memslots_dirty_logging can be changed concurrent with this * code, but in that case another update request will be made and so * the guest will never run with a stale PML value. */ if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); else secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); } void vmx_setup_mce(struct kvm_vcpu *vcpu) { if (vcpu->arch.mcg_cap & MCG_LMCE_P) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEAT_CTL_LMCE_ENABLED; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_LMCE_ENABLED; } #ifdef CONFIG_KVM_SMM int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { /* we need a nested vmexit to enter SMM, postpone if run is pending */ if (to_vmx(vcpu)->nested.nested_run_pending) return -EBUSY; return !is_smm(vcpu); } int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * TODO: Implement custom flows for forcing the vCPU out/in of L2 on * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong * SMI and RSM only modify state that is saved and restored via SMRAM. * E.g. most MSRs are left untouched, but many are modified by VM-Exit * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. */ vmx->nested.smm.guest_mode = is_guest_mode(vcpu); if (vmx->nested.smm.guest_mode) nested_vmx_vmexit(vcpu, -1, 0, 0); vmx->nested.smm.vmxon = vmx->nested.vmxon; vmx->nested.vmxon = false; vmx_clear_hlt(vcpu); return 0; } int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) { struct vcpu_vmx *vmx = to_vmx(vcpu); int ret; if (vmx->nested.smm.vmxon) { vmx->nested.vmxon = true; vmx->nested.smm.vmxon = false; } if (vmx->nested.smm.guest_mode) { ret = nested_vmx_enter_non_root_mode(vcpu, false); if (ret) return ret; vmx->nested.nested_run_pending = 1; vmx->nested.smm.guest_mode = false; } return 0; } void vmx_enable_smi_window(struct kvm_vcpu *vcpu) { /* RSM will cause a vmexit anyway. */ } #endif bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); } void vmx_migrate_timers(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu)) { struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; if (hrtimer_try_to_cancel(timer) == 1) hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); } } void vmx_hardware_unsetup(void) { kvm_set_posted_intr_wakeup_handler(NULL); if (nested) nested_vmx_hardware_unsetup(); free_kvm_area(); } void vmx_vm_destroy(struct kvm *kvm) { struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); } /* * Note, the SDM states that the linear address is masked *after* the modified * canonicality check, whereas KVM masks (untags) the address and then performs * a "normal" canonicality check. Functionally, the two methods are identical, * and when the masking occurs relative to the canonicality check isn't visible * to software, i.e. KVM's behavior doesn't violate the SDM. */ gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) { int lam_bit; unsigned long cr3_bits; if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) return gva; if (!is_64_bit_mode(vcpu)) return gva; /* * Bit 63 determines if the address should be treated as user address * or a supervisor address. */ if (!(gva & BIT_ULL(63))) { cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) return gva; /* LAM_U48 is ignored if LAM_U57 is set. */ lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; } else { if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) return gva; lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; } /* * Untag the address by sign-extending the lam_bit, but NOT to bit 63. * Bit 63 is retained from the raw virtual address so that untagging * doesn't change a user access to a supervisor access, and vice versa. */ return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); } static unsigned int vmx_handle_intel_pt_intr(void) { struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); /* '0' on failure so that the !PT case can use a RET0 static call. */ if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) return 0; kvm_make_request(KVM_REQ_PMI, vcpu); __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, (unsigned long *)&vcpu->arch.pmu.global_status); return 1; } static __init void vmx_setup_user_return_msrs(void) { /* * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm * will emulate SYSCALL in legacy mode if the vendor string in guest * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To * support this emulation, MSR_STAR is included in the list for i386, * but is never loaded into hardware. MSR_CSTAR is also never loaded * into hardware and is here purely for emulation purposes. */ const u32 vmx_uret_msrs_list[] = { #ifdef CONFIG_X86_64 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, #endif MSR_EFER, MSR_TSC_AUX, MSR_STAR, MSR_IA32_TSX_CTRL, }; int i; BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) kvm_add_user_return_msr(vmx_uret_msrs_list[i]); } static void __init vmx_setup_me_spte_mask(void) { u64 me_mask = 0; /* * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems, * boot_cpu_data.x86_phys_bits holds the actual physical address * w/o the KeyID bits, and kvm_host.maxphyaddr equals to * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits. */ if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr) me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, kvm_host.maxphyaddr - 1); /* * Unlike SME, host kernel doesn't support setting up any * MKTME KeyID on Intel platforms. No memory encryption * bits should be included into the SPTE. */ kvm_mmu_set_me_spte_mask(0, me_mask); } __init int vmx_hardware_setup(void) { unsigned long host_bndcfgs; struct desc_ptr dt; int r; store_idt(&dt); host_idt_base = dt.address; vmx_setup_user_return_msrs(); if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) return -EIO; if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (boot_cpu_has(X86_FEATURE_MPX)) { rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); } if (!cpu_has_vmx_mpx()) kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) enable_vpid = 0; if (!cpu_has_vmx_ept() || !cpu_has_vmx_ept_4levels() || !cpu_has_vmx_ept_mt_wb() || !cpu_has_vmx_invept_global()) enable_ept = 0; /* NX support is required for shadow paging. */ if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { pr_err_ratelimited("NX (Execute Disable) not supported\n"); return -EOPNOTSUPP; } if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) enable_ept_ad_bits = 0; if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) enable_unrestricted_guest = 0; if (!cpu_has_vmx_flexpriority()) flexpriority_enabled = 0; if (!cpu_has_virtual_nmis()) enable_vnmi = 0; #ifdef CONFIG_X86_SGX_KVM if (!cpu_has_vmx_encls_vmexit()) enable_sgx = false; #endif /* * set_apic_access_page_addr() is used to reload apic access * page upon invalidation. No need to do anything if not * using the APIC_ACCESS_ADDR VMCS field. */ if (!flexpriority_enabled) vt_x86_ops.set_apic_access_page_addr = NULL; if (!cpu_has_vmx_tpr_shadow()) vt_x86_ops.update_cr8_intercept = NULL; #if IS_ENABLED(CONFIG_HYPERV) if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH && enable_ept) { vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; } #endif if (!cpu_has_vmx_ple()) { ple_gap = 0; ple_window = 0; ple_window_grow = 0; ple_window_max = 0; ple_window_shrink = 0; } if (!cpu_has_vmx_apicv()) enable_apicv = 0; if (!enable_apicv) vt_x86_ops.sync_pir_to_irr = NULL; if (!enable_apicv || !cpu_has_vmx_ipiv()) enable_ipiv = false; if (cpu_has_vmx_tsc_scaling()) kvm_caps.has_tsc_control = true; kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; kvm_caps.tsc_scaling_ratio_frac_bits = 48; kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ if (enable_ept) kvm_mmu_set_ept_masks(enable_ept_ad_bits, cpu_has_vmx_ept_execute_only()); /* * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID * bits to shadow_zero_check. */ vmx_setup_me_spte_mask(); kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), ept_caps_to_lpage_level(vmx_capability.ept)); /* * Only enable PML when hardware supports PML feature, and both EPT * and EPT A/D bit features are enabled -- PML depends on them to work. */ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) enable_pml = 0; if (!enable_pml) vt_x86_ops.cpu_dirty_log_size = 0; if (!cpu_has_vmx_preemption_timer()) enable_preemption_timer = false; if (enable_preemption_timer) { u64 use_timer_freq = 5000ULL * 1000 * 1000; cpu_preemption_timer_multi = vmx_misc_preemption_timer_rate(vmcs_config.misc); if (tsc_khz) use_timer_freq = (u64)tsc_khz * 1000; use_timer_freq >>= cpu_preemption_timer_multi; /* * KVM "disables" the preemption timer by setting it to its max * value. Don't use the timer if it might cause spurious exits * at a rate faster than 0.1 Hz (of uninterrupted guest time). */ if (use_timer_freq > 0xffffffffu / 10) enable_preemption_timer = false; } if (!enable_preemption_timer) { vt_x86_ops.set_hv_timer = NULL; vt_x86_ops.cancel_hv_timer = NULL; } kvm_caps.supported_mce_cap |= MCG_LMCE_P; kvm_caps.supported_mce_cap |= MCG_CMCI_P; if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) return -EINVAL; if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) pt_mode = PT_MODE_SYSTEM; if (pt_mode == PT_MODE_HOST_GUEST) vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; else vt_init_ops.handle_intel_pt_intr = NULL; setup_default_sgx_lepubkeyhash(); if (nested) { nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); if (r) return r; } vmx_set_cpu_caps(); r = alloc_kvm_area(); if (r && nested) nested_vmx_hardware_unsetup(); kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); return r; } static void vmx_cleanup_l1d_flush(void) { if (vmx_l1d_flush_pages) { free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); vmx_l1d_flush_pages = NULL; } /* Restore state so sysfs ignores VMX */ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; } static void __vmx_exit(void) { allow_smaller_maxphyaddr = false; vmx_cleanup_l1d_flush(); } static void __exit vmx_exit(void) { kvm_exit(); __vmx_exit(); kvm_x86_vendor_exit(); } module_exit(vmx_exit); static int __init vmx_init(void) { int r, cpu; if (!kvm_is_vmx_supported()) return -EOPNOTSUPP; /* * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing * to unwind if a later step fails. */ hv_init_evmcs(); r = kvm_x86_vendor_init(&vt_init_ops); if (r) return r; /* * Must be called after common x86 init so enable_ept is properly set * up. Hand the parameter mitigation value in which was stored in * the pre module init parser. If no parameter was given, it will * contain 'auto' which will be turned into the default 'cond' * mitigation mode. */ r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); if (r) goto err_l1d_flush; for_each_possible_cpu(cpu) { INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); pi_init_cpu(cpu); } vmx_check_vmcs12_offsets(); /* * Shadow paging doesn't have a (further) performance penalty * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it * by default */ if (!enable_ept) allow_smaller_maxphyaddr = true; /* * Common KVM initialization _must_ come last, after this, /dev/kvm is * exposed to userspace! */ r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), THIS_MODULE); if (r) goto err_kvm_init; return 0; err_kvm_init: __vmx_exit(); err_l1d_flush: kvm_x86_vendor_exit(); return r; } module_init(vmx_init);
4 3 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 1 2 1 2 3 6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 // SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA sequencer FIFO * Copyright (c) 1998 by Frank van de Pol <fvdpol@coil.demon.nl> */ #include <sound/core.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include "seq_fifo.h" #include "seq_lock.h" /* FIFO */ /* create new fifo */ struct snd_seq_fifo *snd_seq_fifo_new(int poolsize) { struct snd_seq_fifo *f; f = kzalloc(sizeof(*f), GFP_KERNEL); if (!f) return NULL; f->pool = snd_seq_pool_new(poolsize); if (f->pool == NULL) { kfree(f); return NULL; } if (snd_seq_pool_init(f->pool) < 0) { snd_seq_pool_delete(&f->pool); kfree(f); return NULL; } spin_lock_init(&f->lock); snd_use_lock_init(&f->use_lock); init_waitqueue_head(&f->input_sleep); atomic_set(&f->overflow, 0); f->head = NULL; f->tail = NULL; f->cells = 0; return f; } void snd_seq_fifo_delete(struct snd_seq_fifo **fifo) { struct snd_seq_fifo *f; if (snd_BUG_ON(!fifo)) return; f = *fifo; if (snd_BUG_ON(!f)) return; *fifo = NULL; if (f->pool) snd_seq_pool_mark_closing(f->pool); snd_seq_fifo_clear(f); /* wake up clients if any */ if (waitqueue_active(&f->input_sleep)) wake_up(&f->input_sleep); /* release resources...*/ /*....................*/ if (f->pool) { snd_seq_pool_done(f->pool); snd_seq_pool_delete(&f->pool); } kfree(f); } static struct snd_seq_event_cell *fifo_cell_out(struct snd_seq_fifo *f); /* clear queue */ void snd_seq_fifo_clear(struct snd_seq_fifo *f) { struct snd_seq_event_cell *cell; /* clear overflow flag */ atomic_set(&f->overflow, 0); snd_use_lock_sync(&f->use_lock); guard(spinlock_irq)(&f->lock); /* drain the fifo */ while ((cell = fifo_cell_out(f)) != NULL) { snd_seq_cell_free(cell); } } /* enqueue event to fifo */ int snd_seq_fifo_event_in(struct snd_seq_fifo *f, struct snd_seq_event *event) { struct snd_seq_event_cell *cell; int err; if (snd_BUG_ON(!f)) return -EINVAL; snd_use_lock_use(&f->use_lock); err = snd_seq_event_dup(f->pool, event, &cell, 1, NULL, NULL); /* always non-blocking */ if (err < 0) { if ((err == -ENOMEM) || (err == -EAGAIN)) atomic_inc(&f->overflow); snd_use_lock_free(&f->use_lock); return err; } /* append new cells to fifo */ scoped_guard(spinlock_irqsave, &f->lock) { if (f->tail != NULL) f->tail->next = cell; f->tail = cell; if (f->head == NULL) f->head = cell; cell->next = NULL; f->cells++; } /* wakeup client */ if (waitqueue_active(&f->input_sleep)) wake_up(&f->input_sleep); snd_use_lock_free(&f->use_lock); return 0; /* success */ } /* dequeue cell from fifo */ static struct snd_seq_event_cell *fifo_cell_out(struct snd_seq_fifo *f) { struct snd_seq_event_cell *cell; cell = f->head; if (cell) { f->head = cell->next; /* reset tail if this was the last element */ if (f->tail == cell) f->tail = NULL; cell->next = NULL; f->cells--; } return cell; } /* dequeue cell from fifo and copy on user space */ int snd_seq_fifo_cell_out(struct snd_seq_fifo *f, struct snd_seq_event_cell **cellp, int nonblock) { struct snd_seq_event_cell *cell; unsigned long flags; wait_queue_entry_t wait; if (snd_BUG_ON(!f)) return -EINVAL; *cellp = NULL; init_waitqueue_entry(&wait, current); spin_lock_irqsave(&f->lock, flags); while ((cell = fifo_cell_out(f)) == NULL) { if (nonblock) { /* non-blocking - return immediately */ spin_unlock_irqrestore(&f->lock, flags); return -EAGAIN; } set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&f->input_sleep, &wait); spin_unlock_irqrestore(&f->lock, flags); schedule(); spin_lock_irqsave(&f->lock, flags); remove_wait_queue(&f->input_sleep, &wait); if (signal_pending(current)) { spin_unlock_irqrestore(&f->lock, flags); return -ERESTARTSYS; } } spin_unlock_irqrestore(&f->lock, flags); *cellp = cell; return 0; } void snd_seq_fifo_cell_putback(struct snd_seq_fifo *f, struct snd_seq_event_cell *cell) { if (cell) { guard(spinlock_irqsave)(&f->lock); cell->next = f->head; f->head = cell; if (!f->tail) f->tail = cell; f->cells++; } } /* polling; return non-zero if queue is available */ int snd_seq_fifo_poll_wait(struct snd_seq_fifo *f, struct file *file, poll_table *wait) { poll_wait(file, &f->input_sleep, wait); return (f->cells > 0); } /* change the size of pool; all old events are removed */ int snd_seq_fifo_resize(struct snd_seq_fifo *f, int poolsize) { struct snd_seq_pool *newpool, *oldpool; struct snd_seq_event_cell *cell, *next, *oldhead; if (snd_BUG_ON(!f || !f->pool)) return -EINVAL; /* allocate new pool */ newpool = snd_seq_pool_new(poolsize); if (newpool == NULL) return -ENOMEM; if (snd_seq_pool_init(newpool) < 0) { snd_seq_pool_delete(&newpool); return -ENOMEM; } scoped_guard(spinlock_irq, &f->lock) { /* remember old pool */ oldpool = f->pool; oldhead = f->head; /* exchange pools */ f->pool = newpool; f->head = NULL; f->tail = NULL; f->cells = 0; /* NOTE: overflow flag is not cleared */ } /* close the old pool and wait until all users are gone */ snd_seq_pool_mark_closing(oldpool); snd_use_lock_sync(&f->use_lock); /* release cells in old pool */ for (cell = oldhead; cell; cell = next) { next = cell->next; snd_seq_cell_free(cell); } snd_seq_pool_delete(&oldpool); return 0; } /* get the number of unused cells safely */ int snd_seq_fifo_unused_cells(struct snd_seq_fifo *f) { int cells; if (!f) return 0; snd_use_lock_use(&f->use_lock); scoped_guard(spinlock_irqsave, &f->lock) cells = snd_seq_unused_cells(f->pool); snd_use_lock_free(&f->use_lock); return cells; }
52 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/binfmt_script.c * * Copyright (C) 1996 Martin von Löwis * original #!-checking implemented by tytso. */ #include <linux/module.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/binfmts.h> #include <linux/init.h> #include <linux/file.h> #include <linux/err.h> #include <linux/fs.h> static inline bool spacetab(char c) { return c == ' ' || c == '\t'; } static inline const char *next_non_spacetab(const char *first, const char *last) { for (; first <= last; first++) if (!spacetab(*first)) return first; return NULL; } static inline const char *next_terminator(const char *first, const char *last) { for (; first <= last; first++) if (spacetab(*first) || !*first) return first; return NULL; } static int load_script(struct linux_binprm *bprm) { const char *i_name, *i_sep, *i_arg, *i_end, *buf_end; struct file *file; int retval; /* Not ours to exec if we don't start with "#!". */ if ((bprm->buf[0] != '#') || (bprm->buf[1] != '!')) return -ENOEXEC; /* * This section handles parsing the #! line into separate * interpreter path and argument strings. We must be careful * because bprm->buf is not yet guaranteed to be NUL-terminated * (though the buffer will have trailing NUL padding when the * file size was smaller than the buffer size). * * We do not want to exec a truncated interpreter path, so either * we find a newline (which indicates nothing is truncated), or * we find a space/tab/NUL after the interpreter path (which * itself may be preceded by spaces/tabs). Truncating the * arguments is fine: the interpreter can re-read the script to * parse them on its own. */ buf_end = bprm->buf + sizeof(bprm->buf) - 1; i_end = strnchr(bprm->buf, sizeof(bprm->buf), '\n'); if (!i_end) { i_end = next_non_spacetab(bprm->buf + 2, buf_end); if (!i_end) return -ENOEXEC; /* Entire buf is spaces/tabs */ /* * If there is no later space/tab/NUL we must assume the * interpreter path is truncated. */ if (!next_terminator(i_end, buf_end)) return -ENOEXEC; i_end = buf_end; } /* Trim any trailing spaces/tabs from i_end */ while (spacetab(i_end[-1])) i_end--; /* Skip over leading spaces/tabs */ i_name = next_non_spacetab(bprm->buf+2, i_end); if (!i_name || (i_name == i_end)) return -ENOEXEC; /* No interpreter name found */ /* Is there an optional argument? */ i_arg = NULL; i_sep = next_terminator(i_name, i_end); if (i_sep && (*i_sep != '\0')) i_arg = next_non_spacetab(i_sep, i_end); /* * If the script filename will be inaccessible after exec, typically * because it is a "/dev/fd/<fd>/.." path against an O_CLOEXEC fd, give * up now (on the assumption that the interpreter will want to load * this file). */ if (bprm->interp_flags & BINPRM_FLAGS_PATH_INACCESSIBLE) return -ENOENT; /* * OK, we've parsed out the interpreter name and * (optional) argument. * Splice in (1) the interpreter's name for argv[0] * (2) (optional) argument to interpreter * (3) filename of shell script (replace argv[0]) * * This is done in reverse order, because of how the * user environment and arguments are stored. */ retval = remove_arg_zero(bprm); if (retval) return retval; retval = copy_string_kernel(bprm->interp, bprm); if (retval < 0) return retval; bprm->argc++; *((char *)i_end) = '\0'; if (i_arg) { *((char *)i_sep) = '\0'; retval = copy_string_kernel(i_arg, bprm); if (retval < 0) return retval; bprm->argc++; } retval = copy_string_kernel(i_name, bprm); if (retval) return retval; bprm->argc++; retval = bprm_change_interp(i_name, bprm); if (retval < 0) return retval; /* * OK, now restart the process with the interpreter's dentry. */ file = open_exec(i_name); if (IS_ERR(file)) return PTR_ERR(file); bprm->interpreter = file; return 0; } static struct linux_binfmt script_format = { .module = THIS_MODULE, .load_binary = load_script, }; static int __init init_script_binfmt(void) { register_binfmt(&script_format); return 0; } static void __exit exit_script_binfmt(void) { unregister_binfmt(&script_format); } core_initcall(init_script_binfmt); module_exit(exit_script_binfmt); MODULE_DESCRIPTION("Kernel support for scripts starting with #!"); MODULE_LICENSE("GPL");
4059 146 145 144 146 146 143 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2023 Isovalent */ #ifndef __NET_TCX_H #define __NET_TCX_H #include <linux/bpf.h> #include <linux/bpf_mprog.h> #include <net/sch_generic.h> struct mini_Qdisc; struct tcx_entry { struct mini_Qdisc __rcu *miniq; struct bpf_mprog_bundle bundle; u32 miniq_active; struct rcu_head rcu; }; struct tcx_link { struct bpf_link link; struct net_device *dev; u32 location; }; static inline void tcx_set_ingress(struct sk_buff *skb, bool ingress) { #ifdef CONFIG_NET_XGRESS skb->tc_at_ingress = ingress; #endif } #ifdef CONFIG_NET_XGRESS static inline struct tcx_entry *tcx_entry(struct bpf_mprog_entry *entry) { struct bpf_mprog_bundle *bundle = entry->parent; return container_of(bundle, struct tcx_entry, bundle); } static inline struct tcx_link *tcx_link(const struct bpf_link *link) { return container_of(link, struct tcx_link, link); } void tcx_inc(void); void tcx_dec(void); static inline void tcx_entry_sync(void) { /* bpf_mprog_entry got a/b swapped, therefore ensure that * there are no inflight users on the old one anymore. */ synchronize_rcu(); } static inline void tcx_entry_update(struct net_device *dev, struct bpf_mprog_entry *entry, bool ingress) { ASSERT_RTNL(); if (ingress) rcu_assign_pointer(dev->tcx_ingress, entry); else rcu_assign_pointer(dev->tcx_egress, entry); } static inline struct bpf_mprog_entry * tcx_entry_fetch(struct net_device *dev, bool ingress) { ASSERT_RTNL(); if (ingress) return rcu_dereference_rtnl(dev->tcx_ingress); else return rcu_dereference_rtnl(dev->tcx_egress); } static inline struct bpf_mprog_entry *tcx_entry_create_noprof(void) { struct tcx_entry *tcx = kzalloc_noprof(sizeof(*tcx), GFP_KERNEL); if (tcx) { bpf_mprog_bundle_init(&tcx->bundle); return &tcx->bundle.a; } return NULL; } #define tcx_entry_create(...) alloc_hooks(tcx_entry_create_noprof(__VA_ARGS__)) static inline void tcx_entry_free(struct bpf_mprog_entry *entry) { kfree_rcu(tcx_entry(entry), rcu); } static inline struct bpf_mprog_entry * tcx_entry_fetch_or_create(struct net_device *dev, bool ingress, bool *created) { struct bpf_mprog_entry *entry = tcx_entry_fetch(dev, ingress); *created = false; if (!entry) { entry = tcx_entry_create(); if (!entry) return NULL; *created = true; } return entry; } static inline void tcx_skeys_inc(bool ingress) { tcx_inc(); if (ingress) net_inc_ingress_queue(); else net_inc_egress_queue(); } static inline void tcx_skeys_dec(bool ingress) { if (ingress) net_dec_ingress_queue(); else net_dec_egress_queue(); tcx_dec(); } static inline void tcx_miniq_inc(struct bpf_mprog_entry *entry) { ASSERT_RTNL(); tcx_entry(entry)->miniq_active++; } static inline void tcx_miniq_dec(struct bpf_mprog_entry *entry) { ASSERT_RTNL(); tcx_entry(entry)->miniq_active--; } static inline bool tcx_entry_is_active(struct bpf_mprog_entry *entry) { ASSERT_RTNL(); return bpf_mprog_total(entry) || tcx_entry(entry)->miniq_active; } static inline enum tcx_action_base tcx_action_code(struct sk_buff *skb, int code) { switch (code) { case TCX_PASS: skb->tc_index = qdisc_skb_cb(skb)->tc_classid; fallthrough; case TCX_DROP: case TCX_REDIRECT: return code; case TCX_NEXT: default: return TCX_NEXT; } } #endif /* CONFIG_NET_XGRESS */ #if defined(CONFIG_NET_XGRESS) && defined(CONFIG_BPF_SYSCALL) int tcx_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog); int tcx_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); int tcx_prog_detach(const union bpf_attr *attr, struct bpf_prog *prog); void tcx_uninstall(struct net_device *dev, bool ingress); int tcx_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr); static inline void dev_tcx_uninstall(struct net_device *dev) { ASSERT_RTNL(); tcx_uninstall(dev, true); tcx_uninstall(dev, false); } #else static inline int tcx_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_prog_detach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { return -EINVAL; } static inline void dev_tcx_uninstall(struct net_device *dev) { } #endif /* CONFIG_NET_XGRESS && CONFIG_BPF_SYSCALL */ #endif /* __NET_TCX_H */
