1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | /* * net/tipc/ib_media.c: Infiniband bearer support for TIPC * * Copyright (c) 2013 Patrick McHardy <kaber@trash.net> * * Based on eth_media.c, which carries the following copyright notice: * * Copyright (c) 2001-2007, Ericsson AB * Copyright (c) 2005-2008, 2011, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <linux/if_infiniband.h> #include "core.h" #include "bearer.h" #define TIPC_MAX_IB_LINK_WIN 500 /* convert InfiniBand address (media address format) media address to string */ static int tipc_ib_addr2str(struct tipc_media_addr *a, char *str_buf, int str_size) { if (str_size < 60) /* 60 = 19 * strlen("xx:") + strlen("xx\0") */ return 1; sprintf(str_buf, "%20phC", a->value); return 0; } /* Convert from media address format to discovery message addr format */ static int tipc_ib_addr2msg(char *msg, struct tipc_media_addr *addr) { memset(msg, 0, TIPC_MEDIA_INFO_SIZE); memcpy(msg, addr->value, INFINIBAND_ALEN); return 0; } /* Convert raw InfiniBand address format to media addr format */ static int tipc_ib_raw2addr(struct tipc_bearer *b, struct tipc_media_addr *addr, const char *msg) { memset(addr, 0, sizeof(*addr)); memcpy(addr->value, msg, INFINIBAND_ALEN); addr->media_id = TIPC_MEDIA_TYPE_IB; addr->broadcast = !memcmp(msg, b->bcast_addr.value, INFINIBAND_ALEN); return 0; } /* Convert discovery msg addr format to InfiniBand media addr format */ static int tipc_ib_msg2addr(struct tipc_bearer *b, struct tipc_media_addr *addr, char *msg) { return tipc_ib_raw2addr(b, addr, msg); } /* InfiniBand media registration info */ struct tipc_media ib_media_info = { .send_msg = tipc_l2_send_msg, .enable_media = tipc_enable_l2_media, .disable_media = tipc_disable_l2_media, .addr2str = tipc_ib_addr2str, .addr2msg = tipc_ib_addr2msg, .msg2addr = tipc_ib_msg2addr, .raw2addr = tipc_ib_raw2addr, .priority = TIPC_DEF_LINK_PRI, .tolerance = TIPC_DEF_LINK_TOL, .min_win = TIPC_DEF_LINK_WIN, .max_win = TIPC_MAX_IB_LINK_WIN, .type_id = TIPC_MEDIA_TYPE_IB, .hwaddr_len = INFINIBAND_ALEN, .name = "ib" }; |
290 220 37 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Authors: Lotsa people, from code originally in tcp */ #ifndef _INET6_HASHTABLES_H #define _INET6_HASHTABLES_H #if IS_ENABLED(CONFIG_IPV6) #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/types.h> #include <linux/jhash.h> #include <net/inet_sock.h> #include <net/ipv6.h> #include <net/netns/hash.h> struct inet_hashinfo; static inline unsigned int __inet6_ehashfn(const u32 lhash, const u16 lport, const u32 fhash, const __be16 fport, const u32 initval) { const u32 ports = (((u32)lport) << 16) | (__force u32)fport; return jhash_3words(lhash, fhash, ports, initval); } /* * Sockets in TCP_CLOSE state are _always_ taken out of the hash, so * we need not check it for TCP lookups anymore, thanks Alexey. -DaveM * * The sockhash lock must be held as a reader here. */ struct sock *__inet6_lookup_established(const struct net *net, struct inet_hashinfo *hashinfo, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 hnum, const int dif, const int sdif); typedef u32 (inet6_ehashfn_t)(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport); inet6_ehashfn_t inet6_ehashfn; INDIRECT_CALLABLE_DECLARE(inet6_ehashfn_t udp6_ehashfn); struct sock *inet6_lookup_reuseport(const struct net *net, struct sock *sk, struct sk_buff *skb, int doff, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned short hnum, inet6_ehashfn_t *ehashfn); struct sock *inet6_lookup_listener(const struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const unsigned short hnum, const int dif, const int sdif); struct sock *inet6_lookup_run_sk_lookup(const struct net *net, int protocol, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 hnum, const int dif, inet6_ehashfn_t *ehashfn); static inline struct sock *__inet6_lookup(const struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 hnum, const int dif, const int sdif, bool *refcounted) { struct sock *sk = __inet6_lookup_established(net, hashinfo, saddr, sport, daddr, hnum, dif, sdif); *refcounted = true; if (sk) return sk; *refcounted = false; return inet6_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, hnum, dif, sdif); } static inline struct sock *inet6_steal_sock(struct net *net, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const __be16 dport, bool *refcounted, inet6_ehashfn_t *ehashfn) { struct sock *sk, *reuse_sk; bool prefetched; sk = skb_steal_sock(skb, refcounted, &prefetched); if (!sk) return NULL; if (!prefetched || !sk_fullsock(sk)) return sk; if (sk->sk_protocol == IPPROTO_TCP) { if (sk->sk_state != TCP_LISTEN) return sk; } else if (sk->sk_protocol == IPPROTO_UDP) { if (sk->sk_state != TCP_CLOSE) return sk; } else { return sk; } reuse_sk = inet6_lookup_reuseport(net, sk, skb, doff, saddr, sport, daddr, ntohs(dport), ehashfn); if (!reuse_sk) return sk; /* We've chosen a new reuseport sock which is never refcounted. This * implies that sk also isn't refcounted. */ WARN_ON_ONCE(*refcounted); return reuse_sk; } static inline struct sock *__inet6_lookup_skb(struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be16 sport, const __be16 dport, int iif, int sdif, bool *refcounted) { struct net *net = dev_net(skb_dst(skb)->dev); const struct ipv6hdr *ip6h = ipv6_hdr(skb); struct sock *sk; sk = inet6_steal_sock(net, skb, doff, &ip6h->saddr, sport, &ip6h->daddr, dport, refcounted, inet6_ehashfn); if (IS_ERR(sk)) return NULL; if (sk) return sk; return __inet6_lookup(net, hashinfo, skb, doff, &ip6h->saddr, sport, &ip6h->daddr, ntohs(dport), iif, sdif, refcounted); } struct sock *inet6_lookup(const struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const __be16 dport, const int dif); int inet6_hash(struct sock *sk); static inline bool inet6_match(const struct net *net, const struct sock *sk, const struct in6_addr *saddr, const struct in6_addr *daddr, const __portpair ports, const int dif, const int sdif) { if (!net_eq(sock_net(sk), net) || sk->sk_family != AF_INET6 || sk->sk_portpair != ports || !ipv6_addr_equal(&sk->sk_v6_daddr, saddr) || !ipv6_addr_equal(&sk->sk_v6_rcv_saddr, daddr)) return false; /* READ_ONCE() paired with WRITE_ONCE() in sock_bindtoindex_locked() */ return inet_sk_bound_dev_eq(net, READ_ONCE(sk->sk_bound_dev_if), dif, sdif); } #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* _INET6_HASHTABLES_H */ |
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 1 1 1 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 | // SPDX-License-Identifier: GPL-2.0-or-later /* * TTUSB DEC Driver * * Copyright (C) 2003-2004 Alex Woods <linux-dvb@giblets.org> * IR support by Peter Beutner <p.beutner@gmx.net> */ #include <linux/list.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/usb.h> #include <linux/interrupt.h> #include <linux/firmware.h> #include <linux/crc32.h> #include <linux/init.h> #include <linux/input.h> #include <linux/mutex.h> #include <linux/workqueue.h> #include <media/dmxdev.h> #include <media/dvb_demux.h> #include <media/dvb_frontend.h> #include <media/dvb_net.h> #include "ttusbdecfe.h" static int debug; static int output_pva; static int enable_rc; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); module_param(output_pva, int, 0444); MODULE_PARM_DESC(output_pva, "Output PVA from dvr device (default:off)"); module_param(enable_rc, int, 0644); MODULE_PARM_DESC(enable_rc, "Turn on/off IR remote control(default: off)"); DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); #define dprintk if (debug) printk #define DRIVER_NAME "TechnoTrend/Hauppauge DEC USB" #define COMMAND_PIPE 0x03 #define RESULT_PIPE 0x04 #define IN_PIPE 0x08 #define OUT_PIPE 0x07 #define IRQ_PIPE 0x0A #define COMMAND_PACKET_SIZE 0x3c #define ARM_PACKET_SIZE 0x1000 #define IRQ_PACKET_SIZE 0x8 #define ISO_BUF_COUNT 0x04 #define FRAMES_PER_ISO_BUF 0x04 #define ISO_FRAME_SIZE 0x0380 #define MAX_PVA_LENGTH 6144 enum ttusb_dec_model { TTUSB_DEC2000T, TTUSB_DEC2540T, TTUSB_DEC3000S }; enum ttusb_dec_packet_type { TTUSB_DEC_PACKET_PVA, TTUSB_DEC_PACKET_SECTION, TTUSB_DEC_PACKET_EMPTY }; enum ttusb_dec_interface { TTUSB_DEC_INTERFACE_INITIAL, TTUSB_DEC_INTERFACE_IN, TTUSB_DEC_INTERFACE_OUT }; typedef int (dvb_filter_pes2ts_cb_t) (void *, unsigned char *); struct dvb_filter_pes2ts { unsigned char buf[188]; unsigned char cc; dvb_filter_pes2ts_cb_t *cb; void *priv; }; struct ttusb_dec { enum ttusb_dec_model model; char *model_name; char *firmware_name; int can_playback; /* DVB bits */ struct dvb_adapter adapter; struct dmxdev dmxdev; struct dvb_demux demux; struct dmx_frontend frontend; struct dvb_net dvb_net; struct dvb_frontend* fe; u16 pid[DMX_PES_OTHER]; /* USB bits */ struct usb_device *udev; u8 trans_count; unsigned int command_pipe; unsigned int result_pipe; unsigned int in_pipe; unsigned int out_pipe; unsigned int irq_pipe; enum ttusb_dec_interface interface; struct mutex usb_mutex; void *irq_buffer; struct urb *irq_urb; dma_addr_t irq_dma_handle; void *iso_buffer; struct urb *iso_urb[ISO_BUF_COUNT]; int iso_stream_count; struct mutex iso_mutex; u8 packet[MAX_PVA_LENGTH + 4]; enum ttusb_dec_packet_type packet_type; int packet_state; int packet_length; int packet_payload_length; u16 next_packet_id; int pva_stream_count; int filter_stream_count; struct dvb_filter_pes2ts a_pes2ts; struct dvb_filter_pes2ts v_pes2ts; u8 v_pes[16 + MAX_PVA_LENGTH]; int v_pes_length; int v_pes_postbytes; struct list_head urb_frame_list; struct work_struct urb_bh_work; spinlock_t urb_frame_list_lock; struct dvb_demux_filter *audio_filter; struct dvb_demux_filter *video_filter; struct list_head filter_info_list; spinlock_t filter_info_list_lock; struct input_dev *rc_input_dev; char rc_phys[64]; int active; /* Loaded successfully */ }; struct urb_frame { u8 data[ISO_FRAME_SIZE]; int length; struct list_head urb_frame_list; }; struct filter_info { u8 stream_id; struct dvb_demux_filter *filter; struct list_head filter_info_list; }; static u16 rc_keys[] = { KEY_POWER, KEY_MUTE, KEY_1, KEY_2, KEY_3, KEY_4, KEY_5, KEY_6, KEY_7, KEY_8, KEY_9, KEY_0, KEY_CHANNELUP, KEY_VOLUMEDOWN, KEY_OK, KEY_VOLUMEUP, KEY_CHANNELDOWN, KEY_PREVIOUS, KEY_ESC, KEY_RED, KEY_GREEN, KEY_YELLOW, KEY_BLUE, KEY_OPTION, KEY_M, KEY_RADIO }; static void dvb_filter_pes2ts_init(struct dvb_filter_pes2ts *p2ts, unsigned short pid, dvb_filter_pes2ts_cb_t *cb, void *priv) { unsigned char *buf=p2ts->buf; buf[0]=0x47; buf[1]=(pid>>8); buf[2]=pid&0xff; p2ts->cc=0; p2ts->cb=cb; p2ts->priv=priv; } static int dvb_filter_pes2ts(struct dvb_filter_pes2ts *p2ts, unsigned char *pes, int len, int payload_start) { unsigned char *buf=p2ts->buf; int ret=0, rest; //len=6+((pes[4]<<8)|pes[5]); if (payload_start) buf[1]|=0x40; else buf[1]&=~0x40; while (len>=184) { buf[3]=0x10|((p2ts->cc++)&0x0f); memcpy(buf+4, pes, 184); if ((ret=p2ts->cb(p2ts->priv, buf))) return ret; len-=184; pes+=184; buf[1]&=~0x40; } if (!len) return 0; buf[3]=0x30|((p2ts->cc++)&0x0f); rest=183-len; if (rest) { buf[5]=0x00; if (rest-1) memset(buf+6, 0xff, rest-1); } buf[4]=rest; memcpy(buf+5+rest, pes, len); return p2ts->cb(p2ts->priv, buf); } static void ttusb_dec_set_model(struct ttusb_dec *dec, enum ttusb_dec_model model); static void ttusb_dec_handle_irq( struct urb *urb) { struct ttusb_dec *dec = urb->context; char *buffer = dec->irq_buffer; int retval; int index = buffer[4]; switch(urb->status) { case 0: /*success*/ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: case -ETIME: /* this urb is dead, cleanup */ dprintk("%s:urb shutting down with status: %d\n", __func__, urb->status); return; default: dprintk("%s:nonzero status received: %d\n", __func__,urb->status); goto exit; } if ((buffer[0] == 0x1) && (buffer[2] == 0x15)) { /* * IR - Event * * this is an fact a bit too simple implementation; * the box also reports a keyrepeat signal * (with buffer[3] == 0x40) in an interval of ~100ms. * But to handle this correctly we had to imlemenent some * kind of timer which signals a 'key up' event if no * keyrepeat signal is received for lets say 200ms. * this should/could be added later ... * for now lets report each signal as a key down and up */ if (index - 1 < ARRAY_SIZE(rc_keys)) { dprintk("%s:rc signal:%d\n", __func__, index); input_report_key(dec->rc_input_dev, rc_keys[index - 1], 1); input_sync(dec->rc_input_dev); input_report_key(dec->rc_input_dev, rc_keys[index - 1], 0); input_sync(dec->rc_input_dev); } } exit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) printk("%s - usb_commit_urb failed with result: %d\n", __func__, retval); } static u16 crc16(u16 crc, const u8 *buf, size_t len) { u16 tmp; while (len--) { crc ^= *buf++; crc ^= (u8)crc >> 4; tmp = (u8)crc; crc ^= (tmp ^ (tmp << 1)) << 4; } return crc; } static int ttusb_dec_send_command(struct ttusb_dec *dec, const u8 command, int param_length, const u8 params[], int *result_length, u8 cmd_result[]) { int result, actual_len; u8 *b; dprintk("%s\n", __func__); b = kzalloc(COMMAND_PACKET_SIZE + 4, GFP_KERNEL); if (!b) return -ENOMEM; result = mutex_lock_interruptible(&dec->usb_mutex); if (result) { printk("%s: Failed to lock usb mutex.\n", __func__); goto err_free; } b[0] = 0xaa; b[1] = ++dec->trans_count; b[2] = command; b[3] = param_length; if (params) memcpy(&b[4], params, param_length); if (debug) { printk(KERN_DEBUG "%s: command: %*ph\n", __func__, param_length, b); } result = usb_bulk_msg(dec->udev, dec->command_pipe, b, COMMAND_PACKET_SIZE + 4, &actual_len, 1000); if (result) { printk("%s: command bulk message failed: error %d\n", __func__, result); goto err_mutex_unlock; } result = usb_bulk_msg(dec->udev, dec->result_pipe, b, COMMAND_PACKET_SIZE + 4, &actual_len, 1000); if (result) { printk("%s: result bulk message failed: error %d\n", __func__, result); goto err_mutex_unlock; } else { if (debug) { printk(KERN_DEBUG "%s: result: %*ph\n", __func__, actual_len, b); } if (result_length) *result_length = b[3]; if (cmd_result && b[3] > 0) memcpy(cmd_result, &b[4], b[3]); } err_mutex_unlock: mutex_unlock(&dec->usb_mutex); err_free: kfree(b); return result; } static int ttusb_dec_get_stb_state (struct ttusb_dec *dec, unsigned int *mode, unsigned int *model, unsigned int *version) { u8 c[COMMAND_PACKET_SIZE]; int c_length; int result; __be32 tmp; dprintk("%s\n", __func__); result = ttusb_dec_send_command(dec, 0x08, 0, NULL, &c_length, c); if (result) return result; if (c_length >= 0x0c) { if (mode != NULL) { memcpy(&tmp, c, 4); *mode = ntohl(tmp); } if (model != NULL) { memcpy(&tmp, &c[4], 4); *model = ntohl(tmp); } if (version != NULL) { memcpy(&tmp, &c[8], 4); *version = ntohl(tmp); } return 0; } else { return -ENOENT; } } static int ttusb_dec_audio_pes2ts_cb(void *priv, unsigned char *data) { struct ttusb_dec *dec = priv; dec->audio_filter->feed->cb.ts(data, 188, NULL, 0, &dec->audio_filter->feed->feed.ts, NULL); return 0; } static int ttusb_dec_video_pes2ts_cb(void *priv, unsigned char *data) { struct ttusb_dec *dec = priv; dec->video_filter->feed->cb.ts(data, 188, NULL, 0, &dec->video_filter->feed->feed.ts, NULL); return 0; } static void ttusb_dec_set_pids(struct ttusb_dec *dec) { u8 b[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; __be16 pcr = htons(dec->pid[DMX_PES_PCR]); __be16 audio = htons(dec->pid[DMX_PES_AUDIO]); __be16 video = htons(dec->pid[DMX_PES_VIDEO]); dprintk("%s\n", __func__); memcpy(&b[0], &pcr, 2); memcpy(&b[2], &audio, 2); memcpy(&b[4], &video, 2); ttusb_dec_send_command(dec, 0x50, sizeof(b), b, NULL, NULL); dvb_filter_pes2ts_init(&dec->a_pes2ts, dec->pid[DMX_PES_AUDIO], ttusb_dec_audio_pes2ts_cb, dec); dvb_filter_pes2ts_init(&dec->v_pes2ts, dec->pid[DMX_PES_VIDEO], ttusb_dec_video_pes2ts_cb, dec); dec->v_pes_length = 0; dec->v_pes_postbytes = 0; } static void ttusb_dec_process_pva(struct ttusb_dec *dec, u8 *pva, int length) { if (length < 8) { printk("%s: packet too short - discarding\n", __func__); return; } if (length > 8 + MAX_PVA_LENGTH) { printk("%s: packet too long - discarding\n", __func__); return; } switch (pva[2]) { case 0x01: { /* VideoStream */ int prebytes = pva[5] & 0x03; int postbytes = (pva[5] & 0x0c) >> 2; __be16 v_pes_payload_length; if (output_pva) { dec->video_filter->feed->cb.ts(pva, length, NULL, 0, &dec->video_filter->feed->feed.ts, NULL); return; } if (dec->v_pes_postbytes > 0 && dec->v_pes_postbytes == prebytes) { memcpy(&dec->v_pes[dec->v_pes_length], &pva[12], prebytes); dvb_filter_pes2ts(&dec->v_pes2ts, dec->v_pes, dec->v_pes_length + prebytes, 1); } if (pva[5] & 0x10) { dec->v_pes[7] = 0x80; dec->v_pes[8] = 0x05; dec->v_pes[9] = 0x21 | ((pva[8] & 0xc0) >> 5); dec->v_pes[10] = ((pva[8] & 0x3f) << 2) | ((pva[9] & 0xc0) >> 6); dec->v_pes[11] = 0x01 | ((pva[9] & 0x3f) << 2) | ((pva[10] & 0x80) >> 6); dec->v_pes[12] = ((pva[10] & 0x7f) << 1) | ((pva[11] & 0xc0) >> 7); dec->v_pes[13] = 0x01 | ((pva[11] & 0x7f) << 1); memcpy(&dec->v_pes[14], &pva[12 + prebytes], length - 12 - prebytes); dec->v_pes_length = 14 + length - 12 - prebytes; } else { dec->v_pes[7] = 0x00; dec->v_pes[8] = 0x00; memcpy(&dec->v_pes[9], &pva[8], length - 8); dec->v_pes_length = 9 + length - 8; } dec->v_pes_postbytes = postbytes; if (dec->v_pes[9 + dec->v_pes[8]] == 0x00 && dec->v_pes[10 + dec->v_pes[8]] == 0x00 && dec->v_pes[11 + dec->v_pes[8]] == 0x01) dec->v_pes[6] = 0x84; else dec->v_pes[6] = 0x80; v_pes_payload_length = htons(dec->v_pes_length - 6 + postbytes); memcpy(&dec->v_pes[4], &v_pes_payload_length, 2); if (postbytes == 0) dvb_filter_pes2ts(&dec->v_pes2ts, dec->v_pes, dec->v_pes_length, 1); break; } case 0x02: /* MainAudioStream */ if (output_pva) { dec->audio_filter->feed->cb.ts(pva, length, NULL, 0, &dec->audio_filter->feed->feed.ts, NULL); return; } dvb_filter_pes2ts(&dec->a_pes2ts, &pva[8], length - 8, pva[5] & 0x10); break; default: printk("%s: unknown PVA type: %02x.\n", __func__, pva[2]); break; } } static void ttusb_dec_process_filter(struct ttusb_dec *dec, u8 *packet, int length) { struct list_head *item; struct filter_info *finfo; struct dvb_demux_filter *filter = NULL; unsigned long flags; u8 sid; sid = packet[1]; spin_lock_irqsave(&dec->filter_info_list_lock, flags); for (item = dec->filter_info_list.next; item != &dec->filter_info_list; item = item->next) { finfo = list_entry(item, struct filter_info, filter_info_list); if (finfo->stream_id == sid) { filter = finfo->filter; break; } } spin_unlock_irqrestore(&dec->filter_info_list_lock, flags); if (filter) filter->feed->cb.sec(&packet[2], length - 2, NULL, 0, &filter->filter, NULL); } static void ttusb_dec_process_packet(struct ttusb_dec *dec) { int i; u16 csum = 0; u16 packet_id; if (dec->packet_length % 2) { printk("%s: odd sized packet - discarding\n", __func__); return; } for (i = 0; i < dec->packet_length; i += 2) csum ^= ((dec->packet[i] << 8) + dec->packet[i + 1]); if (csum) { printk("%s: checksum failed - discarding\n", __func__); return; } packet_id = dec->packet[dec->packet_length - 4] << 8; packet_id += dec->packet[dec->packet_length - 3]; if ((packet_id != dec->next_packet_id) && dec->next_packet_id) { printk("%s: warning: lost packets between %u and %u\n", __func__, dec->next_packet_id - 1, packet_id); } if (packet_id == 0xffff) dec->next_packet_id = 0x8000; else dec->next_packet_id = packet_id + 1; switch (dec->packet_type) { case TTUSB_DEC_PACKET_PVA: if (dec->pva_stream_count) ttusb_dec_process_pva(dec, dec->packet, dec->packet_payload_length); break; case TTUSB_DEC_PACKET_SECTION: if (dec->filter_stream_count) ttusb_dec_process_filter(dec, dec->packet, dec->packet_payload_length); break; case TTUSB_DEC_PACKET_EMPTY: break; } } static void swap_bytes(u8 *b, int length) { length -= length % 2; for (; length; b += 2, length -= 2) swap(*b, *(b + 1)); } static void ttusb_dec_process_urb_frame(struct ttusb_dec *dec, u8 *b, int length) { swap_bytes(b, length); while (length) { switch (dec->packet_state) { case 0: case 1: case 2: if (*b++ == 0xaa) dec->packet_state++; else dec->packet_state = 0; length--; break; case 3: if (*b == 0x00) { dec->packet_state++; dec->packet_length = 0; } else if (*b != 0xaa) { dec->packet_state = 0; } b++; length--; break; case 4: dec->packet[dec->packet_length++] = *b++; if (dec->packet_length == 2) { if (dec->packet[0] == 'A' && dec->packet[1] == 'V') { dec->packet_type = TTUSB_DEC_PACKET_PVA; dec->packet_state++; } else if (dec->packet[0] == 'S') { dec->packet_type = TTUSB_DEC_PACKET_SECTION; dec->packet_state++; } else if (dec->packet[0] == 0x00) { dec->packet_type = TTUSB_DEC_PACKET_EMPTY; dec->packet_payload_length = 2; dec->packet_state = 7; } else { printk("%s: unknown packet type: %02x%02x\n", __func__, dec->packet[0], dec->packet[1]); dec->packet_state = 0; } } length--; break; case 5: dec->packet[dec->packet_length++] = *b++; if (dec->packet_type == TTUSB_DEC_PACKET_PVA && dec->packet_length == 8) { dec->packet_state++; dec->packet_payload_length = 8 + (dec->packet[6] << 8) + dec->packet[7]; } else if (dec->packet_type == TTUSB_DEC_PACKET_SECTION && dec->packet_length == 5) { dec->packet_state++; dec->packet_payload_length = 5 + ((dec->packet[3] & 0x0f) << 8) + dec->packet[4]; } length--; break; case 6: { int remainder = dec->packet_payload_length - dec->packet_length; if (length >= remainder) { memcpy(dec->packet + dec->packet_length, b, remainder); dec->packet_length += remainder; b += remainder; length -= remainder; dec->packet_state++; } else { memcpy(&dec->packet[dec->packet_length], b, length); dec->packet_length += length; length = 0; } break; } case 7: { int tail = 4; dec->packet[dec->packet_length++] = *b++; if (dec->packet_type == TTUSB_DEC_PACKET_SECTION && dec->packet_payload_length % 2) tail++; if (dec->packet_length == dec->packet_payload_length + tail) { ttusb_dec_process_packet(dec); dec->packet_state = 0; } length--; break; } default: printk("%s: illegal packet state encountered.\n", __func__); dec->packet_state = 0; } } } static void ttusb_dec_process_urb_frame_list(struct work_struct *t) { struct ttusb_dec *dec = from_work(dec, t, urb_bh_work); struct list_head *item; struct urb_frame *frame; unsigned long flags; while (1) { spin_lock_irqsave(&dec->urb_frame_list_lock, flags); if ((item = dec->urb_frame_list.next) != &dec->urb_frame_list) { frame = list_entry(item, struct urb_frame, urb_frame_list); list_del(&frame->urb_frame_list); } else { spin_unlock_irqrestore(&dec->urb_frame_list_lock, flags); return; } spin_unlock_irqrestore(&dec->urb_frame_list_lock, flags); ttusb_dec_process_urb_frame(dec, frame->data, frame->length); kfree(frame); } } static void ttusb_dec_process_urb(struct urb *urb) { struct ttusb_dec *dec = urb->context; if (!urb->status) { int i; for (i = 0; i < FRAMES_PER_ISO_BUF; i++) { struct usb_iso_packet_descriptor *d; u8 *b; int length; struct urb_frame *frame; d = &urb->iso_frame_desc[i]; b = urb->transfer_buffer + d->offset; length = d->actual_length; if ((frame = kmalloc(sizeof(struct urb_frame), GFP_ATOMIC))) { unsigned long flags; memcpy(frame->data, b, length); frame->length = length; spin_lock_irqsave(&dec->urb_frame_list_lock, flags); list_add_tail(&frame->urb_frame_list, &dec->urb_frame_list); spin_unlock_irqrestore(&dec->urb_frame_list_lock, flags); queue_work(system_bh_wq, &dec->urb_bh_work); } } } else { /* -ENOENT is expected when unlinking urbs */ if (urb->status != -ENOENT) dprintk("%s: urb error: %d\n", __func__, urb->status); } if (dec->iso_stream_count) usb_submit_urb(urb, GFP_ATOMIC); } static void ttusb_dec_setup_urbs(struct ttusb_dec *dec) { int i, j, buffer_offset = 0; dprintk("%s\n", __func__); for (i = 0; i < ISO_BUF_COUNT; i++) { int frame_offset = 0; struct urb *urb = dec->iso_urb[i]; urb->dev = dec->udev; urb->context = dec; urb->complete = ttusb_dec_process_urb; urb->pipe = dec->in_pipe; urb->transfer_flags = URB_ISO_ASAP; urb->interval = 1; urb->number_of_packets = FRAMES_PER_ISO_BUF; urb->transfer_buffer_length = ISO_FRAME_SIZE * FRAMES_PER_ISO_BUF; urb->transfer_buffer = dec->iso_buffer + buffer_offset; buffer_offset += ISO_FRAME_SIZE * FRAMES_PER_ISO_BUF; for (j = 0; j < FRAMES_PER_ISO_BUF; j++) { urb->iso_frame_desc[j].offset = frame_offset; urb->iso_frame_desc[j].length = ISO_FRAME_SIZE; frame_offset += ISO_FRAME_SIZE; } } } static void ttusb_dec_stop_iso_xfer(struct ttusb_dec *dec) { int i; dprintk("%s\n", __func__); if (mutex_lock_interruptible(&dec->iso_mutex)) return; dec->iso_stream_count--; if (!dec->iso_stream_count) { for (i = 0; i < ISO_BUF_COUNT; i++) usb_kill_urb(dec->iso_urb[i]); } mutex_unlock(&dec->iso_mutex); } /* Setting the interface of the DEC tends to take down the USB communications * for a short period, so it's important not to call this function just before * trying to talk to it. */ static int ttusb_dec_set_interface(struct ttusb_dec *dec, enum ttusb_dec_interface interface) { int result = 0; u8 b[] = { 0x05 }; if (interface != dec->interface) { switch (interface) { case TTUSB_DEC_INTERFACE_INITIAL: result = usb_set_interface(dec->udev, 0, 0); break; case TTUSB_DEC_INTERFACE_IN: result = ttusb_dec_send_command(dec, 0x80, sizeof(b), b, NULL, NULL); if (result) return result; result = usb_set_interface(dec->udev, 0, 8); break; case TTUSB_DEC_INTERFACE_OUT: result = usb_set_interface(dec->udev, 0, 1); break; } if (result) return result; dec->interface = interface; } return 0; } static int ttusb_dec_start_iso_xfer(struct ttusb_dec *dec) { int i, result; dprintk("%s\n", __func__); if (mutex_lock_interruptible(&dec->iso_mutex)) return -EAGAIN; if (!dec->iso_stream_count) { ttusb_dec_setup_urbs(dec); dec->packet_state = 0; dec->v_pes_postbytes = 0; dec->next_packet_id = 0; for (i = 0; i < ISO_BUF_COUNT; i++) { if ((result = usb_submit_urb(dec->iso_urb[i], GFP_ATOMIC))) { printk("%s: failed urb submission %d: error %d\n", __func__, i, result); while (i) { usb_kill_urb(dec->iso_urb[i - 1]); i--; } mutex_unlock(&dec->iso_mutex); return result; } } } dec->iso_stream_count++; mutex_unlock(&dec->iso_mutex); return 0; } static int ttusb_dec_start_ts_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct ttusb_dec *dec = dvbdmx->priv; u8 b0[] = { 0x05 }; int result = 0; dprintk("%s\n", __func__); dprintk(" ts_type:"); if (dvbdmxfeed->ts_type & TS_DECODER) dprintk(" TS_DECODER"); if (dvbdmxfeed->ts_type & TS_PACKET) dprintk(" TS_PACKET"); if (dvbdmxfeed->ts_type & TS_PAYLOAD_ONLY) dprintk(" TS_PAYLOAD_ONLY"); dprintk("\n"); switch (dvbdmxfeed->pes_type) { case DMX_PES_VIDEO: dprintk(" pes_type: DMX_PES_VIDEO\n"); dec->pid[DMX_PES_PCR] = dvbdmxfeed->pid; dec->pid[DMX_PES_VIDEO] = dvbdmxfeed->pid; dec->video_filter = dvbdmxfeed->filter; ttusb_dec_set_pids(dec); break; case DMX_PES_AUDIO: dprintk(" pes_type: DMX_PES_AUDIO\n"); dec->pid[DMX_PES_AUDIO] = dvbdmxfeed->pid; dec->audio_filter = dvbdmxfeed->filter; ttusb_dec_set_pids(dec); break; case DMX_PES_TELETEXT: dec->pid[DMX_PES_TELETEXT] = dvbdmxfeed->pid; dprintk(" pes_type: DMX_PES_TELETEXT(not supported)\n"); return -ENOSYS; case DMX_PES_PCR: dprintk(" pes_type: DMX_PES_PCR\n"); dec->pid[DMX_PES_PCR] = dvbdmxfeed->pid; ttusb_dec_set_pids(dec); break; case DMX_PES_OTHER: dprintk(" pes_type: DMX_PES_OTHER(not supported)\n"); return -ENOSYS; default: dprintk(" pes_type: unknown (%d)\n", dvbdmxfeed->pes_type); return -EINVAL; } result = ttusb_dec_send_command(dec, 0x80, sizeof(b0), b0, NULL, NULL); if (result) return result; dec->pva_stream_count++; return ttusb_dec_start_iso_xfer(dec); } static int ttusb_dec_start_sec_feed(struct dvb_demux_feed *dvbdmxfeed) { struct ttusb_dec *dec = dvbdmxfeed->demux->priv; u8 b0[] = { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; __be16 pid; u8 c[COMMAND_PACKET_SIZE]; int c_length; int result; struct filter_info *finfo; unsigned long flags; u8 x = 1; dprintk("%s\n", __func__); pid = htons(dvbdmxfeed->pid); memcpy(&b0[0], &pid, 2); memcpy(&b0[4], &x, 1); memcpy(&b0[5], &dvbdmxfeed->filter->filter.filter_value[0], 1); result = ttusb_dec_send_command(dec, 0x60, sizeof(b0), b0, &c_length, c); if (!result) { if (c_length == 2) { if (!(finfo = kmalloc(sizeof(struct filter_info), GFP_ATOMIC))) return -ENOMEM; finfo->stream_id = c[1]; finfo->filter = dvbdmxfeed->filter; spin_lock_irqsave(&dec->filter_info_list_lock, flags); list_add_tail(&finfo->filter_info_list, &dec->filter_info_list); spin_unlock_irqrestore(&dec->filter_info_list_lock, flags); dvbdmxfeed->priv = finfo; dec->filter_stream_count++; return ttusb_dec_start_iso_xfer(dec); } return -EAGAIN; } else return result; } static int ttusb_dec_start_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; dprintk("%s\n", __func__); if (!dvbdmx->dmx.frontend) return -EINVAL; dprintk(" pid: 0x%04X\n", dvbdmxfeed->pid); switch (dvbdmxfeed->type) { case DMX_TYPE_TS: return ttusb_dec_start_ts_feed(dvbdmxfeed); case DMX_TYPE_SEC: return ttusb_dec_start_sec_feed(dvbdmxfeed); default: dprintk(" type: unknown (%d)\n", dvbdmxfeed->type); return -EINVAL; } } static int ttusb_dec_stop_ts_feed(struct dvb_demux_feed *dvbdmxfeed) { struct ttusb_dec *dec = dvbdmxfeed->demux->priv; u8 b0[] = { 0x00 }; ttusb_dec_send_command(dec, 0x81, sizeof(b0), b0, NULL, NULL); dec->pva_stream_count--; ttusb_dec_stop_iso_xfer(dec); return 0; } static int ttusb_dec_stop_sec_feed(struct dvb_demux_feed *dvbdmxfeed) { struct ttusb_dec *dec = dvbdmxfeed->demux->priv; u8 b0[] = { 0x00, 0x00 }; struct filter_info *finfo = dvbdmxfeed->priv; unsigned long flags; b0[1] = finfo->stream_id; spin_lock_irqsave(&dec->filter_info_list_lock, flags); list_del(&finfo->filter_info_list); spin_unlock_irqrestore(&dec->filter_info_list_lock, flags); kfree(finfo); ttusb_dec_send_command(dec, 0x62, sizeof(b0), b0, NULL, NULL); dec->filter_stream_count--; ttusb_dec_stop_iso_xfer(dec); return 0; } static int ttusb_dec_stop_feed(struct dvb_demux_feed *dvbdmxfeed) { dprintk("%s\n", __func__); switch (dvbdmxfeed->type) { case DMX_TYPE_TS: return ttusb_dec_stop_ts_feed(dvbdmxfeed); case DMX_TYPE_SEC: return ttusb_dec_stop_sec_feed(dvbdmxfeed); } return 0; } static void ttusb_dec_free_iso_urbs(struct ttusb_dec *dec) { int i; dprintk("%s\n", __func__); for (i = 0; i < ISO_BUF_COUNT; i++) usb_free_urb(dec->iso_urb[i]); kfree(dec->iso_buffer); } static int ttusb_dec_alloc_iso_urbs(struct ttusb_dec *dec) { int i; dprintk("%s\n", __func__); dec->iso_buffer = kcalloc(FRAMES_PER_ISO_BUF * ISO_BUF_COUNT, ISO_FRAME_SIZE, GFP_KERNEL); if (!dec->iso_buffer) return -ENOMEM; for (i = 0; i < ISO_BUF_COUNT; i++) { struct urb *urb; if (!(urb = usb_alloc_urb(FRAMES_PER_ISO_BUF, GFP_ATOMIC))) { ttusb_dec_free_iso_urbs(dec); return -ENOMEM; } dec->iso_urb[i] = urb; } ttusb_dec_setup_urbs(dec); return 0; } static void ttusb_dec_init_bh_work(struct ttusb_dec *dec) { spin_lock_init(&dec->urb_frame_list_lock); INIT_LIST_HEAD(&dec->urb_frame_list); INIT_WORK(&dec->urb_bh_work, ttusb_dec_process_urb_frame_list); } static int ttusb_init_rc( struct ttusb_dec *dec) { struct input_dev *input_dev; u8 b[] = { 0x00, 0x01 }; int i; int err; usb_make_path(dec->udev, dec->rc_phys, sizeof(dec->rc_phys)); strlcat(dec->rc_phys, "/input0", sizeof(dec->rc_phys)); input_dev = input_allocate_device(); if (!input_dev) return -ENOMEM; input_dev->name = "ttusb_dec remote control"; input_dev->phys = dec->rc_phys; input_dev->evbit[0] = BIT_MASK(EV_KEY); input_dev->keycodesize = sizeof(u16); input_dev->keycodemax = 0x1a; input_dev->keycode = rc_keys; for (i = 0; i < ARRAY_SIZE(rc_keys); i++) set_bit(rc_keys[i], input_dev->keybit); err = input_register_device(input_dev); if (err) { input_free_device(input_dev); return err; } dec->rc_input_dev = input_dev; if (usb_submit_urb(dec->irq_urb, GFP_KERNEL)) printk("%s: usb_submit_urb failed\n",__func__); /* enable irq pipe */ ttusb_dec_send_command(dec,0xb0,sizeof(b),b,NULL,NULL); return 0; } static void ttusb_dec_init_v_pes(struct ttusb_dec *dec) { dprintk("%s\n", __func__); dec->v_pes[0] = 0x00; dec->v_pes[1] = 0x00; dec->v_pes[2] = 0x01; dec->v_pes[3] = 0xe0; } static int ttusb_dec_init_usb(struct ttusb_dec *dec) { int result; dprintk("%s\n", __func__); mutex_init(&dec->usb_mutex); mutex_init(&dec->iso_mutex); dec->command_pipe = usb_sndbulkpipe(dec->udev, COMMAND_PIPE); dec->result_pipe = usb_rcvbulkpipe(dec->udev, RESULT_PIPE); dec->in_pipe = usb_rcvisocpipe(dec->udev, IN_PIPE); dec->out_pipe = usb_sndisocpipe(dec->udev, OUT_PIPE); dec->irq_pipe = usb_rcvintpipe(dec->udev, IRQ_PIPE); if(enable_rc) { dec->irq_urb = usb_alloc_urb(0, GFP_KERNEL); if(!dec->irq_urb) { return -ENOMEM; } dec->irq_buffer = usb_alloc_coherent(dec->udev,IRQ_PACKET_SIZE, GFP_KERNEL, &dec->irq_dma_handle); if(!dec->irq_buffer) { usb_free_urb(dec->irq_urb); return -ENOMEM; } usb_fill_int_urb(dec->irq_urb, dec->udev,dec->irq_pipe, dec->irq_buffer, IRQ_PACKET_SIZE, ttusb_dec_handle_irq, dec, 1); dec->irq_urb->transfer_dma = dec->irq_dma_handle; dec->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; } result = ttusb_dec_alloc_iso_urbs(dec); if (result) { usb_free_urb(dec->irq_urb); usb_free_coherent(dec->udev, IRQ_PACKET_SIZE, dec->irq_buffer, dec->irq_dma_handle); } return result; } static int ttusb_dec_boot_dsp(struct ttusb_dec *dec) { int i, j, actual_len, result, size, trans_count; u8 b0[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x61, 0x00 }; u8 b1[] = { 0x61 }; u8 *b; char idstring[21]; const u8 *firmware = NULL; size_t firmware_size = 0; u16 firmware_csum = 0; __be16 firmware_csum_ns; __be32 firmware_size_nl; u32 crc32_csum, crc32_check; __be32 tmp; const struct firmware *fw_entry = NULL; dprintk("%s\n", __func__); result = request_firmware(&fw_entry, dec->firmware_name, &dec->udev->dev); if (result) { printk(KERN_ERR "%s: Firmware (%s) unavailable.\n", __func__, dec->firmware_name); return result; } firmware = fw_entry->data; firmware_size = fw_entry->size; if (firmware_size < 60) { printk("%s: firmware size too small for DSP code (%zu < 60).\n", __func__, firmware_size); release_firmware(fw_entry); return -ENOENT; } /* a 32 bit checksum over the first 56 bytes of the DSP Code is stored at offset 56 of file, so use it to check if the firmware file is valid. */ crc32_csum = crc32(~0L, firmware, 56) ^ ~0L; memcpy(&tmp, &firmware[56], 4); crc32_check = ntohl(tmp); if (crc32_csum != crc32_check) { printk("%s: crc32 check of DSP code failed (calculated 0x%08x != 0x%08x in file), file invalid.\n", __func__, crc32_csum, crc32_check); release_firmware(fw_entry); return -ENOENT; } memcpy(idstring, &firmware[36], 20); idstring[20] = '\0'; printk(KERN_INFO "ttusb_dec: found DSP code \"%s\".\n", idstring); firmware_size_nl = htonl(firmware_size); memcpy(b0, &firmware_size_nl, 4); firmware_csum = crc16(~0, firmware, firmware_size) ^ ~0; firmware_csum_ns = htons(firmware_csum); memcpy(&b0[6], &firmware_csum_ns, 2); result = ttusb_dec_send_command(dec, 0x41, sizeof(b0), b0, NULL, NULL); if (result) { release_firmware(fw_entry); return result; } trans_count = 0; j = 0; b = kmalloc(ARM_PACKET_SIZE, GFP_KERNEL); if (b == NULL) { release_firmware(fw_entry); return -ENOMEM; } for (i = 0; i < firmware_size; i += COMMAND_PACKET_SIZE) { size = firmware_size - i; if (size > COMMAND_PACKET_SIZE) size = COMMAND_PACKET_SIZE; b[j + 0] = 0xaa; b[j + 1] = trans_count++; b[j + 2] = 0xf0; b[j + 3] = size; memcpy(&b[j + 4], &firmware[i], size); j += COMMAND_PACKET_SIZE + 4; if (j >= ARM_PACKET_SIZE) { result = usb_bulk_msg(dec->udev, dec->command_pipe, b, ARM_PACKET_SIZE, &actual_len, 100); j = 0; } else if (size < COMMAND_PACKET_SIZE) { result = usb_bulk_msg(dec->udev, dec->command_pipe, b, j - COMMAND_PACKET_SIZE + size, &actual_len, 100); } } result = ttusb_dec_send_command(dec, 0x43, sizeof(b1), b1, NULL, NULL); release_firmware(fw_entry); kfree(b); return result; } static int ttusb_dec_init_stb(struct ttusb_dec *dec) { int result; unsigned int mode = 0, model = 0, version = 0; dprintk("%s\n", __func__); result = ttusb_dec_get_stb_state(dec, &mode, &model, &version); if (result) return result; if (!mode) { if (version == 0xABCDEFAB) printk(KERN_INFO "ttusb_dec: no version info in Firmware\n"); else printk(KERN_INFO "ttusb_dec: Firmware %x.%02x%c%c\n", version >> 24, (version >> 16) & 0xff, (version >> 8) & 0xff, version & 0xff); result = ttusb_dec_boot_dsp(dec); if (result) return result; } else { /* We can't trust the USB IDs that some firmwares give the box */ switch (model) { case 0x00070001: case 0x00070008: case 0x0007000c: ttusb_dec_set_model(dec, TTUSB_DEC3000S); break; case 0x00070009: case 0x00070013: ttusb_dec_set_model(dec, TTUSB_DEC2000T); break; case 0x00070011: ttusb_dec_set_model(dec, TTUSB_DEC2540T); break; default: printk(KERN_ERR "%s: unknown model returned by firmware (%08x) - please report\n", __func__, model); return -ENOENT; } if (version >= 0x01770000) dec->can_playback = 1; } return 0; } static int ttusb_dec_init_dvb(struct ttusb_dec *dec) { int result; dprintk("%s\n", __func__); if ((result = dvb_register_adapter(&dec->adapter, dec->model_name, THIS_MODULE, &dec->udev->dev, adapter_nr)) < 0) { printk("%s: dvb_register_adapter failed: error %d\n", __func__, result); return result; } dec->demux.dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING; dec->demux.priv = (void *)dec; dec->demux.filternum = 31; dec->demux.feednum = 31; dec->demux.start_feed = ttusb_dec_start_feed; dec->demux.stop_feed = ttusb_dec_stop_feed; dec->demux.write_to_decoder = NULL; if ((result = dvb_dmx_init(&dec->demux)) < 0) { printk("%s: dvb_dmx_init failed: error %d\n", __func__, result); dvb_unregister_adapter(&dec->adapter); return result; } dec->dmxdev.filternum = 32; dec->dmxdev.demux = &dec->demux.dmx; dec->dmxdev.capabilities = 0; if ((result = dvb_dmxdev_init(&dec->dmxdev, &dec->adapter)) < 0) { printk("%s: dvb_dmxdev_init failed: error %d\n", __func__, result); dvb_dmx_release(&dec->demux); dvb_unregister_adapter(&dec->adapter); return result; } dec->frontend.source = DMX_FRONTEND_0; if ((result = dec->demux.dmx.add_frontend(&dec->demux.dmx, &dec->frontend)) < 0) { printk("%s: dvb_dmx_init failed: error %d\n", __func__, result); dvb_dmxdev_release(&dec->dmxdev); dvb_dmx_release(&dec->demux); dvb_unregister_adapter(&dec->adapter); return result; } if ((result = dec->demux.dmx.connect_frontend(&dec->demux.dmx, &dec->frontend)) < 0) { printk("%s: dvb_dmx_init failed: error %d\n", __func__, result); dec->demux.dmx.remove_frontend(&dec->demux.dmx, &dec->frontend); dvb_dmxdev_release(&dec->dmxdev); dvb_dmx_release(&dec->demux); dvb_unregister_adapter(&dec->adapter); return result; } dvb_net_init(&dec->adapter, &dec->dvb_net, &dec->demux.dmx); return 0; } static void ttusb_dec_exit_dvb(struct ttusb_dec *dec) { dprintk("%s\n", __func__); dvb_net_release(&dec->dvb_net); dec->demux.dmx.close(&dec->demux.dmx); dec->demux.dmx.remove_frontend(&dec->demux.dmx, &dec->frontend); dvb_dmxdev_release(&dec->dmxdev); dvb_dmx_release(&dec->demux); if (dec->fe) { dvb_unregister_frontend(dec->fe); dvb_frontend_detach(dec->fe); } dvb_unregister_adapter(&dec->adapter); } static void ttusb_dec_exit_rc(struct ttusb_dec *dec) { dprintk("%s\n", __func__); if (dec->rc_input_dev) { input_unregister_device(dec->rc_input_dev); dec->rc_input_dev = NULL; } } static void ttusb_dec_exit_usb(struct ttusb_dec *dec) { int i; dprintk("%s\n", __func__); if (enable_rc) { /* we have to check whether the irq URB is already submitted. * As the irq is submitted after the interface is changed, * this is the best method i figured out. * Any others?*/ if (dec->interface == TTUSB_DEC_INTERFACE_IN) usb_kill_urb(dec->irq_urb); usb_free_urb(dec->irq_urb); usb_free_coherent(dec->udev, IRQ_PACKET_SIZE, dec->irq_buffer, dec->irq_dma_handle); } dec->iso_stream_count = 0; for (i = 0; i < ISO_BUF_COUNT; i++) usb_kill_urb(dec->iso_urb[i]); ttusb_dec_free_iso_urbs(dec); } static void ttusb_dec_exit_bh_work(struct ttusb_dec *dec) { struct list_head *item; struct urb_frame *frame; cancel_work_sync(&dec->urb_bh_work); while ((item = dec->urb_frame_list.next) != &dec->urb_frame_list) { frame = list_entry(item, struct urb_frame, urb_frame_list); list_del(&frame->urb_frame_list); kfree(frame); } } static void ttusb_dec_init_filters(struct ttusb_dec *dec) { INIT_LIST_HEAD(&dec->filter_info_list); spin_lock_init(&dec->filter_info_list_lock); } static void ttusb_dec_exit_filters(struct ttusb_dec *dec) { struct list_head *item; struct filter_info *finfo; while ((item = dec->filter_info_list.next) != &dec->filter_info_list) { finfo = list_entry(item, struct filter_info, filter_info_list); list_del(&finfo->filter_info_list); kfree(finfo); } } static int fe_send_command(struct dvb_frontend* fe, const u8 command, int param_length, const u8 params[], int *result_length, u8 cmd_result[]) { struct ttusb_dec* dec = fe->dvb->priv; return ttusb_dec_send_command(dec, command, param_length, params, result_length, cmd_result); } static const struct ttusbdecfe_config fe_config = { .send_command = fe_send_command }; static int ttusb_dec_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev; struct ttusb_dec *dec; int result; dprintk("%s\n", __func__); udev = interface_to_usbdev(intf); if (!(dec = kzalloc(sizeof(struct ttusb_dec), GFP_KERNEL))) { printk("%s: couldn't allocate memory.\n", __func__); return -ENOMEM; } usb_set_intfdata(intf, (void *)dec); switch (id->idProduct) { case 0x1006: ttusb_dec_set_model(dec, TTUSB_DEC3000S); break; case 0x1008: ttusb_dec_set_model(dec, TTUSB_DEC2000T); break; case 0x1009: ttusb_dec_set_model(dec, TTUSB_DEC2540T); break; } dec->udev = udev; result = ttusb_dec_init_usb(dec); if (result) goto err_usb; result = ttusb_dec_init_stb(dec); if (result) goto err_stb; result = ttusb_dec_init_dvb(dec); if (result) goto err_stb; dec->adapter.priv = dec; switch (id->idProduct) { case 0x1006: dec->fe = ttusbdecfe_dvbs_attach(&fe_config); break; case 0x1008: case 0x1009: dec->fe = ttusbdecfe_dvbt_attach(&fe_config); break; } if (dec->fe == NULL) { printk("dvb-ttusb-dec: A frontend driver was not found for device [%04x:%04x]\n", le16_to_cpu(dec->udev->descriptor.idVendor), le16_to_cpu(dec->udev->descriptor.idProduct)); } else { if (dvb_register_frontend(&dec->adapter, dec->fe)) { printk("budget-ci: Frontend registration failed!\n"); if (dec->fe->ops.release) dec->fe->ops.release(dec->fe); dec->fe = NULL; } } ttusb_dec_init_v_pes(dec); ttusb_dec_init_filters(dec); ttusb_dec_init_bh_work(dec); dec->active = 1; ttusb_dec_set_interface(dec, TTUSB_DEC_INTERFACE_IN); if (enable_rc) ttusb_init_rc(dec); return 0; err_stb: ttusb_dec_exit_usb(dec); err_usb: kfree(dec); return result; } static void ttusb_dec_disconnect(struct usb_interface *intf) { struct ttusb_dec *dec = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); dprintk("%s\n", __func__); if (dec->active) { ttusb_dec_exit_bh_work(dec); ttusb_dec_exit_filters(dec); if(enable_rc) ttusb_dec_exit_rc(dec); ttusb_dec_exit_usb(dec); ttusb_dec_exit_dvb(dec); } kfree(dec); } static void ttusb_dec_set_model(struct ttusb_dec *dec, enum ttusb_dec_model model) { dec->model = model; switch (model) { case TTUSB_DEC2000T: dec->model_name = "DEC2000-t"; dec->firmware_name = "dvb-ttusb-dec-2000t.fw"; break; case TTUSB_DEC2540T: dec->model_name = "DEC2540-t"; dec->firmware_name = "dvb-ttusb-dec-2540t.fw"; break; case TTUSB_DEC3000S: dec->model_name = "DEC3000-s"; dec->firmware_name = "dvb-ttusb-dec-3000s.fw"; break; } } static const struct usb_device_id ttusb_dec_table[] = { {USB_DEVICE(0x0b48, 0x1006)}, /* DEC3000-s */ /*{USB_DEVICE(0x0b48, 0x1007)}, Unconfirmed */ {USB_DEVICE(0x0b48, 0x1008)}, /* DEC2000-t */ {USB_DEVICE(0x0b48, 0x1009)}, /* DEC2540-t */ {} }; static struct usb_driver ttusb_dec_driver = { .name = "ttusb-dec", .probe = ttusb_dec_probe, .disconnect = ttusb_dec_disconnect, .id_table = ttusb_dec_table, }; module_usb_driver(ttusb_dec_driver); MODULE_AUTHOR("Alex Woods <linux-dvb@giblets.org>"); MODULE_DESCRIPTION(DRIVER_NAME); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(usb, ttusb_dec_table); |
3 5 1 1 2 2 2 1 1 2 9 16 2 3 11 11 1 1 1 1 1 7 1 1 3 3 5 1 2 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 | // SPDX-License-Identifier: GPL-2.0-or-later /* * (C) 2012 Pablo Neira Ayuso <pablo@netfilter.org> * * This software has been sponsored by Vyatta Inc. <http://www.vyatta.com> */ #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/capability.h> #include <net/netlink.h> #include <net/sock.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_expect.h> #include <net/netfilter/nf_conntrack_ecache.h> #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nfnetlink_conntrack.h> #include <linux/netfilter/nfnetlink_cthelper.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Pablo Neira Ayuso <pablo@netfilter.org>"); MODULE_DESCRIPTION("nfnl_cthelper: User-space connection tracking helpers"); struct nfnl_cthelper { struct list_head list; struct nf_conntrack_helper helper; }; static LIST_HEAD(nfnl_cthelper_list); static int nfnl_userspace_cthelper(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { const struct nf_conn_help *help; struct nf_conntrack_helper *helper; help = nfct_help(ct); if (help == NULL) return NF_DROP; /* rcu_read_lock()ed by nf_hook_thresh */ helper = rcu_dereference(help->helper); if (helper == NULL) return NF_DROP; /* This is a user-space helper not yet configured, skip. */ if ((helper->flags & (NF_CT_HELPER_F_USERSPACE | NF_CT_HELPER_F_CONFIGURED)) == NF_CT_HELPER_F_USERSPACE) return NF_ACCEPT; /* If the user-space helper is not available, don't block traffic. */ return NF_QUEUE_NR(helper->queue_num) | NF_VERDICT_FLAG_QUEUE_BYPASS; } static const struct nla_policy nfnl_cthelper_tuple_pol[NFCTH_TUPLE_MAX+1] = { [NFCTH_TUPLE_L3PROTONUM] = { .type = NLA_U16, }, [NFCTH_TUPLE_L4PROTONUM] = { .type = NLA_U8, }, }; static int nfnl_cthelper_parse_tuple(struct nf_conntrack_tuple *tuple, const struct nlattr *attr) { int err; struct nlattr *tb[NFCTH_TUPLE_MAX+1]; err = nla_parse_nested_deprecated(tb, NFCTH_TUPLE_MAX, attr, nfnl_cthelper_tuple_pol, NULL); if (err < 0) return err; if (!tb[NFCTH_TUPLE_L3PROTONUM] || !tb[NFCTH_TUPLE_L4PROTONUM]) return -EINVAL; /* Not all fields are initialized so first zero the tuple */ memset(tuple, 0, sizeof(struct nf_conntrack_tuple)); tuple->src.l3num = ntohs(nla_get_be16(tb[NFCTH_TUPLE_L3PROTONUM])); tuple->dst.protonum = nla_get_u8(tb[NFCTH_TUPLE_L4PROTONUM]); return 0; } static int nfnl_cthelper_from_nlattr(struct nlattr *attr, struct nf_conn *ct) { struct nf_conn_help *help = nfct_help(ct); const struct nf_conntrack_helper *helper; if (attr == NULL) return -EINVAL; helper = rcu_dereference(help->helper); if (!helper || helper->data_len == 0) return -EINVAL; nla_memcpy(help->data, attr, sizeof(help->data)); return 0; } static int nfnl_cthelper_to_nlattr(struct sk_buff *skb, const struct nf_conn *ct) { const struct nf_conn_help *help = nfct_help(ct); const struct nf_conntrack_helper *helper; helper = rcu_dereference(help->helper); if (helper && helper->data_len && nla_put(skb, CTA_HELP_INFO, helper->data_len, &help->data)) goto nla_put_failure; return 0; nla_put_failure: return -ENOSPC; } static const struct nla_policy nfnl_cthelper_expect_pol[NFCTH_POLICY_MAX+1] = { [NFCTH_POLICY_NAME] = { .type = NLA_NUL_STRING, .len = NF_CT_HELPER_NAME_LEN-1 }, [NFCTH_POLICY_EXPECT_MAX] = { .type = NLA_U32, }, [NFCTH_POLICY_EXPECT_TIMEOUT] = { .type = NLA_U32, }, }; static int nfnl_cthelper_expect_policy(struct nf_conntrack_expect_policy *expect_policy, const struct nlattr *attr) { int err; struct nlattr *tb[NFCTH_POLICY_MAX+1]; err = nla_parse_nested_deprecated(tb, NFCTH_POLICY_MAX, attr, nfnl_cthelper_expect_pol, NULL); if (err < 0) return err; if (!tb[NFCTH_POLICY_NAME] || !tb[NFCTH_POLICY_EXPECT_MAX] || !tb[NFCTH_POLICY_EXPECT_TIMEOUT]) return -EINVAL; nla_strscpy(expect_policy->name, tb[NFCTH_POLICY_NAME], NF_CT_HELPER_NAME_LEN); expect_policy->max_expected = ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_MAX])); if (expect_policy->max_expected > NF_CT_EXPECT_MAX_CNT) return -EINVAL; expect_policy->timeout = ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_TIMEOUT])); return 0; } static const struct nla_policy nfnl_cthelper_expect_policy_set[NFCTH_POLICY_SET_MAX+1] = { [NFCTH_POLICY_SET_NUM] = { .type = NLA_U32, }, }; static int nfnl_cthelper_parse_expect_policy(struct nf_conntrack_helper *helper, const struct nlattr *attr) { int i, ret; struct nf_conntrack_expect_policy *expect_policy; struct nlattr *tb[NFCTH_POLICY_SET_MAX+1]; unsigned int class_max; ret = nla_parse_nested_deprecated(tb, NFCTH_POLICY_SET_MAX, attr, nfnl_cthelper_expect_policy_set, NULL); if (ret < 0) return ret; if (!tb[NFCTH_POLICY_SET_NUM]) return -EINVAL; class_max = ntohl(nla_get_be32(tb[NFCTH_POLICY_SET_NUM])); if (class_max == 0) return -EINVAL; if (class_max > NF_CT_MAX_EXPECT_CLASSES) return -EOVERFLOW; expect_policy = kcalloc(class_max, sizeof(struct nf_conntrack_expect_policy), GFP_KERNEL); if (expect_policy == NULL) return -ENOMEM; for (i = 0; i < class_max; i++) { if (!tb[NFCTH_POLICY_SET+i]) goto err; ret = nfnl_cthelper_expect_policy(&expect_policy[i], tb[NFCTH_POLICY_SET+i]); if (ret < 0) goto err; } helper->expect_class_max = class_max - 1; helper->expect_policy = expect_policy; return 0; err: kfree(expect_policy); return -EINVAL; } static int nfnl_cthelper_create(const struct nlattr * const tb[], struct nf_conntrack_tuple *tuple) { struct nf_conntrack_helper *helper; struct nfnl_cthelper *nfcth; unsigned int size; int ret; if (!tb[NFCTH_TUPLE] || !tb[NFCTH_POLICY] || !tb[NFCTH_PRIV_DATA_LEN]) return -EINVAL; nfcth = kzalloc(sizeof(*nfcth), GFP_KERNEL); if (nfcth == NULL) return -ENOMEM; helper = &nfcth->helper; ret = nfnl_cthelper_parse_expect_policy(helper, tb[NFCTH_POLICY]); if (ret < 0) goto err1; nla_strscpy(helper->name, tb[NFCTH_NAME], NF_CT_HELPER_NAME_LEN); size = ntohl(nla_get_be32(tb[NFCTH_PRIV_DATA_LEN])); if (size > sizeof_field(struct nf_conn_help, data)) { ret = -ENOMEM; goto err2; } helper->data_len = size; helper->flags |= NF_CT_HELPER_F_USERSPACE; memcpy(&helper->tuple, tuple, sizeof(struct nf_conntrack_tuple)); helper->me = THIS_MODULE; helper->help = nfnl_userspace_cthelper; helper->from_nlattr = nfnl_cthelper_from_nlattr; helper->to_nlattr = nfnl_cthelper_to_nlattr; /* Default to queue number zero, this can be updated at any time. */ if (tb[NFCTH_QUEUE_NUM]) helper->queue_num = ntohl(nla_get_be32(tb[NFCTH_QUEUE_NUM])); if (tb[NFCTH_STATUS]) { int status = ntohl(nla_get_be32(tb[NFCTH_STATUS])); switch(status) { case NFCT_HELPER_STATUS_ENABLED: helper->flags |= NF_CT_HELPER_F_CONFIGURED; break; case NFCT_HELPER_STATUS_DISABLED: helper->flags &= ~NF_CT_HELPER_F_CONFIGURED; break; } } ret = nf_conntrack_helper_register(helper); if (ret < 0) goto err2; list_add_tail(&nfcth->list, &nfnl_cthelper_list); return 0; err2: kfree(helper->expect_policy); err1: kfree(nfcth); return ret; } static int nfnl_cthelper_update_policy_one(const struct nf_conntrack_expect_policy *policy, struct nf_conntrack_expect_policy *new_policy, const struct nlattr *attr) { struct nlattr *tb[NFCTH_POLICY_MAX + 1]; int err; err = nla_parse_nested_deprecated(tb, NFCTH_POLICY_MAX, attr, nfnl_cthelper_expect_pol, NULL); if (err < 0) return err; if (!tb[NFCTH_POLICY_NAME] || !tb[NFCTH_POLICY_EXPECT_MAX] || !tb[NFCTH_POLICY_EXPECT_TIMEOUT]) return -EINVAL; if (nla_strcmp(tb[NFCTH_POLICY_NAME], policy->name)) return -EBUSY; new_policy->max_expected = ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_MAX])); if (new_policy->max_expected > NF_CT_EXPECT_MAX_CNT) return -EINVAL; new_policy->timeout = ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_TIMEOUT])); return 0; } static int nfnl_cthelper_update_policy_all(struct nlattr *tb[], struct nf_conntrack_helper *helper) { struct nf_conntrack_expect_policy *new_policy; struct nf_conntrack_expect_policy *policy; int i, ret = 0; new_policy = kmalloc_array(helper->expect_class_max + 1, sizeof(*new_policy), GFP_KERNEL); if (!new_policy) return -ENOMEM; /* Check first that all policy attributes are well-formed, so we don't * leave things in inconsistent state on errors. */ for (i = 0; i < helper->expect_class_max + 1; i++) { if (!tb[NFCTH_POLICY_SET + i]) { ret = -EINVAL; goto err; } ret = nfnl_cthelper_update_policy_one(&helper->expect_policy[i], &new_policy[i], tb[NFCTH_POLICY_SET + i]); if (ret < 0) goto err; } /* Now we can safely update them. */ for (i = 0; i < helper->expect_class_max + 1; i++) { policy = (struct nf_conntrack_expect_policy *) &helper->expect_policy[i]; policy->max_expected = new_policy->max_expected; policy->timeout = new_policy->timeout; } err: kfree(new_policy); return ret; } static int nfnl_cthelper_update_policy(struct nf_conntrack_helper *helper, const struct nlattr *attr) { struct nlattr *tb[NFCTH_POLICY_SET_MAX + 1]; unsigned int class_max; int err; err = nla_parse_nested_deprecated(tb, NFCTH_POLICY_SET_MAX, attr, nfnl_cthelper_expect_policy_set, NULL); if (err < 0) return err; if (!tb[NFCTH_POLICY_SET_NUM]) return -EINVAL; class_max = ntohl(nla_get_be32(tb[NFCTH_POLICY_SET_NUM])); if (helper->expect_class_max + 1 != class_max) return -EBUSY; return nfnl_cthelper_update_policy_all(tb, helper); } static int nfnl_cthelper_update(const struct nlattr * const tb[], struct nf_conntrack_helper *helper) { u32 size; int ret; if (tb[NFCTH_PRIV_DATA_LEN]) { size = ntohl(nla_get_be32(tb[NFCTH_PRIV_DATA_LEN])); if (size != helper->data_len) return -EBUSY; } if (tb[NFCTH_POLICY]) { ret = nfnl_cthelper_update_policy(helper, tb[NFCTH_POLICY]); if (ret < 0) return ret; } if (tb[NFCTH_QUEUE_NUM]) helper->queue_num = ntohl(nla_get_be32(tb[NFCTH_QUEUE_NUM])); if (tb[NFCTH_STATUS]) { int status = ntohl(nla_get_be32(tb[NFCTH_STATUS])); switch(status) { case NFCT_HELPER_STATUS_ENABLED: helper->flags |= NF_CT_HELPER_F_CONFIGURED; break; case NFCT_HELPER_STATUS_DISABLED: helper->flags &= ~NF_CT_HELPER_F_CONFIGURED; break; } } return 0; } static int nfnl_cthelper_new(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const tb[]) { const char *helper_name; struct nf_conntrack_helper *cur, *helper = NULL; struct nf_conntrack_tuple tuple; struct nfnl_cthelper *nlcth; int ret = 0; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!tb[NFCTH_NAME] || !tb[NFCTH_TUPLE]) return -EINVAL; helper_name = nla_data(tb[NFCTH_NAME]); ret = nfnl_cthelper_parse_tuple(&tuple, tb[NFCTH_TUPLE]); if (ret < 0) return ret; list_for_each_entry(nlcth, &nfnl_cthelper_list, list) { cur = &nlcth->helper; if (strncmp(cur->name, helper_name, NF_CT_HELPER_NAME_LEN)) continue; if ((tuple.src.l3num != cur->tuple.src.l3num || tuple.dst.protonum != cur->tuple.dst.protonum)) continue; if (info->nlh->nlmsg_flags & NLM_F_EXCL) return -EEXIST; helper = cur; break; } if (helper == NULL) ret = nfnl_cthelper_create(tb, &tuple); else ret = nfnl_cthelper_update(tb, helper); return ret; } static int nfnl_cthelper_dump_tuple(struct sk_buff *skb, struct nf_conntrack_helper *helper) { struct nlattr *nest_parms; nest_parms = nla_nest_start(skb, NFCTH_TUPLE); if (nest_parms == NULL) goto nla_put_failure; if (nla_put_be16(skb, NFCTH_TUPLE_L3PROTONUM, htons(helper->tuple.src.l3num))) goto nla_put_failure; if (nla_put_u8(skb, NFCTH_TUPLE_L4PROTONUM, helper->tuple.dst.protonum)) goto nla_put_failure; nla_nest_end(skb, nest_parms); return 0; nla_put_failure: return -1; } static int nfnl_cthelper_dump_policy(struct sk_buff *skb, struct nf_conntrack_helper *helper) { int i; struct nlattr *nest_parms1, *nest_parms2; nest_parms1 = nla_nest_start(skb, NFCTH_POLICY); if (nest_parms1 == NULL) goto nla_put_failure; if (nla_put_be32(skb, NFCTH_POLICY_SET_NUM, htonl(helper->expect_class_max + 1))) goto nla_put_failure; for (i = 0; i < helper->expect_class_max + 1; i++) { nest_parms2 = nla_nest_start(skb, (NFCTH_POLICY_SET + i)); if (nest_parms2 == NULL) goto nla_put_failure; if (nla_put_string(skb, NFCTH_POLICY_NAME, helper->expect_policy[i].name)) goto nla_put_failure; if (nla_put_be32(skb, NFCTH_POLICY_EXPECT_MAX, htonl(helper->expect_policy[i].max_expected))) goto nla_put_failure; if (nla_put_be32(skb, NFCTH_POLICY_EXPECT_TIMEOUT, htonl(helper->expect_policy[i].timeout))) goto nla_put_failure; nla_nest_end(skb, nest_parms2); } nla_nest_end(skb, nest_parms1); return 0; nla_put_failure: return -1; } static int nfnl_cthelper_fill_info(struct sk_buff *skb, u32 portid, u32 seq, u32 type, int event, struct nf_conntrack_helper *helper) { struct nlmsghdr *nlh; unsigned int flags = portid ? NLM_F_MULTI : 0; int status; event = nfnl_msg_type(NFNL_SUBSYS_CTHELPER, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, AF_UNSPEC, NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; if (nla_put_string(skb, NFCTH_NAME, helper->name)) goto nla_put_failure; if (nla_put_be32(skb, NFCTH_QUEUE_NUM, htonl(helper->queue_num))) goto nla_put_failure; if (nfnl_cthelper_dump_tuple(skb, helper) < 0) goto nla_put_failure; if (nfnl_cthelper_dump_policy(skb, helper) < 0) goto nla_put_failure; if (nla_put_be32(skb, NFCTH_PRIV_DATA_LEN, htonl(helper->data_len))) goto nla_put_failure; if (helper->flags & NF_CT_HELPER_F_CONFIGURED) status = NFCT_HELPER_STATUS_ENABLED; else status = NFCT_HELPER_STATUS_DISABLED; if (nla_put_be32(skb, NFCTH_STATUS, htonl(status))) goto nla_put_failure; nlmsg_end(skb, nlh); return skb->len; nlmsg_failure: nla_put_failure: nlmsg_cancel(skb, nlh); return -1; } static int nfnl_cthelper_dump_table(struct sk_buff *skb, struct netlink_callback *cb) { struct nf_conntrack_helper *cur, *last; rcu_read_lock(); last = (struct nf_conntrack_helper *)cb->args[1]; for (; cb->args[0] < nf_ct_helper_hsize; cb->args[0]++) { restart: hlist_for_each_entry_rcu(cur, &nf_ct_helper_hash[cb->args[0]], hnode) { /* skip non-userspace conntrack helpers. */ if (!(cur->flags & NF_CT_HELPER_F_USERSPACE)) continue; if (cb->args[1]) { if (cur != last) continue; cb->args[1] = 0; } if (nfnl_cthelper_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFNL_MSG_TYPE(cb->nlh->nlmsg_type), NFNL_MSG_CTHELPER_NEW, cur) < 0) { cb->args[1] = (unsigned long)cur; goto out; } } } if (cb->args[1]) { cb->args[1] = 0; goto restart; } out: rcu_read_unlock(); return skb->len; } static int nfnl_cthelper_get(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const tb[]) { int ret = -ENOENT; struct nf_conntrack_helper *cur; struct sk_buff *skb2; char *helper_name = NULL; struct nf_conntrack_tuple tuple; struct nfnl_cthelper *nlcth; bool tuple_set = false; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = nfnl_cthelper_dump_table, }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } if (tb[NFCTH_NAME]) helper_name = nla_data(tb[NFCTH_NAME]); if (tb[NFCTH_TUPLE]) { ret = nfnl_cthelper_parse_tuple(&tuple, tb[NFCTH_TUPLE]); if (ret < 0) return ret; tuple_set = true; } list_for_each_entry(nlcth, &nfnl_cthelper_list, list) { cur = &nlcth->helper; if (helper_name && strncmp(cur->name, helper_name, NF_CT_HELPER_NAME_LEN)) continue; if (tuple_set && (tuple.src.l3num != cur->tuple.src.l3num || tuple.dst.protonum != cur->tuple.dst.protonum)) continue; skb2 = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (skb2 == NULL) { ret = -ENOMEM; break; } ret = nfnl_cthelper_fill_info(skb2, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFNL_MSG_TYPE(info->nlh->nlmsg_type), NFNL_MSG_CTHELPER_NEW, cur); if (ret <= 0) { kfree_skb(skb2); break; } ret = nfnetlink_unicast(skb2, info->net, NETLINK_CB(skb).portid); break; } return ret; } static int nfnl_cthelper_del(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const tb[]) { char *helper_name = NULL; struct nf_conntrack_helper *cur; struct nf_conntrack_tuple tuple; bool tuple_set = false, found = false; struct nfnl_cthelper *nlcth, *n; int j = 0, ret; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (tb[NFCTH_NAME]) helper_name = nla_data(tb[NFCTH_NAME]); if (tb[NFCTH_TUPLE]) { ret = nfnl_cthelper_parse_tuple(&tuple, tb[NFCTH_TUPLE]); if (ret < 0) return ret; tuple_set = true; } ret = -ENOENT; list_for_each_entry_safe(nlcth, n, &nfnl_cthelper_list, list) { cur = &nlcth->helper; j++; if (helper_name && strncmp(cur->name, helper_name, NF_CT_HELPER_NAME_LEN)) continue; if (tuple_set && (tuple.src.l3num != cur->tuple.src.l3num || tuple.dst.protonum != cur->tuple.dst.protonum)) continue; if (refcount_dec_if_one(&cur->refcnt)) { found = true; nf_conntrack_helper_unregister(cur); kfree(cur->expect_policy); list_del(&nlcth->list); kfree(nlcth); } else { ret = -EBUSY; } } /* Make sure we return success if we flush and there is no helpers */ return (found || j == 0) ? 0 : ret; } static const struct nla_policy nfnl_cthelper_policy[NFCTH_MAX+1] = { [NFCTH_NAME] = { .type = NLA_NUL_STRING, .len = NF_CT_HELPER_NAME_LEN-1 }, [NFCTH_QUEUE_NUM] = { .type = NLA_U32, }, [NFCTH_PRIV_DATA_LEN] = { .type = NLA_U32, }, [NFCTH_STATUS] = { .type = NLA_U32, }, }; static const struct nfnl_callback nfnl_cthelper_cb[NFNL_MSG_CTHELPER_MAX] = { [NFNL_MSG_CTHELPER_NEW] = { .call = nfnl_cthelper_new, .type = NFNL_CB_MUTEX, .attr_count = NFCTH_MAX, .policy = nfnl_cthelper_policy }, [NFNL_MSG_CTHELPER_GET] = { .call = nfnl_cthelper_get, .type = NFNL_CB_MUTEX, .attr_count = NFCTH_MAX, .policy = nfnl_cthelper_policy }, [NFNL_MSG_CTHELPER_DEL] = { .call = nfnl_cthelper_del, .type = NFNL_CB_MUTEX, .attr_count = NFCTH_MAX, .policy = nfnl_cthelper_policy }, }; static const struct nfnetlink_subsystem nfnl_cthelper_subsys = { .name = "cthelper", .subsys_id = NFNL_SUBSYS_CTHELPER, .cb_count = NFNL_MSG_CTHELPER_MAX, .cb = nfnl_cthelper_cb, }; MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_CTHELPER); static int __init nfnl_cthelper_init(void) { int ret; ret = nfnetlink_subsys_register(&nfnl_cthelper_subsys); if (ret < 0) { pr_err("nfnl_cthelper: cannot register with nfnetlink.\n"); goto err_out; } return 0; err_out: return ret; } static void __exit nfnl_cthelper_exit(void) { struct nf_conntrack_helper *cur; struct nfnl_cthelper *nlcth, *n; nfnetlink_subsys_unregister(&nfnl_cthelper_subsys); list_for_each_entry_safe(nlcth, n, &nfnl_cthelper_list, list) { cur = &nlcth->helper; nf_conntrack_helper_unregister(cur); kfree(cur->expect_policy); kfree(nlcth); } } module_init(nfnl_cthelper_init); module_exit(nfnl_cthelper_exit); |
4 4 4 4 3 2 2 2 1 1 4 4 7 1 1 1 10 10 10 9 6 2 3 7 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | // SPDX-License-Identifier: GPL-2.0-only /* * Hauppauge HD PVR USB driver * * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2008 Janne Grunau (j@jannau.net) * Copyright (C) 2008 John Poet */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/uaccess.h> #include <linux/atomic.h> #include <linux/usb.h> #include <linux/mutex.h> #include <linux/i2c.h> #include <linux/videodev2.h> #include <media/v4l2-dev.h> #include <media/v4l2-common.h> #include "hdpvr.h" static int video_nr[HDPVR_MAX] = {[0 ... (HDPVR_MAX - 1)] = UNSET}; module_param_array(video_nr, int, NULL, 0); MODULE_PARM_DESC(video_nr, "video device number (-1=Auto)"); /* holds the number of currently registered devices */ static atomic_t dev_nr = ATOMIC_INIT(-1); int hdpvr_debug; module_param(hdpvr_debug, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(hdpvr_debug, "enable debugging output"); static uint default_video_input = HDPVR_VIDEO_INPUTS; module_param(default_video_input, uint, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(default_video_input, "default video input: 0=Component / 1=S-Video / 2=Composite"); static uint default_audio_input = HDPVR_AUDIO_INPUTS; module_param(default_audio_input, uint, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(default_audio_input, "default audio input: 0=RCA back / 1=RCA front / 2=S/PDIF"); static bool boost_audio; module_param(boost_audio, bool, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(boost_audio, "boost the audio signal"); /* table of devices that work with this driver */ static const struct usb_device_id hdpvr_table[] = { { USB_DEVICE(HD_PVR_VENDOR_ID, HD_PVR_PRODUCT_ID) }, { USB_DEVICE(HD_PVR_VENDOR_ID, HD_PVR_PRODUCT_ID1) }, { USB_DEVICE(HD_PVR_VENDOR_ID, HD_PVR_PRODUCT_ID2) }, { USB_DEVICE(HD_PVR_VENDOR_ID, HD_PVR_PRODUCT_ID3) }, { USB_DEVICE(HD_PVR_VENDOR_ID, HD_PVR_PRODUCT_ID4) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, hdpvr_table); void hdpvr_delete(struct hdpvr_device *dev) { hdpvr_free_buffers(dev); usb_put_dev(dev->udev); } static void challenge(u8 *bytes) { __le64 *i64P; u64 tmp64; uint i, idx; for (idx = 0; idx < 32; ++idx) { if (idx & 0x3) bytes[(idx >> 3) + 3] = bytes[(idx >> 2) & 0x3]; switch (idx & 0x3) { case 0x3: bytes[2] += bytes[3] * 4 + bytes[4] + bytes[5]; bytes[4] += bytes[(idx & 0x1) * 2] * 9 + 9; break; case 0x1: bytes[0] *= 8; bytes[0] += 7*idx + 4; bytes[6] += bytes[3] * 3; break; case 0x0: bytes[3 - (idx >> 3)] = bytes[idx >> 2]; bytes[5] += bytes[6] * 3; for (i = 0; i < 3; i++) bytes[3] *= bytes[3] + 1; break; case 0x2: for (i = 0; i < 3; i++) bytes[1] *= bytes[6] + 1; for (i = 0; i < 3; i++) { i64P = (__le64 *)bytes; tmp64 = le64_to_cpup(i64P); tmp64 = tmp64 + (tmp64 << (bytes[7] & 0x0f)); *i64P = cpu_to_le64(tmp64); } break; } } } /* try to init the device like the windows driver */ static int device_authorization(struct hdpvr_device *dev) { int ret, retval = -ENOMEM; char request_type = 0x38, rcv_request = 0x81; char *response; mutex_lock(&dev->usbc_mutex); ret = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0), rcv_request, 0x80 | request_type, 0x0400, 0x0003, dev->usbc_buf, 46, 10000); if (ret != 46) { v4l2_err(&dev->v4l2_dev, "unexpected answer of status request, len %d\n", ret); goto unlock; } #ifdef HDPVR_DEBUG else { v4l2_dbg(MSG_INFO, hdpvr_debug, &dev->v4l2_dev, "Status request returned, len %d: %46ph\n", ret, dev->usbc_buf); } #endif dev->fw_ver = dev->usbc_buf[1]; dev->usbc_buf[46] = '\0'; v4l2_info(&dev->v4l2_dev, "firmware version 0x%x dated %s\n", dev->fw_ver, &dev->usbc_buf[2]); if (dev->fw_ver > 0x15) { dev->options.brightness = 0x80; dev->options.contrast = 0x40; dev->options.hue = 0xf; dev->options.saturation = 0x40; dev->options.sharpness = 0x80; } switch (dev->fw_ver) { case HDPVR_FIRMWARE_VERSION: dev->flags &= ~HDPVR_FLAG_AC3_CAP; break; case HDPVR_FIRMWARE_VERSION_AC3: case HDPVR_FIRMWARE_VERSION_0X12: case HDPVR_FIRMWARE_VERSION_0X15: case HDPVR_FIRMWARE_VERSION_0X1E: dev->flags |= HDPVR_FLAG_AC3_CAP; break; default: v4l2_info(&dev->v4l2_dev, "untested firmware, the driver might not work.\n"); if (dev->fw_ver >= HDPVR_FIRMWARE_VERSION_AC3) dev->flags |= HDPVR_FLAG_AC3_CAP; else dev->flags &= ~HDPVR_FLAG_AC3_CAP; } response = dev->usbc_buf+38; #ifdef HDPVR_DEBUG v4l2_dbg(MSG_INFO, hdpvr_debug, &dev->v4l2_dev, "challenge: %8ph\n", response); #endif challenge(response); #ifdef HDPVR_DEBUG v4l2_dbg(MSG_INFO, hdpvr_debug, &dev->v4l2_dev, " response: %8ph\n", response); #endif msleep(100); ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), 0xd1, 0x00 | request_type, 0x0000, 0x0000, response, 8, 10000); v4l2_dbg(MSG_INFO, hdpvr_debug, &dev->v4l2_dev, "magic request returned %d\n", ret); retval = ret != 8; unlock: mutex_unlock(&dev->usbc_mutex); return retval; } static int hdpvr_device_init(struct hdpvr_device *dev) { int ret; u8 *buf; if (device_authorization(dev)) return -EACCES; /* default options for init */ hdpvr_set_options(dev); /* set filter options */ mutex_lock(&dev->usbc_mutex); buf = dev->usbc_buf; buf[0] = 0x03; buf[1] = 0x03; buf[2] = 0x00; buf[3] = 0x00; ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), 0x01, 0x38, CTRL_LOW_PASS_FILTER_VALUE, CTRL_DEFAULT_INDEX, buf, 4, 1000); v4l2_dbg(MSG_INFO, hdpvr_debug, &dev->v4l2_dev, "control request returned %d\n", ret); mutex_unlock(&dev->usbc_mutex); /* enable fan and bling leds */ mutex_lock(&dev->usbc_mutex); buf[0] = 0x1; ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), 0xd4, 0x38, 0, 0, buf, 1, 1000); v4l2_dbg(MSG_INFO, hdpvr_debug, &dev->v4l2_dev, "control request returned %d\n", ret); /* boost analog audio */ buf[0] = boost_audio; ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), 0xd5, 0x38, 0, 0, buf, 1, 1000); v4l2_dbg(MSG_INFO, hdpvr_debug, &dev->v4l2_dev, "control request returned %d\n", ret); mutex_unlock(&dev->usbc_mutex); dev->status = STATUS_IDLE; return 0; } static const struct hdpvr_options hdpvr_default_options = { .video_std = HDPVR_60HZ, .video_input = HDPVR_COMPONENT, .audio_input = HDPVR_RCA_BACK, .bitrate = 65, /* 6 mbps */ .peak_bitrate = 90, /* 9 mbps */ .bitrate_mode = HDPVR_CONSTANT, .gop_mode = HDPVR_SIMPLE_IDR_GOP, .audio_codec = V4L2_MPEG_AUDIO_ENCODING_AAC, /* original picture controls for firmware version <= 0x15 */ /* updated in device_authorization() for newer firmware */ .brightness = 0x86, .contrast = 0x80, .hue = 0x80, .saturation = 0x80, .sharpness = 0x80, }; static int hdpvr_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct hdpvr_device *dev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; #if IS_ENABLED(CONFIG_I2C) struct i2c_client *client; #endif size_t buffer_size; int i; int dev_num; int retval = -ENOMEM; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { dev_err(&interface->dev, "Out of memory\n"); goto error; } /* init video transfer queues first of all */ /* to prevent oops in hdpvr_delete() on error paths */ INIT_LIST_HEAD(&dev->free_buff_list); INIT_LIST_HEAD(&dev->rec_buff_list); /* register v4l2_device early so it can be used for printks */ if (v4l2_device_register(&interface->dev, &dev->v4l2_dev)) { dev_err(&interface->dev, "v4l2_device_register failed\n"); goto error_free_dev; } mutex_init(&dev->io_mutex); mutex_init(&dev->i2c_mutex); mutex_init(&dev->usbc_mutex); dev->usbc_buf = kmalloc(64, GFP_KERNEL); if (!dev->usbc_buf) { v4l2_err(&dev->v4l2_dev, "Out of memory\n"); goto error_v4l2_unregister; } init_waitqueue_head(&dev->wait_buffer); init_waitqueue_head(&dev->wait_data); dev->options = hdpvr_default_options; if (default_video_input < HDPVR_VIDEO_INPUTS) dev->options.video_input = default_video_input; if (default_audio_input < HDPVR_AUDIO_INPUTS) { dev->options.audio_input = default_audio_input; if (default_audio_input == HDPVR_SPDIF) dev->options.audio_codec = V4L2_MPEG_AUDIO_ENCODING_AC3; } dev->udev = usb_get_dev(interface_to_usbdev(interface)); /* set up the endpoint information */ /* use only the first bulk-in and bulk-out endpoints */ iface_desc = interface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (!dev->bulk_in_endpointAddr && usb_endpoint_is_bulk_in(endpoint)) { /* USB interface description is buggy, reported max * packet size is 512 bytes, windows driver uses 8192 */ buffer_size = 8192; dev->bulk_in_size = buffer_size; dev->bulk_in_endpointAddr = endpoint->bEndpointAddress; } } if (!dev->bulk_in_endpointAddr) { v4l2_err(&dev->v4l2_dev, "Could not find bulk-in endpoint\n"); goto error_put_usb; } /* init the device */ if (hdpvr_device_init(dev)) { v4l2_err(&dev->v4l2_dev, "device init failed\n"); goto error_put_usb; } mutex_lock(&dev->io_mutex); if (hdpvr_alloc_buffers(dev, NUM_BUFFERS)) { mutex_unlock(&dev->io_mutex); v4l2_err(&dev->v4l2_dev, "allocating transfer buffers failed\n"); goto error_put_usb; } mutex_unlock(&dev->io_mutex); #if IS_ENABLED(CONFIG_I2C) retval = hdpvr_register_i2c_adapter(dev); if (retval < 0) { v4l2_err(&dev->v4l2_dev, "i2c adapter register failed\n"); goto error_free_buffers; } client = hdpvr_register_ir_i2c(dev); if (IS_ERR(client)) { v4l2_err(&dev->v4l2_dev, "i2c IR device register failed\n"); retval = PTR_ERR(client); goto reg_fail; } #endif dev_num = atomic_inc_return(&dev_nr); if (dev_num >= HDPVR_MAX) { v4l2_err(&dev->v4l2_dev, "max device number reached, device register failed\n"); atomic_dec(&dev_nr); retval = -ENODEV; goto reg_fail; } retval = hdpvr_register_videodev(dev, &interface->dev, video_nr[dev_num]); if (retval < 0) { v4l2_err(&dev->v4l2_dev, "registering videodev failed\n"); goto reg_fail; } /* let the user know what node this device is now attached to */ v4l2_info(&dev->v4l2_dev, "device now attached to %s\n", video_device_node_name(&dev->video_dev)); return 0; reg_fail: #if IS_ENABLED(CONFIG_I2C) i2c_del_adapter(&dev->i2c_adapter); error_free_buffers: #endif hdpvr_free_buffers(dev); error_put_usb: usb_put_dev(dev->udev); kfree(dev->usbc_buf); error_v4l2_unregister: v4l2_device_unregister(&dev->v4l2_dev); error_free_dev: kfree(dev); error: return retval; } static void hdpvr_disconnect(struct usb_interface *interface) { struct hdpvr_device *dev = to_hdpvr_dev(usb_get_intfdata(interface)); v4l2_info(&dev->v4l2_dev, "device %s disconnected\n", video_device_node_name(&dev->video_dev)); /* prevent more I/O from starting and stop any ongoing */ mutex_lock(&dev->io_mutex); dev->status = STATUS_DISCONNECTED; wake_up_interruptible(&dev->wait_data); wake_up_interruptible(&dev->wait_buffer); mutex_unlock(&dev->io_mutex); v4l2_device_disconnect(&dev->v4l2_dev); msleep(100); flush_work(&dev->worker); mutex_lock(&dev->io_mutex); hdpvr_cancel_queue(dev); mutex_unlock(&dev->io_mutex); #if IS_ENABLED(CONFIG_I2C) i2c_del_adapter(&dev->i2c_adapter); #endif video_unregister_device(&dev->video_dev); atomic_dec(&dev_nr); } static struct usb_driver hdpvr_usb_driver = { .name = "hdpvr", .probe = hdpvr_probe, .disconnect = hdpvr_disconnect, .id_table = hdpvr_table, }; module_usb_driver(hdpvr_usb_driver); MODULE_LICENSE("GPL"); MODULE_VERSION("0.2.1"); MODULE_AUTHOR("Janne Grunau"); MODULE_DESCRIPTION("Hauppauge HD PVR driver"); |
9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/nfs/dir.c * * Copyright (C) 1992 Rick Sladkey * * nfs directory handling functions * * 10 Apr 1996 Added silly rename for unlink --okir * 28 Sep 1996 Improved directory cache --okir * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de * Re-implemented silly rename for unlink, newly implemented * silly rename for nfs_rename() following the suggestions * of Olaf Kirch (okir) found in this file. * Following Linus comments on my original hack, this version * depends only on the dcache stuff and doesn't touch the inode * layer (iput() and friends). * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM */ #include <linux/compat.h> #include <linux/module.h> #include <linux/time.h> #include <linux/errno.h> #include <linux/stat.h> #include <linux/fcntl.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/sunrpc/clnt.h> #include <linux/nfs_fs.h> #include <linux/nfs_mount.h> #include <linux/pagemap.h> #include <linux/pagevec.h> #include <linux/namei.h> #include <linux/mount.h> #include <linux/swap.h> #include <linux/sched.h> #include <linux/kmemleak.h> #include <linux/xattr.h> #include <linux/hash.h> #include "delegation.h" #include "iostat.h" #include "internal.h" #include "fscache.h" #include "nfstrace.h" /* #define NFS_DEBUG_VERBOSE 1 */ static int nfs_opendir(struct inode *, struct file *); static int nfs_closedir(struct inode *, struct file *); static int nfs_readdir(struct file *, struct dir_context *); static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); static loff_t nfs_llseek_dir(struct file *, loff_t, int); static void nfs_readdir_clear_array(struct folio *); static int nfs_do_create(struct inode *dir, struct dentry *dentry, umode_t mode, int open_flags); const struct file_operations nfs_dir_operations = { .llseek = nfs_llseek_dir, .read = generic_read_dir, .iterate_shared = nfs_readdir, .open = nfs_opendir, .release = nfs_closedir, .fsync = nfs_fsync_dir, }; const struct address_space_operations nfs_dir_aops = { .free_folio = nfs_readdir_clear_array, }; #define NFS_INIT_DTSIZE PAGE_SIZE static struct nfs_open_dir_context * alloc_nfs_open_dir_context(struct inode *dir) { struct nfs_inode *nfsi = NFS_I(dir); struct nfs_open_dir_context *ctx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); if (ctx != NULL) { ctx->attr_gencount = nfsi->attr_gencount; ctx->dtsize = NFS_INIT_DTSIZE; spin_lock(&dir->i_lock); if (list_empty(&nfsi->open_files) && (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) nfs_set_cache_invalid(dir, NFS_INO_INVALID_DATA | NFS_INO_REVAL_FORCED); list_add_tail_rcu(&ctx->list, &nfsi->open_files); memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); spin_unlock(&dir->i_lock); return ctx; } return ERR_PTR(-ENOMEM); } static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) { spin_lock(&dir->i_lock); list_del_rcu(&ctx->list); spin_unlock(&dir->i_lock); kfree_rcu(ctx, rcu_head); } /* * Open file */ static int nfs_opendir(struct inode *inode, struct file *filp) { int res = 0; struct nfs_open_dir_context *ctx; dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); nfs_inc_stats(inode, NFSIOS_VFSOPEN); ctx = alloc_nfs_open_dir_context(inode); if (IS_ERR(ctx)) { res = PTR_ERR(ctx); goto out; } filp->private_data = ctx; out: return res; } static int nfs_closedir(struct inode *inode, struct file *filp) { put_nfs_open_dir_context(file_inode(filp), filp->private_data); return 0; } struct nfs_cache_array_entry { u64 cookie; u64 ino; const char *name; unsigned int name_len; unsigned char d_type; }; struct nfs_cache_array { u64 change_attr; u64 last_cookie; unsigned int size; unsigned char folio_full : 1, folio_is_eof : 1, cookies_are_ordered : 1; struct nfs_cache_array_entry array[]; }; struct nfs_readdir_descriptor { struct file *file; struct folio *folio; struct dir_context *ctx; pgoff_t folio_index; pgoff_t folio_index_max; u64 dir_cookie; u64 last_cookie; loff_t current_index; __be32 verf[NFS_DIR_VERIFIER_SIZE]; unsigned long dir_verifier; unsigned long timestamp; unsigned long gencount; unsigned long attr_gencount; unsigned int cache_entry_index; unsigned int buffer_fills; unsigned int dtsize; bool clear_cache; bool plus; bool eob; bool eof; }; static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) { struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); unsigned int maxsize = server->dtsize; if (sz > maxsize) sz = maxsize; if (sz < NFS_MIN_FILE_IO_SIZE) sz = NFS_MIN_FILE_IO_SIZE; desc->dtsize = sz; } static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) { nfs_set_dtsize(desc, desc->dtsize >> 1); } static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) { nfs_set_dtsize(desc, desc->dtsize << 1); } static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, u64 change_attr) { struct nfs_cache_array *array; array = kmap_local_folio(folio, 0); array->change_attr = change_attr; array->last_cookie = last_cookie; array->size = 0; array->folio_full = 0; array->folio_is_eof = 0; array->cookies_are_ordered = 1; kunmap_local(array); } /* * we are freeing strings created by nfs_add_to_readdir_array() */ static void nfs_readdir_clear_array(struct folio *folio) { struct nfs_cache_array *array; unsigned int i; array = kmap_local_folio(folio, 0); for (i = 0; i < array->size; i++) kfree(array->array[i].name); array->size = 0; kunmap_local(array); } static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, u64 change_attr) { nfs_readdir_clear_array(folio); nfs_readdir_folio_init_array(folio, last_cookie, change_attr); } static struct folio * nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) { struct folio *folio = folio_alloc(gfp_flags, 0); if (folio) nfs_readdir_folio_init_array(folio, last_cookie, 0); return folio; } static void nfs_readdir_folio_array_free(struct folio *folio) { if (folio) { nfs_readdir_clear_array(folio); folio_put(folio); } } static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) { return array->size == 0 ? array->last_cookie : array->array[0].cookie; } static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) { array->folio_is_eof = 1; array->folio_full = 1; } static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) { return array->folio_full; } /* * the caller is responsible for freeing qstr.name * when called by nfs_readdir_add_to_array, the strings will be freed in * nfs_clear_readdir_array() */ static const char *nfs_readdir_copy_name(const char *name, unsigned int len) { const char *ret = kmemdup_nul(name, len, GFP_KERNEL); /* * Avoid a kmemleak false positive. The pointer to the name is stored * in a page cache page which kmemleak does not scan. */ if (ret != NULL) kmemleak_not_leak(ret); return ret; } static size_t nfs_readdir_array_maxentries(void) { return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / sizeof(struct nfs_cache_array_entry); } /* * Check that the next array entry lies entirely within the page bounds */ static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) { if (array->folio_full) return -ENOSPC; if (array->size == nfs_readdir_array_maxentries()) { array->folio_full = 1; return -ENOSPC; } return 0; } static int nfs_readdir_folio_array_append(struct folio *folio, const struct nfs_entry *entry, u64 *cookie) { struct nfs_cache_array *array; struct nfs_cache_array_entry *cache_entry; const char *name; int ret = -ENOMEM; name = nfs_readdir_copy_name(entry->name, entry->len); array = kmap_local_folio(folio, 0); if (!name) goto out; ret = nfs_readdir_array_can_expand(array); if (ret) { kfree(name); goto out; } cache_entry = &array->array[array->size]; cache_entry->cookie = array->last_cookie; cache_entry->ino = entry->ino; cache_entry->d_type = entry->d_type; cache_entry->name_len = entry->len; cache_entry->name = name; array->last_cookie = entry->cookie; if (array->last_cookie <= cache_entry->cookie) array->cookies_are_ordered = 0; array->size++; if (entry->eof != 0) nfs_readdir_array_set_eof(array); out: *cookie = array->last_cookie; kunmap_local(array); return ret; } #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) /* * Hash algorithm allowing content addressible access to sequences * of directory cookies. Content is addressed by the value of the * cookie index of the first readdir entry in a page. * * We select only the first 18 bits to avoid issues with excessive * memory use for the page cache XArray. 18 bits should allow the caching * of 262144 pages of sequences of readdir entries. Since each page holds * 127 readdir entries for a typical 64-bit system, that works out to a * cache of ~ 33 million entries per directory. */ static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) { if (cookie == 0) return 0; return hash_64(cookie, 18); } static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, u64 change_attr) { struct nfs_cache_array *array = kmap_local_folio(folio, 0); int ret = true; if (array->change_attr != change_attr) ret = false; if (nfs_readdir_array_index_cookie(array) != last_cookie) ret = false; kunmap_local(array); return ret; } static void nfs_readdir_folio_unlock_and_put(struct folio *folio) { folio_unlock(folio); folio_put(folio); } static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, u64 change_attr) { if (folio_test_uptodate(folio)) { if (nfs_readdir_folio_validate(folio, cookie, change_attr)) return; nfs_readdir_clear_array(folio); } nfs_readdir_folio_init_array(folio, cookie, change_attr); folio_mark_uptodate(folio); } static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, u64 cookie, u64 change_attr) { pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); struct folio *folio; folio = filemap_grab_folio(mapping, index); if (IS_ERR(folio)) return NULL; nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); return folio; } static u64 nfs_readdir_folio_last_cookie(struct folio *folio) { struct nfs_cache_array *array; u64 ret; array = kmap_local_folio(folio, 0); ret = array->last_cookie; kunmap_local(array); return ret; } static bool nfs_readdir_folio_needs_filling(struct folio *folio) { struct nfs_cache_array *array; bool ret; array = kmap_local_folio(folio, 0); ret = !nfs_readdir_array_is_full(array); kunmap_local(array); return ret; } static void nfs_readdir_folio_set_eof(struct folio *folio) { struct nfs_cache_array *array; array = kmap_local_folio(folio, 0); nfs_readdir_array_set_eof(array); kunmap_local(array); } static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, u64 cookie, u64 change_attr) { pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); struct folio *folio; folio = __filemap_get_folio(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) return NULL; nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); if (nfs_readdir_folio_last_cookie(folio) != cookie) nfs_readdir_folio_reinit_array(folio, cookie, change_attr); return folio; } static inline int is_32bit_api(void) { #ifdef CONFIG_COMPAT return in_compat_syscall(); #else return (BITS_PER_LONG == 32); #endif } static bool nfs_readdir_use_cookie(const struct file *filp) { if ((filp->f_mode & FMODE_32BITHASH) || (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) return false; return true; } static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, struct nfs_readdir_descriptor *desc) { if (array->folio_full) { desc->last_cookie = array->last_cookie; desc->current_index += array->size; desc->cache_entry_index = 0; desc->folio_index++; } else desc->last_cookie = nfs_readdir_array_index_cookie(array); } static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) { desc->current_index = 0; desc->last_cookie = 0; desc->folio_index = 0; } static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, struct nfs_readdir_descriptor *desc) { loff_t diff = desc->ctx->pos - desc->current_index; unsigned int index; if (diff < 0) goto out_eof; if (diff >= array->size) { if (array->folio_is_eof) goto out_eof; nfs_readdir_seek_next_array(array, desc); return -EAGAIN; } index = (unsigned int)diff; desc->dir_cookie = array->array[index].cookie; desc->cache_entry_index = index; return 0; out_eof: desc->eof = true; return -EBADCOOKIE; } static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, u64 cookie) { if (!array->cookies_are_ordered) return true; /* Optimisation for monotonically increasing cookies */ if (cookie >= array->last_cookie) return false; if (array->size && cookie < array->array[0].cookie) return false; return true; } static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, struct nfs_readdir_descriptor *desc) { unsigned int i; int status = -EAGAIN; if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) goto check_eof; for (i = 0; i < array->size; i++) { if (array->array[i].cookie == desc->dir_cookie) { if (nfs_readdir_use_cookie(desc->file)) desc->ctx->pos = desc->dir_cookie; else desc->ctx->pos = desc->current_index + i; desc->cache_entry_index = i; return 0; } } check_eof: if (array->folio_is_eof) { status = -EBADCOOKIE; if (desc->dir_cookie == array->last_cookie) desc->eof = true; } else nfs_readdir_seek_next_array(array, desc); return status; } static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) { struct nfs_cache_array *array; int status; array = kmap_local_folio(desc->folio, 0); if (desc->dir_cookie == 0) status = nfs_readdir_search_for_pos(array, desc); else status = nfs_readdir_search_for_cookie(array, desc); kunmap_local(array); return status; } /* Fill a page with xdr information before transferring to the cache page */ static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, __be32 *verf, u64 cookie, struct page **pages, size_t bufsize, __be32 *verf_res) { struct inode *inode = file_inode(desc->file); struct nfs_readdir_arg arg = { .dentry = file_dentry(desc->file), .cred = desc->file->f_cred, .verf = verf, .cookie = cookie, .pages = pages, .page_len = bufsize, .plus = desc->plus, }; struct nfs_readdir_res res = { .verf = verf_res, }; unsigned long timestamp, gencount; int error; again: timestamp = jiffies; gencount = nfs_inc_attr_generation_counter(); desc->dir_verifier = nfs_save_change_attribute(inode); error = NFS_PROTO(inode)->readdir(&arg, &res); if (error < 0) { /* We requested READDIRPLUS, but the server doesn't grok it */ if (error == -ENOTSUPP && desc->plus) { NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; desc->plus = arg.plus = false; goto again; } goto error; } desc->timestamp = timestamp; desc->gencount = gencount; error: return error; } static int xdr_decode(struct nfs_readdir_descriptor *desc, struct nfs_entry *entry, struct xdr_stream *xdr) { struct inode *inode = file_inode(desc->file); int error; error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); if (error) return error; entry->fattr->time_start = desc->timestamp; entry->fattr->gencount = desc->gencount; return 0; } /* Match file and dirent using either filehandle or fileid * Note: caller is responsible for checking the fsid */ static int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) { struct inode *inode; struct nfs_inode *nfsi; if (d_really_is_negative(dentry)) return 0; inode = d_inode(dentry); if (is_bad_inode(inode) || NFS_STALE(inode)) return 0; nfsi = NFS_I(inode); if (entry->fattr->fileid != nfsi->fileid) return 0; if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) return 0; return 1; } #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, unsigned int cache_hits, unsigned int cache_misses) { if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) return false; if (ctx->pos == 0 || cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) return true; return false; } /* * This function is called by the getattr code to request the * use of readdirplus to accelerate any future lookups in the same * directory. */ void nfs_readdir_record_entry_cache_hit(struct inode *dir) { struct nfs_inode *nfsi = NFS_I(dir); struct nfs_open_dir_context *ctx; if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && S_ISDIR(dir->i_mode)) { rcu_read_lock(); list_for_each_entry_rcu (ctx, &nfsi->open_files, list) atomic_inc(&ctx->cache_hits); rcu_read_unlock(); } } /* * This function is mainly for use by nfs_getattr(). * * If this is an 'ls -l', we want to force use of readdirplus. */ void nfs_readdir_record_entry_cache_miss(struct inode *dir) { struct nfs_inode *nfsi = NFS_I(dir); struct nfs_open_dir_context *ctx; if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && S_ISDIR(dir->i_mode)) { rcu_read_lock(); list_for_each_entry_rcu (ctx, &nfsi->open_files, list) atomic_inc(&ctx->cache_misses); rcu_read_unlock(); } } static void nfs_lookup_advise_force_readdirplus(struct inode *dir, unsigned int flags) { if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) return; if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) return; nfs_readdir_record_entry_cache_miss(dir); } static void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, unsigned long dir_verifier) { struct qstr filename = QSTR_INIT(entry->name, entry->len); DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); struct dentry *dentry; struct dentry *alias; struct inode *inode; int status; if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) return; if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) return; if (filename.len == 0) return; /* Validate that the name doesn't contain any illegal '\0' */ if (strnlen(filename.name, filename.len) != filename.len) return; /* ...or '/' */ if (strnchr(filename.name, filename.len, '/')) return; if (filename.name[0] == '.') { if (filename.len == 1) return; if (filename.len == 2 && filename.name[1] == '.') return; } filename.hash = full_name_hash(parent, filename.name, filename.len); dentry = d_lookup(parent, &filename); again: if (!dentry) { dentry = d_alloc_parallel(parent, &filename, &wq); if (IS_ERR(dentry)) return; } if (!d_in_lookup(dentry)) { /* Is there a mountpoint here? If so, just exit */ if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, &entry->fattr->fsid)) goto out; if (nfs_same_file(dentry, entry)) { if (!entry->fh->size) goto out; nfs_set_verifier(dentry, dir_verifier); status = nfs_refresh_inode(d_inode(dentry), entry->fattr); if (!status) nfs_setsecurity(d_inode(dentry), entry->fattr); trace_nfs_readdir_lookup_revalidate(d_inode(parent), dentry, 0, status); goto out; } else { trace_nfs_readdir_lookup_revalidate_failed( d_inode(parent), dentry, 0); d_invalidate(dentry); dput(dentry); dentry = NULL; goto again; } } if (!entry->fh->size) { d_lookup_done(dentry); goto out; } inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); alias = d_splice_alias(inode, dentry); d_lookup_done(dentry); if (alias) { if (IS_ERR(alias)) goto out; dput(dentry); dentry = alias; } nfs_set_verifier(dentry, dir_verifier); trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); out: dput(dentry); } static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, struct nfs_entry *entry, struct xdr_stream *stream) { int ret; if (entry->fattr->label) entry->fattr->label->len = NFS4_MAXLABELLEN; ret = xdr_decode(desc, entry, stream); if (ret || !desc->plus) return ret; nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); return 0; } /* Perform conversion from xdr to cache array */ static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, struct nfs_entry *entry, struct page **xdr_pages, unsigned int buflen, struct folio **arrays, size_t narrays, u64 change_attr) { struct address_space *mapping = desc->file->f_mapping; struct folio *new, *folio = *arrays; struct xdr_stream stream; struct page *scratch; struct xdr_buf buf; u64 cookie; int status; scratch = alloc_page(GFP_KERNEL); if (scratch == NULL) return -ENOMEM; xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); xdr_set_scratch_page(&stream, scratch); do { status = nfs_readdir_entry_decode(desc, entry, &stream); if (status != 0) break; status = nfs_readdir_folio_array_append(folio, entry, &cookie); if (status != -ENOSPC) continue; if (folio->mapping != mapping) { if (!--narrays) break; new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); if (!new) break; arrays++; *arrays = folio = new; } else { new = nfs_readdir_folio_get_next(mapping, cookie, change_attr); if (!new) break; if (folio != *arrays) nfs_readdir_folio_unlock_and_put(folio); folio = new; } desc->folio_index_max++; status = nfs_readdir_folio_array_append(folio, entry, &cookie); } while (!status && !entry->eof); switch (status) { case -EBADCOOKIE: if (!entry->eof) break; nfs_readdir_folio_set_eof(folio); fallthrough; case -EAGAIN: status = 0; break; case -ENOSPC: status = 0; if (!desc->plus) break; while (!nfs_readdir_entry_decode(desc, entry, &stream)) ; } if (folio != *arrays) nfs_readdir_folio_unlock_and_put(folio); put_page(scratch); return status; } static void nfs_readdir_free_pages(struct page **pages, size_t npages) { while (npages--) put_page(pages[npages]); kfree(pages); } /* * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call * to nfs_readdir_free_pages() */ static struct page **nfs_readdir_alloc_pages(size_t npages) { struct page **pages; size_t i; pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); if (!pages) return NULL; for (i = 0; i < npages; i++) { struct page *page = alloc_page(GFP_KERNEL); if (page == NULL) goto out_freepages; pages[i] = page; } return pages; out_freepages: nfs_readdir_free_pages(pages, i); return NULL; } static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, __be32 *verf_arg, __be32 *verf_res, struct folio **arrays, size_t narrays) { u64 change_attr; struct page **pages; struct folio *folio = *arrays; struct nfs_entry *entry; size_t array_size; struct inode *inode = file_inode(desc->file); unsigned int dtsize = desc->dtsize; unsigned int pglen; int status = -ENOMEM; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->cookie = nfs_readdir_folio_last_cookie(folio); entry->fh = nfs_alloc_fhandle(); entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); entry->server = NFS_SERVER(inode); if (entry->fh == NULL || entry->fattr == NULL) goto out; array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; pages = nfs_readdir_alloc_pages(array_size); if (!pages) goto out; change_attr = inode_peek_iversion_raw(inode); status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, dtsize, verf_res); if (status < 0) goto free_pages; pglen = status; if (pglen != 0) status = nfs_readdir_folio_filler(desc, entry, pages, pglen, arrays, narrays, change_attr); else nfs_readdir_folio_set_eof(folio); desc->buffer_fills++; free_pages: nfs_readdir_free_pages(pages, array_size); out: nfs_free_fattr(entry->fattr); nfs_free_fhandle(entry->fh); kfree(entry); return status; } static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) { folio_put(desc->folio); desc->folio = NULL; } static void nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) { folio_unlock(desc->folio); nfs_readdir_folio_put(desc); } static struct folio * nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) { struct address_space *mapping = desc->file->f_mapping; u64 change_attr = inode_peek_iversion_raw(mapping->host); u64 cookie = desc->last_cookie; struct folio *folio; folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); if (!folio) return NULL; if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) nfs_readdir_folio_reinit_array(folio, cookie, change_attr); return folio; } /* * Returns 0 if desc->dir_cookie was found on page desc->page_index * and locks the page to prevent removal from the page cache. */ static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) { struct inode *inode = file_inode(desc->file); struct nfs_inode *nfsi = NFS_I(inode); __be32 verf[NFS_DIR_VERIFIER_SIZE]; int res; desc->folio = nfs_readdir_folio_get_cached(desc); if (!desc->folio) return -ENOMEM; if (nfs_readdir_folio_needs_filling(desc->folio)) { /* Grow the dtsize if we had to go back for more pages */ if (desc->folio_index == desc->folio_index_max) nfs_grow_dtsize(desc); desc->folio_index_max = desc->folio_index; trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, desc->last_cookie, desc->folio->index, desc->dtsize); res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, &desc->folio, 1); if (res < 0) { nfs_readdir_folio_unlock_and_put_cached(desc); trace_nfs_readdir_cache_fill_done(inode, res); if (res == -EBADCOOKIE || res == -ENOTSYNC) { invalidate_inode_pages2(desc->file->f_mapping); nfs_readdir_rewind_search(desc); trace_nfs_readdir_invalidate_cache_range( inode, 0, MAX_LFS_FILESIZE); return -EAGAIN; } return res; } /* * Set the cookie verifier if the page cache was empty */ if (desc->last_cookie == 0 && memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { memcpy(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf)); invalidate_inode_pages2_range(desc->file->f_mapping, 1, -1); trace_nfs_readdir_invalidate_cache_range( inode, 1, MAX_LFS_FILESIZE); } desc->clear_cache = false; } res = nfs_readdir_search_array(desc); if (res == 0) return 0; nfs_readdir_folio_unlock_and_put_cached(desc); return res; } /* Search for desc->dir_cookie from the beginning of the page cache */ static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) { int res; do { res = find_and_lock_cache_page(desc); } while (res == -EAGAIN); return res; } #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) /* * Once we've found the start of the dirent within a page: fill 'er up... */ static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, const __be32 *verf) { struct file *file = desc->file; struct nfs_cache_array *array; unsigned int i; bool first_emit = !desc->dir_cookie; array = kmap_local_folio(desc->folio, 0); for (i = desc->cache_entry_index; i < array->size; i++) { struct nfs_cache_array_entry *ent; /* * nfs_readdir_handle_cache_misses return force clear at * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 * entries need be emitted here. */ if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { desc->eob = true; break; } ent = &array->array[i]; if (!dir_emit(desc->ctx, ent->name, ent->name_len, nfs_compat_user_ino64(ent->ino), ent->d_type)) { desc->eob = true; break; } memcpy(desc->verf, verf, sizeof(desc->verf)); if (i == array->size - 1) { desc->dir_cookie = array->last_cookie; nfs_readdir_seek_next_array(array, desc); } else { desc->dir_cookie = array->array[i + 1].cookie; desc->last_cookie = array->array[0].cookie; } if (nfs_readdir_use_cookie(file)) desc->ctx->pos = desc->dir_cookie; else desc->ctx->pos++; } if (array->folio_is_eof) desc->eof = !desc->eob; kunmap_local(array); dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", (unsigned long long)desc->dir_cookie); } /* * If we cannot find a cookie in our cache, we suspect that this is * because it points to a deleted file, so we ask the server to return * whatever it thinks is the next entry. We then feed this to filldir. * If all goes well, we should then be able to find our way round the * cache on the next call to readdir_search_pagecache(); * * NOTE: we cannot add the anonymous page to the pagecache because * the data it contains might not be page aligned. Besides, * we should already have a complete representation of the * directory in the page cache by the time we get here. */ static int uncached_readdir(struct nfs_readdir_descriptor *desc) { struct folio **arrays; size_t i, sz = 512; __be32 verf[NFS_DIR_VERIFIER_SIZE]; int status = -ENOMEM; dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", (unsigned long long)desc->dir_cookie); arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); if (!arrays) goto out; arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); if (!arrays[0]) goto out; desc->folio_index = 0; desc->cache_entry_index = 0; desc->last_cookie = desc->dir_cookie; desc->folio_index_max = 0; trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, -1, desc->dtsize); status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); if (status < 0) { trace_nfs_readdir_uncached_done(file_inode(desc->file), status); goto out_free; } for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { desc->folio = arrays[i]; nfs_do_filldir(desc, verf); } desc->folio = NULL; /* * Grow the dtsize if we have to go back for more pages, * or shrink it if we're reading too many. */ if (!desc->eof) { if (!desc->eob) nfs_grow_dtsize(desc); else if (desc->buffer_fills == 1 && i < (desc->folio_index_max >> 1)) nfs_shrink_dtsize(desc); } out_free: for (i = 0; i < sz && arrays[i]; i++) nfs_readdir_folio_array_free(arrays[i]); out: if (!nfs_readdir_use_cookie(desc->file)) nfs_readdir_rewind_search(desc); desc->folio_index_max = -1; kfree(arrays); dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); return status; } static bool nfs_readdir_handle_cache_misses(struct inode *inode, struct nfs_readdir_descriptor *desc, unsigned int cache_misses, bool force_clear) { if (desc->ctx->pos == 0 || !desc->plus) return false; if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) return false; trace_nfs_readdir_force_readdirplus(inode); return true; } /* The file offset position represents the dirent entry number. A last cookie cache takes care of the common case of reading the whole directory. */ static int nfs_readdir(struct file *file, struct dir_context *ctx) { struct dentry *dentry = file_dentry(file); struct inode *inode = d_inode(dentry); struct nfs_inode *nfsi = NFS_I(inode); struct nfs_open_dir_context *dir_ctx = file->private_data; struct nfs_readdir_descriptor *desc; unsigned int cache_hits, cache_misses; bool force_clear; int res; dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", file, (long long)ctx->pos); nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); /* * ctx->pos points to the dirent entry number. * *desc->dir_cookie has the cookie for the next entry. We have * to either find the entry with the appropriate number or * revalidate the cookie. */ nfs_revalidate_mapping(inode, file->f_mapping); res = -ENOMEM; desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) goto out; desc->file = file; desc->ctx = ctx; desc->folio_index_max = -1; spin_lock(&file->f_lock); desc->dir_cookie = dir_ctx->dir_cookie; desc->folio_index = dir_ctx->page_index; desc->last_cookie = dir_ctx->last_cookie; desc->attr_gencount = dir_ctx->attr_gencount; desc->eof = dir_ctx->eof; nfs_set_dtsize(desc, dir_ctx->dtsize); memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); force_clear = dir_ctx->force_clear; spin_unlock(&file->f_lock); if (desc->eof) { res = 0; goto out_free; } desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, force_clear); desc->clear_cache = force_clear; do { res = readdir_search_pagecache(desc); if (res == -EBADCOOKIE) { res = 0; /* This means either end of directory */ if (desc->dir_cookie && !desc->eof) { /* Or that the server has 'lost' a cookie */ res = uncached_readdir(desc); if (res == 0) continue; if (res == -EBADCOOKIE || res == -ENOTSYNC) res = 0; } break; } if (res == -ETOOSMALL && desc->plus) { nfs_zap_caches(inode); desc->plus = false; desc->eof = false; continue; } if (res < 0) break; nfs_do_filldir(desc, nfsi->cookieverf); nfs_readdir_folio_unlock_and_put_cached(desc); if (desc->folio_index == desc->folio_index_max) desc->clear_cache = force_clear; } while (!desc->eob && !desc->eof); spin_lock(&file->f_lock); dir_ctx->dir_cookie = desc->dir_cookie; dir_ctx->last_cookie = desc->last_cookie; dir_ctx->attr_gencount = desc->attr_gencount; dir_ctx->page_index = desc->folio_index; dir_ctx->force_clear = force_clear; dir_ctx->eof = desc->eof; dir_ctx->dtsize = desc->dtsize; memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); spin_unlock(&file->f_lock); out_free: kfree(desc); out: dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); return res; } static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) { struct nfs_open_dir_context *dir_ctx = filp->private_data; dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", filp, offset, whence); switch (whence) { default: return -EINVAL; case SEEK_SET: if (offset < 0) return -EINVAL; spin_lock(&filp->f_lock); break; case SEEK_CUR: if (offset == 0) return filp->f_pos; spin_lock(&filp->f_lock); offset += filp->f_pos; if (offset < 0) { spin_unlock(&filp->f_lock); return -EINVAL; } } if (offset != filp->f_pos) { filp->f_pos = offset; dir_ctx->page_index = 0; if (!nfs_readdir_use_cookie(filp)) { dir_ctx->dir_cookie = 0; dir_ctx->last_cookie = 0; } else { dir_ctx->dir_cookie = offset; dir_ctx->last_cookie = offset; } dir_ctx->eof = false; } spin_unlock(&filp->f_lock); return offset; } /* * All directory operations under NFS are synchronous, so fsync() * is a dummy operation. */ static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, int datasync) { dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); return 0; } /** * nfs_force_lookup_revalidate - Mark the directory as having changed * @dir: pointer to directory inode * * This forces the revalidation code in nfs_lookup_revalidate() to do a * full lookup on all child dentries of 'dir' whenever a change occurs * on the server that might have invalidated our dcache. * * Note that we reserve bit '0' as a tag to let us know when a dentry * was revalidated while holding a delegation on its inode. * * The caller should be holding dir->i_lock */ void nfs_force_lookup_revalidate(struct inode *dir) { NFS_I(dir)->cache_change_attribute += 2; } EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); /** * nfs_verify_change_attribute - Detects NFS remote directory changes * @dir: pointer to parent directory inode * @verf: previously saved change attribute * * Return "false" if the verifiers doesn't match the change attribute. * This would usually indicate that the directory contents have changed on * the server, and that any dentries need revalidating. */ static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) { return (verf & ~1UL) == nfs_save_change_attribute(dir); } static void nfs_set_verifier_delegated(unsigned long *verf) { *verf |= 1UL; } #if IS_ENABLED(CONFIG_NFS_V4) static void nfs_unset_verifier_delegated(unsigned long *verf) { *verf &= ~1UL; } #endif /* IS_ENABLED(CONFIG_NFS_V4) */ static bool nfs_test_verifier_delegated(unsigned long verf) { return verf & 1; } static bool nfs_verifier_is_delegated(struct dentry *dentry) { return nfs_test_verifier_delegated(dentry->d_time); } static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) { struct inode *inode = d_inode(dentry); struct inode *dir = d_inode_rcu(dentry->d_parent); if (!dir || !nfs_verify_change_attribute(dir, verf)) return; if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0)) nfs_set_verifier_delegated(&verf); dentry->d_time = verf; } /** * nfs_set_verifier - save a parent directory verifier in the dentry * @dentry: pointer to dentry * @verf: verifier to save * * Saves the parent directory verifier in @dentry. If the inode has * a delegation, we also tag the dentry as having been revalidated * while holding a delegation so that we know we don't have to * look it up again after a directory change. */ void nfs_set_verifier(struct dentry *dentry, unsigned long verf) { spin_lock(&dentry->d_lock); nfs_set_verifier_locked(dentry, verf); spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL_GPL(nfs_set_verifier); #if IS_ENABLED(CONFIG_NFS_V4) /** * nfs_clear_verifier_delegated - clear the dir verifier delegation tag * @inode: pointer to inode * * Iterates through the dentries in the inode alias list and clears * the tag used to indicate that the dentry has been revalidated * while holding a delegation. * This function is intended for use when the delegation is being * returned or revoked. */ void nfs_clear_verifier_delegated(struct inode *inode) { struct dentry *alias; if (!inode) return; spin_lock(&inode->i_lock); hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { spin_lock(&alias->d_lock); nfs_unset_verifier_delegated(&alias->d_time); spin_unlock(&alias->d_lock); } spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); #endif /* IS_ENABLED(CONFIG_NFS_V4) */ static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) { if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && d_really_is_negative(dentry)) return dentry->d_time == inode_peek_iversion_raw(dir); return nfs_verify_change_attribute(dir, dentry->d_time); } /* * A check for whether or not the parent directory has changed. * In the case it has, we assume that the dentries are untrustworthy * and may need to be looked up again. * If rcu_walk prevents us from performing a full check, return 0. */ static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, int rcu_walk) { if (IS_ROOT(dentry)) return 1; if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) return 0; if (!nfs_dentry_verify_change(dir, dentry)) return 0; /* Revalidate nfsi->cache_change_attribute before we declare a match */ if (nfs_mapping_need_revalidate_inode(dir)) { if (rcu_walk) return 0; if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) return 0; } if (!nfs_dentry_verify_change(dir, dentry)) return 0; return 1; } /* * Use intent information to check whether or not we're going to do * an O_EXCL create using this path component. */ static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) { if (NFS_PROTO(dir)->version == 2) return 0; return flags & LOOKUP_EXCL; } /* * Inode and filehandle revalidation for lookups. * * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, * or if the intent information indicates that we're about to open this * particular file and the "nocto" mount flag is not set. * */ static int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) { struct nfs_server *server = NFS_SERVER(inode); int ret; if (IS_AUTOMOUNT(inode)) return 0; if (flags & LOOKUP_OPEN) { switch (inode->i_mode & S_IFMT) { case S_IFREG: /* A NFSv4 OPEN will revalidate later */ if (server->caps & NFS_CAP_ATOMIC_OPEN) goto out; fallthrough; case S_IFDIR: if (server->flags & NFS_MOUNT_NOCTO) break; /* NFS close-to-open cache consistency validation */ goto out_force; } } /* VFS wants an on-the-wire revalidation */ if (flags & LOOKUP_REVAL) goto out_force; out: if (inode->i_nlink > 0 || (inode->i_nlink == 0 && test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) return 0; else return -ESTALE; out_force: if (flags & LOOKUP_RCU) return -ECHILD; ret = __nfs_revalidate_inode(server, inode); if (ret != 0) return ret; goto out; } static void nfs_mark_dir_for_revalidate(struct inode *inode) { spin_lock(&inode->i_lock); nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); spin_unlock(&inode->i_lock); } /* * We judge how long we want to trust negative * dentries by looking at the parent inode mtime. * * If parent mtime has changed, we revalidate, else we wait for a * period corresponding to the parent's attribute cache timeout value. * * If LOOKUP_RCU prevents us from performing a full check, return 1 * suggesting a reval is needed. * * Note that when creating a new file, or looking up a rename target, * then it shouldn't be necessary to revalidate a negative dentry. */ static inline int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, unsigned int flags) { if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) return 0; if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) return 1; /* Case insensitive server? Revalidate negative dentries */ if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) return 1; return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); } static int nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, struct inode *inode, int error) { switch (error) { case 1: break; case -ETIMEDOUT: if (inode && (IS_ROOT(dentry) || NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)) error = 1; break; case -ESTALE: case -ENOENT: error = 0; fallthrough; default: /* * We can't d_drop the root of a disconnected tree: * its d_hash is on the s_anon list and d_drop() would hide * it from shrink_dcache_for_unmount(), leading to busy * inodes on unmount and further oopses. */ if (inode && IS_ROOT(dentry)) error = 1; break; } trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); return error; } static int nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, unsigned int flags) { int ret = 1; if (nfs_neg_need_reval(dir, dentry, flags)) { if (flags & LOOKUP_RCU) return -ECHILD; ret = 0; } return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); } static int nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, struct inode *inode) { nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); return nfs_lookup_revalidate_done(dir, dentry, inode, 1); } static int nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, struct inode *inode, unsigned int flags) { struct nfs_fh *fhandle; struct nfs_fattr *fattr; unsigned long dir_verifier; int ret; trace_nfs_lookup_revalidate_enter(dir, dentry, flags); ret = -ENOMEM; fhandle = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); if (fhandle == NULL || fattr == NULL) goto out; dir_verifier = nfs_save_change_attribute(dir); ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); if (ret < 0) goto out; /* Request help from readdirplus */ nfs_lookup_advise_force_readdirplus(dir, flags); ret = 0; if (nfs_compare_fh(NFS_FH(inode), fhandle)) goto out; if (nfs_refresh_inode(inode, fattr) < 0) goto out; nfs_setsecurity(inode, fattr); nfs_set_verifier(dentry, dir_verifier); ret = 1; out: nfs_free_fattr(fattr); nfs_free_fhandle(fhandle); /* * If the lookup failed despite the dentry change attribute being * a match, then we should revalidate the directory cache. */ if (!ret && nfs_dentry_verify_change(dir, dentry)) nfs_mark_dir_for_revalidate(dir); return nfs_lookup_revalidate_done(dir, dentry, inode, ret); } /* * This is called every time the dcache has a lookup hit, * and we should check whether we can really trust that * lookup. * * NOTE! The hit can be a negative hit too, don't assume * we have an inode! * * If the parent directory is seen to have changed, we throw out the * cached dentry and do a new lookup. */ static int nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct inode *inode; int error = 0; nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); inode = d_inode(dentry); if (!inode) return nfs_lookup_revalidate_negative(dir, dentry, flags); if (is_bad_inode(inode)) { dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", __func__, dentry); goto out_bad; } if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) goto out_bad; if (nfs_verifier_is_delegated(dentry)) return nfs_lookup_revalidate_delegated(dir, dentry, inode); /* Force a full look up iff the parent directory has changed */ if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { error = nfs_lookup_verify_inode(inode, flags); if (error) { if (error == -ESTALE) nfs_mark_dir_for_revalidate(dir); goto out_bad; } goto out_valid; } if (flags & LOOKUP_RCU) return -ECHILD; if (NFS_STALE(inode)) goto out_bad; return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); out_valid: return nfs_lookup_revalidate_done(dir, dentry, inode, 1); out_bad: if (flags & LOOKUP_RCU) return -ECHILD; return nfs_lookup_revalidate_done(dir, dentry, inode, error); } static int __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, int (*reval)(struct inode *, struct dentry *, unsigned int)) { struct dentry *parent; struct inode *dir; int ret; if (flags & LOOKUP_RCU) { if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) return -ECHILD; parent = READ_ONCE(dentry->d_parent); dir = d_inode_rcu(parent); if (!dir) return -ECHILD; ret = reval(dir, dentry, flags); if (parent != READ_ONCE(dentry->d_parent)) return -ECHILD; } else { /* Wait for unlink to complete - see unblock_revalidate() */ wait_var_event(&dentry->d_fsdata, smp_load_acquire(&dentry->d_fsdata) != NFS_FSDATA_BLOCKED); parent = dget_parent(dentry); ret = reval(d_inode(parent), dentry, flags); dput(parent); } return ret; } static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) { return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); } static void block_revalidate(struct dentry *dentry) { /* old devname - just in case */ kfree(dentry->d_fsdata); /* Any new reference that could lead to an open * will take ->d_lock in lookup_open() -> d_lookup(). * Holding this lock ensures we cannot race with * __nfs_lookup_revalidate() and removes and need * for further barriers. */ lockdep_assert_held(&dentry->d_lock); dentry->d_fsdata = NFS_FSDATA_BLOCKED; } static void unblock_revalidate(struct dentry *dentry) { /* store_release ensures wait_var_event() sees the update */ smp_store_release(&dentry->d_fsdata, NULL); wake_up_var(&dentry->d_fsdata); } /* * A weaker form of d_revalidate for revalidating just the d_inode(dentry) * when we don't really care about the dentry name. This is called when a * pathwalk ends on a dentry that was not found via a normal lookup in the * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). * * In this situation, we just want to verify that the inode itself is OK * since the dentry might have changed on the server. */ static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) { struct inode *inode = d_inode(dentry); int error = 0; /* * I believe we can only get a negative dentry here in the case of a * procfs-style symlink. Just assume it's correct for now, but we may * eventually need to do something more here. */ if (!inode) { dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", __func__, dentry); return 1; } if (is_bad_inode(inode)) { dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", __func__, dentry); return 0; } error = nfs_lookup_verify_inode(inode, flags); dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", __func__, inode->i_ino, error ? "invalid" : "valid"); return !error; } /* * This is called from dput() when d_count is going to 0. */ static int nfs_dentry_delete(const struct dentry *dentry) { dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", dentry, dentry->d_flags); /* Unhash any dentry with a stale inode */ if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) return 1; if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { /* Unhash it, so that ->d_iput() would be called */ return 1; } if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { /* Unhash it, so that ancestors of killed async unlink * files will be cleaned up during umount */ return 1; } return 0; } /* Ensure that we revalidate inode->i_nlink */ static void nfs_drop_nlink(struct inode *inode) { spin_lock(&inode->i_lock); /* drop the inode if we're reasonably sure this is the last link */ if (inode->i_nlink > 0) drop_nlink(inode); NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); nfs_set_cache_invalid( inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_INVALID_NLINK); spin_unlock(&inode->i_lock); } /* * Called when the dentry loses inode. * We use it to clean up silly-renamed files. */ static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) { if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { nfs_complete_unlink(dentry, inode); nfs_drop_nlink(inode); } iput(inode); } static void nfs_d_release(struct dentry *dentry) { /* free cached devname value, if it survived that far */ if (unlikely(dentry->d_fsdata)) { if (dentry->d_flags & DCACHE_NFSFS_RENAMED) WARN_ON(1); else kfree(dentry->d_fsdata); } } const struct dentry_operations nfs_dentry_operations = { .d_revalidate = nfs_lookup_revalidate, .d_weak_revalidate = nfs_weak_revalidate, .d_delete = nfs_dentry_delete, .d_iput = nfs_dentry_iput, .d_automount = nfs_d_automount, .d_release = nfs_d_release, }; EXPORT_SYMBOL_GPL(nfs_dentry_operations); struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) { struct dentry *res; struct inode *inode = NULL; struct nfs_fh *fhandle = NULL; struct nfs_fattr *fattr = NULL; unsigned long dir_verifier; int error; dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) return ERR_PTR(-ENAMETOOLONG); /* * If we're doing an exclusive create, optimize away the lookup * but don't hash the dentry. */ if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) return NULL; res = ERR_PTR(-ENOMEM); fhandle = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); if (fhandle == NULL || fattr == NULL) goto out; dir_verifier = nfs_save_change_attribute(dir); trace_nfs_lookup_enter(dir, dentry, flags); error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); if (error == -ENOENT) { if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) dir_verifier = inode_peek_iversion_raw(dir); goto no_entry; } if (error < 0) { res = ERR_PTR(error); goto out; } inode = nfs_fhget(dentry->d_sb, fhandle, fattr); res = ERR_CAST(inode); if (IS_ERR(res)) goto out; /* Notify readdir to use READDIRPLUS */ nfs_lookup_advise_force_readdirplus(dir, flags); no_entry: res = d_splice_alias(inode, dentry); if (res != NULL) { if (IS_ERR(res)) goto out; dentry = res; } nfs_set_verifier(dentry, dir_verifier); out: trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); nfs_free_fattr(fattr); nfs_free_fhandle(fhandle); return res; } EXPORT_SYMBOL_GPL(nfs_lookup); void nfs_d_prune_case_insensitive_aliases(struct inode *inode) { /* Case insensitive server? Revalidate dentries */ if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) d_prune_aliases(inode); } EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); #if IS_ENABLED(CONFIG_NFS_V4) static int nfs4_lookup_revalidate(struct dentry *, unsigned int); const struct dentry_operations nfs4_dentry_operations = { .d_revalidate = nfs4_lookup_revalidate, .d_weak_revalidate = nfs_weak_revalidate, .d_delete = nfs_dentry_delete, .d_iput = nfs_dentry_iput, .d_automount = nfs_d_automount, .d_release = nfs_d_release, }; EXPORT_SYMBOL_GPL(nfs4_dentry_operations); static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) { return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); } static int do_open(struct inode *inode, struct file *filp) { nfs_fscache_open_file(inode, filp); return 0; } static int nfs_finish_open(struct nfs_open_context *ctx, struct dentry *dentry, struct file *file, unsigned open_flags) { int err; err = finish_open(file, dentry, do_open); if (err) goto out; if (S_ISREG(file_inode(file)->i_mode)) nfs_file_set_open_context(file, ctx); else err = -EOPENSTALE; out: return err; } int nfs_atomic_open(struct inode *dir, struct dentry *dentry, struct file *file, unsigned open_flags, umode_t mode) { DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); struct nfs_open_context *ctx; struct dentry *res; struct iattr attr = { .ia_valid = ATTR_OPEN }; struct inode *inode; unsigned int lookup_flags = 0; unsigned long dir_verifier; bool switched = false; int created = 0; int err; /* Expect a negative dentry */ BUG_ON(d_inode(dentry)); dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", dir->i_sb->s_id, dir->i_ino, dentry); err = nfs_check_flags(open_flags); if (err) return err; /* NFS only supports OPEN on regular files */ if ((open_flags & O_DIRECTORY)) { if (!d_in_lookup(dentry)) { /* * Hashed negative dentry with O_DIRECTORY: dentry was * revalidated and is fine, no need to perform lookup * again */ return -ENOENT; } lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; goto no_open; } if (dentry->d_name.len > NFS_SERVER(dir)->namelen) return -ENAMETOOLONG; if (open_flags & O_CREAT) { struct nfs_server *server = NFS_SERVER(dir); if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) mode &= ~current_umask(); attr.ia_valid |= ATTR_MODE; attr.ia_mode = mode; } if (open_flags & O_TRUNC) { attr.ia_valid |= ATTR_SIZE; attr.ia_size = 0; } if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { d_drop(dentry); switched = true; dentry = d_alloc_parallel(dentry->d_parent, &dentry->d_name, &wq); if (IS_ERR(dentry)) return PTR_ERR(dentry); if (unlikely(!d_in_lookup(dentry))) return finish_no_open(file, dentry); } ctx = create_nfs_open_context(dentry, open_flags, file); err = PTR_ERR(ctx); if (IS_ERR(ctx)) goto out; trace_nfs_atomic_open_enter(dir, ctx, open_flags); inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); if (created) file->f_mode |= FMODE_CREATED; if (IS_ERR(inode)) { err = PTR_ERR(inode); trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); put_nfs_open_context(ctx); d_drop(dentry); switch (err) { case -ENOENT: d_splice_alias(NULL, dentry); if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) dir_verifier = inode_peek_iversion_raw(dir); else dir_verifier = nfs_save_change_attribute(dir); nfs_set_verifier(dentry, dir_verifier); break; case -EISDIR: case -ENOTDIR: goto no_open; case -ELOOP: if (!(open_flags & O_NOFOLLOW)) goto no_open; break; /* case -EINVAL: */ default: break; } goto out; } file->f_mode |= FMODE_CAN_ODIRECT; err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); put_nfs_open_context(ctx); out: if (unlikely(switched)) { d_lookup_done(dentry); dput(dentry); } return err; no_open: res = nfs_lookup(dir, dentry, lookup_flags); if (!res) { inode = d_inode(dentry); if ((lookup_flags & LOOKUP_DIRECTORY) && inode && !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) res = ERR_PTR(-ENOTDIR); else if (inode && S_ISREG(inode->i_mode)) res = ERR_PTR(-EOPENSTALE); } else if (!IS_ERR(res)) { inode = d_inode(res); if ((lookup_flags & LOOKUP_DIRECTORY) && inode && !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { dput(res); res = ERR_PTR(-ENOTDIR); } else if (inode && S_ISREG(inode->i_mode)) { dput(res); res = ERR_PTR(-EOPENSTALE); } } if (switched) { d_lookup_done(dentry); if (!res) res = dentry; else dput(dentry); } if (IS_ERR(res)) return PTR_ERR(res); return finish_no_open(file, res); } EXPORT_SYMBOL_GPL(nfs_atomic_open); static int nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct inode *inode; trace_nfs_lookup_revalidate_enter(dir, dentry, flags); if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) goto full_reval; if (d_mountpoint(dentry)) goto full_reval; inode = d_inode(dentry); /* We can't create new files in nfs_open_revalidate(), so we * optimize away revalidation of negative dentries. */ if (inode == NULL) goto full_reval; if (nfs_verifier_is_delegated(dentry)) return nfs_lookup_revalidate_delegated(dir, dentry, inode); /* NFS only supports OPEN on regular files */ if (!S_ISREG(inode->i_mode)) goto full_reval; /* We cannot do exclusive creation on a positive dentry */ if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) goto reval_dentry; /* Check if the directory changed */ if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) goto reval_dentry; /* Let f_op->open() actually open (and revalidate) the file */ return 1; reval_dentry: if (flags & LOOKUP_RCU) return -ECHILD; return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); full_reval: return nfs_do_lookup_revalidate(dir, dentry, flags); } static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) { return __nfs_lookup_revalidate(dentry, flags, nfs4_do_lookup_revalidate); } #endif /* CONFIG_NFSV4 */ int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry, struct file *file, unsigned int open_flags, umode_t mode) { /* Same as look+open from lookup_open(), but with different O_TRUNC * handling. */ int error = 0; if (dentry->d_name.len > NFS_SERVER(dir)->namelen) return -ENAMETOOLONG; if (open_flags & O_CREAT) { file->f_mode |= FMODE_CREATED; error = nfs_do_create(dir, dentry, mode, open_flags); if (error) return error; return finish_open(file, dentry, NULL); } else if (d_in_lookup(dentry)) { /* The only flags nfs_lookup considers are * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and * we want those to be zero so the lookup isn't skipped. */ struct dentry *res = nfs_lookup(dir, dentry, 0); d_lookup_done(dentry); if (unlikely(res)) { if (IS_ERR(res)) return PTR_ERR(res); return finish_no_open(file, res); } } return finish_no_open(file, NULL); } EXPORT_SYMBOL_GPL(nfs_atomic_open_v23); struct dentry * nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct dentry *parent = dget_parent(dentry); struct inode *dir = d_inode(parent); struct inode *inode; struct dentry *d; int error; d_drop(dentry); if (fhandle->size == 0) { error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); if (error) goto out_error; } nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); if (!(fattr->valid & NFS_ATTR_FATTR)) { struct nfs_server *server = NFS_SB(dentry->d_sb); error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); if (error < 0) goto out_error; } inode = nfs_fhget(dentry->d_sb, fhandle, fattr); d = d_splice_alias(inode, dentry); out: dput(parent); return d; out_error: d = ERR_PTR(error); goto out; } EXPORT_SYMBOL_GPL(nfs_add_or_obtain); /* * Code common to create, mkdir, and mknod. */ int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct dentry *d; d = nfs_add_or_obtain(dentry, fhandle, fattr); if (IS_ERR(d)) return PTR_ERR(d); /* Callers don't care */ dput(d); return 0; } EXPORT_SYMBOL_GPL(nfs_instantiate); /* * Following a failed create operation, we drop the dentry rather * than retain a negative dentry. This avoids a problem in the event * that the operation succeeded on the server, but an error in the * reply path made it appear to have failed. */ static int nfs_do_create(struct inode *dir, struct dentry *dentry, umode_t mode, int open_flags) { struct iattr attr; int error; open_flags |= O_CREAT; dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", dir->i_sb->s_id, dir->i_ino, dentry); attr.ia_mode = mode; attr.ia_valid = ATTR_MODE; if (open_flags & O_TRUNC) { attr.ia_size = 0; attr.ia_valid |= ATTR_SIZE; } trace_nfs_create_enter(dir, dentry, open_flags); error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); trace_nfs_create_exit(dir, dentry, open_flags, error); if (error != 0) goto out_err; return 0; out_err: d_drop(dentry); return error; } int nfs_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0); } EXPORT_SYMBOL_GPL(nfs_create); /* * See comments for nfs_proc_create regarding failed operations. */ int nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct iattr attr; int status; dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", dir->i_sb->s_id, dir->i_ino, dentry); attr.ia_mode = mode; attr.ia_valid = ATTR_MODE; trace_nfs_mknod_enter(dir, dentry); status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); trace_nfs_mknod_exit(dir, dentry, status); if (status != 0) goto out_err; return 0; out_err: d_drop(dentry); return status; } EXPORT_SYMBOL_GPL(nfs_mknod); /* * See comments for nfs_proc_create regarding failed operations. */ int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { struct iattr attr; int error; dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", dir->i_sb->s_id, dir->i_ino, dentry); attr.ia_valid = ATTR_MODE; attr.ia_mode = mode | S_IFDIR; trace_nfs_mkdir_enter(dir, dentry); error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); trace_nfs_mkdir_exit(dir, dentry, error); if (error != 0) goto out_err; return 0; out_err: d_drop(dentry); return error; } EXPORT_SYMBOL_GPL(nfs_mkdir); static void nfs_dentry_handle_enoent(struct dentry *dentry) { if (simple_positive(dentry)) d_delete(dentry); } static void nfs_dentry_remove_handle_error(struct inode *dir, struct dentry *dentry, int error) { switch (error) { case -ENOENT: if (d_really_is_positive(dentry)) d_delete(dentry); nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); break; case 0: nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); } } int nfs_rmdir(struct inode *dir, struct dentry *dentry) { int error; dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", dir->i_sb->s_id, dir->i_ino, dentry); trace_nfs_rmdir_enter(dir, dentry); if (d_really_is_positive(dentry)) { down_write(&NFS_I(d_inode(dentry))->rmdir_sem); error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); /* Ensure the VFS deletes this inode */ switch (error) { case 0: clear_nlink(d_inode(dentry)); break; case -ENOENT: nfs_dentry_handle_enoent(dentry); } up_write(&NFS_I(d_inode(dentry))->rmdir_sem); } else error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); nfs_dentry_remove_handle_error(dir, dentry, error); trace_nfs_rmdir_exit(dir, dentry, error); return error; } EXPORT_SYMBOL_GPL(nfs_rmdir); /* * Remove a file after making sure there are no pending writes, * and after checking that the file has only one user. * * We invalidate the attribute cache and free the inode prior to the operation * to avoid possible races if the server reuses the inode. */ static int nfs_safe_remove(struct dentry *dentry) { struct inode *dir = d_inode(dentry->d_parent); struct inode *inode = d_inode(dentry); int error = -EBUSY; dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); /* If the dentry was sillyrenamed, we simply call d_delete() */ if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { error = 0; goto out; } trace_nfs_remove_enter(dir, dentry); if (inode != NULL) { error = NFS_PROTO(dir)->remove(dir, dentry); if (error == 0) nfs_drop_nlink(inode); } else error = NFS_PROTO(dir)->remove(dir, dentry); if (error == -ENOENT) nfs_dentry_handle_enoent(dentry); trace_nfs_remove_exit(dir, dentry, error); out: return error; } /* We do silly rename. In case sillyrename() returns -EBUSY, the inode * belongs to an active ".nfs..." file and we return -EBUSY. * * If sillyrename() returns 0, we do nothing, otherwise we unlink. */ int nfs_unlink(struct inode *dir, struct dentry *dentry) { int error; dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, dir->i_ino, dentry); trace_nfs_unlink_enter(dir, dentry); spin_lock(&dentry->d_lock); if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(d_inode(dentry))->flags)) { spin_unlock(&dentry->d_lock); /* Start asynchronous writeout of the inode */ write_inode_now(d_inode(dentry), 0); error = nfs_sillyrename(dir, dentry); goto out; } /* We must prevent any concurrent open until the unlink * completes. ->d_revalidate will wait for ->d_fsdata * to clear. We set it here to ensure no lookup succeeds until * the unlink is complete on the server. */ error = -ETXTBSY; if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { spin_unlock(&dentry->d_lock); goto out; } block_revalidate(dentry); spin_unlock(&dentry->d_lock); error = nfs_safe_remove(dentry); nfs_dentry_remove_handle_error(dir, dentry, error); unblock_revalidate(dentry); out: trace_nfs_unlink_exit(dir, dentry, error); return error; } EXPORT_SYMBOL_GPL(nfs_unlink); /* * To create a symbolic link, most file systems instantiate a new inode, * add a page to it containing the path, then write it out to the disk * using prepare_write/commit_write. * * Unfortunately the NFS client can't create the in-core inode first * because it needs a file handle to create an in-core inode (see * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the * symlink request has completed on the server. * * So instead we allocate a raw page, copy the symname into it, then do * the SYMLINK request with the page as the buffer. If it succeeds, we * now have a new file handle and can instantiate an in-core NFS inode * and move the raw page into its mapping. */ int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *symname) { struct folio *folio; char *kaddr; struct iattr attr; unsigned int pathlen = strlen(symname); int error; dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, dir->i_ino, dentry, symname); if (pathlen > PAGE_SIZE) return -ENAMETOOLONG; attr.ia_mode = S_IFLNK | S_IRWXUGO; attr.ia_valid = ATTR_MODE; folio = folio_alloc(GFP_USER, 0); if (!folio) return -ENOMEM; kaddr = folio_address(folio); memcpy(kaddr, symname, pathlen); if (pathlen < PAGE_SIZE) memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); trace_nfs_symlink_enter(dir, dentry); error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr); trace_nfs_symlink_exit(dir, dentry, error); if (error != 0) { dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", dir->i_sb->s_id, dir->i_ino, dentry, symname, error); d_drop(dentry); folio_put(folio); return error; } nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); /* * No big deal if we can't add this page to the page cache here. * READLINK will get the missing page from the server if needed. */ if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0, GFP_KERNEL) == 0) { folio_mark_uptodate(folio); folio_unlock(folio); } folio_put(folio); return 0; } EXPORT_SYMBOL_GPL(nfs_symlink); int nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(old_dentry); int error; dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", old_dentry, dentry); trace_nfs_link_enter(inode, dir, dentry); d_drop(dentry); if (S_ISREG(inode->i_mode)) nfs_sync_inode(inode); error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); if (error == 0) { nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); ihold(inode); d_add(dentry, inode); } trace_nfs_link_exit(inode, dir, dentry, error); return error; } EXPORT_SYMBOL_GPL(nfs_link); static void nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) { struct dentry *new_dentry = data->new_dentry; unblock_revalidate(new_dentry); } /* * RENAME * FIXME: Some nfsds, like the Linux user space nfsd, may generate a * different file handle for the same inode after a rename (e.g. when * moving to a different directory). A fail-safe method to do so would * be to look up old_dir/old_name, create a link to new_dir/new_name and * rename the old file using the sillyrename stuff. This way, the original * file in old_dir will go away when the last process iput()s the inode. * * FIXED. * * It actually works quite well. One needs to have the possibility for * at least one ".nfs..." file in each directory the file ever gets * moved or linked to which happens automagically with the new * implementation that only depends on the dcache stuff instead of * using the inode layer * * Unfortunately, things are a little more complicated than indicated * above. For a cross-directory move, we want to make sure we can get * rid of the old inode after the operation. This means there must be * no pending writes (if it's a file), and the use count must be 1. * If these conditions are met, we can drop the dentries before doing * the rename. */ int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct dentry *dentry = NULL; struct rpc_task *task; bool must_unblock = false; int error = -EBUSY; if (flags) return -EINVAL; dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", old_dentry, new_dentry, d_count(new_dentry)); trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); /* * For non-directories, check whether the target is busy and if so, * make a copy of the dentry and then do a silly-rename. If the * silly-rename succeeds, the copied dentry is hashed and becomes * the new target. */ if (new_inode && !S_ISDIR(new_inode->i_mode)) { /* We must prevent any concurrent open until the unlink * completes. ->d_revalidate will wait for ->d_fsdata * to clear. We set it here to ensure no lookup succeeds until * the unlink is complete on the server. */ error = -ETXTBSY; if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) goto out; spin_lock(&new_dentry->d_lock); if (d_count(new_dentry) > 2) { int err; spin_unlock(&new_dentry->d_lock); /* copy the target dentry's name */ dentry = d_alloc(new_dentry->d_parent, &new_dentry->d_name); if (!dentry) goto out; /* silly-rename the existing target ... */ err = nfs_sillyrename(new_dir, new_dentry); if (err) goto out; new_dentry = dentry; new_inode = NULL; } else { block_revalidate(new_dentry); must_unblock = true; spin_unlock(&new_dentry->d_lock); } } if (S_ISREG(old_inode->i_mode)) nfs_sync_inode(old_inode); task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, must_unblock ? nfs_unblock_rename : NULL); if (IS_ERR(task)) { if (must_unblock) unblock_revalidate(new_dentry); error = PTR_ERR(task); goto out; } error = rpc_wait_for_completion_task(task); if (error != 0) { ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ smp_wmb(); } else error = task->tk_status; rpc_put_task(task); /* Ensure the inode attributes are revalidated */ if (error == 0) { spin_lock(&old_inode->i_lock); NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_REVAL_FORCED); spin_unlock(&old_inode->i_lock); } out: trace_nfs_rename_exit(old_dir, old_dentry, new_dir, new_dentry, error); if (!error) { if (new_inode != NULL) nfs_drop_nlink(new_inode); /* * The d_move() should be here instead of in an async RPC completion * handler because we need the proper locks to move the dentry. If * we're interrupted by a signal, the async RPC completion handler * should mark the directories for revalidation. */ d_move(old_dentry, new_dentry); nfs_set_verifier(old_dentry, nfs_save_change_attribute(new_dir)); } else if (error == -ENOENT) nfs_dentry_handle_enoent(old_dentry); /* new dentry created? */ if (dentry) dput(dentry); return error; } EXPORT_SYMBOL_GPL(nfs_rename); static DEFINE_SPINLOCK(nfs_access_lru_lock); static LIST_HEAD(nfs_access_lru_list); static atomic_long_t nfs_access_nr_entries; static unsigned long nfs_access_max_cachesize = 4*1024*1024; module_param(nfs_access_max_cachesize, ulong, 0644); MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); static void nfs_access_free_entry(struct nfs_access_entry *entry) { put_group_info(entry->group_info); kfree_rcu(entry, rcu_head); smp_mb__before_atomic(); atomic_long_dec(&nfs_access_nr_entries); smp_mb__after_atomic(); } static void nfs_access_free_list(struct list_head *head) { struct nfs_access_entry *cache; while (!list_empty(head)) { cache = list_entry(head->next, struct nfs_access_entry, lru); list_del(&cache->lru); nfs_access_free_entry(cache); } } static unsigned long nfs_do_access_cache_scan(unsigned int nr_to_scan) { LIST_HEAD(head); struct nfs_inode *nfsi, *next; struct nfs_access_entry *cache; long freed = 0; spin_lock(&nfs_access_lru_lock); list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { struct inode *inode; if (nr_to_scan-- == 0) break; inode = &nfsi->vfs_inode; spin_lock(&inode->i_lock); if (list_empty(&nfsi->access_cache_entry_lru)) goto remove_lru_entry; cache = list_entry(nfsi->access_cache_entry_lru.next, struct nfs_access_entry, lru); list_move(&cache->lru, &head); rb_erase(&cache->rb_node, &nfsi->access_cache); freed++; if (!list_empty(&nfsi->access_cache_entry_lru)) list_move_tail(&nfsi->access_cache_inode_lru, &nfs_access_lru_list); else { remove_lru_entry: list_del_init(&nfsi->access_cache_inode_lru); smp_mb__before_atomic(); clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); smp_mb__after_atomic(); } spin_unlock(&inode->i_lock); } spin_unlock(&nfs_access_lru_lock); nfs_access_free_list(&head); return freed; } unsigned long nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) { int nr_to_scan = sc->nr_to_scan; gfp_t gfp_mask = sc->gfp_mask; if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) return SHRINK_STOP; return nfs_do_access_cache_scan(nr_to_scan); } unsigned long nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) { return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); } static void nfs_access_cache_enforce_limit(void) { long nr_entries = atomic_long_read(&nfs_access_nr_entries); unsigned long diff; unsigned int nr_to_scan; if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) return; nr_to_scan = 100; diff = nr_entries - nfs_access_max_cachesize; if (diff < nr_to_scan) nr_to_scan = diff; nfs_do_access_cache_scan(nr_to_scan); } static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) { struct rb_root *root_node = &nfsi->access_cache; struct rb_node *n; struct nfs_access_entry *entry; /* Unhook entries from the cache */ while ((n = rb_first(root_node)) != NULL) { entry = rb_entry(n, struct nfs_access_entry, rb_node); rb_erase(n, root_node); list_move(&entry->lru, head); } nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; } void nfs_access_zap_cache(struct inode *inode) { LIST_HEAD(head); if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) return; /* Remove from global LRU init */ spin_lock(&nfs_access_lru_lock); if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) list_del_init(&NFS_I(inode)->access_cache_inode_lru); spin_lock(&inode->i_lock); __nfs_access_zap_cache(NFS_I(inode), &head); spin_unlock(&inode->i_lock); spin_unlock(&nfs_access_lru_lock); nfs_access_free_list(&head); } EXPORT_SYMBOL_GPL(nfs_access_zap_cache); static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) { struct group_info *ga, *gb; int g; if (uid_lt(a->fsuid, b->fsuid)) return -1; if (uid_gt(a->fsuid, b->fsuid)) return 1; if (gid_lt(a->fsgid, b->fsgid)) return -1; if (gid_gt(a->fsgid, b->fsgid)) return 1; ga = a->group_info; gb = b->group_info; if (ga == gb) return 0; if (ga == NULL) return -1; if (gb == NULL) return 1; if (ga->ngroups < gb->ngroups) return -1; if (ga->ngroups > gb->ngroups) return 1; for (g = 0; g < ga->ngroups; g++) { if (gid_lt(ga->gid[g], gb->gid[g])) return -1; if (gid_gt(ga->gid[g], gb->gid[g])) return 1; } return 0; } static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) { struct rb_node *n = NFS_I(inode)->access_cache.rb_node; while (n != NULL) { struct nfs_access_entry *entry = rb_entry(n, struct nfs_access_entry, rb_node); int cmp = access_cmp(cred, entry); if (cmp < 0) n = n->rb_left; else if (cmp > 0) n = n->rb_right; else return entry; } return NULL; } static u64 nfs_access_login_time(const struct task_struct *task, const struct cred *cred) { const struct task_struct *parent; const struct cred *pcred; u64 ret; rcu_read_lock(); for (;;) { parent = rcu_dereference(task->real_parent); pcred = __task_cred(parent); if (parent == task || cred_fscmp(pcred, cred) != 0) break; task = parent; } ret = task->start_time; rcu_read_unlock(); return ret; } static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) { struct nfs_inode *nfsi = NFS_I(inode); u64 login_time = nfs_access_login_time(current, cred); struct nfs_access_entry *cache; bool retry = true; int err; spin_lock(&inode->i_lock); for(;;) { if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) goto out_zap; cache = nfs_access_search_rbtree(inode, cred); err = -ENOENT; if (cache == NULL) goto out; /* Found an entry, is our attribute cache valid? */ if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) break; if (!retry) break; err = -ECHILD; if (!may_block) goto out; spin_unlock(&inode->i_lock); err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); if (err) return err; spin_lock(&inode->i_lock); retry = false; } err = -ENOENT; if ((s64)(login_time - cache->timestamp) > 0) goto out; *mask = cache->mask; list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); err = 0; out: spin_unlock(&inode->i_lock); return err; out_zap: spin_unlock(&inode->i_lock); nfs_access_zap_cache(inode); return -ENOENT; } static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) { /* Only check the most recently returned cache entry, * but do it without locking. */ struct nfs_inode *nfsi = NFS_I(inode); u64 login_time = nfs_access_login_time(current, cred); struct nfs_access_entry *cache; int err = -ECHILD; struct list_head *lh; rcu_read_lock(); if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) goto out; lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); cache = list_entry(lh, struct nfs_access_entry, lru); if (lh == &nfsi->access_cache_entry_lru || access_cmp(cred, cache) != 0) cache = NULL; if (cache == NULL) goto out; if ((s64)(login_time - cache->timestamp) > 0) goto out; if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) goto out; *mask = cache->mask; err = 0; out: rcu_read_unlock(); return err; } int nfs_access_get_cached(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) { int status; status = nfs_access_get_cached_rcu(inode, cred, mask); if (status != 0) status = nfs_access_get_cached_locked(inode, cred, mask, may_block); return status; } EXPORT_SYMBOL_GPL(nfs_access_get_cached); static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set, const struct cred *cred) { struct nfs_inode *nfsi = NFS_I(inode); struct rb_root *root_node = &nfsi->access_cache; struct rb_node **p = &root_node->rb_node; struct rb_node *parent = NULL; struct nfs_access_entry *entry; int cmp; spin_lock(&inode->i_lock); while (*p != NULL) { parent = *p; entry = rb_entry(parent, struct nfs_access_entry, rb_node); cmp = access_cmp(cred, entry); if (cmp < 0) p = &parent->rb_left; else if (cmp > 0) p = &parent->rb_right; else goto found; } rb_link_node(&set->rb_node, parent, p); rb_insert_color(&set->rb_node, root_node); list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); spin_unlock(&inode->i_lock); return; found: rb_replace_node(parent, &set->rb_node, root_node); list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); list_del(&entry->lru); spin_unlock(&inode->i_lock); nfs_access_free_entry(entry); } void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, const struct cred *cred) { struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); if (cache == NULL) return; RB_CLEAR_NODE(&cache->rb_node); cache->fsuid = cred->fsuid; cache->fsgid = cred->fsgid; cache->group_info = get_group_info(cred->group_info); cache->mask = set->mask; cache->timestamp = ktime_get_ns(); /* The above field assignments must be visible * before this item appears on the lru. We cannot easily * use rcu_assign_pointer, so just force the memory barrier. */ smp_wmb(); nfs_access_add_rbtree(inode, cache, cred); /* Update accounting */ smp_mb__before_atomic(); atomic_long_inc(&nfs_access_nr_entries); smp_mb__after_atomic(); /* Add inode to global LRU list */ if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { spin_lock(&nfs_access_lru_lock); if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); spin_unlock(&nfs_access_lru_lock); } nfs_access_cache_enforce_limit(); } EXPORT_SYMBOL_GPL(nfs_access_add_cache); #define NFS_MAY_READ (NFS_ACCESS_READ) #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ NFS_ACCESS_EXTEND | \ NFS_ACCESS_DELETE) #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ NFS_ACCESS_EXTEND) #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) static int nfs_access_calc_mask(u32 access_result, umode_t umode) { int mask = 0; if (access_result & NFS_MAY_READ) mask |= MAY_READ; if (S_ISDIR(umode)) { if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) mask |= MAY_WRITE; if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) mask |= MAY_EXEC; } else if (S_ISREG(umode)) { if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) mask |= MAY_WRITE; if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) mask |= MAY_EXEC; } else if (access_result & NFS_MAY_WRITE) mask |= MAY_WRITE; return mask; } void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) { entry->mask = access_result; } EXPORT_SYMBOL_GPL(nfs_access_set_mask); static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) { struct nfs_access_entry cache; bool may_block = (mask & MAY_NOT_BLOCK) == 0; int cache_mask = -1; int status; trace_nfs_access_enter(inode); status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); if (status == 0) goto out_cached; status = -ECHILD; if (!may_block) goto out; /* * Determine which access bits we want to ask for... */ cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | nfs_access_xattr_mask(NFS_SERVER(inode)); if (S_ISDIR(inode->i_mode)) cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; else cache.mask |= NFS_ACCESS_EXECUTE; status = NFS_PROTO(inode)->access(inode, &cache, cred); if (status != 0) { if (status == -ESTALE) { if (!S_ISDIR(inode->i_mode)) nfs_set_inode_stale(inode); else nfs_zap_caches(inode); } goto out; } nfs_access_add_cache(inode, &cache, cred); out_cached: cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) status = -EACCES; out: trace_nfs_access_exit(inode, mask, cache_mask, status); return status; } static int nfs_open_permission_mask(int openflags) { int mask = 0; if (openflags & __FMODE_EXEC) { /* ONLY check exec rights */ mask = MAY_EXEC; } else { if ((openflags & O_ACCMODE) != O_WRONLY) mask |= MAY_READ; if ((openflags & O_ACCMODE) != O_RDONLY) mask |= MAY_WRITE; } return mask; } int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) { return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); } EXPORT_SYMBOL_GPL(nfs_may_open); static int nfs_execute_ok(struct inode *inode, int mask) { struct nfs_server *server = NFS_SERVER(inode); int ret = 0; if (S_ISDIR(inode->i_mode)) return 0; if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { if (mask & MAY_NOT_BLOCK) return -ECHILD; ret = __nfs_revalidate_inode(server, inode); } if (ret == 0 && !execute_ok(inode)) ret = -EACCES; return ret; } int nfs_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { const struct cred *cred = current_cred(); int res = 0; nfs_inc_stats(inode, NFSIOS_VFSACCESS); if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) goto out; /* Is this sys_access() ? */ if (mask & (MAY_ACCESS | MAY_CHDIR)) goto force_lookup; switch (inode->i_mode & S_IFMT) { case S_IFLNK: goto out; case S_IFREG: if ((mask & MAY_OPEN) && nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) return 0; break; case S_IFDIR: /* * Optimize away all write operations, since the server * will check permissions when we perform the op. */ if ((mask & MAY_WRITE) && !(mask & MAY_READ)) goto out; } force_lookup: if (!NFS_PROTO(inode)->access) goto out_notsup; res = nfs_do_access(inode, cred, mask); out: if (!res && (mask & MAY_EXEC)) res = nfs_execute_ok(inode, mask); dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", inode->i_sb->s_id, inode->i_ino, mask, res); return res; out_notsup: if (mask & MAY_NOT_BLOCK) return -ECHILD; res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | NFS_INO_INVALID_OTHER); if (res == 0) res = generic_permission(&nop_mnt_idmap, inode, mask); goto out; } EXPORT_SYMBOL_GPL(nfs_permission); |
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8 1 2 5 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 | // SPDX-License-Identifier: GPL-2.0-only /* * Driver for the VoIP USB phones with CM109 chipsets. * * Copyright (C) 2007 - 2008 Alfred E. Heggestad <aeh@db.org> */ /* * Tested devices: * - Komunikate KIP1000 * - Genius G-talk * - Allied-Telesis Corega USBPH01 * - ... * * This driver is based on the yealink.c driver * * Thanks to: * - Authors of yealink.c * - Thomas Reitmayr * - Oliver Neukum for good review comments and code * - Shaun Jackman <sjackman@gmail.com> for Genius G-talk keymap * - Dmitry Torokhov for valuable input and review * * Todo: * - Read/write EEPROM */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/rwsem.h> #include <linux/usb/input.h> #define DRIVER_VERSION "20080805" #define DRIVER_AUTHOR "Alfred E. Heggestad" #define DRIVER_DESC "CM109 phone driver" static char *phone = "kip1000"; module_param(phone, charp, S_IRUSR); MODULE_PARM_DESC(phone, "Phone name {kip1000, gtalk, usbph01, atcom}"); enum { /* HID Registers */ HID_IR0 = 0x00, /* Record/Playback-mute button, Volume up/down */ HID_IR1 = 0x01, /* GPI, generic registers or EEPROM_DATA0 */ HID_IR2 = 0x02, /* Generic registers or EEPROM_DATA1 */ HID_IR3 = 0x03, /* Generic registers or EEPROM_CTRL */ HID_OR0 = 0x00, /* Mapping control, buzzer, SPDIF (offset 0x04) */ HID_OR1 = 0x01, /* GPO - General Purpose Output */ HID_OR2 = 0x02, /* Set GPIO to input/output mode */ HID_OR3 = 0x03, /* SPDIF status channel or EEPROM_CTRL */ /* HID_IR0 */ RECORD_MUTE = 1 << 3, PLAYBACK_MUTE = 1 << 2, VOLUME_DOWN = 1 << 1, VOLUME_UP = 1 << 0, /* HID_OR0 */ /* bits 7-6 0: HID_OR1-2 are used for GPO; HID_OR0, 3 are used for buzzer and SPDIF 1: HID_OR0-3 are used as generic HID registers 2: Values written to HID_OR0-3 are also mapped to MCU_CTRL, EEPROM_DATA0-1, EEPROM_CTRL (see Note) 3: Reserved */ HID_OR_GPO_BUZ_SPDIF = 0 << 6, HID_OR_GENERIC_HID_REG = 1 << 6, HID_OR_MAP_MCU_EEPROM = 2 << 6, BUZZER_ON = 1 << 5, /* up to 256 normal keys, up to 15 special key combinations */ KEYMAP_SIZE = 256 + 15, }; /* CM109 protocol packet */ struct cm109_ctl_packet { u8 byte[4]; } __attribute__ ((packed)); enum { USB_PKT_LEN = sizeof(struct cm109_ctl_packet) }; /* CM109 device structure */ struct cm109_dev { struct input_dev *idev; /* input device */ struct usb_device *udev; /* usb device */ struct usb_interface *intf; /* irq input channel */ struct cm109_ctl_packet *irq_data; dma_addr_t irq_dma; struct urb *urb_irq; /* control output channel */ struct cm109_ctl_packet *ctl_data; dma_addr_t ctl_dma; struct usb_ctrlrequest *ctl_req; struct urb *urb_ctl; /* * The 3 bitfields below are protected by ctl_submit_lock. * They have to be separate since they are accessed from IRQ * context. */ unsigned irq_urb_pending:1; /* irq_urb is in flight */ unsigned ctl_urb_pending:1; /* ctl_urb is in flight */ unsigned buzzer_pending:1; /* need to issue buzz command */ spinlock_t ctl_submit_lock; unsigned char buzzer_state; /* on/off */ /* flags */ unsigned open:1; unsigned resetting:1; unsigned shutdown:1; /* This mutex protects writes to the above flags */ struct mutex pm_mutex; unsigned short keymap[KEYMAP_SIZE]; char phys[64]; /* physical device path */ int key_code; /* last reported key */ int keybit; /* 0=new scan 1,2,4,8=scan columns */ u8 gpi; /* Cached value of GPI (high nibble) */ }; /****************************************************************************** * CM109 key interface *****************************************************************************/ static unsigned short special_keymap(int code) { if (code > 0xff) { switch (code - 0xff) { case RECORD_MUTE: return KEY_MICMUTE; case PLAYBACK_MUTE: return KEY_MUTE; case VOLUME_DOWN: return KEY_VOLUMEDOWN; case VOLUME_UP: return KEY_VOLUMEUP; } } return KEY_RESERVED; } /* Map device buttons to internal key events. * * The "up" and "down" keys, are symbolised by arrows on the button. * The "pickup" and "hangup" keys are symbolised by a green and red phone * on the button. Komunikate KIP1000 Keyboard Matrix -> -- 1 -- 2 -- 3 --> GPI pin 4 (0x10) | | | | <- -- 4 -- 5 -- 6 --> GPI pin 5 (0x20) | | | | END - 7 -- 8 -- 9 --> GPI pin 6 (0x40) | | | | OK -- * -- 0 -- # --> GPI pin 7 (0x80) | | | | /|\ /|\ /|\ /|\ | | | | GPO pin: 3 2 1 0 0x8 0x4 0x2 0x1 */ static unsigned short keymap_kip1000(int scancode) { switch (scancode) { /* phone key: */ case 0x82: return KEY_NUMERIC_0; /* 0 */ case 0x14: return KEY_NUMERIC_1; /* 1 */ case 0x12: return KEY_NUMERIC_2; /* 2 */ case 0x11: return KEY_NUMERIC_3; /* 3 */ case 0x24: return KEY_NUMERIC_4; /* 4 */ case 0x22: return KEY_NUMERIC_5; /* 5 */ case 0x21: return KEY_NUMERIC_6; /* 6 */ case 0x44: return KEY_NUMERIC_7; /* 7 */ case 0x42: return KEY_NUMERIC_8; /* 8 */ case 0x41: return KEY_NUMERIC_9; /* 9 */ case 0x81: return KEY_NUMERIC_POUND; /* # */ case 0x84: return KEY_NUMERIC_STAR; /* * */ case 0x88: return KEY_ENTER; /* pickup */ case 0x48: return KEY_ESC; /* hangup */ case 0x28: return KEY_LEFT; /* IN */ case 0x18: return KEY_RIGHT; /* OUT */ default: return special_keymap(scancode); } } /* Contributed by Shaun Jackman <sjackman@gmail.com> Genius G-Talk keyboard matrix 0 1 2 3 4: 0 4 8 Talk 5: 1 5 9 End 6: 2 6 # Up 7: 3 7 * Down */ static unsigned short keymap_gtalk(int scancode) { switch (scancode) { case 0x11: return KEY_NUMERIC_0; case 0x21: return KEY_NUMERIC_1; case 0x41: return KEY_NUMERIC_2; case 0x81: return KEY_NUMERIC_3; case 0x12: return KEY_NUMERIC_4; case 0x22: return KEY_NUMERIC_5; case 0x42: return KEY_NUMERIC_6; case 0x82: return KEY_NUMERIC_7; case 0x14: return KEY_NUMERIC_8; case 0x24: return KEY_NUMERIC_9; case 0x44: return KEY_NUMERIC_POUND; /* # */ case 0x84: return KEY_NUMERIC_STAR; /* * */ case 0x18: return KEY_ENTER; /* Talk (green handset) */ case 0x28: return KEY_ESC; /* End (red handset) */ case 0x48: return KEY_UP; /* Menu up (rocker switch) */ case 0x88: return KEY_DOWN; /* Menu down (rocker switch) */ default: return special_keymap(scancode); } } /* * Keymap for Allied-Telesis Corega USBPH01 * http://www.alliedtelesis-corega.com/2/1344/1437/1360/chprd.html * * Contributed by july@nat.bg */ static unsigned short keymap_usbph01(int scancode) { switch (scancode) { case 0x11: return KEY_NUMERIC_0; /* 0 */ case 0x21: return KEY_NUMERIC_1; /* 1 */ case 0x41: return KEY_NUMERIC_2; /* 2 */ case 0x81: return KEY_NUMERIC_3; /* 3 */ case 0x12: return KEY_NUMERIC_4; /* 4 */ case 0x22: return KEY_NUMERIC_5; /* 5 */ case 0x42: return KEY_NUMERIC_6; /* 6 */ case 0x82: return KEY_NUMERIC_7; /* 7 */ case 0x14: return KEY_NUMERIC_8; /* 8 */ case 0x24: return KEY_NUMERIC_9; /* 9 */ case 0x44: return KEY_NUMERIC_POUND; /* # */ case 0x84: return KEY_NUMERIC_STAR; /* * */ case 0x18: return KEY_ENTER; /* pickup */ case 0x28: return KEY_ESC; /* hangup */ case 0x48: return KEY_LEFT; /* IN */ case 0x88: return KEY_RIGHT; /* OUT */ default: return special_keymap(scancode); } } /* * Keymap for ATCom AU-100 * http://www.atcom.cn/products.html * http://www.packetizer.com/products/au100/ * http://www.voip-info.org/wiki/view/AU-100 * * Contributed by daniel@gimpelevich.san-francisco.ca.us */ static unsigned short keymap_atcom(int scancode) { switch (scancode) { /* phone key: */ case 0x82: return KEY_NUMERIC_0; /* 0 */ case 0x11: return KEY_NUMERIC_1; /* 1 */ case 0x12: return KEY_NUMERIC_2; /* 2 */ case 0x14: return KEY_NUMERIC_3; /* 3 */ case 0x21: return KEY_NUMERIC_4; /* 4 */ case 0x22: return KEY_NUMERIC_5; /* 5 */ case 0x24: return KEY_NUMERIC_6; /* 6 */ case 0x41: return KEY_NUMERIC_7; /* 7 */ case 0x42: return KEY_NUMERIC_8; /* 8 */ case 0x44: return KEY_NUMERIC_9; /* 9 */ case 0x84: return KEY_NUMERIC_POUND; /* # */ case 0x81: return KEY_NUMERIC_STAR; /* * */ case 0x18: return KEY_ENTER; /* pickup */ case 0x28: return KEY_ESC; /* hangup */ case 0x48: return KEY_LEFT; /* left arrow */ case 0x88: return KEY_RIGHT; /* right arrow */ default: return special_keymap(scancode); } } static unsigned short (*keymap)(int) = keymap_kip1000; /* * Completes a request by converting the data into events for the * input subsystem. */ static void report_key(struct cm109_dev *dev, int key) { struct input_dev *idev = dev->idev; if (dev->key_code >= 0) { /* old key up */ input_report_key(idev, dev->key_code, 0); } dev->key_code = key; if (key >= 0) { /* new valid key */ input_report_key(idev, key, 1); } input_sync(idev); } /* * Converts data of special key presses (volume, mute) into events * for the input subsystem, sends press-n-release for mute keys. */ static void cm109_report_special(struct cm109_dev *dev) { static const u8 autorelease = RECORD_MUTE | PLAYBACK_MUTE; struct input_dev *idev = dev->idev; u8 data = dev->irq_data->byte[HID_IR0]; unsigned short keycode; int i; for (i = 0; i < 4; i++) { keycode = dev->keymap[0xff + BIT(i)]; if (keycode == KEY_RESERVED) continue; input_report_key(idev, keycode, data & BIT(i)); if (data & autorelease & BIT(i)) { input_sync(idev); input_report_key(idev, keycode, 0); } } input_sync(idev); } /****************************************************************************** * CM109 usb communication interface *****************************************************************************/ static void cm109_submit_buzz_toggle(struct cm109_dev *dev) { int error; if (dev->buzzer_state) dev->ctl_data->byte[HID_OR0] |= BUZZER_ON; else dev->ctl_data->byte[HID_OR0] &= ~BUZZER_ON; error = usb_submit_urb(dev->urb_ctl, GFP_ATOMIC); if (error) dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_ctl) failed %d\n", __func__, error); } /* * IRQ handler */ static void cm109_urb_irq_callback(struct urb *urb) { struct cm109_dev *dev = urb->context; const int status = urb->status; int error; unsigned long flags; dev_dbg(&dev->intf->dev, "### URB IRQ: [0x%02x 0x%02x 0x%02x 0x%02x] keybit=0x%02x\n", dev->irq_data->byte[0], dev->irq_data->byte[1], dev->irq_data->byte[2], dev->irq_data->byte[3], dev->keybit); if (status) { if (status == -ESHUTDOWN) return; dev_err_ratelimited(&dev->intf->dev, "%s: urb status %d\n", __func__, status); goto out; } /* Special keys */ cm109_report_special(dev); /* Scan key column */ if (dev->keybit == 0xf) { /* Any changes ? */ if ((dev->gpi & 0xf0) == (dev->irq_data->byte[HID_IR1] & 0xf0)) goto out; dev->gpi = dev->irq_data->byte[HID_IR1] & 0xf0; dev->keybit = 0x1; } else { report_key(dev, dev->keymap[dev->irq_data->byte[HID_IR1]]); dev->keybit <<= 1; if (dev->keybit > 0x8) dev->keybit = 0xf; } out: spin_lock_irqsave(&dev->ctl_submit_lock, flags); dev->irq_urb_pending = 0; if (likely(!dev->shutdown)) { if (dev->buzzer_state) dev->ctl_data->byte[HID_OR0] |= BUZZER_ON; else dev->ctl_data->byte[HID_OR0] &= ~BUZZER_ON; dev->ctl_data->byte[HID_OR1] = dev->keybit; dev->ctl_data->byte[HID_OR2] = dev->keybit; dev->buzzer_pending = 0; dev->ctl_urb_pending = 1; error = usb_submit_urb(dev->urb_ctl, GFP_ATOMIC); if (error) dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_ctl) failed %d\n", __func__, error); } spin_unlock_irqrestore(&dev->ctl_submit_lock, flags); } static void cm109_urb_ctl_callback(struct urb *urb) { struct cm109_dev *dev = urb->context; const int status = urb->status; int error; unsigned long flags; dev_dbg(&dev->intf->dev, "### URB CTL: [0x%02x 0x%02x 0x%02x 0x%02x]\n", dev->ctl_data->byte[0], dev->ctl_data->byte[1], dev->ctl_data->byte[2], dev->ctl_data->byte[3]); if (status) { if (status == -ESHUTDOWN) return; dev_err_ratelimited(&dev->intf->dev, "%s: urb status %d\n", __func__, status); } spin_lock_irqsave(&dev->ctl_submit_lock, flags); dev->ctl_urb_pending = 0; if (likely(!dev->shutdown)) { if (dev->buzzer_pending || status) { dev->buzzer_pending = 0; dev->ctl_urb_pending = 1; cm109_submit_buzz_toggle(dev); } else if (likely(!dev->irq_urb_pending)) { /* ask for key data */ dev->irq_urb_pending = 1; error = usb_submit_urb(dev->urb_irq, GFP_ATOMIC); if (error) dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_irq) failed %d\n", __func__, error); } } spin_unlock_irqrestore(&dev->ctl_submit_lock, flags); } static void cm109_toggle_buzzer_async(struct cm109_dev *dev) { unsigned long flags; spin_lock_irqsave(&dev->ctl_submit_lock, flags); if (dev->ctl_urb_pending) { /* URB completion will resubmit */ dev->buzzer_pending = 1; } else { dev->ctl_urb_pending = 1; cm109_submit_buzz_toggle(dev); } spin_unlock_irqrestore(&dev->ctl_submit_lock, flags); } static void cm109_toggle_buzzer_sync(struct cm109_dev *dev, int on) { int error; if (on) dev->ctl_data->byte[HID_OR0] |= BUZZER_ON; else dev->ctl_data->byte[HID_OR0] &= ~BUZZER_ON; error = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), dev->ctl_req->bRequest, dev->ctl_req->bRequestType, le16_to_cpu(dev->ctl_req->wValue), le16_to_cpu(dev->ctl_req->wIndex), dev->ctl_data, USB_PKT_LEN, USB_CTRL_SET_TIMEOUT); if (error < 0 && error != -EINTR) dev_err(&dev->intf->dev, "%s: usb_control_msg() failed %d\n", __func__, error); } static void cm109_stop_traffic(struct cm109_dev *dev) { dev->shutdown = 1; /* * Make sure other CPUs see this */ smp_wmb(); usb_kill_urb(dev->urb_ctl); usb_kill_urb(dev->urb_irq); cm109_toggle_buzzer_sync(dev, 0); dev->shutdown = 0; smp_wmb(); } static void cm109_restore_state(struct cm109_dev *dev) { if (dev->open) { /* * Restore buzzer state. * This will also kick regular URB submission */ cm109_toggle_buzzer_async(dev); } } /****************************************************************************** * input event interface *****************************************************************************/ static int cm109_input_open(struct input_dev *idev) { struct cm109_dev *dev = input_get_drvdata(idev); int error; error = usb_autopm_get_interface(dev->intf); if (error < 0) { dev_err(&idev->dev, "%s - cannot autoresume, result %d\n", __func__, error); return error; } mutex_lock(&dev->pm_mutex); dev->buzzer_state = 0; dev->key_code = -1; /* no keys pressed */ dev->keybit = 0xf; /* issue INIT */ dev->ctl_data->byte[HID_OR0] = HID_OR_GPO_BUZ_SPDIF; dev->ctl_data->byte[HID_OR1] = dev->keybit; dev->ctl_data->byte[HID_OR2] = dev->keybit; dev->ctl_data->byte[HID_OR3] = 0x00; dev->ctl_urb_pending = 1; error = usb_submit_urb(dev->urb_ctl, GFP_KERNEL); if (error) { dev->ctl_urb_pending = 0; dev_err(&dev->intf->dev, "%s: usb_submit_urb (urb_ctl) failed %d\n", __func__, error); } else { dev->open = 1; } mutex_unlock(&dev->pm_mutex); if (error) usb_autopm_put_interface(dev->intf); return error; } static void cm109_input_close(struct input_dev *idev) { struct cm109_dev *dev = input_get_drvdata(idev); mutex_lock(&dev->pm_mutex); /* * Once we are here event delivery is stopped so we * don't need to worry about someone starting buzzer * again */ cm109_stop_traffic(dev); dev->open = 0; mutex_unlock(&dev->pm_mutex); usb_autopm_put_interface(dev->intf); } static int cm109_input_ev(struct input_dev *idev, unsigned int type, unsigned int code, int value) { struct cm109_dev *dev = input_get_drvdata(idev); dev_dbg(&dev->intf->dev, "input_ev: type=%u code=%u value=%d\n", type, code, value); if (type != EV_SND) return -EINVAL; switch (code) { case SND_TONE: case SND_BELL: dev->buzzer_state = !!value; if (!dev->resetting) cm109_toggle_buzzer_async(dev); return 0; default: return -EINVAL; } } /****************************************************************************** * Linux interface and usb initialisation *****************************************************************************/ struct driver_info { char *name; }; static const struct driver_info info_cm109 = { .name = "CM109 USB driver", }; enum { VENDOR_ID = 0x0d8c, /* C-Media Electronics */ PRODUCT_ID_CM109 = 0x000e, /* CM109 defines range 0x0008 - 0x000f */ }; /* table of devices that work with this driver */ static const struct usb_device_id cm109_usb_table[] = { { .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_INFO, .idVendor = VENDOR_ID, .idProduct = PRODUCT_ID_CM109, .bInterfaceClass = USB_CLASS_HID, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, .driver_info = (kernel_ulong_t) &info_cm109 }, /* you can add more devices here with product ID 0x0008 - 0x000f */ { } }; static void cm109_usb_cleanup(struct cm109_dev *dev) { kfree(dev->ctl_req); usb_free_coherent(dev->udev, USB_PKT_LEN, dev->ctl_data, dev->ctl_dma); usb_free_coherent(dev->udev, USB_PKT_LEN, dev->irq_data, dev->irq_dma); usb_free_urb(dev->urb_irq); /* parameter validation in core/urb */ usb_free_urb(dev->urb_ctl); /* parameter validation in core/urb */ kfree(dev); } static void cm109_usb_disconnect(struct usb_interface *interface) { struct cm109_dev *dev = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); input_unregister_device(dev->idev); cm109_usb_cleanup(dev); } static int cm109_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct driver_info *nfo = (struct driver_info *)id->driver_info; struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct cm109_dev *dev; struct input_dev *input_dev = NULL; int ret, pipe, i; int error = -ENOMEM; interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints < 1) return -ENODEV; endpoint = &interface->endpoint[0].desc; if (!usb_endpoint_is_int_in(endpoint)) return -ENODEV; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; spin_lock_init(&dev->ctl_submit_lock); mutex_init(&dev->pm_mutex); dev->udev = udev; dev->intf = intf; dev->idev = input_dev = input_allocate_device(); if (!input_dev) goto err_out; /* allocate usb buffers */ dev->irq_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &dev->irq_dma); if (!dev->irq_data) goto err_out; dev->ctl_data = usb_alloc_coherent(udev, USB_PKT_LEN, GFP_KERNEL, &dev->ctl_dma); if (!dev->ctl_data) goto err_out; dev->ctl_req = kmalloc(sizeof(*(dev->ctl_req)), GFP_KERNEL); if (!dev->ctl_req) goto err_out; /* allocate urb structures */ dev->urb_irq = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb_irq) goto err_out; dev->urb_ctl = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb_ctl) goto err_out; /* get a handle to the interrupt data pipe */ pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress); ret = usb_maxpacket(udev, pipe); if (ret != USB_PKT_LEN) dev_err(&intf->dev, "invalid payload size %d, expected %d\n", ret, USB_PKT_LEN); /* initialise irq urb */ usb_fill_int_urb(dev->urb_irq, udev, pipe, dev->irq_data, USB_PKT_LEN, cm109_urb_irq_callback, dev, endpoint->bInterval); dev->urb_irq->transfer_dma = dev->irq_dma; dev->urb_irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; dev->urb_irq->dev = udev; /* initialise ctl urb */ dev->ctl_req->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT; dev->ctl_req->bRequest = USB_REQ_SET_CONFIGURATION; dev->ctl_req->wValue = cpu_to_le16(0x200); dev->ctl_req->wIndex = cpu_to_le16(interface->desc.bInterfaceNumber); dev->ctl_req->wLength = cpu_to_le16(USB_PKT_LEN); usb_fill_control_urb(dev->urb_ctl, udev, usb_sndctrlpipe(udev, 0), (void *)dev->ctl_req, dev->ctl_data, USB_PKT_LEN, cm109_urb_ctl_callback, dev); dev->urb_ctl->transfer_dma = dev->ctl_dma; dev->urb_ctl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; dev->urb_ctl->dev = udev; /* find out the physical bus location */ usb_make_path(udev, dev->phys, sizeof(dev->phys)); strlcat(dev->phys, "/input0", sizeof(dev->phys)); /* register settings for the input device */ input_dev->name = nfo->name; input_dev->phys = dev->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, dev); input_dev->open = cm109_input_open; input_dev->close = cm109_input_close; input_dev->event = cm109_input_ev; input_dev->keycode = dev->keymap; input_dev->keycodesize = sizeof(unsigned char); input_dev->keycodemax = ARRAY_SIZE(dev->keymap); input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_SND); input_dev->sndbit[0] = BIT_MASK(SND_BELL) | BIT_MASK(SND_TONE); /* register available key events */ for (i = 0; i < KEYMAP_SIZE; i++) { unsigned short k = keymap(i); dev->keymap[i] = k; __set_bit(k, input_dev->keybit); } __clear_bit(KEY_RESERVED, input_dev->keybit); error = input_register_device(dev->idev); if (error) goto err_out; usb_set_intfdata(intf, dev); return 0; err_out: input_free_device(input_dev); cm109_usb_cleanup(dev); return error; } static int cm109_usb_suspend(struct usb_interface *intf, pm_message_t message) { struct cm109_dev *dev = usb_get_intfdata(intf); dev_info(&intf->dev, "cm109: usb_suspend (event=%d)\n", message.event); mutex_lock(&dev->pm_mutex); cm109_stop_traffic(dev); mutex_unlock(&dev->pm_mutex); return 0; } static int cm109_usb_resume(struct usb_interface *intf) { struct cm109_dev *dev = usb_get_intfdata(intf); dev_info(&intf->dev, "cm109: usb_resume\n"); mutex_lock(&dev->pm_mutex); cm109_restore_state(dev); mutex_unlock(&dev->pm_mutex); return 0; } static int cm109_usb_pre_reset(struct usb_interface *intf) { struct cm109_dev *dev = usb_get_intfdata(intf); mutex_lock(&dev->pm_mutex); /* * Make sure input events don't try to toggle buzzer * while we are resetting */ dev->resetting = 1; smp_wmb(); cm109_stop_traffic(dev); return 0; } static int cm109_usb_post_reset(struct usb_interface *intf) { struct cm109_dev *dev = usb_get_intfdata(intf); dev->resetting = 0; smp_wmb(); cm109_restore_state(dev); mutex_unlock(&dev->pm_mutex); return 0; } static struct usb_driver cm109_driver = { .name = "cm109", .probe = cm109_usb_probe, .disconnect = cm109_usb_disconnect, .suspend = cm109_usb_suspend, .resume = cm109_usb_resume, .reset_resume = cm109_usb_resume, .pre_reset = cm109_usb_pre_reset, .post_reset = cm109_usb_post_reset, .id_table = cm109_usb_table, .supports_autosuspend = 1, }; static int __init cm109_select_keymap(void) { /* Load the phone keymap */ if (!strcasecmp(phone, "kip1000")) { keymap = keymap_kip1000; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for Komunikate KIP1000 phone loaded\n"); } else if (!strcasecmp(phone, "gtalk")) { keymap = keymap_gtalk; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for Genius G-talk phone loaded\n"); } else if (!strcasecmp(phone, "usbph01")) { keymap = keymap_usbph01; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for Allied-Telesis Corega USBPH01 phone loaded\n"); } else if (!strcasecmp(phone, "atcom")) { keymap = keymap_atcom; printk(KERN_INFO KBUILD_MODNAME ": " "Keymap for ATCom AU-100 phone loaded\n"); } else { printk(KERN_ERR KBUILD_MODNAME ": " "Unsupported phone: %s\n", phone); return -EINVAL; } return 0; } static int __init cm109_init(void) { int err; err = cm109_select_keymap(); if (err) return err; err = usb_register(&cm109_driver); if (err) return err; printk(KERN_INFO KBUILD_MODNAME ": " DRIVER_DESC ": " DRIVER_VERSION " (C) " DRIVER_AUTHOR "\n"); return 0; } static void __exit cm109_exit(void) { usb_deregister(&cm109_driver); } module_init(cm109_init); module_exit(cm109_exit); MODULE_DEVICE_TABLE(usb, cm109_usb_table); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Stubs for the Network PHY library */ #include <linux/rtnetlink.h> struct kernel_hwtstamp_config; struct netlink_ext_ack; struct phy_device; #if IS_ENABLED(CONFIG_PHYLIB) extern const struct phylib_stubs *phylib_stubs; struct phylib_stubs { int (*hwtstamp_get)(struct phy_device *phydev, struct kernel_hwtstamp_config *config); int (*hwtstamp_set)(struct phy_device *phydev, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack); }; static inline int phy_hwtstamp_get(struct phy_device *phydev, struct kernel_hwtstamp_config *config) { /* phylib_register_stubs() and phylib_unregister_stubs() * also run under rtnl_lock(). */ ASSERT_RTNL(); if (!phylib_stubs) return -EOPNOTSUPP; return phylib_stubs->hwtstamp_get(phydev, config); } static inline int phy_hwtstamp_set(struct phy_device *phydev, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack) { /* phylib_register_stubs() and phylib_unregister_stubs() * also run under rtnl_lock(). */ ASSERT_RTNL(); if (!phylib_stubs) return -EOPNOTSUPP; return phylib_stubs->hwtstamp_set(phydev, config, extack); } #else static inline int phy_hwtstamp_get(struct phy_device *phydev, struct kernel_hwtstamp_config *config) { return -EOPNOTSUPP; } static inline int phy_hwtstamp_set(struct phy_device *phydev, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } #endif |