8 8 8 9 9 9 9 9 9 9 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 // SPDX-License-Identifier: GPL-2.0-only /* * irq.c: API for in kernel interrupt controller * Copyright (c) 2007, Intel Corporation. * Copyright 2009 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaozu (Eddie) Dong <Eddie.dong@intel.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/export.h> #include <linux/kvm_host.h> #include "irq.h" #include "i8254.h" #include "x86.h" #include "xen.h" /* * check if there are pending timer events * to be processed. */ int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { int r = 0; if (lapic_in_kernel(vcpu)) r = apic_has_pending_timer(vcpu); if (kvm_xen_timer_enabled(vcpu)) r += kvm_xen_has_pending_timer(vcpu); return r; } /* * check if there is a pending userspace external interrupt */ static int pending_userspace_extint(struct kvm_vcpu *v) { return v->arch.pending_external_vector != -1; } /* * check if there is pending interrupt from * non-APIC source without intack. */ int kvm_cpu_has_extint(struct kvm_vcpu *v) { /* * FIXME: interrupt.injected represents an interrupt whose * side-effects have already been applied (e.g. bit from IRR * already moved to ISR). Therefore, it is incorrect to rely * on interrupt.injected to know if there is a pending * interrupt in the user-mode LAPIC. * This leads to nVMX/nSVM not be able to distinguish * if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on * pending interrupt or should re-inject an injected * interrupt. */ if (!lapic_in_kernel(v)) return v->arch.interrupt.injected; if (kvm_xen_has_interrupt(v)) return 1; if (!kvm_apic_accept_pic_intr(v)) return 0; if (irqchip_split(v->kvm)) return pending_userspace_extint(v); else return v->kvm->arch.vpic->output; } /* * check if there is injectable interrupt: * when virtual interrupt delivery enabled, * interrupt from apic will handled by hardware, * we don't need to check it here. */ int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v) { if (kvm_cpu_has_extint(v)) return 1; if (!is_guest_mode(v) && kvm_vcpu_apicv_active(v)) return 0; return kvm_apic_has_interrupt(v) != -1; /* LAPIC */ } EXPORT_SYMBOL_GPL(kvm_cpu_has_injectable_intr); /* * check if there is pending interrupt without * intack. */ int kvm_cpu_has_interrupt(struct kvm_vcpu *v) { if (kvm_cpu_has_extint(v)) return 1; return kvm_apic_has_interrupt(v) != -1; /* LAPIC */ } EXPORT_SYMBOL_GPL(kvm_cpu_has_interrupt); /* * Read pending interrupt(from non-APIC source) * vector and intack. */ int kvm_cpu_get_extint(struct kvm_vcpu *v) { if (!kvm_cpu_has_extint(v)) { WARN_ON(!lapic_in_kernel(v)); return -1; } if (!lapic_in_kernel(v)) return v->arch.interrupt.nr; #ifdef CONFIG_KVM_XEN if (kvm_xen_has_interrupt(v)) return v->kvm->arch.xen.upcall_vector; #endif if (irqchip_split(v->kvm)) { int vector = v->arch.pending_external_vector; v->arch.pending_external_vector = -1; return vector; } else return kvm_pic_read_irq(v->kvm); /* PIC */ } EXPORT_SYMBOL_GPL(kvm_cpu_get_extint); /* * Read pending interrupt vector and intack. */ int kvm_cpu_get_interrupt(struct kvm_vcpu *v) { int vector = kvm_cpu_get_extint(v); if (vector != -1) return vector; /* PIC */ vector = kvm_apic_has_interrupt(v); /* APIC */ if (vector != -1) kvm_apic_ack_interrupt(v, vector); return vector; } void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu) { if (lapic_in_kernel(vcpu)) kvm_inject_apic_timer_irqs(vcpu); if (kvm_xen_timer_enabled(vcpu)) kvm_xen_inject_timer_irqs(vcpu); } void __kvm_migrate_timers(struct kvm_vcpu *vcpu) { __kvm_migrate_apic_timer(vcpu); __kvm_migrate_pit_timer(vcpu); kvm_x86_call(migrate_timers)(vcpu); } bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args) { bool resample = args->flags & KVM_IRQFD_FLAG_RESAMPLE; return resample ? irqchip_kernel(kvm) : irqchip_in_kernel(kvm); } bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) { return irqchip_in_kernel(kvm); }
189 168 20 188 128 127 126 128 81 20 2 20 36 36 36 2 34 36 36 13 13 88 87 13 75 88 88 9 72 3 1 3 15 3 3 4 4 3 4 4 3 2 3 53 2 79 79 79 1 17 1 1 3 3 3 1 3 1 1 1 1 1 1 2 2 2 2 23 23 23 23 8 21 17 1 1 2 21 3 21 23 2 12 16 13 1 13 13 13 12 13 9 9 1 1 5 5 1 1 1 5 4 2 1 4 4 4 1 21 20 1 20 19 6 6 5 4 19 7 5 7 5 5 3 14 14 12 14 14 2 14 14 18 16 16 15 15 14 14 14 4 4 2 20 11 11 11 70 5 3 3 2 17 17 17 15 17 17 17 17 17 201 151 136 136 201 72 9 2 203 14 12 10 7 10 10 10 10 10 1 9 8 8 8 8 8 1 8 7 6 1 5 4 4 3 4 4 4 4 4 7 8 14 137 137 137 2 137 3 2 26 136 137 137 66 62 60 2 1 136 137 135 119 20 20 9 20 119 2 119 119 119 119 33 119 119 119 43 45 1 45 135 17 5 4 17 18 18 1 17 15 209 1 201 199 211 207 125 202 205 202 22 22 198 202 205 161 206 181 18 201 1 1 201 189 202 6 203 198 22 178 65 35 7 200 200 201 4 200 201 4 3 198 199 196 14 6 3 189 5 1 180 183 19 37 210 210 209 212 80 79 79 79 72 79 2 2 79 9 79 79 79 79 5 11 79 79 13 7 13 13 13 1 12 9 11 8 10 9 8 9 8 10 10 1 10 10 3 8 8 8 9 2 2 13 2 1 2 15 14 15 29 29 28 27 27 27 27 24 27 27 27 29 29 27 28 1 27 27 25 11 25 25 24 24 3 25 25 9 1 8 8 9 25 3 1 3 2 3 3 3 3 3 25 27 29 3 1 1 1 3 3 1 1 1 1 1 3 13 2 1 1 3 6 4 2 2 2 10 10 10 10 10 10 10 1 2 13 9 9 9 9 9 91 91 15 2 14 14 14 13 11 13 16 16 16 15 15 2 1 1 3 2 2 1 1 1 2 1 1 1 1 1 2 2 2 2 2 3 2 2 3 2 2 8 7 6 6 2 5 5 5 2 1 1 21 21 21 3 2 3 2 2 1 3 2 2 2 2 11 92 3 2 2 20 20 19 18 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 14 21 1007 966 1007 118 24 2 29 4 4 4 4 2 2 2 4 13 1011 46 13 4 4 4 1 1 4 28 1 26 26 26 1 1 1 15 15 14 15 15 6 6 6 6 5 4 4 4 4 3 2 1 1 9 8 4 8 8 8 8 8 8 8 4 8 14 3 2 2 2 2 2 3 2 2 2 2 2 2 2 1 2 534 535 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * PACKET - implements raw packet sockets. * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Fixes: * Alan Cox : verify_area() now used correctly * Alan Cox : new skbuff lists, look ma no backlogs! * Alan Cox : tidied skbuff lists. * Alan Cox : Now uses generic datagram routines I * added. Also fixed the peek/read crash * from all old Linux datagram code. * Alan Cox : Uses the improved datagram code. * Alan Cox : Added NULL's for socket options. * Alan Cox : Re-commented the code. * Alan Cox : Use new kernel side addressing * Rob Janssen : Correct MTU usage. * Dave Platt : Counter leaks caused by incorrect * interrupt locking and some slightly * dubious gcc output. Can you read * compiler: it said _VOLATILE_ * Richard Kooijman : Timestamp fixes. * Alan Cox : New buffers. Use sk->mac.raw. * Alan Cox : sendmsg/recvmsg support. * Alan Cox : Protocol setting support * Alexey Kuznetsov : Untied from IPv4 stack. * Cyrus Durgin : Fixed kerneld for kmod. * Michal Ostrowski : Module initialization cleanup. * Ulises Alonso : Frame number limit removal and * packet_set_ring memory leak. * Eric Biederman : Allow for > 8 byte hardware addresses. * The convention is that longer addresses * will simply extend the hardware address * byte arrays at the end of sockaddr_ll * and packet_mreq. * Johann Baudy : Added TX RING. * Chetan Loke : Implemented TPACKET_V3 block abstraction * layer. * Copyright (C) 2011, <lokec@ccs.neu.edu> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/ethtool.h> #include <linux/filter.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/capability.h> #include <linux/fcntl.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/if_packet.h> #include <linux/wireless.h> #include <linux/kernel.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <net/net_namespace.h> #include <net/ip.h> #include <net/protocol.h> #include <linux/skbuff.h> #include <net/sock.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <asm/page.h> #include <asm/cacheflush.h> #include <asm/io.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/module.h> #include <linux/init.h> #include <linux/mutex.h> #include <linux/if_vlan.h> #include <linux/virtio_net.h> #include <linux/errqueue.h> #include <linux/net_tstamp.h> #include <linux/percpu.h> #ifdef CONFIG_INET #include <net/inet_common.h> #endif #include <linux/bpf.h> #include <net/compat.h> #include <linux/netfilter_netdev.h> #include "internal.h" /* Assumptions: - If the device has no dev->header_ops->create, there is no LL header visible above the device. In this case, its hard_header_len should be 0. The device may prepend its own header internally. In this case, its needed_headroom should be set to the space needed for it to add its internal header. For example, a WiFi driver pretending to be an Ethernet driver should set its hard_header_len to be the Ethernet header length, and set its needed_headroom to be (the real WiFi header length - the fake Ethernet header length). - packet socket receives packets with pulled ll header, so that SOCK_RAW should push it back. On receive: ----------- Incoming, dev_has_header(dev) == true mac_header -> ll header data -> data Outgoing, dev_has_header(dev) == true mac_header -> ll header data -> ll header Incoming, dev_has_header(dev) == false mac_header -> data However drivers often make it point to the ll header. This is incorrect because the ll header should be invisible to us. data -> data Outgoing, dev_has_header(dev) == false mac_header -> data. ll header is invisible to us. data -> data Resume If dev_has_header(dev) == false we are unable to restore the ll header, because it is invisible to us. On transmit: ------------ dev_has_header(dev) == true mac_header -> ll header data -> ll header dev_has_header(dev) == false (ll header is invisible to us) mac_header -> data data -> data We should set network_header on output to the correct position, packet classifier depends on it. */ /* Private packet socket structures. */ /* identical to struct packet_mreq except it has * a longer address field. */ struct packet_mreq_max { int mr_ifindex; unsigned short mr_type; unsigned short mr_alen; unsigned char mr_address[MAX_ADDR_LEN]; }; union tpacket_uhdr { struct tpacket_hdr *h1; struct tpacket2_hdr *h2; struct tpacket3_hdr *h3; void *raw; }; static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, int closing, int tx_ring); #define V3_ALIGNMENT (8) #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) #define BLK_PLUS_PRIV(sz_of_priv) \ (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) struct packet_sock; static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); static void *packet_previous_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status); static void packet_increment_head(struct packet_ring_buffer *buff); static int prb_curr_blk_in_use(struct tpacket_block_desc *); static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, struct packet_sock *); static void prb_retire_current_block(struct tpacket_kbdq_core *, struct packet_sock *, unsigned int status); static int prb_queue_frozen(struct tpacket_kbdq_core *); static void prb_open_block(struct tpacket_kbdq_core *, struct tpacket_block_desc *); static void prb_retire_rx_blk_timer_expired(struct timer_list *); static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); static void prb_clear_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); static void prb_fill_vlan_info(struct tpacket_kbdq_core *, struct tpacket3_hdr *); static void packet_flush_mclist(struct sock *sk); static u16 packet_pick_tx_queue(struct sk_buff *skb); struct packet_skb_cb { union { struct sockaddr_pkt pkt; union { /* Trick: alias skb original length with * ll.sll_family and ll.protocol in order * to save room. */ unsigned int origlen; struct sockaddr_ll ll; }; } sa; }; #define vio_le() virtio_legacy_is_little_endian() #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) #define GET_PBLOCK_DESC(x, bid) \ ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) #define GET_NEXT_PRB_BLK_NUM(x) \ (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ ((x)->kactive_blk_num+1) : 0) static void __fanout_unlink(struct sock *sk, struct packet_sock *po); static void __fanout_link(struct sock *sk, struct packet_sock *po); #ifdef CONFIG_NETFILTER_EGRESS static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) { struct sk_buff *next, *head = NULL, *tail; int rc; rcu_read_lock(); for (; skb != NULL; skb = next) { next = skb->next; skb_mark_not_on_list(skb); if (!nf_hook_egress(skb, &rc, skb->dev)) continue; if (!head) head = skb; else tail->next = skb; tail = skb; } rcu_read_unlock(); return head; } #endif static int packet_xmit(const struct packet_sock *po, struct sk_buff *skb) { if (!packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS)) return dev_queue_xmit(skb); #ifdef CONFIG_NETFILTER_EGRESS if (nf_hook_egress_active()) { skb = nf_hook_direct_egress(skb); if (!skb) return NET_XMIT_DROP; } #endif return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); } static struct net_device *packet_cached_dev_get(struct packet_sock *po) { struct net_device *dev; rcu_read_lock(); dev = rcu_dereference(po->cached_dev); dev_hold(dev); rcu_read_unlock(); return dev; } static void packet_cached_dev_assign(struct packet_sock *po, struct net_device *dev) { rcu_assign_pointer(po->cached_dev, dev); } static void packet_cached_dev_reset(struct packet_sock *po) { RCU_INIT_POINTER(po->cached_dev, NULL); } static u16 packet_pick_tx_queue(struct sk_buff *skb) { struct net_device *dev = skb->dev; const struct net_device_ops *ops = dev->netdev_ops; int cpu = raw_smp_processor_id(); u16 queue_index; #ifdef CONFIG_XPS skb->sender_cpu = cpu + 1; #endif skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); if (ops->ndo_select_queue) { queue_index = ops->ndo_select_queue(dev, skb, NULL); queue_index = netdev_cap_txqueue(dev, queue_index); } else { queue_index = netdev_pick_tx(dev, skb, NULL); } return queue_index; } /* __register_prot_hook must be invoked through register_prot_hook * or from a context in which asynchronous accesses to the packet * socket is not possible (packet_create()). */ static void __register_prot_hook(struct sock *sk) { struct packet_sock *po = pkt_sk(sk); if (!packet_sock_flag(po, PACKET_SOCK_RUNNING)) { if (po->fanout) __fanout_link(sk, po); else dev_add_pack(&po->prot_hook); sock_hold(sk); packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 1); } } static void register_prot_hook(struct sock *sk) { lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); __register_prot_hook(sk); } /* If the sync parameter is true, we will temporarily drop * the po->bind_lock and do a synchronize_net to make sure no * asynchronous packet processing paths still refer to the elements * of po->prot_hook. If the sync parameter is false, it is the * callers responsibility to take care of this. */ static void __unregister_prot_hook(struct sock *sk, bool sync) { struct packet_sock *po = pkt_sk(sk); lockdep_assert_held_once(&po->bind_lock); packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 0); if (po->fanout) __fanout_unlink(sk, po); else __dev_remove_pack(&po->prot_hook); __sock_put(sk); if (sync) { spin_unlock(&po->bind_lock); synchronize_net(); spin_lock(&po->bind_lock); } } static void unregister_prot_hook(struct sock *sk, bool sync) { struct packet_sock *po = pkt_sk(sk); if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) __unregister_prot_hook(sk, sync); } static inline struct page * __pure pgv_to_page(void *addr) { if (is_vmalloc_addr(addr)) return vmalloc_to_page(addr); return virt_to_page(addr); } static void __packet_set_status(struct packet_sock *po, void *frame, int status) { union tpacket_uhdr h; /* WRITE_ONCE() are paired with READ_ONCE() in __packet_get_status */ h.raw = frame; switch (po->tp_version) { case TPACKET_V1: WRITE_ONCE(h.h1->tp_status, status); flush_dcache_page(pgv_to_page(&h.h1->tp_status)); break; case TPACKET_V2: WRITE_ONCE(h.h2->tp_status, status); flush_dcache_page(pgv_to_page(&h.h2->tp_status)); break; case TPACKET_V3: WRITE_ONCE(h.h3->tp_status, status); flush_dcache_page(pgv_to_page(&h.h3->tp_status)); break; default: WARN(1, "TPACKET version not supported.\n"); BUG(); } smp_wmb(); } static int __packet_get_status(const struct packet_sock *po, void *frame) { union tpacket_uhdr h; smp_rmb(); /* READ_ONCE() are paired with WRITE_ONCE() in __packet_set_status */ h.raw = frame; switch (po->tp_version) { case TPACKET_V1: flush_dcache_page(pgv_to_page(&h.h1->tp_status)); return READ_ONCE(h.h1->tp_status); case TPACKET_V2: flush_dcache_page(pgv_to_page(&h.h2->tp_status)); return READ_ONCE(h.h2->tp_status); case TPACKET_V3: flush_dcache_page(pgv_to_page(&h.h3->tp_status)); return READ_ONCE(h.h3->tp_status); default: WARN(1, "TPACKET version not supported.\n"); BUG(); return 0; } } static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, unsigned int flags) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); if (shhwtstamps && (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) return TP_STATUS_TS_RAW_HARDWARE; if ((flags & SOF_TIMESTAMPING_SOFTWARE) && ktime_to_timespec64_cond(skb_tstamp(skb), ts)) return TP_STATUS_TS_SOFTWARE; return 0; } static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, struct sk_buff *skb) { union tpacket_uhdr h; struct timespec64 ts; __u32 ts_status; if (!(ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp)))) return 0; h.raw = frame; /* * versions 1 through 3 overflow the timestamps in y2106, since they * all store the seconds in a 32-bit unsigned integer. * If we create a version 4, that should have a 64-bit timestamp, * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit * nanoseconds. */ switch (po->tp_version) { case TPACKET_V1: h.h1->tp_sec = ts.tv_sec; h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; break; case TPACKET_V2: h.h2->tp_sec = ts.tv_sec; h.h2->tp_nsec = ts.tv_nsec; break; case TPACKET_V3: h.h3->tp_sec = ts.tv_sec; h.h3->tp_nsec = ts.tv_nsec; break; default: WARN(1, "TPACKET version not supported.\n"); BUG(); } /* one flush is safe, as both fields always lie on the same cacheline */ flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); smp_wmb(); return ts_status; } static void *packet_lookup_frame(const struct packet_sock *po, const struct packet_ring_buffer *rb, unsigned int position, int status) { unsigned int pg_vec_pos, frame_offset; union tpacket_uhdr h; pg_vec_pos = position / rb->frames_per_block; frame_offset = position % rb->frames_per_block; h.raw = rb->pg_vec[pg_vec_pos].buffer + (frame_offset * rb->frame_size); if (status != __packet_get_status(po, h.raw)) return NULL; return h.raw; } static void *packet_current_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { return packet_lookup_frame(po, rb, rb->head, status); } static u16 vlan_get_tci(const struct sk_buff *skb, struct net_device *dev) { struct vlan_hdr vhdr, *vh; unsigned int header_len; if (!dev) return 0; /* In the SOCK_DGRAM scenario, skb data starts at the network * protocol, which is after the VLAN headers. The outer VLAN * header is at the hard_header_len offset in non-variable * length link layer headers. If it's a VLAN device, the * min_header_len should be used to exclude the VLAN header * size. */ if (dev->min_header_len == dev->hard_header_len) header_len = dev->hard_header_len; else if (is_vlan_dev(dev)) header_len = dev->min_header_len; else return 0; vh = skb_header_pointer(skb, skb_mac_offset(skb) + header_len, sizeof(vhdr), &vhdr); if (unlikely(!vh)) return 0; return ntohs(vh->h_vlan_TCI); } static __be16 vlan_get_protocol_dgram(const struct sk_buff *skb) { __be16 proto = skb->protocol; if (unlikely(eth_type_vlan(proto))) proto = __vlan_get_protocol_offset(skb, proto, skb_mac_offset(skb), NULL); return proto; } static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) { timer_delete_sync(&pkc->retire_blk_timer); } static void prb_shutdown_retire_blk_timer(struct packet_sock *po, struct sk_buff_head *rb_queue) { struct tpacket_kbdq_core *pkc; pkc = GET_PBDQC_FROM_RB(&po->rx_ring); spin_lock_bh(&rb_queue->lock); pkc->delete_blk_timer = 1; spin_unlock_bh(&rb_queue->lock); prb_del_retire_blk_timer(pkc); } static void prb_setup_retire_blk_timer(struct packet_sock *po) { struct tpacket_kbdq_core *pkc; pkc = GET_PBDQC_FROM_RB(&po->rx_ring); timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 0); pkc->retire_blk_timer.expires = jiffies; } static int prb_calc_retire_blk_tmo(struct packet_sock *po, int blk_size_in_bytes) { struct net_device *dev; unsigned int mbits, div; struct ethtool_link_ksettings ecmd; int err; rtnl_lock(); dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); if (unlikely(!dev)) { rtnl_unlock(); return DEFAULT_PRB_RETIRE_TOV; } err = __ethtool_get_link_ksettings(dev, &ecmd); rtnl_unlock(); if (err) return DEFAULT_PRB_RETIRE_TOV; /* If the link speed is so slow you don't really * need to worry about perf anyways */ if (ecmd.base.speed < SPEED_1000 || ecmd.base.speed == SPEED_UNKNOWN) return DEFAULT_PRB_RETIRE_TOV; div = ecmd.base.speed / 1000; mbits = (blk_size_in_bytes * 8) / (1024 * 1024); if (div) mbits /= div; if (div) return mbits + 1; return mbits; } static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, union tpacket_req_u *req_u) { p1->feature_req_word = req_u->req3.tp_feature_req_word; } static void init_prb_bdqc(struct packet_sock *po, struct packet_ring_buffer *rb, struct pgv *pg_vec, union tpacket_req_u *req_u) { struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); struct tpacket_block_desc *pbd; memset(p1, 0x0, sizeof(*p1)); p1->knxt_seq_num = 1; p1->pkbdq = pg_vec; pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; p1->pkblk_start = pg_vec[0].buffer; p1->kblk_size = req_u->req3.tp_block_size; p1->knum_blocks = req_u->req3.tp_block_nr; p1->hdrlen = po->tp_hdrlen; p1->version = po->tp_version; p1->last_kactive_blk_num = 0; po->stats.stats3.tp_freeze_q_cnt = 0; if (req_u->req3.tp_retire_blk_tov) p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; else p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, req_u->req3.tp_block_size); p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; rwlock_init(&p1->blk_fill_in_prog_lock); p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); prb_init_ft_ops(p1, req_u); prb_setup_retire_blk_timer(po); prb_open_block(p1, pbd); } /* Do NOT update the last_blk_num first. * Assumes sk_buff_head lock is held. */ static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) { mod_timer(&pkc->retire_blk_timer, jiffies + pkc->tov_in_jiffies); pkc->last_kactive_blk_num = pkc->kactive_blk_num; } /* * Timer logic: * 1) We refresh the timer only when we open a block. * By doing this we don't waste cycles refreshing the timer * on packet-by-packet basis. * * With a 1MB block-size, on a 1Gbps line, it will take * i) ~8 ms to fill a block + ii) memcpy etc. * In this cut we are not accounting for the memcpy time. * * So, if the user sets the 'tmo' to 10ms then the timer * will never fire while the block is still getting filled * (which is what we want). However, the user could choose * to close a block early and that's fine. * * But when the timer does fire, we check whether or not to refresh it. * Since the tmo granularity is in msecs, it is not too expensive * to refresh the timer, lets say every '8' msecs. * Either the user can set the 'tmo' or we can derive it based on * a) line-speed and b) block-size. * prb_calc_retire_blk_tmo() calculates the tmo. * */ static void prb_retire_rx_blk_timer_expired(struct timer_list *t) { struct packet_sock *po = from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); unsigned int frozen; struct tpacket_block_desc *pbd; spin_lock(&po->sk.sk_receive_queue.lock); frozen = prb_queue_frozen(pkc); pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); if (unlikely(pkc->delete_blk_timer)) goto out; /* We only need to plug the race when the block is partially filled. * tpacket_rcv: * lock(); increment BLOCK_NUM_PKTS; unlock() * copy_bits() is in progress ... * timer fires on other cpu: * we can't retire the current block because copy_bits * is in progress. * */ if (BLOCK_NUM_PKTS(pbd)) { /* Waiting for skb_copy_bits to finish... */ write_lock(&pkc->blk_fill_in_prog_lock); write_unlock(&pkc->blk_fill_in_prog_lock); } if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { if (!frozen) { if (!BLOCK_NUM_PKTS(pbd)) { /* An empty block. Just refresh the timer. */ goto refresh_timer; } prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); if (!prb_dispatch_next_block(pkc, po)) goto refresh_timer; else goto out; } else { /* Case 1. Queue was frozen because user-space was * lagging behind. */ if (prb_curr_blk_in_use(pbd)) { /* * Ok, user-space is still behind. * So just refresh the timer. */ goto refresh_timer; } else { /* Case 2. queue was frozen,user-space caught up, * now the link went idle && the timer fired. * We don't have a block to close.So we open this * block and restart the timer. * opening a block thaws the queue,restarts timer * Thawing/timer-refresh is a side effect. */ prb_open_block(pkc, pbd); goto out; } } } refresh_timer: _prb_refresh_rx_retire_blk_timer(pkc); out: spin_unlock(&po->sk.sk_receive_queue.lock); } static void prb_flush_block(struct tpacket_kbdq_core *pkc1, struct tpacket_block_desc *pbd1, __u32 status) { /* Flush everything minus the block header */ #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 u8 *start, *end; start = (u8 *)pbd1; /* Skip the block header(we know header WILL fit in 4K) */ start += PAGE_SIZE; end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); for (; start < end; start += PAGE_SIZE) flush_dcache_page(pgv_to_page(start)); smp_wmb(); #endif /* Now update the block status. */ BLOCK_STATUS(pbd1) = status; /* Flush the block header */ #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 start = (u8 *)pbd1; flush_dcache_page(pgv_to_page(start)); smp_wmb(); #endif } /* * Side effect: * * 1) flush the block * 2) Increment active_blk_num * * Note:We DONT refresh the timer on purpose. * Because almost always the next block will be opened. */ static void prb_close_block(struct tpacket_kbdq_core *pkc1, struct tpacket_block_desc *pbd1, struct packet_sock *po, unsigned int stat) { __u32 status = TP_STATUS_USER | stat; struct tpacket3_hdr *last_pkt; struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; struct sock *sk = &po->sk; if (atomic_read(&po->tp_drops)) status |= TP_STATUS_LOSING; last_pkt = (struct tpacket3_hdr *)pkc1->prev; last_pkt->tp_next_offset = 0; /* Get the ts of the last pkt */ if (BLOCK_NUM_PKTS(pbd1)) { h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; } else { /* Ok, we tmo'd - so get the current time. * * It shouldn't really happen as we don't close empty * blocks. See prb_retire_rx_blk_timer_expired(). */ struct timespec64 ts; ktime_get_real_ts64(&ts); h1->ts_last_pkt.ts_sec = ts.tv_sec; h1->ts_last_pkt.ts_nsec = ts.tv_nsec; } smp_wmb(); /* Flush the block */ prb_flush_block(pkc1, pbd1, status); sk->sk_data_ready(sk); pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); } static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) { pkc->reset_pending_on_curr_blk = 0; } /* * Side effect of opening a block: * * 1) prb_queue is thawed. * 2) retire_blk_timer is refreshed. * */ static void prb_open_block(struct tpacket_kbdq_core *pkc1, struct tpacket_block_desc *pbd1) { struct timespec64 ts; struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; smp_rmb(); /* We could have just memset this but we will lose the * flexibility of making the priv area sticky */ BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; BLOCK_NUM_PKTS(pbd1) = 0; BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); ktime_get_real_ts64(&ts); h1->ts_first_pkt.ts_sec = ts.tv_sec; h1->ts_first_pkt.ts_nsec = ts.tv_nsec; pkc1->pkblk_start = (char *)pbd1; pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; pbd1->version = pkc1->version; pkc1->prev = pkc1->nxt_offset; pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; prb_thaw_queue(pkc1); _prb_refresh_rx_retire_blk_timer(pkc1); smp_wmb(); } /* * Queue freeze logic: * 1) Assume tp_block_nr = 8 blocks. * 2) At time 't0', user opens Rx ring. * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 * 4) user-space is either sleeping or processing block '0'. * 5) tpacket_rcv is currently filling block '7', since there is no space left, * it will close block-7,loop around and try to fill block '0'. * call-flow: * __packet_lookup_frame_in_block * prb_retire_current_block() * prb_dispatch_next_block() * |->(BLOCK_STATUS == USER) evaluates to true * 5.1) Since block-0 is currently in-use, we just freeze the queue. * 6) Now there are two cases: * 6.1) Link goes idle right after the queue is frozen. * But remember, the last open_block() refreshed the timer. * When this timer expires,it will refresh itself so that we can * re-open block-0 in near future. * 6.2) Link is busy and keeps on receiving packets. This is a simple * case and __packet_lookup_frame_in_block will check if block-0 * is free and can now be re-used. */ static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, struct packet_sock *po) { pkc->reset_pending_on_curr_blk = 1; po->stats.stats3.tp_freeze_q_cnt++; } #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) /* * If the next block is free then we will dispatch it * and return a good offset. * Else, we will freeze the queue. * So, caller must check the return value. */ static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, struct packet_sock *po) { struct tpacket_block_desc *pbd; smp_rmb(); /* 1. Get current block num */ pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); /* 2. If this block is currently in_use then freeze the queue */ if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { prb_freeze_queue(pkc, po); return NULL; } /* * 3. * open this block and return the offset where the first packet * needs to get stored. */ prb_open_block(pkc, pbd); return (void *)pkc->nxt_offset; } static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, struct packet_sock *po, unsigned int status) { struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); /* retire/close the current block */ if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { /* * Plug the case where copy_bits() is in progress on * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't * have space to copy the pkt in the current block and * called prb_retire_current_block() * * We don't need to worry about the TMO case because * the timer-handler already handled this case. */ if (!