40 40 40 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/types.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/sunrpc/types.h> #include <linux/sunrpc/xdr.h> #include <linux/sunrpc/svcsock.h> #include <linux/sunrpc/svcauth.h> #include <linux/sunrpc/gss_api.h> #include <linux/sunrpc/addr.h> #include <linux/err.h> #include <linux/seq_file.h> #include <linux/hash.h> #include <linux/string.h> #include <linux/slab.h> #include <net/sock.h> #include <net/ipv6.h> #include <linux/kernel.h> #include <linux/user_namespace.h> #include <trace/events/sunrpc.h> #define RPCDBG_FACILITY RPCDBG_AUTH #include "netns.h" /* * AUTHUNIX and AUTHNULL credentials are both handled here. * AUTHNULL is treated just like AUTHUNIX except that the uid/gid * are always nobody (-2). i.e. we do the same IP address checks for * AUTHNULL as for AUTHUNIX, and that is done here. */ struct unix_domain { struct auth_domain h; /* other stuff later */ }; extern struct auth_ops svcauth_null; extern struct auth_ops svcauth_unix; extern struct auth_ops svcauth_tls; static void svcauth_unix_domain_release_rcu(struct rcu_head *head) { struct auth_domain *dom = container_of(head, struct auth_domain, rcu_head); struct unix_domain *ud = container_of(dom, struct unix_domain, h); kfree(dom->name); kfree(ud); } static void svcauth_unix_domain_release(struct auth_domain *dom) { call_rcu(&dom->rcu_head, svcauth_unix_domain_release_rcu); } struct auth_domain *unix_domain_find(char *name) { struct auth_domain *rv; struct unix_domain *new = NULL; rv = auth_domain_find(name); while(1) { if (rv) { if (new && rv != &new->h) svcauth_unix_domain_release(&new->h); if (rv->flavour != &svcauth_unix) { auth_domain_put(rv); return NULL; } return rv; } new = kmalloc(sizeof(*new), GFP_KERNEL); if (new == NULL) return NULL; kref_init(&new->h.ref); new->h.name = kstrdup(name, GFP_KERNEL); if (new->h.name == NULL) { kfree(new); return NULL; } new->h.flavour = &svcauth_unix; rv = auth_domain_lookup(name, &new->h); } } EXPORT_SYMBOL_GPL(unix_domain_find); /************************************************** * cache for IP address to unix_domain * as needed by AUTH_UNIX */ #define IP_HASHBITS 8 #define IP_HASHMAX (1<<IP_HASHBITS) struct ip_map { struct cache_head h; char m_class[8]; /* e.g. "nfsd" */ struct in6_addr m_addr; struct unix_domain *m_client; struct rcu_head m_rcu; }; static void ip_map_put(struct kref *kref) { struct cache_head *item = container_of(kref, struct cache_head, ref); struct ip_map *im = container_of(item, struct ip_map,h); if (test_bit(CACHE_VALID, &item->flags) && !test_bit(CACHE_NEGATIVE, &item->flags)) auth_domain_put(&im->m_client->h); kfree_rcu(im, m_rcu); } static inline int hash_ip6(const struct in6_addr *ip) { return hash_32(ipv6_addr_hash(ip), IP_HASHBITS); } static int ip_map_match(struct cache_head *corig, struct cache_head *cnew) { struct ip_map *orig = container_of(corig, struct ip_map, h); struct ip_map *new = container_of(cnew, struct ip_map, h); return strcmp(orig->m_class, new->m_class) == 0 && ipv6_addr_equal(&orig->m_addr, &new->m_addr); } static void ip_map_init(struct cache_head *cnew, struct cache_head *citem) { struct ip_map *new = container_of(cnew, struct ip_map, h); struct ip_map *item = container_of(citem, struct ip_map, h); strcpy(new->m_class, item->m_class); new->m_addr = item->m_addr; } static void update(struct cache_head *cnew, struct cache_head *citem) { struct ip_map *new = container_of(cnew, struct ip_map, h); struct ip_map *item = container_of(citem, struct ip_map, h); kref_get(&item->m_client->h.ref); new->m_client = item->m_client; } static struct cache_head *ip_map_alloc(void) { struct ip_map *i = kmalloc(sizeof(*i), GFP_KERNEL); if (i) return &i->h; else return NULL; } static int ip_map_upcall(struct cache_detail *cd, struct cache_head *h) { return sunrpc_cache_pipe_upcall(cd, h); } static void ip_map_request(struct cache_detail *cd, struct cache_head *h, char **bpp, int *blen) { char text_addr[40]; struct ip_map *im = container_of(h, struct ip_map, h); if (ipv6_addr_v4mapped(&(im->m_addr))) { snprintf(text_addr, 20, "%pI4", &im->m_addr.s6_addr32[3]); } else { snprintf(text_addr, 40, "%pI6", &im->m_addr); } qword_add(bpp, blen, im->m_class); qword_add(bpp, blen, text_addr); (*bpp)[-1] = '\n'; } static struct ip_map *__ip_map_lookup(struct cache_detail *cd, char *class, struct in6_addr *addr); static int __ip_map_update(struct cache_detail *cd, struct ip_map *ipm, struct unix_domain *udom, time64_t expiry); static int ip_map_parse(struct cache_detail *cd, char *mesg, int mlen) { /* class ipaddress [domainname] */ /* should be safe just to use the start of the input buffer * for scratch: */ char *buf = mesg; int len; char class[8]; union { struct sockaddr sa; struct sockaddr_in s4; struct sockaddr_in6 s6; } address; struct sockaddr_in6 sin6; int err; struct ip_map *ipmp; struct auth_domain *dom; time64_t expiry; if (mesg[mlen-1] != '\n') return -EINVAL; mesg[mlen-1] = 0; /* class */ len = qword_get(&mesg, class, sizeof(class)); if (len <= 0) return -EINVAL; /* ip address */ len = qword_get(&mesg, buf, mlen); if (len <= 0) return -EINVAL; if (rpc_pton(cd->net, buf, len, &address.sa, sizeof(address)) == 0) return -EINVAL; switch (address.sa.sa_family) { case AF_INET: /* Form a mapped IPv4 address in sin6 */ sin6.sin6_family = AF_INET6; ipv6_addr_set_v4mapped(address.s4.sin_addr.s_addr, &sin6.sin6_addr); break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: memcpy(&sin6, &address.s6, sizeof(sin6)); break; #endif default: return -EINVAL; } err = get_expiry(&mesg, &expiry); if (err) return err; /* domainname, or empty for NEGATIVE */ len = qword_get(&mesg, buf, mlen); if (len < 0) return -EINVAL; if (len) { dom = unix_domain_find(buf); if (dom == NULL) return -ENOENT; } else dom = NULL; /* IPv6 scope IDs are ignored for now */ ipmp = __ip_map_lookup(cd, class, &sin6.sin6_addr); if (ipmp) { err = __ip_map_update(cd, ipmp, container_of(dom, struct unix_domain, h), expiry); } else err = -ENOMEM; if (dom) auth_domain_put(dom); cache_flush(); return err; } static int ip_map_show(struct seq_file *m, struct cache_detail *cd, struct cache_head *h) { struct ip_map *im; struct in6_addr addr; char *dom = "-no-domain-"; if (h == NULL) { seq_puts(m, "#class IP domain\n"); return 0; } im = container_of(h, struct ip_map, h); /* class addr domain */ addr = im->m_addr; if (test_bit(CACHE_VALID, &h->flags) && !test_bit(CACHE_NEGATIVE, &h->flags)) dom = im->m_client->h.name; if (ipv6_addr_v4mapped(&addr)) { seq_printf(m, "%s %pI4 %s\n", im->m_class, &addr.s6_addr32[3], dom); } else { seq_printf(m, "%s %pI6 %s\n", im->m_class, &addr, dom); } return 0; } static struct ip_map *__ip_map_lookup(struct cache_detail *cd, char *class, struct in6_addr *addr) { struct ip_map ip; struct cache_head *ch; strcpy(ip.m_class, class); ip.m_addr = *addr; ch = sunrpc_cache_lookup_rcu(cd, &ip.h, hash_str(class, IP_HASHBITS) ^ hash_ip6(addr)); if (ch) return container_of(ch, struct ip_map, h); else return NULL; } static int __ip_map_update(struct cache_detail *cd, struct ip_map *ipm, struct unix_domain *udom, time64_t expiry) { struct ip_map ip; struct cache_head *ch; ip.m_client = udom; ip.h.flags = 0; if (!udom) set_bit(CACHE_NEGATIVE, &ip.h.flags); ip.h.expiry_time = expiry; ch = sunrpc_cache_update(cd, &ip.h, &ipm->h, hash_str(ipm->m_class, IP_HASHBITS) ^ hash_ip6(&ipm->m_addr)); if (!ch) return -ENOMEM; cache_put(ch, cd); return 0; } void svcauth_unix_purge(struct net *net) { struct sunrpc_net *sn; sn = net_generic(net, sunrpc_net_id); cache_purge(sn->ip_map_cache); } EXPORT_SYMBOL_GPL(svcauth_unix_purge); static inline struct ip_map * ip_map_cached_get(struct svc_xprt *xprt) { struct ip_map *ipm = NULL; struct sunrpc_net *sn; if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) { spin_lock(&xprt->xpt_lock); ipm = xprt->xpt_auth_cache; if (ipm != NULL) { sn = net_generic(xprt->xpt_net, sunrpc_net_id); if (cache_is_expired(sn->ip_map_cache, &ipm->h)) { /* * The entry has been invalidated since it was * remembered, e.g. by a second mount from the * same IP address. */ xprt->xpt_auth_cache = NULL; spin_unlock(&xprt->xpt_lock); cache_put(&ipm->h, sn->ip_map_cache); return NULL; } cache_get(&ipm->h); } spin_unlock(&xprt->xpt_lock); } return ipm; } static inline void ip_map_cached_put(struct svc_xprt *xprt, struct ip_map *ipm) { if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) { spin_lock(&xprt->xpt_lock); if (xprt->xpt_auth_cache == NULL) { /* newly cached, keep the reference */ xprt->xpt_auth_cache = ipm; ipm = NULL; } spin_unlock(&xprt->xpt_lock); } if (ipm) { struct sunrpc_net *sn; sn = net_generic(xprt->xpt_net, sunrpc_net_id); cache_put(&ipm->h, sn->ip_map_cache); } } void svcauth_unix_info_release(struct svc_xprt *xpt) { struct ip_map *ipm; ipm = xpt->xpt_auth_cache; if (ipm != NULL) { struct sunrpc_net *sn; sn = net_generic(xpt->xpt_net, sunrpc_net_id); cache_put(&ipm->h, sn->ip_map_cache); } } /**************************************************************************** * auth.unix.gid cache * simple cache to map a UID to a list of GIDs * because AUTH_UNIX aka AUTH_SYS has a max of UNX_NGROUPS */ #define GID_HASHBITS 8 #define GID_HASHMAX (1<<GID_HASHBITS) struct unix_gid { struct cache_head h; kuid_t uid; struct group_info *gi; struct rcu_head rcu; }; static int unix_gid_hash(kuid_t uid) { return hash_long(from_kuid(&init_user_ns, uid), GID_HASHBITS); } static void unix_gid_free(struct rcu_head *rcu) { struct unix_gid *ug = container_of(rcu, struct unix_gid, rcu); struct cache_head *item = &ug->h; if (test_bit(CACHE_VALID, &item->flags) && !test_bit(CACHE_NEGATIVE, &item->flags)) put_group_info(ug->gi); kfree(ug); } static void unix_gid_put(struct kref *kref) { struct cache_head *item = container_of(kref, struct cache_head, ref); struct unix_gid *ug = container_of(item, struct unix_gid, h); call_rcu(&ug->rcu, unix_gid_free); } static int unix_gid_match(struct cache_head *corig, struct cache_head *cnew) { struct unix_gid *orig = container_of(corig, struct unix_gid, h); struct unix_gid *new = container_of(cnew, struct unix_gid, h); return uid_eq(orig->uid, new->uid); } static void unix_gid_init(struct cache_head *cnew, struct cache_head *citem) { struct unix_gid *new = container_of(cnew, struct unix_gid, h); struct unix_gid *item = container_of(citem, struct unix_gid, h); new->uid = item->uid; } static void unix_gid_update(struct cache_head *cnew, struct cache_head *citem) { struct unix_gid *new = container_of(cnew, struct unix_gid, h); struct unix_gid *item = container_of(citem, struct unix_gid, h); get_group_info(item->gi); new->gi = item->gi; } static struct cache_head *unix_gid_alloc(void) { struct unix_gid *g = kmalloc(sizeof(*g), GFP_KERNEL); if (g) return &g->h; else return NULL; } static int unix_gid_upcall(struct cache_detail *cd, struct cache_head *h) { return sunrpc_cache_pipe_upcall_timeout(cd, h); } static void unix_gid_request(struct cache_detail *cd, struct cache_head *h, char **bpp, int *blen) { char tuid[20]; struct unix_gid *ug = container_of(h, struct unix_gid, h); snprintf(tuid, 20, "%u", from_kuid(&init_user_ns, ug->uid)); qword_add(bpp, blen, tuid); (*bpp)[-1] = '\n'; } static struct unix_gid *unix_gid_lookup(struct cache_detail *cd, kuid_t uid); static int unix_gid_parse(struct cache_detail *cd, char *mesg, int mlen) { /* uid expiry Ngid gid0 gid1 ... gidN-1 */ int id; kuid_t uid; int gids; int rv; int i; int err; time64_t expiry; struct unix_gid ug, *ugp; if (mesg[mlen - 1] != '\n') return -EINVAL; mesg[mlen-1] = 0; rv = get_int(&mesg, &id); if (rv) return -EINVAL; uid = make_kuid(current_user_ns(), id); ug.uid = uid; err = get_expiry(&mesg, &expiry); if (err) return err; rv = get_int(&mesg, &gids); if (rv || gids < 0 || gids > 8192) return -EINVAL; ug.gi = groups_alloc(gids); if (!ug.gi) return -ENOMEM; for (i = 0 ; i < gids ; i++) { int gid; kgid_t kgid; rv = get_int(&mesg, &gid); err = -EINVAL; if (rv) goto out; kgid = make_kgid(current_user_ns(), gid); if (!gid_valid(kgid)) goto out; ug.gi->gid[i] = kgid; } groups_sort(ug.gi); ugp = unix_gid_lookup(cd, uid); if (ugp) { struct cache_head *ch; ug.h.flags = 0; ug.h.expiry_time = expiry; ch = sunrpc_cache_update(cd, &ug.h, &ugp->h, unix_gid_hash(uid)); if (!ch) err = -ENOMEM; else { err = 0; cache_put(ch, cd); } } else err = -ENOMEM; out: if (ug.gi) put_group_info(ug.gi); return err; } static int unix_gid_show(struct seq_file *m, struct cache_detail *cd, struct cache_head *h) { struct user_namespace *user_ns = m->file->f_cred->user_ns; struct unix_gid *ug; int i; int glen; if (h == NULL) { seq_puts(m, "#uid cnt: gids...\n"); return 0; } ug = container_of(h, struct unix_gid, h); if (test_bit(CACHE_VALID, &h->flags) && !test_bit(CACHE_NEGATIVE, &h->flags)) glen = ug->gi->ngroups; else glen = 0; seq_printf(m, "%u %d:", from_kuid_munged(user_ns, ug->uid), glen); for (i = 0; i < glen; i++) seq_printf(m, " %d", from_kgid_munged(user_ns, ug->gi->gid[i])); seq_printf(m, "\n"); return 0; } static const struct cache_detail unix_gid_cache_template = { .owner = THIS_MODULE, .hash_size = GID_HASHMAX, .name = "auth.unix.gid", .cache_put = unix_gid_put, .cache_upcall = unix_gid_upcall, .cache_request = unix_gid_request, .cache_parse = unix_gid_parse, .cache_show = unix_gid_show, .match = unix_gid_match, .init = unix_gid_init, .update = unix_gid_update, .alloc = unix_gid_alloc, }; int unix_gid_cache_create(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd; int err; cd = cache_create_net(&unix_gid_cache_template, net); if (IS_ERR(cd)) return PTR_ERR(cd); err = cache_register_net(cd, net); if (err) { cache_destroy_net(cd, net); return err; } sn->unix_gid_cache = cd; return 0; } void unix_gid_cache_destroy(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd = sn->unix_gid_cache; sn->unix_gid_cache = NULL; cache_purge(cd); cache_unregister_net(cd, net); cache_destroy_net(cd, net); } static struct unix_gid *unix_gid_lookup(struct cache_detail *cd, kuid_t uid) { struct unix_gid ug; struct cache_head *ch; ug.uid = uid; ch = sunrpc_cache_lookup_rcu(cd, &ug.h, unix_gid_hash(uid)); if (ch) return container_of(ch, struct unix_gid, h); else return NULL; } static struct group_info *unix_gid_find(kuid_t uid, struct svc_rqst *rqstp) { struct unix_gid *ug; struct group_info *gi; int ret; struct sunrpc_net *sn = net_generic(rqstp->rq_xprt->xpt_net, sunrpc_net_id); ug = unix_gid_lookup(sn->unix_gid_cache, uid); if (!ug) return ERR_PTR(-EAGAIN); ret = cache_check(sn->unix_gid_cache, &ug->h, &rqstp->rq_chandle); switch (ret) { case -ENOENT: return ERR_PTR(-ENOENT); case -ETIMEDOUT: return ERR_PTR(-ESHUTDOWN); case 0: gi = get_group_info(ug->gi); cache_put(&ug->h, sn->unix_gid_cache); return gi; default: return ERR_PTR(-EAGAIN); } } enum svc_auth_status svcauth_unix_set_client(struct svc_rqst *rqstp) { struct sockaddr_in *sin; struct sockaddr_in6 *sin6, sin6_storage; struct ip_map *ipm; struct group_info *gi; struct svc_cred *cred = &rqstp->rq_cred; struct svc_xprt *xprt = rqstp->rq_xprt; struct net *net = xprt->xpt_net; struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); switch (rqstp->rq_addr.ss_family) { case AF_INET: sin = svc_addr_in(rqstp); sin6 = &sin6_storage; ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &sin6->sin6_addr); break; case AF_INET6: sin6 = svc_addr_in6(rqstp); break; default: BUG(); } rqstp->rq_client = NULL; if (rqstp->rq_proc == 0) goto out; rqstp->rq_auth_stat = rpc_autherr_badcred; ipm = ip_map_cached_get(xprt); if (ipm == NULL) ipm = __ip_map_lookup(sn->ip_map_cache, rqstp->rq_server->sv_program->pg_class, &sin6->sin6_addr); if (ipm == NULL) return SVC_DENIED; switch (cache_check(sn->ip_map_cache, &ipm->h, &rqstp->rq_chandle)) { default: BUG(); case -ETIMEDOUT: return SVC_CLOSE; case -EAGAIN: return SVC_DROP; case -ENOENT: return SVC_DENIED; case 0: rqstp->rq_client = &ipm->m_client->h; kref_get(&rqstp->rq_client->ref); ip_map_cached_put(xprt, ipm); break; } gi = unix_gid_find(cred->cr_uid, rqstp); switch (PTR_ERR(gi)) { case -EAGAIN: return SVC_DROP; case -ESHUTDOWN: return SVC_CLOSE; case -ENOENT: break; default: put_group_info(cred->cr_group_info); cred->cr_group_info = gi; } out: rqstp->rq_auth_stat = rpc_auth_ok; return SVC_OK; } EXPORT_SYMBOL_GPL(svcauth_unix_set_client); /** * svcauth_null_accept - Decode and validate incoming RPC_AUTH_NULL credential * @rqstp: RPC transaction * * Return values: * %SVC_OK: Both credential and verifier are valid * %SVC_DENIED: Credential or verifier is not valid * %SVC_GARBAGE: Failed to decode credential or verifier * %SVC_CLOSE: Temporary failure * * rqstp->rq_auth_stat is set as mandated by RFC 5531. */ static enum svc_auth_status svcauth_null_accept(struct svc_rqst *rqstp) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; struct svc_cred *cred = &rqstp->rq_cred; u32 flavor, len; void *body; /* Length of Call's credential body field: */ if (xdr_stream_decode_u32(xdr, &len) < 0) return SVC_GARBAGE; if (len != 0) { rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } /* Call's verf field: */ if (xdr_stream_decode_opaque_auth(xdr, &flavor, &body, &len) < 0) return SVC_GARBAGE; if (flavor != RPC_AUTH_NULL || len != 0) { rqstp->rq_auth_stat = rpc_autherr_badverf; return SVC_DENIED; } /* Signal that mapping to nobody uid/gid is required */ cred->cr_uid = INVALID_UID; cred->cr_gid = INVALID_GID; cred->cr_group_info = groups_alloc(0); if (cred->cr_group_info == NULL) return SVC_CLOSE; /* kmalloc failure - client must retry */ if (xdr_stream_encode_opaque_auth(&rqstp->rq_res_stream, RPC_AUTH_NULL, NULL, 0) < 0) return SVC_CLOSE; if (!svcxdr_set_accept_stat(rqstp)) return SVC_CLOSE; rqstp->rq_cred.cr_flavor = RPC_AUTH_NULL; return SVC_OK; } static int svcauth_null_release(struct svc_rqst *rqstp) { if (rqstp->rq_client) auth_domain_put(rqstp->rq_client); rqstp->rq_client = NULL; if (rqstp->rq_cred.cr_group_info) put_group_info(rqstp->rq_cred.cr_group_info); rqstp->rq_cred.cr_group_info = NULL; return 0; /* don't drop */ } struct auth_ops svcauth_null = { .name = "null", .owner = THIS_MODULE, .flavour = RPC_AUTH_NULL, .accept = svcauth_null_accept, .release = svcauth_null_release, .set_client = svcauth_unix_set_client, }; /** * svcauth_tls_accept - Decode and validate incoming RPC_AUTH_TLS credential * @rqstp: RPC transaction * * Return values: * %SVC_OK: Both credential and verifier are valid * %SVC_DENIED: Credential or verifier is not valid * %SVC_GARBAGE: Failed to decode credential or verifier * %SVC_CLOSE: Temporary failure * * rqstp->rq_auth_stat is set as mandated by RFC 5531. */ static enum svc_auth_status svcauth_tls_accept(struct svc_rqst *rqstp) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; struct svc_cred *cred = &rqstp->rq_cred; struct svc_xprt *xprt = rqstp->rq_xprt; u32 flavor, len; void *body; __be32 *p; /* Length of Call's credential body field: */ if (xdr_stream_decode_u32(xdr, &len) < 0) return SVC_GARBAGE; if (len != 0) { rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } /* Call's verf field: */ if (xdr_stream_decode_opaque_auth(xdr, &flavor, &body, &len) < 0) return SVC_GARBAGE; if (flavor != RPC_AUTH_NULL || len != 0) { rqstp->rq_auth_stat = rpc_autherr_badverf; return SVC_DENIED; } /* AUTH_TLS is not valid on non-NULL procedures */ if (rqstp->rq_proc != 0) { rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } /* Signal that mapping to nobody uid/gid is required */ cred->cr_uid = INVALID_UID; cred->cr_gid = INVALID_GID; cred->cr_group_info = groups_alloc(0); if (cred->cr_group_info == NULL) return SVC_CLOSE; if (xprt->xpt_ops->xpo_handshake) { p = xdr_reserve_space(&rqstp->rq_res_stream, XDR_UNIT * 2 + 8); if (!p) return SVC_CLOSE; trace_svc_tls_start(xprt); *p++ = rpc_auth_null; *p++ = cpu_to_be32(8); memcpy(p, "STARTTLS", 8); set_bit(XPT_HANDSHAKE, &xprt->xpt_flags); svc_xprt_enqueue(xprt); } else { trace_svc_tls_unavailable(xprt); if (xdr_stream_encode_opaque_auth(&rqstp->rq_res_stream, RPC_AUTH_NULL, NULL, 0) < 0) return SVC_CLOSE; } if (!svcxdr_set_accept_stat(rqstp)) return SVC_CLOSE; rqstp->rq_cred.cr_flavor = RPC_AUTH_TLS; return SVC_OK; } struct auth_ops svcauth_tls = { .name = "tls", .owner = THIS_MODULE, .flavour = RPC_AUTH_TLS, .accept = svcauth_tls_accept, .release = svcauth_null_release, .set_client = svcauth_unix_set_client, }; /** * svcauth_unix_accept - Decode and validate incoming RPC_AUTH_SYS credential * @rqstp: RPC transaction * * Return values: * %SVC_OK: Both credential and verifier are valid * %SVC_DENIED: Credential or verifier is not valid * %SVC_GARBAGE: Failed to decode credential or verifier * %SVC_CLOSE: Temporary failure * * rqstp->rq_auth_stat is set as mandated by RFC 5531. */ static enum svc_auth_status svcauth_unix_accept(struct svc_rqst *rqstp) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; struct svc_cred *cred = &rqstp->rq_cred; struct user_namespace *userns; u32 flavor, len, i; void *body; __be32 *p; /* * This implementation ignores the length of the Call's * credential body field and the timestamp and machinename * fields. */ p = xdr_inline_decode(xdr, XDR_UNIT * 3); if (!p) return SVC_GARBAGE; len = be32_to_cpup(p + 2); if (len > RPC_MAX_MACHINENAME) return SVC_GARBAGE; if (!xdr_inline_decode(xdr, len)) return SVC_GARBAGE; /* * Note: we skip uid_valid()/gid_valid() checks here for * backwards compatibility with clients that use -1 id's. * Instead, -1 uid or gid is later mapped to the * (export-specific) anonymous id by nfsd_setuser. * Supplementary gid's will be left alone. */ userns = (rqstp->rq_xprt && rqstp->rq_xprt->xpt_cred) ? rqstp->rq_xprt->xpt_cred->user_ns : &init_user_ns; if (xdr_stream_decode_u32(xdr, &i) < 0) return SVC_GARBAGE; cred->cr_uid = make_kuid(userns, i); if (xdr_stream_decode_u32(xdr, &i) < 0) return SVC_GARBAGE; cred->cr_gid = make_kgid(userns, i); if (xdr_stream_decode_u32(xdr, &len) < 0) return SVC_GARBAGE; if (len > UNX_NGROUPS) goto badcred; p = xdr_inline_decode(xdr, XDR_UNIT * len); if (!p) return SVC_GARBAGE; cred->cr_group_info = groups_alloc(len); if (cred->cr_group_info == NULL) return SVC_CLOSE; for (i = 0; i < len; i++) { kgid_t kgid = make_kgid(userns, be32_to_cpup(p++)); cred->cr_group_info->gid[i] = kgid; } groups_sort(cred->cr_group_info); /* Call's verf field: */ if (xdr_stream_decode_opaque_auth(xdr, &flavor, &body, &len) < 0) return SVC_GARBAGE; if (flavor != RPC_AUTH_NULL || len != 0) { rqstp->rq_auth_stat = rpc_autherr_badverf; return SVC_DENIED; } if (xdr_stream_encode_opaque_auth(&rqstp->rq_res_stream, RPC_AUTH_NULL, NULL, 0) < 0) return SVC_CLOSE; if (!svcxdr_set_accept_stat(rqstp)) return SVC_CLOSE; rqstp->rq_cred.cr_flavor = RPC_AUTH_UNIX; return SVC_OK; badcred: rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } static int svcauth_unix_release(struct svc_rqst *rqstp) { /* Verifier (such as it is) is already in place. */ if (rqstp->rq_client) auth_domain_put(rqstp->rq_client); rqstp->rq_client = NULL; if (rqstp->rq_cred.cr_group_info) put_group_info(rqstp->rq_cred.cr_group_info); rqstp->rq_cred.cr_group_info = NULL; return 0; } struct auth_ops svcauth_unix = { .name = "unix", .owner = THIS_MODULE, .flavour = RPC_AUTH_UNIX, .accept = svcauth_unix_accept, .release = svcauth_unix_release, .domain_release = svcauth_unix_domain_release, .set_client = svcauth_unix_set_client, }; static const struct cache_detail ip_map_cache_template = { .owner = THIS_MODULE, .hash_size = IP_HASHMAX, .name = "auth.unix.ip", .cache_put = ip_map_put, .cache_upcall = ip_map_upcall, .cache_request = ip_map_request, .cache_parse = ip_map_parse, .cache_show = ip_map_show, .match = ip_map_match, .init = ip_map_init, .update = update, .alloc = ip_map_alloc, }; int ip_map_cache_create(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd; int err; cd = cache_create_net(&ip_map_cache_template, net); if (IS_ERR(cd)) return PTR_ERR(cd); err = cache_register_net(cd, net); if (err) { cache_destroy_net(cd, net); return err; } sn->ip_map_cache = cd; return 0; } void ip_map_cache_destroy(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd = sn->ip_map_cache; sn->ip_map_cache = NULL; cache_purge(cd); cache_unregister_net(cd, net); cache_destroy_net(cd, net); } |
1574 249 1417 264 295 1574 4 53 360 120 177 141 4 14 495 84 679 84 3 824 3 275 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HIGHMEM_H #define _LINUX_HIGHMEM_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/bug.h> #include <linux/cacheflush.h> #include <linux/kmsan.h> #include <linux/mm.h> #include <linux/uaccess.h> #include <linux/hardirq.h> #include "highmem-internal.h" /** * kmap - Map a page for long term usage * @page: Pointer to the page to be mapped * * Returns: The virtual address of the mapping * * Can only be invoked from preemptible task context because on 32bit * systems with CONFIG_HIGHMEM enabled this function might sleep. * * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area * this returns the virtual address of the direct kernel mapping. * * The returned virtual address is globally visible and valid up to the * point where it is unmapped via kunmap(). The pointer can be handed to * other contexts. * * For highmem pages on 32bit systems this can be slow as the mapping space * is limited and protected by a global lock. In case that there is no * mapping slot available the function blocks until a slot is released via * kunmap(). */ static inline void *kmap(struct page *page); /** * kunmap - Unmap the virtual address mapped by kmap() * @page: Pointer to the page which was mapped by kmap() * * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of * pages in the low memory area. */ static inline void kunmap(struct page *page); /** * kmap_to_page - Get the page for a kmap'ed address * @addr: The address to look up * * Returns: The page which is mapped to @addr. */ static inline struct page *kmap_to_page(void *addr); /** * kmap_flush_unused - Flush all unused kmap mappings in order to * remove stray mappings */ static inline void kmap_flush_unused(void); /** * kmap_local_page - Map a page for temporary usage * @page: Pointer to the page to be mapped * * Returns: The virtual address of the mapping * * Can be invoked from any context, including interrupts. * * Requires careful handling when nesting multiple mappings because the map * management is stack based. The unmap has to be in the reverse order of * the map operation: * * addr1 = kmap_local_page(page1); * addr2 = kmap_local_page(page2); * ... * kunmap_local(addr2); * kunmap_local(addr1); * * Unmapping addr1 before addr2 is invalid and causes malfunction. * * Contrary to kmap() mappings the mapping is only valid in the context of * the caller and cannot be handed to other contexts. * * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the * virtual address of the direct mapping. Only real highmem pages are * temporarily mapped. * * While kmap_local_page() is significantly faster than kmap() for the highmem * case it comes with restrictions about the pointer validity. * * On HIGHMEM enabled systems mapping a highmem page has the side effect of * disabling migration in order to keep the virtual address stable across * preemption. No caller of kmap_local_page() can rely on this side effect. */ static inline void *kmap_local_page(struct page *page); /** * kmap_local_folio - Map a page in this folio for temporary usage * @folio: The folio containing the page. * @offset: The byte offset within the folio which identifies the page. * * Requires careful handling when nesting multiple mappings because the map * management is stack based. The unmap has to be in the reverse order of * the map operation:: * * addr1 = kmap_local_folio(folio1, offset1); * addr2 = kmap_local_folio(folio2, offset2); * ... * kunmap_local(addr2); * kunmap_local(addr1); * * Unmapping addr1 before addr2 is invalid and causes malfunction. * * Contrary to kmap() mappings the mapping is only valid in the context of * the caller and cannot be handed to other contexts. * * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the * virtual address of the direct mapping. Only real highmem pages are * temporarily mapped. * * While it is significantly faster than kmap() for the highmem case it * comes with restrictions about the pointer validity. * * On HIGHMEM enabled systems mapping a highmem page has the side effect of * disabling migration in order to keep the virtual address stable across * preemption. No caller of kmap_local_folio() can rely on this side effect. * * Context: Can be invoked from any context. * Return: The virtual address of @offset. */ static inline void *kmap_local_folio(struct folio *folio, size_t offset); /** * kmap_atomic - Atomically map a page for temporary usage - Deprecated! * @page: Pointer to the page to be mapped * * Returns: The virtual address of the mapping * * In fact a wrapper around kmap_local_page() which also disables pagefaults * and, depending on PREEMPT_RT configuration, also CPU migration and * preemption. Therefore users should not count on the latter two side effects. * * Mappings should always be released by kunmap_atomic(). * * Do not use in new code. Use kmap_local_page() instead. * * It is used in atomic context when code wants to access the contents of a * page that might be allocated from high memory (see __GFP_HIGHMEM), for * example a page in the pagecache. The API has two functions, and they * can be used in a manner similar to the following:: * * // Find the page of interest. * struct page *page = find_get_page(mapping, offset); * * // Gain access to the contents of that page. * void *vaddr = kmap_atomic(page); * * // Do something to the contents of that page. * memset(vaddr, 0, PAGE_SIZE); * * // Unmap that page. * kunmap_atomic(vaddr); * * Note that the kunmap_atomic() call takes the result of the kmap_atomic() * call, not the argument. * * If you need to map two pages because you want to copy from one page to * another you need to keep the kmap_atomic calls strictly nested, like: * * vaddr1 = kmap_atomic(page1); * vaddr2 = kmap_atomic(page2); * * memcpy(vaddr1, vaddr2, PAGE_SIZE); * * kunmap_atomic(vaddr2); * kunmap_atomic(vaddr1); */ static inline void *kmap_atomic(struct page *page); /* Highmem related interfaces for management code */ static inline unsigned long nr_free_highpages(void); static inline unsigned long totalhigh_pages(void); #ifndef ARCH_HAS_FLUSH_ANON_PAGE static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { } #endif #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE static inline void flush_kernel_vmap_range(void *vaddr, int size) { } static inline void invalidate_kernel_vmap_range(void *vaddr, int size) { } #endif /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ #ifndef clear_user_highpage static inline void clear_user_highpage(struct page *page, unsigned long vaddr) { void *addr = kmap_local_page(page); clear_user_page(addr, vaddr, page); kunmap_local(addr); } #endif #ifndef vma_alloc_zeroed_movable_folio /** * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA. * @vma: The VMA the page is to be allocated for. * @vaddr: The virtual address the page will be inserted into. * * This function will allocate a page suitable for inserting into this * VMA at this virtual address. It may be allocated from highmem or * the movable zone. An architecture may provide its own implementation. * * Return: A folio containing one allocated and zeroed page or NULL if * we are out of memory. */ static inline struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, unsigned long vaddr) { struct folio *folio; folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr, false); if (folio) clear_user_highpage(&folio->page, vaddr); return folio; } #endif static inline void clear_highpage(struct page *page) { void *kaddr = kmap_local_page(page); clear_page(kaddr); kunmap_local(kaddr); } static inline void clear_highpage_kasan_tagged(struct page *page) { void *kaddr = kmap_local_page(page); clear_page(kasan_reset_tag(kaddr)); kunmap_local(kaddr); } #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE static inline void tag_clear_highpage(struct page *page) { } #endif /* * If we pass in a base or tail page, we can zero up to PAGE_SIZE. * If we pass in a head page, we can zero up to the size of the compound page. */ #ifdef CONFIG_HIGHMEM void zero_user_segments(struct page *page, unsigned start1, unsigned end1, unsigned start2, unsigned end2); #else static inline void zero_user_segments(struct page *page, unsigned start1, unsigned end1, unsigned start2, unsigned end2) { void *kaddr = kmap_local_page(page); unsigned int i; BUG_ON(end1 > page_size(page) || end2 > page_size(page)); if (end1 > start1) memset(kaddr + start1, 0, end1 - start1); if (end2 > start2) memset(kaddr + start2, 0, end2 - start2); kunmap_local(kaddr); for (i = 0; i < compound_nr(page); i++) flush_dcache_page(page + i); } #endif static inline void zero_user_segment(struct page *page, unsigned start, unsigned end) { zero_user_segments(page, start, end, 0, 0); } static inline void zero_user(struct page *page, unsigned start, unsigned size) { zero_user_segments(page, start, start + size, 0, 0); } #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE static inline void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { char *vfrom, *vto; vfrom = kmap_local_page(from); vto = kmap_local_page(to); copy_user_page(vto, vfrom, vaddr, to); kmsan_unpoison_memory(page_address(to), PAGE_SIZE); kunmap_local(vto); kunmap_local(vfrom); } #endif #ifndef __HAVE_ARCH_COPY_HIGHPAGE static inline void copy_highpage(struct page *to, struct page *from) { char *vfrom, *vto; vfrom = kmap_local_page(from); vto = kmap_local_page(to); copy_page(vto, vfrom); kmsan_copy_page_meta(to, from); kunmap_local(vto); kunmap_local(vfrom); } #endif #ifdef copy_mc_to_kernel /* * If architecture supports machine check exception handling, define the * #MC versions of copy_user_highpage and copy_highpage. They copy a memory * page with #MC in source page (@from) handled, and return the number * of bytes not copied if there was a #MC, otherwise 0 for success. */ static inline int copy_mc_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { unsigned long ret; char *vfrom, *vto; vfrom = kmap_local_page(from); vto = kmap_local_page(to); ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); if (!ret) kmsan_unpoison_memory(page_address(to), PAGE_SIZE); kunmap_local(vto); kunmap_local(vfrom); if (ret) memory_failure_queue(page_to_pfn(from), 0); return ret; } static inline int copy_mc_highpage(struct page *to, struct page *from) { unsigned long ret; char *vfrom, *vto; vfrom = kmap_local_page(from); vto = kmap_local_page(to); ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); if (!ret) kmsan_copy_page_meta(to, from); kunmap_local(vto); kunmap_local(vfrom); if (ret) memory_failure_queue(page_to_pfn(from), 0); return ret; } #else static inline int copy_mc_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { copy_user_highpage(to, from, vaddr, vma); return 0; } static inline int copy_mc_highpage(struct page *to, struct page *from) { copy_highpage(to, from); return 0; } #endif static inline void memcpy_page(struct page *dst_page, size_t dst_off, struct page *src_page, size_t src_off, size_t len) { char *dst = kmap_local_page(dst_page); char *src = kmap_local_page(src_page); VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); memcpy(dst + dst_off, src + src_off, len); kunmap_local(src); kunmap_local(dst); } static inline void memset_page(struct page *page, size_t offset, int val, size_t len) { char *addr = kmap_local_page(page); VM_BUG_ON(offset + len > PAGE_SIZE); memset(addr + offset, val, len); kunmap_local(addr); } static inline void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) { char *from = kmap_local_page(page); VM_BUG_ON(offset + len > PAGE_SIZE); memcpy(to, from + offset, len); kunmap_local(from); } static inline void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) { char *to = kmap_local_page(page); VM_BUG_ON(offset + len > PAGE_SIZE); memcpy(to + offset, from, len); flush_dcache_page(page); kunmap_local(to); } static inline void memzero_page(struct page *page, size_t offset, size_t len) { char *addr = kmap_local_page(page); VM_BUG_ON(offset + len > PAGE_SIZE); memset(addr + offset, 0, len); flush_dcache_page(page); kunmap_local(addr); } /** * memcpy_from_folio - Copy a range of bytes from a folio. * @to: The memory to copy to. * @folio: The folio to read from. * @offset: The first byte in the folio to read. * @len: The number of bytes to copy. */ static inline void memcpy_from_folio(char *to, struct folio *folio, size_t offset, size_t len) { VM_BUG_ON(offset + len > folio_size(folio)); do { const char *from = kmap_local_folio(folio, offset); size_t chunk = len; if (folio_test_highmem(folio) && chunk > PAGE_SIZE - offset_in_page(offset)) chunk = PAGE_SIZE - offset_in_page(offset); memcpy(to, from, chunk); kunmap_local(from); to += chunk; offset += chunk; len -= chunk; } while (len > 0); } /** * memcpy_to_folio - Copy a range of bytes to a folio. * @folio: The folio to write to. * @offset: The first byte in the folio to store to. * @from: The memory to copy from. * @len: The number of bytes to copy. */ static inline void memcpy_to_folio(struct folio *folio, size_t offset, const char *from, size_t len) { VM_BUG_ON(offset + len > folio_size(folio)); do { char *to = kmap_local_folio(folio, offset); size_t chunk = len; if (folio_test_highmem(folio) && chunk > PAGE_SIZE - offset_in_page(offset)) chunk = PAGE_SIZE - offset_in_page(offset); memcpy(to, from, chunk); kunmap_local(to); from += chunk; offset += chunk; len -= chunk; } while (len > 0); flush_dcache_folio(folio); } /** * folio_zero_tail - Zero the tail of a folio. * @folio: The folio to zero. * @offset: The byte offset in the folio to start zeroing at. * @kaddr: The address the folio is currently mapped to. * * If you have already used kmap_local_folio() to map a folio, written * some data to it and now need to zero the end of the folio (and flush * the dcache), you can use this function. If you do not have the * folio kmapped (eg the folio has been partially populated by DMA), * use folio_zero_range() or folio_zero_segment() instead. * * Return: An address which can be passed to kunmap_local(). */ static inline __must_check void *folio_zero_tail(struct folio *folio, size_t offset, void *kaddr) { size_t len = folio_size(folio) - offset; if (folio_test_highmem(folio)) { size_t max = PAGE_SIZE - offset_in_page(offset); while (len > max) { memset(kaddr, 0, max); kunmap_local(kaddr); len -= max; offset += max; max = PAGE_SIZE; kaddr = kmap_local_folio(folio, offset); } } memset(kaddr, 0, len); flush_dcache_folio(folio); return kaddr; } /** * folio_fill_tail - Copy some data to a folio and pad with zeroes. * @folio: The destination folio. * @offset: The offset into @folio at which to start copying. * @from: The data to copy. * @len: How many bytes of data to copy. * * This function is most useful for filesystems which support inline data. * When they want to copy data from the inode into the page cache, this * function does everything for them. It supports large folios even on * HIGHMEM configurations. */ static inline void folio_fill_tail(struct folio *folio, size_t offset, const char *from, size_t len) { char *to = kmap_local_folio(folio, offset); VM_BUG_ON(offset + len > folio_size(folio)); if (folio_test_highmem(folio)) { size_t max = PAGE_SIZE - offset_in_page(offset); while (len > max) { memcpy(to, from, max); kunmap_local(to); len -= max; from += max; offset += max; max = PAGE_SIZE; to = kmap_local_folio(folio, offset); } } memcpy(to, from, len); to = folio_zero_tail(folio, offset + len, to + len); kunmap_local(to); } /** * memcpy_from_file_folio - Copy some bytes from a file folio. * @to: The destination buffer. * @folio: The folio to copy from. * @pos: The position in the file. * @len: The maximum number of bytes to copy. * * Copy up to @len bytes from this folio. This may be limited by PAGE_SIZE * if the folio comes from HIGHMEM, and by the size of the folio. * * Return: The number of bytes copied from the folio. */ static inline size_t memcpy_from_file_folio(char *to, struct folio *folio, loff_t pos, size_t len) { size_t offset = offset_in_folio(folio, pos); char *from = kmap_local_folio(folio, offset); if (folio_test_highmem(folio)) { offset = offset_in_page(offset); len = min_t(size_t, len, PAGE_SIZE - offset); } else len = min(len, folio_size(folio) - offset); memcpy(to, from, len); kunmap_local(from); return len; } /** * folio_zero_segments() - Zero two byte ranges in a folio. * @folio: The folio to write to. * @start1: The first byte to zero. * @xend1: One more than the last byte in the first range. * @start2: The first byte to zero in the second range. * @xend2: One more than the last byte in the second range. */ static inline void folio_zero_segments(struct folio *folio, size_t start1, size_t xend1, size_t start2, size_t xend2) { zero_user_segments(&folio->page, start1, xend1, start2, xend2); } /** * folio_zero_segment() - Zero a byte range in a folio. * @folio: The folio to write to. * @start: The first byte to zero. * @xend: One more than the last byte to zero. */ static inline void folio_zero_segment(struct folio *folio, size_t start, size_t xend) { zero_user_segments(&folio->page, start, xend, 0, 0); } /** * folio_zero_range() - Zero a byte range in a folio. * @folio: The folio to write to. * @start: The first byte to zero. * @length: The number of bytes to zero. */ static inline void folio_zero_range(struct folio *folio, size_t start, size_t length) { zero_user_segments(&folio->page, start, start + length, 0, 0); } /** * folio_release_kmap - Unmap a folio and drop a refcount. * @folio: The folio to release. * @addr: The address previously returned by a call to kmap_local_folio(). * * It is common, eg in directory handling to kmap a folio. This function * unmaps the folio and drops the refcount that was being held to keep the * folio alive while we accessed it. */ static inline void folio_release_kmap(struct folio *folio, void *addr) { kunmap_local(addr); folio_put(folio); } static inline void unmap_and_put_page(struct page *page, void *addr) { folio_release_kmap(page_folio(page), addr); } #endif /* _LINUX_HIGHMEM_H */ |
13 2 4 1 7 8 27 27 43 2 41 1 1 4 2 33 23 1 1 8 3 12 59 4 2 33 20 2 1 23 74 3 49 9 90 132 312 39 184 16 94 13 26 16 153 3 3 262 32 150 141 3 157 12 2 90 8 1 1 18 1 11 2 272 262 18 3 8 290 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | // SPDX-License-Identifier: GPL-2.0-or-later /* Filesystem access-by-fd. * * Copyright (C) 2017 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/syscalls.h> #include <linux/security.h> #include <linux/anon_inodes.h> #include <linux/namei.h> #include <linux/file.h> #include <uapi/linux/mount.h> #include "internal.h" #include "mount.h" /* * Allow the user to read back any error, warning or informational messages. */ static ssize_t fscontext_read(struct file *file, char __user *_buf, size_t len, loff_t *pos) { struct fs_context *fc = file->private_data; struct fc_log *log = fc->log.log; unsigned int logsize = ARRAY_SIZE(log->buffer); ssize_t ret; char *p; bool need_free; int index, n; ret = mutex_lock_interruptible(&fc->uapi_mutex); if (ret < 0) return ret; if (log->head == log->tail) { mutex_unlock(&fc->uapi_mutex); return -ENODATA; } index = log->tail & (logsize - 1); p = log->buffer[index]; need_free = log->need_free & (1 << index); log->buffer[index] = NULL; log->need_free &= ~(1 << index); log->tail++; mutex_unlock(&fc->uapi_mutex); ret = -EMSGSIZE; n = strlen(p); if (n > len) goto err_free; ret = -EFAULT; if (copy_to_user(_buf, p, n) != 0) goto err_free; ret = n; err_free: if (need_free) kfree(p); return ret; } static int fscontext_release(struct inode *inode, struct file *file) { struct fs_context *fc = file->private_data; if (fc) { file->private_data = NULL; put_fs_context(fc); } return 0; } const struct file_operations fscontext_fops = { .read = fscontext_read, .release = fscontext_release, .llseek = no_llseek, }; /* * Attach a filesystem context to a file and an fd. */ static int fscontext_create_fd(struct fs_context *fc, unsigned int o_flags) { int fd; fd = anon_inode_getfd("[fscontext]", &fscontext_fops, fc, O_RDWR | o_flags); if (fd < 0) put_fs_context(fc); return fd; } static int fscontext_alloc_log(struct fs_context *fc) { fc->log.log = kzalloc(sizeof(*fc->log.log), GFP_KERNEL); if (!fc->log.log) return -ENOMEM; refcount_set(&fc->log.log->usage, 1); fc->log.log->owner = fc->fs_type->owner; return 0; } /* * Open a filesystem by name so that it can be configured for mounting. * * We are allowed to specify a container in which the filesystem will be * opened, thereby indicating which namespaces will be used (notably, which * network namespace will be used for network filesystems). */ SYSCALL_DEFINE2(fsopen, const char __user *, _fs_name, unsigned int, flags) { struct file_system_type *fs_type; struct fs_context *fc; const char *fs_name; int ret; if (!may_mount()) return -EPERM; if (flags & ~FSOPEN_CLOEXEC) return -EINVAL; fs_name = strndup_user(_fs_name, PAGE_SIZE); if (IS_ERR(fs_name)) return PTR_ERR(fs_name); fs_type = get_fs_type(fs_name); kfree(fs_name); if (!fs_type) return -ENODEV; fc = fs_context_for_mount(fs_type, 0); put_filesystem(fs_type); if (IS_ERR(fc)) return PTR_ERR(fc); fc->phase = FS_CONTEXT_CREATE_PARAMS; ret = fscontext_alloc_log(fc); if (ret < 0) goto err_fc; return fscontext_create_fd(fc, flags & FSOPEN_CLOEXEC ? O_CLOEXEC : 0); err_fc: put_fs_context(fc); return ret; } /* * Pick a superblock into a context for reconfiguration. */ SYSCALL_DEFINE3(fspick, int, dfd, const char __user *, path, unsigned int, flags) { struct fs_context *fc; struct path target; unsigned int lookup_flags; int ret; if (!may_mount()) return -EPERM; if ((flags & ~(FSPICK_CLOEXEC | FSPICK_SYMLINK_NOFOLLOW | FSPICK_NO_AUTOMOUNT | FSPICK_EMPTY_PATH)) != 0) return -EINVAL; lookup_flags = LOOKUP_FOLLOW | LOOKUP_AUTOMOUNT; if (flags & FSPICK_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & FSPICK_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & FSPICK_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; ret = user_path_at(dfd, path, lookup_flags, &target); if (ret < 0) goto err; ret = -EINVAL; if (target.mnt->mnt_root != target.dentry) goto err_path; fc = fs_context_for_reconfigure(target.dentry, 0, 0); if (IS_ERR(fc)) { ret = PTR_ERR(fc); goto err_path; } fc->phase = FS_CONTEXT_RECONF_PARAMS; ret = fscontext_alloc_log(fc); if (ret < 0) goto err_fc; path_put(&target); return fscontext_create_fd(fc, flags & FSPICK_CLOEXEC ? O_CLOEXEC : 0); err_fc: put_fs_context(fc); err_path: path_put(&target); err: return ret; } static int vfs_cmd_create(struct fs_context *fc, bool exclusive) { struct super_block *sb; int ret; if (fc->phase != FS_CONTEXT_CREATE_PARAMS) return -EBUSY; if (!mount_capable(fc)) return -EPERM; fc->phase = FS_CONTEXT_CREATING; fc->exclusive = exclusive; ret = vfs_get_tree(fc); if (ret) { fc->phase = FS_CONTEXT_FAILED; return ret; } sb = fc->root->d_sb; ret = security_sb_kern_mount(sb); if (unlikely(ret)) { fc_drop_locked(fc); fc->phase = FS_CONTEXT_FAILED; return ret; } /* vfs_get_tree() callchains will have grabbed @s_umount */ up_write(&sb->s_umount); fc->phase = FS_CONTEXT_AWAITING_MOUNT; return 0; } static int vfs_cmd_reconfigure(struct fs_context *fc) { struct super_block *sb; int ret; if (fc->phase != FS_CONTEXT_RECONF_PARAMS) return -EBUSY; fc->phase = FS_CONTEXT_RECONFIGURING; sb = fc->root->d_sb; if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { fc->phase = FS_CONTEXT_FAILED; return -EPERM; } down_write(&sb->s_umount); ret = reconfigure_super(fc); up_write(&sb->s_umount); if (ret) { fc->phase = FS_CONTEXT_FAILED; return ret; } vfs_clean_context(fc); return 0; } /* * Check the state and apply the configuration. Note that this function is * allowed to 'steal' the value by setting param->xxx to NULL before returning. */ static int vfs_fsconfig_locked(struct fs_context *fc, int cmd, struct fs_parameter *param) { int ret; ret = finish_clean_context(fc); if (ret) return ret; switch (cmd) { case FSCONFIG_CMD_CREATE: return vfs_cmd_create(fc, false); case FSCONFIG_CMD_CREATE_EXCL: return vfs_cmd_create(fc, true); case FSCONFIG_CMD_RECONFIGURE: return vfs_cmd_reconfigure(fc); default: if (fc->phase != FS_CONTEXT_CREATE_PARAMS && fc->phase != FS_CONTEXT_RECONF_PARAMS) return -EBUSY; return vfs_parse_fs_param(fc, param); } } /** * sys_fsconfig - Set parameters and trigger actions on a context * @fd: The filesystem context to act upon * @cmd: The action to take * @_key: Where appropriate, the parameter key to set * @_value: Where appropriate, the parameter value to set * @aux: Additional information for the value * * This system call is used to set parameters on a context, including * superblock settings, data source and security labelling. * * Actions include triggering the creation of a superblock and the * reconfiguration of the superblock attached to the specified context. * * When setting a parameter, @cmd indicates the type of value being proposed * and @_key indicates the parameter to be altered. * * @_value and @aux are used to specify the value, should a value be required: * * (*) fsconfig_set_flag: No value is specified. The parameter must be boolean * in nature. The key may be prefixed with "no" to invert the * setting. @_value must be NULL and @aux must be 0. * * (*) fsconfig_set_string: A string value is specified. The parameter can be * expecting boolean, integer, string or take a path. A conversion to an * appropriate type will be attempted (which may include looking up as a * path). @_value points to a NUL-terminated string and @aux must be 0. * * (*) fsconfig_set_binary: A binary blob is specified. @_value points to the * blob and @aux indicates its size. The parameter must be expecting a * blob. * * (*) fsconfig_set_path: A non-empty path is specified. The parameter must be * expecting a path object. @_value points to a NUL-terminated string that * is the path and @aux is a file descriptor at which to start a relative * lookup or AT_FDCWD. * * (*) fsconfig_set_path_empty: As fsconfig_set_path, but with AT_EMPTY_PATH * implied. * * (*) fsconfig_set_fd: An open file descriptor is specified. @_value must be * NULL and @aux indicates the file descriptor. */ SYSCALL_DEFINE5(fsconfig, int, fd, unsigned int, cmd, const char __user *, _key, const void __user *, _value, int, aux) { struct fs_context *fc; struct fd f; int ret; int lookup_flags = 0; struct fs_parameter param = { .type = fs_value_is_undefined, }; if (fd < 0) return -EINVAL; switch (cmd) { case FSCONFIG_SET_FLAG: if (!_key || _value || aux) return -EINVAL; break; case FSCONFIG_SET_STRING: if (!_key || !_value || aux) return -EINVAL; break; case FSCONFIG_SET_BINARY: if (!_key || !_value || aux <= 0 || aux > 1024 * 1024) return -EINVAL; break; case FSCONFIG_SET_PATH: case FSCONFIG_SET_PATH_EMPTY: if (!_key || !_value || (aux != AT_FDCWD && aux < 0)) return -EINVAL; break; case FSCONFIG_SET_FD: if (!_key || _value || aux < 0) return -EINVAL; break; case FSCONFIG_CMD_CREATE: case FSCONFIG_CMD_CREATE_EXCL: case FSCONFIG_CMD_RECONFIGURE: if (_key || _value || aux) return -EINVAL; break; default: return -EOPNOTSUPP; } f = fdget(fd); if (!fd_file(f)) return -EBADF; ret = -EINVAL; if (fd_file(f)->f_op != &fscontext_fops) goto out_f; fc = fd_file(f)->private_data; if (fc->ops == &legacy_fs_context_ops) { switch (cmd) { case FSCONFIG_SET_BINARY: case FSCONFIG_SET_PATH: case FSCONFIG_SET_PATH_EMPTY: case FSCONFIG_SET_FD: case FSCONFIG_CMD_CREATE_EXCL: ret = -EOPNOTSUPP; goto out_f; } } if (_key) { param.key = strndup_user(_key, 256); if (IS_ERR(param.key)) { ret = PTR_ERR(param.key); goto out_f; } } switch (cmd) { case FSCONFIG_SET_FLAG: param.type = fs_value_is_flag; break; case FSCONFIG_SET_STRING: param.type = fs_value_is_string; param.string = strndup_user(_value, 256); if (IS_ERR(param.string)) { ret = PTR_ERR(param.string); goto out_key; } param.size = strlen(param.string); break; case FSCONFIG_SET_BINARY: param.type = fs_value_is_blob; param.size = aux; param.blob = memdup_user_nul(_value, aux); if (IS_ERR(param.blob)) { ret = PTR_ERR(param.blob); goto out_key; } break; case FSCONFIG_SET_PATH_EMPTY: lookup_flags = LOOKUP_EMPTY; fallthrough; case FSCONFIG_SET_PATH: param.type = fs_value_is_filename; param.name = getname_flags(_value, lookup_flags); if (IS_ERR(param.name)) { ret = PTR_ERR(param.name); goto out_key; } param.dirfd = aux; param.size = strlen(param.name->name); break; case FSCONFIG_SET_FD: param.type = fs_value_is_file; ret = -EBADF; param.file = fget(aux); if (!param.file) goto out_key; param.dirfd = aux; break; default: break; } ret = mutex_lock_interruptible(&fc->uapi_mutex); if (ret == 0) { ret = vfs_fsconfig_locked(fc, cmd, ¶m); mutex_unlock(&fc->uapi_mutex); } /* Clean up the our record of any value that we obtained from * userspace. Note that the value may have been stolen by the LSM or * filesystem, in which case the value pointer will have been cleared. */ switch (cmd) { case FSCONFIG_SET_STRING: case FSCONFIG_SET_BINARY: kfree(param.string); break; case FSCONFIG_SET_PATH: case FSCONFIG_SET_PATH_EMPTY: if (param.name) putname(param.name); break; case FSCONFIG_SET_FD: if (param.file) fput(param.file); break; default: break; } out_key: kfree(param.key); out_f: fdput(f); return ret; } |
4 2 2 4 6 82 3 81 81 24 57 63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | /* SPDX-License-Identifier: GPL-2.0 * * page_pool/helpers.h * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> * Copyright (C) 2016 Red Hat, Inc. */ /** * DOC: page_pool allocator * * The page_pool allocator is optimized for recycling page or page fragment used * by skb packet and xdp frame. * * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(), * which allocate memory with or without page splitting depending on the * requested memory size. * * If the driver knows that it always requires full pages or its allocations are * always smaller than half a page, it can use one of the more specific API * calls: * * 1. page_pool_alloc_pages(): allocate memory without page splitting when * driver knows that the memory it need is always bigger than half of the page * allocated from page pool. There is no cache line dirtying for 'struct page' * when a page is recycled back to the page pool. * * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver * knows that the memory it need is always smaller than or equal to half of the * page allocated from page pool. Page splitting enables memory saving and thus * avoids TLB/cache miss for data access, but there also is some cost to * implement page splitting, mainly some cache line dirtying/bouncing for * 'struct page' and atomic operation for page->pp_ref_count. * * The API keeps track of in-flight pages, in order to let API users know when * it is safe to free a page_pool object, the API users must call * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or * attach the page_pool object to a page_pool-aware object like skbs marked with * skb_mark_for_recycle(). * * page_pool_put_page() may be called multiple times on the same page if a page * is split into multiple fragments. For the last fragment, it will either * recycle the page, or in case of page->_refcount > 1, it will release the DMA * mapping and in-flight state accounting. * * dma_sync_single_range_for_device() is only called for the last fragment when * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the * last freed fragment to do the sync_for_device operation for all fragments in * the same page when a page is split. The API user must setup pool->p.max_len * and pool->p.offset correctly and ensure that page_pool_put_page() is called * with dma_sync_size being -1 for fragment API. */ #ifndef _NET_PAGE_POOL_HELPERS_H #define _NET_PAGE_POOL_HELPERS_H #include <linux/dma-mapping.h> #include <net/page_pool/types.h> #include <net/net_debug.h> #include <net/netmem.h> #ifdef CONFIG_PAGE_POOL_STATS /* Deprecated driver-facing API, use netlink instead */ int page_pool_ethtool_stats_get_count(void); u8 *page_pool_ethtool_stats_get_strings(u8 *data); u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats); bool page_pool_get_stats(const struct page_pool *pool, struct page_pool_stats *stats); #else static inline int page_pool_ethtool_stats_get_count(void) { return 0; } static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data) { return data; } static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) { return data; } #endif /** * page_pool_dev_alloc_pages() - allocate a page. * @pool: pool from which to allocate * * Get a page from the page allocator or page_pool caches. */ static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_pages(pool, gfp); } /** * page_pool_dev_alloc_frag() - allocate a page fragment. * @pool: pool from which to allocate * @offset: offset to the allocated page * @size: requested size * * Get a page fragment from the page allocator or page_pool caches. * * Return: * Return allocated page fragment, otherwise return NULL. */ static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool, unsigned int *offset, unsigned int size) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_frag(pool, offset, size, gfp); } static inline struct page *page_pool_alloc(struct page_pool *pool, unsigned int *offset, unsigned int *size, gfp_t gfp) { unsigned int max_size = PAGE_SIZE << pool->p.order; struct page *page; if ((*size << 1) > max_size) { *size = max_size; *offset = 0; return page_pool_alloc_pages(pool, gfp); } page = page_pool_alloc_frag(pool, offset, *size, gfp); if (unlikely(!page)) return NULL; /* There is very likely not enough space for another fragment, so append * the remaining size to the current fragment to avoid truesize * underestimate problem. */ if (pool->frag_offset + *size > max_size) { *size = max_size - *offset; pool->frag_offset = max_size; } return page; } /** * page_pool_dev_alloc() - allocate a page or a page fragment. * @pool: pool from which to allocate * @offset: offset to the allocated page * @size: in as the requested size, out as the allocated size * * Get a page or a page fragment from the page allocator or page_pool caches * depending on the requested size in order to allocate memory with least memory * utilization and performance penalty. * * Return: * Return allocated page or page fragment, otherwise return NULL. */ static inline struct page *page_pool_dev_alloc(struct page_pool *pool, unsigned int *offset, unsigned int *size) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc(pool, offset, size, gfp); } static inline void *page_pool_alloc_va(struct page_pool *pool, unsigned int *size, gfp_t gfp) { unsigned int offset; struct page *page; /* Mask off __GFP_HIGHMEM to ensure we can use page_address() */ page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM); if (unlikely(!page)) return NULL; return page_address(page) + offset; } /** * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its * va. * @pool: pool from which to allocate * @size: in as the requested size, out as the allocated size * * This is just a thin wrapper around the page_pool_alloc() API, and * it returns va of the allocated page or page fragment. * * Return: * Return the va for the allocated page or page fragment, otherwise return NULL. */ static inline void *page_pool_dev_alloc_va(struct page_pool *pool, unsigned int *size) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_va(pool, size, gfp); } /** * page_pool_get_dma_dir() - Retrieve the stored DMA direction. * @pool: pool from which page was allocated * * Get the stored dma direction. A driver might decide to store this locally * and avoid the extra cache line from page_pool to determine the direction. */ static inline enum dma_data_direction page_pool_get_dma_dir(const struct page_pool *pool) { return pool->p.dma_dir; } static inline void page_pool_fragment_netmem(netmem_ref netmem, long nr) { atomic_long_set(netmem_get_pp_ref_count_ref(netmem), nr); } /** * page_pool_fragment_page() - split a fresh page into fragments * @page: page to split * @nr: references to set * * pp_ref_count represents the number of outstanding references to the page, * which will be freed using page_pool APIs (rather than page allocator APIs * like put_page()). Such references are usually held by page_pool-aware * objects like skbs marked for page pool recycling. * * This helper allows the caller to take (set) multiple references to a * freshly allocated page. The page must be freshly allocated (have a * pp_ref_count of 1). This is commonly done by drivers and * "fragment allocators" to save atomic operations - either when they know * upfront how many references they will need; or to take MAX references and * return the unused ones with a single atomic dec(), instead of performing * multiple atomic inc() operations. */ static inline void page_pool_fragment_page(struct page *page, long nr) { page_pool_fragment_netmem(page_to_netmem(page), nr); } static inline long page_pool_unref_netmem(netmem_ref netmem, long nr) { atomic_long_t *pp_ref_count = netmem_get_pp_ref_count_ref(netmem); long ret; /* If nr == pp_ref_count then we have cleared all remaining * references to the page: * 1. 'n == 1': no need to actually overwrite it. * 2. 'n != 1': overwrite it with one, which is the rare case * for pp_ref_count draining. * * The main advantage to doing this is that not only we avoid a atomic * update, as an atomic_read is generally a much cheaper operation than * an atomic update, especially when dealing with a page that may be * referenced by only 2 or 3 users; but also unify the pp_ref_count * handling by ensuring all pages have partitioned into only 1 piece * initially, and only overwrite it when the page is partitioned into * more than one piece. */ if (atomic_long_read(pp_ref_count) == nr) { /* As we have ensured nr is always one for constant case using * the BUILD_BUG_ON(), only need to handle the non-constant case * here for pp_ref_count draining, which is a rare case. */ BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1); if (!__builtin_constant_p(nr)) atomic_long_set(pp_ref_count, 1); return 0; } ret = atomic_long_sub_return(nr, pp_ref_count); WARN_ON(ret < 0); /* We are the last user here too, reset pp_ref_count back to 1 to * ensure all pages have been partitioned into 1 piece initially, * this should be the rare case when the last two fragment users call * page_pool_unref_page() currently. */ if (unlikely(!ret)) atomic_long_set(pp_ref_count, 1); return ret; } static inline long page_pool_unref_page(struct page *page, long nr) { return page_pool_unref_netmem(page_to_netmem(page), nr); } static inline void page_pool_ref_netmem(netmem_ref netmem) { atomic_long_inc(&netmem_to_page(netmem)->pp_ref_count); } static inline void page_pool_ref_page(struct page *page) { page_pool_ref_netmem(page_to_netmem(page)); } static inline bool page_pool_is_last_ref(netmem_ref netmem) { /* If page_pool_unref_page() returns 0, we were the last user */ return page_pool_unref_netmem(netmem, 1) == 0; } static inline void page_pool_put_netmem(struct page_pool *pool, netmem_ref netmem, unsigned int dma_sync_size, bool allow_direct) { /* When page_pool isn't compiled-in, net/core/xdp.c doesn't * allow registering MEM_TYPE_PAGE_POOL, but shield linker. */ #ifdef CONFIG_PAGE_POOL if (!page_pool_is_last_ref(netmem)) return; page_pool_put_unrefed_netmem(pool, netmem, dma_sync_size, allow_direct); #endif } /** * page_pool_put_page() - release a reference to a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * @dma_sync_size: how much of the page may have been touched by the device * @allow_direct: released by the consumer, allow lockless caching * * The outcome of this depends on the page refcnt. If the driver bumps * the refcnt > 1 this will unmap the page. If the page refcnt is 1 * the allocator owns the page and will try to recycle it in one of the pool * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device * using dma_sync_single_range_for_device(). */ static inline void page_pool_put_page(struct page_pool *pool, struct page *page, unsigned int dma_sync_size, bool allow_direct) { page_pool_put_netmem(pool, page_to_netmem(page), dma_sync_size, allow_direct); } static inline void page_pool_put_full_netmem(struct page_pool *pool, netmem_ref netmem, bool allow_direct) { page_pool_put_netmem(pool, netmem, -1, allow_direct); } /** * page_pool_put_full_page() - release a reference on a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * @allow_direct: released by the consumer, allow lockless caching * * Similar to page_pool_put_page(), but will DMA sync the entire memory area * as configured in &page_pool_params.max_len. */ static inline void page_pool_put_full_page(struct page_pool *pool, struct page *page, bool allow_direct) { page_pool_put_netmem(pool, page_to_netmem(page), -1, allow_direct); } /** * page_pool_recycle_direct() - release a reference on a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * * Similar to page_pool_put_full_page() but caller must guarantee safe context * (e.g NAPI), since it will recycle the page directly into the pool fast cache. */ static inline void page_pool_recycle_direct(struct page_pool *pool, struct page *page) { page_pool_put_full_page(pool, page, true); } #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA \ (sizeof(dma_addr_t) > sizeof(unsigned long)) /** * page_pool_free_va() - free a va into the page_pool * @pool: pool from which va was allocated * @va: va to be freed * @allow_direct: freed by the consumer, allow lockless caching * * Free a va allocated from page_pool_allo_va(). */ static inline void page_pool_free_va(struct page_pool *pool, void *va, bool allow_direct) { page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct); } static inline dma_addr_t page_pool_get_dma_addr_netmem(netmem_ref netmem) { dma_addr_t ret = netmem_get_dma_addr(netmem); if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) ret <<= PAGE_SHIFT; return ret; } /** * page_pool_get_dma_addr() - Retrieve the stored DMA address. * @page: page allocated from a page pool * * Fetch the DMA address of the page. The page pool to which the page belongs * must had been created with PP_FLAG_DMA_MAP. */ static inline dma_addr_t page_pool_get_dma_addr(const struct page *page) { return page_pool_get_dma_addr_netmem(page_to_netmem((struct page *)page)); } /** * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW * @pool: &page_pool the @page belongs to * @page: page to sync * @offset: offset from page start to "hard" start if using PP frags * @dma_sync_size: size of the data written to the page * * Can be used as a shorthand to sync Rx pages before accessing them in the * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``. * Note that this version performs DMA sync unconditionally, even if the * associated PP doesn't perform sync-for-device. */ static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool, const struct page *page, u32 offset, u32 dma_sync_size) { dma_sync_single_range_for_cpu(pool->p.dev, page_pool_get_dma_addr(page), offset + pool->p.offset, dma_sync_size, page_pool_get_dma_dir(pool)); } static inline bool page_pool_put(struct page_pool *pool) { return refcount_dec_and_test(&pool->user_cnt); } static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid) { if (unlikely(pool->p.nid != new_nid)) page_pool_update_nid(pool, new_nid); } #endif /* _NET_PAGE_POOL_HELPERS_H */ |
1 1 1 1 1 2 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 | // SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** ******************************************************************************* ** ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. ** Copyright (C) 2004-2011 Red Hat, Inc. All rights reserved. ** ** ******************************************************************************* ******************************************************************************/ #include <linux/module.h> #include "dlm_internal.h" #include "lockspace.h" #include "member.h" #include "recoverd.h" #include "dir.h" #include "midcomms.h" #include "config.h" #include "memory.h" #include "lock.h" #include "recover.h" #include "requestqueue.h" #include "user.h" #include "ast.h" static int ls_count; static struct mutex ls_lock; static struct list_head lslist; static spinlock_t lslist_lock; static ssize_t dlm_control_store(struct dlm_ls *ls, const char *buf, size_t len) { ssize_t ret = len; int n; int rc = kstrtoint(buf, 0, &n); if (rc) return rc; ls = dlm_find_lockspace_local(ls); if (!ls) return -EINVAL; switch (n) { case 0: dlm_ls_stop(ls); break; case 1: dlm_ls_start(ls); break; default: ret = -EINVAL; } dlm_put_lockspace(ls); return ret; } static ssize_t dlm_event_store(struct dlm_ls *ls, const char *buf, size_t len) { int rc = kstrtoint(buf, 0, &ls->ls_uevent_result); if (rc) return rc; set_bit(LSFL_UEVENT_WAIT, &ls->ls_flags); wake_up(&ls->ls_uevent_wait); return len; } static ssize_t dlm_id_show(struct dlm_ls *ls, char *buf) { return snprintf(buf, PAGE_SIZE, "%u\n", ls->ls_global_id); } static ssize_t dlm_id_store(struct dlm_ls *ls, const char *buf, size_t len) { int rc = kstrtouint(buf, 0, &ls->ls_global_id); if (rc) return rc; return len; } static ssize_t dlm_nodir_show(struct dlm_ls *ls, char *buf) { return snprintf(buf, PAGE_SIZE, "%u\n", dlm_no_directory(ls)); } static ssize_t dlm_nodir_store(struct dlm_ls *ls, const char *buf, size_t len) { int val; int rc = kstrtoint(buf, 0, &val); if (rc) return rc; if (val == 1) set_bit(LSFL_NODIR, &ls->ls_flags); return len; } static ssize_t dlm_recover_status_show(struct dlm_ls *ls, char *buf) { uint32_t status = dlm_recover_status(ls); return snprintf(buf, PAGE_SIZE, "%x\n", status); } static ssize_t dlm_recover_nodeid_show(struct dlm_ls *ls, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ls->ls_recover_nodeid); } struct dlm_attr { struct attribute attr; ssize_t (*show)(struct dlm_ls *, char *); ssize_t (*store)(struct dlm_ls *, const char *, size_t); }; static struct dlm_attr dlm_attr_control = { .attr = {.name = "control", .mode = S_IWUSR}, .store = dlm_control_store }; static struct dlm_attr dlm_attr_event = { .attr = {.name = "event_done", .mode = S_IWUSR}, .store = dlm_event_store }; static struct dlm_attr dlm_attr_id = { .attr = {.name = "id", .mode = S_IRUGO | S_IWUSR}, .show = dlm_id_show, .store = dlm_id_store }; static struct dlm_attr dlm_attr_nodir = { .attr = {.name = "nodir", .mode = S_IRUGO | S_IWUSR}, .show = dlm_nodir_show, .store = dlm_nodir_store }; static struct dlm_attr dlm_attr_recover_status = { .attr = {.name = "recover_status", .mode = S_IRUGO}, .show = dlm_recover_status_show }; static struct dlm_attr dlm_attr_recover_nodeid = { .attr = {.name = "recover_nodeid", .mode = S_IRUGO}, .show = dlm_recover_nodeid_show }; static struct attribute *dlm_attrs[] = { &dlm_attr_control.attr, &dlm_attr_event.attr, &dlm_attr_id.attr, &dlm_attr_nodir.attr, &dlm_attr_recover_status.attr, &dlm_attr_recover_nodeid.attr, NULL, }; ATTRIBUTE_GROUPS(dlm); static ssize_t dlm_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct dlm_ls *ls = container_of(kobj, struct dlm_ls, ls_kobj); struct dlm_attr *a = container_of(attr, struct dlm_attr, attr); return a->show ? a->show(ls, buf) : 0; } static ssize_t dlm_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct dlm_ls *ls = container_of(kobj, struct dlm_ls, ls_kobj); struct dlm_attr *a = container_of(attr, struct dlm_attr, attr); return a->store ? a->store(ls, buf, len) : len; } static const struct sysfs_ops dlm_attr_ops = { .show = dlm_attr_show, .store = dlm_attr_store, }; static struct kobj_type dlm_ktype = { .default_groups = dlm_groups, .sysfs_ops = &dlm_attr_ops, }; static struct kset *dlm_kset; static int do_uevent(struct dlm_ls *ls, int in) { if (in) kobject_uevent(&ls->ls_kobj, KOBJ_ONLINE); else kobject_uevent(&ls->ls_kobj, KOBJ_OFFLINE); log_rinfo(ls, "%s the lockspace group...", in ? "joining" : "leaving"); /* dlm_controld will see the uevent, do the necessary group management and then write to sysfs to wake us */ wait_event(ls->ls_uevent_wait, test_and_clear_bit(LSFL_UEVENT_WAIT, &ls->ls_flags)); log_rinfo(ls, "group event done %d", ls->ls_uevent_result); return ls->ls_uevent_result; } static int dlm_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) { const struct dlm_ls *ls = container_of(kobj, struct dlm_ls, ls_kobj); add_uevent_var(env, "LOCKSPACE=%s", ls->ls_name); return 0; } static const struct kset_uevent_ops dlm_uevent_ops = { .uevent = dlm_uevent, }; int __init dlm_lockspace_init(void) { ls_count = 0; mutex_init(&ls_lock); INIT_LIST_HEAD(&lslist); spin_lock_init(&lslist_lock); dlm_kset = kset_create_and_add("dlm", &dlm_uevent_ops, kernel_kobj); if (!dlm_kset) { printk(KERN_WARNING "%s: can not create kset\n", __func__); return -ENOMEM; } return 0; } void dlm_lockspace_exit(void) { kset_unregister(dlm_kset); } struct dlm_ls *dlm_find_lockspace_global(uint32_t id) { struct dlm_ls *ls; spin_lock_bh(&lslist_lock); list_for_each_entry(ls, &lslist, ls_list) { if (ls->ls_global_id == id) { atomic_inc(&ls->ls_count); goto out; } } ls = NULL; out: spin_unlock_bh(&lslist_lock); return ls; } struct dlm_ls *dlm_find_lockspace_local(dlm_lockspace_t *lockspace) { struct dlm_ls *ls = lockspace; atomic_inc(&ls->ls_count); return ls; } struct dlm_ls *dlm_find_lockspace_device(int minor) { struct dlm_ls *ls; spin_lock_bh(&lslist_lock); list_for_each_entry(ls, &lslist, ls_list) { if (ls->ls_device.minor == minor) { atomic_inc(&ls->ls_count); goto out; } } ls = NULL; out: spin_unlock_bh(&lslist_lock); return ls; } void dlm_put_lockspace(struct dlm_ls *ls) { if (atomic_dec_and_test(&ls->ls_count)) wake_up(&ls->ls_count_wait); } static void remove_lockspace(struct dlm_ls *ls) { retry: wait_event(ls->ls_count_wait, atomic_read(&ls->ls_count) == 0); spin_lock_bh(&lslist_lock); if (atomic_read(&ls->ls_count) != 0) { spin_unlock_bh(&lslist_lock); goto retry; } WARN_ON(ls->ls_create_count != 0); list_del(&ls->ls_list); spin_unlock_bh(&lslist_lock); } static int threads_start(void) { int error; /* Thread for sending/receiving messages for all lockspace's */ error = dlm_midcomms_start(); if (error) log_print("cannot start dlm midcomms %d", error); return error; } static int lkb_idr_free(struct dlm_lkb *lkb) { if (lkb->lkb_lvbptr && test_bit(DLM_IFL_MSTCPY_BIT, &lkb->lkb_iflags)) dlm_free_lvb(lkb->lkb_lvbptr); dlm_free_lkb(lkb); return 0; } static void rhash_free_rsb(void *ptr, void *arg) { struct dlm_rsb *rsb = ptr; dlm_free_rsb(rsb); } static void free_lockspace(struct work_struct *work) { struct dlm_ls *ls = container_of(work, struct dlm_ls, ls_free_work); struct dlm_lkb *lkb; unsigned long id; /* * Free all lkb's in xa */ xa_for_each(&ls->ls_lkbxa, id, lkb) { lkb_idr_free(lkb); } xa_destroy(&ls->ls_lkbxa); /* * Free all rsb's on rsbtbl */ rhashtable_free_and_destroy(&ls->ls_rsbtbl, rhash_free_rsb, NULL); kfree(ls); } static int new_lockspace(const char *name, const char *cluster, uint32_t flags, int lvblen, const struct dlm_lockspace_ops *ops, void *ops_arg, int *ops_result, dlm_lockspace_t **lockspace) { struct dlm_ls *ls; int namelen = strlen(name); int error; if (namelen > DLM_LOCKSPACE_LEN || namelen == 0) return -EINVAL; if (lvblen % 8) return -EINVAL; if (!try_module_get(THIS_MODULE)) return -EINVAL; if (!dlm_user_daemon_available()) { log_print("dlm user daemon not available"); error = -EUNATCH; goto out; } if (ops && ops_result) { if (!dlm_config.ci_recover_callbacks) *ops_result = -EOPNOTSUPP; else *ops_result = 0; } if (!cluster) log_print("dlm cluster name '%s' is being used without an application provided cluster name", dlm_config.ci_cluster_name); if (dlm_config.ci_recover_callbacks && cluster && strncmp(cluster, dlm_config.ci_cluster_name, DLM_LOCKSPACE_LEN)) { log_print("dlm cluster name '%s' does not match " "the application cluster name '%s'", dlm_config.ci_cluster_name, cluster); error = -EBADR; goto out; } error = 0; spin_lock_bh(&lslist_lock); list_for_each_entry(ls, &lslist, ls_list) { WARN_ON(ls->ls_create_count <= 0); if (ls->ls_namelen != namelen) continue; if (memcmp(ls->ls_name, name, namelen)) continue; if (flags & DLM_LSFL_NEWEXCL) { error = -EEXIST; break; } ls->ls_create_count++; *lockspace = ls; error = 1; break; } spin_unlock_bh(&lslist_lock); if (error) goto out; error = -ENOMEM; ls = kzalloc(sizeof(*ls), GFP_NOFS); if (!ls) goto out; memcpy(ls->ls_name, name, namelen); ls->ls_namelen = namelen; ls->ls_lvblen = lvblen; atomic_set(&ls->ls_count, 0); init_waitqueue_head(&ls->ls_count_wait); ls->ls_flags = 0; if (ops && dlm_config.ci_recover_callbacks) { ls->ls_ops = ops; ls->ls_ops_arg = ops_arg; } if (flags & DLM_LSFL_SOFTIRQ) set_bit(LSFL_SOFTIRQ, &ls->ls_flags); /* ls_exflags are forced to match among nodes, and we don't * need to require all nodes to have some flags set */ ls->ls_exflags = (flags & ~(DLM_LSFL_FS | DLM_LSFL_NEWEXCL | DLM_LSFL_SOFTIRQ)); INIT_LIST_HEAD(&ls->ls_slow_inactive); INIT_LIST_HEAD(&ls->ls_slow_active); rwlock_init(&ls->ls_rsbtbl_lock); error = rhashtable_init(&ls->ls_rsbtbl, &dlm_rhash_rsb_params); if (error) goto out_lsfree; xa_init_flags(&ls->ls_lkbxa, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_BH); rwlock_init(&ls->ls_lkbxa_lock); INIT_LIST_HEAD(&ls->ls_waiters); spin_lock_init(&ls->ls_waiters_lock); INIT_LIST_HEAD(&ls->ls_orphans); spin_lock_init(&ls->ls_orphans_lock); INIT_LIST_HEAD(&ls->ls_nodes); INIT_LIST_HEAD(&ls->ls_nodes_gone); ls->ls_num_nodes = 0; ls->ls_low_nodeid = 0; ls->ls_total_weight = 0; ls->ls_node_array = NULL; memset(&ls->ls_local_rsb, 0, sizeof(struct dlm_rsb)); ls->ls_local_rsb.res_ls = ls; ls->ls_debug_rsb_dentry = NULL; ls->ls_debug_waiters_dentry = NULL; init_waitqueue_head(&ls->ls_uevent_wait); ls->ls_uevent_result = 0; init_completion(&ls->ls_recovery_done); ls->ls_recovery_result = -1; spin_lock_init(&ls->ls_cb_lock); INIT_LIST_HEAD(&ls->ls_cb_delay); INIT_WORK(&ls->ls_free_work, free_lockspace); ls->ls_recoverd_task = NULL; mutex_init(&ls->ls_recoverd_active); spin_lock_init(&ls->ls_recover_lock); spin_lock_init(&ls->ls_rcom_spin); get_random_bytes(&ls->ls_rcom_seq, sizeof(uint64_t)); ls->ls_recover_status = 0; ls->ls_recover_seq = get_random_u64(); ls->ls_recover_args = NULL; init_rwsem(&ls->ls_in_recovery); rwlock_init(&ls->ls_recv_active); INIT_LIST_HEAD(&ls->ls_requestqueue); rwlock_init(&ls->ls_requestqueue_lock); spin_lock_init(&ls->ls_clear_proc_locks); /* Due backwards compatibility with 3.1 we need to use maximum * possible dlm message size to be sure the message will fit and * not having out of bounds issues. However on sending side 3.2 * might send less. */ ls->ls_recover_buf = kmalloc(DLM_MAX_SOCKET_BUFSIZE, GFP_NOFS); if (!ls->ls_recover_buf) { error = -ENOMEM; goto out_lkbxa; } ls->ls_slot = 0; ls->ls_num_slots = 0; ls->ls_slots_size = 0; ls->ls_slots = NULL; INIT_LIST_HEAD(&ls->ls_recover_list); spin_lock_init(&ls->ls_recover_list_lock); xa_init_flags(&ls->ls_recover_xa, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_BH); spin_lock_init(&ls->ls_recover_xa_lock); ls->ls_recover_list_count = 0; init_waitqueue_head(&ls->ls_wait_general); INIT_LIST_HEAD(&ls->ls_masters_list); rwlock_init(&ls->ls_masters_lock); INIT_LIST_HEAD(&ls->ls_dir_dump_list); rwlock_init(&ls->ls_dir_dump_lock); INIT_LIST_HEAD(&ls->ls_scan_list); spin_lock_init(&ls->ls_scan_lock); timer_setup(&ls->ls_scan_timer, dlm_rsb_scan, TIMER_DEFERRABLE); spin_lock_bh(&lslist_lock); ls->ls_create_count = 1; list_add(&ls->ls_list, &lslist); spin_unlock_bh(&lslist_lock); if (flags & DLM_LSFL_FS) set_bit(LSFL_FS, &ls->ls_flags); error = dlm_callback_start(ls); if (error) { log_error(ls, "can't start dlm_callback %d", error); goto out_delist; } init_waitqueue_head(&ls->ls_recover_lock_wait); /* * Once started, dlm_recoverd first looks for ls in lslist, then * initializes ls_in_recovery as locked in "down" mode. We need * to wait for the wakeup from dlm_recoverd because in_recovery * has to start out in down mode. */ error = dlm_recoverd_start(ls); if (error) { log_error(ls, "can't start dlm_recoverd %d", error); goto out_callback; } wait_event(ls->ls_recover_lock_wait, test_bit(LSFL_RECOVER_LOCK, &ls->ls_flags)); ls->ls_kobj.kset = dlm_kset; error = kobject_init_and_add(&ls->ls_kobj, &dlm_ktype, NULL, "%s", ls->ls_name); if (error) goto out_recoverd; kobject_uevent(&ls->ls_kobj, KOBJ_ADD); /* This uevent triggers dlm_controld in userspace to add us to the group of nodes that are members of this lockspace (managed by the cluster infrastructure.) Once it's done that, it tells us who the current lockspace members are (via configfs) and then tells the lockspace to start running (via sysfs) in dlm_ls_start(). */ error = do_uevent(ls, 1); if (error) goto out_recoverd; /* wait until recovery is successful or failed */ wait_for_completion(&ls->ls_recovery_done); error = ls->ls_recovery_result; if (error) goto out_members; dlm_create_debug_file(ls); log_rinfo(ls, "join complete"); *lockspace = ls; return 0; out_members: do_uevent(ls, 0); dlm_clear_members(ls); kfree(ls->ls_node_array); out_recoverd: dlm_recoverd_stop(ls); out_callback: dlm_callback_stop(ls); out_delist: spin_lock_bh(&lslist_lock); list_del(&ls->ls_list); spin_unlock_bh(&lslist_lock); xa_destroy(&ls->ls_recover_xa); kfree(ls->ls_recover_buf); out_lkbxa: xa_destroy(&ls->ls_lkbxa); rhashtable_destroy(&ls->ls_rsbtbl); out_lsfree: kobject_put(&ls->ls_kobj); kfree(ls); out: module_put(THIS_MODULE); return error; } static int __dlm_new_lockspace(const char *name, const char *cluster, uint32_t flags, int lvblen, const struct dlm_lockspace_ops *ops, void *ops_arg, int *ops_result, dlm_lockspace_t **lockspace) { int error = 0; mutex_lock(&ls_lock); if (!ls_count) error = threads_start(); if (error) goto out; error = new_lockspace(name, cluster, flags, lvblen, ops, ops_arg, ops_result, lockspace); if (!error) ls_count++; if (error > 0) error = 0; if (!ls_count) { dlm_midcomms_shutdown(); dlm_midcomms_stop(); } out: mutex_unlock(&ls_lock); return error; } int dlm_new_lockspace(const char *name, const char *cluster, uint32_t flags, int lvblen, const struct dlm_lockspace_ops *ops, void *ops_arg, int *ops_result, dlm_lockspace_t **lockspace) { return __dlm_new_lockspace(name, cluster, flags | DLM_LSFL_FS, lvblen, ops, ops_arg, ops_result, lockspace); } int dlm_new_user_lockspace(const char *name, const char *cluster, uint32_t flags, int lvblen, const struct dlm_lockspace_ops *ops, void *ops_arg, int *ops_result, dlm_lockspace_t **lockspace) { if (flags & DLM_LSFL_SOFTIRQ) return -EINVAL; return __dlm_new_lockspace(name, cluster, flags, lvblen, ops, ops_arg, ops_result, lockspace); } /* NOTE: We check the lkbxa here rather than the resource table. This is because there may be LKBs queued as ASTs that have been unlinked from their RSBs and are pending deletion once the AST has been delivered */ static int lockspace_busy(struct dlm_ls *ls, int force) { struct dlm_lkb *lkb; unsigned long id; int rv = 0; read_lock_bh(&ls->ls_lkbxa_lock); if (force == 0) { xa_for_each(&ls->ls_lkbxa, id, lkb) { rv = 1; break; } } else if (force == 1) { xa_for_each(&ls->ls_lkbxa, id, lkb) { if (lkb->lkb_nodeid == 0 && lkb->lkb_grmode != DLM_LOCK_IV) { rv = 1; break; } } } else { rv = 0; } read_unlock_bh(&ls->ls_lkbxa_lock); return rv; } static int release_lockspace(struct dlm_ls *ls, int force) { int busy, rv; busy = lockspace_busy(ls, force); spin_lock_bh(&lslist_lock); if (ls->ls_create_count == 1) { if (busy) { rv = -EBUSY; } else { /* remove_lockspace takes ls off lslist */ ls->ls_create_count = 0; rv = 0; } } else if (ls->ls_create_count > 1) { rv = --ls->ls_create_count; } else { rv = -EINVAL; } spin_unlock_bh(&lslist_lock); if (rv) { log_debug(ls, "release_lockspace no remove %d", rv); return rv; } if (ls_count == 1) dlm_midcomms_version_wait(); dlm_device_deregister(ls); if (force < 3 && dlm_user_daemon_available()) do_uevent(ls, 0); dlm_recoverd_stop(ls); /* clear the LSFL_RUNNING flag to fast up * time_shutdown_sync(), we don't care anymore */ clear_bit(LSFL_RUNNING, &ls->ls_flags); timer_shutdown_sync(&ls->ls_scan_timer); if (ls_count == 1) { dlm_clear_members(ls); dlm_midcomms_shutdown(); } dlm_callback_stop(ls); remove_lockspace(ls); dlm_delete_debug_file(ls); kobject_put(&ls->ls_kobj); xa_destroy(&ls->ls_recover_xa); kfree(ls->ls_recover_buf); /* * Free structures on any other lists */ dlm_purge_requestqueue(ls); kfree(ls->ls_recover_args); dlm_clear_members(ls); dlm_clear_members_gone(ls); kfree(ls->ls_node_array); log_rinfo(ls, "%s final free", __func__); /* delayed free of data structures see free_lockspace() */ queue_work(dlm_wq, &ls->ls_free_work); module_put(THIS_MODULE); return 0; } /* * Called when a system has released all its locks and is not going to use the * lockspace any longer. We free everything we're managing for this lockspace. * Remaining nodes will go through the recovery process as if we'd died. The * lockspace must continue to function as usual, participating in recoveries, * until this returns. * * Force has 4 possible values: * 0 - don't destroy lockspace if it has any LKBs * 1 - destroy lockspace if it has remote LKBs but not if it has local LKBs * 2 - destroy lockspace regardless of LKBs * 3 - destroy lockspace as part of a forced shutdown */ int dlm_release_lockspace(void *lockspace, int force) { struct dlm_ls *ls; int error; ls = dlm_find_lockspace_local(lockspace); if (!ls) return -EINVAL; dlm_put_lockspace(ls); mutex_lock(&ls_lock); error = release_lockspace(ls, force); if (!error) ls_count--; if (!ls_count) dlm_midcomms_stop(); mutex_unlock(&ls_lock); return error; } void dlm_stop_lockspaces(void) { struct dlm_ls *ls; int count; restart: count = 0; spin_lock_bh(&lslist_lock); list_for_each_entry(ls, &lslist, ls_list) { if (!test_bit(LSFL_RUNNING, &ls->ls_flags)) { count++; continue; } spin_unlock_bh(&lslist_lock); log_error(ls, "no userland control daemon, stopping lockspace"); dlm_ls_stop(ls); goto restart; } spin_unlock_bh(&lslist_lock); if (count) log_print("dlm user daemon left %d lockspaces", count); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | /* SPDX-License-Identifier: GPL-2.0 */ /* * USB PHY defines * * These APIs may be used between USB controllers. USB device drivers * (for either host or peripheral roles) don't use these calls; they * continue to use just usb_device and usb_gadget. */ #ifndef __LINUX_USB_PHY_H #define __LINUX_USB_PHY_H #include <linux/extcon.h> #include <linux/notifier.h> #include <linux/usb.h> #include <uapi/linux/usb/charger.h> enum usb_phy_interface { USBPHY_INTERFACE_MODE_UNKNOWN, USBPHY_INTERFACE_MODE_UTMI, USBPHY_INTERFACE_MODE_UTMIW, USBPHY_INTERFACE_MODE_ULPI, USBPHY_INTERFACE_MODE_SERIAL, USBPHY_INTERFACE_MODE_HSIC, }; enum usb_phy_events { USB_EVENT_NONE, /* no events or cable disconnected */ USB_EVENT_VBUS, /* vbus valid event */ USB_EVENT_ID, /* id was grounded */ USB_EVENT_CHARGER, /* usb dedicated charger */ USB_EVENT_ENUMERATED, /* gadget driver enumerated */ }; /* associate a type with PHY */ enum usb_phy_type { USB_PHY_TYPE_UNDEFINED, USB_PHY_TYPE_USB2, USB_PHY_TYPE_USB3, }; /* OTG defines lots of enumeration states before device reset */ enum usb_otg_state { OTG_STATE_UNDEFINED = 0, /* single-role peripheral, and dual-role default-b */ OTG_STATE_B_IDLE, OTG_STATE_B_SRP_INIT, OTG_STATE_B_PERIPHERAL, /* extra dual-role default-b states */ OTG_STATE_B_WAIT_ACON, OTG_STATE_B_HOST, /* dual-role default-a */ OTG_STATE_A_IDLE, OTG_STATE_A_WAIT_VRISE, OTG_STATE_A_WAIT_BCON, OTG_STATE_A_HOST, OTG_STATE_A_SUSPEND, OTG_STATE_A_PERIPHERAL, OTG_STATE_A_WAIT_VFALL, OTG_STATE_A_VBUS_ERR, }; struct usb_phy; struct usb_otg; /* for phys connected thru an ULPI interface, the user must * provide access ops */ struct usb_phy_io_ops { int (*read)(struct usb_phy *x, u32 reg); int (*write)(struct usb_phy *x, u32 val, u32 reg); }; struct usb_charger_current { unsigned int sdp_min; unsigned int sdp_max; unsigned int dcp_min; unsigned int dcp_max; unsigned int cdp_min; unsigned int cdp_max; unsigned int aca_min; unsigned int aca_max; }; struct usb_phy { struct device *dev; const char *label; unsigned int flags; enum usb_phy_type type; enum usb_phy_events last_event; struct usb_otg *otg; struct device *io_dev; struct usb_phy_io_ops *io_ops; void __iomem *io_priv; /* to support extcon device */ struct extcon_dev *edev; struct extcon_dev *id_edev; struct notifier_block vbus_nb; struct notifier_block id_nb; struct notifier_block type_nb; /* Support USB charger */ enum usb_charger_type chg_type; enum usb_charger_state chg_state; struct usb_charger_current chg_cur; struct work_struct chg_work; /* for notification of usb_phy_events */ struct atomic_notifier_head notifier; /* to pass extra port status to the root hub */ u16 port_status; u16 port_change; /* to support controllers that have multiple phys */ struct list_head head; /* initialize/shutdown the phy */ int (*init)(struct usb_phy *x); void (*shutdown)(struct usb_phy *x); /* enable/disable VBUS */ int (*set_vbus)(struct usb_phy *x, int on); /* effective for B devices, ignored for A-peripheral */ int (*set_power)(struct usb_phy *x, unsigned mA); /* Set phy into suspend mode */ int (*set_suspend)(struct usb_phy *x, int suspend); /* * Set wakeup enable for PHY, in that case, the PHY can be * woken up from suspend status due to external events, * like vbus change, dp/dm change and id. */ int (*set_wakeup)(struct usb_phy *x, bool enabled); /* notify phy connect status change */ int (*notify_connect)(struct usb_phy *x, enum usb_device_speed speed); int (*notify_disconnect)(struct usb_phy *x, enum usb_device_speed speed); /* * Charger detection method can be implemented if you need to * manually detect the charger type. */ enum usb_charger_type (*charger_detect)(struct usb_phy *x); }; /* for board-specific init logic */ extern int usb_add_phy(struct usb_phy *, enum usb_phy_type type); extern int usb_add_phy_dev(struct usb_phy *); extern void usb_remove_phy(struct usb_phy *); /* helpers for direct access thru low-level io interface */ static inline int usb_phy_io_read(struct usb_phy *x, u32 reg) { if (x && x->io_ops && x->io_ops->read) return x->io_ops->read(x, reg); return -EINVAL; } static inline int usb_phy_io_write(struct usb_phy *x, u32 val, u32 reg) { if (x && x->io_ops && x->io_ops->write) return x->io_ops->write(x, val, reg); return -EINVAL; } static inline int usb_phy_init(struct usb_phy *x) { if (x && x->init) return x->init(x); return 0; } static inline void usb_phy_shutdown(struct usb_phy *x) { if (x && x->shutdown) x->shutdown(x); } static inline int usb_phy_vbus_on(struct usb_phy *x) { if (!x || !x->set_vbus) return 0; return x->set_vbus(x, true); } static inline int usb_phy_vbus_off(struct usb_phy *x) { if (!x || !x->set_vbus) return 0; return x->set_vbus(x, false); } /* for usb host and peripheral controller drivers */ #if IS_ENABLED(CONFIG_USB_PHY) extern struct usb_phy *usb_get_phy(enum usb_phy_type type); extern struct usb_phy *devm_usb_get_phy(struct device *dev, enum usb_phy_type type); extern struct usb_phy *devm_usb_get_phy_by_phandle(struct device *dev, const char *phandle, u8 index); extern struct usb_phy *devm_usb_get_phy_by_node(struct device *dev, struct device_node *node, struct notifier_block *nb); extern void usb_put_phy(struct usb_phy *); extern void devm_usb_put_phy(struct device *dev, struct usb_phy *x); extern void usb_phy_set_event(struct usb_phy *x, unsigned long event); extern void usb_phy_set_charger_current(struct usb_phy *usb_phy, unsigned int mA); extern void usb_phy_get_charger_current(struct usb_phy *usb_phy, unsigned int *min, unsigned int *max); extern void usb_phy_set_charger_state(struct usb_phy *usb_phy, enum usb_charger_state state); #else static inline struct usb_phy *usb_get_phy(enum usb_phy_type type) { return ERR_PTR(-ENXIO); } static inline struct usb_phy *devm_usb_get_phy(struct device *dev, enum usb_phy_type type) { return ERR_PTR(-ENXIO); } static inline struct usb_phy *devm_usb_get_phy_by_phandle(struct device *dev, const char *phandle, u8 index) { return ERR_PTR(-ENXIO); } static inline struct usb_phy *devm_usb_get_phy_by_node(struct device *dev, struct device_node *node, struct notifier_block *nb) { return ERR_PTR(-ENXIO); } static inline void usb_put_phy(struct usb_phy *x) { } static inline void devm_usb_put_phy(struct device *dev, struct usb_phy *x) { } static inline void usb_phy_set_event(struct usb_phy *x, unsigned long event) { } static inline void usb_phy_set_charger_current(struct usb_phy *usb_phy, unsigned int mA) { } static inline void usb_phy_get_charger_current(struct usb_phy *usb_phy, unsigned int *min, unsigned int *max) { } static inline void usb_phy_set_charger_state(struct usb_phy *usb_phy, enum usb_charger_state state) { } #endif static inline int usb_phy_set_power(struct usb_phy *x, unsigned mA) { if (!x) return 0; usb_phy_set_charger_current(x, mA); if (x->set_power) return x->set_power(x, mA); return 0; } /* Context: can sleep */ static inline int usb_phy_set_suspend(struct usb_phy *x, int suspend) { if (x && x->set_suspend != NULL) return x->set_suspend(x, suspend); else return 0; } static inline int usb_phy_set_wakeup(struct usb_phy *x, bool enabled) { if (x && x->set_wakeup) return x->set_wakeup(x, enabled); else return 0; } static inline int usb_phy_notify_connect(struct usb_phy *x, enum usb_device_speed speed) { if (x && x->notify_connect) return x->notify_connect(x, speed); else return 0; } static inline int usb_phy_notify_disconnect(struct usb_phy *x, enum usb_device_speed speed) { if (x && x->notify_disconnect) return x->notify_disconnect(x, speed); else return 0; } /* notifiers */ static inline int usb_register_notifier(struct usb_phy *x, struct notifier_block *nb) { return atomic_notifier_chain_register(&x->notifier, nb); } static inline void usb_unregister_notifier(struct usb_phy *x, struct notifier_block *nb) { atomic_notifier_chain_unregister(&x->notifier, nb); } static inline const char *usb_phy_type_string(enum usb_phy_type type) { switch (type) { case USB_PHY_TYPE_USB2: return "USB2 PHY"; case USB_PHY_TYPE_USB3: return "USB3 PHY"; default: return "UNKNOWN PHY TYPE"; } } #endif /* __LINUX_USB_PHY_H */ |
84 85 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * kernfs.h - pseudo filesystem decoupled from vfs locking */ #ifndef __LINUX_KERNFS_H #define __LINUX_KERNFS_H #include <linux/err.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/idr.h> #include <linux/lockdep.h> #include <linux/rbtree.h> #include <linux/atomic.h> #include <linux/bug.h> #include <linux/types.h> #include <linux/uidgid.h> #include <linux/wait.h> #include <linux/rwsem.h> #include <linux/cache.h> struct file; struct dentry; struct iattr; struct seq_file; struct vm_area_struct; struct vm_operations_struct; struct super_block; struct file_system_type; struct poll_table_struct; struct fs_context; struct kernfs_fs_context; struct kernfs_open_node; struct kernfs_iattrs; /* * NR_KERNFS_LOCK_BITS determines size (NR_KERNFS_LOCKS) of hash * table of locks. * Having a small hash table would impact scalability, since * more and more kernfs_node objects will end up using same lock * and having a very large hash table would waste memory. * * At the moment size of hash table of locks is being set based on * the number of CPUs as follows: * * NR_CPU NR_KERNFS_LOCK_BITS NR_KERNFS_LOCKS * 1 1 2 * 2-3 2 4 * 4-7 4 16 * 8-15 6 64 * 16-31 8 256 * 32 and more 10 1024 * * The above relation between NR_CPU and number of locks is based * on some internal experimentation which involved booting qemu * with different values of smp, performing some sysfs operations * on all CPUs and observing how increase in number of locks impacts * completion time of these sysfs operations on each CPU. */ #ifdef CONFIG_SMP #define NR_KERNFS_LOCK_BITS (2 * (ilog2(NR_CPUS < 32 ? NR_CPUS : 32))) #else #define NR_KERNFS_LOCK_BITS 1 #endif #define NR_KERNFS_LOCKS (1 << NR_KERNFS_LOCK_BITS) /* * There's one kernfs_open_file for each open file and one kernfs_open_node * for each kernfs_node with one or more open files. * * filp->private_data points to seq_file whose ->private points to * kernfs_open_file. * * kernfs_open_files are chained at kernfs_open_node->files, which is * protected by kernfs_global_locks.open_file_mutex[i]. * * To reduce possible contention in sysfs access, arising due to single * locks, use an array of locks (e.g. open_file_mutex) and use kernfs_node * object address as hash keys to get the index of these locks. * * Hashed mutexes are safe to use here because operations using these don't * rely on global exclusion. * * In future we intend to replace other global locks with hashed ones as well. * kernfs_global_locks acts as a holder for all such hash tables. */ struct kernfs_global_locks { struct mutex open_file_mutex[NR_KERNFS_LOCKS]; }; enum kernfs_node_type { KERNFS_DIR = 0x0001, KERNFS_FILE = 0x0002, KERNFS_LINK = 0x0004, }; #define KERNFS_TYPE_MASK 0x000f #define KERNFS_FLAG_MASK ~KERNFS_TYPE_MASK #define KERNFS_MAX_USER_XATTRS 128 #define KERNFS_USER_XATTR_SIZE_LIMIT (128 << 10) enum kernfs_node_flag { KERNFS_ACTIVATED = 0x0010, KERNFS_NS = 0x0020, KERNFS_HAS_SEQ_SHOW = 0x0040, KERNFS_HAS_MMAP = 0x0080, KERNFS_LOCKDEP = 0x0100, KERNFS_HIDDEN = 0x0200, KERNFS_SUICIDAL = 0x0400, KERNFS_SUICIDED = 0x0800, KERNFS_EMPTY_DIR = 0x1000, KERNFS_HAS_RELEASE = 0x2000, KERNFS_REMOVING = 0x4000, }; /* @flags for kernfs_create_root() */ enum kernfs_root_flag { /* * kernfs_nodes are created in the deactivated state and invisible. * They require explicit kernfs_activate() to become visible. This * can be used to make related nodes become visible atomically * after all nodes are created successfully. */ KERNFS_ROOT_CREATE_DEACTIVATED = 0x0001, /* * For regular files, if the opener has CAP_DAC_OVERRIDE, open(2) * succeeds regardless of the RW permissions. sysfs had an extra * layer of enforcement where open(2) fails with -EACCES regardless * of CAP_DAC_OVERRIDE if the permission doesn't have the * respective read or write access at all (none of S_IRUGO or * S_IWUGO) or the respective operation isn't implemented. The * following flag enables that behavior. */ KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK = 0x0002, /* * The filesystem supports exportfs operation, so userspace can use * fhandle to access nodes of the fs. */ KERNFS_ROOT_SUPPORT_EXPORTOP = 0x0004, /* * Support user xattrs to be written to nodes rooted at this root. */ KERNFS_ROOT_SUPPORT_USER_XATTR = 0x0008, }; /* type-specific structures for kernfs_node union members */ struct kernfs_elem_dir { unsigned long subdirs; /* children rbtree starts here and goes through kn->rb */ struct rb_root children; /* * The kernfs hierarchy this directory belongs to. This fits * better directly in kernfs_node but is here to save space. */ struct kernfs_root *root; /* * Monotonic revision counter, used to identify if a directory * node has changed during negative dentry revalidation. */ unsigned long rev; }; struct kernfs_elem_symlink { struct kernfs_node *target_kn; }; struct kernfs_elem_attr { const struct kernfs_ops *ops; struct kernfs_open_node __rcu *open; loff_t size; struct kernfs_node *notify_next; /* for kernfs_notify() */ }; /* * kernfs_node - the building block of kernfs hierarchy. Each and every * kernfs node is represented by single kernfs_node. Most fields are * private to kernfs and shouldn't be accessed directly by kernfs users. * * As long as count reference is held, the kernfs_node itself is * accessible. Dereferencing elem or any other outer entity requires * active reference. */ struct kernfs_node { atomic_t count; atomic_t active; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif /* * Use kernfs_get_parent() and kernfs_name/path() instead of * accessing the following two fields directly. If the node is * never moved to a different parent, it is safe to access the * parent directly. */ struct kernfs_node *parent; const char *name; struct rb_node rb; const void *ns; /* namespace tag */ unsigned int hash; /* ns + name hash */ unsigned short flags; umode_t mode; union { struct kernfs_elem_dir dir; struct kernfs_elem_symlink symlink; struct kernfs_elem_attr attr; }; /* * 64bit unique ID. On 64bit ino setups, id is the ino. On 32bit, * the low 32bits are ino and upper generation. */ u64 id; void *priv; struct kernfs_iattrs *iattr; struct rcu_head rcu; }; /* * kernfs_syscall_ops may be specified on kernfs_create_root() to support * syscalls. These optional callbacks are invoked on the matching syscalls * and can perform any kernfs operations which don't necessarily have to be * the exact operation requested. An active reference is held for each * kernfs_node parameter. */ struct kernfs_syscall_ops { int (*show_options)(struct seq_file *sf, struct kernfs_root *root); int (*mkdir)(struct kernfs_node *parent, const char *name, umode_t mode); int (*rmdir)(struct kernfs_node *kn); int (*rename)(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name); int (*show_path)(struct seq_file *sf, struct kernfs_node *kn, struct kernfs_root *root); }; struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root); struct kernfs_open_file { /* published fields */ struct kernfs_node *kn; struct file *file; struct seq_file *seq_file; void *priv; /* private fields, do not use outside kernfs proper */ struct mutex mutex; struct mutex prealloc_mutex; int event; struct list_head list; char *prealloc_buf; size_t atomic_write_len; bool mmapped:1; bool released:1; const struct vm_operations_struct *vm_ops; }; struct kernfs_ops { /* * Optional open/release methods. Both are called with * @of->seq_file populated. */ int (*open)(struct kernfs_open_file *of); void (*release)(struct kernfs_open_file *of); /* * Read is handled by either seq_file or raw_read(). * * If seq_show() is present, seq_file path is active. Other seq * operations are optional and if not implemented, the behavior is * equivalent to single_open(). @sf->private points to the * associated kernfs_open_file. * * read() is bounced through kernel buffer and a read larger than * PAGE_SIZE results in partial operation of PAGE_SIZE. */ int (*seq_show)(struct seq_file *sf, void *v); void *(*seq_start)(struct seq_file *sf, loff_t *ppos); void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); void (*seq_stop)(struct seq_file *sf, void *v); ssize_t (*read)(struct kernfs_open_file *of, char *buf, size_t bytes, loff_t off); /* * write() is bounced through kernel buffer. If atomic_write_len * is not set, a write larger than PAGE_SIZE results in partial * operations of PAGE_SIZE chunks. If atomic_write_len is set, * writes upto the specified size are executed atomically but * larger ones are rejected with -E2BIG. */ size_t atomic_write_len; /* * "prealloc" causes a buffer to be allocated at open for * all read/write requests. As ->seq_show uses seq_read() * which does its own allocation, it is incompatible with * ->prealloc. Provide ->read and ->write with ->prealloc. */ bool prealloc; ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t bytes, loff_t off); __poll_t (*poll)(struct kernfs_open_file *of, struct poll_table_struct *pt); int (*mmap)(struct kernfs_open_file *of, struct vm_area_struct *vma); loff_t (*llseek)(struct kernfs_open_file *of, loff_t offset, int whence); }; /* * The kernfs superblock creation/mount parameter context. */ struct kernfs_fs_context { struct kernfs_root *root; /* Root of the hierarchy being mounted */ void *ns_tag; /* Namespace tag of the mount (or NULL) */ unsigned long magic; /* File system specific magic number */ /* The following are set/used by kernfs_mount() */ bool new_sb_created; /* Set to T if we allocated a new sb */ }; #ifdef CONFIG_KERNFS static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn) { return kn->flags & KERNFS_TYPE_MASK; } static inline ino_t kernfs_id_ino(u64 id) { /* id is ino if ino_t is 64bit; otherwise, low 32bits */ if (sizeof(ino_t) >= sizeof(u64)) return id; else return (u32)id; } static inline u32 kernfs_id_gen(u64 id) { /* gen is fixed at 1 if ino_t is 64bit; otherwise, high 32bits */ if (sizeof(ino_t) >= sizeof(u64)) return 1; else return id >> 32; } static inline ino_t kernfs_ino(struct kernfs_node *kn) { return kernfs_id_ino(kn->id); } static inline ino_t kernfs_gen(struct kernfs_node *kn) { return kernfs_id_gen(kn->id); } /** * kernfs_enable_ns - enable namespace under a directory * @kn: directory of interest, should be empty * * This is to be called right after @kn is created to enable namespace * under it. All children of @kn must have non-NULL namespace tags and * only the ones which match the super_block's tag will be visible. */ static inline void kernfs_enable_ns(struct kernfs_node *kn) { WARN_ON_ONCE(kernfs_type(kn) != KERNFS_DIR); WARN_ON_ONCE(!RB_EMPTY_ROOT(&kn->dir.children)); kn->flags |= KERNFS_NS; } /** * kernfs_ns_enabled - test whether namespace is enabled * @kn: the node to test * * Test whether namespace filtering is enabled for the children of @ns. */ static inline bool kernfs_ns_enabled(struct kernfs_node *kn) { return kn->flags & KERNFS_NS; } int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen); int kernfs_path_from_node(struct kernfs_node *root_kn, struct kernfs_node *kn, char *buf, size_t buflen); void pr_cont_kernfs_name(struct kernfs_node *kn); void pr_cont_kernfs_path(struct kernfs_node *kn); struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn); struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, const char *name, const void *ns); struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, const char *path, const void *ns); void kernfs_get(struct kernfs_node *kn); void kernfs_put(struct kernfs_node *kn); struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry); struct kernfs_root *kernfs_root_from_sb(struct super_block *sb); struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn); struct dentry *kernfs_node_dentry(struct kernfs_node *kn, struct super_block *sb); struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, unsigned int flags, void *priv); void kernfs_destroy_root(struct kernfs_root *root); struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, void *priv, const void *ns); struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, const char *name); struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, loff_t size, const struct kernfs_ops *ops, void *priv, const void *ns, struct lock_class_key *key); struct kernfs_node *kernfs_create_link(struct kernfs_node *parent, const char *name, struct kernfs_node *target); void kernfs_activate(struct kernfs_node *kn); void kernfs_show(struct kernfs_node *kn, bool show); void kernfs_remove(struct kernfs_node *kn); void kernfs_break_active_protection(struct kernfs_node *kn); void kernfs_unbreak_active_protection(struct kernfs_node *kn); bool kernfs_remove_self(struct kernfs_node *kn); int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, const void *ns); int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name, const void *new_ns); int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr); __poll_t kernfs_generic_poll(struct kernfs_open_file *of, struct poll_table_struct *pt); void kernfs_notify(struct kernfs_node *kn); int kernfs_xattr_get(struct kernfs_node *kn, const char *name, void *value, size_t size); int kernfs_xattr_set(struct kernfs_node *kn, const char *name, const void *value, size_t size, int flags); const void *kernfs_super_ns(struct super_block *sb); int kernfs_get_tree(struct fs_context *fc); void kernfs_free_fs_context(struct fs_context *fc); void kernfs_kill_sb(struct super_block *sb); void kernfs_init(void); struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, u64 id); #else /* CONFIG_KERNFS */ static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn) { return 0; } /* whatever */ static inline void kernfs_enable_ns(struct kernfs_node *kn) { } static inline bool kernfs_ns_enabled(struct kernfs_node *kn) { return false; } static inline int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) { return -ENOSYS; } static inline int kernfs_path_from_node(struct kernfs_node *root_kn, struct kernfs_node *kn, char *buf, size_t buflen) { return -ENOSYS; } static inline void pr_cont_kernfs_name(struct kernfs_node *kn) { } static inline void pr_cont_kernfs_path(struct kernfs_node *kn) { } static inline struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) { return NULL; } static inline struct kernfs_node * kernfs_find_and_get_ns(struct kernfs_node *parent, const char *name, const void *ns) { return NULL; } static inline struct kernfs_node * kernfs_walk_and_get_ns(struct kernfs_node *parent, const char *path, const void *ns) { return NULL; } static inline void kernfs_get(struct kernfs_node *kn) { } static inline void kernfs_put(struct kernfs_node *kn) { } static inline struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) { return NULL; } static inline struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) { return NULL; } static inline struct inode * kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn) { return NULL; } static inline struct kernfs_root * kernfs_create_root(struct kernfs_syscall_ops *scops, unsigned int flags, void *priv) { return ERR_PTR(-ENOSYS); } static inline void kernfs_destroy_root(struct kernfs_root *root) { } static inline struct kernfs_node * kernfs_create_dir_ns(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, void *priv, const void *ns) { return ERR_PTR(-ENOSYS); } static inline struct kernfs_node * __kernfs_create_file(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, loff_t size, const struct kernfs_ops *ops, void *priv, const void *ns, struct lock_class_key *key) { return ERR_PTR(-ENOSYS); } static inline struct kernfs_node * kernfs_create_link(struct kernfs_node *parent, const char *name, struct kernfs_node *target) { return ERR_PTR(-ENOSYS); } static inline void kernfs_activate(struct kernfs_node *kn) { } static inline void kernfs_remove(struct kernfs_node *kn) { } static inline bool kernfs_remove_self(struct kernfs_node *kn) { return false; } static inline int kernfs_remove_by_name_ns(struct kernfs_node *kn, const char *name, const void *ns) { return -ENOSYS; } static inline int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name, const void *new_ns) { return -ENOSYS; } static inline int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr) { return -ENOSYS; } static inline __poll_t kernfs_generic_poll(struct kernfs_open_file *of, struct poll_table_struct *pt) { return -ENOSYS; } static inline void kernfs_notify(struct kernfs_node *kn) { } static inline int kernfs_xattr_get(struct kernfs_node *kn, const char *name, void *value, size_t size) { return -ENOSYS; } static inline int kernfs_xattr_set(struct kernfs_node *kn, const char *name, const void *value, size_t size, int flags) { return -ENOSYS; } static inline const void *kernfs_super_ns(struct super_block *sb) { return NULL; } static inline int kernfs_get_tree(struct fs_context *fc) { return -ENOSYS; } static inline void kernfs_free_fs_context(struct fs_context *fc) { } static inline void kernfs_kill_sb(struct super_block *sb) { } static inline void kernfs_init(void) { } #endif /* CONFIG_KERNFS */ /** * kernfs_path - build full path of a given node * @kn: kernfs_node of interest * @buf: buffer to copy @kn's name into * @buflen: size of @buf * * If @kn is NULL result will be "(null)". * * Returns the length of the full path. If the full length is equal to or * greater than @buflen, @buf contains the truncated path with the trailing * '\0'. On error, -errno is returned. */ static inline int kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) { return kernfs_path_from_node(kn, NULL, buf, buflen); } static inline struct kernfs_node * kernfs_find_and_get(struct kernfs_node *kn, const char *name) { return kernfs_find_and_get_ns(kn, name, NULL); } static inline struct kernfs_node * kernfs_walk_and_get(struct kernfs_node *kn, const char *path) { return kernfs_walk_and_get_ns(kn, path, NULL); } static inline struct kernfs_node * kernfs_create_dir(struct kernfs_node *parent, const char *name, umode_t mode, void *priv) { return kernfs_create_dir_ns(parent, name, mode, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, priv, NULL); } static inline int kernfs_remove_by_name(struct kernfs_node *parent, const char *name) { return kernfs_remove_by_name_ns(parent, name, NULL); } static inline int kernfs_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name) { return kernfs_rename_ns(kn, new_parent, new_name, NULL); } #endif /* __LINUX_KERNFS_H */ |
14 8 2 8 6 6 5 8 12 9 72 63 9 57 10 45 13 38 14 14 26 18 18 22 8 8 11 12 12 4 11 9 6 162 122 4 4 2 2 2 3 11 11 3 87 3 31 28 3 3 3 2 14 13 3 3 2 30 3 24 5 3 1 2 4 20 4 10 10 13 13 3 10 13 8 5 3 3 1 16 18 38 9 12 29 3 37 37 35 2 3 17 22 21 4 6 6 117 117 5 117 19 1 17 2 2 27 29 29 2 8 10 26 1 1 25 2 1 19 13 3 10 8 3 997 128 59 36 36 1 51 5 2 81 799 5 5 5 5 4 5 4 1 2 4 2 3 2 3 1 4 2 3 1 2 1 1 2 9 2 7 1 2 8 1 1 1 1 1 1 1 2 5 6 2 1 685 125 731 4 5 9 3 8 1 9 15 1 2 2 1 1 1 2 1 1 8 3 2 2 1 4 3 1 4 2 19 3 14 9 1 1 1 2 1 19 1 2 13 27 43 681 119 3 4 93 4 89 12 1 5 92 1002 4 412 596 11 1 10 6 4 3 185 1 9 2 174 112 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 1 1 18 8 10 9 12 12 7 1 1 1 1 1 1 8 11 1 89 1 1 27 185 99 1 62 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 | // SPDX-License-Identifier: GPL-2.0 /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The IP to API glue. * * Authors: see ip.c * * Fixes: * Many : Split from ip.c , see ip.c for history. * Martin Mares : TOS setting fixed. * Alan Cox : Fixed a couple of oopses in Martin's * TOS tweaks. * Mike McLagan : Routing by source */ #include <linux/module.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/icmp.h> #include <linux/inetdevice.h> #include <linux/netdevice.h> #include <linux/slab.h> #include <net/sock.h> #include <net/ip.h> #include <net/icmp.h> #include <net/tcp_states.h> #include <linux/udp.h> #include <linux/igmp.h> #include <linux/netfilter.h> #include <linux/route.h> #include <linux/mroute.h> #include <net/inet_ecn.h> #include <net/route.h> #include <net/xfrm.h> #include <net/compat.h> #include <net/checksum.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/transp_v6.h> #endif #include <net/ip_fib.h> #include <linux/errqueue.h> #include <linux/uaccess.h> /* * SOL_IP control messages. */ static void ip_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) { struct in_pktinfo info = *PKTINFO_SKB_CB(skb); info.ipi_addr.s_addr = ip_hdr(skb)->daddr; put_cmsg(msg, SOL_IP, IP_PKTINFO, sizeof(info), &info); } static void ip_cmsg_recv_ttl(struct msghdr *msg, struct sk_buff *skb) { int ttl = ip_hdr(skb)->ttl; put_cmsg(msg, SOL_IP, IP_TTL, sizeof(int), &ttl); } static void ip_cmsg_recv_tos(struct msghdr *msg, struct sk_buff *skb) { put_cmsg(msg, SOL_IP, IP_TOS, 1, &ip_hdr(skb)->tos); } static void ip_cmsg_recv_opts(struct msghdr *msg, struct sk_buff *skb) { if (IPCB(skb)->opt.optlen == 0) return; put_cmsg(msg, SOL_IP, IP_RECVOPTS, IPCB(skb)->opt.optlen, ip_hdr(skb) + 1); } static void ip_cmsg_recv_retopts(struct net *net, struct msghdr *msg, struct sk_buff *skb) { unsigned char optbuf[sizeof(struct ip_options) + 40]; struct ip_options *opt = (struct ip_options *)optbuf; if (IPCB(skb)->opt.optlen == 0) return; if (ip_options_echo(net, opt, skb)) { msg->msg_flags |= MSG_CTRUNC; return; } ip_options_undo(opt); put_cmsg(msg, SOL_IP, IP_RETOPTS, opt->optlen, opt->__data); } static void ip_cmsg_recv_fragsize(struct msghdr *msg, struct sk_buff *skb) { int val; if (IPCB(skb)->frag_max_size == 0) return; val = IPCB(skb)->frag_max_size; put_cmsg(msg, SOL_IP, IP_RECVFRAGSIZE, sizeof(val), &val); } static void ip_cmsg_recv_checksum(struct msghdr *msg, struct sk_buff *skb, int tlen, int offset) { __wsum csum = skb->csum; if (skb->ip_summed != CHECKSUM_COMPLETE) return; if (offset != 0) { int tend_off = skb_transport_offset(skb) + tlen; csum = csum_sub(csum, skb_checksum(skb, tend_off, offset, 0)); } put_cmsg(msg, SOL_IP, IP_CHECKSUM, sizeof(__wsum), &csum); } static void ip_cmsg_recv_security(struct msghdr *msg, struct sk_buff *skb) { char *secdata; u32 seclen, secid; int err; err = security_socket_getpeersec_dgram(NULL, skb, &secid); if (err) return; err = security_secid_to_secctx(secid, &secdata, &seclen); if (err) return; put_cmsg(msg, SOL_IP, SCM_SECURITY, seclen, secdata); security_release_secctx(secdata, seclen); } static void ip_cmsg_recv_dstaddr(struct msghdr *msg, struct sk_buff *skb) { __be16 _ports[2], *ports; struct sockaddr_in sin; /* All current transport protocols have the port numbers in the * first four bytes of the transport header and this function is * written with this assumption in mind. */ ports = skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_ports), &_ports); if (!ports) return; sin.sin_family = AF_INET; sin.sin_addr.s_addr = ip_hdr(skb)->daddr; sin.sin_port = ports[1]; memset(sin.sin_zero, 0, sizeof(sin.sin_zero)); put_cmsg(msg, SOL_IP, IP_ORIGDSTADDR, sizeof(sin), &sin); } void ip_cmsg_recv_offset(struct msghdr *msg, struct sock *sk, struct sk_buff *skb, int tlen, int offset) { unsigned long flags = inet_cmsg_flags(inet_sk(sk)); if (!flags) return; /* Ordered by supposed usage frequency */ if (flags & IP_CMSG_PKTINFO) { ip_cmsg_recv_pktinfo(msg, skb); flags &= ~IP_CMSG_PKTINFO; if (!flags) return; } if (flags & IP_CMSG_TTL) { ip_cmsg_recv_ttl(msg, skb); flags &= ~IP_CMSG_TTL; if (!flags) return; } if (flags & IP_CMSG_TOS) { ip_cmsg_recv_tos(msg, skb); flags &= ~IP_CMSG_TOS; if (!flags) return; } if (flags & IP_CMSG_RECVOPTS) { ip_cmsg_recv_opts(msg, skb); flags &= ~IP_CMSG_RECVOPTS; if (!flags) return; } if (flags & IP_CMSG_RETOPTS) { ip_cmsg_recv_retopts(sock_net(sk), msg, skb); flags &= ~IP_CMSG_RETOPTS; if (!flags) return; } if (flags & IP_CMSG_PASSSEC) { ip_cmsg_recv_security(msg, skb); flags &= ~IP_CMSG_PASSSEC; if (!flags) return; } if (flags & IP_CMSG_ORIGDSTADDR) { ip_cmsg_recv_dstaddr(msg, skb); flags &= ~IP_CMSG_ORIGDSTADDR; if (!flags) return; } if (flags & IP_CMSG_CHECKSUM) ip_cmsg_recv_checksum(msg, skb, tlen, offset); if (flags & IP_CMSG_RECVFRAGSIZE) ip_cmsg_recv_fragsize(msg, skb); } EXPORT_SYMBOL(ip_cmsg_recv_offset); int ip_cmsg_send(struct sock *sk, struct msghdr *msg, struct ipcm_cookie *ipc, bool allow_ipv6) { int err, val; struct cmsghdr *cmsg; struct net *net = sock_net(sk); for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; #if IS_ENABLED(CONFIG_IPV6) if (allow_ipv6 && cmsg->cmsg_level == SOL_IPV6 && cmsg->cmsg_type == IPV6_PKTINFO) { struct in6_pktinfo *src_info; if (cmsg->cmsg_len < CMSG_LEN(sizeof(*src_info))) return -EINVAL; src_info = (struct in6_pktinfo *)CMSG_DATA(cmsg); if (!ipv6_addr_v4mapped(&src_info->ipi6_addr)) return -EINVAL; if (src_info->ipi6_ifindex) ipc->oif = src_info->ipi6_ifindex; ipc->addr = src_info->ipi6_addr.s6_addr32[3]; continue; } #endif if (cmsg->cmsg_level == SOL_SOCKET) { err = __sock_cmsg_send(sk, cmsg, &ipc->sockc); if (err) return err; continue; } if (cmsg->cmsg_level != SOL_IP) continue; switch (cmsg->cmsg_type) { case IP_RETOPTS: err = cmsg->cmsg_len - sizeof(struct cmsghdr); /* Our caller is responsible for freeing ipc->opt */ err = ip_options_get(net, &ipc->opt, KERNEL_SOCKPTR(CMSG_DATA(cmsg)), err < 40 ? err : 40); if (err) return err; break; case IP_PKTINFO: { struct in_pktinfo *info; if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo))) return -EINVAL; info = (struct in_pktinfo *)CMSG_DATA(cmsg); if (info->ipi_ifindex) ipc->oif = info->ipi_ifindex; ipc->addr = info->ipi_spec_dst.s_addr; break; } case IP_TTL: if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) return -EINVAL; val = *(int *)CMSG_DATA(cmsg); if (val < 1 || val > 255) return -EINVAL; ipc->ttl = val; break; case IP_TOS: if (cmsg->cmsg_len == CMSG_LEN(sizeof(int))) val = *(int *)CMSG_DATA(cmsg); else if (cmsg->cmsg_len == CMSG_LEN(sizeof(u8))) val = *(u8 *)CMSG_DATA(cmsg); else return -EINVAL; if (val < 0 || val > 255) return -EINVAL; ipc->tos = val; ipc->priority = rt_tos2priority(ipc->tos); break; case IP_PROTOCOL: if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) return -EINVAL; val = *(int *)CMSG_DATA(cmsg); if (val < 1 || val > 255) return -EINVAL; ipc->protocol = val; break; default: return -EINVAL; } } return 0; } static void ip_ra_destroy_rcu(struct rcu_head *head) { struct ip_ra_chain *ra = container_of(head, struct ip_ra_chain, rcu); sock_put(ra->saved_sk); kfree(ra); } int ip_ra_control(struct sock *sk, unsigned char on, void (*destructor)(struct sock *)) { struct ip_ra_chain *ra, *new_ra; struct ip_ra_chain __rcu **rap; struct net *net = sock_net(sk); if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num == IPPROTO_RAW) return -EINVAL; new_ra = on ? kmalloc(sizeof(*new_ra), GFP_KERNEL) : NULL; if (on && !new_ra) return -ENOMEM; mutex_lock(&net->ipv4.ra_mutex); for (rap = &net->ipv4.ra_chain; (ra = rcu_dereference_protected(*rap, lockdep_is_held(&net->ipv4.ra_mutex))) != NULL; rap = &ra->next) { if (ra->sk == sk) { if (on) { mutex_unlock(&net->ipv4.ra_mutex); kfree(new_ra); return -EADDRINUSE; } /* dont let ip_call_ra_chain() use sk again */ ra->sk = NULL; RCU_INIT_POINTER(*rap, ra->next); mutex_unlock(&net->ipv4.ra_mutex); if (ra->destructor) ra->destructor(sk); /* * Delay sock_put(sk) and kfree(ra) after one rcu grace * period. This guarantee ip_call_ra_chain() dont need * to mess with socket refcounts. */ ra->saved_sk = sk; call_rcu(&ra->rcu, ip_ra_destroy_rcu); return 0; } } if (!new_ra) { mutex_unlock(&net->ipv4.ra_mutex); return -ENOBUFS; } new_ra->sk = sk; new_ra->destructor = destructor; RCU_INIT_POINTER(new_ra->next, ra); rcu_assign_pointer(*rap, new_ra); sock_hold(sk); mutex_unlock(&net->ipv4.ra_mutex); return 0; } static void ipv4_icmp_error_rfc4884(const struct sk_buff *skb, struct sock_ee_data_rfc4884 *out) { switch (icmp_hdr(skb)->type) { case ICMP_DEST_UNREACH: case ICMP_TIME_EXCEEDED: case ICMP_PARAMETERPROB: ip_icmp_error_rfc4884(skb, out, sizeof(struct icmphdr), icmp_hdr(skb)->un.reserved[1] * 4); } } void ip_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload) { struct sock_exterr_skb *serr; skb = skb_clone(skb, GFP_ATOMIC); if (!skb) return; serr = SKB_EXT_ERR(skb); serr->ee.ee_errno = err; serr->ee.ee_origin = SO_EE_ORIGIN_ICMP; serr->ee.ee_type = icmp_hdr(skb)->type; serr->ee.ee_code = icmp_hdr(skb)->code; serr->ee.ee_pad = 0; serr->ee.ee_info = info; serr->ee.ee_data = 0; serr->addr_offset = (u8 *)&(((struct iphdr *)(icmp_hdr(skb) + 1))->daddr) - skb_network_header(skb); serr->port = port; if (skb_pull(skb, payload - skb->data)) { if (inet_test_bit(RECVERR_RFC4884, sk)) ipv4_icmp_error_rfc4884(skb, &serr->ee.ee_rfc4884); skb_reset_transport_header(skb); if (sock_queue_err_skb(sk, skb) == 0) return; } kfree_skb(skb); } EXPORT_SYMBOL_GPL(ip_icmp_error); void ip_local_error(struct sock *sk, int err, __be32 daddr, __be16 port, u32 info) { struct sock_exterr_skb *serr; struct iphdr *iph; struct sk_buff *skb; if (!inet_test_bit(RECVERR, sk)) return; skb = alloc_skb(sizeof(struct iphdr), GFP_ATOMIC); if (!skb) return; skb_put(skb, sizeof(struct iphdr)); skb_reset_network_header(skb); iph = ip_hdr(skb); iph->daddr = daddr; serr = SKB_EXT_ERR(skb); serr->ee.ee_errno = err; serr->ee.ee_origin = SO_EE_ORIGIN_LOCAL; serr->ee.ee_type = 0; serr->ee.ee_code = 0; serr->ee.ee_pad = 0; serr->ee.ee_info = info; serr->ee.ee_data = 0; serr->addr_offset = (u8 *)&iph->daddr - skb_network_header(skb); serr->port = port; __skb_pull(skb, skb_tail_pointer(skb) - skb->data); skb_reset_transport_header(skb); if (sock_queue_err_skb(sk, skb)) kfree_skb(skb); } /* For some errors we have valid addr_offset even with zero payload and * zero port. Also, addr_offset should be supported if port is set. */ static inline bool ipv4_datagram_support_addr(struct sock_exterr_skb *serr) { return serr->ee.ee_origin == SO_EE_ORIGIN_ICMP || serr->ee.ee_origin == SO_EE_ORIGIN_LOCAL || serr->port; } /* IPv4 supports cmsg on all imcp errors and some timestamps * * Timestamp code paths do not initialize the fields expected by cmsg: * the PKTINFO fields in skb->cb[]. Fill those in here. */ static bool ipv4_datagram_support_cmsg(const struct sock *sk, struct sk_buff *skb, int ee_origin) { struct in_pktinfo *info; if (ee_origin == SO_EE_ORIGIN_ICMP) return true; if (ee_origin == SO_EE_ORIGIN_LOCAL) return false; /* Support IP_PKTINFO on tstamp packets if requested, to correlate * timestamp with egress dev. Not possible for packets without iif * or without payload (SOF_TIMESTAMPING_OPT_TSONLY). */ info = PKTINFO_SKB_CB(skb); if (!(READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_CMSG) || !info->ipi_ifindex) return false; info->ipi_spec_dst.s_addr = ip_hdr(skb)->saddr; return true; } /* * Handle MSG_ERRQUEUE */ int ip_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) { struct sock_exterr_skb *serr; struct sk_buff *skb; DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); struct { struct sock_extended_err ee; struct sockaddr_in offender; } errhdr; int err; int copied; err = -EAGAIN; skb = sock_dequeue_err_skb(sk); if (!skb) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (unlikely(err)) { kfree_skb(skb); return err; } sock_recv_timestamp(msg, sk, skb); serr = SKB_EXT_ERR(skb); if (sin && ipv4_datagram_support_addr(serr)) { sin->sin_family = AF_INET; sin->sin_addr.s_addr = *(__be32 *)(skb_network_header(skb) + serr->addr_offset); sin->sin_port = serr->port; memset(&sin->sin_zero, 0, sizeof(sin->sin_zero)); *addr_len = sizeof(*sin); } memcpy(&errhdr.ee, &serr->ee, sizeof(struct sock_extended_err)); sin = &errhdr.offender; memset(sin, 0, sizeof(*sin)); if (ipv4_datagram_support_cmsg(sk, skb, serr->ee.ee_origin)) { sin->sin_family = AF_INET; sin->sin_addr.s_addr = ip_hdr(skb)->saddr; if (inet_cmsg_flags(inet_sk(sk))) ip_cmsg_recv(msg, skb); } put_cmsg(msg, SOL_IP, IP_RECVERR, sizeof(errhdr), &errhdr); /* Now we could try to dump offended packet options */ msg->msg_flags |= MSG_ERRQUEUE; err = copied; consume_skb(skb); out: return err; } void __ip_sock_set_tos(struct sock *sk, int val) { u8 old_tos = inet_sk(sk)->tos; if (sk->sk_type == SOCK_STREAM) { val &= ~INET_ECN_MASK; val |= old_tos & INET_ECN_MASK; } if (old_tos != val) { WRITE_ONCE(inet_sk(sk)->tos, val); WRITE_ONCE(sk->sk_priority, rt_tos2priority(val)); sk_dst_reset(sk); } } void ip_sock_set_tos(struct sock *sk, int val) { sockopt_lock_sock(sk); __ip_sock_set_tos(sk, val); sockopt_release_sock(sk); } EXPORT_SYMBOL(ip_sock_set_tos); void ip_sock_set_freebind(struct sock *sk) { inet_set_bit(FREEBIND, sk); } EXPORT_SYMBOL(ip_sock_set_freebind); void ip_sock_set_recverr(struct sock *sk) { inet_set_bit(RECVERR, sk); } EXPORT_SYMBOL(ip_sock_set_recverr); int ip_sock_set_mtu_discover(struct sock *sk, int val) { if (val < IP_PMTUDISC_DONT || val > IP_PMTUDISC_OMIT) return -EINVAL; WRITE_ONCE(inet_sk(sk)->pmtudisc, val); return 0; } EXPORT_SYMBOL(ip_sock_set_mtu_discover); void ip_sock_set_pktinfo(struct sock *sk) { inet_set_bit(PKTINFO, sk); } EXPORT_SYMBOL(ip_sock_set_pktinfo); /* * Socket option code for IP. This is the end of the line after any * TCP,UDP etc options on an IP socket. */ static bool setsockopt_needs_rtnl(int optname) { switch (optname) { case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case IP_MSFILTER: case IP_UNBLOCK_SOURCE: case MCAST_BLOCK_SOURCE: case MCAST_MSFILTER: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_UNBLOCK_SOURCE: return true; } return false; } static int set_mcast_msfilter(struct sock *sk, int ifindex, int numsrc, int fmode, struct sockaddr_storage *group, struct sockaddr_storage *list) { struct ip_msfilter *msf; struct sockaddr_in *psin; int err, i; msf = kmalloc(IP_MSFILTER_SIZE(numsrc), GFP_KERNEL); if (!msf) return -ENOBUFS; psin = (struct sockaddr_in *)group; if (psin->sin_family != AF_INET) goto Eaddrnotavail; msf->imsf_multiaddr = psin->sin_addr.s_addr; msf->imsf_interface = 0; msf->imsf_fmode = fmode; msf->imsf_numsrc = numsrc; for (i = 0; i < numsrc; ++i) { psin = (struct sockaddr_in *)&list[i]; if (psin->sin_family != AF_INET) goto Eaddrnotavail; msf->imsf_slist_flex[i] = psin->sin_addr.s_addr; } err = ip_mc_msfilter(sk, msf, ifindex); kfree(msf); return err; Eaddrnotavail: kfree(msf); return -EADDRNOTAVAIL; } static int copy_group_source_from_sockptr(struct group_source_req *greqs, sockptr_t optval, int optlen) { if (in_compat_syscall()) { struct compat_group_source_req gr32; if (optlen != sizeof(gr32)) return -EINVAL; if (copy_from_sockptr(&gr32, optval, sizeof(gr32))) return -EFAULT; greqs->gsr_interface = gr32.gsr_interface; greqs->gsr_group = gr32.gsr_group; greqs->gsr_source = gr32.gsr_source; } else { if (optlen != sizeof(*greqs)) return -EINVAL; if (copy_from_sockptr(greqs, optval, sizeof(*greqs))) return -EFAULT; } return 0; } static int do_mcast_group_source(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct group_source_req greqs; struct ip_mreq_source mreqs; struct sockaddr_in *psin; int omode, add, err; err = copy_group_source_from_sockptr(&greqs, optval, optlen); if (err) return err; if (greqs.gsr_group.ss_family != AF_INET || greqs.gsr_source.ss_family != AF_INET) return -EADDRNOTAVAIL; psin = (struct sockaddr_in *)&greqs.gsr_group; mreqs.imr_multiaddr = psin->sin_addr.s_addr; psin = (struct sockaddr_in *)&greqs.gsr_source; mreqs.imr_sourceaddr = psin->sin_addr.s_addr; mreqs.imr_interface = 0; /* use index for mc_source */ if (optname == MCAST_BLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 1; } else if (optname == MCAST_UNBLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 0; } else if (optname == MCAST_JOIN_SOURCE_GROUP) { struct ip_mreqn mreq; psin = (struct sockaddr_in *)&greqs.gsr_group; mreq.imr_multiaddr = psin->sin_addr; mreq.imr_address.s_addr = 0; mreq.imr_ifindex = greqs.gsr_interface; err = ip_mc_join_group_ssm(sk, &mreq, MCAST_INCLUDE); if (err && err != -EADDRINUSE) return err; greqs.gsr_interface = mreq.imr_ifindex; omode = MCAST_INCLUDE; add = 1; } else /* MCAST_LEAVE_SOURCE_GROUP */ { omode = MCAST_INCLUDE; add = 0; } return ip_mc_source(add, omode, sk, &mreqs, greqs.gsr_interface); } static int ip_set_mcast_msfilter(struct sock *sk, sockptr_t optval, int optlen) { struct group_filter *gsf = NULL; int err; if (optlen < GROUP_FILTER_SIZE(0)) return -EINVAL; if (optlen > READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) return -ENOBUFS; gsf = memdup_sockptr(optval, optlen); if (IS_ERR(gsf)) return PTR_ERR(gsf); /* numsrc >= (4G-140)/128 overflow in 32 bits */ err = -ENOBUFS; if (gsf->gf_numsrc >= 0x1ffffff || gsf->gf_numsrc > READ_ONCE(sock_net(sk)->ipv4.sysctl_igmp_max_msf)) goto out_free_gsf; err = -EINVAL; if (GROUP_FILTER_SIZE(gsf->gf_numsrc) > optlen) goto out_free_gsf; err = set_mcast_msfilter(sk, gsf->gf_interface, gsf->gf_numsrc, gsf->gf_fmode, &gsf->gf_group, gsf->gf_slist_flex); out_free_gsf: kfree(gsf); return err; } static int compat_ip_set_mcast_msfilter(struct sock *sk, sockptr_t optval, int optlen) { const int size0 = offsetof(struct compat_group_filter, gf_slist_flex); struct compat_group_filter *gf32; unsigned int n; void *p; int err; if (optlen < size0) return -EINVAL; if (optlen > READ_ONCE(sock_net(sk)->core.sysctl_optmem_max) - 4) return -ENOBUFS; p = kmalloc(optlen + 4, GFP_KERNEL); if (!p) return -ENOMEM; gf32 = p + 4; /* we want ->gf_group and ->gf_slist_flex aligned */ err = -EFAULT; if (copy_from_sockptr(gf32, optval, optlen)) goto out_free_gsf; /* numsrc >= (4G-140)/128 overflow in 32 bits */ n = gf32->gf_numsrc; err = -ENOBUFS; if (n >= 0x1ffffff) goto out_free_gsf; err = -EINVAL; if (offsetof(struct compat_group_filter, gf_slist_flex[n]) > optlen) goto out_free_gsf; /* numsrc >= (4G-140)/128 overflow in 32 bits */ err = -ENOBUFS; if (n > READ_ONCE(sock_net(sk)->ipv4.sysctl_igmp_max_msf)) goto out_free_gsf; err = set_mcast_msfilter(sk, gf32->gf_interface, n, gf32->gf_fmode, &gf32->gf_group, gf32->gf_slist_flex); out_free_gsf: kfree(p); return err; } static int ip_mcast_join_leave(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct ip_mreqn mreq = { }; struct sockaddr_in *psin; struct group_req greq; if (optlen < sizeof(struct group_req)) return -EINVAL; if (copy_from_sockptr(&greq, optval, sizeof(greq))) return -EFAULT; psin = (struct sockaddr_in *)&greq.gr_group; if (psin->sin_family != AF_INET) return -EINVAL; mreq.imr_multiaddr = psin->sin_addr; mreq.imr_ifindex = greq.gr_interface; if (optname == MCAST_JOIN_GROUP) return ip_mc_join_group(sk, &mreq); return ip_mc_leave_group(sk, &mreq); } static int compat_ip_mcast_join_leave(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct compat_group_req greq; struct ip_mreqn mreq = { }; struct sockaddr_in *psin; if (optlen < sizeof(struct compat_group_req)) return -EINVAL; if (copy_from_sockptr(&greq, optval, sizeof(greq))) return -EFAULT; psin = (struct sockaddr_in *)&greq.gr_group; if (psin->sin_family != AF_INET) return -EINVAL; mreq.imr_multiaddr = psin->sin_addr; mreq.imr_ifindex = greq.gr_interface; if (optname == MCAST_JOIN_GROUP) return ip_mc_join_group(sk, &mreq); return ip_mc_leave_group(sk, &mreq); } DEFINE_STATIC_KEY_FALSE(ip4_min_ttl); int do_ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); int val = 0, err, retv; bool needs_rtnl = setsockopt_needs_rtnl(optname); switch (optname) { case IP_PKTINFO: case IP_RECVTTL: case IP_RECVOPTS: case IP_RECVTOS: case IP_RETOPTS: case IP_TOS: case IP_TTL: case IP_HDRINCL: case IP_MTU_DISCOVER: case IP_RECVERR: case IP_ROUTER_ALERT: case IP_FREEBIND: case IP_PASSSEC: case IP_TRANSPARENT: case IP_MINTTL: case IP_NODEFRAG: case IP_BIND_ADDRESS_NO_PORT: case IP_UNICAST_IF: case IP_MULTICAST_TTL: case IP_MULTICAST_ALL: case IP_MULTICAST_LOOP: case IP_RECVORIGDSTADDR: case IP_CHECKSUM: case IP_RECVFRAGSIZE: case IP_RECVERR_RFC4884: case IP_LOCAL_PORT_RANGE: if (optlen >= sizeof(int)) { if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; } else if (optlen >= sizeof(char)) { unsigned char ucval; if (copy_from_sockptr(&ucval, optval, sizeof(ucval))) return -EFAULT; val = (int) ucval; } } /* If optlen==0, it is equivalent to val == 0 */ if (optname == IP_ROUTER_ALERT) { retv = ip_ra_control(sk, val ? 1 : 0, NULL); if (retv == 0) inet_assign_bit(RTALERT, sk, val); return retv; } if (ip_mroute_opt(optname)) return ip_mroute_setsockopt(sk, optname, optval, optlen); /* Handle options that can be set without locking the socket. */ switch (optname) { case IP_PKTINFO: inet_assign_bit(PKTINFO, sk, val); return 0; case IP_RECVTTL: inet_assign_bit(TTL, sk, val); return 0; case IP_RECVTOS: inet_assign_bit(TOS, sk, val); return 0; case IP_RECVOPTS: inet_assign_bit(RECVOPTS, sk, val); return 0; case IP_RETOPTS: inet_assign_bit(RETOPTS, sk, val); return 0; case IP_PASSSEC: inet_assign_bit(PASSSEC, sk, val); return 0; case IP_RECVORIGDSTADDR: inet_assign_bit(ORIGDSTADDR, sk, val); return 0; case IP_RECVFRAGSIZE: if (sk->sk_type != SOCK_RAW && sk->sk_type != SOCK_DGRAM) return -EINVAL; inet_assign_bit(RECVFRAGSIZE, sk, val); return 0; case IP_RECVERR: inet_assign_bit(RECVERR, sk, val); if (!val) skb_errqueue_purge(&sk->sk_error_queue); return 0; case IP_RECVERR_RFC4884: if (val < 0 || val > 1) return -EINVAL; inet_assign_bit(RECVERR_RFC4884, sk, val); return 0; case IP_FREEBIND: if (optlen < 1) return -EINVAL; inet_assign_bit(FREEBIND, sk, val); return 0; case IP_HDRINCL: if (sk->sk_type != SOCK_RAW) return -ENOPROTOOPT; inet_assign_bit(HDRINCL, sk, val); return 0; case IP_MULTICAST_LOOP: if (optlen < 1) return -EINVAL; inet_assign_bit(MC_LOOP, sk, val); return 0; case IP_MULTICAST_ALL: if (optlen < 1) return -EINVAL; if (val != 0 && val != 1) return -EINVAL; inet_assign_bit(MC_ALL, sk, val); return 0; case IP_TRANSPARENT: if (!!val && !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (optlen < 1) return -EINVAL; inet_assign_bit(TRANSPARENT, sk, val); return 0; case IP_NODEFRAG: if (sk->sk_type != SOCK_RAW) return -ENOPROTOOPT; inet_assign_bit(NODEFRAG, sk, val); return 0; case IP_BIND_ADDRESS_NO_PORT: inet_assign_bit(BIND_ADDRESS_NO_PORT, sk, val); return 0; case IP_TTL: if (optlen < 1) return -EINVAL; if (val != -1 && (val < 1 || val > 255)) return -EINVAL; WRITE_ONCE(inet->uc_ttl, val); return 0; case IP_MINTTL: if (optlen < 1) return -EINVAL; if (val < 0 || val > 255) return -EINVAL; if (val) static_branch_enable(&ip4_min_ttl); WRITE_ONCE(inet->min_ttl, val); return 0; case IP_MULTICAST_TTL: if (sk->sk_type == SOCK_STREAM) return -EINVAL; if (optlen < 1) return -EINVAL; if (val == -1) val = 1; if (val < 0 || val > 255) return -EINVAL; WRITE_ONCE(inet->mc_ttl, val); return 0; case IP_MTU_DISCOVER: return ip_sock_set_mtu_discover(sk, val); case IP_TOS: /* This sets both TOS and Precedence */ ip_sock_set_tos(sk, val); return 0; case IP_LOCAL_PORT_RANGE: { u16 lo = val; u16 hi = val >> 16; if (optlen != sizeof(u32)) return -EINVAL; if (lo != 0 && hi != 0 && lo > hi) return -EINVAL; WRITE_ONCE(inet->local_port_range, val); return 0; } } err = 0; if (needs_rtnl) rtnl_lock(); sockopt_lock_sock(sk); switch (optname) { case IP_OPTIONS: { struct ip_options_rcu *old, *opt = NULL; if (optlen > 40) goto e_inval; err = ip_options_get(sock_net(sk), &opt, optval, optlen); if (err) break; old = rcu_dereference_protected(inet->inet_opt, lockdep_sock_is_held(sk)); if (inet_test_bit(IS_ICSK, sk)) { struct inet_connection_sock *icsk = inet_csk(sk); #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == PF_INET || (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) && inet->inet_daddr != LOOPBACK4_IPV6)) { #endif if (old) icsk->icsk_ext_hdr_len -= old->opt.optlen; if (opt) icsk->icsk_ext_hdr_len += opt->opt.optlen; icsk->icsk_sync_mss(sk, icsk->icsk_pmtu_cookie); #if IS_ENABLED(CONFIG_IPV6) } #endif } rcu_assign_pointer(inet->inet_opt, opt); if (old) kfree_rcu(old, rcu); break; } case IP_CHECKSUM: if (val) { if (!(inet_test_bit(CHECKSUM, sk))) { inet_inc_convert_csum(sk); inet_set_bit(CHECKSUM, sk); } } else { if (inet_test_bit(CHECKSUM, sk)) { inet_dec_convert_csum(sk); inet_clear_bit(CHECKSUM, sk); } } break; case IP_UNICAST_IF: { struct net_device *dev = NULL; int ifindex; int midx; if (optlen != sizeof(int)) goto e_inval; ifindex = (__force int)ntohl((__force __be32)val); if (ifindex == 0) { WRITE_ONCE(inet->uc_index, 0); err = 0; break; } dev = dev_get_by_index(sock_net(sk), ifindex); err = -EADDRNOTAVAIL; if (!dev) break; midx = l3mdev_master_ifindex(dev); dev_put(dev); err = -EINVAL; if (sk->sk_bound_dev_if && midx != sk->sk_bound_dev_if) break; WRITE_ONCE(inet->uc_index, ifindex); err = 0; break; } case IP_MULTICAST_IF: { struct ip_mreqn mreq; struct net_device *dev = NULL; int midx; if (sk->sk_type == SOCK_STREAM) goto e_inval; /* * Check the arguments are allowable */ if (optlen < sizeof(struct in_addr)) goto e_inval; err = -EFAULT; if (optlen >= sizeof(struct ip_mreqn)) { if (copy_from_sockptr(&mreq, optval, sizeof(mreq))) break; } else { memset(&mreq, 0, sizeof(mreq)); if (optlen >= sizeof(struct ip_mreq)) { if (copy_from_sockptr(&mreq, optval, sizeof(struct ip_mreq))) break; } else if (optlen >= sizeof(struct in_addr)) { if (copy_from_sockptr(&mreq.imr_address, optval, sizeof(struct in_addr))) break; } } if (!mreq.imr_ifindex) { if (mreq.imr_address.s_addr == htonl(INADDR_ANY)) { WRITE_ONCE(inet->mc_index, 0); WRITE_ONCE(inet->mc_addr, 0); err = 0; break; } dev = ip_dev_find(sock_net(sk), mreq.imr_address.s_addr); if (dev) mreq.imr_ifindex = dev->ifindex; } else dev = dev_get_by_index(sock_net(sk), mreq.imr_ifindex); err = -EADDRNOTAVAIL; if (!dev) break; midx = l3mdev_master_ifindex(dev); dev_put(dev); err = -EINVAL; if (sk->sk_bound_dev_if && mreq.imr_ifindex != sk->sk_bound_dev_if && midx != sk->sk_bound_dev_if) break; WRITE_ONCE(inet->mc_index, mreq.imr_ifindex); WRITE_ONCE(inet->mc_addr, mreq.imr_address.s_addr); err = 0; break; } case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: { struct ip_mreqn mreq; err = -EPROTO; if (inet_test_bit(IS_ICSK, sk)) break; if (optlen < sizeof(struct ip_mreq)) goto e_inval; err = -EFAULT; if (optlen >= sizeof(struct ip_mreqn)) { if (copy_from_sockptr(&mreq, optval, sizeof(mreq))) break; } else { memset(&mreq, 0, sizeof(mreq)); if (copy_from_sockptr(&mreq, optval, sizeof(struct ip_mreq))) break; } if (optname == IP_ADD_MEMBERSHIP) err = ip_mc_join_group(sk, &mreq); else err = ip_mc_leave_group(sk, &mreq); break; } case IP_MSFILTER: { struct ip_msfilter *msf; if (optlen < IP_MSFILTER_SIZE(0)) goto e_inval; if (optlen > READ_ONCE(net->core.sysctl_optmem_max)) { err = -ENOBUFS; break; } msf = memdup_sockptr(optval, optlen); if (IS_ERR(msf)) { err = PTR_ERR(msf); break; } /* numsrc >= (1G-4) overflow in 32 bits */ if (msf->imsf_numsrc >= 0x3ffffffcU || msf->imsf_numsrc > READ_ONCE(net->ipv4.sysctl_igmp_max_msf)) { kfree(msf); err = -ENOBUFS; break; } if (IP_MSFILTER_SIZE(msf->imsf_numsrc) > optlen) { kfree(msf); err = -EINVAL; break; } err = ip_mc_msfilter(sk, msf, 0); kfree(msf); break; } case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: { struct ip_mreq_source mreqs; int omode, add; if (optlen != sizeof(struct ip_mreq_source)) goto e_inval; if (copy_from_sockptr(&mreqs, optval, sizeof(mreqs))) { err = -EFAULT; break; } if (optname == IP_BLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 1; } else if (optname == IP_UNBLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 0; } else if (optname == IP_ADD_SOURCE_MEMBERSHIP) { struct ip_mreqn mreq; mreq.imr_multiaddr.s_addr = mreqs.imr_multiaddr; mreq.imr_address.s_addr = mreqs.imr_interface; mreq.imr_ifindex = 0; err = ip_mc_join_group_ssm(sk, &mreq, MCAST_INCLUDE); if (err && err != -EADDRINUSE) break; omode = MCAST_INCLUDE; add = 1; } else /* IP_DROP_SOURCE_MEMBERSHIP */ { omode = MCAST_INCLUDE; add = 0; } err = ip_mc_source(add, omode, sk, &mreqs, 0); break; } case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: if (in_compat_syscall()) err = compat_ip_mcast_join_leave(sk, optname, optval, optlen); else err = ip_mcast_join_leave(sk, optname, optval, optlen); break; case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: err = do_mcast_group_source(sk, optname, optval, optlen); break; case MCAST_MSFILTER: if (in_compat_syscall()) err = compat_ip_set_mcast_msfilter(sk, optval, optlen); else err = ip_set_mcast_msfilter(sk, optval, optlen); break; case IP_IPSEC_POLICY: case IP_XFRM_POLICY: err = -EPERM; if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) break; err = xfrm_user_policy(sk, optname, optval, optlen); break; default: err = -ENOPROTOOPT; break; } sockopt_release_sock(sk); if (needs_rtnl) rtnl_unlock(); return err; e_inval: sockopt_release_sock(sk); if (needs_rtnl) rtnl_unlock(); return -EINVAL; } /** * ipv4_pktinfo_prepare - transfer some info from rtable to skb * @sk: socket * @skb: buffer * @drop_dst: if true, drops skb dst * * To support IP_CMSG_PKTINFO option, we store rt_iif and specific * destination in skb->cb[] before dst drop. * This way, receiver doesn't make cache line misses to read rtable. */ void ipv4_pktinfo_prepare(const struct sock *sk, struct sk_buff *skb, bool drop_dst) { struct in_pktinfo *pktinfo = PKTINFO_SKB_CB(skb); bool prepare = inet_test_bit(PKTINFO, sk) || ipv6_sk_rxinfo(sk); if (prepare && skb_rtable(skb)) { /* skb->cb is overloaded: prior to this point it is IP{6}CB * which has interface index (iif) as the first member of the * underlying inet{6}_skb_parm struct. This code then overlays * PKTINFO_SKB_CB and in_pktinfo also has iif as the first * element so the iif is picked up from the prior IPCB. If iif * is the loopback interface, then return the sending interface * (e.g., process binds socket to eth0 for Tx which is * redirected to loopback in the rtable/dst). */ struct rtable *rt = skb_rtable(skb); bool l3slave = ipv4_l3mdev_skb(IPCB(skb)->flags); if (pktinfo->ipi_ifindex == LOOPBACK_IFINDEX) pktinfo->ipi_ifindex = inet_iif(skb); else if (l3slave && rt && rt->rt_iif) pktinfo->ipi_ifindex = rt->rt_iif; pktinfo->ipi_spec_dst.s_addr = fib_compute_spec_dst(skb); } else { pktinfo->ipi_ifindex = 0; pktinfo->ipi_spec_dst.s_addr = 0; } if (drop_dst) skb_dst_drop(skb); } int ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { int err; if (level != SOL_IP) return -ENOPROTOOPT; err = do_ip_setsockopt(sk, level, optname, optval, optlen); #ifdef CONFIG_NETFILTER /* we need to exclude all possible ENOPROTOOPTs except default case */ if (err == -ENOPROTOOPT && optname != IP_HDRINCL && optname != IP_IPSEC_POLICY && optname != IP_XFRM_POLICY && !ip_mroute_opt(optname)) err = nf_setsockopt(sk, PF_INET, optname, optval, optlen); #endif return err; } EXPORT_SYMBOL(ip_setsockopt); /* * Get the options. Note for future reference. The GET of IP options gets * the _received_ ones. The set sets the _sent_ ones. */ static bool getsockopt_needs_rtnl(int optname) { switch (optname) { case IP_MSFILTER: case MCAST_MSFILTER: return true; } return false; } static int ip_get_mcast_msfilter(struct sock *sk, sockptr_t optval, sockptr_t optlen, int len) { const int size0 = offsetof(struct group_filter, gf_slist_flex); struct group_filter gsf; int num, gsf_size; int err; if (len < size0) return -EINVAL; if (copy_from_sockptr(&gsf, optval, size0)) return -EFAULT; num = gsf.gf_numsrc; err = ip_mc_gsfget(sk, &gsf, optval, offsetof(struct group_filter, gf_slist_flex)); if (err) return err; if (gsf.gf_numsrc < num) num = gsf.gf_numsrc; gsf_size = GROUP_FILTER_SIZE(num); if (copy_to_sockptr(optlen, &gsf_size, sizeof(int)) || copy_to_sockptr(optval, &gsf, size0)) return -EFAULT; return 0; } static int compat_ip_get_mcast_msfilter(struct sock *sk, sockptr_t optval, sockptr_t optlen, int len) { const int size0 = offsetof(struct compat_group_filter, gf_slist_flex); struct compat_group_filter gf32; struct group_filter gf; int num; int err; if (len < size0) return -EINVAL; if (copy_from_sockptr(&gf32, optval, size0)) return -EFAULT; gf.gf_interface = gf32.gf_interface; gf.gf_fmode = gf32.gf_fmode; num = gf.gf_numsrc = gf32.gf_numsrc; gf.gf_group = gf32.gf_group; err = ip_mc_gsfget(sk, &gf, optval, offsetof(struct compat_group_filter, gf_slist_flex)); if (err) return err; if (gf.gf_numsrc < num) num = gf.gf_numsrc; len = GROUP_FILTER_SIZE(num) - (sizeof(gf) - sizeof(gf32)); if (copy_to_sockptr(optlen, &len, sizeof(int)) || copy_to_sockptr_offset(optval, offsetof(struct compat_group_filter, gf_fmode), &gf.gf_fmode, sizeof(gf.gf_fmode)) || copy_to_sockptr_offset(optval, offsetof(struct compat_group_filter, gf_numsrc), &gf.gf_numsrc, sizeof(gf.gf_numsrc))) return -EFAULT; return 0; } int do_ip_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen) { struct inet_sock *inet = inet_sk(sk); bool needs_rtnl = getsockopt_needs_rtnl(optname); int val, err = 0; int len; if (level != SOL_IP) return -EOPNOTSUPP; if (ip_mroute_opt(optname)) return ip_mroute_getsockopt(sk, optname, optval, optlen); if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len < 0) return -EINVAL; /* Handle options that can be read without locking the socket. */ switch (optname) { case IP_PKTINFO: val = inet_test_bit(PKTINFO, sk); goto copyval; case IP_RECVTTL: val = inet_test_bit(TTL, sk); goto copyval; case IP_RECVTOS: val = inet_test_bit(TOS, sk); goto copyval; case IP_RECVOPTS: val = inet_test_bit(RECVOPTS, sk); goto copyval; case IP_RETOPTS: val = inet_test_bit(RETOPTS, sk); goto copyval; case IP_PASSSEC: val = inet_test_bit(PASSSEC, sk); goto copyval; case IP_RECVORIGDSTADDR: val = inet_test_bit(ORIGDSTADDR, sk); goto copyval; case IP_CHECKSUM: val = inet_test_bit(CHECKSUM, sk); goto copyval; case IP_RECVFRAGSIZE: val = inet_test_bit(RECVFRAGSIZE, sk); goto copyval; case IP_RECVERR: val = inet_test_bit(RECVERR, sk); goto copyval; case IP_RECVERR_RFC4884: val = inet_test_bit(RECVERR_RFC4884, sk); goto copyval; case IP_FREEBIND: val = inet_test_bit(FREEBIND, sk); goto copyval; case IP_HDRINCL: val = inet_test_bit(HDRINCL, sk); goto copyval; case IP_MULTICAST_LOOP: val = inet_test_bit(MC_LOOP, sk); goto copyval; case IP_MULTICAST_ALL: val = inet_test_bit(MC_ALL, sk); goto copyval; case IP_TRANSPARENT: val = inet_test_bit(TRANSPARENT, sk); goto copyval; case IP_NODEFRAG: val = inet_test_bit(NODEFRAG, sk); goto copyval; case IP_BIND_ADDRESS_NO_PORT: val = inet_test_bit(BIND_ADDRESS_NO_PORT, sk); goto copyval; case IP_ROUTER_ALERT: val = inet_test_bit(RTALERT, sk); goto copyval; case IP_TTL: val = READ_ONCE(inet->uc_ttl); if (val < 0) val = READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_default_ttl); goto copyval; case IP_MINTTL: val = READ_ONCE(inet->min_ttl); goto copyval; case IP_MULTICAST_TTL: val = READ_ONCE(inet->mc_ttl); goto copyval; case IP_MTU_DISCOVER: val = READ_ONCE(inet->pmtudisc); goto copyval; case IP_TOS: val = READ_ONCE(inet->tos); goto copyval; case IP_OPTIONS: { unsigned char optbuf[sizeof(struct ip_options)+40]; struct ip_options *opt = (struct ip_options *)optbuf; struct ip_options_rcu *inet_opt; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); opt->optlen = 0; if (inet_opt) memcpy(optbuf, &inet_opt->opt, sizeof(struct ip_options) + inet_opt->opt.optlen); rcu_read_unlock(); if (opt->optlen == 0) { len = 0; return copy_to_sockptr(optlen, &len, sizeof(int)); } ip_options_undo(opt); len = min_t(unsigned int, len, opt->optlen); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, opt->__data, len)) return -EFAULT; return 0; } case IP_MTU: { struct dst_entry *dst; val = 0; dst = sk_dst_get(sk); if (dst) { val = dst_mtu(dst); dst_release(dst); } if (!val) return -ENOTCONN; goto copyval; } case IP_PKTOPTIONS: { struct msghdr msg; if (sk->sk_type != SOCK_STREAM) return -ENOPROTOOPT; if (optval.is_kernel) { msg.msg_control_is_user = false; msg.msg_control = optval.kernel; } else { msg.msg_control_is_user = true; msg.msg_control_user = optval.user; } msg.msg_controllen = len; msg.msg_flags = in_compat_syscall() ? MSG_CMSG_COMPAT : 0; if (inet_test_bit(PKTINFO, sk)) { struct in_pktinfo info; info.ipi_addr.s_addr = READ_ONCE(inet->inet_rcv_saddr); info.ipi_spec_dst.s_addr = READ_ONCE(inet->inet_rcv_saddr); info.ipi_ifindex = READ_ONCE(inet->mc_index); put_cmsg(&msg, SOL_IP, IP_PKTINFO, sizeof(info), &info); } if (inet_test_bit(TTL, sk)) { int hlim = READ_ONCE(inet->mc_ttl); put_cmsg(&msg, SOL_IP, IP_TTL, sizeof(hlim), &hlim); } if (inet_test_bit(TOS, sk)) { int tos = READ_ONCE(inet->rcv_tos); put_cmsg(&msg, SOL_IP, IP_TOS, sizeof(tos), &tos); } len -= msg.msg_controllen; return copy_to_sockptr(optlen, &len, sizeof(int)); } case IP_UNICAST_IF: val = (__force int)htonl((__u32) READ_ONCE(inet->uc_index)); goto copyval; case IP_MULTICAST_IF: { struct in_addr addr; len = min_t(unsigned int, len, sizeof(struct in_addr)); addr.s_addr = READ_ONCE(inet->mc_addr); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &addr, len)) return -EFAULT; return 0; } case IP_LOCAL_PORT_RANGE: val = READ_ONCE(inet->local_port_range); goto copyval; } if (needs_rtnl) rtnl_lock(); sockopt_lock_sock(sk); switch (optname) { case IP_MSFILTER: { struct ip_msfilter msf; if (len < IP_MSFILTER_SIZE(0)) { err = -EINVAL; goto out; } if (copy_from_sockptr(&msf, optval, IP_MSFILTER_SIZE(0))) { err = -EFAULT; goto out; } err = ip_mc_msfget(sk, &msf, optval, optlen); goto out; } case MCAST_MSFILTER: if (in_compat_syscall()) err = compat_ip_get_mcast_msfilter(sk, optval, optlen, len); else err = ip_get_mcast_msfilter(sk, optval, optlen, len); goto out; case IP_PROTOCOL: val = inet_sk(sk)->inet_num; break; default: sockopt_release_sock(sk); return -ENOPROTOOPT; } sockopt_release_sock(sk); copyval: if (len < sizeof(int) && len > 0 && val >= 0 && val <= 255) { unsigned char ucval = (unsigned char)val; len = 1; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &ucval, 1)) return -EFAULT; } else { len = min_t(unsigned int, sizeof(int), len); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, len)) return -EFAULT; } return 0; out: sockopt_release_sock(sk); if (needs_rtnl) rtnl_unlock(); return err; } int ip_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { int err; err = do_ip_getsockopt(sk, level, optname, USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); #ifdef CONFIG_NETFILTER /* we need to exclude all possible ENOPROTOOPTs except default case */ if (err == -ENOPROTOOPT && optname != IP_PKTOPTIONS && !ip_mroute_opt(optname)) { int len; if (get_user(len, optlen)) return -EFAULT; err = nf_getsockopt(sk, PF_INET, optname, optval, &len); if (err >= 0) err = put_user(len, optlen); return err; } #endif return err; } EXPORT_SYMBOL(ip_getsockopt); |
1543 52 2697 207 854 39 3999 87 49 31 9 7 366 1389 14 197 499 213 10 349 8778 8777 887 859 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include <linux/mem_encrypt.h> #include <asm/page.h> #include <asm/pgtable_types.h> /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | \ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ : (prot)) #ifndef __ASSEMBLY__ #include <linux/spinlock.h> #include <asm/x86_init.h> #include <asm/pkru.h> #include <asm/fpu/api.h> #include <asm/coco.h> #include <asm-generic/pgtable_uffd.h> #include <linux/page_table_check.h> extern pgd_t early_top_pgt[PTRS_PER_PGD]; bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); struct seq_file; void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, bool user); bool ptdump_walk_pgd_level_checkwx(void); #define ptdump_check_wx ptdump_walk_pgd_level_checkwx void ptdump_walk_user_pgd_level_checkwx(void); /* * Macros to add or remove encryption attribute */ #define pgprot_encrypted(prot) __pgprot(cc_mkenc(pgprot_val(prot))) #define pgprot_decrypted(prot) __pgprot(cc_mkdec(pgprot_val(prot))) #ifdef CONFIG_DEBUG_WX #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() #else #define debug_checkwx_user() do { } while (0) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __visible; #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); extern pmdval_t early_pmd_flags; #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else /* !CONFIG_PARAVIRT_XXL */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_P4D_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) #endif #ifndef set_p4d # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) #endif #ifndef __PAGETABLE_PUD_FOLDED #define p4d_clear(p4d) native_p4d_clear(p4d) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_P4D_FOLDED #define p4d_val(x) native_p4d_val(x) #define __p4d(x) native_make_p4d(x) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT_XXL */ static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v & ~clear); } static inline pud_t pud_set_flags(pud_t pud, pudval_t set) { pudval_t v = native_pud_val(pud); return native_make_pud(v | set); } static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) { pudval_t v = native_pud_val(pud); return native_make_pud(v & ~clear); } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline bool pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY_BITS; } static inline bool pte_shstk(pte_t pte) { return cpu_feature_enabled(X86_FEATURE_SHSTK) && (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline bool pte_decrypted(pte_t pte) { return cc_mkdec(pte_val(pte)) == pte_val(pte); } #define pmd_dirty pmd_dirty static inline bool pmd_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_DIRTY_BITS; } static inline bool pmd_shstk(pmd_t pmd) { return cpu_feature_enabled(X86_FEATURE_SHSTK) && (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) == (_PAGE_DIRTY | _PAGE_PSE); } #define pmd_young pmd_young static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline bool pud_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_DIRTY_BITS; } static inline int pud_young(pud_t pud) { return pud_flags(pud) & _PAGE_ACCESSED; } static inline bool pud_shstk(pud_t pud) { return cpu_feature_enabled(X86_FEATURE_SHSTK) && (pud_flags(pud) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) == (_PAGE_DIRTY | _PAGE_PSE); } static inline int pte_write(pte_t pte) { /* * Shadow stack pages are logically writable, but do not have * _PAGE_RW. Check for them separately from _PAGE_RW itself. */ return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte); } #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { /* * Shadow stack pages are logically writable, but do not have * _PAGE_RW. Check for them separately from _PAGE_RW itself. */ return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pud_flags(pud) & _PAGE_RW; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } /* Entries that were set to PROT_NONE are inverted */ static inline u64 protnone_mask(u64 val); #define PFN_PTE_SHIFT PAGE_SHIFT static inline unsigned long pte_pfn(pte_t pte) { phys_addr_t pfn = pte_val(pte); pfn ^= protnone_mask(pfn); return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { phys_addr_t pfn = pmd_val(pmd); pfn ^= protnone_mask(pfn); return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; } #define pud_pfn pud_pfn static inline unsigned long pud_pfn(pud_t pud) { phys_addr_t pfn = pud_val(pud); pfn ^= protnone_mask(pfn); return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; } static inline unsigned long p4d_pfn(p4d_t p4d) { return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; } static inline unsigned long pgd_pfn(pgd_t pgd) { return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define p4d_leaf p4d_leaf static inline bool p4d_leaf(p4d_t p4d) { /* No 512 GiB pages yet */ return 0; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define pmd_leaf pmd_leaf static inline bool pmd_leaf(pmd_t pte) { return pmd_flags(pte) & _PAGE_PSE; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_leaf */ static inline int pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_trans_huge(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #endif #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return boot_cpu_has(X86_FEATURE_PSE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pmd_devmap(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_DEVMAP); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_devmap(pud_t pud) { return !!(pud_val(pud) & _PAGE_DEVMAP); } #else static inline int pud_devmap(pud_t pud) { return 0; } #endif #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP static inline bool pmd_special(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SPECIAL; } static inline pmd_t pmd_mkspecial(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SPECIAL); } #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP static inline bool pud_special(pud_t pud) { return pud_flags(pud) & _PAGE_SPECIAL; } static inline pud_t pud_mkspecial(pud_t pud) { return pud_set_flags(pud, _PAGE_SPECIAL); } #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } /* * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So * when creating dirty, write-protected memory, a software bit is used: * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the * Dirty bit to SavedDirty, and vice-vesra. * * This shifting is only done if needed. In the case of shifting * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of * shifting SavedDirty->Dirty, the condition is Write=1. */ static inline pgprotval_t mksaveddirty_shift(pgprotval_t v) { pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1; v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY; v &= ~(cond << _PAGE_BIT_DIRTY); return v; } static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v) { pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1; v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY; v &= ~(cond << _PAGE_BIT_SAVED_DIRTY); return v; } static inline pte_t pte_mksaveddirty(pte_t pte) { pteval_t v = native_pte_val(pte); v = mksaveddirty_shift(v); return native_make_pte(v); } static inline pte_t pte_clear_saveddirty(pte_t pte) { pteval_t v = native_pte_val(pte); v = clear_saveddirty_shift(v); return native_make_pte(v); } static inline pte_t pte_wrprotect(pte_t pte) { pte = pte_clear_flags(pte, _PAGE_RW); /* * Blindly clearing _PAGE_RW might accidentally create * a shadow stack PTE (Write=0,Dirty=1). Move the hardware * dirty value to the software bit, if present. */ return pte_mksaveddirty(pte); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pte_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_UFFD_WP; } static inline pte_t pte_mkuffd_wp(pte_t pte) { return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP)); } static inline pte_t pte_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY_BITS); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); return pte_mksaveddirty(pte); } static inline pte_t pte_mkwrite_shstk(pte_t pte) { pte = pte_clear_flags(pte, _PAGE_RW); return pte_set_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite_novma(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } struct vm_area_struct; pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma); #define pte_mkwrite pte_mkwrite static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } static inline pte_t pte_mkdevmap(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); } /* See comments above mksaveddirty_shift() */ static inline pmd_t pmd_mksaveddirty(pmd_t pmd) { pmdval_t v = native_pmd_val(pmd); v = mksaveddirty_shift(v); return native_make_pmd(v); } /* See comments above mksaveddirty_shift() */ static inline pmd_t pmd_clear_saveddirty(pmd_t pmd) { pmdval_t v = native_pmd_val(pmd); v = clear_saveddirty_shift(v); return native_make_pmd(v); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { pmd = pmd_clear_flags(pmd, _PAGE_RW); /* * Blindly clearing _PAGE_RW might accidentally create * a shadow stack PMD (RW=0, Dirty=1). Move the hardware * dirty value to the software bit. */ return pmd_mksaveddirty(pmd); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pmd_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_UFFD_WP; } static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) { return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP)); } static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); return pmd_mksaveddirty(pmd); } static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd) { pmd = pmd_clear_flags(pmd, _PAGE_RW); return pmd_set_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_mkdevmap(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DEVMAP); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); #define pmd_mkwrite pmd_mkwrite /* See comments above mksaveddirty_shift() */ static inline pud_t pud_mksaveddirty(pud_t pud) { pudval_t v = native_pud_val(pud); v = mksaveddirty_shift(v); return native_make_pud(v); } /* See comments above mksaveddirty_shift() */ static inline pud_t pud_clear_saveddirty(pud_t pud) { pudval_t v = native_pud_val(pud); v = clear_saveddirty_shift(v); return native_make_pud(v); } static inline pud_t pud_mkold(pud_t pud) { return pud_clear_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkclean(pud_t pud) { return pud_clear_flags(pud, _PAGE_DIRTY_BITS); } static inline pud_t pud_wrprotect(pud_t pud) { pud = pud_clear_flags(pud, _PAGE_RW); /* * Blindly clearing _PAGE_RW might accidentally create * a shadow stack PUD (RW=0, Dirty=1). Move the hardware * dirty value to the software bit. */ return pud_mksaveddirty(pud); } static inline pud_t pud_mkdirty(pud_t pud) { pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); return pud_mksaveddirty(pud); } static inline pud_t pud_mkdevmap(pud_t pud) { return pud_set_flags(pud, _PAGE_DEVMAP); } static inline pud_t pud_mkhuge(pud_t pud) { return pud_set_flags(pud, _PAGE_PSE); } static inline pud_t pud_mkyoung(pud_t pud) { return pud_set_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkwrite(pud_t pud) { pud = pud_set_flags(pud, _PAGE_RW); return pud_clear_saveddirty(pud); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SOFT_DIRTY; } static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; } static inline int pud_soft_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_SOFT_DIRTY; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_mksoft_dirty(pud_t pud) { return pud_set_flags(pud, _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_clear_soft_dirty(pud_t pud) { return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pgprotval_t check_pgprot(pgprot_t pgprot) { pgprotval_t massaged_val = massage_pgprot(pgprot); /* mmdebug.h can not be included here because of dependencies */ #ifdef CONFIG_DEBUG_VM WARN_ONCE(pgprot_val(pgprot) != massaged_val, "attempted to set unsupported pgprot: %016llx " "bits: %016llx supported: %016llx\n", (u64)pgprot_val(pgprot), (u64)pgprot_val(pgprot) ^ massaged_val, (u64)__supported_pte_mask); #endif return massaged_val; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PTE_PFN_MASK; return __pte(pfn | check_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PMD_PAGE_MASK; return __pmd(pfn | check_pgprot(pgprot)); } static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PUD_PAGE_MASK; return __pud(pfn | check_pgprot(pgprot)); } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return pfn_pmd(pmd_pfn(pmd), __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline pud_t pud_mkinvalid(pud_t pud) { return pfn_pud(pud_pfn(pud), __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte), oldval = val; pte_t pte_result; /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); pte_result = __pte(val); /* * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid: * 1. Marking Write=0 PTEs Dirty=1 * 2. Marking Dirty=1 PTEs Write=0 * * The first case cannot happen because the _PAGE_CHG_MASK will filter * out any Dirty bit passed in newprot. Handle the second case by * going through the mksaveddirty exercise. Only do this if the old * value was Write=1 to avoid doing this on Shadow Stack PTEs. */ if (oldval & _PAGE_RW) pte_result = pte_mksaveddirty(pte_result); else pte_result = pte_clear_saveddirty(pte_result); return pte_result; } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd), oldval = val; pmd_t pmd_result; val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY); val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); pmd_result = __pmd(val); /* * Avoid creating shadow stack PMD by accident. See comment in * pte_modify(). */ if (oldval & _PAGE_RW) pmd_result = pmd_mksaveddirty(pmd_result); else pmd_result = pmd_clear_saveddirty(pmd_result); return pmd_result; } static inline pud_t pud_modify(pud_t pud, pgprot_t newprot) { pudval_t val = pud_val(pud), oldval = val; pud_t pud_result; val &= _HPAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PUD_PAGE_MASK); pud_result = __pud(val); /* * Avoid creating shadow stack PUD by accident. See comment in * pte_modify(). */ if (oldval & _PAGE_RW) pud_result = pud_mksaveddirty(pud_result); else pud_result = pud_clear_saveddirty(pud_result); return pud_result; } /* * mprotect needs to preserve PAT and encryption bits when updating * vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x)) #define pmd_pgprot(x) __pgprot(pmd_flags(x)) #define pud_pgprot(x) __pgprot(pud_flags(x)) #define p4d_pgprot(x) __pgprot(p4d_flags(x)) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, enum page_cache_mode pcm, enum page_cache_mode new_pcm) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back * - request is write-through, return cannot be write-back * - request is write-through, return cannot be write-combine */ if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WC && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WC)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); /* * Take a PGD location (pgdp) and a pgd value that needs to be set there. * Populates the user and returns the resulting PGD that must be set in * the kernel copy of the page tables. */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { if (!static_cpu_has(X86_FEATURE_PTI)) return pgd; return __pti_set_user_pgtbl(pgdp, pgd); } #else /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { return pgd; } #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include <asm/pgtable_32.h> #else # include <asm/pgtable_64.h> #endif #ifndef __ASSEMBLY__ #include <linux/mm_types.h> #include <linux/mmdebug.h> #include <linux/log2.h> #include <asm/fixmap.h> static inline int pte_none(pte_t pte) { return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) { if (__pte_needs_invert(pte_val(pte))) return __pte(pte_val(pte) - (nr << PFN_PTE_SHIFT)); return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); } #define pte_advance_pfn pte_advance_pfn static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t a) { return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; } #endif #define pte_accessible pte_accessible static inline bool pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_flags(a) & _PAGE_PRESENT) return true; if ((pte_flags(a) & _PAGE_PROTNONE) && atomic_read(&mm->tlb_flush_pending)) return true; return false; } static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_PSE is needed too because * split_huge_page will temporarily clear the present bit (but * the _PAGE_PSE flag will remain set at all times while the * _PAGE_PRESENT bit is clear). */ return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } static inline int pmd_protnone(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } #endif /* CONFIG_NUMA_BALANCING */ static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ unsigned long val = native_pmd_val(pmd); return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) \ ({ \ pgprot_t __pgprot = pgprot; \ \ WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \ _PAGE_DIRTY); \ pfn_pte(page_to_pfn(page), __pgprot); \ }) static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) != (_KERNPG_TABLE & ~_PAGE_ACCESSED); } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #if CONFIG_PGTABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline pmd_t *pud_pgtable(pud_t pud) { return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define pud_leaf pud_leaf static inline bool pud_leaf(pud_t pud) { return pud_val(pud) & _PAGE_PSE; } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 static inline int p4d_none(p4d_t p4d) { return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int p4d_present(p4d_t p4d) { return p4d_flags(p4d) & _PAGE_PRESENT; } static inline pud_t *p4d_pgtable(p4d_t p4d) { return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) static inline int p4d_bad(p4d_t p4d) { unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (p4d_flags(p4d) & ~ignore_flags) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ static inline unsigned long p4d_index(unsigned long address) { return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); } #if CONFIG_PGTABLE_LEVELS > 4 static inline int pgd_present(pgd_t pgd) { if (!pgtable_l5_enabled()) return 1; return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) /* to find an entry in a page-table-directory. */ static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (!pgtable_l5_enabled()) return (p4d_t *)pgd; return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); } static inline int pgd_bad(pgd_t pgd) { unsigned long ignore_flags = _PAGE_USER; if (!pgtable_l5_enabled()) return 0; if (IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { if (!pgtable_l5_enabled()) return 0; /* * There is no need to do a workaround for the KNL stray * A/D bit erratum here. PGDs only point to page tables * except on 32-bit non-PAE which is not supported on * KNL. */ return !native_pgd_val(pgd); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* __ASSEMBLY__ */ #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ extern int direct_gbpages; void init_mem_mapping(void); void early_alloc_pgt_buf(void); void __init poking_init(void); unsigned long init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot); #ifdef CONFIG_X86_64 extern pgd_t trampoline_pgd_entry; #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) { pud_t res = *pudp; native_pud_clear(pudp); return res; } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { page_table_check_pmd_set(mm, pmdp, pmd); set_pmd(pmdp, pmd); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { page_table_check_pud_set(mm, pudp, pud); native_set_pud(pudp, pud); } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); page_table_check_pte_clear(mm, pte); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); page_table_check_pte_clear(mm, pte); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { /* * Avoid accidentally creating shadow stack PTEs * (Write=0,Dirty=1). Use cmpxchg() to prevent races with * the hardware setting Dirty=1. */ pte_t old_pte, new_pte; old_pte = READ_ONCE(*ptep); do { new_pte = pte_wrprotect(old_pte); } while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte)); } #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { pmd_t pmd = native_pmdp_get_and_clear(pmdp); page_table_check_pmd_clear(mm, pmd); return pmd; } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { pud_t pud = native_pudp_get_and_clear(pudp); page_table_check_pud_clear(mm, pud); return pud; } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { /* * Avoid accidentally creating shadow stack PTEs * (Write=0,Dirty=1). Use cmpxchg() to prevent races with * the hardware setting Dirty=1. */ pmd_t old_pmd, new_pmd; old_pmd = READ_ONCE(*pmdp); do { new_pmd = pmd_wrprotect(old_pmd); } while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd)); } #ifndef pmdp_establish #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); if (IS_ENABLED(CONFIG_SMP)) { return xchg(pmdp, pmd); } else { pmd_t old = *pmdp; WRITE_ONCE(*pmdp, pmd); return old; } } #endif #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline pud_t pudp_establish(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t pud) { page_table_check_pud_set(vma->vm_mm, pudp, pud); if (IS_ENABLED(CONFIG_SMP)) { return xchg(pudp, pud); } else { pud_t old = *pudp; WRITE_ONCE(*pudp, pud); return old; } } #endif #define __HAVE_ARCH_PMDP_INVALIDATE_AD extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); /* * Page table pages are page-aligned. The lower half of the top * level is used for userspace and the top half for the kernel. * * Returns true for parts of the PGD that map userspace and * false for the parts that map the kernel. */ static inline bool pgdp_maps_userspace(void *__ptr) { unsigned long ptr = (unsigned long)__ptr; return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); } #define pgd_leaf pgd_leaf static inline bool pgd_leaf(pgd_t pgd) { return false; } #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION /* * All top-level MITIGATION_PAGE_TABLE_ISOLATION page tables are order-1 pages * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and * the user one is in the last 4k. To switch between them, you * just need to flip the 12th bit in their addresses. */ #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT /* * This generates better code than the inline assembly in * __set_bit(). */ static inline void *ptr_set_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr |= BIT(bit); return (void *)__ptr; } static inline void *ptr_clear_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr &= ~BIT(bit); return (void *)__ptr; } static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) { return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) { return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) { return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) { return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */ /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anywhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; /* Clone the user space pgd as well */ memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), count * sizeof(pgd_t)); #endif } #define PTE_SHIFT ilog2(PTRS_PER_PTE) static inline int page_level_shift(enum pg_level level) { return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; } static inline unsigned long page_level_size(enum pg_level level) { return 1UL << page_level_shift(level); } static inline unsigned long page_level_mask(enum pg_level level) { return ~(page_level_size(level) - 1); } /* * The x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { } static inline void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, unsigned int nr) { } static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } static inline pte_t pte_swp_mkexclusive(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE); } static inline int pte_swp_exclusive(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); } static inline int pte_swp_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } #endif #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline pte_t pte_swp_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); } static inline int pte_swp_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_UFFD_WP; } static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); } static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); } static inline int pmd_swp_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; } static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline u16 pte_flags_pkey(unsigned long pte_flags) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* ifdef to avoid doing 59-bit shift on 32-bit values */ return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; #else return 0; #endif } static inline bool __pkru_allows_pkey(u16 pkey, bool write) { u32 pkru = read_pkru(); if (!__pkru_allows_read(pkru, pkey)) return false; if (write && !__pkru_allows_write(pkru, pkey)) return false; return true; } /* * 'pteval' can come from a PTE, PMD or PUD. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline bool __pte_access_permitted(unsigned long pteval, bool write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; /* * Write=0,Dirty=1 PTEs are shadow stack, which the kernel * shouldn't generally allow access to, but since they * are already Write=0, the below logic covers both cases. */ if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; return __pkru_allows_pkey(pte_flags_pkey(pteval), write); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { return __pte_access_permitted(pte_val(pte), write); } #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { return __pte_access_permitted(pmd_val(pmd), write); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return __pte_access_permitted(pud_val(pud), write); } #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); static inline bool arch_has_pfn_modify_check(void) { return boot_cpu_has_bug(X86_BUG_L1TF); } #define arch_check_zapped_pte arch_check_zapped_pte void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte); #define arch_check_zapped_pmd arch_check_zapped_pmd void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd); #define arch_check_zapped_pud arch_check_zapped_pud void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud); #ifdef CONFIG_XEN_PV #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young static inline bool arch_has_hw_nonleaf_pmd_young(void) { return !cpu_feature_enabled(X86_FEATURE_XENPV); } #endif #ifdef CONFIG_PAGE_TABLE_CHECK static inline bool pte_user_accessible_page(pte_t pte) { return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER); } static inline bool pmd_user_accessible_page(pmd_t pmd) { return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER); } static inline bool pud_user_accessible_page(pud_t pud) { return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER); } #endif #ifdef CONFIG_X86_SGX int arch_memory_failure(unsigned long pfn, int flags); #define arch_memory_failure arch_memory_failure bool arch_is_platform_page(u64 paddr); #define arch_is_platform_page arch_is_platform_page #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */ |
37 37 35 30 28 36 34 3 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | /* * Cryptographic API. * * MD5 Message Digest Algorithm (RFC1321). * * Derived from cryptoapi implementation, originally based on the * public domain implementation written by Colin Plumb in 1993. * * Copyright (c) Cryptoapi developers. * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/internal/hash.h> #include <crypto/md5.h> #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/types.h> #include <asm/byteorder.h> const u8 md5_zero_message_hash[MD5_DIGEST_SIZE] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e, }; EXPORT_SYMBOL_GPL(md5_zero_message_hash); #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) #define MD5STEP(f, w, x, y, z, in, s) \ (w += f(x, y, z) + in, w = (w<<s | w>>(32-s)) + x) static void md5_transform(__u32 *hash, __u32 const *in) { u32 a, b, c, d; a = hash[0]; b = hash[1]; c = hash[2]; d = hash[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); hash[0] += a; hash[1] += b; hash[2] += c; hash[3] += d; } static inline void md5_transform_helper(struct md5_state *ctx) { le32_to_cpu_array(ctx->block, sizeof(ctx->block) / sizeof(u32)); md5_transform(ctx->hash, ctx->block); } static int md5_init(struct shash_desc *desc) { struct md5_state *mctx = shash_desc_ctx(desc); mctx->hash[0] = MD5_H0; mctx->hash[1] = MD5_H1; mctx->hash[2] = MD5_H2; mctx->hash[3] = MD5_H3; mctx->byte_count = 0; return 0; } static int md5_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct md5_state *mctx = shash_desc_ctx(desc); const u32 avail = sizeof(mctx->block) - (mctx->byte_count & 0x3f); mctx->byte_count += len; if (avail > len) { memcpy((char *)mctx->block + (sizeof(mctx->block) - avail), data, len); return 0; } memcpy((char *)mctx->block + (sizeof(mctx->block) - avail), data, avail); md5_transform_helper(mctx); data += avail; len -= avail; while (len >= sizeof(mctx->block)) { memcpy(mctx->block, data, sizeof(mctx->block)); md5_transform_helper(mctx); data += sizeof(mctx->block); len -= sizeof(mctx->block); } memcpy(mctx->block, data, len); return 0; } static int md5_final(struct shash_desc *desc, u8 *out) { struct md5_state *mctx = shash_desc_ctx(desc); const unsigned int offset = mctx->byte_count & 0x3f; char *p = (char *)mctx->block + offset; int padding = 56 - (offset + 1); *p++ = 0x80; if (padding < 0) { memset(p, 0x00, padding + sizeof (u64)); md5_transform_helper(mctx); p = (char *)mctx->block; padding = 56; } memset(p, 0, padding); mctx->block[14] = mctx->byte_count << 3; mctx->block[15] = mctx->byte_count >> 29; le32_to_cpu_array(mctx->block, (sizeof(mctx->block) - sizeof(u64)) / sizeof(u32)); md5_transform(mctx->hash, mctx->block); cpu_to_le32_array(mctx->hash, sizeof(mctx->hash) / sizeof(u32)); memcpy(out, mctx->hash, sizeof(mctx->hash)); memset(mctx, 0, sizeof(*mctx)); return 0; } static int md5_export(struct shash_desc *desc, void *out) { struct md5_state *ctx = shash_desc_ctx(desc); memcpy(out, ctx, sizeof(*ctx)); return 0; } static int md5_import(struct shash_desc *desc, const void *in) { struct md5_state *ctx = shash_desc_ctx(desc); memcpy(ctx, in, sizeof(*ctx)); return 0; } static struct shash_alg alg = { .digestsize = MD5_DIGEST_SIZE, .init = md5_init, .update = md5_update, .final = md5_final, .export = md5_export, .import = md5_import, .descsize = sizeof(struct md5_state), .statesize = sizeof(struct md5_state), .base = { .cra_name = "md5", .cra_driver_name = "md5-generic", .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int __init md5_mod_init(void) { return crypto_register_shash(&alg); } static void __exit md5_mod_fini(void) { crypto_unregister_shash(&alg); } subsys_initcall(md5_mod_init); module_exit(md5_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MD5 Message Digest Algorithm"); MODULE_ALIAS_CRYPTO("md5"); |
40 40 40 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | // SPDX-License-Identifier: GPL-2.0 /* -*- linux-c -*- * sysctl_net_core.c: sysctl interface to net core subsystem. * * Begun April 1, 1996, Mike Shaver. * Added /proc/sys/net/core directory entry (empty =) ). [MS] */ #include <linux/filter.h> #include <linux/mm.h> #include <linux/sysctl.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/netdevice.h> #include <linux/ratelimit.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/sched/isolation.h> #include <net/ip.h> #include <net/sock.h> #include <net/net_ratelimit.h> #include <net/busy_poll.h> #include <net/pkt_sched.h> #include <net/hotdata.h> #include <net/proto_memory.h> #include <net/rps.h> #include "dev.h" static int int_3600 = 3600; static int min_sndbuf = SOCK_MIN_SNDBUF; static int min_rcvbuf = SOCK_MIN_RCVBUF; static int max_skb_frags = MAX_SKB_FRAGS; static int min_mem_pcpu_rsv = SK_MEMORY_PCPU_RESERVE; static int net_msg_warn; /* Unused, but still a sysctl */ int sysctl_fb_tunnels_only_for_init_net __read_mostly = 0; EXPORT_SYMBOL(sysctl_fb_tunnels_only_for_init_net); /* 0 - Keep current behavior: * IPv4: inherit all current settings from init_net * IPv6: reset all settings to default * 1 - Both inherit all current settings from init_net * 2 - Both reset all settings to default * 3 - Both inherit all settings from current netns */ int sysctl_devconf_inherit_init_net __read_mostly; EXPORT_SYMBOL(sysctl_devconf_inherit_init_net); #if IS_ENABLED(CONFIG_NET_FLOW_LIMIT) || IS_ENABLED(CONFIG_RPS) static void dump_cpumask(void *buffer, size_t *lenp, loff_t *ppos, struct cpumask *mask) { char kbuf[128]; int len; if (*ppos || !*lenp) { *lenp = 0; return; } len = min(sizeof(kbuf) - 1, *lenp); len = scnprintf(kbuf, len, "%*pb", cpumask_pr_args(mask)); if (!len) { *lenp = 0; return; } if (len < *lenp) kbuf[len++] = '\n'; memcpy(buffer, kbuf, len); *lenp = len; *ppos += len; } #endif #ifdef CONFIG_RPS static struct cpumask *rps_default_mask_cow_alloc(struct net *net) { struct cpumask *rps_default_mask; if (net->core.rps_default_mask) return net->core.rps_default_mask; rps_default_mask = kzalloc(cpumask_size(), GFP_KERNEL); if (!rps_default_mask) return NULL; /* pairs with READ_ONCE in rx_queue_default_mask() */ WRITE_ONCE(net->core.rps_default_mask, rps_default_mask); return rps_default_mask; } static int rps_default_mask_sysctl(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = (struct net *)table->data; int err = 0; rtnl_lock(); if (write) { struct cpumask *rps_default_mask = rps_default_mask_cow_alloc(net); err = -ENOMEM; if (!rps_default_mask) goto done; err = cpumask_parse(buffer, rps_default_mask); if (err) goto done; err = rps_cpumask_housekeeping(rps_default_mask); if (err) goto done; } else { dump_cpumask(buffer, lenp, ppos, net->core.rps_default_mask ? : cpu_none_mask); } done: rtnl_unlock(); return err; } static int rps_sock_flow_sysctl(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { unsigned int orig_size, size; int ret, i; struct ctl_table tmp = { .data = &size, .maxlen = sizeof(size), .mode = table->mode }; struct rps_sock_flow_table *orig_sock_table, *sock_table; static DEFINE_MUTEX(sock_flow_mutex); mutex_lock(&sock_flow_mutex); orig_sock_table = rcu_dereference_protected( net_hotdata.rps_sock_flow_table, lockdep_is_held(&sock_flow_mutex)); size = orig_size = orig_sock_table ? orig_sock_table->mask + 1 : 0; ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); if (write) { if (size) { if (size > 1<<29) { /* Enforce limit to prevent overflow */ mutex_unlock(&sock_flow_mutex); return -EINVAL; } size = roundup_pow_of_two(size); if (size != orig_size) { sock_table = vmalloc(RPS_SOCK_FLOW_TABLE_SIZE(size)); if (!sock_table) { mutex_unlock(&sock_flow_mutex); return -ENOMEM; } net_hotdata.rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1; sock_table->mask = size - 1; } else sock_table = orig_sock_table; for (i = 0; i < size; i++) sock_table->ents[i] = RPS_NO_CPU; } else sock_table = NULL; if (sock_table != orig_sock_table) { rcu_assign_pointer(net_hotdata.rps_sock_flow_table, sock_table); if (sock_table) { static_branch_inc(&rps_needed); static_branch_inc(&rfs_needed); } if (orig_sock_table) { static_branch_dec(&rps_needed); static_branch_dec(&rfs_needed); kvfree_rcu_mightsleep(orig_sock_table); } } } mutex_unlock(&sock_flow_mutex); return ret; } #endif /* CONFIG_RPS */ #ifdef CONFIG_NET_FLOW_LIMIT static DEFINE_MUTEX(flow_limit_update_mutex); static int flow_limit_cpu_sysctl(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct sd_flow_limit *cur; struct softnet_data *sd; cpumask_var_t mask; int i, len, ret = 0; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; if (write) { ret = cpumask_parse(buffer, mask); if (ret) goto done; mutex_lock(&flow_limit_update_mutex); len = sizeof(*cur) + netdev_flow_limit_table_len; for_each_possible_cpu(i) { sd = &per_cpu(softnet_data, i); cur = rcu_dereference_protected(sd->flow_limit, lockdep_is_held(&flow_limit_update_mutex)); if (cur && !cpumask_test_cpu(i, mask)) { RCU_INIT_POINTER(sd->flow_limit, NULL); kfree_rcu_mightsleep(cur); } else if (!cur && cpumask_test_cpu(i, mask)) { cur = kzalloc_node(len, GFP_KERNEL, cpu_to_node(i)); if (!cur) { /* not unwinding previous changes */ ret = -ENOMEM; goto write_unlock; } cur->num_buckets = netdev_flow_limit_table_len; rcu_assign_pointer(sd->flow_limit, cur); } } write_unlock: mutex_unlock(&flow_limit_update_mutex); } else { cpumask_clear(mask); rcu_read_lock(); for_each_possible_cpu(i) { sd = &per_cpu(softnet_data, i); if (rcu_dereference(sd->flow_limit)) cpumask_set_cpu(i, mask); } rcu_read_unlock(); dump_cpumask(buffer, lenp, ppos, mask); } done: free_cpumask_var(mask); return ret; } static int flow_limit_table_len_sysctl(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { unsigned int old, *ptr; int ret; mutex_lock(&flow_limit_update_mutex); ptr = table->data; old = *ptr; ret = proc_dointvec(table, write, buffer, lenp, ppos); if (!ret && write && !is_power_of_2(*ptr)) { *ptr = old; ret = -EINVAL; } mutex_unlock(&flow_limit_update_mutex); return ret; } #endif /* CONFIG_NET_FLOW_LIMIT */ #ifdef CONFIG_NET_SCHED static int set_default_qdisc(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { char id[IFNAMSIZ]; struct ctl_table tbl = { .data = id, .maxlen = IFNAMSIZ, }; int ret; qdisc_get_default(id, IFNAMSIZ); ret = proc_dostring(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) ret = qdisc_set_default(id); return ret; } #endif static int proc_do_dev_weight(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { static DEFINE_MUTEX(dev_weight_mutex); int ret, weight; mutex_lock(&dev_weight_mutex); ret = proc_dointvec(table, write, buffer, lenp, ppos); if (!ret && write) { weight = READ_ONCE(weight_p); WRITE_ONCE(net_hotdata.dev_rx_weight, weight * dev_weight_rx_bias); WRITE_ONCE(net_hotdata.dev_tx_weight, weight * dev_weight_tx_bias); } mutex_unlock(&dev_weight_mutex); return ret; } static int proc_do_rss_key(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table fake_table; char buf[NETDEV_RSS_KEY_LEN * 3]; snprintf(buf, sizeof(buf), "%*phC", NETDEV_RSS_KEY_LEN, netdev_rss_key); fake_table.data = buf; fake_table.maxlen = sizeof(buf); return proc_dostring(&fake_table, write, buffer, lenp, ppos); } #ifdef CONFIG_BPF_JIT static int proc_dointvec_minmax_bpf_enable(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret, jit_enable = *(int *)table->data; int min = *(int *)table->extra1; int max = *(int *)table->extra2; struct ctl_table tmp = *table; if (write && !capable(CAP_SYS_ADMIN)) return -EPERM; tmp.data = &jit_enable; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && !ret) { if (jit_enable < 2 || (jit_enable == 2 && bpf_dump_raw_ok(current_cred()))) { *(int *)table->data = jit_enable; if (jit_enable == 2) pr_warn("bpf_jit_enable = 2 was set! NEVER use this in production, only for JIT debugging!\n"); } else { ret = -EPERM; } } if (write && ret && min == max) pr_info_once("CONFIG_BPF_JIT_ALWAYS_ON is enabled, bpf_jit_enable is permanently set to 1.\n"); return ret; } # ifdef CONFIG_HAVE_EBPF_JIT static int proc_dointvec_minmax_bpf_restricted(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; return proc_dointvec_minmax(table, write, buffer, lenp, ppos); } # endif /* CONFIG_HAVE_EBPF_JIT */ static int proc_dolongvec_minmax_bpf_restricted(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } #endif static struct ctl_table net_core_table[] = { { .procname = "mem_pcpu_rsv", .data = &net_hotdata.sysctl_mem_pcpu_rsv, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_mem_pcpu_rsv, }, { .procname = "dev_weight", .data = &weight_p, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_do_dev_weight, }, { .procname = "dev_weight_rx_bias", .data = &dev_weight_rx_bias, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_do_dev_weight, }, { .procname = "dev_weight_tx_bias", .data = &dev_weight_tx_bias, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_do_dev_weight, }, { .procname = "netdev_max_backlog", .data = &net_hotdata.max_backlog, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "netdev_rss_key", .data = &netdev_rss_key, .maxlen = sizeof(int), .mode = 0444, .proc_handler = proc_do_rss_key, }, #ifdef CONFIG_BPF_JIT { .procname = "bpf_jit_enable", .data = &bpf_jit_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax_bpf_enable, # ifdef CONFIG_BPF_JIT_ALWAYS_ON .extra1 = SYSCTL_ONE, .extra2 = SYSCTL_ONE, # else .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, # endif }, # ifdef CONFIG_HAVE_EBPF_JIT { .procname = "bpf_jit_harden", .data = &bpf_jit_harden, .maxlen = sizeof(int), .mode = 0600, .proc_handler = proc_dointvec_minmax_bpf_restricted, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, { .procname = "bpf_jit_kallsyms", .data = &bpf_jit_kallsyms, .maxlen = sizeof(int), .mode = 0600, .proc_handler = proc_dointvec_minmax_bpf_restricted, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, # endif { .procname = "bpf_jit_limit", .data = &bpf_jit_limit, .maxlen = sizeof(long), .mode = 0600, .proc_handler = proc_dolongvec_minmax_bpf_restricted, .extra1 = SYSCTL_LONG_ONE, .extra2 = &bpf_jit_limit_max, }, #endif { .procname = "netdev_tstamp_prequeue", .data = &net_hotdata.tstamp_prequeue, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "message_cost", .data = &net_ratelimit_state.interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "message_burst", .data = &net_ratelimit_state.burst, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "tstamp_allow_data", .data = &sysctl_tstamp_allow_data, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE }, #ifdef CONFIG_RPS { .procname = "rps_sock_flow_entries", .maxlen = sizeof(int), .mode = 0644, .proc_handler = rps_sock_flow_sysctl }, #endif #ifdef CONFIG_NET_FLOW_LIMIT { .procname = "flow_limit_cpu_bitmap", .mode = 0644, .proc_handler = flow_limit_cpu_sysctl }, { .procname = "flow_limit_table_len", .data = &netdev_flow_limit_table_len, .maxlen = sizeof(int), .mode = 0644, .proc_handler = flow_limit_table_len_sysctl }, #endif /* CONFIG_NET_FLOW_LIMIT */ #ifdef CONFIG_NET_RX_BUSY_POLL { .procname = "busy_poll", .data = &sysctl_net_busy_poll, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, }, { .procname = "busy_read", .data = &sysctl_net_busy_read, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, }, #endif #ifdef CONFIG_NET_SCHED { .procname = "default_qdisc", .mode = 0644, .maxlen = IFNAMSIZ, .proc_handler = set_default_qdisc }, #endif { .procname = "netdev_budget", .data = &net_hotdata.netdev_budget, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "warnings", .data = &net_msg_warn, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "max_skb_frags", .data = &net_hotdata.sysctl_max_skb_frags, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = &max_skb_frags, }, { .procname = "netdev_budget_usecs", .data = &net_hotdata.netdev_budget_usecs, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, }, { .procname = "fb_tunnels_only_for_init_net", .data = &sysctl_fb_tunnels_only_for_init_net, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, { .procname = "devconf_inherit_init_net", .data = &sysctl_devconf_inherit_init_net, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_THREE, }, { .procname = "high_order_alloc_disable", .data = &net_high_order_alloc_disable_key.key, .maxlen = sizeof(net_high_order_alloc_disable_key), .mode = 0644, .proc_handler = proc_do_static_key, }, { .procname = "gro_normal_batch", .data = &net_hotdata.gro_normal_batch, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, }, { .procname = "netdev_unregister_timeout_secs", .data = &netdev_unregister_timeout_secs, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = &int_3600, }, { .procname = "skb_defer_max", .data = &net_hotdata.sysctl_skb_defer_max, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, }, }; static struct ctl_table netns_core_table[] = { #if IS_ENABLED(CONFIG_RPS) { .procname = "rps_default_mask", .data = &init_net, .mode = 0644, .proc_handler = rps_default_mask_sysctl }, #endif { .procname = "somaxconn", .data = &init_net.core.sysctl_somaxconn, .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .proc_handler = proc_dointvec_minmax }, { .procname = "optmem_max", .data = &init_net.core.sysctl_optmem_max, .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .proc_handler = proc_dointvec_minmax }, { .procname = "txrehash", .data = &init_net.core.sysctl_txrehash, .maxlen = sizeof(u8), .mode = 0644, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, .proc_handler = proc_dou8vec_minmax, }, /* sysctl_core_net_init() will set the values after this * to readonly in network namespaces */ { .procname = "wmem_max", .data = &sysctl_wmem_max, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_sndbuf, }, { .procname = "rmem_max", .data = &sysctl_rmem_max, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_rcvbuf, }, { .procname = "wmem_default", .data = &sysctl_wmem_default, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_sndbuf, }, { .procname = "rmem_default", .data = &sysctl_rmem_default, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &min_rcvbuf, }, }; static int __init fb_tunnels_only_for_init_net_sysctl_setup(char *str) { /* fallback tunnels for initns only */ if (!strncmp(str, "initns", 6)) sysctl_fb_tunnels_only_for_init_net = 1; /* no fallback tunnels anywhere */ else if (!strncmp(str, "none", 4)) sysctl_fb_tunnels_only_for_init_net = 2; return 1; } __setup("fb_tunnels=", fb_tunnels_only_for_init_net_sysctl_setup); static __net_init int sysctl_core_net_init(struct net *net) { size_t table_size = ARRAY_SIZE(netns_core_table); struct ctl_table *tbl; tbl = netns_core_table; if (!net_eq(net, &init_net)) { int i; tbl = kmemdup(tbl, sizeof(netns_core_table), GFP_KERNEL); if (tbl == NULL) goto err_dup; for (i = 0; i < table_size; ++i) { if (tbl[i].data == &sysctl_wmem_max) break; tbl[i].data += (char *)net - (char *)&init_net; } for (; i < table_size; ++i) tbl[i].mode &= ~0222; } net->core.sysctl_hdr = register_net_sysctl_sz(net, "net/core", tbl, table_size); if (net->core.sysctl_hdr == NULL) goto err_reg; return 0; err_reg: if (tbl != netns_core_table) kfree(tbl); err_dup: return -ENOMEM; } static __net_exit void sysctl_core_net_exit(struct net *net) { const struct ctl_table *tbl; tbl = net->core.sysctl_hdr->ctl_table_arg; unregister_net_sysctl_table(net->core.sysctl_hdr); BUG_ON(tbl == netns_core_table); #if IS_ENABLED(CONFIG_RPS) kfree(net->core.rps_default_mask); #endif kfree(tbl); } static __net_initdata struct pernet_operations sysctl_core_ops = { .init = sysctl_core_net_init, .exit = sysctl_core_net_exit, }; static __init int sysctl_core_init(void) { register_net_sysctl(&init_net, "net/core", net_core_table); return register_pernet_subsys(&sysctl_core_ops); } fs_initcall(sysctl_core_init); |
173 173 181 11 181 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | // SPDX-License-Identifier: GPL-2.0 /* * USB Serial Console driver * * Copyright (C) 2001 - 2002 Greg Kroah-Hartman (greg@kroah.com) * * Thanks to Randy Dunlap for the original version of this code. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/tty.h> #include <linux/console.h> #include <linux/serial.h> #include <linux/usb.h> #include <linux/usb/serial.h> struct usbcons_info { int magic; int break_flag; struct usb_serial_port *port; }; static struct usbcons_info usbcons_info; static struct console usbcons; /* * ------------------------------------------------------------ * USB Serial console driver * * Much of the code here is copied from drivers/char/serial.c * and implements a phony serial console in the same way that * serial.c does so that in case some software queries it, * it will get the same results. * * Things that are different from the way the serial port code * does things, is that we call the lower level usb-serial * driver code to initialize the device, and we set the initial * console speeds based on the command line arguments. * ------------------------------------------------------------ */ static const struct tty_operations usb_console_fake_tty_ops = { }; /* * The parsing of the command line works exactly like the * serial.c code, except that the specifier is "ttyUSB" instead * of "ttyS". */ static int usb_console_setup(struct console *co, char *options) { struct usbcons_info *info = &usbcons_info; int baud = 9600; int bits = 8; int parity = 'n'; int doflow = 0; int cflag = CREAD | HUPCL | CLOCAL; char *s; struct usb_serial *serial; struct usb_serial_port *port; int retval; struct tty_struct *tty = NULL; struct ktermios dummy; if (options) { baud = simple_strtoul(options, NULL, 10); s = options; while (*s >= '0' && *s <= '9') s++; if (*s) parity = *s++; if (*s) bits = *s++ - '0'; if (*s) doflow = (*s++ == 'r'); } /* Sane default */ if (baud == 0) baud = 9600; switch (bits) { case 7: cflag |= CS7; break; default: case 8: cflag |= CS8; break; } switch (parity) { case 'o': case 'O': cflag |= PARODD; break; case 'e': case 'E': cflag |= PARENB; break; } if (doflow) cflag |= CRTSCTS; /* * no need to check the index here: if the index is wrong, console * code won't call us */ port = usb_serial_port_get_by_minor(co->index); if (port == NULL) { /* no device is connected yet, sorry :( */ pr_err("No USB device connected to ttyUSB%i\n", co->index); return -ENODEV; } serial = port->serial; retval = usb_autopm_get_interface(serial->interface); if (retval) goto error_get_interface; tty_port_tty_set(&port->port, NULL); info->port = port; ++port->port.count; if (!tty_port_initialized(&port->port)) { if (serial->type->set_termios) { /* * allocate a fake tty so the driver can initialize * the termios structure, then later call set_termios to * configure according to command line arguments */ tty = kzalloc(sizeof(*tty), GFP_KERNEL); if (!tty) { retval = -ENOMEM; goto reset_open_count; } kref_init(&tty->kref); tty->driver = usb_serial_tty_driver; tty->index = co->index; init_ldsem(&tty->ldisc_sem); spin_lock_init(&tty->files_lock); INIT_LIST_HEAD(&tty->tty_files); kref_get(&tty->driver->kref); __module_get(tty->driver->owner); tty->ops = &usb_console_fake_tty_ops; tty_init_termios(tty); tty_port_tty_set(&port->port, tty); } /* only call the device specific open if this * is the first time the port is opened */ retval = serial->type->open(NULL, port); if (retval) { dev_err(&port->dev, "could not open USB console port\n"); goto fail; } if (serial->type->set_termios) { tty->termios.c_cflag = cflag; tty_termios_encode_baud_rate(&tty->termios, baud, baud); memset(&dummy, 0, sizeof(struct ktermios)); serial->type->set_termios(tty, port, &dummy); tty_port_tty_set(&port->port, NULL); tty_save_termios(tty); tty_kref_put(tty); } tty_port_set_initialized(&port->port, true); } /* Now that any required fake tty operations are completed restore * the tty port count */ --port->port.count; /* The console is special in terms of closing the device so * indicate this port is now acting as a system console. */ port->port.console = 1; mutex_unlock(&serial->disc_mutex); return retval; fail: tty_port_tty_set(&port->port, NULL); tty_kref_put(tty); reset_open_count: port->port.count = 0; info->port = NULL; usb_autopm_put_interface(serial->interface); error_get_interface: mutex_unlock(&serial->disc_mutex); usb_serial_put(serial); return retval; } static void usb_console_write(struct console *co, const char *buf, unsigned count) { static struct usbcons_info *info = &usbcons_info; struct usb_serial_port *port = info->port; struct usb_serial *serial; int retval = -ENODEV; if (!port || port->serial->dev->state == USB_STATE_NOTATTACHED) return; serial = port->serial; if (count == 0) return; dev_dbg(&port->dev, "%s - %d byte(s)\n", __func__, count); if (!port->port.console) { dev_dbg(&port->dev, "%s - port not opened\n", __func__); return; } while (count) { unsigned int i; unsigned int lf; /* search for LF so we can insert CR if necessary */ for (i = 0, lf = 0 ; i < count ; i++) { if (*(buf + i) == 10) { lf = 1; i++; break; } } /* pass on to the driver specific version of this function if it is available */ retval = serial->type->write(NULL, port, buf, i); dev_dbg(&port->dev, "%s - write: %d\n", __func__, retval); if (lf) { /* append CR after LF */ unsigned char cr = 13; retval = serial->type->write(NULL, port, &cr, 1); dev_dbg(&port->dev, "%s - write cr: %d\n", __func__, retval); } buf += i; count -= i; } } static struct tty_driver *usb_console_device(struct console *co, int *index) { struct tty_driver **p = (struct tty_driver **)co->data; if (!*p) return NULL; *index = co->index; return *p; } static struct console usbcons = { .name = "ttyUSB", .write = usb_console_write, .device = usb_console_device, .setup = usb_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &usb_serial_tty_driver, }; void usb_serial_console_disconnect(struct usb_serial *serial) { if (serial->port[0] && serial->port[0] == usbcons_info.port) { usb_serial_console_exit(); usb_serial_put(serial); } } void usb_serial_console_init(int minor) { if (minor == 0) { /* * Call register_console() if this is the first device plugged * in. If we call it earlier, then the callback to * console_setup() will fail, as there is not a device seen by * the USB subsystem yet. */ /* * Register console. * NOTES: * console_setup() is called (back) immediately (from * register_console). console_write() is called immediately * from register_console iff CON_PRINTBUFFER is set in flags. */ pr_debug("registering the USB serial console.\n"); register_console(&usbcons); } } void usb_serial_console_exit(void) { if (usbcons_info.port) { unregister_console(&usbcons); usbcons_info.port->port.console = 0; usbcons_info.port = NULL; } } |
34 17 6 3 5 1 6 21 20 5 11 2 9 11 13 15 4 1 12 14 1 2 2 2 2 2 2 8 2 6 2 2 2 2 2 2 2 2 2 2 1 2 2 25 2 21 8 3 24 4 1 27 24 2 28 23 2 41 1 39 2 39 2 36 5 10 31 23 4 14 20 1 1 34 2 2 1 11 11 11 1 10 8 8 8 8 1879 1877 1879 629 151 2 2 11 2 59 71 71 21 1 1 1 1 1 9 1 4 4 1 46 5 41 37 7 2 4 64 3 45 15 1 5 56 47 42 1 40 40 8 13 8 13 10 2 1 3 8 11 8 8 1 7 11 31 6 6 6 61 60 1 60 60 59 3 59 3 61 67 67 1 1 65 1 65 11 11 11 11 11 14 14 14 9 14 14 14 14 14 14 14 9 9 10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 | // SPDX-License-Identifier: GPL-2.0 /* net/sched/sch_taprio.c Time Aware Priority Scheduler * * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> * */ #include <linux/ethtool.h> #include <linux/ethtool_netlink.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/time.h> #include <net/gso.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/sch_generic.h> #include <net/sock.h> #include <net/tcp.h> #define TAPRIO_STAT_NOT_SET (~0ULL) #include "sch_mqprio_lib.h" static LIST_HEAD(taprio_list); static struct static_key_false taprio_have_broken_mqprio; static struct static_key_false taprio_have_working_mqprio; #define TAPRIO_ALL_GATES_OPEN -1 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) #define TAPRIO_SUPPORTED_FLAGS \ (TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) #define TAPRIO_FLAGS_INVALID U32_MAX struct sched_entry { /* Durations between this GCL entry and the GCL entry where the * respective traffic class gate closes */ u64 gate_duration[TC_MAX_QUEUE]; atomic_t budget[TC_MAX_QUEUE]; /* The qdisc makes some effort so that no packet leaves * after this time */ ktime_t gate_close_time[TC_MAX_QUEUE]; struct list_head list; /* Used to calculate when to advance the schedule */ ktime_t end_time; ktime_t next_txtime; int index; u32 gate_mask; u32 interval; u8 command; }; struct sched_gate_list { /* Longest non-zero contiguous gate durations per traffic class, * or 0 if a traffic class gate never opens during the schedule. */ u64 max_open_gate_duration[TC_MAX_QUEUE]; u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ struct rcu_head rcu; struct list_head entries; size_t num_entries; ktime_t cycle_end_time; s64 cycle_time; s64 cycle_time_extension; s64 base_time; }; struct taprio_sched { struct Qdisc **qdiscs; struct Qdisc *root; u32 flags; enum tk_offsets tk_offset; int clockid; bool offloaded; bool detected_mqprio; bool broken_mqprio; atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ * speeds it's sub-nanoseconds per byte */ /* Protects the update side of the RCU protected current_entry */ spinlock_t current_entry_lock; struct sched_entry __rcu *current_entry; struct sched_gate_list __rcu *oper_sched; struct sched_gate_list __rcu *admin_sched; struct hrtimer advance_timer; struct list_head taprio_list; int cur_txq[TC_MAX_QUEUE]; u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ u32 txtime_delay; }; struct __tc_taprio_qopt_offload { refcount_t users; struct tc_taprio_qopt_offload offload; }; static void taprio_calculate_gate_durations(struct taprio_sched *q, struct sched_gate_list *sched) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); struct sched_entry *entry, *cur; int tc; list_for_each_entry(entry, &sched->entries, list) { u32 gates_still_open = entry->gate_mask; /* For each traffic class, calculate each open gate duration, * starting at this schedule entry and ending at the schedule * entry containing a gate close event for that TC. */ cur = entry; do { if (!gates_still_open) break; for (tc = 0; tc < num_tc; tc++) { if (!(gates_still_open & BIT(tc))) continue; if (cur->gate_mask & BIT(tc)) entry->gate_duration[tc] += cur->interval; else gates_still_open &= ~BIT(tc); } cur = list_next_entry_circular(cur, &sched->entries, list); } while (cur != entry); /* Keep track of the maximum gate duration for each traffic * class, taking care to not confuse a traffic class which is * temporarily closed with one that is always closed. */ for (tc = 0; tc < num_tc; tc++) if (entry->gate_duration[tc] && sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; } } static bool taprio_entry_allows_tx(ktime_t skb_end_time, struct sched_entry *entry, int tc) { return ktime_before(skb_end_time, entry->gate_close_time[tc]); } static ktime_t sched_base_time(const struct sched_gate_list *sched) { if (!sched) return KTIME_MAX; return ns_to_ktime(sched->base_time); } static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) { /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); switch (tk_offset) { case TK_OFFS_MAX: return mono; default: return ktime_mono_to_any(mono, tk_offset); } } static ktime_t taprio_get_time(const struct taprio_sched *q) { return taprio_mono_to_any(q, ktime_get()); } static void taprio_free_sched_cb(struct rcu_head *head) { struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); struct sched_entry *entry, *n; list_for_each_entry_safe(entry, n, &sched->entries, list) { list_del(&entry->list); kfree(entry); } kfree(sched); } static void switch_schedules(struct taprio_sched *q, struct sched_gate_list **admin, struct sched_gate_list **oper) { rcu_assign_pointer(q->oper_sched, *admin); rcu_assign_pointer(q->admin_sched, NULL); if (*oper) call_rcu(&(*oper)->rcu, taprio_free_sched_cb); *oper = *admin; *admin = NULL; } /* Get how much time has been already elapsed in the current cycle. */ static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) { ktime_t time_since_sched_start; s32 time_elapsed; time_since_sched_start = ktime_sub(time, sched->base_time); div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); return time_elapsed; } static ktime_t get_interval_end_time(struct sched_gate_list *sched, struct sched_gate_list *admin, struct sched_entry *entry, ktime_t intv_start) { s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); ktime_t intv_end, cycle_ext_end, cycle_end; cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); intv_end = ktime_add_ns(intv_start, entry->interval); cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); if (ktime_before(intv_end, cycle_end)) return intv_end; else if (admin && admin != sched && ktime_after(admin->base_time, cycle_end) && ktime_before(admin->base_time, cycle_ext_end)) return admin->base_time; else return cycle_end; } static int length_to_duration(struct taprio_sched *q, int len) { return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); } static int duration_to_length(struct taprio_sched *q, u64 duration) { return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); } /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the * q->max_sdu[] requested by the user and the max_sdu dynamically determined by * the maximum open gate durations at the given link speed. */ static void taprio_update_queue_max_sdu(struct taprio_sched *q, struct sched_gate_list *sched, struct qdisc_size_table *stab) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); u32 max_sdu_from_user; u32 max_sdu_dynamic; u32 max_sdu; int tc; for (tc = 0; tc < num_tc; tc++) { max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; /* TC gate never closes => keep the queueMaxSDU * selected by the user */ if (sched->max_open_gate_duration[tc] == sched->cycle_time) { max_sdu_dynamic = U32_MAX; } else { u32 max_frm_len; max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); /* Compensate for L1 overhead from size table, * but don't let the frame size go negative */ if (stab) { max_frm_len -= stab->szopts.overhead; max_frm_len = max_t(int, max_frm_len, dev->hard_header_len + 1); } max_sdu_dynamic = max_frm_len - dev->hard_header_len; if (max_sdu_dynamic > dev->max_mtu) max_sdu_dynamic = U32_MAX; } max_sdu = min(max_sdu_dynamic, max_sdu_from_user); if (max_sdu != U32_MAX) { sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; sched->max_sdu[tc] = max_sdu; } else { sched->max_frm_len[tc] = U32_MAX; /* never oversized */ sched->max_sdu[tc] = 0; } } } /* Returns the entry corresponding to next available interval. If * validate_interval is set, it only validates whether the timestamp occurs * when the gate corresponding to the skb's traffic class is open. */ static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, struct Qdisc *sch, struct sched_gate_list *sched, struct sched_gate_list *admin, ktime_t time, ktime_t *interval_start, ktime_t *interval_end, bool validate_interval) { ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; struct sched_entry *entry = NULL, *entry_found = NULL; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); bool entry_available = false; s32 cycle_elapsed; int tc, n; tc = netdev_get_prio_tc_map(dev, skb->priority); packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); *interval_start = 0; *interval_end = 0; if (!sched) return NULL; cycle = sched->cycle_time; cycle_elapsed = get_cycle_time_elapsed(sched, time); curr_intv_end = ktime_sub_ns(time, cycle_elapsed); cycle_end = ktime_add_ns(curr_intv_end, cycle); list_for_each_entry(entry, &sched->entries, list) { curr_intv_start = curr_intv_end; curr_intv_end = get_interval_end_time(sched, admin, entry, curr_intv_start); if (ktime_after(curr_intv_start, cycle_end)) break; if (!(entry->gate_mask & BIT(tc)) || packet_transmit_time > entry->interval) continue; txtime = entry->next_txtime; if (ktime_before(txtime, time) || validate_interval) { transmit_end_time = ktime_add_ns(time, packet_transmit_time); if ((ktime_before(curr_intv_start, time) && ktime_before(transmit_end_time, curr_intv_end)) || (ktime_after(curr_intv_start, time) && !validate_interval)) { entry_found = entry; *interval_start = curr_intv_start; *interval_end = curr_intv_end; break; } else if (!entry_available && !validate_interval) { /* Here, we are just trying to find out the * first available interval in the next cycle. */ entry_available = true; entry_found = entry; *interval_start = ktime_add_ns(curr_intv_start, cycle); *interval_end = ktime_add_ns(curr_intv_end, cycle); } } else if (ktime_before(txtime, earliest_txtime) && !entry_available) { earliest_txtime = txtime; entry_found = entry; n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); *interval_start = ktime_add(curr_intv_start, n * cycle); *interval_end = ktime_add(curr_intv_end, n * cycle); } } return entry_found; } static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct sched_gate_list *sched, *admin; ktime_t interval_start, interval_end; struct sched_entry *entry; rcu_read_lock(); sched = rcu_dereference(q->oper_sched); admin = rcu_dereference(q->admin_sched); entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, &interval_start, &interval_end, true); rcu_read_unlock(); return entry; } /* This returns the tstamp value set by TCP in terms of the set clock. */ static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) { unsigned int offset = skb_network_offset(skb); const struct ipv6hdr *ipv6h; const struct iphdr *iph; struct ipv6hdr _ipv6h; ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (!ipv6h) return 0; if (ipv6h->version == 4) { iph = (struct iphdr *)ipv6h; offset += iph->ihl * 4; /* special-case 6in4 tunnelling, as that is a common way to get * v6 connectivity in the home */ if (iph->protocol == IPPROTO_IPV6) { ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) return 0; } else if (iph->protocol != IPPROTO_TCP) { return 0; } } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { return 0; } return taprio_mono_to_any(q, skb->skb_mstamp_ns); } /* There are a few scenarios where we will have to modify the txtime from * what is read from next_txtime in sched_entry. They are: * 1. If txtime is in the past, * a. The gate for the traffic class is currently open and packet can be * transmitted before it closes, schedule the packet right away. * b. If the gate corresponding to the traffic class is going to open later * in the cycle, set the txtime of packet to the interval start. * 2. If txtime is in the future, there are packets corresponding to the * current traffic class waiting to be transmitted. So, the following * possibilities exist: * a. We can transmit the packet before the window containing the txtime * closes. * b. The window might close before the transmission can be completed * successfully. So, schedule the packet in the next open window. */ static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) { ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; struct taprio_sched *q = qdisc_priv(sch); struct sched_gate_list *sched, *admin; ktime_t minimum_time, now, txtime; int len, packet_transmit_time; struct sched_entry *entry; bool sched_changed; now = taprio_get_time(q); minimum_time = ktime_add_ns(now, q->txtime_delay); tcp_tstamp = get_tcp_tstamp(q, skb); minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); rcu_read_lock(); admin = rcu_dereference(q->admin_sched); sched = rcu_dereference(q->oper_sched); if (admin && ktime_after(minimum_time, admin->base_time)) switch_schedules(q, &admin, &sched); /* Until the schedule starts, all the queues are open */ if (!sched || ktime_before(minimum_time, sched->base_time)) { txtime = minimum_time; goto done; } len = qdisc_pkt_len(skb); packet_transmit_time = length_to_duration(q, len); do { sched_changed = false; entry = find_entry_to_transmit(skb, sch, sched, admin, minimum_time, &interval_start, &interval_end, false); if (!entry) { txtime = 0; goto done; } txtime = entry->next_txtime; txtime = max_t(ktime_t, txtime, minimum_time); txtime = max_t(ktime_t, txtime, interval_start); if (admin && admin != sched && ktime_after(txtime, admin->base_time)) { sched = admin; sched_changed = true; continue; } transmit_end_time = ktime_add(txtime, packet_transmit_time); minimum_time = transmit_end_time; /* Update the txtime of current entry to the next time it's * interval starts. */ if (ktime_after(transmit_end_time, interval_end)) entry->next_txtime = ktime_add(interval_start, sched->cycle_time); } while (sched_changed || ktime_after(transmit_end_time, interval_end)); entry->next_txtime = transmit_end_time; done: rcu_read_unlock(); return txtime; } /* Devices with full offload are expected to honor this in hardware */ static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *sched; int prio = skb->priority; bool exceeds = false; u8 tc; tc = netdev_get_prio_tc_map(dev, prio); rcu_read_lock(); sched = rcu_dereference(q->oper_sched); if (sched && skb->len > sched->max_frm_len[tc]) exceeds = true; rcu_read_unlock(); return exceeds; } static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, struct Qdisc *child, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); /* sk_flags are only safe to use on full sockets. */ if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { if (!is_valid_interval(skb, sch)) return qdisc_drop(skb, sch, to_free); } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { skb->tstamp = get_packet_txtime(skb, sch); if (!skb->tstamp) return qdisc_drop(skb, sch, to_free); } qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; return qdisc_enqueue(skb, child, to_free); } static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, struct Qdisc *child, struct sk_buff **to_free) { unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); netdev_features_t features = netif_skb_features(skb); struct sk_buff *segs, *nskb; int ret; segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) return qdisc_drop(skb, sch, to_free); skb_list_walk_safe(segs, segs, nskb) { skb_mark_not_on_list(segs); qdisc_skb_cb(segs)->pkt_len = segs->len; slen += segs->len; /* FIXME: we should be segmenting to a smaller size * rather than dropping these */ if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) ret = qdisc_drop(segs, sch, to_free); else ret = taprio_enqueue_one(segs, sch, child, to_free); if (ret != NET_XMIT_SUCCESS) { if (net_xmit_drop_count(ret)) qdisc_qstats_drop(sch); } else { numsegs++; } } if (numsegs > 1) qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); consume_skb(skb); return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; } /* Will not be called in the full offload case, since the TX queues are * attached to the Qdisc created using qdisc_create_dflt() */ static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); struct Qdisc *child; int queue; queue = skb_get_queue_mapping(skb); child = q->qdiscs[queue]; if (unlikely(!child)) return qdisc_drop(skb, sch, to_free); if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { /* Large packets might not be transmitted when the transmission * duration exceeds any configured interval. Therefore, segment * the skb into smaller chunks. Drivers with full offload are * expected to handle this in hardware. */ if (skb_is_gso(skb)) return taprio_enqueue_segmented(skb, sch, child, to_free); return qdisc_drop(skb, sch, to_free); } return taprio_enqueue_one(skb, sch, child, to_free); } static struct sk_buff *taprio_peek(struct Qdisc *sch) { WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); return NULL; } static void taprio_set_budgets(struct taprio_sched *q, struct sched_gate_list *sched, struct sched_entry *entry) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); int tc, budget; for (tc = 0; tc < num_tc; tc++) { /* Traffic classes which never close have infinite budget */ if (entry->gate_duration[tc] == sched->cycle_time) budget = INT_MAX; else budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); atomic_set(&entry->budget[tc], budget); } } /* When an skb is sent, it consumes from the budget of all traffic classes */ static int taprio_update_budgets(struct sched_entry *entry, size_t len, int tc_consumed, int num_tc) { int tc, budget, new_budget = 0; for (tc = 0; tc < num_tc; tc++) { budget = atomic_read(&entry->budget[tc]); /* Don't consume from infinite budget */ if (budget == INT_MAX) { if (tc == tc_consumed) new_budget = budget; continue; } if (tc == tc_consumed) new_budget = atomic_sub_return(len, &entry->budget[tc]); else atomic_sub(len, &entry->budget[tc]); } return new_budget; } static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, struct sched_entry *entry, u32 gate_mask) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct Qdisc *child = q->qdiscs[txq]; int num_tc = netdev_get_num_tc(dev); struct sk_buff *skb; ktime_t guard; int prio; int len; u8 tc; if (unlikely(!child)) return NULL; if (TXTIME_ASSIST_IS_ENABLED(q->flags)) goto skip_peek_checks; skb = child->ops->peek(child); if (!skb) return NULL; prio = skb->priority; tc = netdev_get_prio_tc_map(dev, prio); if (!(gate_mask & BIT(tc))) return NULL; len = qdisc_pkt_len(skb); guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); /* In the case that there's no gate entry, there's no * guard band ... */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && !taprio_entry_allows_tx(guard, entry, tc)) return NULL; /* ... and no budget. */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && taprio_update_budgets(entry, len, tc, num_tc) < 0) return NULL; skip_peek_checks: skb = child->ops->dequeue(child); if (unlikely(!skb)) return NULL; qdisc_bstats_update(sch, skb); qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; return skb; } static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) { int offset = dev->tc_to_txq[tc].offset; int count = dev->tc_to_txq[tc].count; (*txq)++; if (*txq == offset + count) *txq = offset; } /* Prioritize higher traffic classes, and select among TXQs belonging to the * same TC using round robin */ static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, struct sched_entry *entry, u32 gate_mask) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int num_tc = netdev_get_num_tc(dev); struct sk_buff *skb; int tc; for (tc = num_tc - 1; tc >= 0; tc--) { int first_txq = q->cur_txq[tc]; if (!(gate_mask & BIT(tc))) continue; do { skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], entry, gate_mask); taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); if (q->cur_txq[tc] >= dev->num_tx_queues) q->cur_txq[tc] = first_txq; if (skb) return skb; } while (q->cur_txq[tc] != first_txq); } return NULL; } /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic * class other than to determine whether the gate is open or not */ static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, struct sched_entry *entry, u32 gate_mask) { struct net_device *dev = qdisc_dev(sch); struct sk_buff *skb; int i; for (i = 0; i < dev->num_tx_queues; i++) { skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); if (skb) return skb; } return NULL; } /* Will not be called in the full offload case, since the TX queues are * attached to the Qdisc created using qdisc_create_dflt() */ static struct sk_buff *taprio_dequeue(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct sk_buff *skb = NULL; struct sched_entry *entry; u32 gate_mask; rcu_read_lock(); entry = rcu_dereference(q->current_entry); /* if there's no entry, it means that the schedule didn't * start yet, so force all gates to be open, this is in * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 * "AdminGateStates" */ gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; if (!gate_mask) goto done; if (static_branch_unlikely(&taprio_have_broken_mqprio) && !static_branch_likely(&taprio_have_working_mqprio)) { /* Single NIC kind which is broken */ skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); } else if (static_branch_likely(&taprio_have_working_mqprio) && !static_branch_unlikely(&taprio_have_broken_mqprio)) { /* Single NIC kind which prioritizes properly */ skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); } else { /* Mixed NIC kinds present in system, need dynamic testing */ if (q->broken_mqprio) skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); else skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); } done: rcu_read_unlock(); return skb; } static bool should_restart_cycle(const struct sched_gate_list *oper, const struct sched_entry *entry) { if (list_is_last(&entry->list, &oper->entries)) return true; if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) return true; return false; } static bool should_change_schedules(const struct sched_gate_list *admin, const struct sched_gate_list *oper, ktime_t end_time) { ktime_t next_base_time, extension_time; if (!admin) return false; next_base_time = sched_base_time(admin); /* This is the simple case, the end_time would fall after * the next schedule base_time. */ if (ktime_compare(next_base_time, end_time) <= 0) return true; /* This is the cycle_time_extension case, if the end_time * plus the amount that can be extended would fall after the * next schedule base_time, we can extend the current schedule * for that amount. */ extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about * how precisely the extension should be made. So after * conformance testing, this logic may change. */ if (ktime_compare(next_base_time, extension_time) <= 0) return true; return false; } static enum hrtimer_restart advance_sched(struct hrtimer *timer) { struct taprio_sched *q = container_of(timer, struct taprio_sched, advance_timer); struct net_device *dev = qdisc_dev(q->root); struct sched_gate_list *oper, *admin; int num_tc = netdev_get_num_tc(dev); struct sched_entry *entry, *next; struct Qdisc *sch = q->root; ktime_t end_time; int tc; spin_lock(&q->current_entry_lock); entry = rcu_dereference_protected(q->current_entry, lockdep_is_held(&q->current_entry_lock)); oper = rcu_dereference_protected(q->oper_sched, lockdep_is_held(&q->current_entry_lock)); admin = rcu_dereference_protected(q->admin_sched, lockdep_is_held(&q->current_entry_lock)); if (!oper) switch_schedules(q, &admin, &oper); /* This can happen in two cases: 1. this is the very first run * of this function (i.e. we weren't running any schedule * previously); 2. The previous schedule just ended. The first * entry of all schedules are pre-calculated during the * schedule initialization. */ if (unlikely(!entry || entry->end_time == oper->base_time)) { next = list_first_entry(&oper->entries, struct sched_entry, list); end_time = next->end_time; goto first_run; } if (should_restart_cycle(oper, entry)) { next = list_first_entry(&oper->entries, struct sched_entry, list); oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, oper->cycle_time); } else { next = list_next_entry(entry, list); } end_time = ktime_add_ns(entry->end_time, next->interval); end_time = min_t(ktime_t, end_time, oper->cycle_end_time); for (tc = 0; tc < num_tc; tc++) { if (next->gate_duration[tc] == oper->cycle_time) next->gate_close_time[tc] = KTIME_MAX; else next->gate_close_time[tc] = ktime_add_ns(entry->end_time, next->gate_duration[tc]); } if (should_change_schedules(admin, oper, end_time)) { /* Set things so the next time this runs, the new * schedule runs. */ end_time = sched_base_time(admin); switch_schedules(q, &admin, &oper); } next->end_time = end_time; taprio_set_budgets(q, oper, next); first_run: rcu_assign_pointer(q->current_entry, next); spin_unlock(&q->current_entry_lock); hrtimer_set_expires(&q->advance_timer, end_time); rcu_read_lock(); __netif_schedule(sch); rcu_read_unlock(); return HRTIMER_RESTART; } static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, }; static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { [TCA_TAPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, TC_FP_EXPRESS, TC_FP_PREEMPTIBLE), }; static const struct netlink_range_validation_signed taprio_cycle_time_range = { .min = 0, .max = INT_MAX, }; static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { [TCA_TAPRIO_ATTR_PRIOMAP] = { .len = sizeof(struct tc_mqprio_qopt) }, [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range), [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_FLAGS] = NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS), [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, }; static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, struct sched_entry *entry, struct netlink_ext_ack *extack) { int min_duration = length_to_duration(q, ETH_ZLEN); u32 interval = 0; if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) entry->command = nla_get_u8( tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) entry->gate_mask = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) interval = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); /* The interval should allow at least the minimum ethernet * frame to go out. */ if (interval < min_duration) { NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); return -EINVAL; } entry->interval = interval; return 0; } static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, struct sched_entry *entry, int index, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; int err; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, entry_policy, NULL); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } entry->index = index; return fill_sched_entry(q, tb, entry, extack); } static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, struct sched_gate_list *sched, struct netlink_ext_ack *extack) { struct nlattr *n; int err, rem; int i = 0; if (!list) return -EINVAL; nla_for_each_nested(n, list, rem) { struct sched_entry *entry; if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); continue; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { NL_SET_ERR_MSG(extack, "Not enough memory for entry"); return -ENOMEM; } err = parse_sched_entry(q, n, entry, i, extack); if (err < 0) { kfree(entry); return err; } list_add_tail(&entry->list, &sched->entries); i++; } sched->num_entries = i; return i; } static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, struct sched_gate_list *new, struct netlink_ext_ack *extack) { int err = 0; if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); return -ENOTSUPP; } if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); if (err < 0) return err; if (!new->cycle_time) { struct sched_entry *entry; ktime_t cycle = 0; list_for_each_entry(entry, &new->entries, list) cycle = ktime_add_ns(cycle, entry->interval); if (cycle < 0 || cycle > INT_MAX) { NL_SET_ERR_MSG(extack, "'cycle_time' is too big"); return -EINVAL; } new->cycle_time = cycle; } if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) { NL_SET_ERR_MSG(extack, "'cycle_time' is too small"); return -EINVAL; } taprio_calculate_gate_durations(q, new); return 0; } static int taprio_parse_mqprio_opt(struct net_device *dev, struct tc_mqprio_qopt *qopt, struct netlink_ext_ack *extack, u32 taprio_flags) { bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); if (!qopt) { if (!dev->num_tc) { NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); return -EINVAL; } return 0; } /* taprio imposes that traffic classes map 1:n to tx queues */ if (qopt->num_tc > dev->num_tx_queues) { NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); return -EINVAL; } /* For some reason, in txtime-assist mode, we allow TXQ ranges for * different TCs to overlap, and just validate the TXQ ranges. */ return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, extack); } static int taprio_get_start_time(struct Qdisc *sch, struct sched_gate_list *sched, ktime_t *start) { struct taprio_sched *q = qdisc_priv(sch); ktime_t now, base, cycle; s64 n; base = sched_base_time(sched); now = taprio_get_time(q); if (ktime_after(base, now)) { *start = base; return 0; } cycle = sched->cycle_time; /* The qdisc is expected to have at least one sched_entry. Moreover, * any entry must have 'interval' > 0. Thus if the cycle time is zero, * something went really wrong. In that case, we should warn about this * inconsistent state and return error. */ if (WARN_ON(!cycle)) return -EFAULT; /* Schedule the start time for the beginning of the next * cycle. */ n = div64_s64(ktime_sub_ns(now, base), cycle); *start = ktime_add_ns(base, (n + 1) * cycle); return 0; } static void setup_first_end_time(struct taprio_sched *q, struct sched_gate_list *sched, ktime_t base) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); struct sched_entry *first; ktime_t cycle; int tc; first = list_first_entry(&sched->entries, struct sched_entry, list); cycle = sched->cycle_time; /* FIXME: find a better place to do this */ sched->cycle_end_time = ktime_add_ns(base, cycle); first->end_time = ktime_add_ns(base, first->interval); taprio_set_budgets(q, sched, first); for (tc = 0; tc < num_tc; tc++) { if (first->gate_duration[tc] == sched->cycle_time) first->gate_close_time[tc] = KTIME_MAX; else first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); } rcu_assign_pointer(q->current_entry, NULL); } static void taprio_start_sched(struct Qdisc *sch, ktime_t start, struct sched_gate_list *new) { struct taprio_sched *q = qdisc_priv(sch); ktime_t expires; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) return; expires = hrtimer_get_expires(&q->advance_timer); if (expires == 0) expires = KTIME_MAX; /* If the new schedule starts before the next expiration, we * reprogram it to the earliest one, so we change the admin * schedule to the operational one at the right time. */ start = min_t(ktime_t, start, expires); hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); } static void taprio_set_picos_per_byte(struct net_device *dev, struct taprio_sched *q) { struct ethtool_link_ksettings ecmd; int speed = SPEED_10; int picos_per_byte; int err; err = __ethtool_get_link_ksettings(dev, &ecmd); if (err < 0) goto skip; if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) speed = ecmd.base.speed; skip: picos_per_byte = (USEC_PER_SEC * 8) / speed; atomic64_set(&q->picos_per_byte, picos_per_byte); netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", dev->name, (long long)atomic64_read(&q->picos_per_byte), ecmd.base.speed); } static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct sched_gate_list *oper, *admin; struct qdisc_size_table *stab; struct taprio_sched *q; ASSERT_RTNL(); if (event != NETDEV_UP && event != NETDEV_CHANGE) return NOTIFY_DONE; list_for_each_entry(q, &taprio_list, taprio_list) { if (dev != qdisc_dev(q->root)) continue; taprio_set_picos_per_byte(dev, q); stab = rtnl_dereference(q->root->stab); oper = rtnl_dereference(q->oper_sched); if (oper) taprio_update_queue_max_sdu(q, oper, stab); admin = rtnl_dereference(q->admin_sched); if (admin) taprio_update_queue_max_sdu(q, admin, stab); break; } return NOTIFY_DONE; } static void setup_txtime(struct taprio_sched *q, struct sched_gate_list *sched, ktime_t base) { struct sched_entry *entry; u64 interval = 0; list_for_each_entry(entry, &sched->entries, list) { entry->next_txtime = ktime_add_ns(base, interval); interval += entry->interval; } } static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) { struct __tc_taprio_qopt_offload *__offload; __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), GFP_KERNEL); if (!__offload) return NULL; refcount_set(&__offload->users, 1); return &__offload->offload; } struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload *offload) { struct __tc_taprio_qopt_offload *__offload; __offload = container_of(offload, struct __tc_taprio_qopt_offload, offload); refcount_inc(&__offload->users); return offload; } EXPORT_SYMBOL_GPL(taprio_offload_get); void taprio_offload_free(struct tc_taprio_qopt_offload *offload) { struct __tc_taprio_qopt_offload *__offload; __offload = container_of(offload, struct __tc_taprio_qopt_offload, offload); if (!refcount_dec_and_test(&__offload->users)) return; kfree(__offload); } EXPORT_SYMBOL_GPL(taprio_offload_free); /* The function will only serve to keep the pointers to the "oper" and "admin" * schedules valid in relation to their base times, so when calling dump() the * users looks at the right schedules. * When using full offload, the admin configuration is promoted to oper at the * base_time in the PHC time domain. But because the system time is not * necessarily in sync with that, we can't just trigger a hrtimer to call * switch_schedules at the right hardware time. * At the moment we call this by hand right away from taprio, but in the future * it will be useful to create a mechanism for drivers to notify taprio of the * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). * This is left as TODO. */ static void taprio_offload_config_changed(struct taprio_sched *q) { struct sched_gate_list *oper, *admin; oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); switch_schedules(q, &admin, &oper); } static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) { u32 i, queue_mask = 0; for (i = 0; i < dev->num_tc; i++) { u32 offset, count; if (!(tc_mask & BIT(i))) continue; offset = dev->tc_to_txq[i].offset; count = dev->tc_to_txq[i].count; queue_mask |= GENMASK(offset + count - 1, offset); } return queue_mask; } static void taprio_sched_to_offload(struct net_device *dev, struct sched_gate_list *sched, struct tc_taprio_qopt_offload *offload, const struct tc_taprio_caps *caps) { struct sched_entry *entry; int i = 0; offload->base_time = sched->base_time; offload->cycle_time = sched->cycle_time; offload->cycle_time_extension = sched->cycle_time_extension; list_for_each_entry(entry, &sched->entries, list) { struct tc_taprio_sched_entry *e = &offload->entries[i]; e->command = entry->command; e->interval = entry->interval; if (caps->gate_mask_per_txq) e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); else e->gate_mask = entry->gate_mask; i++; } offload->num_entries = i; } static void taprio_detect_broken_mqprio(struct taprio_sched *q) { struct net_device *dev = qdisc_dev(q->root); struct tc_taprio_caps caps; qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, &caps, sizeof(caps)); q->broken_mqprio = caps.broken_mqprio; if (q->broken_mqprio) static_branch_inc(&taprio_have_broken_mqprio); else static_branch_inc(&taprio_have_working_mqprio); q->detected_mqprio = true; } static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) { if (!q->detected_mqprio) return; if (q->broken_mqprio) static_branch_dec(&taprio_have_broken_mqprio); else static_branch_dec(&taprio_have_working_mqprio); } static int taprio_enable_offload(struct net_device *dev, struct taprio_sched *q, struct sched_gate_list *sched, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_taprio_qopt_offload *offload; struct tc_taprio_caps caps; int tc, err = 0; if (!ops->ndo_setup_tc) { NL_SET_ERR_MSG(extack, "Device does not support taprio offload"); return -EOPNOTSUPP; } qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, &caps, sizeof(caps)); if (!caps.supports_queue_max_sdu) { for (tc = 0; tc < TC_MAX_QUEUE; tc++) { if (q->max_sdu[tc]) { NL_SET_ERR_MSG_MOD(extack, "Device does not handle queueMaxSDU"); return -EOPNOTSUPP; } } } offload = taprio_offload_alloc(sched->num_entries); if (!offload) { NL_SET_ERR_MSG(extack, "Not enough memory for enabling offload mode"); return -ENOMEM; } offload->cmd = TAPRIO_CMD_REPLACE; offload->extack = extack; mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); offload->mqprio.extack = extack; taprio_sched_to_offload(dev, sched, offload, &caps); mqprio_fp_to_offload(q->fp, &offload->mqprio); for (tc = 0; tc < TC_MAX_QUEUE; tc++) offload->max_sdu[tc] = q->max_sdu[tc]; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err < 0) { NL_SET_ERR_MSG_WEAK(extack, "Device failed to setup taprio offload"); goto done; } q->offloaded = true; done: /* The offload structure may linger around via a reference taken by the * device driver, so clear up the netlink extack pointer so that the * driver isn't tempted to dereference data which stopped being valid */ offload->extack = NULL; offload->mqprio.extack = NULL; taprio_offload_free(offload); return err; } static int taprio_disable_offload(struct net_device *dev, struct taprio_sched *q, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_taprio_qopt_offload *offload; int err; if (!q->offloaded) return 0; offload = taprio_offload_alloc(0); if (!offload) { NL_SET_ERR_MSG(extack, "Not enough memory to disable offload mode"); return -ENOMEM; } offload->cmd = TAPRIO_CMD_DESTROY; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err < 0) { NL_SET_ERR_MSG(extack, "Device failed to disable offload"); goto out; } q->offloaded = false; out: taprio_offload_free(offload); return err; } /* If full offload is enabled, the only possible clockid is the net device's * PHC. For that reason, specifying a clockid through netlink is incorrect. * For txtime-assist, it is implicitly assumed that the device's PHC is kept * in sync with the specified clockid via a user space daemon such as phc2sys. * For both software taprio and txtime-assist, the clockid is used for the * hrtimer that advances the schedule and hence mandatory. */ static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int err = -EINVAL; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { const struct ethtool_ops *ops = dev->ethtool_ops; struct kernel_ethtool_ts_info info = { .cmd = ETHTOOL_GET_TS_INFO, .phc_index = -1, }; if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { NL_SET_ERR_MSG(extack, "The 'clockid' cannot be specified for full offload"); goto out; } if (ops && ops->get_ts_info) err = ops->get_ts_info(dev, &info); if (err || info.phc_index < 0) { NL_SET_ERR_MSG(extack, "Device does not have a PTP clock"); err = -ENOTSUPP; goto out; } } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); enum tk_offsets tk_offset; /* We only support static clockids and we don't allow * for it to be modified after the first init. */ if (clockid < 0 || (q->clockid != -1 && q->clockid != clockid)) { NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported"); err = -ENOTSUPP; goto out; } switch (clockid) { case CLOCK_REALTIME: tk_offset = TK_OFFS_REAL; break; case CLOCK_MONOTONIC: tk_offset = TK_OFFS_MAX; break; case CLOCK_BOOTTIME: tk_offset = TK_OFFS_BOOT; break; case CLOCK_TAI: tk_offset = TK_OFFS_TAI; break; default: NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); err = -EINVAL; goto out; } /* This pairs with READ_ONCE() in taprio_mono_to_any */ WRITE_ONCE(q->tk_offset, tk_offset); q->clockid = clockid; } else { NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); goto out; } /* Everything went ok, return success. */ err = 0; out: return err; } static int taprio_parse_tc_entry(struct Qdisc *sch, struct nlattr *opt, u32 max_sdu[TC_QOPT_MAX_QUEUE], u32 fp[TC_QOPT_MAX_QUEUE], unsigned long *seen_tcs, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; struct net_device *dev = qdisc_dev(sch); int err, tc; u32 val; err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, taprio_tc_policy, extack); if (err < 0) return err; if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); return -EINVAL; } tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); if (tc >= TC_QOPT_MAX_QUEUE) { NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); return -ERANGE; } if (*seen_tcs & BIT(tc)) { NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); return -EINVAL; } *seen_tcs |= BIT(tc); if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); if (val > dev->max_mtu) { NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); return -ERANGE; } max_sdu[tc] = val; } if (tb[TCA_TAPRIO_TC_ENTRY_FP]) fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); return 0; } static int taprio_parse_tc_entries(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); u32 max_sdu[TC_QOPT_MAX_QUEUE]; bool have_preemption = false; unsigned long seen_tcs = 0; u32 fp[TC_QOPT_MAX_QUEUE]; struct nlattr *n; int tc, rem; int err = 0; for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { max_sdu[tc] = q->max_sdu[tc]; fp[tc] = q->fp[tc]; } nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) { err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, extack); if (err) return err; } for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { q->max_sdu[tc] = max_sdu[tc]; q->fp[tc] = fp[tc]; if (fp[tc] != TC_FP_EXPRESS) have_preemption = true; } if (have_preemption) { if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { NL_SET_ERR_MSG(extack, "Preemption only supported with full offload"); return -EOPNOTSUPP; } if (!ethtool_dev_mm_supported(dev)) { NL_SET_ERR_MSG(extack, "Device does not support preemption"); return -EOPNOTSUPP; } } return err; } static int taprio_mqprio_cmp(const struct net_device *dev, const struct tc_mqprio_qopt *mqprio) { int i; if (!mqprio || mqprio->num_tc != dev->num_tc) return -1; for (i = 0; i < mqprio->num_tc; i++) if (dev->tc_to_txq[i].count != mqprio->count[i] || dev->tc_to_txq[i].offset != mqprio->offset[i]) return -1; for (i = 0; i <= TC_BITMASK; i++) if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) return -1; return 0; } static int taprio_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct qdisc_size_table *stab = rtnl_dereference(sch->stab); struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; struct sched_gate_list *oper, *admin, *new_admin; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct tc_mqprio_qopt *mqprio = NULL; unsigned long flags; u32 taprio_flags; ktime_t start; int i, err; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, taprio_policy, extack); if (err < 0) return err; if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); /* The semantics of the 'flags' argument in relation to 'change()' * requests, are interpreted following two rules (which are applied in * this order): (1) an omitted 'flags' argument is interpreted as * zero; (2) the 'flags' of a "running" taprio instance cannot be * changed. */ taprio_flags = tb[TCA_TAPRIO_ATTR_FLAGS] ? nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]) : 0; /* txtime-assist and full offload are mutually exclusive */ if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) { NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS], "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive"); return -EINVAL; } if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) { NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); return -EOPNOTSUPP; } q->flags = taprio_flags; /* Needed for length_to_duration() during netlink attribute parsing */ taprio_set_picos_per_byte(dev, q); err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); if (err < 0) return err; err = taprio_parse_tc_entries(sch, opt, extack); if (err) return err; new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); if (!new_admin) { NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); return -ENOMEM; } INIT_LIST_HEAD(&new_admin->entries); oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); /* no changes - no new mqprio settings */ if (!taprio_mqprio_cmp(dev, mqprio)) mqprio = NULL; if (mqprio && (oper || admin)) { NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); err = -ENOTSUPP; goto free_sched; } if (mqprio) { err = netdev_set_num_tc(dev, mqprio->num_tc); if (err) goto free_sched; for (i = 0; i < mqprio->num_tc; i++) { netdev_set_tc_queue(dev, i, mqprio->count[i], mqprio->offset[i]); q->cur_txq[i] = mqprio->offset[i]; } /* Always use supplied priority mappings */ for (i = 0; i <= TC_BITMASK; i++) netdev_set_prio_tc_map(dev, i, mqprio->prio_tc_map[i]); } err = parse_taprio_schedule(q, tb, new_admin, extack); if (err < 0) goto free_sched; if (new_admin->num_entries == 0) { NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); err = -EINVAL; goto free_sched; } err = taprio_parse_clockid(sch, tb, extack); if (err < 0) goto free_sched; taprio_update_queue_max_sdu(q, new_admin, stab); if (FULL_OFFLOAD_IS_ENABLED(q->flags)) err = taprio_enable_offload(dev, q, new_admin, extack); else err = taprio_disable_offload(dev, q, extack); if (err) goto free_sched; /* Protects against enqueue()/dequeue() */ spin_lock_bh(qdisc_lock(sch)); if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); err = -EINVAL; goto unlock; } q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); } if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && !FULL_OFFLOAD_IS_ENABLED(q->flags) && !hrtimer_active(&q->advance_timer)) { hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; } err = taprio_get_start_time(sch, new_admin, &start); if (err < 0) { NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); goto unlock; } setup_txtime(q, new_admin, start); if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { if (!oper) { rcu_assign_pointer(q->oper_sched, new_admin); err = 0; new_admin = NULL; goto unlock; } /* Not going to race against advance_sched(), but still */ admin = rcu_replace_pointer(q->admin_sched, new_admin, lockdep_rtnl_is_held()); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); } else { setup_first_end_time(q, new_admin, start); /* Protects against advance_sched() */ spin_lock_irqsave(&q->current_entry_lock, flags); taprio_start_sched(sch, start, new_admin); rcu_assign_pointer(q->admin_sched, new_admin); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); spin_unlock_irqrestore(&q->current_entry_lock, flags); if (FULL_OFFLOAD_IS_ENABLED(q->flags)) taprio_offload_config_changed(q); } new_admin = NULL; err = 0; if (!stab) NL_SET_ERR_MSG_MOD(extack, "Size table not specified, frame length estimations may be inaccurate"); unlock: spin_unlock_bh(qdisc_lock(sch)); free_sched: if (new_admin) call_rcu(&new_admin->rcu, taprio_free_sched_cb); return err; } static void taprio_reset(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int i; hrtimer_cancel(&q->advance_timer); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues; i++) if (q->qdiscs[i]) qdisc_reset(q->qdiscs[i]); } } static void taprio_destroy(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *oper, *admin; unsigned int i; list_del(&q->taprio_list); /* Note that taprio_reset() might not be called if an error * happens in qdisc_create(), after taprio_init() has been called. */ hrtimer_cancel(&q->advance_timer); qdisc_synchronize(sch); taprio_disable_offload(dev, q, NULL); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues; i++) qdisc_put(q->qdiscs[i]); kfree(q->qdiscs); } q->qdiscs = NULL; netdev_reset_tc(dev); oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); if (oper) call_rcu(&oper->rcu, taprio_free_sched_cb); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); taprio_cleanup_broken_mqprio(q); } static int taprio_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int i, tc; spin_lock_init(&q->current_entry_lock); hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; q->root = sch; /* We only support static clockids. Use an invalid value as default * and get the valid one on taprio_change(). */ q->clockid = -1; q->flags = TAPRIO_FLAGS_INVALID; list_add(&q->taprio_list, &taprio_list); if (sch->parent != TC_H_ROOT) { NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); return -EOPNOTSUPP; } if (!netif_is_multiqueue(dev)) { NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); return -EOPNOTSUPP; } q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), GFP_KERNEL); if (!q->qdiscs) return -ENOMEM; if (!opt) return -EINVAL; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *dev_queue; struct Qdisc *qdisc; dev_queue = netdev_get_tx_queue(dev, i); qdisc = qdisc_create_dflt(dev_queue, &pfifo_qdisc_ops, TC_H_MAKE(TC_H_MAJ(sch->handle), TC_H_MIN(i + 1)), extack); if (!qdisc) return -ENOMEM; if (i < dev->real_num_tx_queues) qdisc_hash_add(qdisc, false); q->qdiscs[i] = qdisc; } for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) q->fp[tc] = TC_FP_EXPRESS; taprio_detect_broken_mqprio(q); return taprio_change(sch, opt, extack); } static void taprio_attach(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); unsigned int ntx; /* Attach underlying qdisc */ for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx); struct Qdisc *old, *dev_queue_qdisc; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { struct Qdisc *qdisc = q->qdiscs[ntx]; /* In offload mode, the root taprio qdisc is bypassed * and the netdev TX queues see the children directly */ qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; dev_queue_qdisc = qdisc; } else { /* In software mode, attach the root taprio qdisc * to all netdev TX queues, so that dev_qdisc_enqueue() * goes through taprio_enqueue(). */ dev_queue_qdisc = sch; } old = dev_graft_qdisc(dev_queue, dev_queue_qdisc); /* The qdisc's refcount requires to be elevated once * for each netdev TX queue it is grafted onto */ qdisc_refcount_inc(dev_queue_qdisc); if (old) qdisc_put(old); } } static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, unsigned long cl) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return netdev_get_tx_queue(dev, ntx); } static int taprio_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); if (!dev_queue) return -EINVAL; if (dev->flags & IFF_UP) dev_deactivate(dev); /* In offload mode, the child Qdisc is directly attached to the netdev * TX queue, and thus, we need to keep its refcount elevated in order * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue. * However, save the reference to the new qdisc in the private array in * both software and offload cases, to have an up-to-date reference to * our children. */ *old = q->qdiscs[cl - 1]; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old); if (new) qdisc_refcount_inc(new); if (*old) qdisc_put(*old); } q->qdiscs[cl - 1] = new; if (new) new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; if (dev->flags & IFF_UP) dev_activate(dev); return 0; } static int dump_entry(struct sk_buff *msg, const struct sched_entry *entry) { struct nlattr *item; item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); if (!item) return -ENOSPC; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) goto nla_put_failure; if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, entry->gate_mask)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, entry->interval)) goto nla_put_failure; return nla_nest_end(msg, item); nla_put_failure: nla_nest_cancel(msg, item); return -1; } static int dump_schedule(struct sk_buff *msg, const struct sched_gate_list *root) { struct nlattr *entry_list; struct sched_entry *entry; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, root->base_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, root->cycle_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, root->cycle_time_extension, TCA_TAPRIO_PAD)) return -1; entry_list = nla_nest_start_noflag(msg, TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); if (!entry_list) goto error_nest; list_for_each_entry(entry, &root->entries, list) { if (dump_entry(msg, entry) < 0) goto error_nest; } nla_nest_end(msg, entry_list); return 0; error_nest: nla_nest_cancel(msg, entry_list); return -1; } static int taprio_dump_tc_entries(struct sk_buff *skb, struct taprio_sched *q, struct sched_gate_list *sched) { struct nlattr *n; int tc; for (tc = 0; tc < TC_MAX_QUEUE; tc++) { n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); if (!n) return -EMSGSIZE; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) goto nla_put_failure; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, sched->max_sdu[tc])) goto nla_put_failure; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) goto nla_put_failure; nla_nest_end(skb, n); } return 0; nla_put_failure: nla_nest_cancel(skb, n); return -EMSGSIZE; } static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) { if (val == TAPRIO_STAT_NOT_SET) return 0; if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) return -EMSGSIZE; return 0; } static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, struct tc_taprio_qopt_offload *offload, struct tc_taprio_qopt_stats *stats) { struct net_device *dev = qdisc_dev(sch); const struct net_device_ops *ops; struct sk_buff *skb = d->skb; struct nlattr *xstats; int err; ops = qdisc_dev(sch)->netdev_ops; /* FIXME I could use qdisc_offload_dump_helper(), but that messes * with sch->flags depending on whether the device reports taprio * stats, and I'm not sure whether that's a good idea, considering * that stats are optional to the offload itself */ if (!ops->ndo_setup_tc) return 0; memset(stats, 0xff, sizeof(*stats)); err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err == -EOPNOTSUPP) return 0; if (err) return err; xstats = nla_nest_start(skb, TCA_STATS_APP); if (!xstats) goto err; if (taprio_put_stat(skb, stats->window_drops, TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || taprio_put_stat(skb, stats->tx_overruns, TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) goto err_cancel; nla_nest_end(skb, xstats); return 0; err_cancel: nla_nest_cancel(skb, xstats); err: return -EMSGSIZE; } static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct tc_taprio_qopt_offload offload = { .cmd = TAPRIO_CMD_STATS, }; return taprio_dump_xstats(sch, d, &offload, &offload.stats); } static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *oper, *admin; struct tc_mqprio_qopt opt = { 0 }; struct nlattr *nest, *sched_nest; oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); mqprio_qopt_reconstruct(dev, &opt); nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!nest) goto start_error; if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) goto options_error; if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) goto options_error; if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) goto options_error; if (q->txtime_delay && nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) goto options_error; if (oper && taprio_dump_tc_entries(skb, q, oper)) goto options_error; if (oper && dump_schedule(skb, oper)) goto options_error; if (!admin) goto done; sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); if (!sched_nest) goto options_error; if (dump_schedule(skb, admin)) goto admin_error; nla_nest_end(skb, sched_nest); done: return nla_nest_end(skb, nest); admin_error: nla_nest_cancel(skb, sched_nest); options_error: nla_nest_cancel(skb, nest); start_error: return -ENOSPC; } static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); unsigned int ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return q->qdiscs[ntx]; } static unsigned long taprio_find(struct Qdisc *sch, u32 classid) { unsigned int ntx = TC_H_MIN(classid); if (!taprio_queue_get(sch, ntx)) return 0; return ntx; } static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct Qdisc *child = taprio_leaf(sch, cl); tcm->tcm_parent = TC_H_ROOT; tcm->tcm_handle |= TC_H_MIN(cl); tcm->tcm_info = child->handle; return 0; } static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, struct gnet_dump *d) __releases(d->lock) __acquires(d->lock) { struct Qdisc *child = taprio_leaf(sch, cl); struct tc_taprio_qopt_offload offload = { .cmd = TAPRIO_CMD_QUEUE_STATS, .queue_stats = { .queue = cl - 1, }, }; if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || qdisc_qstats_copy(d, child) < 0) return -1; return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); } static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx; if (arg->stop) return; arg->count = arg->skip; for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) break; } } static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, struct tcmsg *tcm) { return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); } static const struct Qdisc_class_ops taprio_class_ops = { .graft = taprio_graft, .leaf = taprio_leaf, .find = taprio_find, .walk = taprio_walk, .dump = taprio_dump_class, .dump_stats = taprio_dump_class_stats, .select_queue = taprio_select_queue, }; static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { .cl_ops = &taprio_class_ops, .id = "taprio", .priv_size = sizeof(struct taprio_sched), .init = taprio_init, .change = taprio_change, .destroy = taprio_destroy, .reset = taprio_reset, .attach = taprio_attach, .peek = taprio_peek, .dequeue = taprio_dequeue, .enqueue = taprio_enqueue, .dump = taprio_dump, .dump_stats = taprio_dump_stats, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("taprio"); static struct notifier_block taprio_device_notifier = { .notifier_call = taprio_dev_notifier, }; static int __init taprio_module_init(void) { int err = register_netdevice_notifier(&taprio_device_notifier); if (err) return err; return register_qdisc(&taprio_qdisc_ops); } static void __exit taprio_module_exit(void) { unregister_qdisc(&taprio_qdisc_ops); unregister_netdevice_notifier(&taprio_device_notifier); } module_init(taprio_module_init); module_exit(taprio_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Time Aware Priority qdisc"); |