(status & TP_STATUS_BLK_TMO)) { /* Waiting for skb_copy_bits to finish... */ write_lock(&pkc->blk_fill_in_prog_lock); write_unlock(&pkc->blk_fill_in_prog_lock); } prb_close_block(pkc, pbd, po, status); return; } } static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) { return TP_STATUS_USER & BLOCK_STATUS(pbd); } static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) { return pkc->reset_pending_on_curr_blk; } static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) __releases(&pkc->blk_fill_in_prog_lock) { struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); read_unlock(&pkc->blk_fill_in_prog_lock); } static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); } static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { ppd->hv1.tp_rxhash = 0; } static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { struct packet_sock *po = container_of(pkc, struct packet_sock, rx_ring.prb_bdqc); if (skb_vlan_tag_present(pkc->skb)) { ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else if (unlikely(po->sk.sk_type == SOCK_DGRAM && eth_type_vlan(pkc->skb->protocol))) { ppd->hv1.tp_vlan_tci = vlan_get_tci(pkc->skb, pkc->skb->dev); ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->protocol); ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else { ppd->hv1.tp_vlan_tci = 0; ppd->hv1.tp_vlan_tpid = 0; ppd->tp_status = TP_STATUS_AVAILABLE; } } static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, struct tpacket3_hdr *ppd) { ppd->hv1.tp_padding = 0; prb_fill_vlan_info(pkc, ppd); if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) prb_fill_rxhash(pkc, ppd); else prb_clear_rxhash(pkc, ppd); } static void prb_fill_curr_block(char *curr, struct tpacket_kbdq_core *pkc, struct tpacket_block_desc *pbd, unsigned int len) __acquires(&pkc->blk_fill_in_prog_lock) { struct tpacket3_hdr *ppd; ppd = (struct tpacket3_hdr *)curr; ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); pkc->prev = curr; pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); BLOCK_NUM_PKTS(pbd) += 1; read_lock(&pkc->blk_fill_in_prog_lock); prb_run_all_ft_ops(pkc, ppd); } /* Assumes caller has the sk->rx_queue.lock */ static void *__packet_lookup_frame_in_block(struct packet_sock *po, struct sk_buff *skb, unsigned int len ) { struct tpacket_kbdq_core *pkc; struct tpacket_block_desc *pbd; char *curr, *end; pkc = GET_PBDQC_FROM_RB(&po->rx_ring); pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); /* Queue is frozen when user space is lagging behind */ if (prb_queue_frozen(pkc)) { /* * Check if that last block which caused the queue to freeze, * is still in_use by user-space. */ if (prb_curr_blk_in_use(pbd)) { /* Can't record this packet */ return NULL; } else { /* * Ok, the block was released by user-space. * Now let's open that block. * opening a block also thaws the queue. * Thawing is a side effect. */ prb_open_block(pkc, pbd); } } smp_mb(); curr = pkc->nxt_offset; pkc->skb = skb; end = (char *)pbd + pkc->kblk_size; /* first try the current block */ if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { prb_fill_curr_block(curr, pkc, pbd, len); return (void *)curr; } /* Ok, close the current block */ prb_retire_current_block(pkc, po, 0); /* Now, try to dispatch the next block */ curr = (char *)prb_dispatch_next_block(pkc, po); if (curr) { pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); prb_fill_curr_block(curr, pkc, pbd, len); return (void *)curr; } /* * No free blocks are available.user_space hasn't caught up yet. * Queue was just frozen and now this packet will get dropped. */ return NULL; } static void *packet_current_rx_frame(struct packet_sock *po, struct sk_buff *skb, int status, unsigned int len) { char *curr = NULL; switch (po->tp_version) { case TPACKET_V1: case TPACKET_V2: curr = packet_lookup_frame(po, &po->rx_ring, po->rx_ring.head, status); return curr; case TPACKET_V3: return __packet_lookup_frame_in_block(po, skb, len); default: WARN(1, "TPACKET version not supported\n"); BUG(); return NULL; } } static void *prb_lookup_block(const struct packet_sock *po, const struct packet_ring_buffer *rb, unsigned int idx, int status) { struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); if (status != BLOCK_STATUS(pbd)) return NULL; return pbd; } static int prb_previous_blk_num(struct packet_ring_buffer *rb) { unsigned int prev; if (rb->prb_bdqc.kactive_blk_num) prev = rb->prb_bdqc.kactive_blk_num-1; else prev = rb->prb_bdqc.knum_blocks-1; return prev; } /* Assumes caller has held the rx_queue.lock */ static void *__prb_previous_block(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { unsigned int previous = prb_previous_blk_num(rb); return prb_lookup_block(po, rb, previous, status); } static void *packet_previous_rx_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { if (po->tp_version <= TPACKET_V2) return packet_previous_frame(po, rb, status); return __prb_previous_block(po, rb, status); } static void packet_increment_rx_head(struct packet_sock *po, struct packet_ring_buffer *rb) { switch (po->tp_version) { case TPACKET_V1: case TPACKET_V2: return packet_increment_head(rb); case TPACKET_V3: default: WARN(1, "TPACKET version not supported.\n"); BUG(); return; } } static void *packet_previous_frame(struct packet_sock *po, struct packet_ring_buffer *rb, int status) { unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; return packet_lookup_frame(po, rb, previous, status); } static void packet_increment_head(struct packet_ring_buffer *buff) { buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; } static void packet_inc_pending(struct packet_ring_buffer *rb) { this_cpu_inc(*rb->pending_refcnt); } static void packet_dec_pending(struct packet_ring_buffer *rb) { this_cpu_dec(*rb->pending_refcnt); } static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) { unsigned int refcnt = 0; int cpu; /* We don't use pending refcount in rx_ring. */ if (rb->pending_refcnt == NULL) return 0; for_each_possible_cpu(cpu) refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); return refcnt; } static int packet_alloc_pending(struct packet_sock *po) { po->rx_ring.pending_refcnt = NULL; po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); if (unlikely(po->tx_ring.pending_refcnt == NULL)) return -ENOBUFS; return 0; } static void packet_free_pending(struct packet_sock *po) { free_percpu(po->tx_ring.pending_refcnt); } #define ROOM_POW_OFF 2 #define ROOM_NONE 0x0 #define ROOM_LOW 0x1 #define ROOM_NORMAL 0x2 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) { int idx, len; len = READ_ONCE(po->rx_ring.frame_max) + 1; idx = READ_ONCE(po->rx_ring.head); if (pow_off) idx += len >> pow_off; if (idx >= len) idx -= len; return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); } static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) { int idx, len; len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); if (pow_off) idx += len >> pow_off; if (idx >= len) idx -= len; return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); } static int __packet_rcv_has_room(const struct packet_sock *po, const struct sk_buff *skb) { const struct sock *sk = &po->sk; int ret = ROOM_NONE; if (po->prot_hook.func != tpacket_rcv) { int rcvbuf = READ_ONCE(sk->sk_rcvbuf); int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) - (skb ? skb->truesize : 0); if (avail > (rcvbuf >> ROOM_POW_OFF)) return ROOM_NORMAL; else if (avail > 0) return ROOM_LOW; else return ROOM_NONE; } if (po->tp_version == TPACKET_V3) { if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) ret = ROOM_NORMAL; else if (__tpacket_v3_has_room(po, 0)) ret = ROOM_LOW; } else { if (__tpacket_has_room(po, ROOM_POW_OFF)) ret = ROOM_NORMAL; else if (__tpacket_has_room(po, 0)) ret = ROOM_LOW; } return ret; } static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) { bool pressure; int ret; ret = __packet_rcv_has_room(po, skb); pressure = ret != ROOM_NORMAL; if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) != pressure) packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, pressure); return ret; } static void packet_rcv_try_clear_pressure(struct packet_sock *po) { if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, false); } static void packet_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_error_queue); WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); if (!sock_flag(sk, SOCK_DEAD)) { pr_err("Attempt to release alive packet socket: %p\n", sk); return; } } static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) { u32 *history = po->rollover->history; u32 victim, rxhash; int i, count = 0; rxhash = skb_get_hash(skb); for (i = 0; i < ROLLOVER_HLEN; i++) if (READ_ONCE(history[i]) == rxhash) count++; victim = get_random_u32_below(ROLLOVER_HLEN); /* Avoid dirtying the cache line if possible */ if (READ_ONCE(history[victim]) != rxhash) WRITE_ONCE(history[victim], rxhash); return count > (ROLLOVER_HLEN >> 1); } static unsigned int fanout_demux_hash(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return reciprocal_scale(__skb_get_hash_symmetric(skb), num); } static unsigned int fanout_demux_lb(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { unsigned int val = atomic_inc_return(&f->rr_cur); return val % num; } static unsigned int fanout_demux_cpu(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return smp_processor_id() % num; } static unsigned int fanout_demux_rnd(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return get_random_u32_below(num); } static unsigned int fanout_demux_rollover(struct packet_fanout *f, struct sk_buff *skb, unsigned int idx, bool try_self, unsigned int num) { struct packet_sock *po, *po_next, *po_skip = NULL; unsigned int i, j, room = ROOM_NONE; po = pkt_sk(rcu_dereference(f->arr[idx])); if (try_self) { room = packet_rcv_has_room(po, skb); if (room == ROOM_NORMAL || (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) return idx; po_skip = po; } i = j = min_t(int, po->rollover->sock, num - 1); do { po_next = pkt_sk(rcu_dereference(f->arr[i])); if (po_next != po_skip && !packet_sock_flag(po_next, PACKET_SOCK_PRESSURE) && packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { if (i != j) po->rollover->sock = i; atomic_long_inc(&po->rollover->num); if (room == ROOM_LOW) atomic_long_inc(&po->rollover->num_huge); return i; } if (++i == num) i = 0; } while (i != j); atomic_long_inc(&po->rollover->num_failed); return idx; } static unsigned int fanout_demux_qm(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { return skb_get_queue_mapping(skb) % num; } static unsigned int fanout_demux_bpf(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) { struct bpf_prog *prog; unsigned int ret = 0; rcu_read_lock(); prog = rcu_dereference(f->bpf_prog); if (prog) ret = bpf_prog_run_clear_cb(prog, skb) % num; rcu_read_unlock(); return ret; } static bool fanout_has_flag(struct packet_fanout *f, u16 flag) { return f->flags & (flag >> 8); } static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct packet_fanout *f = pt->af_packet_priv; unsigned int num = READ_ONCE(f->num_members); struct net *net = read_pnet(&f->net); struct packet_sock *po; unsigned int idx; if (!net_eq(dev_net(dev), net) || !num) { kfree_skb(skb); return 0; } if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); if (!skb) return 0; } switch (f->type) { case PACKET_FANOUT_HASH: default: idx = fanout_demux_hash(f, skb, num); break; case PACKET_FANOUT_LB: idx = fanout_demux_lb(f, skb, num); break; case PACKET_FANOUT_CPU: idx = fanout_demux_cpu(f, skb, num); break; case PACKET_FANOUT_RND: idx = fanout_demux_rnd(f, skb, num); break; case PACKET_FANOUT_QM: idx = fanout_demux_qm(f, skb, num); break; case PACKET_FANOUT_ROLLOVER: idx = fanout_demux_rollover(f, skb, 0, false, num); break; case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: idx = fanout_demux_bpf(f, skb, num); break; } if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) idx = fanout_demux_rollover(f, skb, idx, true, num); po = pkt_sk(rcu_dereference(f->arr[idx])); return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); } DEFINE_MUTEX(fanout_mutex); EXPORT_SYMBOL_GPL(fanout_mutex); static LIST_HEAD(fanout_list); static u16 fanout_next_id; static void __fanout_link(struct sock *sk, struct packet_sock *po) { struct packet_fanout *f = po->fanout; spin_lock(&f->lock); rcu_assign_pointer(f->arr[f->num_members], sk); smp_wmb(); f->num_members++; if (f->num_members == 1) dev_add_pack(&f->prot_hook); spin_unlock(&f->lock); } static void __fanout_unlink(struct sock *sk, struct packet_sock *po) { struct packet_fanout *f = po->fanout; int i; spin_lock(&f->lock); for (i = 0; i < f->num_members; i++) { if (rcu_dereference_protected(f->arr[i], lockdep_is_held(&f->lock)) == sk) break; } BUG_ON(i >= f->num_members); rcu_assign_pointer(f->arr[i], rcu_dereference_protected(f->arr[f->num_members - 1], lockdep_is_held(&f->lock))); f->num_members--; if (f->num_members == 0) __dev_remove_pack(&f->prot_hook); spin_unlock(&f->lock); } static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) { if (sk->sk_family != PF_PACKET) return false; return ptype->af_packet_priv == pkt_sk(sk)->fanout; } static void fanout_init_data(struct packet_fanout *f) { switch (f->type) { case PACKET_FANOUT_LB: atomic_set(&f->rr_cur, 0); break; case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: RCU_INIT_POINTER(f->bpf_prog, NULL); break; } } static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) { struct bpf_prog *old; spin_lock(&f->lock); old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); rcu_assign_pointer(f->bpf_prog, new); spin_unlock(&f->lock); if (old) { synchronize_net(); bpf_prog_destroy(old); } } static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, unsigned int len) { struct bpf_prog *new; struct sock_fprog fprog; int ret; if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) return -EPERM; ret = copy_bpf_fprog_from_user(&fprog, data, len); if (ret) return ret; ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); if (ret) return ret; __fanout_set_data_bpf(po->fanout, new); return 0; } static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, unsigned int len) { struct bpf_prog *new; u32 fd; if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) return -EPERM; if (len != sizeof(fd)) return -EINVAL; if (copy_from_sockptr(&fd, data, len)) return -EFAULT; new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); if (IS_ERR(new)) return PTR_ERR(new); __fanout_set_data_bpf(po->fanout, new); return 0; } static int fanout_set_data(struct packet_sock *po, sockptr_t data, unsigned int len) { switch (po->fanout->type) { case PACKET_FANOUT_CBPF: return fanout_set_data_cbpf(po, data, len); case PACKET_FANOUT_EBPF: return fanout_set_data_ebpf(po, data, len); default: return -EINVAL; } } static void fanout_release_data(struct packet_fanout *f) { switch (f->type) { case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: __fanout_set_data_bpf(f, NULL); } } static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) { struct packet_fanout *f; list_for_each_entry(f, &fanout_list, list) { if (f->id == candidate_id && read_pnet(&f->net) == sock_net(sk)) { return false; } } return true; } static bool fanout_find_new_id(struct sock *sk, u16 *new_id) { u16 id = fanout_next_id; do { if (__fanout_id_is_free(sk, id)) { *new_id = id; fanout_next_id = id + 1; return true; } id++; } while (id != fanout_next_id); return false; } static int fanout_add(struct sock *sk, struct fanout_args *args) { struct packet_rollover *rollover = NULL; struct packet_sock *po = pkt_sk(sk); u16 type_flags = args->type_flags; struct packet_fanout *f, *match; u8 type = type_flags & 0xff; u8 flags = type_flags >> 8; u16 id = args->id; int err; switch (type) { case PACKET_FANOUT_ROLLOVER: if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) return -EINVAL; break; case PACKET_FANOUT_HASH: case PACKET_FANOUT_LB: case PACKET_FANOUT_CPU: case PACKET_FANOUT_RND: case PACKET_FANOUT_QM: case PACKET_FANOUT_CBPF: case PACKET_FANOUT_EBPF: break; default: return -EINVAL; } mutex_lock(&fanout_mutex); err = -EALREADY; if (po->fanout) goto out; if (type == PACKET_FANOUT_ROLLOVER || (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { err = -ENOMEM; rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); if (!rollover) goto out; atomic_long_set(&rollover->num, 0); atomic_long_set(&rollover->num_huge, 0); atomic_long_set(&rollover->num_failed, 0); } if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { if (id != 0) { err = -EINVAL; goto out; } if (!fanout_find_new_id(sk, &id)) { err = -ENOMEM; goto out; } /* ephemeral flag for the first socket in the group: drop it */ flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); } match = NULL; list_for_each_entry(f, &fanout_list, list) { if (f->id == id && read_pnet(&f->net) == sock_net(sk)) { match = f; break; } } err = -EINVAL; if (match) { if (match->flags != flags) goto out; if (args->max_num_members && args->max_num_members != match->max_num_members) goto out; } else { if (args->max_num_members > PACKET_FANOUT_MAX) goto out; if (!args->max_num_members) /* legacy PACKET_FANOUT_MAX */ args->max_num_members = 256; err = -ENOMEM; match = kvzalloc(struct_size(match, arr, args->max_num_members), GFP_KERNEL); if (!match) goto out; write_pnet(&match->net, sock_net(sk)); match->id = id; match->type = type; match->flags = flags; INIT_LIST_HEAD(&match->list); spin_lock_init(&match->lock); refcount_set(&match->sk_ref, 0); fanout_init_data(match); match->prot_hook.type = po->prot_hook.type; match->prot_hook.dev = po->prot_hook.dev; match->prot_hook.func = packet_rcv_fanout; match->prot_hook.af_packet_priv = match; match->prot_hook.af_packet_net = read_pnet(&match->net); match->prot_hook.id_match = match_fanout_group; match->max_num_members = args->max_num_members; match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING; list_add(&match->list, &fanout_list); } err = -EINVAL; spin_lock(&po->bind_lock); if (po->num && match->type == type && match->prot_hook.type == po->prot_hook.type && match->prot_hook.dev == po->prot_hook.dev) { err = -ENOSPC; if (refcount_read(&match->sk_ref) < match->max_num_members) { /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ WRITE_ONCE(po->fanout, match); po->rollover = rollover; rollover = NULL; refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) { __dev_remove_pack(&po->prot_hook); __fanout_link(sk, po); } err = 0; } } spin_unlock(&po->bind_lock); if (err && !refcount_read(&match->sk_ref)) { list_del(&match->list); kvfree(match); } out: kfree(rollover); mutex_unlock(&fanout_mutex); return err; } /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. * It is the responsibility of the caller to call fanout_release_data() and * free the returned packet_fanout (after synchronize_net()) */ static struct packet_fanout *fanout_release(struct sock *sk) { struct packet_sock *po = pkt_sk(sk); struct packet_fanout *f; mutex_lock(&fanout_mutex); f = po->fanout; if (f) { po->fanout = NULL; if (refcount_dec_and_test(&f->sk_ref)) list_del(&f->list); else f = NULL; } mutex_unlock(&fanout_mutex); return f; } static bool packet_extra_vlan_len_allowed(const struct net_device *dev, struct sk_buff *skb) { /* Earlier code assumed this would be a VLAN pkt, double-check * this now that we have the actual packet in hand. We can only * do this check on Ethernet devices. */ if (unlikely(dev->type != ARPHRD_ETHER)) return false; skb_reset_mac_header(skb); return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); } static const struct proto_ops packet_ops; static const struct proto_ops packet_ops_spkt; static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct sock *sk; struct sockaddr_pkt *spkt; /* * When we registered the protocol we saved the socket in the data * field for just this event. */ sk = pt->af_packet_priv; /* * Yank back the headers [hope the device set this * right or kerboom...] * * Incoming packets have ll header pulled, * push it back. * * For outgoing ones skb->data == skb_mac_header(skb) * so that this procedure is noop. */ if (skb->pkt_type == PACKET_LOOPBACK) goto out; if (!net_eq(dev_net(dev), sock_net(sk))) goto out; skb = skb_share_check(skb, GFP_ATOMIC); if (skb == NULL) goto oom; /* drop any routing info */ skb_dst_drop(skb); /* drop conntrack reference */ nf_reset_ct(skb); spkt = &PACKET_SKB_CB(skb)->sa.pkt; skb_push(skb, skb->data - skb_mac_header(skb)); /* * The SOCK_PACKET socket receives _all_ frames. */ spkt->spkt_family = dev->type; strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); spkt->spkt_protocol = skb->protocol; /* * Charge the memory to the socket. This is done specifically * to prevent sockets using all the memory up. */ if (sock_queue_rcv_skb(sk, skb) == 0) return 0; out: kfree_skb(skb); oom: return 0; } static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) { int depth; if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && sock->type == SOCK_RAW) { skb_reset_mac_header(skb); skb->protocol = dev_parse_header_protocol(skb); } /* Move network header to the right position for VLAN tagged packets */ if (likely(skb->dev->type == ARPHRD_ETHER) && eth_type_vlan(skb->protocol) && vlan_get_protocol_and_depth(skb, skb->protocol, &depth) != 0) skb_set_network_header(skb, depth); skb_probe_transport_header(skb); } /* * Output a raw packet to a device layer. This bypasses all the other * protocol layers and you must therefore supply it with a complete frame */ static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); struct sk_buff *skb = NULL; struct net_device *dev; struct sockcm_cookie sockc; __be16 proto = 0; int err; int extra_len = 0; /* * Get and verify the address. */ if (saddr) { if (msg->msg_namelen < sizeof(struct sockaddr)) return -EINVAL; if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) proto = saddr->spkt_protocol; } else return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ /* * Find the device first to size check it */ saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; retry: rcu_read_lock(); dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); err = -ENODEV; if (dev == NULL) goto out_unlock; err = -ENETDOWN; if (!