113 23 279 40 40 114 114 212 44 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __BEN_VLAN_802_1Q_INC__ #define __BEN_VLAN_802_1Q_INC__ #include <linux/if_vlan.h> #include <linux/u64_stats_sync.h> #include <linux/list.h> /* if this changes, algorithm will have to be reworked because this * depends on completely exhausting the VLAN identifier space. Thus * it gives constant time look-up, but in many cases it wastes memory. */ #define VLAN_GROUP_ARRAY_SPLIT_PARTS 8 #define VLAN_GROUP_ARRAY_PART_LEN (VLAN_N_VID/VLAN_GROUP_ARRAY_SPLIT_PARTS) enum vlan_protos { VLAN_PROTO_8021Q = 0, VLAN_PROTO_8021AD, VLAN_PROTO_NUM, }; struct vlan_group { unsigned int nr_vlan_devs; struct hlist_node hlist; /* linked list */ struct net_device **vlan_devices_arrays[VLAN_PROTO_NUM] [VLAN_GROUP_ARRAY_SPLIT_PARTS]; }; struct vlan_info { struct net_device *real_dev; /* The ethernet(like) device * the vlan is attached to. */ struct vlan_group grp; struct list_head vid_list; unsigned int nr_vids; struct rcu_head rcu; }; static inline int vlan_proto_idx(__be16 proto) { switch (proto) { case htons(ETH_P_8021Q): return VLAN_PROTO_8021Q; case htons(ETH_P_8021AD): return VLAN_PROTO_8021AD; default: WARN(1, "invalid VLAN protocol: 0x%04x\n", ntohs(proto)); return -EINVAL; } } static inline struct net_device *__vlan_group_get_device(struct vlan_group *vg, unsigned int pidx, u16 vlan_id) { struct net_device **array; array = vg->vlan_devices_arrays[pidx] [vlan_id / VLAN_GROUP_ARRAY_PART_LEN]; /* paired with smp_wmb() in vlan_group_prealloc_vid() */ smp_rmb(); return array ? array[vlan_id % VLAN_GROUP_ARRAY_PART_LEN] : NULL; } static inline struct net_device *vlan_group_get_device(struct vlan_group *vg, __be16 vlan_proto, u16 vlan_id) { int pidx = vlan_proto_idx(vlan_proto); if (pidx < 0) return NULL; return __vlan_group_get_device(vg, pidx, vlan_id); } static inline void vlan_group_set_device(struct vlan_group *vg, __be16 vlan_proto, u16 vlan_id, struct net_device *dev) { int pidx = vlan_proto_idx(vlan_proto); struct net_device **array; if (!vg || pidx < 0) return; array = vg->vlan_devices_arrays[pidx] [vlan_id / VLAN_GROUP_ARRAY_PART_LEN]; array[vlan_id % VLAN_GROUP_ARRAY_PART_LEN] = dev; } /* Must be invoked with rcu_read_lock or with RTNL. */ static inline struct net_device *vlan_find_dev(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id) { struct vlan_info *vlan_info = rcu_dereference_rtnl(real_dev->vlan_info); if (vlan_info) return vlan_group_get_device(&vlan_info->grp, vlan_proto, vlan_id); return NULL; } static inline netdev_features_t vlan_tnl_features(struct net_device *real_dev) { netdev_features_t ret; ret = real_dev->hw_enc_features & (NETIF_F_CSUM_MASK | NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL); if ((ret & NETIF_F_GSO_ENCAP_ALL) && (ret & NETIF_F_CSUM_MASK)) return (ret & ~NETIF_F_CSUM_MASK) | NETIF_F_HW_CSUM; return 0; } #define vlan_group_for_each_dev(grp, i, dev) \ for ((i) = 0; i < VLAN_PROTO_NUM * VLAN_N_VID; i++) \ if (((dev) = __vlan_group_get_device((grp), (i) / VLAN_N_VID, \ (i) % VLAN_N_VID))) int vlan_filter_push_vids(struct vlan_info *vlan_info, __be16 proto); void vlan_filter_drop_vids(struct vlan_info *vlan_info, __be16 proto); /* found in vlan_dev.c */ void vlan_dev_set_ingress_priority(const struct net_device *dev, u32 skb_prio, u16 vlan_prio); int vlan_dev_set_egress_priority(const struct net_device *dev, u32 skb_prio, u16 vlan_prio); void vlan_dev_free_egress_priority(const struct net_device *dev); int vlan_dev_change_flags(const struct net_device *dev, u32 flag, u32 mask); void vlan_dev_get_realdev_name(const struct net_device *dev, char *result, size_t size); int vlan_check_real_dev(struct net_device *real_dev, __be16 protocol, u16 vlan_id, struct netlink_ext_ack *extack); void vlan_setup(struct net_device *dev); int register_vlan_dev(struct net_device *dev, struct netlink_ext_ack *extack); void unregister_vlan_dev(struct net_device *dev, struct list_head *head); bool vlan_dev_inherit_address(struct net_device *dev, struct net_device *real_dev); static inline u32 vlan_get_ingress_priority(struct net_device *dev, u16 vlan_tci) { struct vlan_dev_priv *vip = vlan_dev_priv(dev); return vip->ingress_priority_map[(vlan_tci >> VLAN_PRIO_SHIFT) & 0x7]; } #ifdef CONFIG_VLAN_8021Q_GVRP int vlan_gvrp_request_join(const struct net_device *dev); void vlan_gvrp_request_leave(const struct net_device *dev); int vlan_gvrp_init_applicant(struct net_device *dev); void vlan_gvrp_uninit_applicant(struct net_device *dev); int vlan_gvrp_init(void); void vlan_gvrp_uninit(void); #else static inline int vlan_gvrp_request_join(const struct net_device *dev) { return 0; } static inline void vlan_gvrp_request_leave(const struct net_device *dev) {} static inline int vlan_gvrp_init_applicant(struct net_device *dev) { return 0; } static inline void vlan_gvrp_uninit_applicant(struct net_device *dev) {} static inline int vlan_gvrp_init(void) { return 0; } static inline void vlan_gvrp_uninit(void) {} #endif #ifdef CONFIG_VLAN_8021Q_MVRP int vlan_mvrp_request_join(const struct net_device *dev); void vlan_mvrp_request_leave(const struct net_device *dev); int vlan_mvrp_init_applicant(struct net_device *dev); void vlan_mvrp_uninit_applicant(struct net_device *dev); int vlan_mvrp_init(void); void vlan_mvrp_uninit(void); #else static inline int vlan_mvrp_request_join(const struct net_device *dev) { return 0; } static inline void vlan_mvrp_request_leave(const struct net_device *dev) {} static inline int vlan_mvrp_init_applicant(struct net_device *dev) { return 0; } static inline void vlan_mvrp_uninit_applicant(struct net_device *dev) {} static inline int vlan_mvrp_init(void) { return 0; } static inline void vlan_mvrp_uninit(void) {} #endif extern const char vlan_fullname[]; extern const char vlan_version[]; int vlan_netlink_init(void); void vlan_netlink_fini(void); extern struct rtnl_link_ops vlan_link_ops; extern unsigned int vlan_net_id; struct proc_dir_entry; struct vlan_net { /* /proc/net/vlan */ struct proc_dir_entry *proc_vlan_dir; /* /proc/net/vlan/config */ struct proc_dir_entry *proc_vlan_conf; /* Determines interface naming scheme. */ unsigned short name_type; }; #endif /* !(__BEN_VLAN_802_1Q_INC__) */ |
39 1 41 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Shared Memory Communications over RDMA (SMC-R) and RoCE * * Definitions for the SMC module (socket related) * * Copyright IBM Corp. 2016 * * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com> */ #ifndef __SMC_H #define __SMC_H #include <linux/socket.h> #include <linux/types.h> #include <linux/compiler.h> /* __aligned */ #include <net/genetlink.h> #include <net/sock.h> #include "smc_ib.h" #define SMC_V1 1 /* SMC version V1 */ #define SMC_V2 2 /* SMC version V2 */ #define SMC_RELEASE_0 0 #define SMC_RELEASE_1 1 #define SMC_RELEASE SMC_RELEASE_1 /* the latest release version */ #define SMCPROTO_SMC 0 /* SMC protocol, IPv4 */ #define SMCPROTO_SMC6 1 /* SMC protocol, IPv6 */ #define SMC_AUTOCORKING_DEFAULT_SIZE 0x10000 /* 64K by default */ extern struct proto smc_proto; extern struct proto smc_proto6; extern struct smc_hashinfo smc_v4_hashinfo; extern struct smc_hashinfo smc_v6_hashinfo; int smc_hash_sk(struct sock *sk); void smc_unhash_sk(struct sock *sk); void smc_release_cb(struct sock *sk); int smc_release(struct socket *sock); int smc_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); int smc_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags); int smc_accept(struct socket *sock, struct socket *new_sock, struct proto_accept_arg *arg); int smc_getname(struct socket *sock, struct sockaddr *addr, int peer); __poll_t smc_poll(struct file *file, struct socket *sock, poll_table *wait); int smc_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int smc_listen(struct socket *sock, int backlog); int smc_shutdown(struct socket *sock, int how); int smc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen); int smc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int smc_sendmsg(struct socket *sock, struct msghdr *msg, size_t len); int smc_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); ssize_t smc_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); /* smc sock initialization */ void smc_sk_init(struct net *net, struct sock *sk, int protocol); /* clcsock initialization */ int smc_create_clcsk(struct net *net, struct sock *sk, int family); #ifdef ATOMIC64_INIT #define KERNEL_HAS_ATOMIC64 #endif enum smc_state { /* possible states of an SMC socket */ SMC_ACTIVE = 1, SMC_INIT = 2, SMC_CLOSED = 7, SMC_LISTEN = 10, /* normal close */ SMC_PEERCLOSEWAIT1 = 20, SMC_PEERCLOSEWAIT2 = 21, SMC_APPFINCLOSEWAIT = 24, SMC_APPCLOSEWAIT1 = 22, SMC_APPCLOSEWAIT2 = 23, SMC_PEERFINCLOSEWAIT = 25, /* abnormal close */ SMC_PEERABORTWAIT = 26, SMC_PROCESSABORT = 27, }; enum smc_supplemental_features { SMC_SPF_EMULATED_ISM_DEV = 0, }; #define SMC_FEATURE_MASK \ (BIT(SMC_SPF_EMULATED_ISM_DEV)) struct smc_link_group; struct smc_wr_rx_hdr { /* common prefix part of LLC and CDC to demultiplex */ union { u8 type; #if defined(__BIG_ENDIAN_BITFIELD) struct { u8 llc_version:4, llc_type:4; }; #elif defined(__LITTLE_ENDIAN_BITFIELD) struct { u8 llc_type:4, llc_version:4; }; #endif }; } __aligned(1); struct smc_cdc_conn_state_flags { #if defined(__BIG_ENDIAN_BITFIELD) u8 peer_done_writing : 1; /* Sending done indicator */ u8 peer_conn_closed : 1; /* Peer connection closed indicator */ u8 peer_conn_abort : 1; /* Abnormal close indicator */ u8 reserved : 5; #elif defined(__LITTLE_ENDIAN_BITFIELD) u8 reserved : 5; u8 peer_conn_abort : 1; u8 peer_conn_closed : 1; u8 peer_done_writing : 1; #endif }; struct smc_cdc_producer_flags { #if defined(__BIG_ENDIAN_BITFIELD) u8 write_blocked : 1; /* Writing Blocked, no rx buf space */ u8 urg_data_pending : 1; /* Urgent Data Pending */ u8 urg_data_present : 1; /* Urgent Data Present */ u8 cons_curs_upd_req : 1; /* cursor update requested */ u8 failover_validation : 1;/* message replay due to failover */ u8 reserved : 3; #elif defined(__LITTLE_ENDIAN_BITFIELD) u8 reserved : 3; u8 failover_validation : 1; u8 cons_curs_upd_req : 1; u8 urg_data_present : 1; u8 urg_data_pending : 1; u8 write_blocked : 1; #endif }; /* in host byte order */ union smc_host_cursor { /* SMC cursor - an offset in an RMBE */ struct { u16 reserved; u16 wrap; /* window wrap sequence number */ u32 count; /* cursor (= offset) part */ }; #ifdef KERNEL_HAS_ATOMIC64 atomic64_t acurs; /* for atomic processing */ #else u64 acurs; /* for atomic processing */ #endif } __aligned(8); /* in host byte order, except for flag bitfields in network byte order */ struct smc_host_cdc_msg { /* Connection Data Control message */ struct smc_wr_rx_hdr common; /* .type = 0xFE */ u8 len; /* length = 44 */ u16 seqno; /* connection seq # */ u32 token; /* alert_token */ union smc_host_cursor prod; /* producer cursor */ union smc_host_cursor cons; /* consumer cursor, * piggy backed "ack" */ struct smc_cdc_producer_flags prod_flags; /* conn. tx/rx status */ struct smc_cdc_conn_state_flags conn_state_flags; /* peer conn. status*/ u8 reserved[18]; } __aligned(8); enum smc_urg_state { SMC_URG_VALID = 1, /* data present */ SMC_URG_NOTYET = 2, /* data pending */ SMC_URG_READ = 3, /* data was already read */ }; struct smc_mark_woken { bool woken; void *key; wait_queue_entry_t wait_entry; }; struct smc_connection { struct rb_node alert_node; struct smc_link_group *lgr; /* link group of connection */ struct smc_link *lnk; /* assigned SMC-R link */ u32 alert_token_local; /* unique conn. id */ u8 peer_rmbe_idx; /* from tcp handshake */ int peer_rmbe_size; /* size of peer rx buffer */ atomic_t peer_rmbe_space;/* remaining free bytes in peer * rmbe */ int rtoken_idx; /* idx to peer RMB rkey/addr */ struct smc_buf_desc *sndbuf_desc; /* send buffer descriptor */ struct smc_buf_desc *rmb_desc; /* RMBE descriptor */ int rmbe_size_comp; /* compressed notation */ int rmbe_update_limit; /* lower limit for consumer * cursor update */ struct smc_host_cdc_msg local_tx_ctrl; /* host byte order staging * buffer for CDC msg send * .prod cf. TCP snd_nxt * .cons cf. TCP sends ack */ union smc_host_cursor local_tx_ctrl_fin; /* prod crsr - confirmed by peer */ union smc_host_cursor tx_curs_prep; /* tx - prepared data * snd_max..wmem_alloc */ union smc_host_cursor tx_curs_sent; /* tx - sent data * snd_nxt ? */ union smc_host_cursor tx_curs_fin; /* tx - confirmed by peer * snd-wnd-begin ? */ atomic_t sndbuf_space; /* remaining space in sndbuf */ u16 tx_cdc_seq; /* sequence # for CDC send */ u16 tx_cdc_seq_fin; /* sequence # - tx completed */ spinlock_t send_lock; /* protect wr_sends */ atomic_t cdc_pend_tx_wr; /* number of pending tx CDC wqe * - inc when post wqe, * - dec on polled tx cqe */ wait_queue_head_t cdc_pend_tx_wq; /* wakeup on no cdc_pend_tx_wr*/ struct delayed_work tx_work; /* retry of smc_cdc_msg_send */ u32 tx_off; /* base offset in peer rmb */ struct smc_host_cdc_msg local_rx_ctrl; /* filled during event_handl. * .prod cf. TCP rcv_nxt * .cons cf. TCP snd_una */ union smc_host_cursor rx_curs_confirmed; /* confirmed to peer * source of snd_una ? */ union smc_host_cursor urg_curs; /* points at urgent byte */ enum smc_urg_state urg_state; bool urg_tx_pend; /* urgent data staged */ bool urg_rx_skip_pend; /* indicate urgent oob data * read, but previous regular * data still pending */ char urg_rx_byte; /* urgent byte */ bool tx_in_release_sock; /* flush pending tx data in * sock release_cb() */ atomic_t bytes_to_rcv; /* arrived data, * not yet received */ atomic_t splice_pending; /* number of spliced bytes * pending processing */ #ifndef KERNEL_HAS_ATOMIC64 spinlock_t acurs_lock; /* protect cursors */ #endif struct work_struct close_work; /* peer sent some closing */ struct work_struct abort_work; /* abort the connection */ struct tasklet_struct rx_tsklet; /* Receiver tasklet for SMC-D */ u8 rx_off; /* receive offset: * 0 for SMC-R, 32 for SMC-D */ u64 peer_token; /* SMC-D token of peer */ u8 killed : 1; /* abnormal termination */ u8 freed : 1; /* normal termiation */ u8 out_of_sync : 1; /* out of sync with peer */ }; struct smc_sock { /* smc sock container */ struct sock sk; #if IS_ENABLED(CONFIG_IPV6) struct ipv6_pinfo *pinet6; #endif struct socket *clcsock; /* internal tcp socket */ void (*clcsk_state_change)(struct sock *sk); /* original stat_change fct. */ void (*clcsk_data_ready)(struct sock *sk); /* original data_ready fct. */ void (*clcsk_write_space)(struct sock *sk); /* original write_space fct. */ void (*clcsk_error_report)(struct sock *sk); /* original error_report fct. */ struct smc_connection conn; /* smc connection */ struct smc_sock *listen_smc; /* listen parent */ struct work_struct connect_work; /* handle non-blocking connect*/ struct work_struct tcp_listen_work;/* handle tcp socket accepts */ struct work_struct smc_listen_work;/* prepare new accept socket */ struct list_head accept_q; /* sockets to be accepted */ spinlock_t accept_q_lock; /* protects accept_q */ bool limit_smc_hs; /* put constraint on handshake */ bool use_fallback; /* fallback to tcp */ int fallback_rsn; /* reason for fallback */ u32 peer_diagnosis; /* decline reason from peer */ atomic_t queued_smc_hs; /* queued smc handshakes */ struct inet_connection_sock_af_ops af_ops; const struct inet_connection_sock_af_ops *ori_af_ops; /* original af ops */ int sockopt_defer_accept; /* sockopt TCP_DEFER_ACCEPT * value */ u8 wait_close_tx_prepared : 1; /* shutdown wr or close * started, waiting for unsent * data to be sent */ u8 connect_nonblock : 1; /* non-blocking connect in * flight */ struct mutex clcsock_release_lock; /* protects clcsock of a listen * socket * */ }; #define smc_sk(ptr) container_of_const(ptr, struct smc_sock, sk) static inline void smc_init_saved_callbacks(struct smc_sock *smc) { smc->clcsk_state_change = NULL; smc->clcsk_data_ready = NULL; smc->clcsk_write_space = NULL; smc->clcsk_error_report = NULL; } static inline struct smc_sock *smc_clcsock_user_data(const struct sock *clcsk) { return (struct smc_sock *) ((uintptr_t)clcsk->sk_user_data & ~SK_USER_DATA_NOCOPY); } /* save target_cb in saved_cb, and replace target_cb with new_cb */ static inline void smc_clcsock_replace_cb(void (**target_cb)(struct sock *), void (*new_cb)(struct sock *), void (**saved_cb)(struct sock *)) { /* only save once */ if (!*saved_cb) *saved_cb = *target_cb; *target_cb = new_cb; } /* restore target_cb to saved_cb, and reset saved_cb to NULL */ static inline void smc_clcsock_restore_cb(void (**target_cb)(struct sock *), void (**saved_cb)(struct sock *)) { if (!*saved_cb) return; *target_cb = *saved_cb; *saved_cb = NULL; } extern struct workqueue_struct *smc_hs_wq; /* wq for handshake work */ extern struct workqueue_struct *smc_close_wq; /* wq for close work */ #define SMC_SYSTEMID_LEN 8 extern u8 local_systemid[SMC_SYSTEMID_LEN]; /* unique system identifier */ #define ntohll(x) be64_to_cpu(x) #define htonll(x) cpu_to_be64(x) /* convert an u32 value into network byte order, store it into a 3 byte field */ static inline void hton24(u8 *net, u32 host) { __be32 t; t = cpu_to_be32(host); memcpy(net, ((u8 *)&t) + 1, 3); } /* convert a received 3 byte field into host byte order*/ static inline u32 ntoh24(u8 *net) { __be32 t = 0; memcpy(((u8 *)&t) + 1, net, 3); return be32_to_cpu(t); } #ifdef CONFIG_XFRM static inline bool using_ipsec(struct smc_sock *smc) { return (smc->clcsock->sk->sk_policy[0] || smc->clcsock->sk->sk_policy[1]) ? true : false; } #else static inline bool using_ipsec(struct smc_sock *smc) { return false; } #endif struct smc_gidlist; struct sock *smc_accept_dequeue(struct sock *parent, struct socket *new_sock); void smc_close_non_accepted(struct sock *sk); void smc_fill_gid_list(struct smc_link_group *lgr, struct smc_gidlist *gidlist, struct smc_ib_device *known_dev, u8 *known_gid); /* smc handshake limitation interface for netlink */ int smc_nl_dump_hs_limitation(struct sk_buff *skb, struct netlink_callback *cb); int smc_nl_enable_hs_limitation(struct sk_buff *skb, struct genl_info *info); int smc_nl_disable_hs_limitation(struct sk_buff *skb, struct genl_info *info); static inline void smc_sock_set_flag(struct sock *sk, enum sock_flags flag) { set_bit(flag, &sk->sk_flags); } #endif /* __SMC_H */ |
57 16 158 63 44574 43839 1333 147 10366 5677 2 876 288 288 44 15 323 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_UACCESS_H__ #define __LINUX_UACCESS_H__ #include <linux/fault-inject-usercopy.h> #include <linux/instrumented.h> #include <linux/minmax.h> #include <linux/nospec.h> #include <linux/sched.h> #include <linux/thread_info.h> #include <asm/uaccess.h> /* * Architectures that support memory tagging (assigning tags to memory regions, * embedding these tags into addresses that point to these memory regions, and * checking that the memory and the pointer tags match on memory accesses) * redefine this macro to strip tags from pointers. * * Passing down mm_struct allows to define untagging rules on per-process * basis. * * It's defined as noop for architectures that don't support memory tagging. */ #ifndef untagged_addr #define untagged_addr(addr) (addr) #endif #ifndef untagged_addr_remote #define untagged_addr_remote(mm, addr) ({ \ mmap_assert_locked(mm); \ untagged_addr(addr); \ }) #endif #ifdef masked_user_access_begin #define can_do_masked_user_access() 1 #else #define can_do_masked_user_access() 0 #define masked_user_access_begin(src) NULL #endif /* * Architectures should provide two primitives (raw_copy_{to,from}_user()) * and get rid of their private instances of copy_{to,from}_user() and * __copy_{to,from}_user{,_inatomic}(). * * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and * return the amount left to copy. They should assume that access_ok() has * already been checked (and succeeded); they should *not* zero-pad anything. * No KASAN or object size checks either - those belong here. * * Both of these functions should attempt to copy size bytes starting at from * into the area starting at to. They must not fetch or store anything * outside of those areas. Return value must be between 0 (everything * copied successfully) and size (nothing copied). * * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting * at to must become equal to the bytes fetched from the corresponding area * starting at from. All data past to + size - N must be left unmodified. * * If copying succeeds, the return value must be 0. If some data cannot be * fetched, it is permitted to copy less than had been fetched; the only * hard requirement is that not storing anything at all (i.e. returning size) * should happen only when nothing could be copied. In other words, you don't * have to squeeze as much as possible - it is allowed, but not necessary. * * For raw_copy_from_user() to always points to kernel memory and no faults * on store should happen. Interpretation of from is affected by set_fs(). * For raw_copy_to_user() it's the other way round. * * Both can be inlined - it's up to architectures whether it wants to bother * with that. They should not be used directly; they are used to implement * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) * that are used instead. Out of those, __... ones are inlined. Plain * copy_{to,from}_user() might or might not be inlined. If you want them * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. * * NOTE: only copy_from_user() zero-pads the destination in case of short copy. * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything * at all; their callers absolutely must check the return value. * * Biarch ones should also provide raw_copy_in_user() - similar to the above, * but both source and destination are __user pointers (affected by set_fs() * as usual) and both source and destination can trigger faults. */ static __always_inline __must_check unsigned long __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) { unsigned long res; instrument_copy_from_user_before(to, from, n); check_object_size(to, n, false); res = raw_copy_from_user(to, from, n); instrument_copy_from_user_after(to, from, n, res); return res; } static __always_inline __must_check unsigned long __copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res; might_fault(); instrument_copy_from_user_before(to, from, n); if (should_fail_usercopy()) return n; check_object_size(to, n, false); res = raw_copy_from_user(to, from, n); instrument_copy_from_user_after(to, from, n, res); return res; } /** * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. * * Copy data from kernel space to user space. Caller must check * the specified block with access_ok() before calling this function. * The caller should also make sure he pins the user space address * so that we don't result in page fault and sleep. */ static __always_inline __must_check unsigned long __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) { if (should_fail_usercopy()) return n; instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } static __always_inline __must_check unsigned long __copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } /* * Architectures that #define INLINE_COPY_TO_USER use this function * directly in the normal copy_to/from_user(), the other ones go * through an extern _copy_to/from_user(), which expands the same code * here. * * Rust code always uses the extern definition. */ static inline __must_check unsigned long _inline_copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); if (!should_fail_usercopy() && likely(access_ok(from, n))) { /* * Ensure that bad access_ok() speculation will not * lead to nasty side effects *after* the copy is * finished: */ barrier_nospec(); instrument_copy_from_user_before(to, from, n); res = raw_copy_from_user(to, from, n); instrument_copy_from_user_after(to, from, n, res); } if (unlikely(res)) memset(to + (n - res), 0, res); return res; } extern __must_check unsigned long _copy_from_user(void *, const void __user *, unsigned long); static inline __must_check unsigned long _inline_copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } extern __must_check unsigned long _copy_to_user(void __user *, const void *, unsigned long); static __always_inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n) { if (!check_copy_size(to, n, false)) return n; #ifdef INLINE_COPY_FROM_USER return _inline_copy_from_user(to, from, n); #else return _copy_from_user(to, from, n); #endif } static __always_inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n) { if (!check_copy_size(from, n, true)) return n; #ifdef INLINE_COPY_TO_USER return _inline_copy_to_user(to, from, n); #else return _copy_to_user(to, from, n); #endif } #ifndef copy_mc_to_kernel /* * Without arch opt-in this generic copy_mc_to_kernel() will not handle * #MC (or arch equivalent) during source read. */ static inline unsigned long __must_check copy_mc_to_kernel(void *dst, const void *src, size_t cnt) { memcpy(dst, src, cnt); return 0; } #endif static __always_inline void pagefault_disabled_inc(void) { current->pagefault_disabled++; } static __always_inline void pagefault_disabled_dec(void) { current->pagefault_disabled--; } /* * These routines enable/disable the pagefault handler. If disabled, it will * not take any locks and go straight to the fixup table. * * User access methods will not sleep when called from a pagefault_disabled() * environment. */ static inline void pagefault_disable(void) { pagefault_disabled_inc(); /* * make sure to have issued the store before a pagefault * can hit. */ barrier(); } static inline void pagefault_enable(void) { /* * make sure to issue those last loads/stores before enabling * the pagefault handler again. */ barrier(); pagefault_disabled_dec(); } /* * Is the pagefault handler disabled? If so, user access methods will not sleep. */ static inline bool pagefault_disabled(void) { return current->pagefault_disabled != 0; } /* * The pagefault handler is in general disabled by pagefault_disable() or * when in irq context (via in_atomic()). * * This function should only be used by the fault handlers. Other users should * stick to pagefault_disabled(). * Please NEVER use preempt_disable() to disable the fault handler. With * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. */ #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) #ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS /** * probe_subpage_writeable: probe the user range for write faults at sub-page * granularity (e.g. arm64 MTE) * @uaddr: start of address range * @size: size of address range * * Returns 0 on success, the number of bytes not probed on fault. * * It is expected that the caller checked for the write permission of each * page in the range either by put_user() or GUP. The architecture port can * implement a more efficient get_user() probing if the same sub-page faults * are triggered by either a read or a write. */ static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size) { return 0; } #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */ #ifndef ARCH_HAS_NOCACHE_UACCESS static inline __must_check unsigned long __copy_from_user_inatomic_nocache(void *to, const void __user *from, unsigned long n) { return __copy_from_user_inatomic(to, from, n); } #endif /* ARCH_HAS_NOCACHE_UACCESS */ extern __must_check int check_zeroed_user(const void __user *from, size_t size); /** * copy_struct_from_user: copy a struct from userspace * @dst: Destination address, in kernel space. This buffer must be @ksize * bytes long. * @ksize: Size of @dst struct. * @src: Source address, in userspace. * @usize: (Alleged) size of @src struct. * * Copies a struct from userspace to kernel space, in a way that guarantees * backwards-compatibility for struct syscall arguments (as long as future * struct extensions are made such that all new fields are *appended* to the * old struct, and zeroed-out new fields have the same meaning as the old * struct). * * @ksize is just sizeof(*dst), and @usize should've been passed by userspace. * The recommended usage is something like the following: * * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize) * { * int err; * struct foo karg = {}; * * if (usize > PAGE_SIZE) * return -E2BIG; * if (usize < FOO_SIZE_VER0) * return -EINVAL; * * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); * if (err) * return err; * * // ... * } * * There are three cases to consider: * * If @usize == @ksize, then it's copied verbatim. * * If @usize < @ksize, then the userspace has passed an old struct to a * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize) * are to be zero-filled. * * If @usize > @ksize, then the userspace has passed a new struct to an * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize) * are checked to ensure they are zeroed, otherwise -E2BIG is returned. * * Returns (in all cases, some data may have been copied): * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src. * * -EFAULT: access to userspace failed. */ static __always_inline __must_check int copy_struct_from_user(void *dst, size_t ksize, const void __user *src, size_t usize) { size_t size = min(ksize, usize); size_t rest = max(ksize, usize) - size; /* Double check if ksize is larger than a known object size. */ if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1))) return -E2BIG; /* Deal with trailing bytes. */ if (usize < ksize) { memset(dst + size, 0, rest); } else if (usize > ksize) { int ret = check_zeroed_user(src + size, rest); if (ret <= 0) return ret ?: -E2BIG; } /* Copy the interoperable parts of the struct. */ if (copy_from_user(dst, src, size)) return -EFAULT; return 0; } bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size); long copy_from_kernel_nofault(void *dst, const void *src, size_t size); long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size); long copy_from_user_nofault(void *dst, const void __user *src, size_t size); long notrace copy_to_user_nofault(void __user *dst, const void *src, size_t size); long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr, long count); long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr, long count); long strnlen_user_nofault(const void __user *unsafe_addr, long count); #ifndef __get_kernel_nofault #define __get_kernel_nofault(dst, src, type, label) \ do { \ type __user *p = (type __force __user *)(src); \ type data; \ if (__get_user(data, p)) \ goto label; \ *(type *)dst = data; \ } while (0) #define __put_kernel_nofault(dst, src, type, label) \ do { \ type __user *p = (type __force __user *)(dst); \ type data = *(type *)src; \ if (__put_user(data, p)) \ goto label; \ } while (0) #endif /** * get_kernel_nofault(): safely attempt to read from a location * @val: read into this variable * @ptr: address to read from * * Returns 0 on success, or -EFAULT. */ #define get_kernel_nofault(val, ptr) ({ \ const typeof(val) *__gk_ptr = (ptr); \ copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\ }) #ifndef user_access_begin #define user_access_begin(ptr,len) access_ok(ptr, len) #define user_access_end() do { } while (0) #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0) #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e) #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e) #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e) #define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e) static inline unsigned long user_access_save(void) { return 0UL; } static inline void user_access_restore(unsigned long flags) { } #endif #ifndef user_write_access_begin #define user_write_access_begin user_access_begin #define user_write_access_end user_access_end #endif #ifndef user_read_access_begin #define user_read_access_begin user_access_begin #define user_read_access_end user_access_end #endif #ifdef CONFIG_HARDENED_USERCOPY void __noreturn usercopy_abort(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); #endif #endif /* __LINUX_UACCESS_H__ */ |
6 6 1 6 6 2 6 6 1 5 10 1 8 1 4 1 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | // SPDX-License-Identifier: GPL-2.0-or-later /* General persistent per-UID keyrings register * * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/user_namespace.h> #include <linux/cred.h> #include "internal.h" unsigned persistent_keyring_expiry = 3 * 24 * 3600; /* Expire after 3 days of non-use */ /* * Create the persistent keyring register for the current user namespace. * * Called with the namespace's sem locked for writing. */ static int key_create_persistent_register(struct user_namespace *ns) { struct key *reg = keyring_alloc(".persistent_register", KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), ((KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ), KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); if (IS_ERR(reg)) return PTR_ERR(reg); ns->persistent_keyring_register = reg; return 0; } /* * Create the persistent keyring for the specified user. * * Called with the namespace's sem locked for writing. */ static key_ref_t key_create_persistent(struct user_namespace *ns, kuid_t uid, struct keyring_index_key *index_key) { struct key *persistent; key_ref_t reg_ref, persistent_ref; if (!ns->persistent_keyring_register) { long err = key_create_persistent_register(ns); if (err < 0) return ERR_PTR(err); } else { reg_ref = make_key_ref(ns->persistent_keyring_register, true); persistent_ref = find_key_to_update(reg_ref, index_key); if (persistent_ref) return persistent_ref; } persistent = keyring_alloc(index_key->description, uid, INVALID_GID, current_cred(), ((KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ), KEY_ALLOC_NOT_IN_QUOTA, NULL, ns->persistent_keyring_register); if (IS_ERR(persistent)) return ERR_CAST(persistent); return make_key_ref(persistent, true); } /* * Get the persistent keyring for a specific UID and link it to the nominated * keyring. */ static long key_get_persistent(struct user_namespace *ns, kuid_t uid, key_ref_t dest_ref) { struct keyring_index_key index_key; struct key *persistent; key_ref_t reg_ref, persistent_ref; char buf[32]; long ret; /* Look in the register if it exists */ memset(&index_key, 0, sizeof(index_key)); index_key.type = &key_type_keyring; index_key.description = buf; index_key.desc_len = sprintf(buf, "_persistent.%u", from_kuid(ns, uid)); key_set_index_key(&index_key); if (ns->persistent_keyring_register) { reg_ref = make_key_ref(ns->persistent_keyring_register, true); down_read(&ns->keyring_sem); persistent_ref = find_key_to_update(reg_ref, &index_key); up_read(&ns->keyring_sem); if (persistent_ref) goto found; } /* It wasn't in the register, so we'll need to create it. We might * also need to create the register. */ down_write(&ns->keyring_sem); persistent_ref = key_create_persistent(ns, uid, &index_key); up_write(&ns->keyring_sem); if (!IS_ERR(persistent_ref)) goto found; return PTR_ERR(persistent_ref); found: ret = key_task_permission(persistent_ref, current_cred(), KEY_NEED_LINK); if (ret == 0) { persistent = key_ref_to_ptr(persistent_ref); ret = key_link(key_ref_to_ptr(dest_ref), persistent); if (ret == 0) { key_set_timeout(persistent, persistent_keyring_expiry); ret = persistent->serial; } } key_ref_put(persistent_ref); return ret; } /* * Get the persistent keyring for a specific UID and link it to the nominated * keyring. */ long keyctl_get_persistent(uid_t _uid, key_serial_t destid) { struct user_namespace *ns = current_user_ns(); key_ref_t dest_ref; kuid_t uid; long ret; /* -1 indicates the current user */ if (_uid == (uid_t)-1) { uid = current_uid(); } else { uid = make_kuid(ns, _uid); if (!uid_valid(uid)) return -EINVAL; /* You can only see your own persistent cache if you're not * sufficiently privileged. */ if (!uid_eq(uid, current_uid()) && !uid_eq(uid, current_euid()) && !ns_capable(ns, CAP_SETUID)) return -EPERM; } /* There must be a destination keyring */ dest_ref = lookup_user_key(destid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE); if (IS_ERR(dest_ref)) return PTR_ERR(dest_ref); if (key_ref_to_ptr(dest_ref)->type != &key_type_keyring) { ret = -ENOTDIR; goto out_put_dest; } ret = key_get_persistent(ns, uid, dest_ref); out_put_dest: key_ref_put(dest_ref); return ret; } |
9 78 4 84 14 2 29 14 29 5 60 29 87 86 57 71 67 1 1 87 86 87 43 47 47 54 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz> * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2020-2023 Intel Corporation */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/if.h> #include <linux/if_ether.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/notifier.h> #include <net/mac80211.h> #include <net/cfg80211.h> #include "ieee80211_i.h" #include "rate.h" #include "debugfs.h" #include "debugfs_netdev.h" #include "driver-ops.h" struct ieee80211_if_read_sdata_data { ssize_t (*format)(const struct ieee80211_sub_if_data *, char *, int); struct ieee80211_sub_if_data *sdata; }; static ssize_t ieee80211_if_read_sdata_handler(struct wiphy *wiphy, struct file *file, char *buf, size_t bufsize, void *data) { struct ieee80211_if_read_sdata_data *d = data; return d->format(d->sdata, buf, bufsize); } static ssize_t ieee80211_if_read_sdata( struct file *file, char __user *userbuf, size_t count, loff_t *ppos, ssize_t (*format)(const struct ieee80211_sub_if_data *sdata, char *, int)) { struct ieee80211_sub_if_data *sdata = file->private_data; struct ieee80211_if_read_sdata_data data = { .format = format, .sdata = sdata, }; char buf[200]; return wiphy_locked_debugfs_read(sdata->local->hw.wiphy, file, buf, sizeof(buf), userbuf, count, ppos, ieee80211_if_read_sdata_handler, &data); } struct ieee80211_if_write_sdata_data { ssize_t (*write)(struct ieee80211_sub_if_data *, const char *, int); struct ieee80211_sub_if_data *sdata; }; static ssize_t ieee80211_if_write_sdata_handler(struct wiphy *wiphy, struct file *file, char *buf, size_t count, void *data) { struct ieee80211_if_write_sdata_data *d = data; return d->write(d->sdata, buf, count); } static ssize_t ieee80211_if_write_sdata( struct file *file, const char __user *userbuf, size_t count, loff_t *ppos, ssize_t (*write)(struct ieee80211_sub_if_data *sdata, const char *, int)) { struct ieee80211_sub_if_data *sdata = file->private_data; struct ieee80211_if_write_sdata_data data = { .write = write, .sdata = sdata, }; char buf[64]; return wiphy_locked_debugfs_write(sdata->local->hw.wiphy, file, buf, sizeof(buf), userbuf, count, ieee80211_if_write_sdata_handler, &data); } struct ieee80211_if_read_link_data { ssize_t (*format)(const struct ieee80211_link_data *, char *, int); struct ieee80211_link_data *link; }; static ssize_t ieee80211_if_read_link_handler(struct wiphy *wiphy, struct file *file, char *buf, size_t bufsize, void *data) { struct ieee80211_if_read_link_data *d = data; return d->format(d->link, buf, bufsize); } static ssize_t ieee80211_if_read_link( struct file *file, char __user *userbuf, size_t count, loff_t *ppos, ssize_t (*format)(const struct ieee80211_link_data *link, char *, int)) { struct ieee80211_link_data *link = file->private_data; struct ieee80211_if_read_link_data data = { .format = format, .link = link, }; char buf[200]; return wiphy_locked_debugfs_read(link->sdata->local->hw.wiphy, file, buf, sizeof(buf), userbuf, count, ppos, ieee80211_if_read_link_handler, &data); } struct ieee80211_if_write_link_data { ssize_t (*write)(struct ieee80211_link_data *, const char *, int); struct ieee80211_link_data *link; }; static ssize_t ieee80211_if_write_link_handler(struct wiphy *wiphy, struct file *file, char *buf, size_t count, void *data) { struct ieee80211_if_write_sdata_data *d = data; return d->write(d->sdata, buf, count); } static ssize_t ieee80211_if_write_link( struct file *file, const char __user *userbuf, size_t count, loff_t *ppos, ssize_t (*write)(struct ieee80211_link_data *link, const char *, int)) { struct ieee80211_link_data *link = file->private_data; struct ieee80211_if_write_link_data data = { .write = write, .link = link, }; char buf[64]; return wiphy_locked_debugfs_write(link->sdata->local->hw.wiphy, file, buf, sizeof(buf), userbuf, count, ieee80211_if_write_link_handler, &data); } #define IEEE80211_IF_FMT(name, type, field, format_string) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, char *buf, \ int buflen) \ { \ return scnprintf(buf, buflen, format_string, data->field); \ } #define IEEE80211_IF_FMT_DEC(name, type, field) \ IEEE80211_IF_FMT(name, type, field, "%d\n") #define IEEE80211_IF_FMT_HEX(name, type, field) \ IEEE80211_IF_FMT(name, type, field, "%#x\n") #define IEEE80211_IF_FMT_LHEX(name, type, field) \ IEEE80211_IF_FMT(name, type, field, "%#lx\n") #define IEEE80211_IF_FMT_HEXARRAY(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, \ char *buf, int buflen) \ { \ char *p = buf; \ int i; \ for (i = 0; i < sizeof(data->field); i++) { \ p += scnprintf(p, buflen + buf - p, "%.2x ", \ data->field[i]); \ } \ p += scnprintf(p, buflen + buf - p, "\n"); \ return p - buf; \ } #define IEEE80211_IF_FMT_ATOMIC(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, \ char *buf, int buflen) \ { \ return scnprintf(buf, buflen, "%d\n", atomic_read(&data->field));\ } #define IEEE80211_IF_FMT_MAC(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, char *buf, \ int buflen) \ { \ return scnprintf(buf, buflen, "%pM\n", data->field); \ } #define IEEE80211_IF_FMT_JIFFIES_TO_MS(name, type, field) \ static ssize_t ieee80211_if_fmt_##name( \ const type *data, \ char *buf, int buflen) \ { \ return scnprintf(buf, buflen, "%d\n", \ jiffies_to_msecs(data->field)); \ } #define _IEEE80211_IF_FILE_OPS(name, _read, _write) \ static const struct file_operations name##_ops = { \ .read = (_read), \ .write = (_write), \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define _IEEE80211_IF_FILE_R_FN(name) \ static ssize_t ieee80211_if_read_##name(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ return ieee80211_if_read_sdata(file, \ userbuf, count, ppos, \ ieee80211_if_fmt_##name); \ } #define _IEEE80211_IF_FILE_W_FN(name) \ static ssize_t ieee80211_if_write_##name(struct file *file, \ const char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ return ieee80211_if_write_sdata(file, userbuf, \ count, ppos, \ ieee80211_if_parse_##name); \ } #define IEEE80211_IF_FILE_R(name) \ _IEEE80211_IF_FILE_R_FN(name) \ _IEEE80211_IF_FILE_OPS(name, ieee80211_if_read_##name, NULL) #define IEEE80211_IF_FILE_W(name) \ _IEEE80211_IF_FILE_W_FN(name) \ _IEEE80211_IF_FILE_OPS(name, NULL, ieee80211_if_write_##name) #define IEEE80211_IF_FILE_RW(name) \ _IEEE80211_IF_FILE_R_FN(name) \ _IEEE80211_IF_FILE_W_FN(name) \ _IEEE80211_IF_FILE_OPS(name, ieee80211_if_read_##name, \ ieee80211_if_write_##name) #define IEEE80211_IF_FILE(name, field, format) \ IEEE80211_IF_FMT_##format(name, struct ieee80211_sub_if_data, field) \ IEEE80211_IF_FILE_R(name) #define _IEEE80211_IF_LINK_R_FN(name) \ static ssize_t ieee80211_if_read_##name(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ return ieee80211_if_read_link(file, \ userbuf, count, ppos, \ ieee80211_if_fmt_##name); \ } #define _IEEE80211_IF_LINK_W_FN(name) \ static ssize_t ieee80211_if_write_##name(struct file *file, \ const char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ return ieee80211_if_write_link(file, userbuf, \ count, ppos, \ ieee80211_if_parse_##name); \ } #define IEEE80211_IF_LINK_FILE_R(name) \ _IEEE80211_IF_LINK_R_FN(name) \ _IEEE80211_IF_FILE_OPS(link_##name, ieee80211_if_read_##name, NULL) #define IEEE80211_IF_LINK_FILE_W(name) \ _IEEE80211_IF_LINK_W_FN(name) \ _IEEE80211_IF_FILE_OPS(link_##name, NULL, ieee80211_if_write_##name) #define IEEE80211_IF_LINK_FILE_RW(name) \ _IEEE80211_IF_LINK_R_FN(name) \ _IEEE80211_IF_LINK_W_FN(name) \ _IEEE80211_IF_FILE_OPS(link_##name, ieee80211_if_read_##name, \ ieee80211_if_write_##name) #define IEEE80211_IF_LINK_FILE(name, field, format) \ IEEE80211_IF_FMT_##format(name, struct ieee80211_link_data, field) \ IEEE80211_IF_LINK_FILE_R(name) /* common attributes */ IEEE80211_IF_FILE(rc_rateidx_mask_2ghz, rc_rateidx_mask[NL80211_BAND_2GHZ], HEX); IEEE80211_IF_FILE(rc_rateidx_mask_5ghz, rc_rateidx_mask[NL80211_BAND_5GHZ], HEX); IEEE80211_IF_FILE(rc_rateidx_mcs_mask_2ghz, rc_rateidx_mcs_mask[NL80211_BAND_2GHZ], HEXARRAY); IEEE80211_IF_FILE(rc_rateidx_mcs_mask_5ghz, rc_rateidx_mcs_mask[NL80211_BAND_5GHZ], HEXARRAY); static ssize_t ieee80211_if_fmt_rc_rateidx_vht_mcs_mask_2ghz( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { int i, len = 0; const u16 *mask = sdata->rc_rateidx_vht_mcs_mask[NL80211_BAND_2GHZ]; for (i = 0; i < NL80211_VHT_NSS_MAX; i++) len += scnprintf(buf + len, buflen - len, "%04x ", mask[i]); len += scnprintf(buf + len, buflen - len, "\n"); return len; } IEEE80211_IF_FILE_R(rc_rateidx_vht_mcs_mask_2ghz); static ssize_t ieee80211_if_fmt_rc_rateidx_vht_mcs_mask_5ghz( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { int i, len = 0; const u16 *mask = sdata->rc_rateidx_vht_mcs_mask[NL80211_BAND_5GHZ]; for (i = 0; i < NL80211_VHT_NSS_MAX; i++) len += scnprintf(buf + len, buflen - len, "%04x ", mask[i]); len += scnprintf(buf + len, buflen - len, "\n"); return len; } IEEE80211_IF_FILE_R(rc_rateidx_vht_mcs_mask_5ghz); IEEE80211_IF_FILE(flags, flags, HEX); IEEE80211_IF_FILE(state, state, LHEX); IEEE80211_IF_LINK_FILE(txpower, conf->txpower, DEC); IEEE80211_IF_LINK_FILE(ap_power_level, ap_power_level, DEC); IEEE80211_IF_LINK_FILE(user_power_level, user_power_level, DEC); static ssize_t ieee80211_if_fmt_hw_queues(const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { int len; len = scnprintf(buf, buflen, "AC queues: VO:%d VI:%d BE:%d BK:%d\n", sdata->vif.hw_queue[IEEE80211_AC_VO], sdata->vif.hw_queue[IEEE80211_AC_VI], sdata->vif.hw_queue[IEEE80211_AC_BE], sdata->vif.hw_queue[IEEE80211_AC_BK]); if (sdata->vif.type == NL80211_IFTYPE_AP) len += scnprintf(buf + len, buflen - len, "cab queue: %d\n", sdata->vif.cab_queue); return len; } IEEE80211_IF_FILE_R(hw_queues); /* STA attributes */ IEEE80211_IF_FILE(bssid, deflink.u.mgd.bssid, MAC); IEEE80211_IF_FILE(aid, vif.cfg.aid, DEC); IEEE80211_IF_FILE(beacon_timeout, u.mgd.beacon_timeout, JIFFIES_TO_MS); static int ieee80211_set_smps(struct ieee80211_link_data *link, enum ieee80211_smps_mode smps_mode) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; /* The driver indicated that EML is enabled for the interface, thus do * not allow to override the SMPS state. */ if (sdata->vif.driver_flags & IEEE80211_VIF_EML_ACTIVE) return -EOPNOTSUPP; if (!(local->hw.wiphy->features & NL80211_FEATURE_STATIC_SMPS) && smps_mode == IEEE80211_SMPS_STATIC) return -EINVAL; /* auto should be dynamic if in PS mode */ if (!(local->hw.wiphy->features & NL80211_FEATURE_DYNAMIC_SMPS) && (smps_mode == IEEE80211_SMPS_DYNAMIC || smps_mode == IEEE80211_SMPS_AUTOMATIC)) return -EINVAL; if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; return __ieee80211_request_smps_mgd(link->sdata, link, smps_mode); } static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = { [IEEE80211_SMPS_AUTOMATIC] = "auto", [IEEE80211_SMPS_OFF] = "off", [IEEE80211_SMPS_STATIC] = "static", [IEEE80211_SMPS_DYNAMIC] = "dynamic", }; static ssize_t ieee80211_if_fmt_smps(const struct ieee80211_link_data *link, char *buf, int buflen) { if (link->sdata->vif.type == NL80211_IFTYPE_STATION) return snprintf(buf, buflen, "request: %s\nused: %s\n", smps_modes[link->u.mgd.req_smps], smps_modes[link->smps_mode]); return -EINVAL; } static ssize_t ieee80211_if_parse_smps(struct ieee80211_link_data *link, const char *buf, int buflen) { enum ieee80211_smps_mode mode; for (mode = 0; mode < IEEE80211_SMPS_NUM_MODES; mode++) { if (strncmp(buf, smps_modes[mode], buflen) == 0) { int err = ieee80211_set_smps(link, mode); if (!err) return buflen; return err; } } return -EINVAL; } IEEE80211_IF_LINK_FILE_RW(smps); static ssize_t ieee80211_if_parse_tkip_mic_test( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_local *local = sdata->local; u8 addr[ETH_ALEN]; struct sk_buff *skb; struct ieee80211_hdr *hdr; __le16 fc; if (!mac_pton(buf, addr)) return -EINVAL; if (!ieee80211_sdata_running(sdata)) return -ENOTCONN; skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24 + 100); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); hdr = skb_put_zero(skb, 24); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (sdata->vif.type) { case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ memcpy(hdr->addr1, addr, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr->addr3, sdata->vif.addr, ETH_ALEN); break; case NL80211_IFTYPE_STATION: fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ if (!sdata->u.mgd.associated) { dev_kfree_skb(skb); return -ENOTCONN; } memcpy(hdr->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr->addr3, addr, ETH_ALEN); break; default: dev_kfree_skb(skb); return -EOPNOTSUPP; } hdr->frame_control = fc; /* * Add some length to the test frame to make it look bit more valid. * The exact contents does not matter since the recipient is required * to drop this because of the Michael MIC failure. */ skb_put_zero(skb, 50); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_TKIP_MIC_FAILURE; ieee80211_tx_skb(sdata, skb); return buflen; } IEEE80211_IF_FILE_W(tkip_mic_test); static ssize_t ieee80211_if_parse_beacon_loss( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { if (!ieee80211_sdata_running(sdata) || !sdata->vif.cfg.assoc) return -ENOTCONN; ieee80211_beacon_loss(&sdata->vif); return buflen; } IEEE80211_IF_FILE_W(beacon_loss); static ssize_t ieee80211_if_fmt_uapsd_queues( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { const struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; return snprintf(buf, buflen, "0x%x\n", ifmgd->uapsd_queues); } static ssize_t ieee80211_if_parse_uapsd_queues( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 val; int ret; ret = kstrtou8(buf, 0, &val); if (ret) return ret; if (val & ~IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK) return -ERANGE; ifmgd->uapsd_queues = val; return buflen; } IEEE80211_IF_FILE_RW(uapsd_queues); static ssize_t ieee80211_if_fmt_uapsd_max_sp_len( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { const struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; return snprintf(buf, buflen, "0x%x\n", ifmgd->uapsd_max_sp_len); } static ssize_t ieee80211_if_parse_uapsd_max_sp_len( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return -EINVAL; if (val & ~IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK) return -ERANGE; ifmgd->uapsd_max_sp_len = val; return buflen; } IEEE80211_IF_FILE_RW(uapsd_max_sp_len); static ssize_t ieee80211_if_fmt_tdls_wider_bw( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { const struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool tdls_wider_bw; tdls_wider_bw = ieee80211_hw_check(&sdata->local->hw, TDLS_WIDER_BW) && !ifmgd->tdls_wider_bw_prohibited; return snprintf(buf, buflen, "%d\n", tdls_wider_bw); } static ssize_t ieee80211_if_parse_tdls_wider_bw( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 val; int ret; ret = kstrtou8(buf, 0, &val); if (ret) return ret; ifmgd->tdls_wider_bw_prohibited = !val; return buflen; } IEEE80211_IF_FILE_RW(tdls_wider_bw); /* AP attributes */ IEEE80211_IF_FILE(num_mcast_sta, u.ap.num_mcast_sta, ATOMIC); IEEE80211_IF_FILE(num_sta_ps, u.ap.ps.num_sta_ps, ATOMIC); IEEE80211_IF_FILE(dtim_count, u.ap.ps.dtim_count, DEC); IEEE80211_IF_FILE(num_mcast_sta_vlan, u.vlan.num_mcast_sta, ATOMIC); static ssize_t ieee80211_if_fmt_num_buffered_multicast( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { return scnprintf(buf, buflen, "%u\n", skb_queue_len(&sdata->u.ap.ps.bc_buf)); } IEEE80211_IF_FILE_R(num_buffered_multicast); static ssize_t ieee80211_if_fmt_aqm( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { struct ieee80211_local *local = sdata->local; struct txq_info *txqi; int len; if (!sdata->vif.txq) return 0; txqi = to_txq_info(sdata->vif.txq); spin_lock_bh(&local->fq.lock); rcu_read_lock(); len = scnprintf(buf, buflen, "ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets\n" "%u %u %u %u %u %u %u %u %u %u\n", txqi->txq.ac, txqi->tin.backlog_bytes, txqi->tin.backlog_packets, txqi->tin.flows, txqi->cstats.drop_count, txqi->cstats.ecn_mark, txqi->tin.overlimit, txqi->tin.collisions, txqi->tin.tx_bytes, txqi->tin.tx_packets); rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); return len; } IEEE80211_IF_FILE_R(aqm); IEEE80211_IF_FILE(multicast_to_unicast, u.ap.multicast_to_unicast, HEX); /* IBSS attributes */ static ssize_t ieee80211_if_fmt_tsf( const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { struct ieee80211_local *local = sdata->local; u64 tsf; tsf = drv_get_tsf(local, (struct ieee80211_sub_if_data *)sdata); return scnprintf(buf, buflen, "0x%016llx\n", (unsigned long long) tsf); } static ssize_t ieee80211_if_parse_tsf( struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { struct ieee80211_local *local = sdata->local; unsigned long long tsf; int ret; int tsf_is_delta = 0; if (strncmp(buf, "reset", 5) == 0) { if (local->ops->reset_tsf) { drv_reset_tsf(local, sdata); wiphy_info(local->hw.wiphy, "debugfs reset TSF\n"); } } else { if (buflen > 10 && buf[1] == '=') { if (buf[0] == '+') tsf_is_delta = 1; else if (buf[0] == '-') tsf_is_delta = -1; else return -EINVAL; buf += 2; } ret = kstrtoull(buf, 10, &tsf); if (ret < 0) return ret; if (tsf_is_delta && local->ops->offset_tsf) { drv_offset_tsf(local, sdata, tsf_is_delta * tsf); wiphy_info(local->hw.wiphy, "debugfs offset TSF by %018lld\n", tsf_is_delta * tsf); } else if (local->ops->set_tsf) { if (tsf_is_delta) tsf = drv_get_tsf(local, sdata) + tsf_is_delta * tsf; drv_set_tsf(local, sdata, tsf); wiphy_info(local->hw.wiphy, "debugfs set TSF to %#018llx\n", tsf); } } ieee80211_recalc_dtim(local, sdata); return buflen; } IEEE80211_IF_FILE_RW(tsf); static ssize_t ieee80211_if_fmt_valid_links(const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { return snprintf(buf, buflen, "0x%x\n", sdata->vif.valid_links); } IEEE80211_IF_FILE_R(valid_links); static ssize_t ieee80211_if_fmt_active_links(const struct ieee80211_sub_if_data *sdata, char *buf, int buflen) { return snprintf(buf, buflen, "0x%x\n", sdata->vif.active_links); } static ssize_t ieee80211_if_parse_active_links(struct ieee80211_sub_if_data *sdata, const char *buf, int buflen) { u16 active_links; if (kstrtou16(buf, 0, &active_links)) return -EINVAL; return ieee80211_set_active_links(&sdata->vif, active_links) ?: buflen; } IEEE80211_IF_FILE_RW(active_links); IEEE80211_IF_LINK_FILE(addr, conf->addr, MAC); #ifdef CONFIG_MAC80211_MESH IEEE80211_IF_FILE(estab_plinks, u.mesh.estab_plinks, ATOMIC); /* Mesh stats attributes */ IEEE80211_IF_FILE(fwded_mcast, u.mesh.mshstats.fwded_mcast, DEC); IEEE80211_IF_FILE(fwded_unicast, u.mesh.mshstats.fwded_unicast, DEC); IEEE80211_IF_FILE(fwded_frames, u.mesh.mshstats.fwded_frames, DEC); IEEE80211_IF_FILE(dropped_frames_ttl, u.mesh.mshstats.dropped_frames_ttl, DEC); IEEE80211_IF_FILE(dropped_frames_no_route, u.mesh.mshstats.dropped_frames_no_route, DEC); /* Mesh parameters */ IEEE80211_IF_FILE(dot11MeshMaxRetries, u.mesh.mshcfg.dot11MeshMaxRetries, DEC); IEEE80211_IF_FILE(dot11MeshRetryTimeout, u.mesh.mshcfg.dot11MeshRetryTimeout, DEC); IEEE80211_IF_FILE(dot11MeshConfirmTimeout, u.mesh.mshcfg.dot11MeshConfirmTimeout, DEC); IEEE80211_IF_FILE(dot11MeshHoldingTimeout, u.mesh.mshcfg.dot11MeshHoldingTimeout, DEC); IEEE80211_IF_FILE(dot11MeshTTL, u.mesh.mshcfg.dot11MeshTTL, DEC); IEEE80211_IF_FILE(element_ttl, u.mesh.mshcfg.element_ttl, DEC); IEEE80211_IF_FILE(auto_open_plinks, u.mesh.mshcfg.auto_open_plinks, DEC); IEEE80211_IF_FILE(dot11MeshMaxPeerLinks, u.mesh.mshcfg.dot11MeshMaxPeerLinks, DEC); IEEE80211_IF_FILE(dot11MeshHWMPactivePathTimeout, u.mesh.mshcfg.dot11MeshHWMPactivePathTimeout, DEC); IEEE80211_IF_FILE(dot11MeshHWMPpreqMinInterval, u.mesh.mshcfg.dot11MeshHWMPpreqMinInterval, DEC); IEEE80211_IF_FILE(dot11MeshHWMPperrMinInterval, u.mesh.mshcfg.dot11MeshHWMPperrMinInterval, DEC); IEEE80211_IF_FILE(dot11MeshHWMPnetDiameterTraversalTime, u.mesh.mshcfg.dot11MeshHWMPnetDiameterTraversalTime, DEC); IEEE80211_IF_FILE(dot11MeshHWMPmaxPREQretries, u.mesh.mshcfg.dot11MeshHWMPmaxPREQretries, DEC); IEEE80211_IF_FILE(path_refresh_time, u.mesh.mshcfg.path_refresh_time, DEC); IEEE80211_IF_FILE(min_discovery_timeout, u.mesh.mshcfg.min_discovery_timeout, DEC); IEEE80211_IF_FILE(dot11MeshHWMPRootMode, u.mesh.mshcfg.dot11MeshHWMPRootMode, DEC); IEEE80211_IF_FILE(dot11MeshGateAnnouncementProtocol, u.mesh.mshcfg.dot11MeshGateAnnouncementProtocol, DEC); IEEE80211_IF_FILE(dot11MeshHWMPRannInterval, u.mesh.mshcfg.dot11MeshHWMPRannInterval, DEC); IEEE80211_IF_FILE(dot11MeshForwarding, u.mesh.mshcfg.dot11MeshForwarding, DEC); IEEE80211_IF_FILE(rssi_threshold, u.mesh.mshcfg.rssi_threshold, DEC); IEEE80211_IF_FILE(ht_opmode, u.mesh.mshcfg.ht_opmode, DEC); IEEE80211_IF_FILE(dot11MeshHWMPactivePathToRootTimeout, u.mesh.mshcfg.dot11MeshHWMPactivePathToRootTimeout, DEC); IEEE80211_IF_FILE(dot11MeshHWMProotInterval, u.mesh.mshcfg.dot11MeshHWMProotInterval, DEC); IEEE80211_IF_FILE(dot11MeshHWMPconfirmationInterval, u.mesh.mshcfg.dot11MeshHWMPconfirmationInterval, DEC); IEEE80211_IF_FILE(power_mode, u.mesh.mshcfg.power_mode, DEC); IEEE80211_IF_FILE(dot11MeshAwakeWindowDuration, u.mesh.mshcfg.dot11MeshAwakeWindowDuration, DEC); IEEE80211_IF_FILE(dot11MeshConnectedToMeshGate, u.mesh.mshcfg.dot11MeshConnectedToMeshGate, DEC); IEEE80211_IF_FILE(dot11MeshNolearn, u.mesh.mshcfg.dot11MeshNolearn, DEC); IEEE80211_IF_FILE(dot11MeshConnectedToAuthServer, u.mesh.mshcfg.dot11MeshConnectedToAuthServer, DEC); #endif #define DEBUGFS_ADD_MODE(name, mode) \ debugfs_create_file(#name, mode, sdata->vif.debugfs_dir, \ sdata, &name##_ops) #define DEBUGFS_ADD_X(_bits, _name, _mode) \ debugfs_create_x##_bits(#_name, _mode, sdata->vif.debugfs_dir, \ &sdata->vif._name) #define DEBUGFS_ADD_X8(_name, _mode) \ DEBUGFS_ADD_X(8, _name, _mode) #define DEBUGFS_ADD_X16(_name, _mode) \ DEBUGFS_ADD_X(16, _name, _mode) #define DEBUGFS_ADD_X32(_name, _mode) \ DEBUGFS_ADD_X(32, _name, _mode) #define DEBUGFS_ADD(name) DEBUGFS_ADD_MODE(name, 0400) static void add_common_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD(rc_rateidx_mask_2ghz); DEBUGFS_ADD(rc_rateidx_mask_5ghz); DEBUGFS_ADD(rc_rateidx_mcs_mask_2ghz); DEBUGFS_ADD(rc_rateidx_mcs_mask_5ghz); DEBUGFS_ADD(rc_rateidx_vht_mcs_mask_2ghz); DEBUGFS_ADD(rc_rateidx_vht_mcs_mask_5ghz); DEBUGFS_ADD(hw_queues); if (sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && sdata->vif.type != NL80211_IFTYPE_NAN) DEBUGFS_ADD(aqm); } static void add_sta_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD(bssid); DEBUGFS_ADD(aid); DEBUGFS_ADD(beacon_timeout); DEBUGFS_ADD_MODE(tkip_mic_test, 0200); DEBUGFS_ADD_MODE(beacon_loss, 0200); DEBUGFS_ADD_MODE(uapsd_queues, 0600); DEBUGFS_ADD_MODE(uapsd_max_sp_len, 0600); DEBUGFS_ADD_MODE(tdls_wider_bw, 0600); DEBUGFS_ADD_MODE(valid_links, 0400); DEBUGFS_ADD_MODE(active_links, 0600); DEBUGFS_ADD_X16(dormant_links, 0400); } static void add_ap_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD(num_mcast_sta); DEBUGFS_ADD(num_sta_ps); DEBUGFS_ADD(dtim_count); DEBUGFS_ADD(num_buffered_multicast); DEBUGFS_ADD_MODE(tkip_mic_test, 0200); DEBUGFS_ADD_MODE(multicast_to_unicast, 0600); } static void add_vlan_files(struct ieee80211_sub_if_data *sdata) { /* add num_mcast_sta_vlan using name num_mcast_sta */ debugfs_create_file("num_mcast_sta", 0400, sdata->vif.debugfs_dir, sdata, &num_mcast_sta_vlan_ops); } static void add_ibss_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD_MODE(tsf, 0600); } #ifdef CONFIG_MAC80211_MESH static void add_mesh_files(struct ieee80211_sub_if_data *sdata) { DEBUGFS_ADD_MODE(tsf, 0600); DEBUGFS_ADD_MODE(estab_plinks, 0400); } static void add_mesh_stats(struct ieee80211_sub_if_data *sdata) { struct dentry *dir = debugfs_create_dir("mesh_stats", sdata->vif.debugfs_dir); #define MESHSTATS_ADD(name)\ debugfs_create_file(#name, 0400, dir, sdata, &name##_ops) MESHSTATS_ADD(fwded_mcast); MESHSTATS_ADD(fwded_unicast); MESHSTATS_ADD(fwded_frames); MESHSTATS_ADD(dropped_frames_ttl); MESHSTATS_ADD(dropped_frames_no_route); #undef MESHSTATS_ADD } static void add_mesh_config(struct ieee80211_sub_if_data *sdata) { struct dentry *dir = debugfs_create_dir("mesh_config", sdata->vif.debugfs_dir); #define MESHPARAMS_ADD(name) \ debugfs_create_file(#name, 0600, dir, sdata, &name##_ops) MESHPARAMS_ADD(dot11MeshMaxRetries); MESHPARAMS_ADD(dot11MeshRetryTimeout); MESHPARAMS_ADD(dot11MeshConfirmTimeout); MESHPARAMS_ADD(dot11MeshHoldingTimeout); MESHPARAMS_ADD(dot11MeshTTL); MESHPARAMS_ADD(element_ttl); MESHPARAMS_ADD(auto_open_plinks); MESHPARAMS_ADD(dot11MeshMaxPeerLinks); MESHPARAMS_ADD(dot11MeshHWMPactivePathTimeout); MESHPARAMS_ADD(dot11MeshHWMPpreqMinInterval); MESHPARAMS_ADD(dot11MeshHWMPperrMinInterval); MESHPARAMS_ADD(dot11MeshHWMPnetDiameterTraversalTime); MESHPARAMS_ADD(dot11MeshHWMPmaxPREQretries); MESHPARAMS_ADD(path_refresh_time); MESHPARAMS_ADD(min_discovery_timeout); MESHPARAMS_ADD(dot11MeshHWMPRootMode); MESHPARAMS_ADD(dot11MeshHWMPRannInterval); MESHPARAMS_ADD(dot11MeshForwarding); MESHPARAMS_ADD(dot11MeshGateAnnouncementProtocol); MESHPARAMS_ADD(rssi_threshold); MESHPARAMS_ADD(ht_opmode); MESHPARAMS_ADD(dot11MeshHWMPactivePathToRootTimeout); MESHPARAMS_ADD(dot11MeshHWMProotInterval); MESHPARAMS_ADD(dot11MeshHWMPconfirmationInterval); MESHPARAMS_ADD(power_mode); MESHPARAMS_ADD(dot11MeshAwakeWindowDuration); MESHPARAMS_ADD(dot11MeshConnectedToMeshGate); MESHPARAMS_ADD(dot11MeshNolearn); MESHPARAMS_ADD(dot11MeshConnectedToAuthServer); #undef MESHPARAMS_ADD } #endif static void add_files(struct ieee80211_sub_if_data *sdata) { if (!sdata->vif.debugfs_dir) return; DEBUGFS_ADD(flags); DEBUGFS_ADD(state); if (sdata->vif.type != NL80211_IFTYPE_MONITOR) add_common_files(sdata); switch (sdata->vif.type) { case NL80211_IFTYPE_MESH_POINT: #ifdef CONFIG_MAC80211_MESH add_mesh_files(sdata); add_mesh_stats(sdata); add_mesh_config(sdata); #endif break; case NL80211_IFTYPE_STATION: add_sta_files(sdata); break; case NL80211_IFTYPE_ADHOC: add_ibss_files(sdata); break; case NL80211_IFTYPE_AP: add_ap_files(sdata); break; case NL80211_IFTYPE_AP_VLAN: add_vlan_files(sdata); break; default: break; } } #undef DEBUGFS_ADD_MODE #undef DEBUGFS_ADD #define DEBUGFS_ADD_MODE(dentry, name, mode) \ debugfs_create_file(#name, mode, dentry, \ link, &link_##name##_ops) #define DEBUGFS_ADD(dentry, name) DEBUGFS_ADD_MODE(dentry, name, 0400) static void add_link_files(struct ieee80211_link_data *link, struct dentry *dentry) { DEBUGFS_ADD(dentry, txpower); DEBUGFS_ADD(dentry, user_power_level); DEBUGFS_ADD(dentry, ap_power_level); switch (link->sdata->vif.type) { case NL80211_IFTYPE_STATION: DEBUGFS_ADD_MODE(dentry, smps, 0600); break; default: break; } } static void ieee80211_debugfs_add_netdev(struct ieee80211_sub_if_data *sdata, bool mld_vif) { char buf[10+IFNAMSIZ]; sprintf(buf, "netdev:%s", sdata->name); sdata->vif.debugfs_dir = debugfs_create_dir(buf, sdata->local->hw.wiphy->debugfsdir); /* deflink also has this */ sdata->deflink.debugfs_dir = sdata->vif.debugfs_dir; sdata->debugfs.subdir_stations = debugfs_create_dir("stations", sdata->vif.debugfs_dir); add_files(sdata); if (!mld_vif) add_link_files(&sdata->deflink, sdata->vif.debugfs_dir); } void ieee80211_debugfs_remove_netdev(struct ieee80211_sub_if_data *sdata) { if (!sdata->vif.debugfs_dir) return; debugfs_remove_recursive(sdata->vif.debugfs_dir); sdata->vif.debugfs_dir = NULL; sdata->debugfs.subdir_stations = NULL; } void ieee80211_debugfs_rename_netdev(struct ieee80211_sub_if_data *sdata) { struct dentry *dir; char buf[10 + IFNAMSIZ]; dir = sdata->vif.debugfs_dir; if (IS_ERR_OR_NULL(dir)) return; sprintf(buf, "netdev:%s", sdata->name); debugfs_rename(dir->d_parent, dir, dir->d_parent, buf); } void ieee80211_debugfs_recreate_netdev(struct ieee80211_sub_if_data *sdata, bool mld_vif) { ieee80211_debugfs_remove_netdev(sdata); ieee80211_debugfs_add_netdev(sdata, mld_vif); if (sdata->flags & IEEE80211_SDATA_IN_DRIVER) { drv_vif_add_debugfs(sdata->local, sdata); if (!mld_vif) ieee80211_link_debugfs_drv_add(&sdata->deflink); } } void ieee80211_link_debugfs_add(struct ieee80211_link_data *link) { char link_dir_name[10]; if (WARN_ON(!link->sdata->vif.debugfs_dir || link->debugfs_dir)) return; /* For now, this should not be called for non-MLO capable drivers */ if (WARN_ON(!(link->sdata->local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO))) return; snprintf(link_dir_name, sizeof(link_dir_name), "link-%d", link->link_id); link->debugfs_dir = debugfs_create_dir(link_dir_name, link->sdata->vif.debugfs_dir); DEBUGFS_ADD(link->debugfs_dir, addr); add_link_files(link, link->debugfs_dir); } void ieee80211_link_debugfs_remove(struct ieee80211_link_data *link) { if (!link->sdata->vif.debugfs_dir || !link->debugfs_dir) { link->debugfs_dir = NULL; return; } if (link->debugfs_dir == link->sdata->vif.debugfs_dir) { WARN_ON(link != &link->sdata->deflink); link->debugfs_dir = NULL; return; } debugfs_remove_recursive(link->debugfs_dir); link->debugfs_dir = NULL; } void ieee80211_link_debugfs_drv_add(struct ieee80211_link_data *link) { if (link->sdata->vif.type == NL80211_IFTYPE_MONITOR || WARN_ON(!link->debugfs_dir)) return; drv_link_add_debugfs(link->sdata->local, link->sdata, link->conf, link->debugfs_dir); } void ieee80211_link_debugfs_drv_remove(struct ieee80211_link_data *link) { if (!link || !link->debugfs_dir) return; if (WARN_ON(link->debugfs_dir == link->sdata->vif.debugfs_dir)) return; /* Recreate the directory excluding the driver data */ debugfs_remove_recursive(link->debugfs_dir); link->debugfs_dir = NULL; ieee80211_link_debugfs_add(link); } |
24 11 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _NET_GSO_H #define _NET_GSO_H #include <linux/skbuff.h> /* Keeps track of mac header offset relative to skb->head. * It is useful for TSO of Tunneling protocol. e.g. GRE. * For non-tunnel skb it points to skb_mac_header() and for * tunnel skb it points to outer mac header. * Keeps track of level of encapsulation of network headers. */ struct skb_gso_cb { union { int mac_offset; int data_offset; }; int encap_level; __wsum csum; __u16 csum_start; }; #define SKB_GSO_CB_OFFSET 32 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) { return (skb_mac_header(inner_skb) - inner_skb->head) - SKB_GSO_CB(inner_skb)->mac_offset; } static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) { int new_headroom, headroom; int ret; headroom = skb_headroom(skb); ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); if (ret) return ret; new_headroom = skb_headroom(skb); SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); return 0; } static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) { /* Do not update partial checksums if remote checksum is enabled. */ if (skb->remcsum_offload) return; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; } /* Compute the checksum for a gso segment. First compute the checksum value * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and * then add in skb->csum (checksum from csum_start to end of packet). * skb->csum and csum_start are then updated to reflect the checksum of the * resultant packet starting from the transport header-- the resultant checksum * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo * header. */ static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) { unsigned char *csum_start = skb_transport_header(skb); int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; __wsum partial = SKB_GSO_CB(skb)->csum; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; return csum_fold(csum_partial(csum_start, plen, partial)); } struct sk_buff *__skb_gso_segment(struct sk_buff *skb, netdev_features_t features, bool tx_path); static inline struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) { return __skb_gso_segment(skb, features, true); } struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, netdev_features_t features, __be16 type); struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, netdev_features_t features); bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, int pulled_hlen, u16 mac_offset, int mac_len) { skb->protocol = protocol; skb->encapsulation = 1; skb_push(skb, pulled_hlen); skb_reset_transport_header(skb); skb->mac_header = mac_offset; skb->network_header = skb->mac_header + mac_len; skb->mac_len = mac_len; } #endif /* _NET_GSO_H */ |
9 9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Internals of the DMA direct mapping implementation. Only for use by the * DMA mapping code and IOMMU drivers. */ #ifndef _LINUX_DMA_DIRECT_H #define _LINUX_DMA_DIRECT_H 1 #include <linux/dma-mapping.h> #include <linux/dma-map-ops.h> #include <linux/memblock.h> /* for min_low_pfn */ #include <linux/mem_encrypt.h> #include <linux/swiotlb.h> extern u64 zone_dma_limit; /* * Record the mapping of CPU physical to DMA addresses for a given region. */ struct bus_dma_region { phys_addr_t cpu_start; dma_addr_t dma_start; u64 size; }; static inline dma_addr_t translate_phys_to_dma(struct device *dev, phys_addr_t paddr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) { u64 offset = paddr - m->cpu_start; if (paddr >= m->cpu_start && offset < m->size) return m->dma_start + offset; } /* make sure dma_capable fails when no translation is available */ return DMA_MAPPING_ERROR; } static inline phys_addr_t translate_dma_to_phys(struct device *dev, dma_addr_t dma_addr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) { u64 offset = dma_addr - m->dma_start; if (dma_addr >= m->dma_start && offset < m->size) return m->cpu_start + offset; } return (phys_addr_t)-1; } static inline dma_addr_t dma_range_map_min(const struct bus_dma_region *map) { dma_addr_t ret = (dma_addr_t)U64_MAX; for (; map->size; map++) ret = min(ret, map->dma_start); return ret; } static inline dma_addr_t dma_range_map_max(const struct bus_dma_region *map) { dma_addr_t ret = 0; for (; map->size; map++) ret = max(ret, map->dma_start + map->size - 1); return ret; } #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA #include <asm/dma-direct.h> #ifndef phys_to_dma_unencrypted #define phys_to_dma_unencrypted phys_to_dma #endif #else static inline dma_addr_t phys_to_dma_unencrypted(struct device *dev, phys_addr_t paddr) { if (dev->dma_range_map) return translate_phys_to_dma(dev, paddr); return paddr; } /* * If memory encryption is supported, phys_to_dma will set the memory encryption * bit in the DMA address, and dma_to_phys will clear it. * phys_to_dma_unencrypted is for use on special unencrypted memory like swiotlb * buffers. */ static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return __sme_set(phys_to_dma_unencrypted(dev, paddr)); } static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { phys_addr_t paddr; if (dev->dma_range_map) paddr = translate_dma_to_phys(dev, dma_addr); else paddr = dma_addr; return __sme_clr(paddr); } #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED bool force_dma_unencrypted(struct device *dev); #else static inline bool force_dma_unencrypted(struct device *dev) { return false; } #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED */ static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size, bool is_ram) { dma_addr_t end = addr + size - 1; if (addr == DMA_MAPPING_ERROR) return false; if (is_ram && !IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && min(addr, end) < phys_to_dma(dev, PFN_PHYS(min_low_pfn))) return false; return end <= min_not_zero(*dev->dma_mask, dev->bus_dma_limit); } u64 dma_direct_get_required_mask(struct device *dev); void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); struct page *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_direct_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_addr, enum dma_data_direction dir); int dma_direct_supported(struct device *dev, u64 mask); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs); #endif /* _LINUX_DMA_DIRECT_H */ |
275 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * Supervisor Mode Access Prevention support * * Copyright (C) 2012 Intel Corporation * Author: H. Peter Anvin <hpa@linux.intel.com> */ #ifndef _ASM_X86_SMAP_H #define _ASM_X86_SMAP_H #include <asm/nops.h> #include <asm/cpufeatures.h> #include <asm/alternative.h> /* "Raw" instruction opcodes */ #define __ASM_CLAC ".byte 0x0f,0x01,0xca" #define __ASM_STAC ".byte 0x0f,0x01,0xcb" #ifdef __ASSEMBLY__ #define ASM_CLAC \ ALTERNATIVE "", __ASM_CLAC, X86_FEATURE_SMAP #define ASM_STAC \ ALTERNATIVE "", __ASM_STAC, X86_FEATURE_SMAP #else /* __ASSEMBLY__ */ static __always_inline void clac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_CLAC, X86_FEATURE_SMAP); } static __always_inline void stac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_STAC, X86_FEATURE_SMAP); } static __always_inline unsigned long smap_save(void) { unsigned long flags; asm volatile ("# smap_save\n\t" ALTERNATIVE("", "pushf; pop %0; " __ASM_CLAC "\n\t", X86_FEATURE_SMAP) : "=rm" (flags) : : "memory", "cc"); return flags; } static __always_inline void smap_restore(unsigned long flags) { asm volatile ("# smap_restore\n\t" ALTERNATIVE("", "push %0; popf\n\t", X86_FEATURE_SMAP) : : "g" (flags) : "memory", "cc"); } /* These macros can be used in asm() statements */ #define ASM_CLAC \ ALTERNATIVE("", __ASM_CLAC, X86_FEATURE_SMAP) #define ASM_STAC \ ALTERNATIVE("", __ASM_STAC, X86_FEATURE_SMAP) #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMAP_H */ |
232 3 233 233 66 2 65 43 24 64 65 65 102 102 7 2 102 113 112 1 202 198 14 26 1 28 1 25 1 27 11 30 34 37 23 4 3 31 28 1 51 36 3 17 14 4 16 1 1 15 1 382 383 29 111 109 31 109 5 110 2 110 2 108 81 3 3 11 11 4 7 3 8 8 3 6 5 6 5 5 5 8 3 10 1 10 1 5 6 6 4 7 4 3 8 10 1 17 1 16 5 12 5 12 2 15 6 3 3 6 189 1 1 15 2 191 1 188 1 127 59 1 183 5 1 150 33 1 2 1 66 114 178 2 179 179 14 194 146 47 1 193 194 8 1 3 167 2 1 160 7 5 7 10 2 142 1 24 1 3 1 1 2 3 108 107 1 1 102 105 100 90 91 4 102 2 1 12 13 11 65 90 89 92 92 91 32 26 8 23 3 6 194 213 208 5 194 23 16 199 211 212 108 1 107 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 | // SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * * * terminology * * cluster - allocation unit - 512,1K,2K,4K,...,2M * vcn - virtual cluster number - Offset inside the file in clusters. * vbo - virtual byte offset - Offset inside the file in bytes. * lcn - logical cluster number - 0 based cluster in clusters heap. * lbo - logical byte offset - Absolute position inside volume. * run - maps VCN to LCN - Stored in attributes in packed form. * attr - attribute segment - std/name/data etc records inside MFT. * mi - MFT inode - One MFT record(usually 1024 bytes or 4K), consists of attributes. * ni - NTFS inode - Extends linux inode. consists of one or more mft inodes. * index - unit inside directory - 2K, 4K, <=page size, does not depend on cluster size. * * WSL - Windows Subsystem for Linux * https://docs.microsoft.com/en-us/windows/wsl/file-permissions * It stores uid/gid/mode/dev in xattr * * ntfs allows up to 2^64 clusters per volume. * It means you should use 64 bits lcn to operate with ntfs. * Implementation of ntfs.sys uses only 32 bits lcn. * Default ntfs3 uses 32 bits lcn too. * ntfs3 built with CONFIG_NTFS3_64BIT_CLUSTER (ntfs3_64) uses 64 bits per lcn. * * * ntfs limits, cluster size is 4K (2^12) * ----------------------------------------------------------------------------- * | Volume size | Clusters | ntfs.sys | ntfs3 | ntfs3_64 | mkntfs | chkdsk | * ----------------------------------------------------------------------------- * | < 16T, 2^44 | < 2^32 | yes | yes | yes | yes | yes | * | > 16T, 2^44 | > 2^32 | no | no | yes | yes | yes | * ----------------------------------------------------------|------------------ * * To mount large volumes as ntfs one should use large cluster size (up to 2M) * The maximum volume size in this case is 2^32 * 2^21 = 2^53 = 8P * * ntfs limits, cluster size is 2M (2^21) * ----------------------------------------------------------------------------- * | < 8P, 2^53 | < 2^32 | yes | yes | yes | yes | yes | * | > 8P, 2^53 | > 2^32 | no | no | yes | yes | yes | * ----------------------------------------------------------|------------------ * */ #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/exportfs.h> #include <linux/fs.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/log2.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/nls.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/statfs.h> #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" #ifdef CONFIG_NTFS3_LZX_XPRESS #include "lib/lib.h" #endif #ifdef CONFIG_PRINTK /* * ntfs_printk - Trace warnings/notices/errors. * * Thanks Joe Perches <joe@perches.com> for implementation */ void ntfs_printk(const struct super_block *sb, const char *fmt, ...) { struct va_format vaf; va_list args; int level; struct ntfs_sb_info *sbi = sb->s_fs_info; /* Should we use different ratelimits for warnings/notices/errors? */ if (!___ratelimit(&sbi->msg_ratelimit, "ntfs3")) return; va_start(args, fmt); level = printk_get_level(fmt); vaf.fmt = printk_skip_level(fmt); vaf.va = &args; printk("%c%cntfs3: %s: %pV\n", KERN_SOH_ASCII, level, sb->s_id, &vaf); va_end(args); } static char s_name_buf[512]; static atomic_t s_name_buf_cnt = ATOMIC_INIT(1); // 1 means 'free s_name_buf'. /* * ntfs_inode_printk * * Print warnings/notices/errors about inode using name or inode number. */ void ntfs_inode_printk(struct inode *inode, const char *fmt, ...) { struct super_block *sb = inode->i_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; char *name; va_list args; struct va_format vaf; int level; if (!___ratelimit(&sbi->msg_ratelimit, "ntfs3")) return; /* Use static allocated buffer, if possible. */ name = atomic_dec_and_test(&s_name_buf_cnt) ? s_name_buf : kmalloc(sizeof(s_name_buf), GFP_NOFS); if (name) { struct dentry *de = d_find_alias(inode); if (de) { spin_lock(&de->d_lock); snprintf(name, sizeof(s_name_buf), " \"%s\"", de->d_name.name); spin_unlock(&de->d_lock); } else { name[0] = 0; } dput(de); /* Cocci warns if placed in branch "if (de)" */ } va_start(args, fmt); level = printk_get_level(fmt); vaf.fmt = printk_skip_level(fmt); vaf.va = &args; printk("%c%cntfs3: %s: ino=%lx,%s %pV\n", KERN_SOH_ASCII, level, sb->s_id, inode->i_ino, name ? name : "", &vaf); va_end(args); atomic_inc(&s_name_buf_cnt); if (name != s_name_buf) kfree(name); } #endif /* * Shared memory struct. * * On-disk ntfs's upcase table is created by ntfs formatter. * 'upcase' table is 128K bytes of memory. * We should read it into memory when mounting. * Several ntfs volumes likely use the same 'upcase' table. * It is good idea to share in-memory 'upcase' table between different volumes. * Unfortunately winxp/vista/win7 use different upcase tables. */ static DEFINE_SPINLOCK(s_shared_lock); static struct { void *ptr; u32 len; int cnt; } s_shared[8]; /* * ntfs_set_shared * * Return: * * @ptr - If pointer was saved in shared memory. * * NULL - If pointer was not shared. */ void *ntfs_set_shared(void *ptr, u32 bytes) { void *ret = NULL; int i, j = -1; spin_lock(&s_shared_lock); for (i = 0; i < ARRAY_SIZE(s_shared); i++) { if (!s_shared[i].cnt) { j = i; } else if (bytes == s_shared[i].len && !memcmp(s_shared[i].ptr, ptr, bytes)) { s_shared[i].cnt += 1; ret = s_shared[i].ptr; break; } } if (!ret && j != -1) { s_shared[j].ptr = ptr; s_shared[j].len = bytes; s_shared[j].cnt = 1; ret = ptr; } spin_unlock(&s_shared_lock); return ret; } /* * ntfs_put_shared * * Return: * * @ptr - If pointer is not shared anymore. * * NULL - If pointer is still shared. */ void *ntfs_put_shared(void *ptr) { void *ret = ptr; int i; spin_lock(&s_shared_lock); for (i = 0; i < ARRAY_SIZE(s_shared); i++) { if (s_shared[i].cnt && s_shared[i].ptr == ptr) { if (--s_shared[i].cnt) ret = NULL; break; } } spin_unlock(&s_shared_lock); return ret; } static inline void put_mount_options(struct ntfs_mount_options *options) { kfree(options->nls_name); unload_nls(options->nls); kfree(options); } enum Opt { Opt_uid, Opt_gid, Opt_umask, Opt_dmask, Opt_fmask, Opt_immutable, Opt_discard, Opt_force, Opt_sparse, Opt_nohidden, Opt_hide_dot_files, Opt_windows_names, Opt_showmeta, Opt_acl, Opt_iocharset, Opt_prealloc, Opt_nocase, Opt_err, }; // clang-format off static const struct fs_parameter_spec ntfs_fs_parameters[] = { fsparam_uid("uid", Opt_uid), fsparam_gid("gid", Opt_gid), fsparam_u32oct("umask", Opt_umask), fsparam_u32oct("dmask", Opt_dmask), fsparam_u32oct("fmask", Opt_fmask), fsparam_flag_no("sys_immutable", Opt_immutable), fsparam_flag_no("discard", Opt_discard), fsparam_flag_no("force", Opt_force), fsparam_flag_no("sparse", Opt_sparse), fsparam_flag_no("hidden", Opt_nohidden), fsparam_flag_no("hide_dot_files", Opt_hide_dot_files), fsparam_flag_no("windows_names", Opt_windows_names), fsparam_flag_no("showmeta", Opt_showmeta), fsparam_flag_no("acl", Opt_acl), fsparam_string("iocharset", Opt_iocharset), fsparam_flag_no("prealloc", Opt_prealloc), fsparam_flag_no("case", Opt_nocase), {} }; // clang-format on /* * Load nls table or if @nls is utf8 then return NULL. * * It is good idea to use here "const char *nls". * But load_nls accepts "char*". */ static struct nls_table *ntfs_load_nls(char *nls) { struct nls_table *ret; if (!nls) nls = CONFIG_NLS_DEFAULT; if (strcmp(nls, "utf8") == 0) return NULL; if (strcmp(nls, CONFIG_NLS_DEFAULT) == 0) return load_nls_default(); ret = load_nls(nls); if (ret) return ret; return ERR_PTR(-EINVAL); } static int ntfs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct ntfs_mount_options *opts = fc->fs_private; struct fs_parse_result result; int opt; opt = fs_parse(fc, ntfs_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_uid: opts->fs_uid = result.uid; break; case Opt_gid: opts->fs_gid = result.gid; break; case Opt_umask: if (result.uint_32 & ~07777) return invalf(fc, "ntfs3: Invalid value for umask."); opts->fs_fmask_inv = ~result.uint_32; opts->fs_dmask_inv = ~result.uint_32; opts->fmask = 1; opts->dmask = 1; break; case Opt_dmask: if (result.uint_32 & ~07777) return invalf(fc, "ntfs3: Invalid value for dmask."); opts->fs_dmask_inv = ~result.uint_32; opts->dmask = 1; break; case Opt_fmask: if (result.uint_32 & ~07777) return invalf(fc, "ntfs3: Invalid value for fmask."); opts->fs_fmask_inv = ~result.uint_32; opts->fmask = 1; break; case Opt_immutable: opts->sys_immutable = result.negated ? 0 : 1; break; case Opt_discard: opts->discard = result.negated ? 0 : 1; break; case Opt_force: opts->force = result.negated ? 0 : 1; break; case Opt_sparse: opts->sparse = result.negated ? 0 : 1; break; case Opt_nohidden: opts->nohidden = result.negated ? 1 : 0; break; case Opt_hide_dot_files: opts->hide_dot_files = result.negated ? 0 : 1; break; case Opt_windows_names: opts->windows_names = result.negated ? 0 : 1; break; case Opt_showmeta: opts->showmeta = result.negated ? 0 : 1; break; case Opt_acl: if (!result.negated) #ifdef CONFIG_NTFS3_FS_POSIX_ACL fc->sb_flags |= SB_POSIXACL; #else return invalf( fc, "ntfs3: Support for ACL not compiled in!"); #endif else fc->sb_flags &= ~SB_POSIXACL; break; case Opt_iocharset: kfree(opts->nls_name); opts->nls_name = param->string; param->string = NULL; break; case Opt_prealloc: opts->prealloc = result.negated ? 0 : 1; break; case Opt_nocase: opts->nocase = result.negated ? 1 : 0; break; default: /* Should not be here unless we forget add case. */ return -EINVAL; } return 0; } static int ntfs_fs_reconfigure(struct fs_context *fc) { struct super_block *sb = fc->root->d_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; struct ntfs_mount_options *new_opts = fc->fs_private; int ro_rw; /* If ntfs3 is used as legacy ntfs enforce read-only mode. */ if (is_legacy_ntfs(sb)) { fc->sb_flags |= SB_RDONLY; goto out; } ro_rw = sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY); if (ro_rw && (sbi->flags & NTFS_FLAGS_NEED_REPLAY)) { errorf(fc, "ntfs3: Couldn't remount rw because journal is not replayed. Please umount/remount instead\n"); return -EINVAL; } new_opts->nls = ntfs_load_nls(new_opts->nls_name); if (IS_ERR(new_opts->nls)) { new_opts->nls = NULL; errorf(fc, "ntfs3: Cannot load iocharset %s", new_opts->nls_name); return -EINVAL; } if (new_opts->nls != sbi->options->nls) return invalf( fc, "ntfs3: Cannot use different iocharset when remounting!"); if (ro_rw && (sbi->volume.flags & VOLUME_FLAG_DIRTY) && !new_opts->force) { errorf(fc, "ntfs3: Volume is dirty and \"force\" flag is not set!"); return -EINVAL; } out: sync_filesystem(sb); swap(sbi->options, fc->fs_private); return 0; } #ifdef CONFIG_PROC_FS static struct proc_dir_entry *proc_info_root; /* * ntfs3_volinfo: * * The content of /proc/fs/ntfs3/<dev>/volinfo * * ntfs3.1 * cluster size * number of clusters * total number of mft records * number of used mft records ~= number of files + folders * real state of ntfs "dirty"/"clean" * current state of ntfs "dirty"/"clean" */ static int ntfs3_volinfo(struct seq_file *m, void *o) { struct super_block *sb = m->private; struct ntfs_sb_info *sbi = sb->s_fs_info; seq_printf(m, "ntfs%d.%d\n%u\n%zu\n%zu\n%zu\n%s\n%s\n", sbi->volume.major_ver, sbi->volume.minor_ver, sbi->cluster_size, sbi->used.bitmap.nbits, sbi->mft.bitmap.nbits, sbi->mft.bitmap.nbits - wnd_zeroes(&sbi->mft.bitmap), sbi->volume.real_dirty ? "dirty" : "clean", (sbi->volume.flags & VOLUME_FLAG_DIRTY) ? "dirty" : "clean"); return 0; } static int ntfs3_volinfo_open(struct inode *inode, struct file *file) { return single_open(file, ntfs3_volinfo, pde_data(inode)); } /* read /proc/fs/ntfs3/<dev>/label */ static int ntfs3_label_show(struct seq_file *m, void *o) { struct super_block *sb = m->private; struct ntfs_sb_info *sbi = sb->s_fs_info; seq_printf(m, "%s\n", sbi->volume.label); return 0; } /* write /proc/fs/ntfs3/<dev>/label */ static ssize_t ntfs3_label_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { int err; struct super_block *sb = pde_data(file_inode(file)); ssize_t ret = count; u8 *label; if (sb_rdonly(sb)) return -EROFS; label = kmalloc(count, GFP_NOFS); if (!label) return -ENOMEM; if (copy_from_user(label, buffer, ret)) { ret = -EFAULT; goto out; } while (ret > 0 && label[ret - 1] == '\n') ret -= 1; err = ntfs_set_label(sb->s_fs_info, label, ret); if (err < 0) { ntfs_err(sb, "failed (%d) to write label", err); ret = err; goto out; } *ppos += count; ret = count; out: kfree(label); return ret; } static int ntfs3_label_open(struct inode *inode, struct file *file) { return single_open(file, ntfs3_label_show, pde_data(inode)); } static const struct proc_ops ntfs3_volinfo_fops = { .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_open = ntfs3_volinfo_open, }; static const struct proc_ops ntfs3_label_fops = { .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_open = ntfs3_label_open, .proc_write = ntfs3_label_write, }; #endif static struct kmem_cache *ntfs_inode_cachep; static struct inode *ntfs_alloc_inode(struct super_block *sb) { struct ntfs_inode *ni = alloc_inode_sb(sb, ntfs_inode_cachep, GFP_NOFS); if (!ni) return NULL; memset(ni, 0, offsetof(struct ntfs_inode, vfs_inode)); mutex_init(&ni->ni_lock); return &ni->vfs_inode; } static void ntfs_free_inode(struct inode *inode) { struct ntfs_inode *ni = ntfs_i(inode); mutex_destroy(&ni->ni_lock); kmem_cache_free(ntfs_inode_cachep, ni); } static void init_once(void *foo) { struct ntfs_inode *ni = foo; inode_init_once(&ni->vfs_inode); } /* * Noinline to reduce binary size. */ static noinline void ntfs3_put_sbi(struct ntfs_sb_info *sbi) { wnd_close(&sbi->mft.bitmap); wnd_close(&sbi->used.bitmap); if (sbi->mft.ni) { iput(&sbi->mft.ni->vfs_inode); sbi->mft.ni = NULL; } if (sbi->security.ni) { iput(&sbi->security.ni->vfs_inode); sbi->security.ni = NULL; } if (sbi->reparse.ni) { iput(&sbi->reparse.ni->vfs_inode); sbi->reparse.ni = NULL; } if (sbi->objid.ni) { iput(&sbi->objid.ni->vfs_inode); sbi->objid.ni = NULL; } if (sbi->volume.ni) { iput(&sbi->volume.ni->vfs_inode); sbi->volume.ni = NULL; } ntfs_update_mftmirr(sbi, 0); indx_clear(&sbi->security.index_sii); indx_clear(&sbi->security.index_sdh); indx_clear(&sbi->reparse.index_r); indx_clear(&sbi->objid.index_o); } static void ntfs3_free_sbi(struct ntfs_sb_info *sbi) { kfree(sbi->new_rec); kvfree(ntfs_put_shared(sbi->upcase)); kvfree(sbi->def_table); kfree(sbi->compress.lznt); #ifdef CONFIG_NTFS3_LZX_XPRESS xpress_free_decompressor(sbi->compress.xpress); lzx_free_decompressor(sbi->compress.lzx); #endif kfree(sbi); } static void ntfs_put_super(struct super_block *sb) { struct ntfs_sb_info *sbi = sb->s_fs_info; #ifdef CONFIG_PROC_FS // Remove /proc/fs/ntfs3/.. if (sbi->procdir) { remove_proc_entry("label", sbi->procdir); remove_proc_entry("volinfo", sbi->procdir); remove_proc_entry(sb->s_id, proc_info_root); sbi->procdir = NULL; } #endif /* Mark rw ntfs as clear, if possible. */ ntfs_set_state(sbi, NTFS_DIRTY_CLEAR); ntfs3_put_sbi(sbi); } static int ntfs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; struct wnd_bitmap *wnd = &sbi->used.bitmap; buf->f_type = sb->s_magic; buf->f_bsize = sbi->cluster_size; buf->f_blocks = wnd->nbits; buf->f_bfree = buf->f_bavail = wnd_zeroes(wnd); buf->f_fsid.val[0] = sbi->volume.ser_num; buf->f_fsid.val[1] = (sbi->volume.ser_num >> 32); buf->f_namelen = NTFS_NAME_LEN; return 0; } static int ntfs_show_options(struct seq_file *m, struct dentry *root) { struct super_block *sb = root->d_sb; struct ntfs_sb_info *sbi = sb->s_fs_info; struct ntfs_mount_options *opts = sbi->options; struct user_namespace *user_ns = seq_user_ns(m); seq_printf(m, ",uid=%u", from_kuid_munged(user_ns, opts->fs_uid)); seq_printf(m, ",gid=%u", from_kgid_munged(user_ns, opts->fs_gid)); if (opts->dmask) seq_printf(m, ",dmask=%04o", opts->fs_dmask_inv ^ 0xffff); if (opts->fmask) seq_printf(m, ",fmask=%04o", opts->fs_fmask_inv ^ 0xffff); if (opts->sys_immutable) seq_puts(m, ",sys_immutable"); if (opts->discard) seq_puts(m, ",discard"); if (opts->force) seq_puts(m, ",force"); if (opts->sparse) seq_puts(m, ",sparse"); if (opts->nohidden) seq_puts(m, ",nohidden"); if (opts->hide_dot_files) seq_puts(m, ",hide_dot_files"); if (opts->windows_names) seq_puts(m, ",windows_names"); if (opts->showmeta) seq_puts(m, ",showmeta"); if (sb->s_flags & SB_POSIXACL) seq_puts(m, ",acl"); if (opts->nls) seq_printf(m, ",iocharset=%s", opts->nls->charset); else seq_puts(m, ",iocharset=utf8"); if (opts->prealloc) seq_puts(m, ",prealloc"); if (opts->nocase) seq_puts(m, ",nocase"); return 0; } /* * ntfs_shutdown - super_operations::shutdown */ static void ntfs_shutdown(struct super_block *sb) { set_bit(NTFS_FLAGS_SHUTDOWN_BIT, &ntfs_sb(sb)->flags); } /* * ntfs_sync_fs - super_operations::sync_fs */ static int ntfs_sync_fs(struct super_block *sb, int wait) { int err = 0, err2; struct ntfs_sb_info *sbi = sb->s_fs_info; struct ntfs_inode *ni; struct inode *inode; if (unlikely(ntfs3_forced_shutdown(sb))) return -EIO; ni = sbi->security.ni; if (ni) { inode = &ni->vfs_inode; err2 = _ni_write_inode(inode, wait); if (err2 && !err) err = err2; } ni = sbi->objid.ni; if (ni) { inode = &ni->vfs_inode; err2 = _ni_write_inode(inode, wait); if (err2 && !err) err = err2; } ni = sbi->reparse.ni; if (ni) { inode = &ni->vfs_inode; err2 = _ni_write_inode(inode, wait); if (err2 && !err) err = err2; } if (!err) ntfs_set_state(sbi, NTFS_DIRTY_CLEAR); ntfs_update_mftmirr(sbi, wait); return err; } static const struct super_operations ntfs_sops = { .alloc_inode = ntfs_alloc_inode, .free_inode = ntfs_free_inode, .evict_inode = ntfs_evict_inode, .put_super = ntfs_put_super, .statfs = ntfs_statfs, .show_options = ntfs_show_options, .shutdown = ntfs_shutdown, .sync_fs = ntfs_sync_fs, .write_inode = ntfs3_write_inode, }; static struct inode *ntfs_export_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct MFT_REF ref; struct inode *inode; ref.low = cpu_to_le32(ino); #ifdef CONFIG_NTFS3_64BIT_CLUSTER ref.high = cpu_to_le16(ino >> 32); #else ref.high = 0; #endif ref.seq = cpu_to_le16(generation); inode = ntfs_iget5(sb, &ref, NULL); if (!IS_ERR(inode) && is_bad_inode(inode)) { iput(inode); inode = ERR_PTR(-ESTALE); } return inode; } static struct dentry *ntfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ntfs_export_get_inode); } static struct dentry *ntfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, ntfs_export_get_inode); } /* TODO: == ntfs_sync_inode */ static int ntfs_nfs_commit_metadata(struct inode *inode) { return _ni_write_inode(inode, 1); } static const struct export_operations ntfs_export_ops = { .encode_fh = generic_encode_ino32_fh, .fh_to_dentry = ntfs_fh_to_dentry, .fh_to_parent = ntfs_fh_to_parent, .get_parent = ntfs3_get_parent, .commit_metadata = ntfs_nfs_commit_metadata, }; /* * format_size_gb - Return Gb,Mb to print with "%u.%02u Gb". */ static u32 format_size_gb(const u64 bytes, u32 *mb) { /* Do simple right 30 bit shift of 64 bit value. */ u64 kbytes = bytes >> 10; u32 kbytes32 = kbytes; *mb = (100 * (kbytes32 & 0xfffff) + 0x7ffff) >> 20; if (*mb >= 100) *mb = 99; return (kbytes32 >> 20) | (((u32)(kbytes >> 32)) << 12); } static u32 true_sectors_per_clst(const struct NTFS_BOOT *boot) { if (boot->sectors_per_clusters <= 0x80) return boot->sectors_per_clusters; if (boot->sectors_per_clusters >= 0xf4) /* limit shift to 2MB max */ return 1U << (-(s8)boot->sectors_per_clusters); return -EINVAL; } /* * ntfs_init_from_boot - Init internal info from on-disk boot sector. * * NTFS mount begins from boot - special formatted 512 bytes. * There are two boots: the first and the last 512 bytes of volume. * The content of boot is not changed during ntfs life. * * NOTE: ntfs.sys checks only first (primary) boot. * chkdsk checks both boots. */ static int ntfs_init_from_boot(struct super_block *sb, u32 sector_size, u64 dev_size, struct NTFS_BOOT **boot2) { struct ntfs_sb_info *sbi = sb->s_fs_info; int err; u32 mb, gb, boot_sector_size, sct_per_clst, record_size; u64 sectors, clusters, mlcn, mlcn2, dev_size0; struct NTFS_BOOT *boot; struct buffer_head *bh; struct MFT_REC *rec; u16 fn, ao; u8 cluster_bits; u32 boot_off = 0; sector_t boot_block = 0; const char *hint = "Primary boot"; /* Save original dev_size. Used with alternative boot. */ dev_size0 = dev_size; sbi->volume.blocks = dev_size >> PAGE_SHIFT; read_boot: bh = ntfs_bread(sb, boot_block); if (!bh) return boot_block ? -EINVAL : -EIO; err = -EINVAL; /* Corrupted image; do not read OOB */ if (bh->b_size - sizeof(*boot) < boot_off) goto out; boot = (struct NTFS_BOOT *)Add2Ptr(bh->b_data, boot_off); if (memcmp(boot->system_id, "NTFS ", sizeof("NTFS ") - 1)) { ntfs_err(sb, "%s signature is not NTFS.", hint); goto out; } /* 0x55AA is not mandaroty. Thanks Maxim Suhanov*/ /*if (0x55 != boot->boot_magic[0] || 0xAA != boot->boot_magic[1]) * goto out; */ boot_sector_size = ((u32)boot->bytes_per_sector[1] << 8) | boot->bytes_per_sector[0]; if (boot_sector_size < SECTOR_SIZE || !is_power_of_2(boot_sector_size)) { ntfs_err(sb, "%s: invalid bytes per sector %u.", hint, boot_sector_size); goto out; } /* cluster size: 512, 1K, 2K, 4K, ... 2M */ sct_per_clst = true_sectors_per_clst(boot); if ((int)sct_per_clst < 0 || !is_power_of_2(sct_per_clst)) { ntfs_err(sb, "%s: invalid sectors per cluster %u.", hint, sct_per_clst); goto out; } sbi->cluster_size = boot_sector_size * sct_per_clst; sbi->cluster_bits = cluster_bits = blksize_bits(sbi->cluster_size); sbi->cluster_mask = sbi->cluster_size - 1; sbi->cluster_mask_inv = ~(u64)sbi->cluster_mask; mlcn = le64_to_cpu(boot->mft_clst); mlcn2 = le64_to_cpu(boot->mft2_clst); sectors = le64_to_cpu(boot->sectors_per_volume); if (mlcn * sct_per_clst >= sectors || mlcn2 * sct_per_clst >= sectors) { ntfs_err( sb, "%s: start of MFT 0x%llx (0x%llx) is out of volume 0x%llx.", hint, mlcn, mlcn2, sectors); goto out; } if (boot->record_size >= 0) { record_size = (u32)boot->record_size << cluster_bits; } else if (-boot->record_size <= MAXIMUM_SHIFT_BYTES_PER_MFT) { record_size = 1u << (-boot->record_size); } else { ntfs_err(sb, "%s: invalid record size %d.", hint, boot->record_size); goto out; } sbi->record_size = record_size; sbi->record_bits = blksize_bits(record_size); sbi->attr_size_tr = (5 * record_size >> 4); // ~320 bytes /* Check MFT record size. */ if (record_size < SECTOR_SIZE || !is_power_of_2(record_size)) { ntfs_err(sb, "%s: invalid bytes per MFT record %u (%d).", hint, record_size, boot->record_size); goto out; } if (record_size > MAXIMUM_BYTES_PER_MFT) { ntfs_err(sb, "Unsupported bytes per MFT record %u.", record_size); goto out; } if (boot->index_size >= 0) { sbi->index_size = (u32)boot->index_size << cluster_bits; } else if (-boot->index_size <= MAXIMUM_SHIFT_BYTES_PER_INDEX) { sbi->index_size = 1u << (-boot->index_size); } else { ntfs_err(sb, "%s: invalid index size %d.", hint, boot->index_size); goto out; } /* Check index record size. */ if (sbi->index_size < SECTOR_SIZE || !is_power_of_2(sbi->index_size)) { ntfs_err(sb, "%s: invalid bytes per index %u(%d).", hint, sbi->index_size, boot->index_size); goto out; } if (sbi->index_size > MAXIMUM_BYTES_PER_INDEX) { ntfs_err(sb, "%s: unsupported bytes per index %u.", hint, sbi->index_size); goto out; } sbi->volume.size = sectors * boot_sector_size; gb = format_size_gb(sbi->volume.size + boot_sector_size, &mb); /* * - Volume formatted and mounted with the same sector size. * - Volume formatted 4K and mounted as 512. * - Volume formatted 512 and mounted as 4K. */ if (boot_sector_size != sector_size) { ntfs_warn( sb, "Different NTFS sector size (%u) and media sector size (%u).", boot_sector_size, sector_size); dev_size += sector_size - 1; } sbi->mft.lbo = mlcn << cluster_bits; sbi->mft.lbo2 = mlcn2 << cluster_bits; /* Compare boot's cluster and sector. */ if (sbi->cluster_size < boot_sector_size) { ntfs_err(sb, "%s: invalid bytes per cluster (%u).", hint, sbi->cluster_size); goto out; } /* Compare boot's cluster and media sector. */ if (sbi->cluster_size < sector_size) { /* No way to use ntfs_get_block in this case. */ ntfs_err( sb, "Failed to mount 'cause NTFS's cluster size (%u) is less than media sector size (%u).", sbi->cluster_size, sector_size); goto out; } sbi->max_bytes_per_attr = record_size - ALIGN(MFTRECORD_FIXUP_OFFSET, 8) - ALIGN(((record_size >> SECTOR_SHIFT) * sizeof(short)), 8) - ALIGN(sizeof(enum ATTR_TYPE), 8); sbi->volume.ser_num = le64_to_cpu(boot->serial_num); /* Warning if RAW volume. */ if (dev_size < sbi->volume.size + boot_sector_size) { u32 mb0, gb0; gb0 = format_size_gb(dev_size, &mb0); ntfs_warn( sb, "RAW NTFS volume: Filesystem size %u.%02u Gb > volume size %u.%02u Gb. Mount in read-only.", gb, mb, gb0, mb0); sb->s_flags |= SB_RDONLY; } clusters = sbi->volume.size >> cluster_bits; #ifndef CONFIG_NTFS3_64BIT_CLUSTER /* 32 bits per cluster. */ if (clusters >> 32) { ntfs_notice( sb, "NTFS %u.%02u Gb is too big to use 32 bits per cluster.", gb, mb); goto out; } #elif BITS_PER_LONG < 64 #error "CONFIG_NTFS3_64BIT_CLUSTER incompatible in 32 bit OS" #endif sbi->used.bitmap.nbits = clusters; rec = kzalloc(record_size, GFP_NOFS); if (!rec) { err = -ENOMEM; goto out; } sbi->new_rec = rec; rec->rhdr.sign = NTFS_FILE_SIGNATURE; rec->rhdr.fix_off = cpu_to_le16(MFTRECORD_FIXUP_OFFSET); fn = (sbi->record_size >> SECTOR_SHIFT) + 1; rec->rhdr.fix_num = cpu_to_le16(fn); ao = ALIGN(MFTRECORD_FIXUP_OFFSET + sizeof(short) * fn, 8); rec->attr_off = cpu_to_le16(ao); rec->used = cpu_to_le32(ao + ALIGN(sizeof(enum ATTR_TYPE), 8)); rec->total = cpu_to_le32(sbi->record_size); ((struct ATTRIB *)Add2Ptr(rec, ao))->type = ATTR_END; sb_set_blocksize(sb, min_t(u32, sbi->cluster_size, PAGE_SIZE)); sbi->block_mask = sb->s_blocksize - 1; sbi->blocks_per_cluster = sbi->cluster_size >> sb->s_blocksize_bits; sbi->volume.blocks = sbi->volume.size >> sb->s_blocksize_bits; /* Maximum size for normal files. */ sbi->maxbytes = (clusters << cluster_bits) - 1; #ifdef CONFIG_NTFS3_64BIT_CLUSTER if (clusters >= (1ull << (64 - cluster_bits))) sbi->maxbytes = -1; sbi->maxbytes_sparse = -1; sb->s_maxbytes = MAX_LFS_FILESIZE; #else /* Maximum size for sparse file. */ sbi->maxbytes_sparse = (1ull << (cluster_bits + 32)) - 1; sb->s_maxbytes = 0xFFFFFFFFull << cluster_bits; #endif /* * Compute the MFT zone at two steps. * It would be nice if we are able to allocate 1/8 of * total clusters for MFT but not more then 512 MB. */ sbi->zone_max = min_t(CLST, 0x20000000 >> cluster_bits, clusters >> 3); err = 0; if (bh->b_blocknr && !sb_rdonly(sb)) { /* * Alternative boot is ok but primary is not ok. * Do not update primary boot here 'cause it may be faked boot. * Let ntfs to be mounted and update boot later. */ *boot2 = kmemdup(boot, sizeof(*boot), GFP_NOFS | __GFP_NOWARN); } out: brelse(bh); if (err == -EINVAL && !boot_block && dev_size0 > PAGE_SHIFT) { u32 block_size = min_t(u32, sector_size, PAGE_SIZE); u64 lbo = dev_size0 - sizeof(*boot); boot_block = lbo >> blksize_bits(block_size); boot_off = lbo & (block_size - 1); if (boot_block && block_size >= boot_off + sizeof(*boot)) { /* * Try alternative boot (last sector) */ sb_set_blocksize(sb, block_size); hint = "Alternative boot"; dev_size = dev_size0; /* restore original size. */ goto read_boot; } } return err; } /* * ntfs_fill_super - Try to mount. */ static int ntfs_fill_super(struct super_block *sb, struct fs_context *fc) { int err; struct ntfs_sb_info *sbi = sb->s_fs_info; struct block_device *bdev = sb->s_bdev; struct ntfs_mount_options *options; struct inode *inode; struct ntfs_inode *ni; size_t i, tt, bad_len, bad_frags; CLST vcn, lcn, len; struct ATTRIB *attr; const struct VOLUME_INFO *info; u32 done, bytes; struct ATTR_DEF_ENTRY *t; u16 *shared; struct MFT_REF ref; bool ro = sb_rdonly(sb); struct NTFS_BOOT *boot2 = NULL; ref.high = 0; sbi->sb = sb; sbi->options = options = fc->fs_private; fc->fs_private = NULL; sb->s_flags |= SB_NODIRATIME; sb->s_magic = 0x7366746e; // "ntfs" sb->s_op = &ntfs_sops; sb->s_export_op = &ntfs_export_ops; sb->s_time_gran = NTFS_TIME_GRAN; // 100 nsec sb->s_xattr = ntfs_xattr_handlers; sb->s_d_op = options->nocase ? &ntfs_dentry_ops : NULL; options->nls = ntfs_load_nls(options->nls_name); if (IS_ERR(options->nls)) { options->nls = NULL; errorf(fc, "Cannot load nls %s", options->nls_name); err = -EINVAL; goto out; } if (bdev_max_discard_sectors(bdev) && bdev_discard_granularity(bdev)) { sbi->discard_granularity = bdev_discard_granularity(bdev); sbi->discard_granularity_mask_inv = ~(u64)(sbi->discard_granularity - 1); } /* Parse boot. */ err = ntfs_init_from_boot(sb, bdev_logical_block_size(bdev), bdev_nr_bytes(bdev), &boot2); if (err) goto out; /* * Load $Volume. This should be done before $LogFile * 'cause 'sbi->volume.ni' is used in 'ntfs_set_state'. */ ref.low = cpu_to_le32(MFT_REC_VOL); ref.seq = cpu_to_le16(MFT_REC_VOL); inode = ntfs_iget5(sb, &ref, &NAME_VOLUME); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $Volume (%d).", err); goto out; } ni = ntfs_i(inode); /* Load and save label (not necessary). */ attr = ni_find_attr(ni, NULL, NULL, ATTR_LABEL, NULL, 0, NULL, NULL); if (!attr) { /* It is ok if no ATTR_LABEL */ } else if (!attr->non_res && !is_attr_ext(attr)) { /* $AttrDef allows labels to be up to 128 symbols. */ err = utf16s_to_utf8s(resident_data(attr), le32_to_cpu(attr->res.data_size) >> 1, UTF16_LITTLE_ENDIAN, sbi->volume.label, sizeof(sbi->volume.label)); if (err < 0) sbi->volume.label[0] = 0; } else { /* Should we break mounting here? */ //err = -EINVAL; //goto put_inode_out; } attr = ni_find_attr(ni, attr, NULL, ATTR_VOL_INFO, NULL, 0, NULL, NULL); if (!attr || is_attr_ext(attr) || !(info = resident_data_ex(attr, SIZEOF_ATTRIBUTE_VOLUME_INFO))) { ntfs_err(sb, "$Volume is corrupted."); err = -EINVAL; goto put_inode_out; } sbi->volume.major_ver = info->major_ver; sbi->volume.minor_ver = info->minor_ver; sbi->volume.flags = info->flags; sbi->volume.ni = ni; if (info->flags & VOLUME_FLAG_DIRTY) { sbi->volume.real_dirty = true; ntfs_info(sb, "It is recommened to use chkdsk."); } /* Load $MFTMirr to estimate recs_mirr. */ ref.low = cpu_to_le32(MFT_REC_MIRR); ref.seq = cpu_to_le16(MFT_REC_MIRR); inode = ntfs_iget5(sb, &ref, &NAME_MIRROR); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $MFTMirr (%d).", err); goto out; } sbi->mft.recs_mirr = ntfs_up_cluster(sbi, inode->i_size) >> sbi->record_bits; iput(inode); /* Load LogFile to replay. */ ref.low = cpu_to_le32(MFT_REC_LOG); ref.seq = cpu_to_le16(MFT_REC_LOG); inode = ntfs_iget5(sb, &ref, &NAME_LOGFILE); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load \x24LogFile (%d).", err); goto out; } ni = ntfs_i(inode); err = ntfs_loadlog_and_replay(ni, sbi); if (err) goto put_inode_out; iput(inode); if ((sbi->flags & NTFS_FLAGS_NEED_REPLAY) && !ro) { ntfs_warn(sb, "failed to replay log file. Can't mount rw!"); err = -EINVAL; goto out; } if ((sbi->volume.flags & VOLUME_FLAG_DIRTY) && !ro && !options->force) { ntfs_warn(sb, "volume is dirty and \"force\" flag is not set!"); err = -EINVAL; goto out; } /* Load $MFT. */ ref.low = cpu_to_le32(MFT_REC_MFT); ref.seq = cpu_to_le16(1); inode = ntfs_iget5(sb, &ref, &NAME_MFT); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $MFT (%d).", err); goto out; } ni = ntfs_i(inode); sbi->mft.used = ni->i_valid >> sbi->record_bits; tt = inode->i_size >> sbi->record_bits; sbi->mft.next_free = MFT_REC_USER; err = wnd_init(&sbi->mft.bitmap, sb, tt); if (err) goto put_inode_out; err = ni_load_all_mi(ni); if (err) { ntfs_err(sb, "Failed to load $MFT's subrecords (%d).", err); goto put_inode_out; } sbi->mft.ni = ni; /* Load $Bitmap. */ ref.low = cpu_to_le32(MFT_REC_BITMAP); ref.seq = cpu_to_le16(MFT_REC_BITMAP); inode = ntfs_iget5(sb, &ref, &NAME_BITMAP); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $Bitmap (%d).", err); goto out; } #ifndef CONFIG_NTFS3_64BIT_CLUSTER if (inode->i_size >> 32) { err = -EINVAL; goto put_inode_out; } #endif /* Check bitmap boundary. */ tt = sbi->used.bitmap.nbits; if (inode->i_size < ntfs3_bitmap_size(tt)) { ntfs_err(sb, "$Bitmap is corrupted."); err = -EINVAL; goto put_inode_out; } err = wnd_init(&sbi->used.bitmap, sb, tt); if (err) { ntfs_err(sb, "Failed to initialize $Bitmap (%d).", err); goto put_inode_out; } iput(inode); /* Compute the MFT zone. */ err = ntfs_refresh_zone(sbi); if (err) { ntfs_err(sb, "Failed to initialize MFT zone (%d).", err); goto out; } /* Load $BadClus. */ ref.low = cpu_to_le32(MFT_REC_BADCLUST); ref.seq = cpu_to_le16(MFT_REC_BADCLUST); inode = ntfs_iget5(sb, &ref, &NAME_BADCLUS); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $BadClus (%d).", err); goto out; } ni = ntfs_i(inode); bad_len = bad_frags = 0; for (i = 0; run_get_entry(&ni->file.run, i, &vcn, &lcn, &len); i++) { if (lcn == SPARSE_LCN) continue; bad_len += len; bad_frags += 1; if (ro) continue; if (wnd_set_used_safe(&sbi->used.bitmap, lcn, len, &tt) || tt) { /* Bad blocks marked as free in bitmap. */ ntfs_set_state(sbi, NTFS_DIRTY_ERROR); } } if (bad_len) { /* * Notice about bad blocks. * In normal cases these blocks are marked as used in bitmap. * And we never allocate space in it. */ ntfs_notice(sb, "Volume contains %zu bad blocks in %zu fragments.", bad_len, bad_frags); } iput(inode); /* Load $AttrDef. */ ref.low = cpu_to_le32(MFT_REC_ATTR); ref.seq = cpu_to_le16(MFT_REC_ATTR); inode = ntfs_iget5(sb, &ref, &NAME_ATTRDEF); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $AttrDef (%d)", err); goto out; } /* * Typical $AttrDef contains up to 20 entries. * Check for extremely large/small size. */ if (inode->i_size < sizeof(struct ATTR_DEF_ENTRY) || inode->i_size > 100 * sizeof(struct ATTR_DEF_ENTRY)) { ntfs_err(sb, "Looks like $AttrDef is corrupted (size=%llu).", inode->i_size); err = -EINVAL; goto put_inode_out; } bytes = inode->i_size; sbi->def_table = t = kvmalloc(bytes, GFP_KERNEL); if (!t) { err = -ENOMEM; goto put_inode_out; } /* Read the entire file. */ err = inode_read_data(inode, sbi->def_table, bytes); if (err) { ntfs_err(sb, "Failed to read $AttrDef (%d).", err); goto put_inode_out; } if (ATTR_STD != t->type) { ntfs_err(sb, "$AttrDef is corrupted."); err = -EINVAL; goto put_inode_out; } t += 1; sbi->def_entries = 1; done = sizeof(struct ATTR_DEF_ENTRY); while (done + sizeof(struct ATTR_DEF_ENTRY) <= bytes) { u32 t32 = le32_to_cpu(t->type); u64 sz = le64_to_cpu(t->max_sz); if ((t32 & 0xF) || le32_to_cpu(t[-1].type) >= t32) break; if (t->type == ATTR_REPARSE) sbi->reparse.max_size = sz; else if (t->type == ATTR_EA) sbi->ea_max_size = sz; done += sizeof(struct ATTR_DEF_ENTRY); t += 1; sbi->def_entries += 1; } iput(inode); /* Load $UpCase. */ ref.low = cpu_to_le32(MFT_REC_UPCASE); ref.seq = cpu_to_le16(MFT_REC_UPCASE); inode = ntfs_iget5(sb, &ref, &NAME_UPCASE); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load $UpCase (%d).", err); goto out; } if (inode->i_size != 0x10000 * sizeof(short)) { err = -EINVAL; ntfs_err(sb, "$UpCase is corrupted."); goto put_inode_out; } /* Read the entire file. */ err = inode_read_data(inode, sbi->upcase, 0x10000 * sizeof(short)); if (err) { ntfs_err(sb, "Failed to read $UpCase (%d).", err); goto put_inode_out; } #ifdef __BIG_ENDIAN { const __le16 *src = sbi->upcase; u16 *dst = sbi->upcase; for (i = 0; i < 0x10000; i++) *dst++ = le16_to_cpu(*src++); } #endif shared = ntfs_set_shared(sbi->upcase, 0x10000 * sizeof(short)); if (shared && sbi->upcase != shared) { kvfree(sbi->upcase); sbi->upcase = shared; } iput(inode); if (is_ntfs3(sbi)) { /* Load $Secure. */ err = ntfs_security_init(sbi); if (err) { ntfs_err(sb, "Failed to initialize $Secure (%d).", err); goto out; } /* Load $Extend. */ err = ntfs_extend_init(sbi); if (err) { ntfs_warn(sb, "Failed to initialize $Extend."); goto load_root; } /* Load $Extend/$Reparse. */ err = ntfs_reparse_init(sbi); if (err) { ntfs_warn(sb, "Failed to initialize $Extend/$Reparse."); goto load_root; } /* Load $Extend/$ObjId. */ err = ntfs_objid_init(sbi); if (err) { ntfs_warn(sb, "Failed to initialize $Extend/$ObjId."); goto load_root; } } load_root: /* Load root. */ ref.low = cpu_to_le32(MFT_REC_ROOT); ref.seq = cpu_to_le16(MFT_REC_ROOT); inode = ntfs_iget5(sb, &ref, &NAME_ROOT); if (IS_ERR(inode)) { err = PTR_ERR(inode); ntfs_err(sb, "Failed to load root (%d).", err); goto out; } /* * Final check. Looks like this case should never occurs. */ if (!inode->i_op) { err = -EINVAL; ntfs_err(sb, "Failed to load root (%d).", err); goto put_inode_out; } sb->s_root = d_make_root(inode); if (!sb->s_root) { err = -ENOMEM; goto put_inode_out; } if (boot2) { /* * Alternative boot is ok but primary is not ok. * Volume is recognized as NTFS. Update primary boot. */ struct buffer_head *bh0 = sb_getblk(sb, 0); if (bh0) { if (buffer_locked(bh0)) __wait_on_buffer(bh0); lock_buffer(bh0); memcpy(bh0->b_data, boot2, sizeof(*boot2)); set_buffer_uptodate(bh0); mark_buffer_dirty(bh0); unlock_buffer(bh0); if (!sync_dirty_buffer(bh0)) ntfs_warn(sb, "primary boot is updated"); put_bh(bh0); } kfree(boot2); } #ifdef CONFIG_PROC_FS /* Create /proc/fs/ntfs3/.. */ if (proc_info_root) { struct proc_dir_entry *e = proc_mkdir(sb->s_id, proc_info_root); static_assert((S_IRUGO | S_IWUSR) == 0644); if (e) { proc_create_data("volinfo", S_IRUGO, e, &ntfs3_volinfo_fops, sb); proc_create_data("label", S_IRUGO | S_IWUSR, e, &ntfs3_label_fops, sb); sbi->procdir = e; } } #endif if (is_legacy_ntfs(sb)) sb->s_flags |= SB_RDONLY; return 0; put_inode_out: iput(inode); out: ntfs3_put_sbi(sbi); kfree(boot2); ntfs3_put_sbi(sbi); return err; } void ntfs_unmap_meta(struct super_block *sb, CLST lcn, CLST len) { struct ntfs_sb_info *sbi = sb->s_fs_info; struct block_device *bdev = sb->s_bdev; sector_t devblock = (u64)lcn * sbi->blocks_per_cluster; unsigned long blocks = (u64)len * sbi->blocks_per_cluster; unsigned long cnt = 0; unsigned long limit = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - sb->s_blocksize_bits); if (limit >= 0x2000) limit -= 0x1000; else if (limit < 32) limit = 32; else limit >>= 1; while (blocks--) { clean_bdev_aliases(bdev, devblock++, 1); if (cnt++ >= limit) { sync_blockdev(bdev); cnt = 0; } } } /* * ntfs_discard - Issue a discard request (trim for SSD). */ int ntfs_discard(struct ntfs_sb_info *sbi, CLST lcn, CLST len) { int err; u64 lbo, bytes, start, end; struct super_block *sb; if (sbi->used.next_free_lcn == lcn + len) sbi->used.next_free_lcn = lcn; if (sbi->flags & NTFS_FLAGS_NODISCARD) return -EOPNOTSUPP; if (!sbi->options->discard) return -EOPNOTSUPP; lbo = (u64)lcn << sbi->cluster_bits; bytes = (u64)len << sbi->cluster_bits; /* Align up 'start' on discard_granularity. */ start = (lbo + sbi->discard_granularity - 1) & sbi->discard_granularity_mask_inv; /* Align down 'end' on discard_granularity. */ end = (lbo + bytes) & sbi->discard_granularity_mask_inv; sb = sbi->sb; if (start >= end) return 0; err = blkdev_issue_discard(sb->s_bdev, start >> 9, (end - start) >> 9, GFP_NOFS); if (err == -EOPNOTSUPP) sbi->flags |= NTFS_FLAGS_NODISCARD; return err; } static int ntfs_fs_get_tree(struct fs_context *fc) { return get_tree_bdev(fc, ntfs_fill_super); } /* * ntfs_fs_free - Free fs_context. * * Note that this will be called after fill_super and reconfigure * even when they pass. So they have to take pointers if they pass. */ static void ntfs_fs_free(struct fs_context *fc) { struct ntfs_mount_options *opts = fc->fs_private; struct ntfs_sb_info *sbi = fc->s_fs_info; if (sbi) { ntfs3_put_sbi(sbi); ntfs3_free_sbi(sbi); } if (opts) put_mount_options(opts); } // clang-format off static const struct fs_context_operations ntfs_context_ops = { .parse_param = ntfs_fs_parse_param, .get_tree = ntfs_fs_get_tree, .reconfigure = ntfs_fs_reconfigure, .free = ntfs_fs_free, }; // clang-format on /* * ntfs_init_fs_context - Initialize sbi and opts * * This will called when mount/remount. We will first initialize * options so that if remount we can use just that. */ static int __ntfs_init_fs_context(struct fs_context *fc) { struct ntfs_mount_options *opts; struct ntfs_sb_info *sbi; opts = kzalloc(sizeof(struct ntfs_mount_options), GFP_NOFS); if (!opts) return -ENOMEM; /* Default options. */ opts->fs_uid = current_uid(); opts->fs_gid = current_gid(); opts->fs_fmask_inv = ~current_umask(); opts->fs_dmask_inv = ~current_umask(); if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) goto ok; sbi = kzalloc(sizeof(struct ntfs_sb_info), GFP_NOFS); if (!sbi) goto free_opts; sbi->upcase = kvmalloc(0x10000 * sizeof(short), GFP_KERNEL); if (!sbi->upcase) goto free_sbi; ratelimit_state_init(&sbi->msg_ratelimit, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); mutex_init(&sbi->compress.mtx_lznt); #ifdef CONFIG_NTFS3_LZX_XPRESS mutex_init(&sbi->compress.mtx_xpress); mutex_init(&sbi->compress.mtx_lzx); #endif fc->s_fs_info = sbi; ok: fc->fs_private = opts; fc->ops = &ntfs_context_ops; return 0; free_sbi: kfree(sbi); free_opts: kfree(opts); return -ENOMEM; } static int ntfs_init_fs_context(struct fs_context *fc) { return __ntfs_init_fs_context(fc); } static void ntfs3_kill_sb(struct super_block *sb) { struct ntfs_sb_info *sbi = sb->s_fs_info; kill_block_super(sb); if (sbi->options) put_mount_options(sbi->options); ntfs3_free_sbi(sbi); } // clang-format off static struct file_system_type ntfs_fs_type = { .owner = THIS_MODULE, .name = "ntfs3", .init_fs_context = ntfs_init_fs_context, .parameters = ntfs_fs_parameters, .kill_sb = ntfs3_kill_sb, .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, }; #if IS_ENABLED(CONFIG_NTFS_FS) static int ntfs_legacy_init_fs_context(struct fs_context *fc) { int ret; ret = __ntfs_init_fs_context(fc); /* If ntfs3 is used as legacy ntfs enforce read-only mode. */ fc->sb_flags |= SB_RDONLY; return ret; } static struct file_system_type ntfs_legacy_fs_type = { .owner = THIS_MODULE, .name = "ntfs", .init_fs_context = ntfs_legacy_init_fs_context, .parameters = ntfs_fs_parameters, .kill_sb = ntfs3_kill_sb, .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, }; MODULE_ALIAS_FS("ntfs"); static inline void register_as_ntfs_legacy(void) { int err = register_filesystem(&ntfs_legacy_fs_type); if (err) pr_warn("ntfs3: Failed to register legacy ntfs filesystem driver: %d\n", err); } static inline void unregister_as_ntfs_legacy(void) { unregister_filesystem(&ntfs_legacy_fs_type); } bool is_legacy_ntfs(struct super_block *sb) { return sb->s_type == &ntfs_legacy_fs_type; } #else static inline void register_as_ntfs_legacy(void) {} static inline void unregister_as_ntfs_legacy(void) {} #endif // clang-format on static int __init init_ntfs_fs(void) { int err; if (IS_ENABLED(CONFIG_NTFS3_FS_POSIX_ACL)) pr_info("ntfs3: Enabled Linux POSIX ACLs support\n"); if (IS_ENABLED(CONFIG_NTFS3_64BIT_CLUSTER)) pr_notice( "ntfs3: Warning: Activated 64 bits per cluster. Windows does not support this\n"); if (IS_ENABLED(CONFIG_NTFS3_LZX_XPRESS)) pr_info("ntfs3: Read-only LZX/Xpress compression included\n"); #ifdef CONFIG_PROC_FS /* Create "/proc/fs/ntfs3" */ proc_info_root = proc_mkdir("fs/ntfs3", NULL); #endif err = ntfs3_init_bitmap(); if (err) return err; ntfs_inode_cachep = kmem_cache_create( "ntfs_inode_cache", sizeof(struct ntfs_inode), 0, (SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT), init_once); if (!ntfs_inode_cachep) { err = -ENOMEM; goto out1; } register_as_ntfs_legacy(); err = register_filesystem(&ntfs_fs_type); if (err) goto out; return 0; out: kmem_cache_destroy(ntfs_inode_cachep); out1: ntfs3_exit_bitmap(); return err; } static void __exit exit_ntfs_fs(void) { rcu_barrier(); kmem_cache_destroy(ntfs_inode_cachep); unregister_filesystem(&ntfs_fs_type); unregister_as_ntfs_legacy(); ntfs3_exit_bitmap(); #ifdef CONFIG_PROC_FS if (proc_info_root) remove_proc_entry("fs/ntfs3", NULL); #endif } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ntfs3 read/write filesystem"); #ifdef CONFIG_NTFS3_FS_POSIX_ACL MODULE_INFO(behaviour, "Enabled Linux POSIX ACLs support"); #endif #ifdef CONFIG_NTFS3_64BIT_CLUSTER MODULE_INFO( cluster, "Warning: Activated 64 bits per cluster. Windows does not support this"); #endif #ifdef CONFIG_NTFS3_LZX_XPRESS MODULE_INFO(compression, "Read-only lzx/xpress compression included"); #endif MODULE_AUTHOR("Konstantin Komarov"); MODULE_ALIAS_FS("ntfs3"); module_init(init_ntfs_fs); module_exit(exit_ntfs_fs); |
3 2 20 1 20 26 5 28 5 23 9 21 2 21 10 5 4 11 18 17 18 18 3 15 18 18 88 101 2 101 3 3 3 3 24 2 24 46 48 48 38 8 2 1 1 8 9 1 1 7 4 2 2 1 6 4 1 14 1 21 15 12 5 10 11 37 1 12 24 8 2 1 1 4 35 2 1 2 32 27 2 1 1 2 1 5 1 14 4 1 1 2 1 2 1 1 2 15 15 14 15 7 7 2 2 6 4 2 2 14 1 1 1 1 1 4 2 3 2 1 4 6 16 16 16 2 1 1 15 10 8 14 9 8 7 26 31 15 10 15 14 3 31 6 6 6 2 5 31 8 15 12 7 12 8 11 7 7 7 6 42 28 31 31 25 5 28 9 38 1 2 1 30 5 29 1 30 30 35 7 31 19 15 1 1 7 1 2 2 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 | // SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/nospec.h> #include <linux/hugetlb.h> #include <linux/compat.h> #include <linux/io_uring.h> #include <uapi/linux/io_uring.h> #include "io_uring.h" #include "alloc_cache.h" #include "openclose.h" #include "rsrc.h" #include "memmap.h" #include "register.h" struct io_rsrc_update { struct file *file; u64 arg; u32 nr_args; u32 offset; }; static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc); static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov, struct io_mapped_ubuf **pimu, struct page **last_hpage); /* only define max */ #define IORING_MAX_FIXED_FILES (1U << 20) #define IORING_MAX_REG_BUFFERS (1U << 14) static const struct io_mapped_ubuf dummy_ubuf = { /* set invalid range, so io_import_fixed() fails meeting it */ .ubuf = -1UL, .ubuf_end = 0, }; int __io_account_mem(struct user_struct *user, unsigned long nr_pages) { unsigned long page_limit, cur_pages, new_pages; if (!nr_pages) return 0; /* Don't allow more pages than we can safely lock */ page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; cur_pages = atomic_long_read(&user->locked_vm); do { new_pages = cur_pages + nr_pages; if (new_pages > page_limit) return -ENOMEM; } while (!atomic_long_try_cmpxchg(&user->locked_vm, &cur_pages, new_pages)); return 0; } static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages) { if (ctx->user) __io_unaccount_mem(ctx->user, nr_pages); if (ctx->mm_account) atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm); } static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages) { int ret; if (ctx->user) { ret = __io_account_mem(ctx->user, nr_pages); if (ret) return ret; } if (ctx->mm_account) atomic64_add(nr_pages, &ctx->mm_account->pinned_vm); return 0; } static int io_buffer_validate(struct iovec *iov) { unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1); /* * Don't impose further limits on the size and buffer * constraints here, we'll -EINVAL later when IO is * submitted if they are wrong. */ if (!iov->iov_base) return iov->iov_len ? -EFAULT : 0; if (!iov->iov_len) return -EFAULT; /* arbitrary limit, but we need something */ if (iov->iov_len > SZ_1G) return -EFAULT; if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp)) return -EOVERFLOW; return 0; } static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot) { struct io_mapped_ubuf *imu = *slot; unsigned int i; *slot = NULL; if (imu != &dummy_ubuf) { if (!refcount_dec_and_test(&imu->refs)) return; for (i = 0; i < imu->nr_bvecs; i++) unpin_user_page(imu->bvec[i].bv_page); if (imu->acct_pages) io_unaccount_mem(ctx, imu->acct_pages); kvfree(imu); } } static void io_rsrc_put_work(struct io_rsrc_node *node) { struct io_rsrc_put *prsrc = &node->item; if (prsrc->tag) io_post_aux_cqe(node->ctx, prsrc->tag, 0, 0); switch (node->type) { case IORING_RSRC_FILE: fput(prsrc->file); break; case IORING_RSRC_BUFFER: io_rsrc_buf_put(node->ctx, prsrc); break; default: WARN_ON_ONCE(1); break; } } void io_rsrc_node_destroy(struct io_ring_ctx *ctx, struct io_rsrc_node *node) { if (!io_alloc_cache_put(&ctx->rsrc_node_cache, node)) kfree(node); } void io_rsrc_node_ref_zero(struct io_rsrc_node *node) __must_hold(&node->ctx->uring_lock) { struct io_ring_ctx *ctx = node->ctx; while (!list_empty(&ctx->rsrc_ref_list)) { node = list_first_entry(&ctx->rsrc_ref_list, struct io_rsrc_node, node); /* recycle ref nodes in order */ if (node->refs) break; list_del(&node->node); if (likely(!node->empty)) io_rsrc_put_work(node); io_rsrc_node_destroy(ctx, node); } if (list_empty(&ctx->rsrc_ref_list) && unlikely(ctx->rsrc_quiesce)) wake_up_all(&ctx->rsrc_quiesce_wq); } struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx) { struct io_rsrc_node *ref_node; ref_node = io_alloc_cache_get(&ctx->rsrc_node_cache); if (!ref_node) { ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL); if (!ref_node) return NULL; } ref_node->ctx = ctx; ref_node->empty = 0; ref_node->refs = 1; return ref_node; } __cold static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx) { struct io_rsrc_node *backup; DEFINE_WAIT(we); int ret; /* As We may drop ->uring_lock, other task may have started quiesce */ if (data->quiesce) return -ENXIO; backup = io_rsrc_node_alloc(ctx); if (!backup) return -ENOMEM; ctx->rsrc_node->empty = true; ctx->rsrc_node->type = -1; list_add_tail(&ctx->rsrc_node->node, &ctx->rsrc_ref_list); io_put_rsrc_node(ctx, ctx->rsrc_node); ctx->rsrc_node = backup; if (list_empty(&ctx->rsrc_ref_list)) return 0; if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { atomic_set(&ctx->cq_wait_nr, 1); smp_mb(); } ctx->rsrc_quiesce++; data->quiesce = true; do { prepare_to_wait(&ctx->rsrc_quiesce_wq, &we, TASK_INTERRUPTIBLE); mutex_unlock(&ctx->uring_lock); ret = io_run_task_work_sig(ctx); if (ret < 0) { finish_wait(&ctx->rsrc_quiesce_wq, &we); mutex_lock(&ctx->uring_lock); if (list_empty(&ctx->rsrc_ref_list)) ret = 0; break; } schedule(); mutex_lock(&ctx->uring_lock); ret = 0; } while (!list_empty(&ctx->rsrc_ref_list)); finish_wait(&ctx->rsrc_quiesce_wq, &we); data->quiesce = false; ctx->rsrc_quiesce--; if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { atomic_set(&ctx->cq_wait_nr, 0); smp_mb(); } return ret; } static void io_free_page_table(void **table, size_t size) { unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE); for (i = 0; i < nr_tables; i++) kfree(table[i]); kfree(table); } static void io_rsrc_data_free(struct io_rsrc_data *data) { size_t size = data->nr * sizeof(data->tags[0][0]); if (data->tags) io_free_page_table((void **)data->tags, size); kfree(data); } static __cold void **io_alloc_page_table(size_t size) { unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE); size_t init_size = size; void **table; table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT); if (!table) return NULL; for (i = 0; i < nr_tables; i++) { unsigned int this_size = min_t(size_t, size, PAGE_SIZE); table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT); if (!table[i]) { io_free_page_table(table, init_size); return NULL; } size -= this_size; } return table; } __cold static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, int type, u64 __user *utags, unsigned nr, struct io_rsrc_data **pdata) { struct io_rsrc_data *data; int ret = 0; unsigned i; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0])); if (!data->tags) { kfree(data); return -ENOMEM; } data->nr = nr; data->ctx = ctx; data->rsrc_type = type; if (utags) { ret = -EFAULT; for (i = 0; i < nr; i++) { u64 *tag_slot = io_get_tag_slot(data, i); if (copy_from_user(tag_slot, &utags[i], sizeof(*tag_slot))) goto fail; } } *pdata = data; return 0; fail: io_rsrc_data_free(data); return ret; } static int __io_sqe_files_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned nr_args) { u64 __user *tags = u64_to_user_ptr(up->tags); __s32 __user *fds = u64_to_user_ptr(up->data); struct io_rsrc_data *data = ctx->file_data; struct io_fixed_file *file_slot; int fd, i, err = 0; unsigned int done; if (!ctx->file_data) return -ENXIO; if (up->offset + nr_args > ctx->nr_user_files) return -EINVAL; for (done = 0; done < nr_args; done++) { u64 tag = 0; if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) || copy_from_user(&fd, &fds[done], sizeof(fd))) { err = -EFAULT; break; } if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) { err = -EINVAL; break; } if (fd == IORING_REGISTER_FILES_SKIP) continue; i = array_index_nospec(up->offset + done, ctx->nr_user_files); file_slot = io_fixed_file_slot(&ctx->file_table, i); if (file_slot->file_ptr) { err = io_queue_rsrc_removal(data, i, io_slot_file(file_slot)); if (err) break; file_slot->file_ptr = 0; io_file_bitmap_clear(&ctx->file_table, i); } if (fd != -1) { struct file *file = fget(fd); if (!file) { err = -EBADF; break; } /* * Don't allow io_uring instances to be registered. */ if (io_is_uring_fops(file)) { fput(file); err = -EBADF; break; } *io_get_tag_slot(data, i) = tag; io_fixed_file_set(file_slot, file); io_file_bitmap_set(&ctx->file_table, i); } } return done ? done : err; } static int __io_sqe_buffers_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned int nr_args) { u64 __user *tags = u64_to_user_ptr(up->tags); struct iovec fast_iov, *iov; struct page *last_hpage = NULL; struct iovec __user *uvec; u64 user_data = up->data; __u32 done; int i, err; if (!ctx->buf_data) return -ENXIO; if (up->offset + nr_args > ctx->nr_user_bufs) return -EINVAL; for (done = 0; done < nr_args; done++) { struct io_mapped_ubuf *imu; u64 tag = 0; uvec = u64_to_user_ptr(user_data); iov = iovec_from_user(uvec, 1, 1, &fast_iov, ctx->compat); if (IS_ERR(iov)) { err = PTR_ERR(iov); break; } if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) { err = -EFAULT; break; } err = io_buffer_validate(iov); if (err) break; if (!iov->iov_base && tag) { err = -EINVAL; break; } err = io_sqe_buffer_register(ctx, iov, &imu, &last_hpage); if (err) break; i = array_index_nospec(up->offset + done, ctx->nr_user_bufs); if (ctx->user_bufs[i] != &dummy_ubuf) { err = io_queue_rsrc_removal(ctx->buf_data, i, ctx->user_bufs[i]); if (unlikely(err)) { io_buffer_unmap(ctx, &imu); break; } ctx->user_bufs[i] = (struct io_mapped_ubuf *)&dummy_ubuf; } ctx->user_bufs[i] = imu; *io_get_tag_slot(ctx->buf_data, i) = tag; if (ctx->compat) user_data += sizeof(struct compat_iovec); else user_data += sizeof(struct iovec); } return done ? done : err; } static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type, struct io_uring_rsrc_update2 *up, unsigned nr_args) { __u32 tmp; lockdep_assert_held(&ctx->uring_lock); if (check_add_overflow(up->offset, nr_args, &tmp)) return -EOVERFLOW; switch (type) { case IORING_RSRC_FILE: return __io_sqe_files_update(ctx, up, nr_args); case IORING_RSRC_BUFFER: return __io_sqe_buffers_update(ctx, up, nr_args); } return -EINVAL; } int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args) { struct io_uring_rsrc_update2 up; if (!nr_args) return -EINVAL; memset(&up, 0, sizeof(up)); if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update))) return -EFAULT; if (up.resv || up.resv2) return -EINVAL; return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args); } int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg, unsigned size, unsigned type) { struct io_uring_rsrc_update2 up; if (size != sizeof(up)) return -EINVAL; if (copy_from_user(&up, arg, sizeof(up))) return -EFAULT; if (!up.nr || up.resv || up.resv2) return -EINVAL; return __io_register_rsrc_update(ctx, type, &up, up.nr); } __cold int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg, unsigned int size, unsigned int type) { struct io_uring_rsrc_register rr; /* keep it extendible */ if (size != sizeof(rr)) return -EINVAL; memset(&rr, 0, sizeof(rr)); if (copy_from_user(&rr, arg, size)) return -EFAULT; if (!rr.nr || rr.resv2) return -EINVAL; if (rr.flags & ~IORING_RSRC_REGISTER_SPARSE) return -EINVAL; switch (type) { case IORING_RSRC_FILE: if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data) break; return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data), rr.nr, u64_to_user_ptr(rr.tags)); case IORING_RSRC_BUFFER: if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data) break; return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data), rr.nr, u64_to_user_ptr(rr.tags)); } return -EINVAL; } int io_files_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update); if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT))) return -EINVAL; if (sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; up->offset = READ_ONCE(sqe->off); up->nr_args = READ_ONCE(sqe->len); if (!up->nr_args) return -EINVAL; up->arg = READ_ONCE(sqe->addr); return 0; } static int io_files_update_with_index_alloc(struct io_kiocb *req, unsigned int issue_flags) { struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update); __s32 __user *fds = u64_to_user_ptr(up->arg); unsigned int done; struct file *file; int ret, fd; if (!req->ctx->file_data) return -ENXIO; for (done = 0; done < up->nr_args; done++) { if (copy_from_user(&fd, &fds[done], sizeof(fd))) { ret = -EFAULT; break; } file = fget(fd); if (!file) { ret = -EBADF; break; } ret = io_fixed_fd_install(req, issue_flags, file, IORING_FILE_INDEX_ALLOC); if (ret < 0) break; if (copy_to_user(&fds[done], &ret, sizeof(ret))) { __io_close_fixed(req->ctx, issue_flags, ret); ret = -EFAULT; break; } } if (done) return done; return ret; } int io_files_update(struct io_kiocb *req, unsigned int issue_flags) { struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update); struct io_ring_ctx *ctx = req->ctx; struct io_uring_rsrc_update2 up2; int ret; up2.offset = up->offset; up2.data = up->arg; up2.nr = 0; up2.tags = 0; up2.resv = 0; up2.resv2 = 0; if (up->offset == IORING_FILE_INDEX_ALLOC) { ret = io_files_update_with_index_alloc(req, issue_flags); } else { io_ring_submit_lock(ctx, issue_flags); ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up2, up->nr_args); io_ring_submit_unlock(ctx, issue_flags); } if (ret < 0) req_set_fail(req); io_req_set_res(req, ret, 0); return IOU_OK; } int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx, void *rsrc) { struct io_ring_ctx *ctx = data->ctx; struct io_rsrc_node *node = ctx->rsrc_node; u64 *tag_slot = io_get_tag_slot(data, idx); ctx->rsrc_node = io_rsrc_node_alloc(ctx); if (unlikely(!ctx->rsrc_node)) { ctx->rsrc_node = node; return -ENOMEM; } node->item.rsrc = rsrc; node->type = data->rsrc_type; node->item.tag = *tag_slot; *tag_slot = 0; list_add_tail(&node->node, &ctx->rsrc_ref_list); io_put_rsrc_node(ctx, node); return 0; } void __io_sqe_files_unregister(struct io_ring_ctx *ctx) { int i; for (i = 0; i < ctx->nr_user_files; i++) { struct file *file = io_file_from_index(&ctx->file_table, i); if (!file) continue; io_file_bitmap_clear(&ctx->file_table, i); fput(file); } io_free_file_tables(&ctx->file_table); io_file_table_set_alloc_range(ctx, 0, 0); io_rsrc_data_free(ctx->file_data); ctx->file_data = NULL; ctx->nr_user_files = 0; } int io_sqe_files_unregister(struct io_ring_ctx *ctx) { unsigned nr = ctx->nr_user_files; int ret; if (!ctx->file_data) return -ENXIO; /* * Quiesce may unlock ->uring_lock, and while it's not held * prevent new requests using the table. */ ctx->nr_user_files = 0; ret = io_rsrc_ref_quiesce(ctx->file_data, ctx); ctx->nr_user_files = nr; if (!ret) __io_sqe_files_unregister(ctx); return ret; } int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args, u64 __user *tags) { __s32 __user *fds = (__s32 __user *) arg; struct file *file; int fd, ret; unsigned i; if (ctx->file_data) return -EBUSY; if (!nr_args) return -EINVAL; if (nr_args > IORING_MAX_FIXED_FILES) return -EMFILE; if (nr_args > rlimit(RLIMIT_NOFILE)) return -EMFILE; ret = io_rsrc_data_alloc(ctx, IORING_RSRC_FILE, tags, nr_args, &ctx->file_data); if (ret) return ret; if (!io_alloc_file_tables(&ctx->file_table, nr_args)) { io_rsrc_data_free(ctx->file_data); ctx->file_data = NULL; return -ENOMEM; } for (i = 0; i < nr_args; i++, ctx->nr_user_files++) { struct io_fixed_file *file_slot; if (fds && copy_from_user(&fd, &fds[i], sizeof(fd))) { ret = -EFAULT; goto fail; } /* allow sparse sets */ if (!fds || fd == -1) { ret = -EINVAL; if (unlikely(*io_get_tag_slot(ctx->file_data, i))) goto fail; continue; } file = fget(fd); ret = -EBADF; if (unlikely(!file)) goto fail; /* * Don't allow io_uring instances to be registered. */ if (io_is_uring_fops(file)) { fput(file); goto fail; } file_slot = io_fixed_file_slot(&ctx->file_table, i); io_fixed_file_set(file_slot, file); io_file_bitmap_set(&ctx->file_table, i); } /* default it to the whole table */ io_file_table_set_alloc_range(ctx, 0, ctx->nr_user_files); return 0; fail: __io_sqe_files_unregister(ctx); return ret; } static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc) { io_buffer_unmap(ctx, &prsrc->buf); prsrc->buf = NULL; } void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx) { unsigned int i; for (i = 0; i < ctx->nr_user_bufs; i++) io_buffer_unmap(ctx, &ctx->user_bufs[i]); kfree(ctx->user_bufs); io_rsrc_data_free(ctx->buf_data); ctx->user_bufs = NULL; ctx->buf_data = NULL; ctx->nr_user_bufs = 0; } int io_sqe_buffers_unregister(struct io_ring_ctx *ctx) { unsigned nr = ctx->nr_user_bufs; int ret; if (!ctx->buf_data) return -ENXIO; /* * Quiesce may unlock ->uring_lock, and while it's not held * prevent new requests using the table. */ ctx->nr_user_bufs = 0; ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx); ctx->nr_user_bufs = nr; if (!ret) __io_sqe_buffers_unregister(ctx); return ret; } /* * Not super efficient, but this is just a registration time. And we do cache * the last compound head, so generally we'll only do a full search if we don't * match that one. * * We check if the given compound head page has already been accounted, to * avoid double accounting it. This allows us to account the full size of the * page, not just the constituent pages of a huge page. */ static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct page *hpage) { int i, j; /* check current page array */ for (i = 0; i < nr_pages; i++) { if (!PageCompound(pages[i])) continue; if (compound_head(pages[i]) == hpage) return true; } /* check previously registered pages */ for (i = 0; i < ctx->nr_user_bufs; i++) { struct io_mapped_ubuf *imu = ctx->user_bufs[i]; for (j = 0; j < imu->nr_bvecs; j++) { if (!PageCompound(imu->bvec[j].bv_page)) continue; if (compound_head(imu->bvec[j].bv_page) == hpage) return true; } } return false; } static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct io_mapped_ubuf *imu, struct page **last_hpage) { int i, ret; imu->acct_pages = 0; for (i = 0; i < nr_pages; i++) { if (!PageCompound(pages[i])) { imu->acct_pages++; } else { struct page *hpage; hpage = compound_head(pages[i]); if (hpage == *last_hpage) continue; *last_hpage = hpage; if (headpage_already_acct(ctx, pages, i, hpage)) continue; imu->acct_pages += page_size(hpage) >> PAGE_SHIFT; } } if (!imu->acct_pages) return 0; ret = io_account_mem(ctx, imu->acct_pages); if (ret) imu->acct_pages = 0; return ret; } static bool io_do_coalesce_buffer(struct page ***pages, int *nr_pages, struct io_imu_folio_data *data, int nr_folios) { struct page **page_array = *pages, **new_array = NULL; int nr_pages_left = *nr_pages, i, j; /* Store head pages only*/ new_array = kvmalloc_array(nr_folios, sizeof(struct page *), GFP_KERNEL); if (!new_array) return false; new_array[0] = compound_head(page_array[0]); /* * The pages are bound to the folio, it doesn't * actually unpin them but drops all but one reference, * which is usually put down by io_buffer_unmap(). * Note, needs a better helper. */ if (data->nr_pages_head > 1) unpin_user_pages(&page_array[1], data->nr_pages_head - 1); j = data->nr_pages_head; nr_pages_left -= data->nr_pages_head; for (i = 1; i < nr_folios; i++) { unsigned int nr_unpin; new_array[i] = page_array[j]; nr_unpin = min_t(unsigned int, nr_pages_left - 1, data->nr_pages_mid - 1); if (nr_unpin) unpin_user_pages(&page_array[j+1], nr_unpin); j += data->nr_pages_mid; nr_pages_left -= data->nr_pages_mid; } kvfree(page_array); *pages = new_array; *nr_pages = nr_folios; return true; } static bool io_try_coalesce_buffer(struct page ***pages, int *nr_pages, struct io_imu_folio_data *data) { struct page **page_array = *pages; struct folio *folio = page_folio(page_array[0]); unsigned int count = 1, nr_folios = 1; int i; if (*nr_pages <= 1) return false; data->nr_pages_mid = folio_nr_pages(folio); if (data->nr_pages_mid == 1) return false; data->folio_shift = folio_shift(folio); /* * Check if pages are contiguous inside a folio, and all folios have * the same page count except for the head and tail. */ for (i = 1; i < *nr_pages; i++) { if (page_folio(page_array[i]) == folio && page_array[i] == page_array[i-1] + 1) { count++; continue; } if (nr_folios == 1) { if (folio_page_idx(folio, page_array[i-1]) != data->nr_pages_mid - 1) return false; data->nr_pages_head = count; } else if (count != data->nr_pages_mid) { return false; } folio = page_folio(page_array[i]); if (folio_size(folio) != (1UL << data->folio_shift) || folio_page_idx(folio, page_array[i]) != 0) return false; count = 1; nr_folios++; } if (nr_folios == 1) data->nr_pages_head = count; return io_do_coalesce_buffer(pages, nr_pages, data, nr_folios); } static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov, struct io_mapped_ubuf **pimu, struct page **last_hpage) { struct io_mapped_ubuf *imu = NULL; struct page **pages = NULL; unsigned long off; size_t size; int ret, nr_pages, i; struct io_imu_folio_data data; bool coalesced; *pimu = (struct io_mapped_ubuf *)&dummy_ubuf; if (!iov->iov_base) return 0; ret = -ENOMEM; pages = io_pin_pages((unsigned long) iov->iov_base, iov->iov_len, &nr_pages); if (IS_ERR(pages)) { ret = PTR_ERR(pages); pages = NULL; goto done; } /* If it's huge page(s), try to coalesce them into fewer bvec entries */ coalesced = io_try_coalesce_buffer(&pages, &nr_pages, &data); imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL); if (!imu) goto done; ret = io_buffer_account_pin(ctx, pages, nr_pages, imu, last_hpage); if (ret) { unpin_user_pages(pages, nr_pages); goto done; } size = iov->iov_len; /* store original address for later verification */ imu->ubuf = (unsigned long) iov->iov_base; imu->ubuf_end = imu->ubuf + iov->iov_len; imu->nr_bvecs = nr_pages; imu->folio_shift = PAGE_SHIFT; imu->folio_mask = PAGE_MASK; if (coalesced) { imu->folio_shift = data.folio_shift; imu->folio_mask = ~((1UL << data.folio_shift) - 1); } refcount_set(&imu->refs, 1); off = (unsigned long) iov->iov_base & ~imu->folio_mask; *pimu = imu; ret = 0; for (i = 0; i < nr_pages; i++) { size_t vec_len; vec_len = min_t(size_t, size, (1UL << imu->folio_shift) - off); bvec_set_page(&imu->bvec[i], pages[i], vec_len, off); off = 0; size -= vec_len; } done: if (ret) kvfree(imu); kvfree(pages); return ret; } static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args) { ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL); return ctx->user_bufs ? 0 : -ENOMEM; } int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args, u64 __user *tags) { struct page *last_hpage = NULL; struct io_rsrc_data *data; struct iovec fast_iov, *iov = &fast_iov; const struct iovec __user *uvec; int i, ret; BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16)); if (ctx->user_bufs) return -EBUSY; if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS) return -EINVAL; ret = io_rsrc_data_alloc(ctx, IORING_RSRC_BUFFER, tags, nr_args, &data); if (ret) return ret; ret = io_buffers_map_alloc(ctx, nr_args); if (ret) { io_rsrc_data_free(data); return ret; } if (!arg) memset(iov, 0, sizeof(*iov)); for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) { if (arg) { uvec = (struct iovec __user *) arg; iov = iovec_from_user(uvec, 1, 1, &fast_iov, ctx->compat); if (IS_ERR(iov)) { ret = PTR_ERR(iov); break; } ret = io_buffer_validate(iov); if (ret) break; if (ctx->compat) arg += sizeof(struct compat_iovec); else arg += sizeof(struct iovec); } if (!iov->iov_base && *io_get_tag_slot(data, i)) { ret = -EINVAL; break; } ret = io_sqe_buffer_register(ctx, iov, &ctx->user_bufs[i], &last_hpage); if (ret) break; } WARN_ON_ONCE(ctx->buf_data); ctx->buf_data = data; if (ret) __io_sqe_buffers_unregister(ctx); return ret; } int io_import_fixed(int ddir, struct iov_iter *iter, struct io_mapped_ubuf *imu, u64 buf_addr, size_t len) { u64 buf_end; size_t offset; if (WARN_ON_ONCE(!imu)) return -EFAULT; if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end))) return -EFAULT; /* not inside the mapped region */ if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end)) return -EFAULT; /* * Might not be a start of buffer, set size appropriately * and advance us to the beginning. */ offset = buf_addr - imu->ubuf; iov_iter_bvec(iter, ddir, imu->bvec, imu->nr_bvecs, offset + len); if (offset) { /* * Don't use iov_iter_advance() here, as it's really slow for * using the latter parts of a big fixed buffer - it iterates * over each segment manually. We can cheat a bit here, because * we know that: * * 1) it's a BVEC iter, we set it up * 2) all bvecs are the same in size, except potentially the * first and last bvec * * So just find our index, and adjust the iterator afterwards. * If the offset is within the first bvec (or the whole first * bvec, just use iov_iter_advance(). This makes it easier * since we can just skip the first segment, which may not * be folio_size aligned. */ const struct bio_vec *bvec = imu->bvec; if (offset < bvec->bv_len) { iter->bvec = bvec; iter->count -= offset; iter->iov_offset = offset; } else { unsigned long seg_skip; /* skip first vec */ offset -= bvec->bv_len; seg_skip = 1 + (offset >> imu->folio_shift); iter->bvec = bvec + seg_skip; iter->nr_segs -= seg_skip; iter->count -= bvec->bv_len + offset; iter->iov_offset = offset & ~imu->folio_mask; } } return 0; } static int io_copy_buffers(struct io_ring_ctx *ctx, struct io_ring_ctx *src_ctx) { struct io_mapped_ubuf **user_bufs; struct io_rsrc_data *data; int i, ret, nbufs; /* * Drop our own lock here. We'll setup the data we need and reference * the source buffers, then re-grab, check, and assign at the end. */ mutex_unlock(&ctx->uring_lock); mutex_lock(&src_ctx->uring_lock); ret = -ENXIO; nbufs = src_ctx->nr_user_bufs; if (!nbufs) goto out_unlock; ret = io_rsrc_data_alloc(ctx, IORING_RSRC_BUFFER, NULL, nbufs, &data); if (ret) goto out_unlock; ret = -ENOMEM; user_bufs = kcalloc(nbufs, sizeof(*ctx->user_bufs), GFP_KERNEL); if (!user_bufs) goto out_free_data; for (i = 0; i < nbufs; i++) { struct io_mapped_ubuf *src = src_ctx->user_bufs[i]; refcount_inc(&src->refs); user_bufs[i] = src; } /* Have a ref on the bufs now, drop src lock and re-grab our own lock */ mutex_unlock(&src_ctx->uring_lock); mutex_lock(&ctx->uring_lock); if (!ctx->user_bufs) { ctx->user_bufs = user_bufs; ctx->buf_data = data; ctx->nr_user_bufs = nbufs; return 0; } /* someone raced setting up buffers, dump ours */ for (i = 0; i < nbufs; i++) io_buffer_unmap(ctx, &user_bufs[i]); io_rsrc_data_free(data); kfree(user_bufs); return -EBUSY; out_free_data: io_rsrc_data_free(data); out_unlock: mutex_unlock(&src_ctx->uring_lock); mutex_lock(&ctx->uring_lock); return ret; } /* * Copy the registered buffers from the source ring whose file descriptor * is given in the src_fd to the current ring. This is identical to registering * the buffers with ctx, except faster as mappings already exist. * * Since the memory is already accounted once, don't account it again. */ int io_register_copy_buffers(struct io_ring_ctx *ctx, void __user *arg) { struct io_uring_copy_buffers buf; bool registered_src; struct file *file; int ret; if (ctx->user_bufs || ctx->nr_user_bufs) return -EBUSY; if (copy_from_user(&buf, arg, sizeof(buf))) return -EFAULT; if (buf.flags & ~IORING_REGISTER_SRC_REGISTERED) return -EINVAL; if (memchr_inv(buf.pad, 0, sizeof(buf.pad))) return -EINVAL; registered_src = (buf.flags & IORING_REGISTER_SRC_REGISTERED) != 0; file = io_uring_register_get_file(buf.src_fd, registered_src); if (IS_ERR(file)) return PTR_ERR(file); ret = io_copy_buffers(ctx, file->private_data); if (!registered_src) fput(file); return ret; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * PTP 1588 clock support - private declarations for the core module. * * Copyright (C) 2010 OMICRON electronics GmbH */ #ifndef _PTP_PRIVATE_H_ #define _PTP_PRIVATE_H_ #include <linux/cdev.h> #include <linux/device.h> #include <linux/kthread.h> #include <linux/mutex.h> #include <linux/posix-clock.h> #include <linux/ptp_clock.h> #include <linux/ptp_clock_kernel.h> #include <linux/time.h> #include <linux/list.h> #include <linux/bitmap.h> #include <linux/debugfs.h> #define PTP_MAX_TIMESTAMPS 128 #define PTP_BUF_TIMESTAMPS 30 #define PTP_DEFAULT_MAX_VCLOCKS 20 #define PTP_MAX_CHANNELS 2048 struct timestamp_event_queue { struct ptp_extts_event buf[PTP_MAX_TIMESTAMPS]; int head; int tail; spinlock_t lock; struct list_head qlist; unsigned long *mask; struct dentry *debugfs_instance; struct debugfs_u32_array dfs_bitmap; }; struct ptp_clock { struct posix_clock clock; struct device dev; struct ptp_clock_info *info; dev_t devid; int index; /* index into clocks.map */ struct pps_device *pps_source; long dialed_frequency; /* remembers the frequency adjustment */ struct list_head tsevqs; /* timestamp fifo list */ spinlock_t tsevqs_lock; /* protects tsevqs from concurrent access */ struct mutex pincfg_mux; /* protect concurrent info->pin_config access */ wait_queue_head_t tsev_wq; int defunct; /* tells readers to go away when clock is being removed */ struct device_attribute *pin_dev_attr; struct attribute **pin_attr; struct attribute_group pin_attr_group; /* 1st entry is a pointer to the real group, 2nd is NULL terminator */ const struct attribute_group *pin_attr_groups[2]; struct kthread_worker *kworker; struct kthread_delayed_work aux_work; unsigned int max_vclocks; unsigned int n_vclocks; int *vclock_index; struct mutex n_vclocks_mux; /* protect concurrent n_vclocks access */ bool is_virtual_clock; bool has_cycles; struct dentry *debugfs_root; }; #define info_to_vclock(d) container_of((d), struct ptp_vclock, info) #define cc_to_vclock(d) container_of((d), struct ptp_vclock, cc) #define dw_to_vclock(d) container_of((d), struct ptp_vclock, refresh_work) struct ptp_vclock { struct ptp_clock *pclock; struct ptp_clock_info info; struct ptp_clock *clock; struct hlist_node vclock_hash_node; struct cyclecounter cc; struct timecounter tc; struct mutex lock; /* protects tc/cc */ }; /* * The function queue_cnt() is safe for readers to call without * holding q->lock. Readers use this function to verify that the queue * is nonempty before proceeding with a dequeue operation. The fact * that a writer might concurrently increment the tail does not * matter, since the queue remains nonempty nonetheless. */ static inline int queue_cnt(const struct timestamp_event_queue *q) { /* * Paired with WRITE_ONCE() in enqueue_external_timestamp(), * ptp_read(), extts_fifo_show(). */ int cnt = READ_ONCE(q->tail) - READ_ONCE(q->head); return cnt < 0 ? PTP_MAX_TIMESTAMPS + cnt : cnt; } /* Check if ptp virtual clock is in use */ static inline bool ptp_vclock_in_use(struct ptp_clock *ptp) { bool in_use = false; if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) return true; if (!ptp->is_virtual_clock && ptp->n_vclocks) in_use = true; mutex_unlock(&ptp->n_vclocks_mux); return in_use; } /* Check if ptp clock shall be free running */ static inline bool ptp_clock_freerun(struct ptp_clock *ptp) { if (ptp->has_cycles) return false; return ptp_vclock_in_use(ptp); } extern const struct class ptp_class; /* * see ptp_chardev.c */ /* caller must hold pincfg_mux */ int ptp_set_pinfunc(struct ptp_clock *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan); long ptp_ioctl(struct posix_clock_context *pccontext, unsigned int cmd, unsigned long arg); int ptp_open(struct posix_clock_context *pccontext, fmode_t fmode); int ptp_release(struct posix_clock_context *pccontext); ssize_t ptp_read(struct posix_clock_context *pccontext, uint flags, char __user *buf, size_t cnt); __poll_t ptp_poll(struct posix_clock_context *pccontext, struct file *fp, poll_table *wait); /* * see ptp_sysfs.c */ extern const struct attribute_group *ptp_groups[]; int ptp_populate_pin_groups(struct ptp_clock *ptp); void ptp_cleanup_pin_groups(struct ptp_clock *ptp); struct ptp_vclock *ptp_vclock_register(struct ptp_clock *pclock); void ptp_vclock_unregister(struct ptp_vclock *vclock); #endif |
12 12 2 13 13 16 16 16 15 15 5 1 4 4 7 1 4 1 1 1 1 19 1 18 1 1 1 18 16 1 4 3 1 1 4 3 1 2 4 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 | // SPDX-License-Identifier: GPL-2.0-only /* * kernel/power/hibernate.c - Hibernation (a.k.a suspend-to-disk) support. * * Copyright (c) 2003 Patrick Mochel * Copyright (c) 2003 Open Source Development Lab * Copyright (c) 2004 Pavel Machek <pavel@ucw.cz> * Copyright (c) 2009 Rafael J. Wysocki, Novell Inc. * Copyright (C) 2012 Bojan Smojver <bojan@rexursive.com> */ #define pr_fmt(fmt) "PM: hibernation: " fmt #include <linux/blkdev.h> #include <linux/export.h> #include <linux/suspend.h> #include <linux/reboot.h> #include <linux/string.h> #include <linux/device.h> #include <linux/async.h> #include <linux/delay.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/pm.h> #include <linux/nmi.h> #include <linux/console.h> #include <linux/cpu.h> #include <linux/freezer.h> #include <linux/gfp.h> #include <linux/syscore_ops.h> #include <linux/ctype.h> #include <linux/ktime.h> #include <linux/security.h> #include <linux/secretmem.h> #include <trace/events/power.h> #include "power.h" static int nocompress; static int noresume; static int nohibernate; static int resume_wait; static unsigned int resume_delay; static char resume_file[256] = CONFIG_PM_STD_PARTITION; dev_t swsusp_resume_device; sector_t swsusp_resume_block; __visible int in_suspend __nosavedata; static char hibernate_compressor[CRYPTO_MAX_ALG_NAME] = CONFIG_HIBERNATION_DEF_COMP; /* * Compression/decompression algorithm to be used while saving/loading * image to/from disk. This would later be used in 'kernel/power/swap.c' * to allocate comp streams. */ char hib_comp_algo[CRYPTO_MAX_ALG_NAME]; enum { HIBERNATION_INVALID, HIBERNATION_PLATFORM, HIBERNATION_SHUTDOWN, HIBERNATION_REBOOT, #ifdef CONFIG_SUSPEND HIBERNATION_SUSPEND, #endif HIBERNATION_TEST_RESUME, /* keep last */ __HIBERNATION_AFTER_LAST }; #define HIBERNATION_MAX (__HIBERNATION_AFTER_LAST-1) #define HIBERNATION_FIRST (HIBERNATION_INVALID + 1) static int hibernation_mode = HIBERNATION_SHUTDOWN; bool freezer_test_done; static const struct platform_hibernation_ops *hibernation_ops; static atomic_t hibernate_atomic = ATOMIC_INIT(1); bool hibernate_acquire(void) { return atomic_add_unless(&hibernate_atomic, -1, 0); } void hibernate_release(void) { atomic_inc(&hibernate_atomic); } bool hibernation_available(void) { return nohibernate == 0 && !security_locked_down(LOCKDOWN_HIBERNATION) && !secretmem_active() && !cxl_mem_active(); } /** * hibernation_set_ops - Set the global hibernate operations. * @ops: Hibernation operations to use in subsequent hibernation transitions. */ void hibernation_set_ops(const struct platform_hibernation_ops *ops) { unsigned int sleep_flags; if (ops && !(ops->begin && ops->end && ops->pre_snapshot && ops->prepare && ops->finish && ops->enter && ops->pre_restore && ops->restore_cleanup && ops->leave)) { WARN_ON(1); return; } sleep_flags = lock_system_sleep(); hibernation_ops = ops; if (ops) hibernation_mode = HIBERNATION_PLATFORM; else if (hibernation_mode == HIBERNATION_PLATFORM) hibernation_mode = HIBERNATION_SHUTDOWN; unlock_system_sleep(sleep_flags); } EXPORT_SYMBOL_GPL(hibernation_set_ops); static bool entering_platform_hibernation; bool system_entering_hibernation(void) { return entering_platform_hibernation; } EXPORT_SYMBOL(system_entering_hibernation); #ifdef CONFIG_PM_DEBUG static void hibernation_debug_sleep(void) { pr_info("debug: Waiting for 5 seconds.\n"); mdelay(5000); } static int hibernation_test(int level) { if (pm_test_level == level) { hibernation_debug_sleep(); return 1; } return 0; } #else /* !CONFIG_PM_DEBUG */ static int hibernation_test(int level) { return 0; } #endif /* !CONFIG_PM_DEBUG */ /** * platform_begin - Call platform to start hibernation. * @platform_mode: Whether or not to use the platform driver. */ static int platform_begin(int platform_mode) { return (platform_mode && hibernation_ops) ? hibernation_ops->begin(PMSG_FREEZE) : 0; } /** * platform_end - Call platform to finish transition to the working state. * @platform_mode: Whether or not to use the platform driver. */ static void platform_end(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->end(); } /** * platform_pre_snapshot - Call platform to prepare the machine for hibernation. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to prepare the system for creating a hibernate image, * if so configured, and return an error code if that fails. */ static int platform_pre_snapshot(int platform_mode) { return (platform_mode && hibernation_ops) ? hibernation_ops->pre_snapshot() : 0; } /** * platform_leave - Call platform to prepare a transition to the working state. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver prepare to prepare the machine for switching to the * normal mode of operation. * * This routine is called on one CPU with interrupts disabled. */ static void platform_leave(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->leave(); } /** * platform_finish - Call platform to switch the system to the working state. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to switch the machine to the normal mode of * operation. * * This routine must be called after platform_prepare(). */ static void platform_finish(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->finish(); } /** * platform_pre_restore - Prepare for hibernate image restoration. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to prepare the system for resume from a hibernation * image. * * If the restore fails after this function has been called, * platform_restore_cleanup() must be called. */ static int platform_pre_restore(int platform_mode) { return (platform_mode && hibernation_ops) ? hibernation_ops->pre_restore() : 0; } /** * platform_restore_cleanup - Switch to the working state after failing restore. * @platform_mode: Whether or not to use the platform driver. * * Use the platform driver to switch the system to the normal mode of operation * after a failing restore. * * If platform_pre_restore() has been called before the failing restore, this * function must be called too, regardless of the result of * platform_pre_restore(). */ static void platform_restore_cleanup(int platform_mode) { if (platform_mode && hibernation_ops) hibernation_ops->restore_cleanup(); } /** * platform_recover - Recover from a failure to suspend devices. * @platform_mode: Whether or not to use the platform driver. */ static void platform_recover(int platform_mode) { if (platform_mode && hibernation_ops && hibernation_ops->recover) hibernation_ops->recover(); } /** * swsusp_show_speed - Print time elapsed between two events during hibernation. * @start: Starting event. * @stop: Final event. * @nr_pages: Number of memory pages processed between @start and @stop. * @msg: Additional diagnostic message to print. */ void swsusp_show_speed(ktime_t start, ktime_t stop, unsigned nr_pages, char *msg) { ktime_t diff; u64 elapsed_centisecs64; unsigned int centisecs; unsigned int k; unsigned int kps; diff = ktime_sub(stop, start); elapsed_centisecs64 = ktime_divns(diff, 10*NSEC_PER_MSEC); centisecs = elapsed_centisecs64; if (centisecs == 0) centisecs = 1; /* avoid div-by-zero */ k = nr_pages * (PAGE_SIZE / 1024); kps = (k * 100) / centisecs; pr_info("%s %u kbytes in %u.%02u seconds (%u.%02u MB/s)\n", msg, k, centisecs / 100, centisecs % 100, kps / 1000, (kps % 1000) / 10); } __weak int arch_resume_nosmt(void) { return 0; } /** * create_image - Create a hibernation image. * @platform_mode: Whether or not to use the platform driver. * * Execute device drivers' "late" and "noirq" freeze callbacks, create a * hibernation image and run the drivers' "noirq" and "early" thaw callbacks. * * Control reappears in this routine after the subsequent restore. */ static int create_image(int platform_mode) { int error; error = dpm_suspend_end(PMSG_FREEZE); if (error) { pr_err("Some devices failed to power down, aborting\n"); return error; } error = platform_pre_snapshot(platform_mode); if (error || hibernation_test(TEST_PLATFORM)) goto Platform_finish; error = pm_sleep_disable_secondary_cpus(); if (error || hibernation_test(TEST_CPUS)) goto Enable_cpus; local_irq_disable(); system_state = SYSTEM_SUSPEND; error = syscore_suspend(); if (error) { pr_err("Some system devices failed to power down, aborting\n"); goto Enable_irqs; } if (hibernation_test(TEST_CORE) || pm_wakeup_pending()) goto Power_up; in_suspend = 1; save_processor_state(); trace_suspend_resume(TPS("machine_suspend"), PM_EVENT_HIBERNATE, true); error = swsusp_arch_suspend(); /* Restore control flow magically appears here */ restore_processor_state(); trace_suspend_resume(TPS("machine_suspend"), PM_EVENT_HIBERNATE, false); if (error) pr_err("Error %d creating image\n", error); if (!in_suspend) { events_check_enabled = false; clear_or_poison_free_pages(); } platform_leave(platform_mode); Power_up: syscore_resume(); Enable_irqs: system_state = SYSTEM_RUNNING; local_irq_enable(); Enable_cpus: pm_sleep_enable_secondary_cpus(); /* Allow architectures to do nosmt-specific post-resume dances */ if (!in_suspend) error = arch_resume_nosmt(); Platform_finish: platform_finish(platform_mode); dpm_resume_start(in_suspend ? (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); return error; } /** * hibernation_snapshot - Quiesce devices and create a hibernation image. * @platform_mode: If set, use platform driver to prepare for the transition. * * This routine must be called with system_transition_mutex held. */ int hibernation_snapshot(int platform_mode) { pm_message_t msg; int error; pm_suspend_clear_flags(); error = platform_begin(platform_mode); if (error) goto Close; /* Preallocate image memory before shutting down devices. */ error = hibernate_preallocate_memory(); if (error) goto Close; error = freeze_kernel_threads(); if (error) goto Cleanup; if (hibernation_test(TEST_FREEZER)) { /* * Indicate to the caller that we are returning due to a * successful freezer test. */ freezer_test_done = true; goto Thaw; } error = dpm_prepare(PMSG_FREEZE); if (error) { dpm_complete(PMSG_RECOVER); goto Thaw; } suspend_console(); pm_restrict_gfp_mask(); error = dpm_suspend(PMSG_FREEZE); if (error || hibernation_test(TEST_DEVICES)) platform_recover(platform_mode); else error = create_image(platform_mode); /* * In the case that we call create_image() above, the control * returns here (1) after the image has been created or the * image creation has failed and (2) after a successful restore. */ /* We may need to release the preallocated image pages here. */ if (error || !in_suspend) swsusp_free(); msg = in_suspend ? (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE; dpm_resume(msg); if (error || !in_suspend) pm_restore_gfp_mask(); resume_console(); dpm_complete(msg); Close: platform_end(platform_mode); return error; Thaw: thaw_kernel_threads(); Cleanup: swsusp_free(); goto Close; } int __weak hibernate_resume_nonboot_cpu_disable(void) { return suspend_disable_secondary_cpus(); } /** * resume_target_kernel - Restore system state from a hibernation image. * @platform_mode: Whether or not to use the platform driver. * * Execute device drivers' "noirq" and "late" freeze callbacks, restore the * contents of highmem that have not been restored yet from the image and run * the low-level code that will restore the remaining contents of memory and * switch to the just restored target kernel. */ static int resume_target_kernel(bool platform_mode) { int error; error = dpm_suspend_end(PMSG_QUIESCE); if (error) { pr_err("Some devices failed to power down, aborting resume\n"); return error; } error = platform_pre_restore(platform_mode); if (error) goto Cleanup; cpuidle_pause(); error = hibernate_resume_nonboot_cpu_disable(); if (error) goto Enable_cpus; local_irq_disable(); system_state = SYSTEM_SUSPEND; error = syscore_suspend(); if (error) goto Enable_irqs; save_processor_state(); error = restore_highmem(); if (!error) { error = swsusp_arch_resume(); /* * The code below is only ever reached in case of a failure. * Otherwise, execution continues at the place where * swsusp_arch_suspend() was called. */ BUG_ON(!error); /* * This call to restore_highmem() reverts the changes made by * the previous one. */ restore_highmem(); } /* * The only reason why swsusp_arch_resume() can fail is memory being * very tight, so we have to free it as soon as we can to avoid * subsequent failures. */ swsusp_free(); restore_processor_state(); touch_softlockup_watchdog(); syscore_resume(); Enable_irqs: system_state = SYSTEM_RUNNING; local_irq_enable(); Enable_cpus: pm_sleep_enable_secondary_cpus(); Cleanup: platform_restore_cleanup(platform_mode); dpm_resume_start(PMSG_RECOVER); return error; } /** * hibernation_restore - Quiesce devices and restore from a hibernation image. * @platform_mode: If set, use platform driver to prepare for the transition. * * This routine must be called with system_transition_mutex held. If it is * successful, control reappears in the restored target kernel in * hibernation_snapshot(). */ int hibernation_restore(int platform_mode) { int error; pm_prepare_console(); suspend_console(); pm_restrict_gfp_mask(); error = dpm_suspend_start(PMSG_QUIESCE); if (!error) { error = resume_target_kernel(platform_mode); /* * The above should either succeed and jump to the new kernel, * or return with an error. Otherwise things are just * undefined, so let's be paranoid. */ BUG_ON(!error); } dpm_resume_end(PMSG_RECOVER); pm_restore_gfp_mask(); resume_console(); pm_restore_console(); return error; } /** * hibernation_platform_enter - Power off the system using the platform driver. */ int hibernation_platform_enter(void) { int error; if (!hibernation_ops) return -ENOSYS; /* * We have cancelled the power transition by running * hibernation_ops->finish() before saving the image, so we should let * the firmware know that we're going to enter the sleep state after all */ error = hibernation_ops->begin(PMSG_HIBERNATE); if (error) goto Close; entering_platform_hibernation = true; suspend_console(); error = dpm_suspend_start(PMSG_HIBERNATE); if (error) { if (hibernation_ops->recover) hibernation_ops->recover(); goto Resume_devices; } error = dpm_suspend_end(PMSG_HIBERNATE); if (error) goto Resume_devices; error = hibernation_ops->prepare(); if (error) goto Platform_finish; error = pm_sleep_disable_secondary_cpus(); if (error) goto Enable_cpus; local_irq_disable(); system_state = SYSTEM_SUSPEND; syscore_suspend(); if (pm_wakeup_pending()) { error = -EAGAIN; goto Power_up; } hibernation_ops->enter(); /* We should never get here */ while (1); Power_up: syscore_resume(); system_state = SYSTEM_RUNNING; local_irq_enable(); Enable_cpus: pm_sleep_enable_secondary_cpus(); Platform_finish: hibernation_ops->finish(); dpm_resume_start(PMSG_RESTORE); Resume_devices: entering_platform_hibernation = false; dpm_resume_end(PMSG_RESTORE); resume_console(); Close: hibernation_ops->end(); return error; } /** * power_down - Shut the machine down for hibernation. * * Use the platform driver, if configured, to put the system into the sleep * state corresponding to hibernation, or try to power it off or reboot, * depending on the value of hibernation_mode. */ static void power_down(void) { int error; #ifdef CONFIG_SUSPEND if (hibernation_mode == HIBERNATION_SUSPEND) { error = suspend_devices_and_enter(mem_sleep_current); if (error) { hibernation_mode = hibernation_ops ? HIBERNATION_PLATFORM : HIBERNATION_SHUTDOWN; } else { /* Restore swap signature. */ error = swsusp_unmark(); if (error) pr_err("Swap will be unusable! Try swapon -a.\n"); return; } } #endif switch (hibernation_mode) { case HIBERNATION_REBOOT: kernel_restart(NULL); break; case HIBERNATION_PLATFORM: error = hibernation_platform_enter(); if (error == -EAGAIN || error == -EBUSY) { swsusp_unmark(); events_check_enabled = false; pr_info("Wakeup event detected during hibernation, rolling back.\n"); return; } fallthrough; case HIBERNATION_SHUTDOWN: if (kernel_can_power_off()) kernel_power_off(); break; } kernel_halt(); /* * Valid image is on the disk, if we continue we risk serious data * corruption after resume. */ pr_crit("Power down manually\n"); while (1) cpu_relax(); } static int load_image_and_restore(void) { int error; unsigned int flags; pm_pr_dbg("Loading hibernation image.\n"); lock_device_hotplug(); error = create_basic_memory_bitmaps(); if (error) { swsusp_close(); goto Unlock; } error = swsusp_read(&flags); swsusp_close(); if (!error) error = hibernation_restore(flags & SF_PLATFORM_MODE); pr_err("Failed to load image, recovering.\n"); swsusp_free(); free_basic_memory_bitmaps(); Unlock: unlock_device_hotplug(); return error; } #define COMPRESSION_ALGO_LZO "lzo" #define COMPRESSION_ALGO_LZ4 "lz4" /** * hibernate - Carry out system hibernation, including saving the image. */ int hibernate(void) { bool snapshot_test = false; unsigned int sleep_flags; int error; if (!hibernation_available()) { pm_pr_dbg("Hibernation not available.\n"); return -EPERM; } /* * Query for the compression algorithm support if compression is enabled. */ if (!nocompress) { strscpy(hib_comp_algo, hibernate_compressor, sizeof(hib_comp_algo)); if (crypto_has_comp(hib_comp_algo, 0, 0) != 1) { pr_err("%s compression is not available\n", hib_comp_algo); return -EOPNOTSUPP; } } sleep_flags = lock_system_sleep(); /* The snapshot device should not be opened while we're running */ if (!hibernate_acquire()) { error = -EBUSY; goto Unlock; } pr_info("hibernation entry\n"); pm_prepare_console(); error = pm_notifier_call_chain_robust(PM_HIBERNATION_PREPARE, PM_POST_HIBERNATION); if (error) goto Restore; ksys_sync_helper(); error = freeze_processes(); if (error) goto Exit; lock_device_hotplug(); /* Allocate memory management structures */ error = create_basic_memory_bitmaps(); if (error) goto Thaw; error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); if (error || freezer_test_done) goto Free_bitmaps; if (in_suspend) { unsigned int flags = 0; if (hibernation_mode == HIBERNATION_PLATFORM) flags |= SF_PLATFORM_MODE; if (nocompress) { flags |= SF_NOCOMPRESS_MODE; } else { flags |= SF_CRC32_MODE; /* * By default, LZO compression is enabled. Use SF_COMPRESSION_ALG_LZ4 * to override this behaviour and use LZ4. * * Refer kernel/power/power.h for more details */ if (!strcmp(hib_comp_algo, COMPRESSION_ALGO_LZ4)) flags |= SF_COMPRESSION_ALG_LZ4; else flags |= SF_COMPRESSION_ALG_LZO; } pm_pr_dbg("Writing hibernation image.\n"); error = swsusp_write(flags); swsusp_free(); if (!error) { if (hibernation_mode == HIBERNATION_TEST_RESUME) snapshot_test = true; else power_down(); } in_suspend = 0; pm_restore_gfp_mask(); } else { pm_pr_dbg("Hibernation image restored successfully.\n"); } Free_bitmaps: free_basic_memory_bitmaps(); Thaw: unlock_device_hotplug(); if (snapshot_test) { pm_pr_dbg("Checking hibernation image\n"); error = swsusp_check(false); if (!error) error = load_image_and_restore(); } thaw_processes(); /* Don't bother checking whether freezer_test_done is true */ freezer_test_done = false; Exit: pm_notifier_call_chain(PM_POST_HIBERNATION); Restore: pm_restore_console(); hibernate_release(); Unlock: unlock_system_sleep(sleep_flags); pr_info("hibernation exit\n"); return error; } /** * hibernate_quiet_exec - Execute a function with all devices frozen. * @func: Function to execute. * @data: Data pointer to pass to @func. * * Return the @func return value or an error code if it cannot be executed. */ int hibernate_quiet_exec(int (*func)(void *data), void *data) { unsigned int sleep_flags; int error; sleep_flags = lock_system_sleep(); if (!hibernate_acquire()) { error = -EBUSY; goto unlock; } pm_prepare_console(); error = pm_notifier_call_chain_robust(PM_HIBERNATION_PREPARE, PM_POST_HIBERNATION); if (error) goto restore; error = freeze_processes(); if (error) goto exit; lock_device_hotplug(); pm_suspend_clear_flags(); error = platform_begin(true); if (error) goto thaw; error = freeze_kernel_threads(); if (error) goto thaw; error = dpm_prepare(PMSG_FREEZE); if (error) goto dpm_complete; suspend_console(); error = dpm_suspend(PMSG_FREEZE); if (error) goto dpm_resume; error = dpm_suspend_end(PMSG_FREEZE); if (error) goto dpm_resume; error = platform_pre_snapshot(true); if (error) goto skip; error = func(data); skip: platform_finish(true); dpm_resume_start(PMSG_THAW); dpm_resume: dpm_resume(PMSG_THAW); resume_console(); dpm_complete: dpm_complete(PMSG_THAW); thaw_kernel_threads(); thaw: platform_end(true); unlock_device_hotplug(); thaw_processes(); exit: pm_notifier_call_chain(PM_POST_HIBERNATION); restore: pm_restore_console(); hibernate_release(); unlock: unlock_system_sleep(sleep_flags); return error; } EXPORT_SYMBOL_GPL(hibernate_quiet_exec); static int __init find_resume_device(void) { if (!strlen(resume_file)) return -ENOENT; pm_pr_dbg("Checking hibernation image partition %s\n", resume_file); if (resume_delay) { pr_info("Waiting %dsec before reading resume device ...\n", resume_delay); ssleep(resume_delay); } /* Check if the device is there */ if (!early_lookup_bdev(resume_file, &swsusp_resume_device)) return 0; /* * Some device discovery might still be in progress; we need to wait for * this to finish. */ wait_for_device_probe(); if (resume_wait) { while (early_lookup_bdev(resume_file, &swsusp_resume_device)) msleep(10); async_synchronize_full(); } return early_lookup_bdev(resume_file, &swsusp_resume_device); } static int software_resume(void) { int error; pm_pr_dbg("Hibernation image partition %d:%d present\n", MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device)); pm_pr_dbg("Looking for hibernation image.\n"); mutex_lock(&system_transition_mutex); error = swsusp_check(true); if (error) goto Unlock; /* * Check if the hibernation image is compressed. If so, query for * the algorithm support. */ if (!(swsusp_header_flags & SF_NOCOMPRESS_MODE)) { if (swsusp_header_flags & SF_COMPRESSION_ALG_LZ4) strscpy(hib_comp_algo, COMPRESSION_ALGO_LZ4, sizeof(hib_comp_algo)); else strscpy(hib_comp_algo, COMPRESSION_ALGO_LZO, sizeof(hib_comp_algo)); if (crypto_has_comp(hib_comp_algo, 0, 0) != 1) { pr_err("%s compression is not available\n", hib_comp_algo); error = -EOPNOTSUPP; goto Unlock; } } /* The snapshot device should not be opened while we're running */ if (!hibernate_acquire()) { error = -EBUSY; swsusp_close(); goto Unlock; } pr_info("resume from hibernation\n"); pm_prepare_console(); error = pm_notifier_call_chain_robust(PM_RESTORE_PREPARE, PM_POST_RESTORE); if (error) goto Restore; pm_pr_dbg("Preparing processes for hibernation restore.\n"); error = freeze_processes(); if (error) goto Close_Finish; error = freeze_kernel_threads(); if (error) { thaw_processes(); goto Close_Finish; } error = load_image_and_restore(); thaw_processes(); Finish: pm_notifier_call_chain(PM_POST_RESTORE); Restore: pm_restore_console(); pr_info("resume failed (%d)\n", error); hibernate_release(); /* For success case, the suspend path will release the lock */ Unlock: mutex_unlock(&system_transition_mutex); pm_pr_dbg("Hibernation image not present or could not be loaded.\n"); return error; Close_Finish: swsusp_close(); goto Finish; } /** * software_resume_initcall - Resume from a saved hibernation image. * * This routine is called as a late initcall, when all devices have been * discovered and initialized already. * * The image reading code is called to see if there is a hibernation image * available for reading. If that is the case, devices are quiesced and the * contents of memory is restored from the saved image. * * If this is successful, control reappears in the restored target kernel in * hibernation_snapshot() which returns to hibernate(). Otherwise, the routine * attempts to recover gracefully and make the kernel return to the normal mode * of operation. */ static int __init software_resume_initcall(void) { /* * If the user said "noresume".. bail out early. */ if (noresume || !hibernation_available()) return 0; if (!swsusp_resume_device) { int error = find_resume_device(); if (error) return error; } return software_resume(); } late_initcall_sync(software_resume_initcall); static const char * const hibernation_modes[] = { [HIBERNATION_PLATFORM] = "platform", [HIBERNATION_SHUTDOWN] = "shutdown", [HIBERNATION_REBOOT] = "reboot", #ifdef CONFIG_SUSPEND [HIBERNATION_SUSPEND] = "suspend", #endif [HIBERNATION_TEST_RESUME] = "test_resume", }; /* * /sys/power/disk - Control hibernation mode. * * Hibernation can be handled in several ways. There are a few different ways * to put the system into the sleep state: using the platform driver (e.g. ACPI * or other hibernation_ops), powering it off or rebooting it (for testing * mostly). * * The sysfs file /sys/power/disk provides an interface for selecting the * hibernation mode to use. Reading from this file causes the available modes * to be printed. There are 3 modes that can be supported: * * 'platform' * 'shutdown' * 'reboot' * * If a platform hibernation driver is in use, 'platform' will be supported * and will be used by default. Otherwise, 'shutdown' will be used by default. * The selected option (i.e. the one corresponding to the current value of * hibernation_mode) is enclosed by a square bracket. * * To select a given hibernation mode it is necessary to write the mode's * string representation (as returned by reading from /sys/power/disk) back * into /sys/power/disk. */ static ssize_t disk_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t count = 0; int i; if (!hibernation_available()) return sysfs_emit(buf, "[disabled]\n"); for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) { if (!hibernation_modes[i]) continue; switch (i) { case HIBERNATION_SHUTDOWN: case HIBERNATION_REBOOT: #ifdef CONFIG_SUSPEND case HIBERNATION_SUSPEND: #endif case HIBERNATION_TEST_RESUME: break; case HIBERNATION_PLATFORM: if (hibernation_ops) break; /* not a valid mode, continue with loop */ continue; } if (i == hibernation_mode) count += sysfs_emit_at(buf, count, "[%s] ", hibernation_modes[i]); else count += sysfs_emit_at(buf, count, "%s ", hibernation_modes[i]); } /* Convert the last space to a newline if needed. */ if (count > 0) buf[count - 1] = '\n'; return count; } static ssize_t disk_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { int mode = HIBERNATION_INVALID; unsigned int sleep_flags; int error = 0; int len; char *p; int i; if (!hibernation_available()) return -EPERM; p = memchr(buf, '\n', n); len = p ? p - buf : n; sleep_flags = lock_system_sleep(); for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) { if (len == strlen(hibernation_modes[i]) && !strncmp(buf, hibernation_modes[i], len)) { mode = i; break; } } if (mode != HIBERNATION_INVALID) { switch (mode) { case HIBERNATION_SHUTDOWN: case HIBERNATION_REBOOT: #ifdef CONFIG_SUSPEND case HIBERNATION_SUSPEND: #endif case HIBERNATION_TEST_RESUME: hibernation_mode = mode; break; case HIBERNATION_PLATFORM: if (hibernation_ops) hibernation_mode = mode; else error = -EINVAL; } } else error = -EINVAL; if (!error) pm_pr_dbg("Hibernation mode set to '%s'\n", hibernation_modes[mode]); unlock_system_sleep(sleep_flags); return error ? error : n; } power_attr(disk); static ssize_t resume_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%d:%d\n", MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device)); } static ssize_t resume_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned int sleep_flags; int len = n; char *name; dev_t dev; int error; if (!hibernation_available()) return n; if (len && buf[len-1] == '\n') len--; name = kstrndup(buf, len, GFP_KERNEL); if (!name) return -ENOMEM; error = lookup_bdev(name, &dev); if (error) { unsigned maj, min, offset; char *p, dummy; error = 0; if (sscanf(name, "%u:%u%c", &maj, &min, &dummy) == 2 || sscanf(name, "%u:%u:%u:%c", &maj, &min, &offset, &dummy) == 3) { dev = MKDEV(maj, min); if (maj != MAJOR(dev) || min != MINOR(dev)) error = -EINVAL; } else { dev = new_decode_dev(simple_strtoul(name, &p, 16)); if (*p) error = -EINVAL; } } kfree(name); if (error) return error; sleep_flags = lock_system_sleep(); swsusp_resume_device = dev; unlock_system_sleep(sleep_flags); pm_pr_dbg("Configured hibernation resume from disk to %u\n", swsusp_resume_device); noresume = 0; software_resume(); return n; } power_attr(resume); static ssize_t resume_offset_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%llu\n", (unsigned long long)swsusp_resume_block); } static ssize_t resume_offset_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned long long offset; int rc; rc = kstrtoull(buf, 0, &offset); if (rc) return rc; swsusp_resume_block = offset; return n; } power_attr(resume_offset); static ssize_t image_size_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", image_size); } static ssize_t image_size_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned long size; if (sscanf(buf, "%lu", &size) == 1) { image_size = size; return n; } return -EINVAL; } power_attr(image_size); static ssize_t reserved_size_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%lu\n", reserved_size); } static ssize_t reserved_size_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned long size; if (sscanf(buf, "%lu", &size) == 1) { reserved_size = size; return n; } return -EINVAL; } power_attr(reserved_size); static struct attribute *g[] = { &disk_attr.attr, &resume_offset_attr.attr, &resume_attr.attr, &image_size_attr.attr, &reserved_size_attr.attr, NULL, }; static const struct attribute_group attr_group = { .attrs = g, }; static int __init pm_disk_init(void) { return sysfs_create_group(power_kobj, &attr_group); } core_initcall(pm_disk_init); static int __init resume_setup(char *str) { if (noresume) return 1; strscpy(resume_file, str); return 1; } static int __init resume_offset_setup(char *str) { unsigned long long offset; if (noresume) return 1; if (sscanf(str, "%llu", &offset) == 1) swsusp_resume_block = offset; return 1; } static int __init hibernate_setup(char *str) { if (!strncmp(str, "noresume", 8)) { noresume = 1; } else if (!strncmp(str, "nocompress", 10)) { nocompress = 1; } else if (!strncmp(str, "no", 2)) { noresume = 1; nohibernate = 1; } else if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) && !strncmp(str, "protect_image", 13)) { enable_restore_image_protection(); } return 1; } static int __init noresume_setup(char *str) { noresume = 1; return 1; } static int __init resumewait_setup(char *str) { resume_wait = 1; return 1; } static int __init resumedelay_setup(char *str) { int rc = kstrtouint(str, 0, &resume_delay); if (rc) pr_warn("resumedelay: bad option string '%s'\n", str); return 1; } static int __init nohibernate_setup(char *str) { noresume = 1; nohibernate = 1; return 1; } static const char * const comp_alg_enabled[] = { #if IS_ENABLED(CONFIG_CRYPTO_LZO) COMPRESSION_ALGO_LZO, #endif #if IS_ENABLED(CONFIG_CRYPTO_LZ4) COMPRESSION_ALGO_LZ4, #endif }; static int hibernate_compressor_param_set(const char *compressor, const struct kernel_param *kp) { unsigned int sleep_flags; int index, ret; sleep_flags = lock_system_sleep(); index = sysfs_match_string(comp_alg_enabled, compressor); if (index >= 0) { ret = param_set_copystring(comp_alg_enabled[index], kp); if (!ret) strscpy(hib_comp_algo, comp_alg_enabled[index], sizeof(hib_comp_algo)); } else { ret = index; } unlock_system_sleep(sleep_flags); if (ret) pr_debug("Cannot set specified compressor %s\n", compressor); return ret; } static const struct kernel_param_ops hibernate_compressor_param_ops = { .set = hibernate_compressor_param_set, .get = param_get_string, }; static struct kparam_string hibernate_compressor_param_string = { .maxlen = sizeof(hibernate_compressor), .string = hibernate_compressor, }; module_param_cb(compressor, &hibernate_compressor_param_ops, &hibernate_compressor_param_string, 0644); MODULE_PARM_DESC(compressor, "Compression algorithm to be used with hibernation"); __setup("noresume", noresume_setup); __setup("resume_offset=", resume_offset_setup); __setup("resume=", resume_setup); __setup("hibernate=", hibernate_setup); __setup("resumewait", resumewait_setup); __setup("resumedelay=", resumedelay_setup); __setup("nohibernate", nohibernate_setup); |