(dev->flags & IFF_UP)) goto out_unlock; /* * You may not queue a frame bigger than the mtu. This is the lowest level * raw protocol and you must do your own fragmentation at this level. */ if (unlikely(sock_flag(sk, SOCK_NOFCS))) { if (!netif_supports_nofcs(dev)) { err = -EPROTONOSUPPORT; goto out_unlock; } extra_len = 4; /* We're doing our own CRC */ } err = -EMSGSIZE; if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) goto out_unlock; if (!skb) { size_t reserved = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; rcu_read_unlock(); skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); if (skb == NULL) return -ENOBUFS; /* FIXME: Save some space for broken drivers that write a hard * header at transmission time by themselves. PPP is the notable * one here. This should really be fixed at the driver level. */ skb_reserve(skb, reserved); skb_reset_network_header(skb); /* Try to align data part correctly */ if (hhlen) { skb->data -= hhlen; skb->tail -= hhlen; if (len < hhlen) skb_reset_network_header(skb); } err = memcpy_from_msg(skb_put(skb, len), msg, len); if (err) goto out_free; goto retry; } if (!dev_validate_header(dev, skb->data, len) || !skb->len) { err = -EINVAL; goto out_unlock; } if (len > (dev->mtu + dev->hard_header_len + extra_len) && !packet_extra_vlan_len_allowed(dev, skb)) { err = -EMSGSIZE; goto out_unlock; } sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) goto out_unlock; } skb->protocol = proto; skb->dev = dev; skb->priority = sockc.priority; skb->mark = sockc.mark; skb_set_delivery_type_by_clockid(skb, sockc.transmit_time, sk->sk_clockid); skb_setup_tx_timestamp(skb, &sockc); if (unlikely(extra_len == 4)) skb->no_fcs = 1; packet_parse_headers(skb, sock); dev_queue_xmit(skb); rcu_read_unlock(); return len; out_unlock: rcu_read_unlock(); out_free: kfree_skb(skb); return err; } static unsigned int run_filter(struct sk_buff *skb, const struct sock *sk, unsigned int res) { struct sk_filter *filter; rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter != NULL) res = bpf_prog_run_clear_cb(filter->prog, skb); rcu_read_unlock(); return res; } static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, size_t *len, int vnet_hdr_sz) { struct virtio_net_hdr_mrg_rxbuf vnet_hdr = { .num_buffers = 0 }; if (*len < vnet_hdr_sz) return -EINVAL; *len -= vnet_hdr_sz; if (virtio_net_hdr_from_skb(skb, (struct virtio_net_hdr *)&vnet_hdr, vio_le(), true, 0)) return -EINVAL; return memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_sz); } /* * This function makes lazy skb cloning in hope that most of packets * are discarded by BPF. * * Note tricky part: we DO mangle shared skb! skb->data, skb->len * and skb->cb are mangled. It works because (and until) packets * falling here are owned by current CPU. Output packets are cloned * by dev_queue_xmit_nit(), input packets are processed by net_bh * sequentially, so that if we return skb to original state on exit, * we will not harm anyone. */ static int packet_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { enum skb_drop_reason drop_reason = SKB_CONSUMED; struct sock *sk = NULL; struct sockaddr_ll *sll; struct packet_sock *po; u8 *skb_head = skb->data; int skb_len = skb->len; unsigned int snaplen, res; if (skb->pkt_type == PACKET_LOOPBACK) goto drop; sk = pt->af_packet_priv; po = pkt_sk(sk); if (!net_eq(dev_net(dev), sock_net(sk))) goto drop; skb->dev = dev; if (dev_has_header(dev)) { /* The device has an explicit notion of ll header, * exported to higher levels. * * Otherwise, the device hides details of its frame * structure, so that corresponding packet head is * never delivered to user. */ if (sk->sk_type != SOCK_DGRAM) skb_push(skb, skb->data - skb_mac_header(skb)); else if (skb->pkt_type == PACKET_OUTGOING) { /* Special case: outgoing packets have ll header at head */ skb_pull(skb, skb_network_offset(skb)); } } snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb); res = run_filter(skb, sk, snaplen); if (!res) goto drop_n_restore; if (snaplen > res) snaplen = res; if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) goto drop_n_acct; if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); if (nskb == NULL) goto drop_n_acct; if (skb_head != skb->data) { skb->data = skb_head; skb->len = skb_len; } consume_skb(skb); skb = nskb; } sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); sll = &PACKET_SKB_CB(skb)->sa.ll; sll->sll_hatype = dev->type; sll->sll_pkttype = skb->pkt_type; if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV))) sll->sll_ifindex = orig_dev->ifindex; else sll->sll_ifindex = dev->ifindex; sll->sll_halen = dev_parse_header(skb, sll->sll_addr); /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). * Use their space for storing the original skb length. */ PACKET_SKB_CB(skb)->sa.origlen = skb->len; if (pskb_trim(skb, snaplen)) goto drop_n_acct; skb_set_owner_r(skb, sk); skb->dev = NULL; skb_dst_drop(skb); /* drop conntrack reference */ nf_reset_ct(skb); spin_lock(&sk->sk_receive_queue.lock); po->stats.stats1.tp_packets++; sock_skb_set_dropcount(sk, skb); skb_clear_delivery_time(skb); __skb_queue_tail(&sk->sk_receive_queue, skb); spin_unlock(&sk->sk_receive_queue.lock); sk->sk_data_ready(sk); return 0; drop_n_acct: atomic_inc(&po->tp_drops); atomic_inc(&sk->sk_drops); drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR; drop_n_restore: if (skb_head != skb->data && skb_shared(skb)) { skb->data = skb_head; skb->len = skb_len; } drop: sk_skb_reason_drop(sk, skb, drop_reason); return 0; } static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { enum skb_drop_reason drop_reason = SKB_CONSUMED; struct sock *sk = NULL; struct packet_sock *po; struct sockaddr_ll *sll; union tpacket_uhdr h; u8 *skb_head = skb->data; int skb_len = skb->len; unsigned int snaplen, res; unsigned long status = TP_STATUS_USER; unsigned short macoff, hdrlen; unsigned int netoff; struct sk_buff *copy_skb = NULL; struct timespec64 ts; __u32 ts_status; unsigned int slot_id = 0; int vnet_hdr_sz = 0; /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. * We may add members to them until current aligned size without forcing * userspace to call getsockopt(..., PACKET_HDRLEN, ...). */ BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); if (skb->pkt_type == PACKET_LOOPBACK) goto drop; sk = pt->af_packet_priv; po = pkt_sk(sk); if (!net_eq(dev_net(dev), sock_net(sk))) goto drop; if (dev_has_header(dev)) { if (sk->sk_type != SOCK_DGRAM) skb_push(skb, skb->data - skb_mac_header(skb)); else if (skb->pkt_type == PACKET_OUTGOING) { /* Special case: outgoing packets have ll header at head */ skb_pull(skb, skb_network_offset(skb)); } } snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb); res = run_filter(skb, sk, snaplen); if (!res) goto drop_n_restore; /* If we are flooded, just give up */ if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { atomic_inc(&po->tp_drops); goto drop_n_restore; } if (skb->ip_summed == CHECKSUM_PARTIAL) status |= TP_STATUS_CSUMNOTREADY; else if (skb->pkt_type != PACKET_OUTGOING && skb_csum_unnecessary(skb)) status |= TP_STATUS_CSUM_VALID; if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) status |= TP_STATUS_GSO_TCP; if (snaplen > res) snaplen = res; if (sk->sk_type == SOCK_DGRAM) { macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + po->tp_reserve; } else { unsigned int maclen = skb_network_offset(skb); netoff = TPACKET_ALIGN(po->tp_hdrlen + (maclen < 16 ? 16 : maclen)) + po->tp_reserve; vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz); if (vnet_hdr_sz) netoff += vnet_hdr_sz; macoff = netoff - maclen; } if (netoff > USHRT_MAX) { atomic_inc(&po->tp_drops); goto drop_n_restore; } if (po->tp_version <= TPACKET_V2) { if (macoff + snaplen > po->rx_ring.frame_size) { if (READ_ONCE(po->copy_thresh) && atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { if (skb_shared(skb)) { copy_skb = skb_clone(skb, GFP_ATOMIC); } else { copy_skb = skb_get(skb); skb_head = skb->data; } if (copy_skb) { memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0, sizeof(PACKET_SKB_CB(copy_skb)->sa.ll)); skb_set_owner_r(copy_skb, sk); } } snaplen = po->rx_ring.frame_size - macoff; if ((int)snaplen < 0) { snaplen = 0; vnet_hdr_sz = 0; } } } else if (unlikely(macoff + snaplen > GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { u32 nval; nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", snaplen, nval, macoff); snaplen = nval; if (unlikely((int)snaplen < 0)) { snaplen = 0; macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; vnet_hdr_sz = 0; } } spin_lock(&sk->sk_receive_queue.lock); h.raw = packet_current_rx_frame(po, skb, TP_STATUS_KERNEL, (macoff+snaplen)); if (!h.raw) goto drop_n_account; if (po->tp_version <= TPACKET_V2) { slot_id = po->rx_ring.head; if (test_bit(slot_id, po->rx_ring.rx_owner_map)) goto drop_n_account; __set_bit(slot_id, po->rx_ring.rx_owner_map); } if (vnet_hdr_sz && virtio_net_hdr_from_skb(skb, h.raw + macoff - sizeof(struct virtio_net_hdr), vio_le(), true, 0)) { if (po->tp_version == TPACKET_V3) prb_clear_blk_fill_status(&po->rx_ring); goto drop_n_account; } if (po->tp_version <= TPACKET_V2) { packet_increment_rx_head(po, &po->rx_ring); /* * LOSING will be reported till you read the stats, * because it's COR - Clear On Read. * Anyways, moving it for V1/V2 only as V3 doesn't need this * at packet level. */ if (atomic_read(&po->tp_drops)) status |= TP_STATUS_LOSING; } po->stats.stats1.tp_packets++; if (copy_skb) { status |= TP_STATUS_COPY; skb_clear_delivery_time(copy_skb); __skb_queue_tail(&sk->sk_receive_queue, copy_skb); } spin_unlock(&sk->sk_receive_queue.lock); skb_copy_bits(skb, 0, h.raw + macoff, snaplen); /* Always timestamp; prefer an existing software timestamp taken * closer to the time of capture. */ ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp) | SOF_TIMESTAMPING_SOFTWARE); if (!ts_status) ktime_get_real_ts64(&ts); status |= ts_status; switch (po->tp_version) { case TPACKET_V1: h.h1->tp_len = skb->len; h.h1->tp_snaplen = snaplen; h.h1->tp_mac = macoff; h.h1->tp_net = netoff; h.h1->tp_sec = ts.tv_sec; h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; hdrlen = sizeof(*h.h1); break; case TPACKET_V2: h.h2->tp_len = skb->len; h.h2->tp_snaplen = snaplen; h.h2->tp_mac = macoff; h.h2->tp_net = netoff; h.h2->tp_sec = ts.tv_sec; h.h2->tp_nsec = ts.tv_nsec; if (skb_vlan_tag_present(skb)) { h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else if (unlikely(sk->sk_type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) { h.h2->tp_vlan_tci = vlan_get_tci(skb, skb->dev); h.h2->tp_vlan_tpid = ntohs(skb->protocol); status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else { h.h2->tp_vlan_tci = 0; h.h2->tp_vlan_tpid = 0; } memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); hdrlen = sizeof(*h.h2); break; case TPACKET_V3: /* tp_nxt_offset,vlan are already populated above. * So DONT clear those fields here */ h.h3->tp_status |= status; h.h3->tp_len = skb->len; h.h3->tp_snaplen = snaplen; h.h3->tp_mac = macoff; h.h3->tp_net = netoff; h.h3->tp_sec = ts.tv_sec; h.h3->tp_nsec = ts.tv_nsec; memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); hdrlen = sizeof(*h.h3); break; default: BUG(); } sll = h.raw + TPACKET_ALIGN(hdrlen); sll->sll_halen = dev_parse_header(skb, sll->sll_addr); sll->sll_family = AF_PACKET; sll->sll_hatype = dev->type; sll->sll_protocol = (sk->sk_type == SOCK_DGRAM) ? vlan_get_protocol_dgram(skb) : skb->protocol; sll->sll_pkttype = skb->pkt_type; if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV))) sll->sll_ifindex = orig_dev->ifindex; else sll->sll_ifindex = dev->ifindex; smp_mb(); #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 if (po->tp_version <= TPACKET_V2) { u8 *start, *end; end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + macoff + snaplen); for (start = h.raw; start < end; start += PAGE_SIZE) flush_dcache_page(pgv_to_page(start)); } smp_wmb(); #endif if (po->tp_version <= TPACKET_V2) { spin_lock(&sk->sk_receive_queue.lock); __packet_set_status(po, h.raw, status); __clear_bit(slot_id, po->rx_ring.rx_owner_map); spin_unlock(&sk->sk_receive_queue.lock); sk->sk_data_ready(sk); } else if (po->tp_version == TPACKET_V3) { prb_clear_blk_fill_status(&po->rx_ring); } drop_n_restore: if (skb_head != skb->data && skb_shared(skb)) { skb->data = skb_head; skb->len = skb_len; } drop: sk_skb_reason_drop(sk, skb, drop_reason); return 0; drop_n_account: spin_unlock(&sk->sk_receive_queue.lock); atomic_inc(&po->tp_drops); drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR; sk->sk_data_ready(sk); sk_skb_reason_drop(sk, copy_skb, drop_reason); goto drop_n_restore; } static void tpacket_destruct_skb(struct sk_buff *skb) { struct packet_sock *po = pkt_sk(skb->sk); if (likely(po->tx_ring.pg_vec)) { void *ph; __u32 ts; ph = skb_zcopy_get_nouarg(skb); packet_dec_pending(&po->tx_ring); ts = __packet_set_timestamp(po, ph, skb); __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); complete(&po->skb_completion); } sock_wfree(skb); } static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) { if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) return -EINVAL; return 0; } static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, struct virtio_net_hdr *vnet_hdr, int vnet_hdr_sz) { int ret; if (*len < vnet_hdr_sz) return -EINVAL; *len -= vnet_hdr_sz; if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) return -EFAULT; ret = __packet_snd_vnet_parse(vnet_hdr, *len); if (ret) return ret; /* move iter to point to the start of mac header */ if (vnet_hdr_sz != sizeof(struct virtio_net_hdr)) iov_iter_advance(&msg->msg_iter, vnet_hdr_sz - sizeof(struct virtio_net_hdr)); return 0; } static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, void *frame, struct net_device *dev, void *data, int tp_len, __be16 proto, unsigned char *addr, int hlen, int copylen, const struct sockcm_cookie *sockc) { union tpacket_uhdr ph; int to_write, offset, len, nr_frags, len_max; struct socket *sock = po->sk.sk_socket; struct page *page; int err; ph.raw = frame; skb->protocol = proto; skb->dev = dev; skb->priority = sockc->priority; skb->mark = sockc->mark; skb_set_delivery_type_by_clockid(skb, sockc->transmit_time, po->sk.sk_clockid); skb_setup_tx_timestamp(skb, sockc); skb_zcopy_set_nouarg(skb, ph.raw); skb_reserve(skb, hlen); skb_reset_network_header(skb); to_write = tp_len; if (sock->type == SOCK_DGRAM) { err = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, tp_len); if (unlikely(err < 0)) return -EINVAL; } else if (copylen) { int hdrlen = min_t(int, copylen, tp_len); skb_push(skb, dev->hard_header_len); skb_put(skb, copylen - dev->hard_header_len); err = skb_store_bits(skb, 0, data, hdrlen); if (unlikely(err)) return err; if (!dev_validate_header(dev, skb->data, hdrlen)) return -EINVAL; data += hdrlen; to_write -= hdrlen; } offset = offset_in_page(data); len_max = PAGE_SIZE - offset; len = ((to_write > len_max) ? len_max : to_write); skb->data_len = to_write; skb->len += to_write; skb->truesize += to_write; refcount_add(to_write, &po->sk.sk_wmem_alloc); while (likely(to_write)) { nr_frags = skb_shinfo(skb)->nr_frags; if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { pr_err("Packet exceed the number of skb frags(%u)\n", (unsigned int)MAX_SKB_FRAGS); return -EFAULT; } page = pgv_to_page(data); data += len; flush_dcache_page(page); get_page(page); skb_fill_page_desc(skb, nr_frags, page, offset, len); to_write -= len; offset = 0; len_max = PAGE_SIZE; len = ((to_write > len_max) ? len_max : to_write); } packet_parse_headers(skb, sock); return tp_len; } static int tpacket_parse_header(struct packet_sock *po, void *frame, int size_max, void **data) { union tpacket_uhdr ph; int tp_len, off; ph.raw = frame; switch (po->tp_version) { case TPACKET_V3: if (ph.h3->tp_next_offset != 0) { pr_warn_once("variable sized slot not supported"); return -EINVAL; } tp_len = ph.h3->tp_len; break; case TPACKET_V2: tp_len = ph.h2->tp_len; break; default: tp_len = ph.h1->tp_len; break; } if (unlikely(tp_len > size_max)) { pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); return -EMSGSIZE; } if (unlikely(packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF))) { int off_min, off_max; off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); off_max = po->tx_ring.frame_size - tp_len; if (po->sk.sk_type == SOCK_DGRAM) { switch (po->tp_version) { case TPACKET_V3: off = ph.h3->tp_net; break; case TPACKET_V2: off = ph.h2->tp_net; break; default: off = ph.h1->tp_net; break; } } else { switch (po->tp_version) { case TPACKET_V3: off = ph.h3->tp_mac; break; case TPACKET_V2: off = ph.h2->tp_mac; break; default: off = ph.h1->tp_mac; break; } } if (unlikely((off < off_min) || (off_max < off))) return -EINVAL; } else { off = po->tp_hdrlen - sizeof(struct sockaddr_ll); } *data = frame + off; return tp_len; } static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) { struct sk_buff *skb = NULL; struct net_device *dev; struct virtio_net_hdr *vnet_hdr = NULL; struct sockcm_cookie sockc; __be16 proto; int err, reserve = 0; void *ph; DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz); unsigned char *addr = NULL; int tp_len, size_max; void *data; int len_sum = 0; int status = TP_STATUS_AVAILABLE; int hlen, tlen, copylen = 0; long timeo = 0; mutex_lock(&po->pg_vec_lock); /* packet_sendmsg() check on tx_ring.pg_vec was lockless, * we need to confirm it under protection of pg_vec_lock. */ if (unlikely(!po->tx_ring.pg_vec)) { err = -EBUSY; goto out; } if (likely(saddr == NULL)) { dev = packet_cached_dev_get(po); proto = READ_ONCE(po->num); } else { err = -EINVAL; if (msg->msg_namelen < sizeof(struct sockaddr_ll)) goto out; if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) goto out; proto = saddr->sll_protocol; dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); if (po->sk.sk_socket->type == SOCK_DGRAM) { if (dev && msg->msg_namelen < dev->addr_len + offsetof(struct sockaddr_ll, sll_addr)) goto out_put; addr = saddr->sll_addr; } } err = -ENXIO; if (unlikely(dev == NULL)) goto out; err = -ENETDOWN; if (unlikely(!(dev->flags & IFF_UP))) goto out_put; sockcm_init(&sockc, &po->sk); if (msg->msg_controllen) { err = sock_cmsg_send(&po->sk, msg, &sockc); if (unlikely(err)) goto out_put; } if (po->sk.sk_socket->type == SOCK_RAW) reserve = dev->hard_header_len; size_max = po->tx_ring.frame_size - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !vnet_hdr_sz) size_max = dev->mtu + reserve + VLAN_HLEN; reinit_completion(&po->skb_completion); do { ph = packet_current_frame(po, &po->tx_ring, TP_STATUS_SEND_REQUEST); if (unlikely(ph == NULL)) { if (need_wait && skb) { timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); if (timeo <= 0) { err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; goto out_put; } } /* check for additional frames */ continue; } skb = NULL; tp_len = tpacket_parse_header(po, ph, size_max, &data); if (tp_len < 0) goto tpacket_error; status = TP_STATUS_SEND_REQUEST; hlen = LL_RESERVED_SPACE(dev); tlen = dev->needed_tailroom; if (vnet_hdr_sz) { vnet_hdr = data; data += vnet_hdr_sz; tp_len -= vnet_hdr_sz; if (tp_len < 0 || __packet_snd_vnet_parse(vnet_hdr, tp_len)) { tp_len = -EINVAL; goto tpacket_error; } copylen = __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len); } copylen = max_t(int, copylen, dev->hard_header_len); skb = sock_alloc_send_skb(&po->sk, hlen + tlen + sizeof(struct sockaddr_ll) + (copylen - dev->hard_header_len), !need_wait, &err); if (unlikely(skb == NULL)) { /* we assume the socket was initially writeable ... */ if (likely(len_sum > 0)) err = len_sum; goto out_status; } tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, addr, hlen, copylen, &sockc); if (likely(tp_len >= 0) && tp_len > dev->mtu + reserve && !vnet_hdr_sz && !packet_extra_vlan_len_allowed(dev, skb)) tp_len = -EMSGSIZE; if (unlikely(tp_len < 0)) { tpacket_error: if (packet_sock_flag(po, PACKET_SOCK_TP_LOSS)) { __packet_set_status(po, ph, TP_STATUS_AVAILABLE); packet_increment_head(&po->tx_ring); kfree_skb(skb); continue; } else { status = TP_STATUS_WRONG_FORMAT; err = tp_len; goto out_status; } } if (vnet_hdr_sz) { if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { tp_len = -EINVAL; goto tpacket_error; } virtio_net_hdr_set_proto(skb, vnet_hdr); } skb->destructor = tpacket_destruct_skb; __packet_set_status(po, ph, TP_STATUS_SENDING); packet_inc_pending(&po->tx_ring); status = TP_STATUS_SEND_REQUEST; err = packet_xmit(po, skb); if (unlikely(err != 0)) { if (err > 0) err = net_xmit_errno(err); if (err && __packet_get_status(po, ph) == TP_STATUS_AVAILABLE) { /* skb was destructed already */ skb = NULL; goto out_status; } /* * skb was dropped but not destructed yet; * let's treat it like congestion or err < 0 */ err = 0; } packet_increment_head(&po->tx_ring); len_sum += tp_len; } while (likely((ph != NULL) || /* Note: packet_read_pending() might be slow if we have * to call it as it's per_cpu variable, but in fast-path * we already short-circuit the loop with the first * condition, and luckily don't have to go that path * anyway. */ (need_wait && packet_read_pending(&po->tx_ring)))); err = len_sum; goto out_put; out_status: __packet_set_status(po, ph, status); kfree_skb(skb); out_put: dev_put(dev); out: mutex_unlock(&po->pg_vec_lock); return err; } static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, size_t reserve, size_t len, size_t linear, int noblock, int *err) { struct sk_buff *skb; /* Under a page? Don't bother with paged skb. */ if (prepad + len < PAGE_SIZE || !linear) linear = len; if (len - linear > MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) linear = len - MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER); skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, err, PAGE_ALLOC_COSTLY_ORDER); if (!skb) return NULL; skb_reserve(skb, reserve); skb_put(skb, linear); skb->data_len = len - linear; skb->len += len - linear; return skb; } static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); struct sk_buff *skb; struct net_device *dev; __be16 proto; unsigned char *addr = NULL; int err, reserve = 0; struct sockcm_cookie sockc; struct virtio_net_hdr vnet_hdr = { 0 }; int offset = 0; struct packet_sock *po = pkt_sk(sk); int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz); int hlen, tlen, linear; int extra_len = 0; /* * Get and verify the address. */ if (likely(saddr == NULL)) { dev = packet_cached_dev_get(po); proto = READ_ONCE(po->num); } else { err = -EINVAL; if (msg->msg_namelen < sizeof(struct sockaddr_ll)) goto out; if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) goto out; proto = saddr->sll_protocol; dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); if (sock->type == SOCK_DGRAM) { if (dev && msg->msg_namelen < dev->addr_len + offsetof(struct sockaddr_ll, sll_addr)) goto out_unlock; addr = saddr->sll_addr; } } err = -ENXIO; if (unlikely(dev == NULL)) goto out_unlock; err = -ENETDOWN; if (unlikely(!(dev->flags & IFF_UP))) goto out_unlock; sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) goto out_unlock; } if (sock->type == SOCK_RAW) reserve = dev->hard_header_len; if (vnet_hdr_sz) { err = packet_snd_vnet_parse(msg, &len, &vnet_hdr, vnet_hdr_sz); if (err) goto out_unlock; } if (unlikely(sock_flag(sk, SOCK_NOFCS))) { if (!netif_supports_nofcs(dev)) { err = -EPROTONOSUPPORT; goto out_unlock; } extra_len = 4; /* We're doing our own CRC */ } err = -EMSGSIZE; if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) goto out_unlock; err = -ENOBUFS; hlen = LL_RESERVED_SPACE(dev); tlen = dev->needed_tailroom; linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); linear = max(linear, min_t(int, len, dev->hard_header_len)); skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, msg->msg_flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out_unlock; skb_reset_network_header(skb); err = -EINVAL; if (sock->type == SOCK_DGRAM) { offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); if (unlikely(offset < 0)) goto out_free; } else if (reserve) { skb_reserve(skb, -reserve); if (len < reserve + sizeof(struct ipv6hdr) && dev->min_header_len != dev->hard_header_len) skb_reset_network_header(skb); } /* Returns -EFAULT on error */ err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); if (err) goto out_free; if ((sock->type == SOCK_RAW && !dev_validate_header(dev, skb->data, len)) || !skb->len) { err = -EINVAL; goto out_free; } skb_setup_tx_timestamp(skb, &sockc); if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && !packet_extra_vlan_len_allowed(dev, skb)) { err = -EMSGSIZE; goto out_free; } skb->protocol = proto; skb->dev = dev; skb->priority = sockc.priority; skb->mark = sockc.mark; skb_set_delivery_type_by_clockid(skb, sockc.transmit_time, sk->sk_clockid); if (unlikely(extra_len == 4)) skb->no_fcs = 1; packet_parse_headers(skb, sock); if (vnet_hdr_sz) { err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); if (err) goto out_free; len += vnet_hdr_sz; virtio_net_hdr_set_proto(skb, &vnet_hdr); } err = packet_xmit(po, skb); if (unlikely(err != 0)) { if (err > 0) err = net_xmit_errno(err); if (err) goto out_unlock; } dev_put(dev); return len; out_free: kfree_skb(skb); out_unlock: dev_put(dev); out: return err; } static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. * tpacket_snd() will redo the check safely. */ if (data_race(po->tx_ring.pg_vec)) return tpacket_snd(po, msg); return packet_snd(sock, msg, len); } /* * Close a PACKET socket. This is fairly simple. We immediately go * to 'closed' state and remove our protocol entry in the device list. */ static int packet_release(struct socket *sock) { struct sock *sk = sock->sk; struct packet_sock *po; struct packet_fanout *f; struct net *net; union tpacket_req_u req_u; if (!sk) return 0; net = sock_net(sk); po = pkt_sk(sk); mutex_lock(&net->packet.sklist_lock); sk_del_node_init_rcu(sk); mutex_unlock(&net->packet.sklist_lock); sock_prot_inuse_add(net, sk->sk_prot, -1); spin_lock(&po->bind_lock); unregister_prot_hook(sk, false); packet_cached_dev_reset(po); if (po->prot_hook.dev) { netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); po->prot_hook.dev = NULL; } spin_unlock(&po->bind_lock); packet_flush_mclist(sk); lock_sock(sk); if (po->rx_ring.pg_vec) { memset(&req_u, 0, sizeof(req_u)); packet_set_ring(sk, &req_u, 1, 0); } if (po->tx_ring.pg_vec) { memset(&req_u, 0, sizeof(req_u)); packet_set_ring(sk, &req_u, 1, 1); } release_sock(sk); f = fanout_release(sk); synchronize_net(); kfree(po->rollover); if (f) { fanout_release_data(f); kvfree(f); } /* * Now the socket is dead. No more input will appear. */ sock_orphan(sk); sock->sk = NULL; /* Purge queues */ skb_queue_purge(&sk->sk_receive_queue); packet_free_pending(po); sock_put(sk); return 0; } /* * Attach a packet hook. */ static int packet_do_bind(struct sock *sk, const char *name, int ifindex, __be16 proto) { struct packet_sock *po = pkt_sk(sk); struct net_device *dev = NULL; bool unlisted = false; bool need_rehook; int ret = 0; lock_sock(sk); spin_lock(&po->bind_lock); if (!proto) proto = po->num; rcu_read_lock(); if (po->fanout) { ret = -EINVAL; goto out_unlock; } if (name) { dev = dev_get_by_name_rcu(sock_net(sk), name); if (!dev) { ret = -ENODEV; goto out_unlock; } } else if (ifindex) { dev = dev_get_by_index_rcu(sock_net(sk), ifindex); if (!dev) { ret = -ENODEV; goto out_unlock; } } need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; if (need_rehook) { dev_hold(dev); if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) { rcu_read_unlock(); /* prevents packet_notifier() from calling * register_prot_hook() */ WRITE_ONCE(po->num, 0); __unregister_prot_hook(sk, true); rcu_read_lock(); if (dev) unlisted = !dev_get_by_index_rcu(sock_net(sk), dev->ifindex); } BUG_ON(packet_sock_flag(po, PACKET_SOCK_RUNNING)); WRITE_ONCE(po->num, proto); po->prot_hook.type = proto; netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); if (unlikely(unlisted)) { po->prot_hook.dev = NULL; WRITE_ONCE(po->ifindex, -1); packet_cached_dev_reset(po); } else { netdev_hold(dev, &po->prot_hook.dev_tracker, GFP_ATOMIC); po->prot_hook.dev = dev; WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); packet_cached_dev_assign(po, dev); } dev_put(dev); } if (proto == 0 || !need_rehook) goto out_unlock; if (!unlisted && (!dev || (dev->flags & IFF_UP))) { register_prot_hook(sk); } else { sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); } out_unlock: rcu_read_unlock(); spin_unlock(&po->bind_lock); release_sock(sk); return ret; } /* * Bind a packet socket to a device */ static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; char name[sizeof(uaddr->sa_data_min) + 1]; /* * Check legality */ if (addr_len != sizeof(struct sockaddr)) return -EINVAL; /* uaddr->sa_data comes from the userspace, it's not guaranteed to be * zero-terminated. */ memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data_min)); name[sizeof(uaddr->sa_data_min)] = 0; return packet_do_bind(sk, name, 0, 0); } static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; struct sock *sk = sock->sk; /* * Check legality */ if (addr_len < sizeof(struct sockaddr_ll)) return -EINVAL; if (sll->sll_family != AF_PACKET) return -EINVAL; return packet_do_bind(sk, NULL, sll->sll_ifindex, sll->sll_protocol); } static struct proto packet_proto = { .name = "PACKET", .owner = THIS_MODULE, .obj_size = sizeof(struct packet_sock), }; /* * Create a packet of type SOCK_PACKET. */ static int packet_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct packet_sock *po; __be16 proto = (__force __be16)protocol; /* weird, but documented */ int err; if (!ns_capable(net->user_ns, CAP_NET_RAW)) return -EPERM; if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && sock->type != SOCK_PACKET) return -ESOCKTNOSUPPORT; sock->state = SS_UNCONNECTED; err = -ENOBUFS; sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); if (sk == NULL) goto out; sock->ops = &packet_ops; if (sock->type == SOCK_PACKET) sock->ops = &packet_ops_spkt; po = pkt_sk(sk); err = packet_alloc_pending(po); if (err) goto out_sk_free; sock_init_data(sock, sk); init_completion(&po->skb_completion); sk->sk_family = PF_PACKET; po->num = proto; packet_cached_dev_reset(po); sk->sk_destruct = packet_sock_destruct; /* * Attach a protocol block */ spin_lock_init(&po->bind_lock); mutex_init(&po->pg_vec_lock); po->rollover = NULL; po->prot_hook.func = packet_rcv; if (sock->type == SOCK_PACKET) po->prot_hook.func = packet_rcv_spkt; po->prot_hook.af_packet_priv = sk; po->prot_hook.af_packet_net = sock_net(sk); if (proto) { po->prot_hook.type = proto; __register_prot_hook(sk); } mutex_lock(&net->packet.sklist_lock); sk_add_node_tail_rcu(sk, &net->packet.sklist); mutex_unlock(&net->packet.sklist_lock); sock_prot_inuse_add(net, &packet_proto, 1); return 0; out_sk_free: sk_free(sk); out: return err; } /* * Pull a packet from our receive queue and hand it to the user. * If necessary we block. */ static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int copied, err; int vnet_hdr_len = READ_ONCE(pkt_sk(sk)->vnet_hdr_sz); unsigned int origlen = 0; err = -EINVAL; if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) goto out; #if 0 /* What error should we return now? EUNATTACH? */ if (pkt_sk(sk)->ifindex < 0) return -ENODEV; #endif if (flags & MSG_ERRQUEUE) { err = sock_recv_errqueue(sk, msg, len, SOL_PACKET, PACKET_TX_TIMESTAMP); goto out; } /* * Call the generic datagram receiver. This handles all sorts * of horrible races and re-entrancy so we can forget about it * in the protocol layers. * * Now it will return ENETDOWN, if device have just gone down, * but then it will block. */ skb = skb_recv_datagram(sk, flags, &err); /* * An error occurred so return it. Because skb_recv_datagram() * handles the blocking we don't see and worry about blocking * retries. */ if (skb == NULL) goto out; packet_rcv_try_clear_pressure(pkt_sk(sk)); if (vnet_hdr_len) { err = packet_rcv_vnet(msg, skb, &len, vnet_hdr_len); if (err) goto out_free; } /* You lose any data beyond the buffer you gave. If it worries * a user program they can ask the device for its MTU * anyway. */ copied = skb->len; if (copied > len) { copied = len; msg->msg_flags |= MSG_TRUNC; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto out_free; if (sock->type != SOCK_PACKET) { struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; /* Original length was stored in sockaddr_ll fields */ origlen = PACKET_SKB_CB(skb)->sa.origlen; sll->sll_family = AF_PACKET; sll->sll_protocol = (sock->type == SOCK_DGRAM) ? vlan_get_protocol_dgram(skb) : skb->protocol; } sock_recv_cmsgs(msg, sk, skb); if (msg->msg_name) { const size_t max_len = min(sizeof(skb->cb), sizeof(struct sockaddr_storage)); int copy_len; /* If the address length field is there to be filled * in, we fill it in now. */ if (sock->type == SOCK_PACKET) { __sockaddr_check_size(sizeof(struct sockaddr_pkt)); msg->msg_namelen = sizeof(struct sockaddr_pkt); copy_len = msg->msg_namelen; } else { struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr); copy_len = msg->msg_namelen; if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { memset(msg->msg_name + offsetof(struct sockaddr_ll, sll_addr), 0, sizeof(sll->sll_addr)); msg->msg_namelen = sizeof(struct sockaddr_ll); } } if (WARN_ON_ONCE(copy_len > max_len)) { copy_len = max_len; msg->msg_namelen = copy_len; } memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); } if (packet_sock_flag(pkt_sk(sk), PACKET_SOCK_AUXDATA)) { struct tpacket_auxdata aux; aux.tp_status = TP_STATUS_USER; if (skb->ip_summed == CHECKSUM_PARTIAL) aux.tp_status |= TP_STATUS_CSUMNOTREADY; else if (skb->pkt_type != PACKET_OUTGOING && skb_csum_unnecessary(skb)) aux.tp_status |= TP_STATUS_CSUM_VALID; if (skb_is_gso(skb) && skb_is_gso_tcp(skb)) aux.tp_status |= TP_STATUS_GSO_TCP; aux.tp_len = origlen; aux.tp_snaplen = skb->len; aux.tp_mac = 0; aux.tp_net = skb_network_offset(skb); if (skb_vlan_tag_present(skb)) { aux.tp_vlan_tci = skb_vlan_tag_get(skb); aux.tp_vlan_tpid = ntohs(skb->vlan_proto); aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else if (unlikely(sock->type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) { struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; struct net_device *dev; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), sll->sll_ifindex); if (dev) { aux.tp_vlan_tci = vlan_get_tci(skb, dev); aux.tp_vlan_tpid = ntohs(skb->protocol); aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else { aux.tp_vlan_tci = 0; aux.tp_vlan_tpid = 0; } rcu_read_unlock(); } else { aux.tp_vlan_tci = 0; aux.tp_vlan_tpid = 0; } put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); } /* * Free or return the buffer as appropriate. Again this * hides all the races and re-entrancy issues from us. */ err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); out_free: skb_free_datagram(sk, skb); out: return err; } static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, int peer) { struct net_device *dev; struct sock *sk = sock->sk; if (peer) return -EOPNOTSUPP; uaddr->sa_family = AF_PACKET; memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data_min)); rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); if (dev) strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min)); rcu_read_unlock(); return sizeof(*uaddr); } static int packet_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct net_device *dev; struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); int ifindex; if (peer) return -EOPNOTSUPP; ifindex = READ_ONCE(po->ifindex); sll->sll_family = AF_PACKET; sll->sll_ifindex = ifindex; sll->sll_protocol = READ_ONCE(po->num); sll->sll_pkttype = 0; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), ifindex); if (dev) { sll->sll_hatype = dev->type; sll->sll_halen = dev->addr_len; /* Let __fortify_memcpy_chk() know the actual buffer size. */ memcpy(((struct sockaddr_storage *)sll)->__data + offsetof(struct sockaddr_ll, sll_addr) - offsetofend(struct sockaddr_ll, sll_family), dev->dev_addr, dev->addr_len); } else { sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ sll->sll_halen = 0; } rcu_read_unlock(); return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; } static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, int what) { switch (i->type) { case PACKET_MR_MULTICAST: if (i->alen != dev->addr_len) return -EINVAL; if (what > 0) return dev_mc_add(dev, i->addr); else return dev_mc_del(dev, i->addr); break; case PACKET_MR_PROMISC: return dev_set_promiscuity(dev, what); case PACKET_MR_ALLMULTI: return dev_set_allmulti(dev, what); case PACKET_MR_UNICAST: if (i->alen != dev->addr_len) return -EINVAL; if (what > 0) return dev_uc_add(dev, i->addr); else return dev_uc_del(dev, i->addr); break; default: break; } return 0; } static void packet_dev_mclist_delete(struct net_device *dev, struct packet_mclist **mlp) { struct packet_mclist *ml; while ((ml = *mlp) != NULL) { if (ml->ifindex == dev->ifindex) { packet_dev_mc(dev, ml, -1); *mlp = ml->next; kfree(ml); } else mlp = &ml->next; } } static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) { struct packet_sock *po = pkt_sk(sk); struct packet_mclist *ml, *i; struct net_device *dev; int err; rtnl_lock(); err = -ENODEV; dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); if (!dev) goto done; err = -EINVAL; if (mreq->mr_alen > dev->addr_len) goto done; err = -ENOBUFS; i = kmalloc(sizeof(*i), GFP_KERNEL); if (i == NULL) goto done; err = 0; for (ml = po->mclist; ml; ml = ml->next) { if (ml->ifindex == mreq->mr_ifindex && ml->type == mreq->mr_type && ml->alen == mreq->mr_alen && memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { ml->count++; /* Free the new element ... */ kfree(i); goto done; } } i->type = mreq->mr_type; i->ifindex = mreq->mr_ifindex; i->alen = mreq->mr_alen; memcpy(i->addr, mreq->mr_address, i->alen); memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); i->count = 1; i->next = po->mclist; po->mclist = i; err = packet_dev_mc(dev, i, 1); if (err) { po->mclist = i->next; kfree(i); } done: rtnl_unlock(); return err; } static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) { struct packet_mclist *ml, **mlp; rtnl_lock(); for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { if (ml->ifindex == mreq->mr_ifindex && ml->type == mreq->mr_type && ml->alen == mreq->mr_alen && memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { if (--ml->count == 0) { struct net_device *dev; *mlp = ml->next; dev = __dev_get_by_index(sock_net(sk), ml->ifindex); if (dev) packet_dev_mc(dev, ml, -1); kfree(ml); } break; } } rtnl_unlock(); return 0; } static void packet_flush_mclist(struct sock *sk) { struct packet_sock *po = pkt_sk(sk); struct packet_mclist *ml; if (!po->mclist) return; rtnl_lock(); while ((ml = po->mclist) != NULL) { struct net_device *dev; po->mclist = ml->next; dev = __dev_get_by_index(sock_net(sk), ml->ifindex); if (dev != NULL) packet_dev_mc(dev, ml, -1); kfree(ml); } rtnl_unlock(); } static int packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); int ret; if (level != SOL_PACKET) return -ENOPROTOOPT; switch (optname) { case PACKET_ADD_MEMBERSHIP: case PACKET_DROP_MEMBERSHIP: { struct packet_mreq_max mreq; int len = optlen; memset(&mreq, 0, sizeof(mreq)); if (len < sizeof(struct packet_mreq)) return -EINVAL; if (len > sizeof(mreq)) len = sizeof(mreq); if (copy_from_sockptr(&mreq, optval, len)) return -EFAULT; if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) return -EINVAL; if (optname == PACKET_ADD_MEMBERSHIP) ret = packet_mc_add(sk, &mreq); else ret = packet_mc_drop(sk, &mreq); return ret; } case PACKET_RX_RING: case PACKET_TX_RING: { union tpacket_req_u req_u; ret = -EINVAL; lock_sock(sk); switch (po->tp_version) { case TPACKET_V1: case TPACKET_V2: if (optlen < sizeof(req_u.req)) break; ret = copy_from_sockptr(&req_u.req, optval, sizeof(req_u.req)) ? -EINVAL : 0; break; case TPACKET_V3: default: if (optlen < sizeof(req_u.req3)) break; ret = copy_from_sockptr(&req_u.req3, optval, sizeof(req_u.req3)) ? -EINVAL : 0; break; } if (!ret) ret = packet_set_ring(sk, &req_u, 0, optname == PACKET_TX_RING); release_sock(sk); return ret; } case PACKET_COPY_THRESH: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; WRITE_ONCE(pkt_sk(sk)->copy_thresh, val); return 0; } case PACKET_VERSION: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; switch (val) { case TPACKET_V1: case TPACKET_V2: case TPACKET_V3: break; default: return -EINVAL; } lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { po->tp_version = val; ret = 0; } release_sock(sk); return ret; } case PACKET_RESERVE: { unsigned int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; if (val > INT_MAX) return -EINVAL; lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { po->tp_reserve = val; ret = 0; } release_sock(sk); return ret; } case PACKET_LOSS: { unsigned int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { packet_sock_flag_set(po, PACKET_SOCK_TP_LOSS, val); ret = 0; } release_sock(sk); return ret; } case PACKET_AUXDATA: { int val; if (optlen < sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; packet_sock_flag_set(po, PACKET_SOCK_AUXDATA, val); return 0; } case PACKET_ORIGDEV: { int val; if (optlen < sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; packet_sock_flag_set(po, PACKET_SOCK_ORIGDEV, val); return 0; } case PACKET_VNET_HDR: case PACKET_VNET_HDR_SZ: { int val, hdr_len; if (sock->type != SOCK_RAW) return -EINVAL; if (optlen < sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; if (optname == PACKET_VNET_HDR_SZ) { if (val && val != sizeof(struct virtio_net_hdr) && val != sizeof(struct virtio_net_hdr_mrg_rxbuf)) return -EINVAL; hdr_len = val; } else { hdr_len = val ? sizeof(struct virtio_net_hdr) : 0; } lock_sock(sk); if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { ret = -EBUSY; } else { WRITE_ONCE(po->vnet_hdr_sz, hdr_len); ret = 0; } release_sock(sk); return ret; } case PACKET_TIMESTAMP: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; WRITE_ONCE(po->tp_tstamp, val); return 0; } case PACKET_FANOUT: { struct fanout_args args = { 0 }; if (optlen != sizeof(int) && optlen != sizeof(args)) return -EINVAL; if (copy_from_sockptr(&args, optval, optlen)) return -EFAULT; return fanout_add(sk, &args); } case PACKET_FANOUT_DATA: { /* Paired with the WRITE_ONCE() in fanout_add() */ if (!READ_ONCE(po->fanout)) return -EINVAL; return fanout_set_data(po, optval, optlen); } case PACKET_IGNORE_OUTGOING: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; if (val < 0 || val > 1) return -EINVAL; WRITE_ONCE(po->prot_hook.ignore_outgoing, !!val); return 0; } case PACKET_TX_HAS_OFF: { unsigned int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; lock_sock(sk); if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) packet_sock_flag_set(po, PACKET_SOCK_TX_HAS_OFF, val); release_sock(sk); return 0; } case PACKET_QDISC_BYPASS: { int val; if (optlen != sizeof(val)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; packet_sock_flag_set(po, PACKET_SOCK_QDISC_BYPASS, val); return 0; } default: return -ENOPROTOOPT; } } static int packet_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { int len; int val, lv = sizeof(val); struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); void *data = &val; union tpacket_stats_u st; struct tpacket_rollover_stats rstats; int drops; if (level != SOL_PACKET) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case PACKET_STATISTICS: spin_lock_bh(&sk->sk_receive_queue.lock); memcpy(&st, &po->stats, sizeof(st)); memset(&po->stats, 0, sizeof(po->stats)); spin_unlock_bh(&sk->sk_receive_queue.lock); drops = atomic_xchg(&po->tp_drops, 0); if (po->tp_version == TPACKET_V3) { lv = sizeof(struct tpacket_stats_v3); st.stats3.tp_drops = drops; st.stats3.tp_packets += drops; data = &st.stats3; } else { lv = sizeof(struct tpacket_stats); st.stats1.tp_drops = drops; st.stats1.tp_packets += drops; data = &st.stats1; } break; case PACKET_AUXDATA: val = packet_sock_flag(po, PACKET_SOCK_AUXDATA); break; case PACKET_ORIGDEV: val = packet_sock_flag(po, PACKET_SOCK_ORIGDEV); break; case PACKET_VNET_HDR: val = !!READ_ONCE(po->vnet_hdr_sz); break; case PACKET_VNET_HDR_SZ: val = READ_ONCE(po->vnet_hdr_sz); break; case PACKET_COPY_THRESH: val = READ_ONCE(pkt_sk(sk)->copy_thresh); break; case PACKET_VERSION: val = po->tp_version; break; case PACKET_HDRLEN: if (len > sizeof(int)) len = sizeof(int); if (len < sizeof(int)) return -EINVAL; if (copy_from_user(&val, optval, len)) return -EFAULT; switch (val) { case TPACKET_V1: val = sizeof(struct tpacket_hdr); break; case TPACKET_V2: val = sizeof(struct tpacket2_hdr); break; case TPACKET_V3: val = sizeof(struct tpacket3_hdr); break; default: return -EINVAL; } break; case PACKET_RESERVE: val = po->tp_reserve; break; case PACKET_LOSS: val = packet_sock_flag(po, PACKET_SOCK_TP_LOSS); break; case PACKET_TIMESTAMP: val = READ_ONCE(po->tp_tstamp); break; case PACKET_FANOUT: val = (po->fanout ? ((u32)po->fanout->id | ((u32)po->fanout->type << 16) | ((u32)po->fanout->flags << 24)) : 0); break; case PACKET_IGNORE_OUTGOING: val = READ_ONCE(po->prot_hook.ignore_outgoing); break; case PACKET_ROLLOVER_STATS: if (!po->rollover) return -EINVAL; rstats.tp_all = atomic_long_read(&po->rollover->num); rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); data = &rstats; lv = sizeof(rstats); break; case PACKET_TX_HAS_OFF: val = packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF); break; case PACKET_QDISC_BYPASS: val = packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS); break; default: return -ENOPROTOOPT; } if (len > lv) len = lv; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, data, len)) return -EFAULT; return 0; } static int packet_notifier(struct notifier_block *this, unsigned long msg, void *ptr) { struct sock *sk; struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); rcu_read_lock(); sk_for_each_rcu(sk, &net->packet.sklist) { struct packet_sock *po = pkt_sk(sk); switch (msg) { case NETDEV_UNREGISTER: if (po->mclist) packet_dev_mclist_delete(dev, &po->mclist); fallthrough; case NETDEV_DOWN: if (dev->ifindex == po->ifindex) { spin_lock(&po->bind_lock); if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) { __unregister_prot_hook(sk, false); sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); } if (msg == NETDEV_UNREGISTER) { packet_cached_dev_reset(po); WRITE_ONCE(po->ifindex, -1); netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); po->prot_hook.dev = NULL; } spin_unlock(&po->bind_lock); } break; case NETDEV_UP: if (dev->ifindex == po->ifindex) { spin_lock(&po->bind_lock); if (po->num) register_prot_hook(sk); spin_unlock(&po->bind_lock); } break; } } rcu_read_unlock(); return NOTIFY_DONE; } static int packet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; switch (cmd) { case SIOCOUTQ: { int amount = sk_wmem_alloc_get(sk); return put_user(amount, (int __user *)arg); } case SIOCINQ: { struct sk_buff *skb; int amount = 0; spin_lock_bh(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); if (skb) amount = skb->len; spin_unlock_bh(&sk->sk_receive_queue.lock); return put_user(amount, (int __user *)arg); } #ifdef CONFIG_INET case SIOCADDRT: case SIOCDELRT: case SIOCDARP: case SIOCGARP: case SIOCSARP: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCSIFFLAGS: return inet_dgram_ops.ioctl(sock, cmd, arg); #endif default: return -ENOIOCTLCMD; } return 0; } static __poll_t packet_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); __poll_t mask = datagram_poll(file, sock, wait); spin_lock_bh(&sk->sk_receive_queue.lock); if (po->rx_ring.pg_vec) { if (!packet_previous_rx_frame(po, &po->rx_ring, TP_STATUS_KERNEL)) mask |= EPOLLIN | EPOLLRDNORM; } packet_rcv_try_clear_pressure(po); spin_unlock_bh(&sk->sk_receive_queue.lock); spin_lock_bh(&sk->sk_write_queue.lock); if (po->tx_ring.pg_vec) { if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) mask |= EPOLLOUT | EPOLLWRNORM; } spin_unlock_bh(&sk->sk_write_queue.lock); return mask; } /* Dirty? Well, I still did not learn better way to account * for user mmaps. */ static void packet_mm_open(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct socket *sock = file->private_data; struct sock *sk = sock->sk; if (sk) atomic_long_inc(&pkt_sk(sk)->mapped); } static void packet_mm_close(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct socket *sock = file->private_data; struct sock *sk = sock->sk; if (sk) atomic_long_dec(&pkt_sk(sk)->mapped); } static const struct vm_operations_struct packet_mmap_ops = { .open = packet_mm_open, .close = packet_mm_close, }; static void free_pg_vec(struct pgv *pg_vec, unsigned int order, unsigned int len) { int i; for (i = 0; i < len; i++) { if (likely(pg_vec[i].buffer)) { if (is_vmalloc_addr(pg_vec[i].buffer)) vfree(pg_vec[i].buffer); else free_pages((unsigned long)pg_vec[i].buffer, order); pg_vec[i].buffer = NULL; } } kfree(pg_vec); } static char *alloc_one_pg_vec_page(unsigned long order) { char *buffer; gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; buffer = (char *) __get_free_pages(gfp_flags, order); if (buffer) return buffer; /* __get_free_pages failed, fall back to vmalloc */ buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); if (buffer) return buffer; /* vmalloc failed, lets dig into swap here */ gfp_flags &= ~__GFP_NORETRY; buffer = (char *) __get_free_pages(gfp_flags, order); if (buffer) return buffer; /* complete and utter failure */ return NULL; } static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) { unsigned int block_nr = req->tp_block_nr; struct pgv *pg_vec; int i; pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); if (unlikely(!pg_vec)) goto out; for (i = 0; i < block_nr; i++) { pg_vec[i].buffer = alloc_one_pg_vec_page(order); if (unlikely(!pg_vec[i].buffer)) goto out_free_pgvec; } out: return pg_vec; out_free_pgvec: free_pg_vec(pg_vec, order, block_nr); pg_vec = NULL; goto out; } static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, int closing, int tx_ring) { struct pgv *pg_vec = NULL; struct packet_sock *po = pkt_sk(sk); unsigned long *rx_owner_map = NULL; int was_running, order = 0; struct packet_ring_buffer *rb; struct sk_buff_head *rb_queue; __be16 num; int err; /* Added to avoid minimal code churn */ struct tpacket_req *req = &req_u->req; rb = tx_ring ? &po->tx_ring : &po->rx_ring; rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; err = -EBUSY; if (!closing) { if (atomic_long_read(&po->mapped)) goto out; if (packet_read_pending(rb)) goto out; } if (req->tp_block_nr) { unsigned int min_frame_size; /* Sanity tests and some calculations */ err = -EBUSY; if (unlikely(rb->pg_vec)) goto out; switch (po->tp_version) { case TPACKET_V1: po->tp_hdrlen = TPACKET_HDRLEN; break; case TPACKET_V2: po->tp_hdrlen = TPACKET2_HDRLEN; break; case TPACKET_V3: po->tp_hdrlen = TPACKET3_HDRLEN; break; } err = -EINVAL; if (unlikely((int)req->tp_block_size <= 0)) goto out; if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) goto out; min_frame_size = po->tp_hdrlen + po->tp_reserve; if (po->tp_version >= TPACKET_V3 && req->tp_block_size < BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) goto out; if (unlikely(req->tp_frame_size < min_frame_size)) goto out; if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) goto out; rb->frames_per_block = req->tp_block_size / req->tp_frame_size; if (unlikely(rb->frames_per_block == 0)) goto out; if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) goto out; if (unlikely((rb->frames_per_block * req->tp_block_nr) != req->tp_frame_nr)) goto out; err = -ENOMEM; order = get_order(req->tp_block_size); pg_vec = alloc_pg_vec(req, order); if (unlikely(!pg_vec)) goto out; switch (po->tp_version) { case TPACKET_V3: /* Block transmit is not supported yet */ if (!tx_ring) { init_prb_bdqc(po, rb, pg_vec, req_u); } else { struct tpacket_req3 *req3 = &req_u->req3; if (req3->tp_retire_blk_tov || req3->tp_sizeof_priv || req3->tp_feature_req_word) { err = -EINVAL; goto out_free_pg_vec; } } break; default: if (!tx_ring) { rx_owner_map = bitmap_alloc(req->tp_frame_nr, GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); if (!rx_owner_map) goto out_free_pg_vec; } break; } } /* Done */ else { err = -EINVAL; if (unlikely(req->tp_frame_nr)) goto out; } /* Detach socket from network */ spin_lock(&po->bind_lock); was_running = packet_sock_flag(po, PACKET_SOCK_RUNNING); num = po->num; if (was_running) { WRITE_ONCE(po->num, 0); __unregister_prot_hook(sk, false); } spin_unlock(&po->bind_lock); synchronize_net(); err = -EBUSY; mutex_lock(&po->pg_vec_lock); if (closing || atomic_long_read(&po->mapped) == 0) { err = 0; spin_lock_bh(&rb_queue->lock); swap(rb->pg_vec, pg_vec); if (po->tp_version <= TPACKET_V2) swap(rb->rx_owner_map, rx_owner_map); rb->frame_max = (req->tp_frame_nr - 1); rb->head = 0; rb->frame_size = req->tp_frame_size; spin_unlock_bh(&rb_queue->lock); swap(rb->pg_vec_order, order); swap(rb->pg_vec_len, req->tp_block_nr); rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; po->prot_hook.func = (po->rx_ring.pg_vec) ? tpacket_rcv : packet_rcv; skb_queue_purge(rb_queue); if (atomic_long_read(&po->mapped)) pr_err("packet_mmap: vma is busy: %ld\n", atomic_long_read(&po->mapped)); } mutex_unlock(&po->pg_vec_lock); spin_lock(&po->bind_lock); if (was_running) { WRITE_ONCE(po->num, num); register_prot_hook(sk); } spin_unlock(&po->bind_lock); if (pg_vec && (po->tp_version > TPACKET_V2)) { /* Because we don't support block-based V3 on tx-ring */ if (!tx_ring) prb_shutdown_retire_blk_timer(po, rb_queue); } out_free_pg_vec: if (pg_vec) { bitmap_free(rx_owner_map); free_pg_vec(pg_vec, order, req->tp_block_nr); } out: return err; } static int packet_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { struct sock *sk = sock->sk; struct packet_sock *po = pkt_sk(sk); unsigned long size, expected_size; struct packet_ring_buffer *rb; unsigned long start; int err = -EINVAL; int i; if (vma->vm_pgoff) return -EINVAL; mutex_lock(&po->pg_vec_lock); expected_size = 0; for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { if (rb->pg_vec) { expected_size += rb->pg_vec_len * rb->pg_vec_pages * PAGE_SIZE; } } if (expected_size == 0) goto out; size = vma->vm_end - vma->vm_start; if (size != expected_size) goto out; start = vma->vm_start; for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { if (rb->pg_vec == NULL) continue; for (i = 0; i < rb->pg_vec_len; i++) { struct page *page; void *kaddr = rb->pg_vec[i].buffer; int pg_num; for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { page = pgv_to_page(kaddr); err = vm_insert_page(vma, start, page); if (unlikely(err)) goto out; start += PAGE_SIZE; kaddr += PAGE_SIZE; } } } atomic_long_inc(&po->mapped); vma->vm_ops = &packet_mmap_ops; err = 0; out: mutex_unlock(&po->pg_vec_lock); return err; } static const struct proto_ops packet_ops_spkt = { .family = PF_PACKET, .owner = THIS_MODULE, .release = packet_release, .bind = packet_bind_spkt, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = packet_getname_spkt, .poll = datagram_poll, .ioctl = packet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .sendmsg = packet_sendmsg_spkt, .recvmsg = packet_recvmsg, .mmap = sock_no_mmap, }; static const struct proto_ops packet_ops = { .family = PF_PACKET, .owner = THIS_MODULE, .release = packet_release, .bind = packet_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = packet_getname, .poll = packet_poll, .ioctl = packet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = packet_setsockopt, .getsockopt = packet_getsockopt, .sendmsg = packet_sendmsg, .recvmsg = packet_recvmsg, .mmap = packet_mmap, }; static const struct net_proto_family packet_family_ops = { .family = PF_PACKET, .create = packet_create, .owner = THIS_MODULE, }; static struct notifier_block packet_netdev_notifier = { .notifier_call = packet_notifier, }; #ifdef CONFIG_PROC_FS static void *packet_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct net *net = seq_file_net(seq); rcu_read_lock(); return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); } static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct net *net = seq_file_net(seq); return seq_hlist_next_rcu(v, &net->packet.sklist, pos); } static void packet_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int packet_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_printf(seq, "%*sRefCnt Type Proto Iface R Rmem User Inode\n", IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); else { struct sock *s = sk_entry(v); const struct packet_sock *po = pkt_sk(s); seq_printf(seq, "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", s, refcount_read(&s->sk_refcnt), s->sk_type, ntohs(READ_ONCE(po->num)), READ_ONCE(po->ifindex), packet_sock_flag(po, PACKET_SOCK_RUNNING), atomic_read(&s->sk_rmem_alloc), from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), sock_i_ino(s)); } return 0; } static const struct seq_operations packet_seq_ops = { .start = packet_seq_start, .next = packet_seq_next, .stop = packet_seq_stop, .show = packet_seq_show, }; #endif static int __net_init packet_net_init(struct net *net) { mutex_init(&net->packet.sklist_lock); INIT_HLIST_HEAD(&net->packet.sklist); #ifdef CONFIG_PROC_FS if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, sizeof(struct seq_net_private))) return -ENOMEM; #endif /* CONFIG_PROC_FS */ return 0; } static void __net_exit packet_net_exit(struct net *net) { remove_proc_entry("packet", net->proc_net); WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); } static struct pernet_operations packet_net_ops = { .init = packet_net_init, .exit = packet_net_exit, }; static void __exit packet_exit(void) { sock_unregister(PF_PACKET); proto_unregister(&packet_proto); unregister_netdevice_notifier(&packet_netdev_notifier); unregister_pernet_subsys(&packet_net_ops); } static int __init packet_init(void) { int rc; rc = register_pernet_subsys(&packet_net_ops); if (rc) goto out; rc = register_netdevice_notifier(&packet_netdev_notifier); if (rc) goto out_pernet; rc = proto_register(&packet_proto, 0); if (rc) goto out_notifier; rc = sock_register(&packet_family_ops); if (rc) goto out_proto; return 0; out_proto: proto_unregister(&packet_proto); out_notifier: unregister_netdevice_notifier(&packet_netdev_notifier); out_pernet: unregister_pernet_subsys(&packet_net_ops); out: return rc; } module_init(packet_init); module_exit(packet_exit); MODULE_DESCRIPTION("Packet socket support (AF_PACKET)"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_PACKET);
270 9 2 1 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_MROUTE6_H #define __LINUX_MROUTE6_H #include <linux/pim.h> #include <linux/skbuff.h> /* for struct sk_buff_head */ #include <net/net_namespace.h> #include <uapi/linux/mroute6.h> #include <linux/mroute_base.h> #include <linux/sockptr.h> #include <net/fib_rules.h> #ifdef CONFIG_IPV6_MROUTE static inline int ip6_mroute_opt(int opt) { return (opt >= MRT6_BASE) && (opt <= MRT6_MAX); } #else static inline int ip6_mroute_opt(int opt) { return 0; } #endif struct sock; #ifdef CONFIG_IPV6_MROUTE extern int ip6_mroute_setsockopt(struct sock *, int, sockptr_t, unsigned int); extern int ip6_mroute_getsockopt(struct sock *, int, sockptr_t, sockptr_t); extern int ip6_mr_input(struct sk_buff *skb); extern int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); extern int ip6_mr_init(void); extern void ip6_mr_cleanup(void); int ip6mr_ioctl(struct sock *sk, int cmd, void *arg); #else static inline int ip6_mroute_setsockopt(struct sock *sock, int optname, sockptr_t optval, unsigned int optlen) { return -ENOPROTOOPT; } static inline int ip6_mroute_getsockopt(struct sock *sock, int optname, sockptr_t optval, sockptr_t optlen) { return -ENOPROTOOPT; } static inline int ip6mr_ioctl(struct sock *sk, int cmd, void *arg) { return -ENOIOCTLCMD; } static inline int ip6_mr_init(void) { return 0; } static inline void ip6_mr_cleanup(void) { return; } #endif #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES bool ip6mr_rule_default(const struct fib_rule *rule); #else static inline bool ip6mr_rule_default(const struct fib_rule *rule) { return true; } #endif #define VIFF_STATIC 0x8000 struct mfc6_cache_cmp_arg { struct in6_addr mf6c_mcastgrp; struct in6_addr mf6c_origin; }; struct mfc6_cache { struct mr_mfc _c; union { struct { struct in6_addr mf6c_mcastgrp; struct in6_addr mf6c_origin; }; struct mfc6_cache_cmp_arg cmparg; }; }; #define MFC_ASSERT_THRESH (3*HZ) /* Maximal freq. of asserts */ struct rtmsg; extern int ip6mr_get_route(struct net *net, struct sk_buff *skb, struct rtmsg *rtm, u32 portid); #ifdef CONFIG_IPV6_MROUTE bool mroute6_is_socket(struct net *net, struct sk_buff *skb); extern int ip6mr_sk_done(struct sock *sk); static inline int ip6mr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { switch (cmd) { /* These userspace buffers will be consumed by ip6mr_ioctl() */ case SIOCGETMIFCNT_IN6: { struct sioc_mif_req6 buffer; return sock_ioctl_inout(sk, cmd, arg, &buffer, sizeof(buffer)); } case SIOCGETSGCNT_IN6: { struct sioc_sg_req6 buffer; return sock_ioctl_inout(sk, cmd, arg, &buffer, sizeof(buffer)); } } return 1; } #else static inline bool mroute6_is_socket(struct net *net, struct sk_buff *skb) { return false; } static inline int ip6mr_sk_done(struct sock *sk) { return 0; } static inline int ip6mr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { return 1; } #endif #endif
12 12 13 11 13 12 12 12 13 5 13 13 12 13 12 13 13 12 13 13 13 13 12 12 12 12 13 13 13 13 13 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 // SPDX-License-Identifier: GPL-2.0 /* * mm/debug.c * * mm/ specific debug routines. * */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/trace_events.h> #include <linux/memcontrol.h> #include <trace/events/mmflags.h> #include <linux/migrate.h> #include <linux/page_owner.h> #include <linux/ctype.h> #include "internal.h" #include <trace/events/migrate.h> /* * Define EM() and EMe() so that MIGRATE_REASON from trace/events/migrate.h can * be used to populate migrate_reason_names[]. */ #undef EM #undef EMe #define EM(a, b) b, #define EMe(a, b) b const char *migrate_reason_names[MR_TYPES] = { MIGRATE_REASON }; const struct trace_print_flags pageflag_names[] = { __def_pageflag_names, {0, NULL} }; const struct trace_print_flags gfpflag_names[] = { __def_gfpflag_names, {0, NULL} }; const struct trace_print_flags vmaflag_names[] = { __def_vmaflag_names, {0, NULL} }; #define DEF_PAGETYPE_NAME(_name) [PGTY_##_name - 0xf0] = __stringify(_name) static const char *page_type_names[] = { DEF_PAGETYPE_NAME(slab), DEF_PAGETYPE_NAME(hugetlb), DEF_PAGETYPE_NAME(offline), DEF_PAGETYPE_NAME(guard), DEF_PAGETYPE_NAME(table), DEF_PAGETYPE_NAME(buddy), DEF_PAGETYPE_NAME(unaccepted), }; static const char *page_type_name(unsigned int page_type) { unsigned i = (page_type >> 24) - 0xf0; if (i >= ARRAY_SIZE(page_type_names)) return "unknown"; return page_type_names[i]; } static void __dump_folio(struct folio *folio, struct page *page, unsigned long pfn, unsigned long idx) { struct address_space *mapping = folio_mapping(folio); int mapcount = atomic_read(&page->_mapcount); char *type = ""; mapcount = page_mapcount_is_type(mapcount) ? 0 : mapcount + 1; pr_warn("page: refcount:%d mapcount:%d mapping:%p index:%#lx pfn:%#lx\n", folio_ref_count(folio), mapcount, mapping, folio->index + idx, pfn); if (folio_test_large(folio)) { int pincount = 0; if (folio_has_pincount(folio)) pincount = atomic_read(&folio->_pincount); pr_warn("head: order:%u mapcount:%d entire_mapcount:%d nr_pages_mapped:%d pincount:%d\n", folio_order(folio), folio_mapcount(folio), folio_entire_mapcount(folio), folio_nr_pages_mapped(folio), pincount); } #ifdef CONFIG_MEMCG if (folio->memcg_data) pr_warn("memcg:%lx\n", folio->memcg_data); #endif if (folio_test_ksm(folio)) type = "ksm "; else if (folio_test_anon(folio)) type = "anon "; else if (mapping) dump_mapping(mapping); BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS + 1); /* * Accessing the pageblock without the zone lock. It could change to * "isolate" again in the meantime, but since we are just dumping the * state for debugging, it should be fine to accept a bit of * inaccuracy here due to racing. */ pr_warn("%sflags: %pGp%s\n", type, &folio->flags, is_migrate_cma_folio(folio, pfn) ? " CMA" : ""); if (page_has_type(&folio->page)) pr_warn("page_type: %x(%s)\n", folio->page.page_type >> 24, page_type_name(folio->page.page_type)); print_hex_dump(KERN_WARNING, "raw: ", DUMP_PREFIX_NONE, 32, sizeof(unsigned long), page, sizeof(struct page), false); if (folio_test_large(folio)) print_hex_dump(KERN_WARNING, "head: ", DUMP_PREFIX_NONE, 32, sizeof(unsigned long), folio, 2 * sizeof(struct page), false); } static void __dump_page(const struct page *page) { struct folio *foliop, folio; struct page precise; unsigned long head; unsigned long pfn = page_to_pfn(page); unsigned long idx, nr_pages = 1; int loops = 5; again: memcpy(&precise, page, sizeof(*page)); head = precise.compound_head; if ((head & 1) == 0) { foliop = (struct folio *)&precise; idx = 0; if (!folio_test_large(foliop)) goto dump; foliop = (struct folio *)page; } else { foliop = (struct folio *)(head - 1); idx = folio_page_idx(foliop, page); } if (idx < MAX_FOLIO_NR_PAGES) { memcpy(&folio, foliop, 2 * sizeof(struct page)); nr_pages = folio_nr_pages(&folio); if (nr_pages > 1) memcpy(&folio.__page_2, &foliop->__page_2, sizeof(struct page)); foliop = &folio; } if (idx > nr_pages) { if (loops-- > 0) goto again; pr_warn("page does not match folio\n"); precise.compound_head &= ~1UL; foliop = (struct folio *)&precise; idx = 0; } dump: __dump_folio(foliop, &precise, pfn, idx); } void dump_page(const struct page *page, const char *reason) { if (PagePoisoned(page)) pr_warn("page:%p is uninitialized and poisoned\n", page); else __dump_page(page); if (reason) pr_warn("page dumped because: %s\n", reason); dump_page_owner(page); } EXPORT_SYMBOL(dump_page); #ifdef CONFIG_DEBUG_VM void dump_vma(const struct vm_area_struct *vma) { pr_emerg("vma %px start %px end %px mm %px\n" "prot %lx anon_vma %px vm_ops %px\n" "pgoff %lx file %px private_data %px\n" #ifdef CONFIG_PER_VMA_LOCK "refcnt %x\n" #endif "flags: %#lx(%pGv)\n", vma, (void *)vma->vm_start, (void *)vma->vm_end, vma->vm_mm, (unsigned long)pgprot_val(vma->vm_page_prot), vma->anon_vma, vma->vm_ops, vma->vm_pgoff, vma->vm_file, vma->vm_private_data, #ifdef CONFIG_PER_VMA_LOCK refcount_read(&vma->vm_refcnt), #endif vma->vm_flags, &vma->vm_flags); } EXPORT_SYMBOL(dump_vma); void dump_mm(const struct mm_struct *mm) { pr_emerg("mm %px task_size %lu\n" "mmap_base %lu mmap_legacy_base %lu\n" "pgd %px mm_users %d mm_count %d pgtables_bytes %lu map_count %d\n" "hiwater_rss %lx hiwater_vm %lx total_vm %lx locked_vm %lx\n" "pinned_vm %llx data_vm %lx exec_vm %lx stack_vm %lx\n" "start_code %lx end_code %lx start_data %lx end_data %lx\n" "start_brk %lx brk %lx start_stack %lx\n" "arg_start %lx arg_end %lx env_start %lx env_end %lx\n" "binfmt %px flags %lx\n" #ifdef CONFIG_AIO "ioctx_table %px\n" #endif #ifdef CONFIG_MEMCG "owner %px " #endif "exe_file %px\n" #ifdef CONFIG_MMU_NOTIFIER "notifier_subscriptions %px\n" #endif #ifdef CONFIG_NUMA_BALANCING "numa_next_scan %lu numa_scan_offset %lu numa_scan_seq %d\n" #endif "tlb_flush_pending %d\n" "def_flags: %#lx(%pGv)\n", mm, mm->task_size, mm->mmap_base, mm->mmap_legacy_base, mm->pgd, atomic_read(&mm->mm_users), atomic_read(&mm->mm_count), mm_pgtables_bytes(mm), mm->map_count, mm->hiwater_rss, mm->hiwater_vm, mm->total_vm, mm->locked_vm, (u64)atomic64_read(&mm->pinned_vm), mm->data_vm, mm->exec_vm, mm->stack_vm, mm->start_code, mm->end_code, mm->start_data, mm->end_data, mm->start_brk, mm->brk, mm->start_stack, mm->arg_start, mm->arg_end, mm->env_start, mm->env_end, mm->binfmt, mm->flags, #ifdef CONFIG_AIO mm->ioctx_table, #endif #ifdef CONFIG_MEMCG mm->owner, #endif mm->exe_file, #ifdef CONFIG_MMU_NOTIFIER mm->notifier_subscriptions, #endif #ifdef CONFIG_NUMA_BALANCING mm->numa_next_scan, mm->numa_scan_offset, mm->numa_scan_seq, #endif atomic_read(&mm->tlb_flush_pending), mm->def_flags, &mm->def_flags ); } EXPORT_SYMBOL(dump_mm); void dump_vmg(const struct vma_merge_struct *vmg, const char *reason) { if (reason) pr_warn("vmg %px dumped because: %s\n", vmg, reason); if (!vmg) { pr_warn("vmg %px state: (NULL)\n", vmg); return; } pr_warn("vmg %px state: mm %px pgoff %lx\n" "vmi %px [%lx,%lx)\n" "prev %px middle %px next %px target %px\n" "start %lx end %lx flags %lx\n" "file %px anon_vma %px policy %px\n" "uffd_ctx %px\n" "anon_name %px\n" "state %x\n" "just_expand %d\n" "__adjust_middle_start %d __adjust_next_start %d\n" "__remove_middle %d __remove_next %d\n", vmg, vmg->mm, vmg->pgoff, vmg->vmi, vmg->vmi ? vma_iter_addr(vmg->vmi) : 0, vmg->vmi ? vma_iter_end(vmg->vmi) : 0, vmg->prev, vmg->middle, vmg->next, vmg->target, vmg->start, vmg->end, vmg->flags, vmg->file, vmg->anon_vma, vmg->policy, #ifdef CONFIG_USERFAULTFD vmg->uffd_ctx.ctx, #else (void *)0, #endif vmg->anon_name, (int)vmg->state, vmg->just_expand, vmg->__adjust_middle_start, vmg->__adjust_next_start, vmg->__remove_middle, vmg->__remove_next); if (vmg->mm) { pr_warn("vmg %px mm:\n", vmg); dump_mm(vmg->mm); } else { pr_warn("vmg %px mm: (NULL)\n", vmg); } if (vmg->prev) { pr_warn("vmg %px prev:\n", vmg); dump_vma(vmg->prev); } else { pr_warn("vmg %px prev: (NULL)\n", vmg); } if (vmg->middle) { pr_warn("vmg %px middle:\n", vmg); dump_vma(vmg->middle); } else { pr_warn("vmg %px middle: (NULL)\n", vmg); } if (vmg->next) { pr_warn("vmg %px next:\n", vmg); dump_vma(vmg->next); } else { pr_warn("vmg %px next: (NULL)\n", vmg); } #ifdef CONFIG_DEBUG_VM_MAPLE_TREE if (vmg->vmi) { pr_warn("vmg %px vmi:\n", vmg); vma_iter_dump_tree(vmg->vmi); } else { pr_warn("vmg %px vmi: (NULL)\n", vmg); } #endif } EXPORT_SYMBOL(dump_vmg); static bool page_init_poisoning __read_mostly = true; static int __init setup_vm_debug(char *str) { bool __page_init_poisoning = true; /* * Calling vm_debug with no arguments is equivalent to requesting * to enable all debugging options we can control. */ if (*str++ != '=' || !*str) goto out; __page_init_poisoning = false; if (*str == '-') goto out; while (*str) { switch (tolower(*str)) { case'p': __page_init_poisoning = true; break; default: pr_err("vm_debug option '%c' unknown. skipped\n", *str); } str++; } out: if (page_init_poisoning && !__page_init_poisoning) pr_warn("Page struct poisoning disabled by kernel command line option 'vm_debug'\n"); page_init_poisoning = __page_init_poisoning; return 1; } __setup("vm_debug", setup_vm_debug); void page_init_poison(struct page *page, size_t size) { if (page_init_poisoning) memset(page, PAGE_POISON_PATTERN, size); } void vma_iter_dump_tree(const struct vma_iterator *vmi) { #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) mas_dump(&vmi->mas); mt_dump(vmi->mas.tree, mt_dump_hex); #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ } #endif /* CONFIG_DEBUG_VM */
1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 // SPDX-License-Identifier: GPL-2.0-only /* * File: pep-gprs.c * * GPRS over Phonet pipe end point socket * * Copyright (C) 2008 Nokia Corporation. * * Author: Rémi Denis-Courmont */ #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <net/sock.h> #include <linux/if_phonet.h> #include <net/tcp_states.h> #include <net/phonet/gprs.h> #include <trace/events/sock.h> #define GPRS_DEFAULT_MTU 1400 struct gprs_dev { struct sock *sk; void (*old_state_change)(struct sock *); void (*old_data_ready)(struct sock *); void (*old_write_space)(struct sock *); struct net_device *dev; }; static __be16 gprs_type_trans(struct sk_buff *skb) { const u8 *pvfc; u8 buf; pvfc = skb_header_pointer(skb, 0, 1, &buf); if (!pvfc) return htons(0); /* Look at IP version field */ switch (*pvfc >> 4) { case 4: return htons(ETH_P_IP); case 6: return htons(ETH_P_IPV6); } return htons(0); } static void gprs_writeable(struct gprs_dev *gp) { struct net_device *dev = gp->dev; if (pep_writeable(gp->sk)) netif_wake_queue(dev); } /* * Socket callbacks */ static void gprs_state_change(struct sock *sk) { struct gprs_dev *gp = sk->sk_user_data; if (sk->sk_state == TCP_CLOSE_WAIT) { struct net_device *dev = gp->dev; netif_stop_queue(dev); netif_carrier_off(dev); } } static int gprs_recv(struct gprs_dev *gp, struct sk_buff *skb) { struct net_device *dev = gp->dev; int err = 0; __be16 protocol = gprs_type_trans(skb); if (!protocol) { err = -EINVAL; goto drop; } if (skb_headroom(skb) & 3) { struct sk_buff *rskb, *fs; int flen = 0; /* Phonet Pipe data header may be misaligned (3 bytes), * so wrap the IP packet as a single fragment of an head-less * socket buffer. The network stack will pull what it needs, * but at least, the whole IP payload is not memcpy'd. */ rskb = netdev_alloc_skb(dev, 0); if (!rskb) { err = -ENOBUFS; goto drop; } skb_shinfo(rskb)->frag_list = skb; rskb->len += skb->len; rskb->data_len += rskb->len; rskb->truesize += rskb->len; /* Avoid nested fragments */ skb_walk_frags(skb, fs) flen += fs->len; skb->next = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); skb->len -= flen; skb->data_len -= flen; skb->truesize -= flen; skb = rskb; } skb->protocol = protocol; skb_reset_mac_header(skb); skb->dev = dev; if (likely(dev->flags & IFF_UP)) { dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; netif_rx(skb); skb = NULL; } else err = -ENODEV; drop: if (skb) { dev_kfree_skb(skb); dev->stats.rx_dropped++; } return err; } static void gprs_data_ready(struct sock *sk) { struct gprs_dev *gp = sk->sk_user_data; struct sk_buff *skb; trace_sk_data_ready(sk); while ((skb = pep_read(sk)) != NULL) { skb_orphan(skb); gprs_recv(gp, skb); } } static void gprs_write_space(struct sock *sk) { struct gprs_dev *gp = sk->sk_user_data; if (netif_running(gp->dev)) gprs_writeable(gp); } /* * Network device callbacks */ static int gprs_open(struct net_device *dev) { struct gprs_dev *gp = netdev_priv(dev); gprs_writeable(gp); return 0; } static int gprs_close(struct net_device *dev) { netif_stop_queue(dev); return 0; } static netdev_tx_t gprs_xmit(struct sk_buff *skb, struct net_device *dev) { struct gprs_dev *gp = netdev_priv(dev); struct sock *sk = gp->sk; int len, err; switch (skb->protocol) { case htons(ETH_P_IP): case htons(ETH_P_IPV6): break; default: dev_kfree_skb(skb); return NETDEV_TX_OK; } skb_orphan(skb); skb_set_owner_w(skb, sk); len = skb->len; err = pep_write(sk, skb); if (err) { net_dbg_ratelimited("%s: TX error (%d)\n", dev->name, err); dev->stats.tx_aborted_errors++; dev->stats.tx_errors++; } else { dev->stats.tx_packets++; dev->stats.tx_bytes += len; } netif_stop_queue(dev); if (pep_writeable(sk)) netif_wake_queue(dev); return NETDEV_TX_OK; } static const struct net_device_ops gprs_netdev_ops = { .ndo_open = gprs_open, .ndo_stop = gprs_close, .ndo_start_xmit = gprs_xmit, }; static void gprs_setup(struct net_device *dev) { dev->features = NETIF_F_FRAGLIST; dev->type = ARPHRD_PHONET_PIPE; dev->flags = IFF_POINTOPOINT | IFF_NOARP; dev->mtu = GPRS_DEFAULT_MTU; dev->min_mtu = 576; dev->max_mtu = (PHONET_MAX_MTU - 11); dev->hard_header_len = 0; dev->addr_len = 0; dev->tx_queue_len = 10; dev->netdev_ops = &gprs_netdev_ops; dev->needs_free_netdev = true; } /* * External interface */ /* * Attach a GPRS interface to a datagram socket. * Returns the interface index on success, negative error code on error. */ int gprs_attach(struct sock *sk) { static const char ifname[] = "gprs%d"; struct gprs_dev *gp; struct net_device *dev; int err; if (unlikely(sk->sk_type == SOCK_STREAM)) return -EINVAL; /* need packet boundaries */ /* Create net device */ dev = alloc_netdev(sizeof(*gp), ifname, NET_NAME_UNKNOWN, gprs_setup); if (!dev) return -ENOMEM; gp = netdev_priv(dev); gp->sk = sk; gp->dev = dev; netif_stop_queue(dev); err = register_netdev(dev); if (err) { free_netdev(dev); return err; } lock_sock(sk); if (unlikely(sk->sk_user_data)) { err = -EBUSY; goto out_rel; } if (unlikely((1 << sk->sk_state & (TCPF_CLOSE|TCPF_LISTEN)) || sock_flag(sk, SOCK_DEAD))) { err = -EINVAL; goto out_rel; } sk->sk_user_data = gp; gp->old_state_change = sk->sk_state_change; gp->old_data_ready = sk->sk_data_ready; gp->old_write_space = sk->sk_write_space; sk->sk_state_change = gprs_state_change; sk->sk_data_ready = gprs_data_ready; sk->sk_write_space = gprs_write_space; release_sock(sk); sock_hold(sk); printk(KERN_DEBUG"%s: attached\n", dev->name); return dev->ifindex; out_rel: release_sock(sk); unregister_netdev(dev); return err; } void gprs_detach(struct sock *sk) { struct gprs_dev *gp = sk->sk_user_data; struct net_device *dev = gp->dev; lock_sock(sk); sk->sk_user_data = NULL; sk->sk_state_change = gp->old_state_change; sk->sk_data_ready = gp->old_data_ready; sk->sk_write_space = gp->old_write_space; release_sock(sk); printk(KERN_DEBUG"%s: detached\n", dev->name); unregister_netdev(dev); sock_put(sk); }
18 1 1 1 1 1 1 1 1 1 1 1 18 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google Corporation */ #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include <net/bluetooth/mgmt.h> #include "mgmt_util.h" #include "msft.h" #define MSFT_RSSI_THRESHOLD_VALUE_MIN -127 #define MSFT_RSSI_THRESHOLD_VALUE_MAX 20 #define MSFT_RSSI_LOW_TIMEOUT_MAX 0x3C #define MSFT_OP_READ_SUPPORTED_FEATURES 0x00 struct msft_cp_read_supported_features { __u8 sub_opcode; } __packed; struct msft_rp_read_supported_features { __u8 status; __u8 sub_opcode; __le64 features; __u8 evt_prefix_len; __u8 evt_prefix[]; } __packed; #define MSFT_OP_LE_MONITOR_ADVERTISEMENT 0x03 #define MSFT_MONITOR_ADVERTISEMENT_TYPE_PATTERN 0x01 struct msft_le_monitor_advertisement_pattern { __u8 length; __u8 data_type; __u8 start_byte; __u8 pattern[]; }; struct msft_le_monitor_advertisement_pattern_data { __u8 count; __u8 data[]; }; struct msft_cp_le_monitor_advertisement { __u8 sub_opcode; __s8 rssi_high; __s8 rssi_low; __u8 rssi_low_interval; __u8 rssi_sampling_period; __u8 cond_type; __u8 data[]; } __packed; struct msft_rp_le_monitor_advertisement { __u8 status; __u8 sub_opcode; __u8 handle; } __packed; #define MSFT_OP_LE_CANCEL_MONITOR_ADVERTISEMENT 0x04 struct msft_cp_le_cancel_monitor_advertisement { __u8 sub_opcode; __u8 handle; } __packed; struct msft_rp_le_cancel_monitor_advertisement { __u8 status; __u8 sub_opcode; } __packed; #define MSFT_OP_LE_SET_ADVERTISEMENT_FILTER_ENABLE 0x05 struct msft_cp_le_set_advertisement_filter_enable { __u8 sub_opcode; __u8 enable; } __packed; struct msft_rp_le_set_advertisement_filter_enable { __u8 status; __u8 sub_opcode; } __packed; #define MSFT_EV_LE_MONITOR_DEVICE 0x02 struct msft_ev_le_monitor_device { __u8 addr_type; bdaddr_t bdaddr; __u8 monitor_handle; __u8 monitor_state; } __packed; struct msft_monitor_advertisement_handle_data { __u8 msft_handle; __u16 mgmt_handle; __s8 rssi_high; __s8 rssi_low; __u8 rssi_low_interval; __u8 rssi_sampling_period; __u8 cond_type; struct list_head list; }; enum monitor_addr_filter_state { AF_STATE_IDLE, AF_STATE_ADDING, AF_STATE_ADDED, AF_STATE_REMOVING, }; #define MSFT_MONITOR_ADVERTISEMENT_TYPE_ADDR 0x04 struct msft_monitor_addr_filter_data { __u8 msft_handle; __u8 pattern_handle; /* address filters pertain to */ __u16 mgmt_handle; int state; __s8 rssi_high; __s8 rssi_low; __u8 rssi_low_interval; __u8 rssi_sampling_period; __u8 addr_type; bdaddr_t bdaddr; struct list_head list; }; struct msft_data { __u64 features; __u8 evt_prefix_len; __u8 *evt_prefix; struct list_head handle_map; struct list_head address_filters; __u8 resuming; __u8 suspending; __u8 filter_enabled; /* To synchronize add/remove address filter and monitor device event.*/ struct mutex filter_lock; }; bool msft_monitor_supported(struct hci_dev *hdev) { return !!(msft_get_features(hdev) & MSFT_FEATURE_MASK_LE_ADV_MONITOR); } static bool read_supported_features(struct hci_dev *hdev, struct msft_data *msft) { struct msft_cp_read_supported_features cp; struct msft_rp_read_supported_features *rp; struct sk_buff *skb; cp.sub_opcode = MSFT_OP_READ_SUPPORTED_FEATURES; skb = __hci_cmd_sync(hdev, hdev->msft_opcode, sizeof(cp), &cp, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Failed to read MSFT supported features (%ld)", PTR_ERR(skb)); return false; } if (skb->len < sizeof(*rp)) { bt_dev_err(hdev, "MSFT supported features length mismatch"); goto failed; } rp = (struct msft_rp_read_supported_features *)skb->data; if (rp->sub_opcode != MSFT_OP_READ_SUPPORTED_FEATURES) goto failed; if (rp->evt_prefix_len > 0) { msft->evt_prefix = kmemdup(rp->evt_prefix, rp->evt_prefix_len, GFP_KERNEL); if (!msft->evt_prefix) goto failed; } msft->evt_prefix_len = rp->evt_prefix_len; msft->features = __le64_to_cpu(rp->features); if (msft->features & MSFT_FEATURE_MASK_CURVE_VALIDITY) hdev->msft_curve_validity = true; kfree_skb(skb); return true; failed: kfree_skb(skb); return false; } /* is_mgmt = true matches the handle exposed to userspace via mgmt. * is_mgmt = false matches the handle used by the msft controller. * This function requires the caller holds hdev->lock */ static struct msft_monitor_advertisement_handle_data *msft_find_handle_data (struct hci_dev *hdev, u16 handle, bool is_mgmt) { struct msft_monitor_advertisement_handle_data *entry; struct msft_data *msft = hdev->msft_data; list_for_each_entry(entry, &msft->handle_map, list) { if (is_mgmt && entry->mgmt_handle == handle) return entry; if (!is_mgmt && entry->msft_handle == handle) return entry; } return NULL; } /* This function requires the caller holds msft->filter_lock */ static struct msft_monitor_addr_filter_data *msft_find_address_data (struct hci_dev *hdev, u8 addr_type, bdaddr_t *addr, u8 pattern_handle) { struct msft_monitor_addr_filter_data *entry; struct msft_data *msft = hdev->msft_data; list_for_each_entry(entry, &msft->address_filters, list) { if (entry->pattern_handle == pattern_handle && addr_type == entry->addr_type && !bacmp(addr, &entry->bdaddr)) return entry; } return NULL; } /* This function requires the caller holds hdev->lock */ static int msft_monitor_device_del(struct hci_dev *hdev, __u16 mgmt_handle, bdaddr_t *bdaddr, __u8 addr_type, bool notify) { struct monitored_device *dev, *tmp; int count = 0; list_for_each_entry_safe(dev, tmp, &hdev->monitored_devices, list) { /* mgmt_handle == 0 indicates remove all devices, whereas, * bdaddr == NULL indicates remove all devices matching the * mgmt_handle. */ if ((!mgmt_handle || dev->handle == mgmt_handle) && (!bdaddr || (!bacmp(bdaddr, &dev->bdaddr) && addr_type == dev->addr_type))) { if (notify && dev->notified) { mgmt_adv_monitor_device_lost(hdev, dev->handle, &dev->bdaddr, dev->addr_type); } list_del(&dev->list); kfree(dev); count++; } } return count; } static int msft_le_monitor_advertisement_cb(struct hci_dev *hdev, u16 opcode, struct adv_monitor *monitor, struct sk_buff *skb) { struct msft_rp_le_monitor_advertisement *rp; struct msft_monitor_advertisement_handle_data *handle_data; struct msft_data *msft = hdev->msft_data; int status = 0; hci_dev_lock(hdev); rp = (struct msft_rp_le_monitor_advertisement *)skb->data; if (skb->len < sizeof(*rp)) { status = HCI_ERROR_UNSPECIFIED; goto unlock; } status = rp->status; if (status) goto unlock; handle_data = kmalloc(sizeof(*handle_data), GFP_KERNEL); if (!handle_data) { status = HCI_ERROR_UNSPECIFIED; goto unlock; } handle_data->mgmt_handle = monitor->handle; handle_data->msft_handle = rp->handle; handle_data->cond_type = MSFT_MONITOR_ADVERTISEMENT_TYPE_PATTERN; INIT_LIST_HEAD(&handle_data->list); list_add(&handle_data->list, &msft->handle_map); monitor->state = ADV_MONITOR_STATE_OFFLOADED; unlock: if (status) hci_free_adv_monitor(hdev, monitor); hci_dev_unlock(hdev); return status; } /* This function requires the caller holds hci_req_sync_lock */ static void msft_remove_addr_filters_sync(struct hci_dev *hdev, u8 handle) { struct msft_monitor_addr_filter_data *address_filter, *n; struct msft_cp_le_cancel_monitor_advertisement cp; struct msft_data *msft = hdev->msft_data; struct list_head head; struct sk_buff *skb; INIT_LIST_HEAD(&head); /* Cancel all corresponding address monitors */ mutex_lock(&msft->filter_lock); list_for_each_entry_safe(address_filter, n, &msft->address_filters, list) { if (address_filter->pattern_handle != handle) continue; list_del(&address_filter->list); /* Keep the address filter and let * msft_add_address_filter_sync() remove and free the address * filter. */ if (address_filter->state == AF_STATE_ADDING) { address_filter->state = AF_STATE_REMOVING; continue; } /* Keep the address filter and let * msft_cancel_address_filter_sync() remove and free the address * filter */ if (address_filter->state == AF_STATE_REMOVING) continue; list_add_tail(&address_filter->list, &head); } mutex_unlock(&msft->filter_lock); list_for_each_entry_safe(address_filter, n, &head, list) { list_del(&address_filter->list); cp.sub_opcode = MSFT_OP_LE_CANCEL_MONITOR_ADVERTISEMENT; cp.handle = address_filter->msft_handle; skb = __hci_cmd_sync(hdev, hdev->msft_opcode, sizeof(cp), &cp, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { kfree(address_filter); continue; } kfree_skb(skb); bt_dev_dbg(hdev, "MSFT: Canceled device %pMR address filter", &address_filter->bdaddr); kfree(address_filter); } } static int msft_le_cancel_monitor_advertisement_cb(struct hci_dev *hdev, u16 opcode, struct adv_monitor *monitor, struct sk_buff *skb) { struct msft_rp_le_cancel_monitor_advertisement *rp; struct msft_monitor_advertisement_handle_data *handle_data; struct msft_data *msft = hdev->msft_data; int status = 0; u8 msft_handle; rp = (struct msft_rp_le_cancel_monitor_advertisement *)skb->data; if (skb->len < sizeof(*rp)) { status = HCI_ERROR_UNSPECIFIED; goto done; } status = rp->status; if (status) goto done; hci_dev_lock(hdev); handle_data = msft_find_handle_data(hdev, monitor->handle, true); if (handle_data) { if (monitor->state == ADV_MONITOR_STATE_OFFLOADED) monitor->state = ADV_MONITOR_STATE_REGISTERED; /* Do not free the monitor if it is being removed due to * suspend. It will be re-monitored on resume. */ if (!msft->suspending) { hci_free_adv_monitor(hdev, monitor); /* Clear any monitored devices by this Adv Monitor */ msft_monitor_device_del(hdev, handle_data->mgmt_handle, NULL, 0, false); } msft_handle = handle_data->msft_handle; list_del(&handle_data->list); kfree(handle_data); hci_dev_unlock(hdev); msft_remove_addr_filters_sync(hdev, msft_handle); } else { hci_dev_unlock(hdev); } done: return status; } /* This function requires the caller holds hci_req_sync_lock */ static int msft_remove_monitor_sync(struct hci_dev *hdev, struct adv_monitor *monitor) { struct msft_cp_le_cancel_monitor_advertisement cp; struct msft_monitor_advertisement_handle_data *handle_data; struct sk_buff *skb; handle_data = msft_find_handle_data(hdev, monitor->handle, true); /* If no matched handle, just remove without telling controller */ if (!handle_data) return -ENOENT; cp.sub_opcode = MSFT_OP_LE_CANCEL_MONITOR_ADVERTISEMENT; cp.handle = handle_data->msft_handle; skb = __hci_cmd_sync(hdev, hdev->msft_opcode, sizeof(cp), &cp, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) return PTR_ERR(skb); return msft_le_cancel_monitor_advertisement_cb(hdev, hdev->msft_opcode, monitor, skb); } /* This function requires the caller holds hci_req_sync_lock */ int msft_suspend_sync(struct hci_dev *hdev) { struct msft_data *msft = hdev->msft_data; struct adv_monitor *monitor; int handle = 0; if (!msft || !msft_monitor_supported(hdev)) return 0; msft->suspending = true; while (1) { monitor = idr_get_next(&hdev->adv_monitors_idr, &handle); if (!monitor) break; msft_remove_monitor_sync(hdev, monitor); handle++; } /* All monitors have been removed */ msft->suspending = false; return 0; } static bool msft_monitor_rssi_valid(struct adv_monitor *monitor) { struct adv_rssi_thresholds *r = &monitor->rssi; if (r->high_threshold < MSFT_RSSI_THRESHOLD_VALUE_MIN || r->high_threshold > MSFT_RSSI_THRESHOLD_VALUE_MAX || r->low_threshold < MSFT_RSSI_THRESHOLD_VALUE_MIN || r->low_threshold > MSFT_RSSI_THRESHOLD_VALUE_MAX) return false; /* High_threshold_timeout is not supported, * once high_threshold is reached, events are immediately reported. */ if (r->high_threshold_timeout != 0) return false; if (r->low_threshold_timeout > MSFT_RSSI_LOW_TIMEOUT_MAX) return false; /* Sampling period from 0x00 to 0xFF are all allowed */ return true; } static bool msft_monitor_pattern_valid(struct adv_monitor *monitor) { return msft_monitor_rssi_valid(monitor); /* No additional check needed for pattern-based monitor */ } static int msft_add_monitor_sync(struct hci_dev *hdev, struct adv_monitor *monitor) { struct msft_cp_le_monitor_advertisement *cp; struct msft_le_monitor_advertisement_pattern_data *pattern_data; struct msft_monitor_advertisement_handle_data *handle_data; struct msft_le_monitor_advertisement_pattern *pattern; struct adv_pattern *entry; size_t total_size = sizeof(*cp) + sizeof(*pattern_data); ptrdiff_t offset = 0; u8 pattern_count = 0; struct sk_buff *skb; int err; if (!msft_monitor_pattern_valid(monitor)) return -EINVAL; list_for_each_entry(entry, &monitor->patterns, list) { pattern_count++; total_size += sizeof(*pattern) + entry->length; } cp = kmalloc(total_size, GFP_KERNEL); if (!cp) return -ENOMEM; cp->sub_opcode = MSFT_OP_LE_MONITOR_ADVERTISEMENT; cp->rssi_high = monitor->rssi.high_threshold; cp->rssi_low = monitor->rssi.low_threshold; cp->rssi_low_interval = (u8)monitor->rssi.low_threshold_timeout; cp->rssi_sampling_period = monitor->rssi.sampling_period; cp->cond_type = MSFT_MONITOR_ADVERTISEMENT_TYPE_PATTERN; pattern_data = (void *)cp->data; pattern_data->count = pattern_count; list_for_each_entry(entry, &monitor->patterns, list) { pattern = (void *)(pattern_data->data + offset); /* the length also includes data_type and offset */ pattern->length = entry->length + 2; pattern->data_type = entry->ad_type; pattern->start_byte = entry->offset; memcpy(pattern->pattern, entry->value, entry->length); offset += sizeof(*pattern) + entry->length; } skb = __hci_cmd_sync(hdev, hdev->msft_opcode, total_size, cp, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { err = PTR_ERR(skb); goto out_free; } err = msft_le_monitor_advertisement_cb(hdev, hdev->msft_opcode, monitor, skb); if (err) goto out_free; handle_data = msft_find_handle_data(hdev, monitor->handle, true); if (!handle_data) { err = -ENODATA; goto out_free; } handle_data->rssi_high = cp->rssi_high; handle_data->rssi_low = cp->rssi_low; handle_data->rssi_low_interval = cp->rssi_low_interval; handle_data->rssi_sampling_period = cp->rssi_sampling_period; out_free: kfree(cp); return err; } /* This function requires the caller holds hci_req_sync_lock */ static void reregister_monitor(struct hci_dev *hdev) { struct adv_monitor *monitor; struct msft_data *msft = hdev->msft_data; int handle = 0; if (!msft) return; msft->resuming = true; while (1) { monitor = idr_get_next(&hdev->adv_monitors_idr, &handle); if (!monitor) break; msft_add_monitor_sync(hdev, monitor); handle++; } /* All monitors have been reregistered */ msft->resuming = false; } /* This function requires the caller holds hci_req_sync_lock */ int msft_resume_sync(struct hci_dev *hdev) { struct msft_data *msft = hdev->msft_data; if (!msft || !msft_monitor_supported(hdev)) return 0; hci_dev_lock(hdev); /* Clear already tracked devices on resume. Once the monitors are * reregistered, devices in range will be found again after resume. */ hdev->advmon_pend_notify = false; msft_monitor_device_del(hdev, 0, NULL, 0, true); hci_dev_unlock(hdev); reregister_monitor(hdev); return 0; } /* This function requires the caller holds hci_req_sync_lock */ void msft_do_open(struct hci_dev *hdev) { struct msft_data *msft = hdev->msft_data; if (hdev->msft_opcode == HCI_OP_NOP) return; if (!msft) { bt_dev_err(hdev, "MSFT extension not registered"); return; } bt_dev_dbg(hdev, "Initialize MSFT extension"); /* Reset existing MSFT data before re-reading */ kfree(msft->evt_prefix); msft->evt_prefix = NULL; msft->evt_prefix_len = 0; msft->features = 0; if (!read_supported_features(hdev, msft)) { hdev->msft_data = NULL; kfree(msft); return; } if (msft_monitor_supported(hdev)) { msft->resuming = true; msft_set_filter_enable(hdev, true); /* Monitors get removed on power off, so we need to explicitly * tell the controller to re-monitor. */ reregister_monitor(hdev); } } void msft_do_close(struct hci_dev *hdev) { struct msft_data *msft = hdev->msft_data; struct msft_monitor_advertisement_handle_data *handle_data, *tmp; struct msft_monitor_addr_filter_data *address_filter, *n; struct adv_monitor *monitor; if (!msft) return; bt_dev_dbg(hdev, "Cleanup of MSFT extension"); /* The controller will silently remove all monitors on power off. * Therefore, remove handle_data mapping and reset monitor state. */ list_for_each_entry_safe(handle_data, tmp, &msft->handle_map, list) { monitor = idr_find(&hdev->adv_monitors_idr, handle_data->mgmt_handle); if (monitor && monitor->state == ADV_MONITOR_STATE_OFFLOADED) monitor->state = ADV_MONITOR_STATE_REGISTERED; list_del(&handle_data->list); kfree(handle_data); } mutex_lock(&msft->filter_lock); list_for_each_entry_safe(address_filter, n, &msft->address_filters, list) { list_del(&address_filter->list); kfree(address_filter); } mutex_unlock(&msft->filter_lock); hci_dev_lock(hdev); /* Clear any devices that are being monitored and notify device lost */ hdev->advmon_pend_notify = false; msft_monitor_device_del(hdev, 0, NULL, 0, true); hci_dev_unlock(hdev); } static int msft_cancel_address_filter_sync(struct hci_dev *hdev, void *data) { struct msft_monitor_addr_filter_data *address_filter = data; struct msft_cp_le_cancel_monitor_advertisement cp; struct msft_data *msft = hdev->msft_data; struct sk_buff *skb; int err = 0; if (!msft) { bt_dev_err(hdev, "MSFT: msft data is freed"); return -EINVAL; } /* The address filter has been removed by hci dev close */ if (!test_bit(HCI_UP, &hdev->flags)) return 0; mutex_lock(&msft->filter_lock); list_del(&address_filter->list); mutex_unlock(&msft->filter_lock); cp.sub_opcode = MSFT_OP_LE_CANCEL_MONITOR_ADVERTISEMENT; cp.handle = address_filter->msft_handle; skb = __hci_cmd_sync(hdev, hdev->msft_opcode, sizeof(cp), &cp, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "MSFT: Failed to cancel address (%pMR) filter", &address_filter->bdaddr); err = PTR_ERR(skb); goto done; } kfree_skb(skb); bt_dev_dbg(hdev, "MSFT: Canceled device %pMR address filter", &address_filter->bdaddr); done: kfree(address_filter); return err; } void msft_register(struct hci_dev *hdev) { struct msft_data *msft = NULL; bt_dev_dbg(hdev, "Register MSFT extension"); msft = kzalloc(sizeof(*msft), GFP_KERNEL); if (!msft) { bt_dev_err(hdev, "Failed to register MSFT extension"); return; } INIT_LIST_HEAD(&msft->handle_map); INIT_LIST_HEAD(&msft->address_filters); hdev->msft_data = msft; mutex_init(&msft->filter_lock); } void msft_release(struct hci_dev *hdev) { struct msft_data *msft = hdev->msft_data; if (!msft) return; bt_dev_dbg(hdev, "Unregister MSFT extension"); hdev->msft_data = NULL; kfree(msft->evt_prefix); mutex_destroy(&msft->filter_lock); kfree(msft); } /* This function requires the caller holds hdev->lock */ static void msft_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 addr_type, __u16 mgmt_handle) { struct monitored_device *dev; dev = kmalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { bt_dev_err(hdev, "MSFT vendor event %u: no memory", MSFT_EV_LE_MONITOR_DEVICE); return; } bacpy(&dev->bdaddr, bdaddr); dev->addr_type = addr_type; dev->handle = mgmt_handle; dev->notified = false; INIT_LIST_HEAD(&dev->list); list_add(&dev->list, &hdev->monitored_devices); hdev->advmon_pend_notify = true; } /* This function requires the caller holds hdev->lock */ static void msft_device_lost(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 addr_type, __u16 mgmt_handle) { if (!msft_monitor_device_del(hdev, mgmt_handle, bdaddr, addr_type, true)) { bt_dev_err(hdev, "MSFT vendor event %u: dev %pMR not in list", MSFT_EV_LE_MONITOR_DEVICE, bdaddr); } } static void *msft_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, u8 ev, size_t len) { void *data; data = skb_pull_data(skb, len); if (!data) bt_dev_err(hdev, "Malformed MSFT vendor event: 0x%02x", ev); return data; } static int msft_add_address_filter_sync(struct hci_dev *hdev, void *data) { struct msft_monitor_addr_filter_data *address_filter = data; struct msft_rp_le_monitor_advertisement *rp; struct msft_cp_le_monitor_advertisement *cp; struct msft_data *msft = hdev->msft_data; struct sk_buff *skb = NULL; bool remove = false; size_t size; if (!msft) { bt_dev_err(hdev, "MSFT: msft data is freed"); return -EINVAL; } /* The address filter has been removed by hci dev close */ if (!test_bit(HCI_UP, &hdev->flags)) return -ENODEV; /* We are safe to use the address filter from now on. * msft_monitor_device_evt() wouldn't delete this filter because it's * not been added by now. * And all other functions that requiring hci_req_sync_lock wouldn't * touch this filter before this func completes because it's protected * by hci_req_sync_lock. */ if (address_filter->state == AF_STATE_REMOVING) { mutex_lock(&msft->filter_lock); list_del(&address_filter->list); mutex_unlock(&msft->filter_lock); kfree(address_filter); return 0; } size = sizeof(*cp) + sizeof(address_filter->addr_type) + sizeof(address_filter->bdaddr); cp = kzalloc(size, GFP_KERNEL); if (!cp) { bt_dev_err(hdev, "MSFT: Alloc cmd param err"); remove = true; goto done; } cp->sub_opcode = MSFT_OP_LE_MONITOR_ADVERTISEMENT; cp->rssi_high = address_filter->rssi_high; cp->rssi_low = address_filter->rssi_low; cp->rssi_low_interval = address_filter->rssi_low_interval; cp->rssi_sampling_period = address_filter->rssi_sampling_period; cp->cond_type = MSFT_MONITOR_ADVERTISEMENT_TYPE_ADDR; cp->data[0] = address_filter->addr_type; memcpy(&cp->data[1], &address_filter->bdaddr, sizeof(address_filter->bdaddr)); skb = __hci_cmd_sync(hdev, hdev->msft_opcode, size, cp, HCI_CMD_TIMEOUT); kfree(cp); if (IS_ERR(skb)) { bt_dev_err(hdev, "Failed to enable address %pMR filter", &address_filter->bdaddr); skb = NULL; remove = true; goto done; } rp = skb_pull_data(skb, sizeof(*rp)); if (!rp || rp->sub_opcode != MSFT_OP_LE_MONITOR_ADVERTISEMENT || rp->status) remove = true; done: mutex_lock(&msft->filter_lock); if (remove) { bt_dev_warn(hdev, "MSFT: Remove address (%pMR) filter", &address_filter->bdaddr); list_del(&address_filter->list); kfree(address_filter); } else { address_filter->state = AF_STATE_ADDED; address_filter->msft_handle = rp->handle; bt_dev_dbg(hdev, "MSFT: Address %pMR filter enabled", &address_filter->bdaddr); } mutex_unlock(&msft->filter_lock); kfree_skb(skb); return 0; } /* This function requires the caller holds msft->filter_lock */ static struct msft_monitor_addr_filter_data *msft_add_address_filter (struct hci_dev *hdev, u8 addr_type, bdaddr_t *bdaddr, struct msft_monitor_advertisement_handle_data *handle_data) { struct msft_monitor_addr_filter_data *address_filter = NULL; struct msft_data *msft = hdev->msft_data; int err; address_filter = kzalloc(sizeof(*address_filter), GFP_KERNEL); if (!address_filter) return NULL; address_filter->state = AF_STATE_ADDING; address_filter->msft_handle = 0xff; address_filter->pattern_handle = handle_data->msft_handle; address_filter->mgmt_handle = handle_data->mgmt_handle; address_filter->rssi_high = handle_data->rssi_high; address_filter->rssi_low = handle_data->rssi_low; address_filter->rssi_low_interval = handle_data->rssi_low_interval; address_filter->rssi_sampling_period = handle_data->rssi_sampling_period; address_filter->addr_type = addr_type; bacpy(&address_filter->bdaddr, bdaddr); /* With the above AF_STATE_ADDING, duplicated address filter can be * avoided when receiving monitor device event (found/lost) frequently * for the same device. */ list_add_tail(&address_filter->list, &msft->address_filters); err = hci_cmd_sync_queue(hdev, msft_add_address_filter_sync, address_filter, NULL); if (err < 0) { bt_dev_err(hdev, "MSFT: Add address %pMR filter err", bdaddr); list_del(&address_filter->list); kfree(address_filter); return NULL; } bt_dev_dbg(hdev, "MSFT: Add device %pMR address filter", &address_filter->bdaddr); return address_filter; } /* This function requires the caller holds hdev->lock */ static void msft_monitor_device_evt(struct hci_dev *hdev, struct sk_buff *skb) { struct msft_monitor_addr_filter_data *n, *address_filter = NULL; struct msft_ev_le_monitor_device *ev; struct msft_monitor_advertisement_handle_data *handle_data; struct msft_data *msft = hdev->msft_data; u16 mgmt_handle = 0xffff; u8 addr_type; ev = msft_skb_pull(hdev, skb, MSFT_EV_LE_MONITOR_DEVICE, sizeof(*ev)); if (!ev) return; bt_dev_dbg(hdev, "MSFT vendor event 0x%02x: handle 0x%04x state %d addr %pMR", MSFT_EV_LE_MONITOR_DEVICE, ev->monitor_handle, ev->monitor_state, &ev->bdaddr); handle_data = msft_find_handle_data(hdev, ev->monitor_handle, false); if (!test_bit(HCI_QUIRK_USE_MSFT_EXT_ADDRESS_FILTER, &hdev->quirks)) { if (!handle_data) return; mgmt_handle = handle_data->mgmt_handle; goto report_state; } if (handle_data) { /* Don't report any device found/lost event from pattern * monitors. Pattern monitor always has its address filters for * tracking devices. */ address_filter = msft_find_address_data(hdev, ev->addr_type, &ev->bdaddr, handle_data->msft_handle); if (address_filter) return; if (ev->monitor_state && handle_data->cond_type == MSFT_MONITOR_ADVERTISEMENT_TYPE_PATTERN) msft_add_address_filter(hdev, ev->addr_type, &ev->bdaddr, handle_data); return; } /* This device event is not from pattern monitor. * Report it if there is a corresponding address_filter for it. */ list_for_each_entry(n, &msft->address_filters, list) { if (n->state == AF_STATE_ADDED && n->msft_handle == ev->monitor_handle) { mgmt_handle = n->mgmt_handle; address_filter = n; break; } } if (!address_filter) { bt_dev_warn(hdev, "MSFT: Unexpected device event %pMR, %u, %u", &ev->bdaddr, ev->monitor_handle, ev->monitor_state); return; } report_state: switch (ev->addr_type) { case ADDR_LE_DEV_PUBLIC: addr_type = BDADDR_LE_PUBLIC; break; case ADDR_LE_DEV_RANDOM: addr_type = BDADDR_LE_RANDOM; break; default: bt_dev_err(hdev, "MSFT vendor event 0x%02x: unknown addr type 0x%02x", MSFT_EV_LE_MONITOR_DEVICE, ev->addr_type); return; } if (ev->monitor_state) { msft_device_found(hdev, &ev->bdaddr, addr_type, mgmt_handle); } else { if (address_filter && address_filter->state == AF_STATE_ADDED) { address_filter->state = AF_STATE_REMOVING; hci_cmd_sync_queue(hdev, msft_cancel_address_filter_sync, address_filter, NULL); } msft_device_lost(hdev, &ev->bdaddr, addr_type, mgmt_handle); } } void msft_vendor_evt(struct hci_dev *hdev, void *data, struct sk_buff *skb) { struct msft_data *msft = hdev->msft_data; u8 *evt_prefix; u8 *evt; if (!msft) return; /* When the extension has defined an event prefix, check that it * matches, and otherwise just return. */ if (msft->evt_prefix_len > 0) { evt_prefix = msft_skb_pull(hdev, skb, 0, msft->evt_prefix_len); if (!evt_prefix) return; if (memcmp(evt_prefix, msft->evt_prefix, msft->evt_prefix_len)) return; } /* Every event starts at least with an event code and the rest of * the data is variable and depends on the event code. */ if (skb->len < 1) return; evt = msft_skb_pull(hdev, skb, 0, sizeof(*evt)); if (!evt) return; hci_dev_lock(hdev); switch (*evt) { case MSFT_EV_LE_MONITOR_DEVICE: mutex_lock(&msft->filter_lock); msft_monitor_device_evt(hdev, skb); mutex_unlock(&msft->filter_lock); break; default: bt_dev_dbg(hdev, "MSFT vendor event 0x%02x", *evt); break; } hci_dev_unlock(hdev); } __u64 msft_get_features(struct hci_dev *hdev) { struct msft_data *msft = hdev->msft_data; return msft ? msft->features : 0; } static void msft_le_set_advertisement_filter_enable_cb(struct hci_dev *hdev, void *user_data, u8 status) { struct msft_cp_le_set_advertisement_filter_enable *cp = user_data; struct msft_data *msft = hdev->msft_data; /* Error 0x0C would be returned if the filter enabled status is * already set to whatever we were trying to set. * Although the default state should be disabled, some controller set * the initial value to enabled. Because there is no way to know the * actual initial value before sending this command, here we also treat * error 0x0C as success. */ if (status != 0x00 && status != 0x0C) return; hci_dev_lock(hdev); msft->filter_enabled = cp->enable; if (status == 0x0C) bt_dev_warn(hdev, "MSFT filter_enable is already %s", cp->enable ? "on" : "off"); hci_dev_unlock(hdev); } /* This function requires the caller holds hci_req_sync_lock */ int msft_add_monitor_pattern(struct hci_dev *hdev, struct adv_monitor *monitor) { struct msft_data *msft = hdev->msft_data; if (!msft) return -EOPNOTSUPP; if (msft->resuming || msft->suspending) return -EBUSY; return msft_add_monitor_sync(hdev, monitor); } /* This function requires the caller holds hci_req_sync_lock */ int msft_remove_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) { struct msft_data *msft = hdev->msft_data; if (!msft) return -EOPNOTSUPP; if (msft->resuming || msft->suspending) return -EBUSY; return msft_remove_monitor_sync(hdev, monitor); } int msft_set_filter_enable(struct hci_dev *hdev, bool enable) { struct msft_cp_le_set_advertisement_filter_enable cp; struct msft_data *msft = hdev->msft_data; int err; if (!msft) return -EOPNOTSUPP; cp.sub_opcode = MSFT_OP_LE_SET_ADVERTISEMENT_FILTER_ENABLE; cp.enable = enable; err = __hci_cmd_sync_status(hdev, hdev->msft_opcode, sizeof(cp), &cp, HCI_CMD_TIMEOUT); msft_le_set_advertisement_filter_enable_cb(hdev, &cp, err); return 0; } bool msft_curve_validity(struct hci_dev *hdev) { return hdev->msft_curve_validity; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG802154_RDEV_OPS #define __CFG802154_RDEV_OPS #include <net/cfg802154.h> #include "core.h" #include "trace.h" static inline struct net_device * rdev_add_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, const char *name, unsigned char name_assign_type, int type) { return rdev->ops->add_virtual_intf_deprecated(&rdev->wpan_phy, name, name_assign_type, type); } static inline void rdev_del_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, struct net_device *dev) { rdev->ops->del_virtual_intf_deprecated(&rdev->wpan_phy, dev); } static inline int rdev_suspend(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_suspend(&rdev->wpan_phy); ret = rdev->ops->suspend(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_resume(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_resume(&rdev->wpan_phy); ret = rdev->ops->resume(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_add_virtual_intf(struct cfg802154_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr) { int ret; trace_802154_rdev_add_virtual_intf(&rdev->wpan_phy, name, type, extended_addr); ret = rdev->ops->add_virtual_intf(&rdev->wpan_phy, name, name_assign_type, type, extended_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { int ret; trace_802154_rdev_del_virtual_intf(&rdev->wpan_phy, wpan_dev); ret = rdev->ops->del_virtual_intf(&rdev->wpan_phy, wpan_dev); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_channel(struct cfg802154_registered_device *rdev, u8 page, u8 channel) { int ret; trace_802154_rdev_set_channel(&rdev->wpan_phy, page, channel); ret = rdev->ops->set_channel(&rdev->wpan_phy, page, channel); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_mode(struct cfg802154_registered_device *rdev, const struct wpan_phy_cca *cca) { int ret; trace_802154_rdev_set_cca_mode(&rdev->wpan_phy, cca); ret = rdev->ops->set_cca_mode(&rdev->wpan_phy, cca); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_ed_level(struct cfg802154_registered_device *rdev, s32 ed_level) { int ret; trace_802154_rdev_set_cca_ed_level(&rdev->wpan_phy, ed_level); ret = rdev->ops->set_cca_ed_level(&rdev->wpan_phy, ed_level); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg802154_registered_device *rdev, s32 power) { int ret; trace_802154_rdev_set_tx_power(&rdev->wpan_phy, power); ret = rdev->ops->set_tx_power(&rdev->wpan_phy, power); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_pan_id(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 pan_id) { int ret; trace_802154_rdev_set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); ret = rdev->ops->set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_short_addr(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 short_addr) { int ret; trace_802154_rdev_set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); ret = rdev->ops->set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_backoff_exponent(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be) { int ret; trace_802154_rdev_set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); ret = rdev->ops->set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_csma_backoffs(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 max_csma_backoffs) { int ret; trace_802154_rdev_set_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); ret = rdev->ops->set_max_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_frame_retries(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, s8 max_frame_retries) { int ret; trace_802154_rdev_set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); ret = rdev->ops->set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_lbt_mode(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool mode) { int ret; trace_802154_rdev_set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); ret = rdev->ops->set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_ackreq_default(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool ackreq) { int ret; trace_802154_rdev_set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); ret = rdev->ops->set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_trigger_scan(struct cfg802154_registered_device *rdev, struct cfg802154_scan_request *request) { int ret; if (!rdev->ops->trigger_scan) return -EOPNOTSUPP; trace_802154_rdev_trigger_scan(&rdev->wpan_phy, request); ret = rdev->ops->trigger_scan(&rdev->wpan_phy, request); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_abort_scan(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { int ret; if (!rdev->ops->abort_scan) return -EOPNOTSUPP; trace_802154_rdev_abort_scan(&rdev->wpan_phy, wpan_dev); ret = rdev->ops->abort_scan(&rdev->wpan_phy, wpan_dev); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_send_beacons(struct cfg802154_registered_device *rdev, struct cfg802154_beacon_request *request) { int ret; if (!rdev->ops->send_beacons) return -EOPNOTSUPP; trace_802154_rdev_send_beacons(&rdev->wpan_phy, request); ret = rdev->ops->send_beacons(&rdev->wpan_phy, request); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_stop_beacons(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { int ret; if (!rdev->ops->stop_beacons) return -EOPNOTSUPP; trace_802154_rdev_stop_beacons(&rdev->wpan_phy, wpan_dev); ret = rdev->ops->stop_beacons(&rdev->wpan_phy, wpan_dev); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_associate(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_addr *coord) { int ret; if (!rdev->ops->associate) return -EOPNOTSUPP; trace_802154_rdev_associate(&rdev->wpan_phy, wpan_dev, coord); ret = rdev->ops->associate(&rdev->wpan_phy, wpan_dev, coord); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_disassociate(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_addr *target) { int ret; if (!rdev->ops->disassociate) return -EOPNOTSUPP; trace_802154_rdev_disassociate(&rdev->wpan_phy, wpan_dev, target); ret = rdev->ops->disassociate(&rdev->wpan_phy, wpan_dev, target); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL /* TODO this is already a nl802154, so move into ieee802154 */ static inline void rdev_get_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table) { rdev->ops->get_llsec_table(&rdev->wpan_phy, wpan_dev, table); } static inline void rdev_lock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->lock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline void rdev_unlock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->unlock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline int rdev_get_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params) { return rdev->ops->get_llsec_params(&rdev->wpan_phy, wpan_dev, params); } static inline int rdev_set_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, u32 changed) { return rdev->ops->set_llsec_params(&rdev->wpan_phy, wpan_dev, params, changed); } static inline int rdev_add_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key) { return rdev->ops->add_llsec_key(&rdev->wpan_phy, wpan_dev, id, key); } static inline int rdev_del_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id) { return rdev->ops->del_llsec_key(&rdev->wpan_phy, wpan_dev, id); } static inline int rdev_add_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->add_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_del_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->del_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_add_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev_desc) { return rdev->ops->add_device(&rdev->wpan_phy, wpan_dev, dev_desc); } static inline int rdev_del_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr) { return rdev->ops->del_device(&rdev->wpan_phy, wpan_dev, extended_addr); } static inline int rdev_add_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->add_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } static inline int rdev_del_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->del_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ #endif /* __CFG802154_RDEV_OPS */
34 34 34 34 34 16 13 12 13 13 3 2 1 2 1 11 10 10 10 1 9 9 9 9 25 25 34 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 // SPDX-License-Identifier: GPL-2.0-or-later /* * Create default crypto algorithm instances. * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> */ #include <crypto/internal/aead.h> #include <linux/completion.h> #include <linux/ctype.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/rtnetlink.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/string.h> #include "internal.h" struct cryptomgr_param { struct rtattr *tb[CRYPTO_MAX_ATTRS + 2]; struct { struct rtattr attr; struct crypto_attr_type data; } type; struct { struct rtattr attr; struct crypto_attr_alg data; } attrs[CRYPTO_MAX_ATTRS]; char template[CRYPTO_MAX_ALG_NAME]; struct crypto_larval *larval; u32 otype; u32 omask; }; struct crypto_test_param { char driver[CRYPTO_MAX_ALG_NAME]; char alg[CRYPTO_MAX_ALG_NAME]; u32 type; }; static int cryptomgr_probe(void *data) { struct cryptomgr_param *param = data; struct crypto_template *tmpl; int err = -ENOENT; tmpl = crypto_lookup_template(param->template); if (!tmpl) goto out; do { err = tmpl->create(tmpl, param->tb); } while (err == -EAGAIN && !signal_pending(current)); crypto_tmpl_put(tmpl); out: param->larval->adult = ERR_PTR(err); param->larval->alg.cra_flags |= CRYPTO_ALG_DEAD; complete_all(&param->larval->completion); crypto_alg_put(&param->larval->alg); kfree(param); module_put_and_kthread_exit(0); } static int cryptomgr_schedule_probe(struct crypto_larval *larval) { struct task_struct *thread; struct cryptomgr_param *param; const char *name = larval->alg.cra_name; const char *p; unsigned int len; int i; if (!try_module_get(THIS_MODULE)) goto err; param = kzalloc(sizeof(*param), GFP_KERNEL); if (!param) goto err_put_module; for (p = name; isalnum(*p) || *p == '-' || *p == '_'; p++) ; len = p - name; if (!len || *p != '(') goto err_free_param; memcpy(param->template, name, len); i = 0; for (;;) { name = ++p; for (; isalnum(*p) || *p == '-' || *p == '_'; p++) ; if (*p == '(') { int recursion = 0; for (;;) { if (!*++p) goto err_free_param; if (*p == '(') recursion++; else if (*p == ')' && !recursion--) break; } p++; } len = p - name; if (!len) goto err_free_param; param->attrs[i].attr.rta_len = sizeof(param->attrs[i]); param->attrs[i].attr.rta_type = CRYPTOA_ALG; memcpy(param->attrs[i].data.name, name, len); param->tb[i + 1] = &param->attrs[i].attr; i++; if (i >= CRYPTO_MAX_ATTRS) goto err_free_param; if (*p == ')') break; if (*p != ',') goto err_free_param; } param->tb[i + 1] = NULL; param->type.attr.rta_len = sizeof(param->type); param->type.attr.rta_type = CRYPTOA_TYPE; param->type.data.type = larval->alg.cra_flags & ~CRYPTO_ALG_TESTED; param->type.data.mask = larval->mask & ~CRYPTO_ALG_TESTED; param->tb[0] = &param->type.attr; param->otype = larval->alg.cra_flags; param->omask = larval->mask; crypto_alg_get(&larval->alg); param->larval = larval; thread = kthread_run(cryptomgr_probe, param, "cryptomgr_probe"); if (IS_ERR(thread)) goto err_put_larval; return NOTIFY_STOP; err_put_larval: crypto_alg_put(&larval->alg); err_free_param: kfree(param); err_put_module: module_put(THIS_MODULE); err: return NOTIFY_OK; } static int cryptomgr_test(void *data) { struct crypto_test_param *param = data; u32 type = param->type; int err; err = alg_test(param->driver, param->alg, type, CRYPTO_ALG_TESTED); crypto_alg_tested(param->driver, err); kfree(param); module_put_and_kthread_exit(0); } static int cryptomgr_schedule_test(struct crypto_alg *alg) { struct task_struct *thread; struct crypto_test_param *param; if (IS_ENABLED(CONFIG_CRYPTO_MANAGER_DISABLE_TESTS)) return NOTIFY_DONE; if (!try_module_get(THIS_MODULE)) goto err; param = kzalloc(sizeof(*param), GFP_KERNEL); if (!param) goto err_put_module; memcpy(param->driver, alg->cra_driver_name, sizeof(param->driver)); memcpy(param->alg, alg->cra_name, sizeof(param->alg)); param->type = alg->cra_flags; thread = kthread_run(cryptomgr_test, param, "cryptomgr_test"); if (IS_ERR(thread)) goto err_free_param; return NOTIFY_STOP; err_free_param: kfree(param); err_put_module: module_put(THIS_MODULE); err: return NOTIFY_OK; } static int cryptomgr_notify(struct notifier_block *this, unsigned long msg, void *data) { switch (msg) { case CRYPTO_MSG_ALG_REQUEST: return cryptomgr_schedule_probe(data); case CRYPTO_MSG_ALG_REGISTER: return cryptomgr_schedule_test(data); case CRYPTO_MSG_ALG_LOADED: break; } return NOTIFY_DONE; } static struct notifier_block cryptomgr_notifier = { .notifier_call = cryptomgr_notify, }; static int __init cryptomgr_init(void) { return crypto_register_notifier(&cryptomgr_notifier); } static void __exit cryptomgr_exit(void) { int err = crypto_unregister_notifier(&cryptomgr_notifier); BUG_ON(err); } /* * This is arch_initcall() so that the crypto self-tests are run on algorithms * registered early by subsys_initcall(). subsys_initcall() is needed for * generic implementations so that they're available for comparison tests when * other implementations are registered later by module_init(). */ arch_initcall(cryptomgr_init); module_exit(cryptomgr_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Crypto Algorithm Manager");
3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 // SPDX-License-Identifier: GPL-2.0 #include <linux/init.h> #include <linux/mm.h> #include <linux/security.h> #include <linux/sysctl.h> /* amount of vm to protect from userspace access by both DAC and the LSM*/ unsigned long mmap_min_addr; /* amount of vm to protect from userspace using CAP_SYS_RAWIO (DAC) */ unsigned long dac_mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR; /* amount of vm to protect from userspace using the LSM = CONFIG_LSM_MMAP_MIN_ADDR */ /* * Update mmap_min_addr = max(dac_mmap_min_addr, CONFIG_LSM_MMAP_MIN_ADDR) */ static void update_mmap_min_addr(void) { #ifdef CONFIG_LSM_MMAP_MIN_ADDR if (dac_mmap_min_addr > CONFIG_LSM_MMAP_MIN_ADDR) mmap_min_addr = dac_mmap_min_addr; else mmap_min_addr = CONFIG_LSM_MMAP_MIN_ADDR; #else mmap_min_addr = dac_mmap_min_addr; #endif } /* * sysctl handler which just sets dac_mmap_min_addr = the new value and then * calls update_mmap_min_addr() so non MAP_FIXED hints get rounded properly */ int mmap_min_addr_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; if (write && !capable(CAP_SYS_RAWIO)) return -EPERM; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); update_mmap_min_addr(); return ret; } static const struct ctl_table min_addr_sysctl_table[] = { { .procname = "mmap_min_addr", .data = &dac_mmap_min_addr, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = mmap_min_addr_handler, }, }; static int __init init_mmap_min_addr(void) { register_sysctl_init("vm", min_addr_sysctl_table); update_mmap_min_addr(); return 0; } pure_initcall(init_mmap_min_addr);
1 4 3 3 2 1 1 1 1 2 13 1 4 3 2 3 5 8 13 5 5 5 5 5 1 5 4 4 4 3 2 1 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 /* Copyright (c) 2012 Coraid, Inc. See COPYING for GPL terms. */ /* * aoechr.c * AoE character device driver */ #include <linux/hdreg.h> #include <linux/blkdev.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/skbuff.h> #include <linux/export.h> #include "aoe.h" enum { //MINOR_STAT = 1, (moved to sysfs) MINOR_ERR = 2, MINOR_DISCOVER, MINOR_INTERFACES, MINOR_REVALIDATE, MINOR_FLUSH, MSGSZ = 2048, NMSG = 100, /* message backlog to retain */ }; struct aoe_chardev { ulong minor; char name[32]; }; enum { EMFL_VALID = 1 }; struct ErrMsg { short flags; short len; char *msg; }; static DEFINE_MUTEX(aoechr_mutex); /* A ring buffer of error messages, to be read through * "/dev/etherd/err". When no messages are present, * readers will block waiting for messages to appear. */ static struct ErrMsg emsgs[NMSG]; static int emsgs_head_idx, emsgs_tail_idx; static struct completion emsgs_comp; static spinlock_t emsgs_lock; static int nblocked_emsgs_readers; static struct aoe_chardev chardevs[] = { { MINOR_ERR, "err" }, { MINOR_DISCOVER, "discover" }, { MINOR_INTERFACES, "interfaces" }, { MINOR_REVALIDATE, "revalidate" }, { MINOR_FLUSH, "flush" }, }; static char *aoe_devnode(const struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "etherd/%s", dev_name(dev)); } static const struct class aoe_class = { .name = "aoe", .devnode = aoe_devnode, }; static int discover(void) { aoecmd_cfg(0xffff, 0xff); return 0; } static int interfaces(const char __user *str, size_t size) { if (set_aoe_iflist(str, size)) { printk(KERN_ERR "aoe: could not set interface list: too many interfaces\n"); return -EINVAL; } return 0; } static int revalidate(const char __user *str, size_t size) { int major, minor, n; ulong flags; struct aoedev *d; struct sk_buff *skb; char buf[16]; if (size >= sizeof buf) return -EINVAL; buf[sizeof buf - 1] = '\0'; if (copy_from_user(buf, str, size)) return -EFAULT; n = sscanf(buf, "e%d.%d", &major, &minor); if (n != 2) { pr_err("aoe: invalid device specification %s\n", buf); return -EINVAL; } d = aoedev_by_aoeaddr(major, minor, 0); if (!d) return -EINVAL; spin_lock_irqsave(&d->lock, flags); aoecmd_cleanslate(d); aoecmd_cfg(major, minor); loop: skb = aoecmd_ata_id(d); spin_unlock_irqrestore(&d->lock, flags); /* try again if we are able to sleep a bit, * otherwise give up this revalidation */ if (!skb && !msleep_interruptible(250)) { spin_lock_irqsave(&d->lock, flags); goto loop; } aoedev_put(d); if (skb) { struct sk_buff_head queue; __skb_queue_head_init(&queue); __skb_queue_tail(&queue, skb); aoenet_xmit(&queue); } return 0; } void aoechr_error(char *msg) { struct ErrMsg *em; char *mp; ulong flags, n; n = strlen(msg); spin_lock_irqsave(&emsgs_lock, flags); em = emsgs + emsgs_tail_idx; if ((em->flags & EMFL_VALID)) { bail: spin_unlock_irqrestore(&emsgs_lock, flags); return; } mp = kmemdup(msg, n, GFP_ATOMIC); if (!mp) goto bail; em->msg = mp; em->flags |= EMFL_VALID; em->len = n; emsgs_tail_idx++; emsgs_tail_idx %= ARRAY_SIZE(emsgs); spin_unlock_irqrestore(&emsgs_lock, flags); if (nblocked_emsgs_readers) complete(&emsgs_comp); } static ssize_t aoechr_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offp) { int ret = -EINVAL; switch ((unsigned long) filp->private_data) { default: printk(KERN_INFO "aoe: can't write to that file.\n"); break; case MINOR_DISCOVER: ret = discover(); break; case MINOR_INTERFACES: ret = interfaces(buf, cnt); break; case MINOR_REVALIDATE: ret = revalidate(buf, cnt); break; case MINOR_FLUSH: ret = aoedev_flush(buf, cnt); break; } if (ret == 0) ret = cnt; return ret; } static int aoechr_open(struct inode *inode, struct file *filp) { int n, i; mutex_lock(&aoechr_mutex); n = iminor(inode); filp->private_data = (void *) (unsigned long) n; for (i = 0; i < ARRAY_SIZE(chardevs); ++i) if (chardevs[i].minor == n) { mutex_unlock(&aoechr_mutex); return 0; } mutex_unlock(&aoechr_mutex); return -EINVAL; } static int aoechr_rel(struct inode *inode, struct file *filp) { return 0; } static ssize_t aoechr_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off) { unsigned long n; char *mp; struct ErrMsg *em; ssize_t len; ulong flags; n = (unsigned long) filp->private_data; if (n != MINOR_ERR) return -EFAULT; spin_lock_irqsave(&emsgs_lock, flags); for (;;) { em = emsgs + emsgs_head_idx; if ((em->flags & EMFL_VALID) != 0) break; if (filp->f_flags & O_NDELAY) { spin_unlock_irqrestore(&emsgs_lock, flags); return -EAGAIN; } nblocked_emsgs_readers++; spin_unlock_irqrestore(&emsgs_lock, flags); n = wait_for_completion_interruptible(&emsgs_comp); spin_lock_irqsave(&emsgs_lock, flags); nblocked_emsgs_readers--; if (n) { spin_unlock_irqrestore(&emsgs_lock, flags); return -ERESTARTSYS; } } if (em->len > cnt) { spin_unlock_irqrestore(&emsgs_lock, flags); return -EAGAIN; } mp = em->msg; len = em->len; em->msg = NULL; em->flags &= ~EMFL_VALID; emsgs_head_idx++; emsgs_head_idx %= ARRAY_SIZE(emsgs); spin_unlock_irqrestore(&emsgs_lock, flags); n = copy_to_user(buf, mp, len); kfree(mp); return n == 0 ? len : -EFAULT; } static const struct file_operations aoe_fops = { .write = aoechr_write, .read = aoechr_read, .open = aoechr_open, .release = aoechr_rel, .owner = THIS_MODULE, .llseek = noop_llseek, }; int __init aoechr_init(void) { int n, i; n = register_chrdev(AOE_MAJOR, "aoechr", &aoe_fops); if (n < 0) { printk(KERN_ERR "aoe: can't register char device\n"); return n; } init_completion(&emsgs_comp); spin_lock_init(&emsgs_lock); n = class_register(&aoe_class); if (n) { unregister_chrdev(AOE_MAJOR, "aoechr"); return n; } for (i = 0; i < ARRAY_SIZE(chardevs); ++i) device_create(&aoe_class, NULL, MKDEV(AOE_MAJOR, chardevs[i].minor), NULL, chardevs[i].name); return 0; } void aoechr_exit(void) { int i; for (i = 0; i < ARRAY_SIZE(chardevs); ++i) device_destroy(&aoe_class, MKDEV(AOE_MAJOR, chardevs[i].minor)); class_unregister(&aoe_class); unregister_chrdev(AOE_MAJOR, "aoechr"); }
1 1 1 1 1 1 1 2 2 1 2 2 3 2 1 2 3 2 2 2 1 1 1 5 5 1 5 4 3 4 5 2 2 1 2 2 1 535 535 535 2 535 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * (C) Copyright IBM Corp. 2002, 2004 * Copyright (c) 2002 Intel Corp. * * This file is part of the SCTP kernel implementation * * Sysctl related interfaces for SCTP. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * Mingqin Liu <liuming@us.ibm.com> * Jon Grimm <jgrimm@us.ibm.com> * Ardelle Fan <ardelle.fan@intel.com> * Ryan Layer <rmlayer@us.ibm.com> * Sridhar Samudrala <sri@us.ibm.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <net/sctp/structs.h> #include <net/sctp/sctp.h> #include <linux/sysctl.h> static int timer_max = 86400000; /* ms in one day */ static int sack_timer_min = 1; static int sack_timer_max = 500; static int addr_scope_max = SCTP_SCOPE_POLICY_MAX; static int rwnd_scale_max = 16; static int rto_alpha_min = 0; static int rto_beta_min = 0; static int rto_alpha_max = 1000; static int rto_beta_max = 1000; static int pf_expose_max = SCTP_PF_EXPOSE_MAX; static int ps_retrans_max = SCTP_PS_RETRANS_MAX; static int udp_port_max = 65535; static unsigned long max_autoclose_min = 0; static unsigned long max_autoclose_max = (MAX_SCHEDULE_TIMEOUT / HZ > UINT_MAX) ? UINT_MAX : MAX_SCHEDULE_TIMEOUT / HZ; static int proc_sctp_do_hmac_alg(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_rto_min(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_rto_max(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_udp_port(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_alpha_beta(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_auth(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_probe_interval(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static struct ctl_table sctp_table[] = { { .procname = "sctp_mem", .data = &sysctl_sctp_mem, .maxlen = sizeof(sysctl_sctp_mem), .mode = 0644, .proc_handler = proc_doulongvec_minmax }, { .procname = "sctp_rmem", .data = &sysctl_sctp_rmem, .maxlen = sizeof(sysctl_sctp_rmem), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "sctp_wmem", .data = &sysctl_sctp_wmem, .maxlen = sizeof(sysctl_sctp_wmem), .mode = 0644, .proc_handler = proc_dointvec, }, }; /* The following index defines are used in sctp_sysctl_net_register(). * If you add new items to the sctp_net_table, please ensure that * the index values of these defines hold the same meaning indicated by * their macro names when they appear in sctp_net_table. */ #define SCTP_RTO_MIN_IDX 0 #define SCTP_RTO_MAX_IDX 1 #define SCTP_PF_RETRANS_IDX 2 #define SCTP_PS_RETRANS_IDX 3 static struct ctl_table sctp_net_table[] = { [SCTP_RTO_MIN_IDX] = { .procname = "rto_min", .data = &init_net.sctp.rto_min, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_sctp_do_rto_min, .extra1 = SYSCTL_ONE, .extra2 = &init_net.sctp.rto_max }, [SCTP_RTO_MAX_IDX] = { .procname = "rto_max", .data = &init_net.sctp.rto_max, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_sctp_do_rto_max, .extra1 = &init_net.sctp.rto_min, .extra2 = &timer_max }, [SCTP_PF_RETRANS_IDX] = { .procname = "pf_retrans", .data = &init_net.sctp.pf_retrans, .maxlen = sizeof(int), .mode = 0644, .proc_handler