2 12 17 17 17 22 22 7 22 22 22 22 22 22 22 1 1 22 22 11 11 3 3 3 10 10 11 11 11 11 11 11 10 10 11 11 3 10 11 11 11 10 10 10 11 12 1 11 11 3 11 22 22 22 22 22 19 22 22 22 22 22 22 20 21 2 2 6 6 6 6 5 6 6 22 22 22 22 21 22 16 22 3 3 22 21 22 22 14 14 14 21 22 6 14 22 22 12 14 22 14 22 10 4 8 14 21 22 10 1 10 22 22 22 22 12 22 22 22 8 21 12 8 11 11 20 22 22 22 22 14 22 22 22 22 15 15 2 12 2 12 2 10 3 3 3 3 1 1 1 1 1 1 1 1 1 1 10 10 2 10 10 10 10 10 10 2 10 1 10 2 2 8 4 8 8 8 7 1 3 3 6 2 2 2 2 15 15 15 15 14 1 1 1 1 1 15 14 14 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007,2008 Oracle. All rights reserved. */ #include <linux/sched.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/mm.h> #include <linux/error-injection.h> #include "messages.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "locking.h" #include "volumes.h" #include "qgroup.h" #include "tree-mod-log.h" #include "tree-checker.h" #include "fs.h" #include "accessors.h" #include "extent-tree.h" #include "relocation.h" #include "file-item.h" static struct kmem_cache *btrfs_path_cachep; static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level); static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *ins_key, struct btrfs_path *path, int data_size, int extend); static int push_node_left(struct btrfs_trans_handle *trans, struct extent_buffer *dst, struct extent_buffer *src, int empty); static int balance_node_right(struct btrfs_trans_handle *trans, struct extent_buffer *dst_buf, struct extent_buffer *src_buf); static const struct btrfs_csums { u16 size; const char name[10]; const char driver[12]; } btrfs_csums[] = { [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", .driver = "blake2b-256" }, }; /* * The leaf data grows from end-to-front in the node. this returns the address * of the start of the last item, which is the stop of the leaf data stack. */ static unsigned int leaf_data_end(const struct extent_buffer *leaf) { u32 nr = btrfs_header_nritems(leaf); if (nr == 0) return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); return btrfs_item_offset(leaf, nr - 1); } /* * Move data in a @leaf (using memmove, safe for overlapping ranges). * * @leaf: leaf that we're doing a memmove on * @dst_offset: item data offset we're moving to * @src_offset: item data offset were' moving from * @len: length of the data we're moving * * Wrapper around memmove_extent_buffer() that takes into account the header on * the leaf. The btrfs_item offset's start directly after the header, so we * have to adjust any offsets to account for the header in the leaf. This * handles that math to simplify the callers. */ static inline void memmove_leaf_data(const struct extent_buffer *leaf, unsigned long dst_offset, unsigned long src_offset, unsigned long len) { memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset, btrfs_item_nr_offset(leaf, 0) + src_offset, len); } /* * Copy item data from @src into @dst at the given @offset. * * @dst: destination leaf that we're copying into * @src: source leaf that we're copying from * @dst_offset: item data offset we're copying to * @src_offset: item data offset were' copying from * @len: length of the data we're copying * * Wrapper around copy_extent_buffer() that takes into account the header on * the leaf. The btrfs_item offset's start directly after the header, so we * have to adjust any offsets to account for the header in the leaf. This * handles that math to simplify the callers. */ static inline void copy_leaf_data(const struct extent_buffer *dst, const struct extent_buffer *src, unsigned long dst_offset, unsigned long src_offset, unsigned long len) { copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset, btrfs_item_nr_offset(src, 0) + src_offset, len); } /* * Move items in a @leaf (using memmove). * * @dst: destination leaf for the items * @dst_item: the item nr we're copying into * @src_item: the item nr we're copying from * @nr_items: the number of items to copy * * Wrapper around memmove_extent_buffer() that does the math to get the * appropriate offsets into the leaf from the item numbers. */ static inline void memmove_leaf_items(const struct extent_buffer *leaf, int dst_item, int src_item, int nr_items) { memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item), btrfs_item_nr_offset(leaf, src_item), nr_items * sizeof(struct btrfs_item)); } /* * Copy items from @src into @dst at the given @offset. * * @dst: destination leaf for the items * @src: source leaf for the items * @dst_item: the item nr we're copying into * @src_item: the item nr we're copying from * @nr_items: the number of items to copy * * Wrapper around copy_extent_buffer() that does the math to get the * appropriate offsets into the leaf from the item numbers. */ static inline void copy_leaf_items(const struct extent_buffer *dst, const struct extent_buffer *src, int dst_item, int src_item, int nr_items) { copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item), btrfs_item_nr_offset(src, src_item), nr_items * sizeof(struct btrfs_item)); } /* This exists for btrfs-progs usages. */ u16 btrfs_csum_type_size(u16 type) { return btrfs_csums[type].size; } int btrfs_super_csum_size(const struct btrfs_super_block *s) { u16 t = btrfs_super_csum_type(s); /* * csum type is validated at mount time */ return btrfs_csum_type_size(t); } const char *btrfs_super_csum_name(u16 csum_type) { /* csum type is validated at mount time */ return btrfs_csums[csum_type].name; } /* * Return driver name if defined, otherwise the name that's also a valid driver * name */ const char *btrfs_super_csum_driver(u16 csum_type) { /* csum type is validated at mount time */ return btrfs_csums[csum_type].driver[0] ? btrfs_csums[csum_type].driver : btrfs_csums[csum_type].name; } size_t __attribute_const__ btrfs_get_num_csums(void) { return ARRAY_SIZE(btrfs_csums); } struct btrfs_path *btrfs_alloc_path(void) { might_sleep(); return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); } /* this also releases the path */ void btrfs_free_path(struct btrfs_path *p) { if (!p) return; btrfs_release_path(p); kmem_cache_free(btrfs_path_cachep, p); } /* * path release drops references on the extent buffers in the path * and it drops any locks held by this path * * It is safe to call this on paths that no locks or extent buffers held. */ noinline void btrfs_release_path(struct btrfs_path *p) { int i; for (i = 0; i < BTRFS_MAX_LEVEL; i++) { p->slots[i] = 0; if (!p->nodes[i]) continue; if (p->locks[i]) { btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); p->locks[i] = 0; } free_extent_buffer(p->nodes[i]); p->nodes[i] = NULL; } } /* * We want the transaction abort to print stack trace only for errors where the * cause could be a bug, eg. due to ENOSPC, and not for common errors that are * caused by external factors. */ bool __cold abort_should_print_stack(int error) { switch (error) { case -EIO: case -EROFS: case -ENOMEM: return false; } return true; } /* * safely gets a reference on the root node of a tree. A lock * is not taken, so a concurrent writer may put a different node * at the root of the tree. See btrfs_lock_root_node for the * looping required. * * The extent buffer returned by this has a reference taken, so * it won't disappear. It may stop being the root of the tree * at any time because there are no locks held. */ struct extent_buffer *btrfs_root_node(struct btrfs_root *root) { struct extent_buffer *eb; while (1) { rcu_read_lock(); eb = rcu_dereference(root->node); /* * RCU really hurts here, we could free up the root node because * it was COWed but we may not get the new root node yet so do * the inc_not_zero dance and if it doesn't work then * synchronize_rcu and try again. */ if (atomic_inc_not_zero(&eb->refs)) { rcu_read_unlock(); break; } rcu_read_unlock(); synchronize_rcu(); } return eb; } /* * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), * just get put onto a simple dirty list. Transaction walks this list to make * sure they get properly updated on disk. */ static void add_root_to_dirty_list(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) return; spin_lock(&fs_info->trans_lock); if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { /* Want the extent tree to be the last on the list */ if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID) list_move_tail(&root->dirty_list, &fs_info->dirty_cowonly_roots); else list_move(&root->dirty_list, &fs_info->dirty_cowonly_roots); } spin_unlock(&fs_info->trans_lock); } /* * used by snapshot creation to make a copy of a root for a tree with * a given objectid. The buffer with the new root node is returned in * cow_ret, and this func returns zero on success or a negative error code. */ int btrfs_copy_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer **cow_ret, u64 new_root_objectid) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *cow; int ret = 0; int level; struct btrfs_disk_key disk_key; u64 reloc_src_root = 0; WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && trans->transid != fs_info->running_transaction->transid); WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && trans->transid != btrfs_get_root_last_trans(root)); level = btrfs_header_level(buf); if (level == 0) btrfs_item_key(buf, &disk_key, 0); else btrfs_node_key(buf, &disk_key, 0); if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) reloc_src_root = btrfs_header_owner(buf); cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, &disk_key, level, buf->start, 0, reloc_src_root, BTRFS_NESTING_NEW_ROOT); if (IS_ERR(cow)) return PTR_ERR(cow); copy_extent_buffer_full(cow, buf); btrfs_set_header_bytenr(cow, cow->start); btrfs_set_header_generation(cow, trans->transid); btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | BTRFS_HEADER_FLAG_RELOC); if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); else btrfs_set_header_owner(cow, new_root_objectid); write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); WARN_ON(btrfs_header_generation(buf) > trans->transid); if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) ret = btrfs_inc_ref(trans, root, cow, 1); else ret = btrfs_inc_ref(trans, root, cow, 0); if (ret) { btrfs_tree_unlock(cow); free_extent_buffer(cow); btrfs_abort_transaction(trans, ret); return ret; } btrfs_mark_buffer_dirty(trans, cow); *cow_ret = cow; return 0; } /* * check if the tree block can be shared by multiple trees */ bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf) { const u64 buf_gen = btrfs_header_generation(buf); /* * Tree blocks not in shareable trees and tree roots are never shared. * If a block was allocated after the last snapshot and the block was * not allocated by tree relocation, we know the block is not shared. */ if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) return false; if (buf == root->node) return false; if (buf_gen > btrfs_root_last_snapshot(&root->root_item) && !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) return false; if (buf != root->commit_root) return true; /* * An extent buffer that used to be the commit root may still be shared * because the tree height may have increased and it became a child of a * higher level root. This can happen when snapshotting a subvolume * created in the current transaction. */ if (buf_gen == trans->transid) return true; return false; } static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow, int *last_ref) { struct btrfs_fs_info *fs_info = root->fs_info; u64 refs; u64 owner; u64 flags; int ret; /* * Backrefs update rules: * * Always use full backrefs for extent pointers in tree block * allocated by tree relocation. * * If a shared tree block is no longer referenced by its owner * tree (btrfs_header_owner(buf) == root->root_key.objectid), * use full backrefs for extent pointers in tree block. * * If a tree block is been relocating * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), * use full backrefs for extent pointers in tree block. * The reason for this is some operations (such as drop tree) * are only allowed for blocks use full backrefs. */ if (btrfs_block_can_be_shared(trans, root, buf)) { ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, btrfs_header_level(buf), 1, &refs, &flags, NULL); if (ret) return ret; if (unlikely(refs == 0)) { btrfs_crit(fs_info, "found 0 references for tree block at bytenr %llu level %d root %llu", buf->start, btrfs_header_level(buf), btrfs_root_id(root)); ret = -EUCLEAN; btrfs_abort_transaction(trans, ret); return ret; } } else { refs = 1; if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; else flags = 0; } owner = btrfs_header_owner(buf); if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID && !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) { btrfs_crit(fs_info, "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set", buf->start, btrfs_header_level(buf), btrfs_root_id(root), refs, flags); ret = -EUCLEAN; btrfs_abort_transaction(trans, ret); return ret; } if (refs > 1) { if ((owner == btrfs_root_id(root) || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) && !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { ret = btrfs_inc_ref(trans, root, buf, 1); if (ret) return ret; if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { ret = btrfs_dec_ref(trans, root, buf, 0); if (ret) return ret; ret = btrfs_inc_ref(trans, root, cow, 1); if (ret) return ret; } ret = btrfs_set_disk_extent_flags(trans, buf, BTRFS_BLOCK_FLAG_FULL_BACKREF); if (ret) return ret; } else { if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) ret = btrfs_inc_ref(trans, root, cow, 1); else ret = btrfs_inc_ref(trans, root, cow, 0); if (ret) return ret; } } else { if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) ret = btrfs_inc_ref(trans, root, cow, 1); else ret = btrfs_inc_ref(trans, root, cow, 0); if (ret) return ret; ret = btrfs_dec_ref(trans, root, buf, 1); if (ret) return ret; } btrfs_clear_buffer_dirty(trans, buf); *last_ref = 1; } return 0; } /* * does the dirty work in cow of a single block. The parent block (if * supplied) is updated to point to the new cow copy. The new buffer is marked * dirty and returned locked. If you modify the block it needs to be marked * dirty again. * * search_start -- an allocation hint for the new block * * empty_size -- a hint that you plan on doing more cow. This is the size in * bytes the allocator should try to find free next to the block it returns. * This is just a hint and may be ignored by the allocator. */ int btrfs_force_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret, u64 search_start, u64 empty_size, enum btrfs_lock_nesting nest) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_disk_key disk_key; struct extent_buffer *cow; int level, ret; int last_ref = 0; int unlock_orig = 0; u64 parent_start = 0; u64 reloc_src_root = 0; if (*cow_ret == buf) unlock_orig = 1; btrfs_assert_tree_write_locked(buf); WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && trans->transid != fs_info->running_transaction->transid); WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && trans->transid != btrfs_get_root_last_trans(root)); level = btrfs_header_level(buf); if (level == 0) btrfs_item_key(buf, &disk_key, 0); else btrfs_node_key(buf, &disk_key, 0); if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { if (parent) parent_start = parent->start; reloc_src_root = btrfs_header_owner(buf); } cow = btrfs_alloc_tree_block(trans, root, parent_start, btrfs_root_id(root), &disk_key, level, search_start, empty_size, reloc_src_root, nest); if (IS_ERR(cow)) return PTR_ERR(cow); /* cow is set to blocking by btrfs_init_new_buffer */ copy_extent_buffer_full(cow, buf); btrfs_set_header_bytenr(cow, cow->start); btrfs_set_header_generation(cow, trans->transid); btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | BTRFS_HEADER_FLAG_RELOC); if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); else btrfs_set_header_owner(cow, btrfs_root_id(root)); write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); if (ret) { btrfs_abort_transaction(trans, ret); goto error_unlock_cow; } if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { ret = btrfs_reloc_cow_block(trans, root, buf, cow); if (ret) { btrfs_abort_transaction(trans, ret); goto error_unlock_cow; } } if (buf == root->node) { WARN_ON(parent && parent != buf); if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) parent_start = buf->start; ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); if (ret < 0) { btrfs_abort_transaction(trans, ret); goto error_unlock_cow; } atomic_inc(&cow->refs); rcu_assign_pointer(root->node, cow); ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, parent_start, last_ref); free_extent_buffer(buf); add_root_to_dirty_list(root); if (ret < 0) { btrfs_abort_transaction(trans, ret); goto error_unlock_cow; } } else { WARN_ON(trans->transid != btrfs_header_generation(parent)); ret = btrfs_tree_mod_log_insert_key(parent, parent_slot, BTRFS_MOD_LOG_KEY_REPLACE); if (ret) { btrfs_abort_transaction(trans, ret); goto error_unlock_cow; } btrfs_set_node_blockptr(parent, parent_slot, cow->start); btrfs_set_node_ptr_generation(parent, parent_slot, trans->transid); btrfs_mark_buffer_dirty(trans, parent); if (last_ref) { ret = btrfs_tree_mod_log_free_eb(buf); if (ret) { btrfs_abort_transaction(trans, ret); goto error_unlock_cow; } } ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, parent_start, last_ref); if (ret < 0) { btrfs_abort_transaction(trans, ret); goto error_unlock_cow; } } if (unlock_orig) btrfs_tree_unlock(buf); free_extent_buffer_stale(buf); btrfs_mark_buffer_dirty(trans, cow); *cow_ret = cow; return 0; error_unlock_cow: btrfs_tree_unlock(cow); free_extent_buffer(cow); return ret; } static inline int should_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf) { if (btrfs_is_testing(root->fs_info)) return 0; /* Ensure we can see the FORCE_COW bit */ smp_mb__before_atomic(); /* * We do not need to cow a block if * 1) this block is not created or changed in this transaction; * 2) this block does not belong to TREE_RELOC tree; * 3) the root is not forced COW. * * What is forced COW: * when we create snapshot during committing the transaction, * after we've finished copying src root, we must COW the shared * block to ensure the metadata consistency. */ if (btrfs_header_generation(buf) == trans->transid && !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) return 0; return 1; } /* * COWs a single block, see btrfs_force_cow_block() for the real work. * This version of it has extra checks so that a block isn't COWed more than * once per transaction, as long as it hasn't been written yet */ int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret, enum btrfs_lock_nesting nest) { struct btrfs_fs_info *fs_info = root->fs_info; u64 search_start; int ret; if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) { btrfs_abort_transaction(trans, -EUCLEAN); btrfs_crit(fs_info, "attempt to COW block %llu on root %llu that is being deleted", buf->start, btrfs_root_id(root)); return -EUCLEAN; } /* * COWing must happen through a running transaction, which always * matches the current fs generation (it's a transaction with a state * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs * into error state to prevent the commit of any transaction. */ if (unlikely(trans->transaction != fs_info->running_transaction || trans->transid != fs_info->generation)) { btrfs_abort_transaction(trans, -EUCLEAN); btrfs_crit(fs_info, "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu", buf->start, btrfs_root_id(root), trans->transid, fs_info->running_transaction->transid, fs_info->generation); return -EUCLEAN; } if (!should_cow_block(trans, root, buf)) { *cow_ret = buf; return 0; } search_start = round_down(buf->start, SZ_1G); /* * Before CoWing this block for later modification, check if it's * the subtree root and do the delayed subtree trace if needed. * * Also We don't care about the error, as it's handled internally. */ btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot, cow_ret, search_start, 0, nest); trace_btrfs_cow_block(root, buf, *cow_ret); return ret; } ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); /* * same as comp_keys only with two btrfs_key's */ int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) { if (k1->objectid > k2->objectid) return 1; if (k1->objectid < k2->objectid) return -1; if (k1->type > k2->type) return 1; if (k1->type < k2->type) return -1; if (k1->offset > k2->offset) return 1; if (k1->offset < k2->offset) return -1; return 0; } /* * Search for a key in the given extent_buffer. * * The lower boundary for the search is specified by the slot number @first_slot. * Use a value of 0 to search over the whole extent buffer. Works for both * leaves and nodes. * * The slot in the extent buffer is returned via @slot. If the key exists in the * extent buffer, then @slot will point to the slot where the key is, otherwise * it points to the slot where you would insert the key. * * Slot may point to the total number of items (i.e. one position beyond the last * key) if the key is bigger than the last key in the extent buffer. */ int btrfs_bin_search(struct extent_buffer *eb, int first_slot, const struct btrfs_key *key, int *slot) { unsigned long p; int item_size; /* * Use unsigned types for the low and high slots, so that we get a more * efficient division in the search loop below. */ u32 low = first_slot; u32 high = btrfs_header_nritems(eb); int ret; const int key_size = sizeof(struct btrfs_disk_key); if (unlikely(low > high)) { btrfs_err(eb->fs_info, "%s: low (%u) > high (%u) eb %llu owner %llu level %d", __func__, low, high, eb->start, btrfs_header_owner(eb), btrfs_header_level(eb)); return -EINVAL; } if (btrfs_header_level(eb) == 0) { p = offsetof(struct btrfs_leaf, items); item_size = sizeof(struct btrfs_item); } else { p = offsetof(struct btrfs_node, ptrs); item_size = sizeof(struct btrfs_key_ptr); } while (low < high) { const int unit_size = eb->folio_size; unsigned long oil; unsigned long offset; struct btrfs_disk_key *tmp; struct btrfs_disk_key unaligned; int mid; mid = (low + high) / 2; offset = p + mid * item_size; oil = get_eb_offset_in_folio(eb, offset); if (oil + key_size <= unit_size) { const unsigned long idx = get_eb_folio_index(eb, offset); char *kaddr = folio_address(eb->folios[idx]); oil = get_eb_offset_in_folio(eb, offset); tmp = (struct btrfs_disk_key *)(kaddr + oil); } else { read_extent_buffer(eb, &unaligned, offset, key_size); tmp = &unaligned; } ret = btrfs_comp_keys(tmp, key); if (ret < 0) low = mid + 1; else if (ret > 0) high = mid; else { *slot = mid; return 0; } } *slot = low; return 1; } static void root_add_used_bytes(struct btrfs_root *root) { spin_lock(&root->accounting_lock); btrfs_set_root_used(&root->root_item, btrfs_root_used(&root->root_item) + root->fs_info->nodesize); spin_unlock(&root->accounting_lock); } static void root_sub_used_bytes(struct btrfs_root *root) { spin_lock(&root->accounting_lock); btrfs_set_root_used(&root->root_item, btrfs_root_used(&root->root_item) - root->fs_info->nodesize); spin_unlock(&root->accounting_lock); } /* given a node and slot number, this reads the blocks it points to. The * extent buffer is returned with a reference taken (but unlocked). */ struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, int slot) { int level = btrfs_header_level(parent); struct btrfs_tree_parent_check check = { 0 }; struct extent_buffer *eb; if (slot < 0 || slot >= btrfs_header_nritems(parent)) return ERR_PTR(-ENOENT); ASSERT(level); check.level = level - 1; check.transid = btrfs_node_ptr_generation(parent, slot); check.owner_root = btrfs_header_owner(parent); check.has_first_key = true; btrfs_node_key_to_cpu(parent, &check.first_key, slot); eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), &check); if (IS_ERR(eb)) return eb; if (!extent_buffer_uptodate(eb)) { free_extent_buffer(eb); return ERR_PTR(-EIO); } return eb; } /* * node level balancing, used to make sure nodes are in proper order for * item deletion. We balance from the top down, so we have to make sure * that a deletion won't leave an node completely empty later on. */ static noinline int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *right = NULL; struct extent_buffer *mid; struct extent_buffer *left = NULL; struct extent_buffer *parent = NULL; int ret = 0; int wret; int pslot; int orig_slot = path->slots[level]; u64 orig_ptr; ASSERT(level > 0); mid = path->nodes[level]; WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); WARN_ON(btrfs_header_generation(mid) != trans->transid); orig_ptr = btrfs_node_blockptr(mid, orig_slot); if (level < BTRFS_MAX_LEVEL - 1) { parent = path->nodes[level + 1]; pslot = path->slots[level + 1]; } /* * deal with the case where there is only one pointer in the root * by promoting the node below to a root */ if (!parent) { struct extent_buffer *child; if (btrfs_header_nritems(mid) != 1) return 0; /* promote the child to a root */ child = btrfs_read_node_slot(mid, 0); if (IS_ERR(child)) { ret = PTR_ERR(child); goto out; } btrfs_tree_lock(child); ret = btrfs_cow_block(trans, root, child, mid, 0, &child, BTRFS_NESTING_COW); if (ret) { btrfs_tree_unlock(child); free_extent_buffer(child); goto out; } ret = btrfs_tree_mod_log_insert_root(root->node, child, true); if (ret < 0) { btrfs_tree_unlock(child); free_extent_buffer(child); btrfs_abort_transaction(trans, ret); goto out; } rcu_assign_pointer(root->node, child); add_root_to_dirty_list(root); btrfs_tree_unlock(child); path->locks[level] = 0; path->nodes[level] = NULL; btrfs_clear_buffer_dirty(trans, mid); btrfs_tree_unlock(mid); /* once for the path */ free_extent_buffer(mid); root_sub_used_bytes(root); ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); /* once for the root ptr */ free_extent_buffer_stale(mid); if (ret < 0) { btrfs_abort_transaction(trans, ret); goto out; } return 0; } if (btrfs_header_nritems(mid) > BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) return 0; if (pslot) { left = btrfs_read_node_slot(parent, pslot - 1); if (IS_ERR(left)) { ret = PTR_ERR(left); left = NULL; goto out; } btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); wret = btrfs_cow_block(trans, root, left, parent, pslot - 1, &left, BTRFS_NESTING_LEFT_COW); if (wret) { ret = wret; goto out; } } if (pslot + 1 < btrfs_header_nritems(parent)) { right = btrfs_read_node_slot(parent, pslot + 1); if (IS_ERR(right)) { ret = PTR_ERR(right); right = NULL; goto out; } btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); wret = btrfs_cow_block(trans, root, right, parent, pslot + 1, &right, BTRFS_NESTING_RIGHT_COW); if (wret) { ret = wret; goto out; } } /* first, try to make some room in the middle buffer */ if (left) { orig_slot += btrfs_header_nritems(left); wret = push_node_left(trans, left, mid, 1); if (wret < 0) ret = wret; } /* * then try to empty the right most buffer into the middle */ if (right) { wret = push_node_left(trans, mid, right, 1); if (wret < 0 && wret != -ENOSPC) ret = wret; if (btrfs_header_nritems(right) == 0) { btrfs_clear_buffer_dirty(trans, right); btrfs_tree_unlock(right); ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1); if (ret < 0) { free_extent_buffer_stale(right); right = NULL; goto out; } root_sub_used_bytes(root); ret = btrfs_free_tree_block(trans, btrfs_root_id(root), right, 0, 1); free_extent_buffer_stale(right); right = NULL; if (ret < 0) { btrfs_abort_transaction(trans, ret); goto out; } } else { struct btrfs_disk_key right_key; btrfs_node_key(right, &right_key, 0); ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, BTRFS_MOD_LOG_KEY_REPLACE); if (ret < 0) { btrfs_abort_transaction(trans, ret); goto out; } btrfs_set_node_key(parent, &right_key, pslot + 1); btrfs_mark_buffer_dirty(trans, parent); } } if (btrfs_header_nritems(mid) == 1) { /* * we're not allowed to leave a node with one item in the * tree during a delete. A deletion from lower in the tree * could try to delete the only pointer in this node. * So, pull some keys from the left. * There has to be a left pointer at this point because * otherwise we would have pulled some pointers from the * right */ if (unlikely(!left)) { btrfs_crit(fs_info, "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu", parent->start, btrfs_header_level(parent), mid->start, btrfs_root_id(root)); ret = -EUCLEAN; btrfs_abort_transaction(trans, ret); goto out; } wret = balance_node_right(trans, mid, left); if (wret < 0) { ret = wret; goto out; } if (wret == 1) { wret = push_node_left(trans, left, mid, 1); if (wret < 0) ret = wret; } BUG_ON(wret == 1); } if (btrfs_header_nritems(mid) == 0) { btrfs_clear_buffer_dirty(trans, mid); btrfs_tree_unlock(mid); ret = btrfs_del_ptr(trans, root, path, level + 1, pslot); if (ret < 0) { free_extent_buffer_stale(mid); mid = NULL; goto out; } root_sub_used_bytes(root); ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); free_extent_buffer_stale(mid); mid = NULL; if (ret < 0) { btrfs_abort_transaction(trans, ret); goto out; } } else { /* update the parent key to reflect our changes */ struct btrfs_disk_key mid_key; btrfs_node_key(mid, &mid_key, 0); ret = btrfs_tree_mod_log_insert_key(parent, pslot, BTRFS_MOD_LOG_KEY_REPLACE); if (ret < 0) { btrfs_abort_transaction(trans, ret); goto out; } btrfs_set_node_key(parent, &mid_key, pslot); btrfs_mark_buffer_dirty(trans, parent); } /* update the path */ if (left) { if (btrfs_header_nritems(left) > orig_slot) { atomic_inc(&left->refs); /* left was locked after cow */ path->nodes[level] = left; path->slots[level + 1] -= 1; path->slots[level] = orig_slot; if (mid) { btrfs_tree_unlock(mid); free_extent_buffer(mid); } } else { orig_slot -= btrfs_header_nritems(left); path->slots[level] = orig_slot; } } /* double check we haven't messed things up */ if (orig_ptr != btrfs_node_blockptr(path->nodes[level], path->slots[level])) BUG(); out: if (right) { btrfs_tree_unlock(right); free_extent_buffer(right); } if (left) { if (path->nodes[level] != left) btrfs_tree_unlock(left); free_extent_buffer(left); } return ret; } /* Node balancing for insertion. Here we only split or push nodes around * when they are completely full. This is also done top down, so we * have to be pessimistic. */ static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *right = NULL; struct extent_buffer *mid; struct extent_buffer *left = NULL; struct extent_buffer *parent = NULL; int ret = 0; int wret; int pslot; int orig_slot = path->slots[level]; if (level == 0) return 1; mid = path->nodes[level]; WARN_ON(btrfs_header_generation(mid) != trans->transid); if (level < BTRFS_MAX_LEVEL - 1) { parent = path->nodes[level + 1]; pslot = path->slots[level + 1]; } if (!parent) return 1; /* first, try to make some room in the middle buffer */ if (pslot) { u32 left_nr; left = btrfs_read_node_slot(parent, pslot - 1); if (IS_ERR(left)) return PTR_ERR(left); btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); left_nr = btrfs_header_nritems(left); if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { wret = 1; } else { ret = btrfs_cow_block(trans, root, left, parent, pslot - 1, &left, BTRFS_NESTING_LEFT_COW); if (ret) wret = 1; else { wret = push_node_left(trans, left, mid, 0); } } if (wret < 0) ret = wret; if (wret == 0) { struct btrfs_disk_key disk_key; orig_slot += left_nr; btrfs_node_key(mid, &disk_key, 0); ret = btrfs_tree_mod_log_insert_key(parent, pslot, BTRFS_MOD_LOG_KEY_REPLACE); if (ret < 0) { btrfs_tree_unlock(left); free_extent_buffer(left); btrfs_abort_transaction(trans, ret); return ret; } btrfs_set_node_key(parent, &disk_key, pslot); btrfs_mark_buffer_dirty(trans, parent); if (btrfs_header_nritems(left) > orig_slot) { path->nodes[level] = left; path->slots[level + 1] -= 1; path->slots[level] = orig_slot; btrfs_tree_unlock(mid); free_extent_buffer(mid); } else { orig_slot -= btrfs_header_nritems(left); path->slots[level] = orig_slot; btrfs_tree_unlock(left); free_extent_buffer(left); } return 0; } btrfs_tree_unlock(left); free_extent_buffer(left); } /* * then try to empty the right most buffer into the middle */ if (pslot + 1 < btrfs_header_nritems(parent)) { u32 right_nr; right = btrfs_read_node_slot(parent, pslot + 1); if (IS_ERR(right)) return PTR_ERR(right); btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); right_nr = btrfs_header_nritems(right); if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { wret = 1; } else { ret = btrfs_cow_block(trans, root, right, parent, pslot + 1, &right, BTRFS_NESTING_RIGHT_COW); if (ret) wret = 1; else { wret = balance_node_right(trans, right, mid); } } if (wret < 0) ret = wret; if (wret == 0) { struct btrfs_disk_key disk_key; btrfs_node_key(right, &disk_key, 0); ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, BTRFS_MOD_LOG_KEY_REPLACE); if (ret < 0) { btrfs_tree_unlock(right); free_extent_buffer(right); btrfs_abort_transaction(trans, ret); return ret; } btrfs_set_node_key(parent, &disk_key, pslot + 1); btrfs_mark_buffer_dirty(trans, parent); if (btrfs_header_nritems(mid) <= orig_slot) { path->nodes[level] = right; path->slots[level + 1] += 1; path->slots[level] = orig_slot - btrfs_header_nritems(mid); btrfs_tree_unlock(mid); free_extent_buffer(mid); } else { btrfs_tree_unlock(right); free_extent_buffer(right); } return 0; } btrfs_tree_unlock(right); free_extent_buffer(right); } return 1; } /* * readahead one full node of leaves, finding things that are close * to the block in 'slot', and triggering ra on them. */ static void reada_for_search(struct btrfs_fs_info *fs_info, struct btrfs_path *path, int level, int slot, u64 objectid) { struct extent_buffer *node; struct btrfs_disk_key disk_key; u32 nritems; u64 search; u64 target; u64 nread = 0; u64 nread_max; u32 nr; u32 blocksize; u32 nscan = 0; if (level != 1 && path->reada != READA_FORWARD_ALWAYS) return; if (!path->nodes[level]) return; node = path->nodes[level]; /* * Since the time between visiting leaves is much shorter than the time * between visiting nodes, limit read ahead of nodes to 1, to avoid too * much IO at once (possibly random). */ if (path->reada == READA_FORWARD_ALWAYS) { if (level > 1) nread_max = node->fs_info->nodesize; else nread_max = SZ_128K; } else { nread_max = SZ_64K; } search = btrfs_node_blockptr(node, slot); blocksize = fs_info->nodesize; if (path->reada != READA_FORWARD_ALWAYS) { struct extent_buffer *eb; eb = find_extent_buffer(fs_info, search); if (eb) { free_extent_buffer(eb); return; } } target = search; nritems = btrfs_header_nritems(node); nr = slot; while (1) { if (path->reada == READA_BACK) { if (nr == 0) break; nr--; } else if (path->reada == READA_FORWARD || path->reada == READA_FORWARD_ALWAYS) { nr++; if (nr >= nritems) break; } if (path->reada == READA_BACK && objectid) { btrfs_node_key(node, &disk_key, nr); if (btrfs_disk_key_objectid(&disk_key) != objectid) break; } search = btrfs_node_blockptr(node, nr); if (path->reada == READA_FORWARD_ALWAYS || (search <= target && target - search <= 65536) || (search > target && search - target <= 65536)) { btrfs_readahead_node_child(node, nr); nread += blocksize; } nscan++; if (nread > nread_max || nscan > 32) break; } } static noinline void reada_for_balance(struct btrfs_path *path, int level) { struct extent_buffer *parent; int slot; int nritems; parent = path->nodes[level + 1]; if (!parent) return; nritems = btrfs_header_nritems(parent); slot = path->slots[level + 1]; if (slot > 0) btrfs_readahead_node_child(parent, slot - 1); if (slot + 1 < nritems) btrfs_readahead_node_child(parent, slot + 1); } /* * when we walk down the tree, it is usually safe to unlock the higher layers * in the tree. The exceptions are when our path goes through slot 0, because * operations on the tree might require changing key pointers higher up in the * tree. * * callers might also have set path->keep_locks, which tells this code to keep * the lock if the path points to the last slot in the block. This is part of * walking through the tree, and selecting the next slot in the higher block. * * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so * if lowest_unlock is 1, level 0 won't be unlocked */ static noinline void unlock_up(struct btrfs_path *path, int level, int lowest_unlock, int min_write_lock_level, int *write_lock_level) { int i; int skip_level = level; bool check_skip = true; for (i = level; i < BTRFS_MAX_LEVEL; i++) { if (!path->nodes[i]) break; if (!path->locks[i]) break; if (check_skip) { if (path->slots[i] == 0) { skip_level = i + 1; continue; } if (path->keep_locks) { u32 nritems; nritems = btrfs_header_nritems(path->nodes[i]); if (nritems < 1 || path->slots[i] >= nritems - 1) { skip_level = i + 1; continue; } } } if (i >= lowest_unlock && i > skip_level) { check_skip = false; btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); path->locks[i] = 0; if (write_lock_level && i > min_write_lock_level && i <= *write_lock_level) { *write_lock_level = i - 1; } } } } /* * Helper function for btrfs_search_slot() and other functions that do a search * on a btree. The goal is to find a tree block in the cache (the radix tree at * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read * its pages from disk. * * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the * whole btree search, starting again from the current root node. */ static int read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, struct extent_buffer **eb_ret, int level, int slot, const struct btrfs_key *key) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_tree_parent_check check = { 0 }; u64 blocknr; u64 gen; struct extent_buffer *tmp; int ret; int parent_level; bool unlock_up; unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]); blocknr = btrfs_node_blockptr(*eb_ret, slot); gen = btrfs_node_ptr_generation(*eb_ret, slot); parent_level = btrfs_header_level(*eb_ret); btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot); check.has_first_key = true; check.level = parent_level - 1; check.transid = gen; check.owner_root = btrfs_root_id(root); /* * If we need to read an extent buffer from disk and we are holding locks * on upper level nodes, we unlock all the upper nodes before reading the * extent buffer, and then return -EAGAIN to the caller as it needs to * restart the search. We don't release the lock on the current level * because we need to walk this node to figure out which blocks to read. */ tmp = find_extent_buffer(fs_info, blocknr); if (tmp) { if (p->reada == READA_FORWARD_ALWAYS) reada_for_search(fs_info, p, level, slot, key->objectid); /* first we do an atomic uptodate check */ if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { /* * Do extra check for first_key, eb can be stale due to * being cached, read from scrub, or have multiple * parents (shared tree blocks). */ if (btrfs_verify_level_key(tmp, parent_level - 1, &check.first_key, gen)) { free_extent_buffer(tmp); return -EUCLEAN; } *eb_ret = tmp; return 0; } if (p->nowait) { free_extent_buffer(tmp); return -EAGAIN; } if (unlock_up) btrfs_unlock_up_safe(p, level + 1); /* now we're allowed to do a blocking uptodate check */ ret = btrfs_read_extent_buffer(tmp, &check); if (ret) { free_extent_buffer(tmp); btrfs_release_path(p); return ret; } if (unlock_up) ret = -EAGAIN; goto out; } else if (p->nowait) { return -EAGAIN; } if (unlock_up) { btrfs_unlock_up_safe(p, level + 1); ret = -EAGAIN; } else { ret = 0; } if (p->reada != READA_NONE) reada_for_search(fs_info, p, level, slot, key->objectid); tmp = read_tree_block(fs_info, blocknr, &check); if (IS_ERR(tmp)) { btrfs_release_path(p); return PTR_ERR(tmp); } /* * If the read above didn't mark this buffer up to date, * it will never end up being up to date. Set ret to EIO now * and give up so that our caller doesn't loop forever * on our EAGAINs. */ if (!extent_buffer_uptodate(tmp)) ret = -EIO; out: if (ret == 0) { *eb_ret = tmp; } else { free_extent_buffer(tmp); btrfs_release_path(p); } return ret; } /* * helper function for btrfs_search_slot. This does all of the checks * for node-level blocks and does any balancing required based on * the ins_len. * * If no extra work was required, zero is returned. If we had to * drop the path, -EAGAIN is returned and btrfs_search_slot must * start over */ static int setup_nodes_for_search(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *p, struct extent_buffer *b, int level, int ins_len, int *write_lock_level) { struct btrfs_fs_info *fs_info = root->fs_info; int ret = 0; if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { if (*write_lock_level < level + 1) { *write_lock_level = level + 1; btrfs_release_path(p); return -EAGAIN; } reada_for_balance(p, level); ret = split_node(trans, root, p, level); b = p->nodes[level]; } else if (ins_len < 0 && btrfs_header_nritems(b) < BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { if (*write_lock_level < level + 1) { *write_lock_level = level + 1; btrfs_release_path(p); return -EAGAIN; } reada_for_balance(p, level); ret = balance_level(trans, root, p, level); if (ret) return ret; b = p->nodes[level]; if (!b) { btrfs_release_path(p); return -EAGAIN; } BUG_ON(btrfs_header_nritems(b) == 1); } return ret; } int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, u64 iobjectid, u64 ioff, u8 key_type, struct btrfs_key *found_key) { int ret; struct btrfs_key key; struct extent_buffer *eb; ASSERT(path); ASSERT(found_key); key.type = key_type; key.objectid = iobjectid; key.offset = ioff; ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); if (ret < 0) return ret; eb = path->nodes[0]; if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { ret = btrfs_next_leaf(fs_root, path); if (ret) return ret; eb = path->nodes[0]; } btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); if (found_key->type != key.type || found_key->objectid != key.objectid) return 1; return 0; } static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, struct btrfs_path *p, int write_lock_level) { struct extent_buffer *b; int root_lock = 0; int level = 0; if (p->search_commit_root) { b = root->commit_root; atomic_inc(&b->refs); level = btrfs_header_level(b); /* * Ensure that all callers have set skip_locking when * p->search_commit_root = 1. */ ASSERT(p->skip_locking == 1); goto out; } if (p->skip_locking) { b = btrfs_root_node(root); level = btrfs_header_level(b); goto out; } /* We try very hard to do read locks on the root */ root_lock = BTRFS_READ_LOCK; /* * If the level is set to maximum, we can skip trying to get the read * lock. */ if (write_lock_level < BTRFS_MAX_LEVEL) { /* * We don't know the level of the root node until we actually * have it read locked */ if (p->nowait) { b = btrfs_try_read_lock_root_node(root); if (IS_ERR(b)) return b; } else { b = btrfs_read_lock_root_node(root); } level = btrfs_header_level(b); if (level > write_lock_level) goto out; /* Whoops, must trade for write lock */ btrfs_tree_read_unlock(b); free_extent_buffer(b); } b = btrfs_lock_root_node(root); root_lock = BTRFS_WRITE_LOCK; /* The level might have changed, check again */ level = btrfs_header_level(b); out: /* * The root may have failed to write out at some point, and thus is no * longer valid, return an error in this case. */ if (!extent_buffer_uptodate(b)) { if (root_lock) btrfs_tree_unlock_rw(b, root_lock); free_extent_buffer(b); return ERR_PTR(-EIO); } p->nodes[level] = b; if (!p->skip_locking) p->locks[level] = root_lock; /* * Callers are responsible for dropping b's references. */ return b; } /* * Replace the extent buffer at the lowest level of the path with a cloned * version. The purpose is to be able to use it safely, after releasing the * commit root semaphore, even if relocation is happening in parallel, the * transaction used for relocation is committed and the extent buffer is * reallocated in the next transaction. * * This is used in a context where the caller does not prevent transaction * commits from happening, either by holding a transaction handle or holding * some lock, while it's doing searches through a commit root. * At the moment it's only used for send operations. */ static int finish_need_commit_sem_search(struct btrfs_path *path) { const int i = path->lowest_level; const int slot = path->slots[i]; struct extent_buffer *lowest = path->nodes[i]; struct extent_buffer *clone; ASSERT(path->need_commit_sem); if (!lowest) return 0; lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); clone = btrfs_clone_extent_buffer(lowest); if (!clone) return -ENOMEM; btrfs_release_path(path); path->nodes[i] = clone; path->slots[i] = slot; return 0; } static inline int search_for_key_slot(struct extent_buffer *eb, int search_low_slot, const struct btrfs_key *key, int prev_cmp, int *slot) { /* * If a previous call to btrfs_bin_search() on a parent node returned an * exact match (prev_cmp == 0), we can safely assume the target key will * always be at slot 0 on lower levels, since each key pointer * (struct btrfs_key_ptr) refers to the lowest key accessible from the * subtree it points to. Thus we can skip searching lower levels. */ if (prev_cmp == 0) { *slot = 0; return 0; } return btrfs_bin_search(eb, search_low_slot, key, slot); } static int search_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *path, int ins_len, int prev_cmp) { struct extent_buffer *leaf = path->nodes[0]; int leaf_free_space = -1; int search_low_slot = 0; int ret; bool do_bin_search = true; /* * If we are doing an insertion, the leaf has enough free space and the * destination slot for the key is not slot 0, then we can unlock our * write lock on the parent, and any other upper nodes, before doing the * binary search on the leaf (with search_for_key_slot()), allowing other * tasks to lock the parent and any other upper nodes. */ if (ins_len > 0) { /* * Cache the leaf free space, since we will need it later and it * will not change until then. */ leaf_free_space = btrfs_leaf_free_space(leaf); /* * !path->locks[1] means we have a single node tree, the leaf is * the root of the tree. */ if (path->locks[1] && leaf_free_space >= ins_len) { struct btrfs_disk_key first_key; ASSERT(btrfs_header_nritems(leaf) > 0); btrfs_item_key(leaf, &first_key, 0); /* * Doing the extra comparison with the first key is cheap, * taking into account that the first key is very likely * already in a cache line because it immediately follows * the extent buffer's header and we have recently accessed * the header's level field. */ ret = btrfs_comp_keys(&first_key, key); if (ret < 0) { /* * The first key is smaller than the key we want * to insert, so we are safe to unlock all upper * nodes and we have to do the binary search. * * We do use btrfs_unlock_up_safe() and not * unlock_up() because the later does not unlock * nodes with a slot of 0 - we can safely unlock * any node even if its slot is 0 since in this * case the key does not end up at slot 0 of the * leaf and there's no need to split the leaf. */ btrfs_unlock_up_safe(path, 1); search_low_slot = 1; } else { /* * The first key is >= then the key we want to * insert, so we can skip the binary search as * the target key will be at slot 0. * * We can not unlock upper nodes when the key is * less than the first key, because we will need * to update the key at slot 0 of the parent node * and possibly of other upper nodes too. * If the key matches the first key, then we can * unlock all the upper nodes, using * btrfs_unlock_up_safe() instead of unlock_up() * as stated above. */ if (ret == 0) btrfs_unlock_up_safe(path, 1); /* * ret is already 0 or 1, matching the result of * a btrfs_bin_search() call, so there is no need * to adjust it. */ do_bin_search = false; path->slots[0] = 0; } } } if (do_bin_search) { ret = search_for_key_slot(leaf, search_low_slot, key, prev_cmp, &path->slots[0]); if (ret < 0) return ret; } if (ins_len > 0) { /* * Item key already exists. In this case, if we are allowed to * insert the item (for example, in dir_item case, item key * collision is allowed), it will be merged with the original * item. Only the item size grows, no new btrfs item will be * added. If search_for_extension is not set, ins_len already * accounts the size btrfs_item, deduct it here so leaf space * check will be correct. */ if (ret == 0 && !path->search_for_extension) { ASSERT(ins_len >= sizeof(struct btrfs_item)); ins_len -= sizeof(struct btrfs_item); } ASSERT(leaf_free_space >= 0); if (leaf_free_space < ins_len) { int err; err = split_leaf(trans, root, key, path, ins_len, (ret == 0)); ASSERT(err <= 0); if (WARN_ON(err > 0)) err = -EUCLEAN; if (err) ret = err; } } return ret; } /* * Look for a key in a tree and perform necessary modifications to preserve * tree invariants. * * @trans: Handle of transaction, used when modifying the tree * @p: Holds all btree nodes along the search path * @root: The root node of the tree * @key: The key we are looking for * @ins_len: Indicates purpose of search: * >0 for inserts it's size of item inserted (*) * <0 for deletions * 0 for plain searches, not modifying the tree * * (*) If size of item inserted doesn't include * sizeof(struct btrfs_item), then p->search_for_extension must * be set. * @cow: boolean should CoW operations be performed. Must always be 1 * when modifying the tree. * * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) * * If @key is found, 0 is returned and you can find the item in the leaf level * of the path (level 0) * * If @key isn't found, 1 is returned and the leaf level of the path (level 0) * points to the slot where it should be inserted * * If an error is encountered while searching the tree a negative error number * is returned */ int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *b; int slot; int ret; int err; int level; int lowest_unlock = 1; /* everything at write_lock_level or lower must be write locked */ int write_lock_level = 0; u8 lowest_level = 0; int min_write_lock_level; int prev_cmp; might_sleep(); lowest_level = p->lowest_level; WARN_ON(lowest_level && ins_len > 0); WARN_ON(p->nodes[0] != NULL); BUG_ON(!cow && ins_len); /* * For now only allow nowait for read only operations. There's no * strict reason why we can't, we just only need it for reads so it's * only implemented for reads. */ ASSERT(!p->nowait || !cow); if (ins_len < 0) { lowest_unlock = 2; /* when we are removing items, we might have to go up to level * two as we update tree pointers Make sure we keep write * for those levels as well */ write_lock_level = 2; } else if (ins_len > 0) { /* * for inserting items, make sure we have a write lock on * level 1 so we can update keys */ write_lock_level = 1; } if (!cow) write_lock_level = -1; if (cow && (p->keep_locks || p->lowest_level)) write_lock_level = BTRFS_MAX_LEVEL; min_write_lock_level = write_lock_level; if (p->need_commit_sem) { ASSERT(p->search_commit_root); if (p->nowait) { if (!down_read_trylock(&fs_info->commit_root_sem)) return -EAGAIN; } else { down_read(&fs_info->commit_root_sem); } } again: prev_cmp = -1; b = btrfs_search_slot_get_root(root, p, write_lock_level); if (IS_ERR(b)) { ret = PTR_ERR(b); goto done; } while (b) { int dec = 0; level = btrfs_header_level(b); if (cow) { bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); /* * if we don't really need to cow this block * then we don't want to set the path blocking, * so we test it here */ if (!should_cow_block(trans, root, b)) goto cow_done; /* * must have write locks on this node and the * parent */ if (level > write_lock_level || (level + 1 > write_lock_level && level + 1 < BTRFS_MAX_LEVEL && p->nodes[level + 1])) { write_lock_level = level + 1; btrfs_release_path(p); goto again; } if (last_level) err = btrfs_cow_block(trans, root, b, NULL, 0, &b, BTRFS_NESTING_COW); else err = btrfs_cow_block(trans, root, b, p->nodes[level + 1], p->slots[level + 1], &b, BTRFS_NESTING_COW); if (err) { ret = err; goto done; } } cow_done: p->nodes[level] = b; /* * we have a lock on b and as long as we aren't changing * the tree, there is no way to for the items in b to change. * It is safe to drop the lock on our parent before we * go through the expensive btree search on b. * * If we're inserting or deleting (ins_len != 0), then we might * be changing slot zero, which may require changing the parent. * So, we can't drop the lock until after we know which slot * we're operating on. */ if (!ins_len && !p->keep_locks) { int u = level + 1; if (u < BTRFS_MAX_LEVEL && p->locks[u]) { btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); p->locks[u] = 0; } } if (level == 0) { if (ins_len > 0) ASSERT(write_lock_level >= 1); ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); if (!p->search_for_split) unlock_up(p, level, lowest_unlock, min_write_lock_level, NULL); goto done; } ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); if (ret < 0) goto done; prev_cmp = ret; if (ret && slot > 0) { dec = 1; slot--; } p->slots[level] = slot; err = setup_nodes_for_search(trans, root, p, b, level, ins_len, &write_lock_level); if (err == -EAGAIN) goto again; if (err) { ret = err; goto done; } b = p->nodes[level]; slot = p->slots[level]; /* * Slot 0 is special, if we change the key we have to update * the parent pointer which means we must have a write lock on * the parent */ if (slot == 0 && ins_len && write_lock_level < level + 1) { write_lock_level = level + 1; btrfs_release_path(p); goto again; } unlock_up(p, level, lowest_unlock, min_write_lock_level, &write_lock_level); if (level == lowest_level) { if (dec) p->slots[level]++; goto done; } err = read_block_for_search(root, p, &b, level, slot, key); if (err == -EAGAIN) goto again; if (err) { ret = err; goto done; } if (!p->skip_locking) { level = btrfs_header_level(b); btrfs_maybe_reset_lockdep_class(root, b); if (level <= write_lock_level) { btrfs_tree_lock(b); p->locks[level] = BTRFS_WRITE_LOCK; } else { if (p->nowait) { if (!btrfs_try_tree_read_lock(b)) { free_extent_buffer(b); ret = -EAGAIN; goto done; } } else { btrfs_tree_read_lock(b); } p->locks[level] = BTRFS_READ_LOCK; } p->nodes[level] = b; } } ret = 1; done: if (ret < 0 && !p->skip_release_on_error) btrfs_release_path(p); if (p->need_commit_sem) { int ret2; ret2 = finish_need_commit_sem_search(p); up_read(&fs_info->commit_root_sem); if (ret2) ret = ret2; } return ret; } ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); /* * Like btrfs_search_slot, this looks for a key in the given tree. It uses the * current state of the tree together with the operations recorded in the tree * modification log to search for the key in a previous version of this tree, as * denoted by the time_seq parameter. * * Naturally, there is no support for insert, delete or cow operations. * * The resulting path and return value will be set up as if we called * btrfs_search_slot at that point in time with ins_len and cow both set to 0. */ int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, u64 time_seq) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *b; int slot; int ret; int err; int level; int lowest_unlock = 1; u8 lowest_level = 0; lowest_level = p->lowest_level; WARN_ON(p->nodes[0] != NULL); ASSERT(!p->nowait); if (p->search_commit_root) { BUG_ON(time_seq); return btrfs_search_slot(NULL, root, key, p, 0, 0); } again: b = btrfs_get_old_root(root, time_seq); if (!b) { ret = -EIO; goto done; } level = btrfs_header_level(b); p->locks[level] = BTRFS_READ_LOCK; while (b) { int dec = 0; level = btrfs_header_level(b); p->nodes[level] = b; /* * we have a lock on b and as long as we aren't changing * the tree, there is no way to for the items in b to change. * It is safe to drop the lock on our parent before we * go through the expensive btree search on b. */ btrfs_unlock_up_safe(p, level + 1); ret = btrfs_bin_search(b, 0, key, &slot); if (ret < 0) goto done; if (level == 0) { p->slots[level] = slot; unlock_up(p, level, lowest_unlock, 0, NULL); goto done; } if (ret && slot > 0) { dec = 1; slot--; } p->slots[level] = slot; unlock_up(p, level, lowest_unlock, 0, NULL); if (level == lowest_level) { if (dec) p->slots[level]++; goto done; } err = read_block_for_search(root, p, &b, level, slot, key); if (err == -EAGAIN) goto again; if (err) { ret = err; goto done; } level = btrfs_header_level(b); btrfs_tree_read_lock(b); b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); if (!b) { ret = -ENOMEM; goto done; } p->locks[level] = BTRFS_READ_LOCK; p->nodes[level] = b; } ret = 1; done: if (ret < 0) btrfs_release_path(p); return ret; } /* * Search the tree again to find a leaf with smaller keys. * Returns 0 if it found something. * Returns 1 if there are no smaller keys. * Returns < 0 on error. * * This may release the path, and so you may lose any locks held at the * time you call it. */ static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) { struct btrfs_key key; struct btrfs_key orig_key; struct btrfs_disk_key found_key; int ret; btrfs_item_key_to_cpu(path->nodes[0], &key, 0); orig_key = key; if (key.offset > 0) { key.offset--; } else if (key.type > 0) { key.type--; key.offset = (u64)-1; } else if (key.objectid > 0) { key.objectid--; key.type = (u8)-1; key.offset = (u64)-1; } else { return 1; } btrfs_release_path(path); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret <= 0) return ret; /* * Previous key not found. Even if we were at slot 0 of the leaf we had * before releasing the path and calling btrfs_search_slot(), we now may * be in a slot pointing to the same original key - this can happen if * after we released the path, one of more items were moved from a * sibling leaf into the front of the leaf we had due to an insertion * (see push_leaf_right()). * If we hit this case and our slot is > 0 and just decrement the slot * so that the caller does not process the same key again, which may or * may not break the caller, depending on its logic. */ if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { btrfs_item_key(path->nodes[0], &found_key, path->slots[0]); ret = btrfs_comp_keys(&found_key, &orig_key); if (ret == 0) { if (path->slots[0] > 0) { path->slots[0]--; return 0; } /* * At slot 0, same key as before, it means orig_key is * the lowest, leftmost, key in the tree. We're done. */ return 1; } } btrfs_item_key(path->nodes[0], &found_key, 0); ret = btrfs_comp_keys(&found_key, &key); /* * We might have had an item with the previous key in the tree right * before we released our path. And after we released our path, that * item might have been pushed to the first slot (0) of the leaf we * were holding due to a tree balance. Alternatively, an item with the * previous key can exist as the only element of a leaf (big fat item). * Therefore account for these 2 cases, so that our callers (like * btrfs_previous_item) don't miss an existing item with a key matching * the previous key we computed above. */ if (ret <= 0) return 0; return 1; } /* * helper to use instead of search slot if no exact match is needed but * instead the next or previous item should be returned. * When find_higher is true, the next higher item is returned, the next lower * otherwise. * When return_any and find_higher are both true, and no higher item is found, * return the next lower instead. * When return_any is true and find_higher is false, and no lower item is found, * return the next higher instead. * It returns 0 if any item is found, 1 if none is found (tree empty), and * < 0 on error */ int btrfs_search_slot_for_read(struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, int find_higher, int return_any) { int ret; struct extent_buffer *leaf; again: ret = btrfs_search_slot(NULL, root, key, p, 0, 0); if (ret <= 0) return ret; /* * a return value of 1 means the path is at the position where the * item should be inserted. Normally this is the next bigger item, * but in case the previous item is the last in a leaf, path points * to the first free slot in the previous leaf, i.e. at an invalid * item. */ leaf = p->nodes[0]; if (find_higher) { if (p->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, p); if (ret <= 0) return ret; if (!return_any) return 1; /* * no higher item found, return the next * lower instead */ return_any = 0; find_higher = 0; btrfs_release_path(p); goto again; } } else { if (p->slots[0] == 0) { ret = btrfs_prev_leaf(root, p); if (ret < 0) return ret; if (!ret) { leaf = p->nodes[0]; if (p->slots[0] == btrfs_header_nritems(leaf)) p->slots[0]--; return 0; } if (!return_any) return 1; /* * no lower item found, return the next * higher instead */ return_any = 0; find_higher = 1; btrfs_release_path(p); goto again; } else { --p->slots[0]; } } return 0; } /* * Execute search and call btrfs_previous_item to traverse backwards if the item * was not found. * * Return 0 if found, 1 if not found and < 0 if error. */ int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *path) { int ret; ret = btrfs_search_slot(NULL, root, key, path, 0, 0); if (ret > 0) ret = btrfs_previous_item(root, path, key->objectid, key->type); if (ret == 0) btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); return ret; } /* * Search for a valid slot for the given path. * * @root: The root node of the tree. * @key: Will contain a valid item if found. * @path: The starting point to validate the slot. * * Return: 0 if the item is valid * 1 if not found * <0 if error. */ int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *path) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { int ret; ret = btrfs_next_leaf(root, path); if (ret) return ret; } btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); return 0; } /* * adjust the pointers going up the tree, starting at level * making sure the right key of each node is points to 'key'. * This is used after shifting pointers to the left, so it stops * fixing up pointers when a given leaf/node is not in slot 0 of the * higher levels * */ static void fixup_low_keys(struct btrfs_trans_handle *trans, const struct btrfs_path *path, const struct btrfs_disk_key *key, int level) { int i; struct extent_buffer *t; int ret; for (i = level; i < BTRFS_MAX_LEVEL; i++) { int tslot = path->slots[i]; if (!path->nodes[i]) break; t = path->nodes[i]; ret = btrfs_tree_mod_log_insert_key(t, tslot, BTRFS_MOD_LOG_KEY_REPLACE); BUG_ON(ret < 0); btrfs_set_node_key(t, key, tslot); btrfs_mark_buffer_dirty(trans, path->nodes[i]); if (tslot != 0) break; } } /* * update item key. * * This function isn't completely safe. It's the caller's responsibility * that the new key won't break the order */ void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, const struct btrfs_path *path, const struct btrfs_key *new_key) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_disk_key disk_key; struct extent_buffer *eb; int slot; eb = path->nodes[0]; slot = path->slots[0]; if (slot > 0) { btrfs_item_key(eb, &disk_key, slot - 1); if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) { btrfs_print_leaf(eb); btrfs_crit(fs_info, "slot %u key (%llu %u %llu) new key (%llu %u %llu)", slot, btrfs_disk_key_objectid(&disk_key), btrfs_disk_key_type(&disk_key), btrfs_disk_key_offset(&disk_key), new_key->objectid, new_key->type, new_key->offset); BUG(); } } if (slot < btrfs_header_nritems(eb) - 1) { btrfs_item_key(eb, &disk_key, slot + 1); if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) { btrfs_print_leaf(eb); btrfs_crit(fs_info, "slot %u key (%llu %u %llu) new key (%llu %u %llu)", slot, btrfs_disk_key_objectid(&disk_key), btrfs_disk_key_type(&disk_key), btrfs_disk_key_offset(&disk_key), new_key->objectid, new_key->type, new_key->offset); BUG(); } } btrfs_cpu_key_to_disk(&disk_key, new_key); btrfs_set_item_key(eb, &disk_key, slot); btrfs_mark_buffer_dirty(trans, eb); if (slot == 0) fixup_low_keys(trans, path, &disk_key, 1); } /* * Check key order of two sibling extent buffers. * * Return true if something is wrong. * Return false if everything is fine. * * Tree-checker only works inside one tree block, thus the following * corruption can not be detected by tree-checker: * * Leaf @left | Leaf @right * -------------------------------------------------------------- * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | * * Key f6 in leaf @left itself is valid, but not valid when the next * key in leaf @right is 7. * This can only be checked at tree block merge time. * And since tree checker has ensured all key order in each tree block * is correct, we only need to bother the last key of @left and the first * key of @right. */ static bool check_sibling_keys(const struct extent_buffer *left, const struct extent_buffer *right) { struct btrfs_key left_last; struct btrfs_key right_first; int level = btrfs_header_level(left); int nr_left = btrfs_header_nritems(left); int nr_right = btrfs_header_nritems(right); /* No key to check in one of the tree blocks */ if (!nr_left || !nr_right) return false; if (level) { btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); btrfs_node_key_to_cpu(right, &right_first, 0); } else { btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); btrfs_item_key_to_cpu(right, &right_first, 0); } if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) { btrfs_crit(left->fs_info, "left extent buffer:"); btrfs_print_tree(left, false); btrfs_crit(left->fs_info, "right extent buffer:"); btrfs_print_tree(right, false); btrfs_crit(left->fs_info, "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", left_last.objectid, left_last.type, left_last.offset, right_first.objectid, right_first.type, right_first.offset); return true; } return false; } /* * try to push data from one node into the next node left in the * tree. * * returns 0 if some ptrs were pushed left, < 0 if there was some horrible * error, and > 0 if there was no room in the left hand block. */ static int push_node_left(struct btrfs_trans_handle *trans, struct extent_buffer *dst, struct extent_buffer *src, int empty) { struct btrfs_fs_info *fs_info = trans->fs_info; int push_items = 0; int src_nritems; int dst_nritems; int ret = 0; src_nritems = btrfs_header_nritems(src); dst_nritems = btrfs_header_nritems(dst); push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; WARN_ON(btrfs_header_generation(src) != trans->transid); WARN_ON(btrfs_header_generation(dst) != trans->transid); if (!empty && src_nritems <= 8) return 1; if (push_items <= 0) return 1; if (empty) { push_items = min(src_nritems, push_items); if (push_items < src_nritems) { /* leave at least 8 pointers in the node if * we aren't going to empty it */ if (src_nritems - push_items < 8) { if (push_items <= 8) return 1; push_items -= 8; } } } else push_items = min(src_nritems - 8, push_items); /* dst is the left eb, src is the middle eb */ if (check_sibling_keys(dst, src)) { ret = -EUCLEAN; btrfs_abort_transaction(trans, ret); return ret; } ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); if (ret) { btrfs_abort_transaction(trans, ret); return ret; } copy_extent_buffer(dst, src, btrfs_node_key_ptr_offset(dst, dst_nritems), btrfs_node_key_ptr_offset(src, 0), push_items * sizeof(struct btrfs_key_ptr)); if (push_items < src_nritems) { /* * btrfs_tree_mod_log_eb_copy handles logging the move, so we * don't need to do an explicit tree mod log operation for it. */ memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0), btrfs_node_key_ptr_offset(src, push_items), (src_nritems - push_items) * sizeof(struct btrfs_key_ptr)); } btrfs_set_header_nritems(src, src_nritems - push_items); btrfs_set_header_nritems(dst, dst_nritems + push_items); btrfs_mark_buffer_dirty(trans, src); btrfs_mark_buffer_dirty(trans, dst); return ret; } /* * try to push data from one node into the next node right in the * tree. * * returns 0 if some ptrs were pushed, < 0 if there was some horrible * error, and > 0 if there was no room in the right hand block. * * this will only push up to 1/2 the contents of the left node over */ static int balance_node_right(struct btrfs_trans_handle *trans, struct extent_buffer *dst, struct extent_buffer *src) { struct btrfs_fs_info *fs_info = trans->fs_info; int push_items = 0; int max_push; int src_nritems; int dst_nritems; int ret = 0; WARN_ON(btrfs_header_generation(src) != trans->transid); WARN_ON(btrfs_header_generation(dst) != trans->transid); src_nritems = btrfs_header_nritems(src); dst_nritems = btrfs_header_nritems(dst); push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; if (push_items <= 0) return 1; if (src_nritems < 4) return 1; max_push = src_nritems / 2 + 1; /* don't try to empty the node */ if (max_push >= src_nritems) return 1; if (max_push < push_items) push_items = max_push; /* dst is the right eb, src is the middle eb */ if (check_sibling_keys(src, dst)) { ret = -EUCLEAN; btrfs_abort_transaction(trans, ret); return ret; } /* * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't * need to do an explicit tree mod log operation for it. */ memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items), btrfs_node_key_ptr_offset(dst, 0), (dst_nritems) * sizeof(struct btrfs_key_ptr)); ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, push_items); if (ret) { btrfs_abort_transaction(trans, ret); return ret; } copy_extent_buffer(dst, src, btrfs_node_key_ptr_offset(dst, 0), btrfs_node_key_ptr_offset(src, src_nritems - push_items), push_items * sizeof(struct btrfs_key_ptr)); btrfs_set_header_nritems(src, src_nritems - push_items); btrfs_set_header_nritems(dst, dst_nritems + push_items); btrfs_mark_buffer_dirty(trans, src); btrfs_mark_buffer_dirty(trans, dst); return ret; } /* * helper function to insert a new root level in the tree. * A new node is allocated, and a single item is inserted to * point to the existing root * * returns zero on success or < 0 on failure. */ static noinline int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { u64 lower_gen; struct extent_buffer *lower; struct extent_buffer *c; struct extent_buffer *old; struct btrfs_disk_key lower_key; int ret; BUG_ON(path->nodes[level]); BUG_ON(path->nodes[level-1] != root->node); lower = path->nodes[level-1]; if (level == 1) btrfs_item_key(lower, &lower_key, 0); else btrfs_node_key(lower, &lower_key, 0); c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), &lower_key, level, root->node->start, 0, 0, BTRFS_NESTING_NEW_ROOT); if (IS_ERR(c)) return PTR_ERR(c); root_add_used_bytes(root); btrfs_set_header_nritems(c, 1); btrfs_set_node_key(c, &lower_key, 0); btrfs_set_node_blockptr(c, 0, lower->start); lower_gen = btrfs_header_generation(lower); WARN_ON(lower_gen != trans->transid); btrfs_set_node_ptr_generation(c, 0, lower_gen); btrfs_mark_buffer_dirty(trans, c); old = root->node; ret = btrfs_tree_mod_log_insert_root(root->node, c, false); if (ret < 0) { int ret2; ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1); if (ret2 < 0) btrfs_abort_transaction(trans, ret2); btrfs_tree_unlock(c); free_extent_buffer(c); return ret; } rcu_assign_pointer(root->node, c); /* the super has an extra ref to root->node */ free_extent_buffer(old); add_root_to_dirty_list(root); atomic_inc(&c->refs); path->nodes[level] = c; path->locks[level] = BTRFS_WRITE_LOCK; path->slots[level] = 0; return 0; } /* * worker function to insert a single pointer in a node. * the node should have enough room for the pointer already * * slot and level indicate where you want the key to go, and * blocknr is the block the key points to. */ static int insert_ptr(struct btrfs_trans_handle *trans, const struct btrfs_path *path, const struct btrfs_disk_key *key, u64 bytenr, int slot, int level) { struct extent_buffer *lower; int nritems; int ret; BUG_ON(!path->nodes[level]); btrfs_assert_tree_write_locked(path->nodes[level]); lower = path->nodes[level]; nritems = btrfs_header_nritems(lower); BUG_ON(slot > nritems); BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); if (slot != nritems) { if (level) { ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, slot, nritems - slot); if (ret < 0) { btrfs_abort_transaction(trans, ret); return ret; } } memmove_extent_buffer(lower, btrfs_node_key_ptr_offset(lower, slot + 1), btrfs_node_key_ptr_offset(lower, slot), (nritems - slot) * sizeof(struct btrfs_key_ptr)); } if (level) { ret = btrfs_tree_mod_log_insert_key(lower, slot, BTRFS_MOD_LOG_KEY_ADD); if (ret < 0) { btrfs_abort_transaction(trans, ret); return ret; } } btrfs_set_node_key(lower, key, slot); btrfs_set_node_blockptr(lower, slot, bytenr); WARN_ON(trans->transid == 0); btrfs_set_node_ptr_generation(lower, slot, trans->transid); btrfs_set_header_nritems(lower, nritems + 1); btrfs_mark_buffer_dirty(trans, lower); return 0; } /* * split the node at the specified level in path in two. * The path is corrected to point to the appropriate node after the split * * Before splitting this tries to make some room in the node by pushing * left and right, if either one works, it returns right away. * * returns 0 on success and < 0 on failure */ static noinline int split_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *c; struct extent_buffer *split; struct btrfs_disk_key disk_key; int mid; int ret; u32 c_nritems; c = path->nodes[level]; WARN_ON(btrfs_header_generation(c) != trans->transid); if (c == root->node) { /* * trying to split the root, lets make a new one * * tree mod log: We don't log_removal old root in * insert_new_root, because that root buffer will be kept as a * normal node. We are going to log removal of half of the * elements below with btrfs_tree_mod_log_eb_copy(). We're * holding a tree lock on the buffer, which is why we cannot * race with other tree_mod_log users. */ ret = insert_new_root(trans, root, path, level + 1); if (ret) return ret; } else { ret = push_nodes_for_insert(trans, root, path, level); c = path->nodes[level]; if (!ret && btrfs_header_nritems(c) < BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) return 0; if (ret < 0) return ret; } c_nritems = btrfs_header_nritems(c); mid = (c_nritems + 1) / 2; btrfs_node_key(c, &disk_key, mid); split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), &disk_key, level, c->start, 0, 0, BTRFS_NESTING_SPLIT); if (IS_ERR(split)) return PTR_ERR(split); root_add_used_bytes(root); ASSERT(btrfs_header_level(c) == level); ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); if (ret) { btrfs_tree_unlock(split); free_extent_buffer(split); btrfs_abort_transaction(trans, ret); return ret; } copy_extent_buffer(split, c, btrfs_node_key_ptr_offset(split, 0), btrfs_node_key_ptr_offset(c, mid), (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); btrfs_set_header_nritems(split, c_nritems - mid); btrfs_set_header_nritems(c, mid); btrfs_mark_buffer_dirty(trans, c); btrfs_mark_buffer_dirty(trans, split); ret = insert_ptr(trans, path, &disk_key, split->start, path->slots[level + 1] + 1, level + 1); if (ret < 0) { btrfs_tree_unlock(split); free_extent_buffer(split); return ret; } if (path->slots[level] >= mid) { path->slots[level] -= mid; btrfs_tree_unlock(c); free_extent_buffer(c); path->nodes[level] = split; path->slots[level + 1] += 1; } else { btrfs_tree_unlock(split); free_extent_buffer(split); } return 0; } /* * how many bytes are required to store the items in a leaf. start * and nr indicate which items in the leaf to check. This totals up the * space used both by the item structs and the item data */ static int leaf_space_used(const struct extent_buffer *l, int start, int nr) { int data_len; int nritems = btrfs_header_nritems(l); int end = min(nritems, start + nr) - 1; if (!nr) return 0; data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); data_len = data_len - btrfs_item_offset(l, end); data_len += sizeof(struct btrfs_item) * nr; WARN_ON(data_len < 0); return data_len; } /* * The space between the end of the leaf items and * the start of the leaf data. IOW, how much room * the leaf has left for both items and data */ int btrfs_leaf_free_space(const struct extent_buffer *leaf) { struct btrfs_fs_info *fs_info = leaf->fs_info; int nritems = btrfs_header_nritems(leaf); int ret; ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); if (ret < 0) { btrfs_crit(fs_info, "leaf free space ret %d, leaf data size %lu, used %d nritems %d", ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), leaf_space_used(leaf, 0, nritems), nritems); } return ret; } /* * min slot controls the lowest index we're willing to push to the * right. We'll push up to and including min_slot, but no lower */ static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_path *path, int data_size, int empty, struct extent_buffer *right, int free_space, u32 left_nritems, u32 min_slot) { struct btrfs_fs_info *fs_info = right->fs_info; struct extent_buffer *left = path->nodes[0]; struct extent_buffer *upper = path->nodes[1]; struct btrfs_map_token token; struct btrfs_disk_key disk_key; int slot; u32 i; int push_space = 0; int push_items = 0; u32 nr; u32 right_nritems; u32 data_end; u32 this_item_size; if (empty) nr = 0; else nr = max_t(u32, 1, min_slot); if (path->slots[0] >= left_nritems) push_space += data_size; slot = path->slots[1]; i = left_nritems - 1; while (i >= nr) { if (!empty && push_items > 0) { if (path->slots[0] > i) break; if (path->slots[0] == i) { int space = btrfs_leaf_free_space(left); if (space + push_space * 2 > free_space) break; } } if (path->slots[0] == i) push_space += data_size; this_item_size = btrfs_item_size(left, i); if (this_item_size + sizeof(struct btrfs_item) + push_space > free_space) break; push_items++; push_space += this_item_size + sizeof(struct btrfs_item); if (i == 0) break; i--; } if (push_items == 0) goto out_unlock; WARN_ON(!empty && push_items == left_nritems); /* push left to right */ right_nritems = btrfs_header_nritems(right); push_space = btrfs_item_data_end(left, left_nritems - push_items); push_space -= leaf_data_end(left); /* make room in the right data area */ data_end = leaf_data_end(right); memmove_leaf_data(right, data_end - push_space, data_end, BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); /* copy from the left data area */ copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, leaf_data_end(left), push_space); memmove_leaf_items(right, push_items, 0, right_nritems); /* copy the items from left to right */ copy_leaf_items(right, left, 0, left_nritems - push_items, push_items); /* update the item pointers */ btrfs_init_map_token(&token, right); right_nritems += push_items; btrfs_set_header_nritems(right, right_nritems); push_space = BTRFS_LEAF_DATA_SIZE(fs_info); for (i = 0; i < right_nritems; i++) { push_space -= btrfs_token_item_size(&token, i); btrfs_set_token_item_offset(&token, i, push_space); } left_nritems -= push_items; btrfs_set_header_nritems(left, left_nritems); if (left_nritems) btrfs_mark_buffer_dirty(trans, left); else btrfs_clear_buffer_dirty(trans, left); btrfs_mark_buffer_dirty(trans, right); btrfs_item_key(right, &disk_key, 0); btrfs_set_node_key(upper, &disk_key, slot + 1); btrfs_mark_buffer_dirty(trans, upper); /* then fixup the leaf pointer in the path */ if (path->slots[0] >= left_nritems) { path->slots[0] -= left_nritems; if (btrfs_header_nritems(path->nodes[0]) == 0) btrfs_clear_buffer_dirty(trans, path->nodes[0]); btrfs_tree_unlock(path->nodes[0]); free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[1] += 1; } else { btrfs_tree_unlock(right); free_extent_buffer(right); } return 0; out_unlock: btrfs_tree_unlock(right); free_extent_buffer(right); return 1; } /* * push some data in the path leaf to the right, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise * * returns 1 if the push failed because the other node didn't have enough * room, 0 if everything worked out and < 0 if there were major errors. * * this will push starting from min_slot to the end of the leaf. It won't * push any slot lower than min_slot */ static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int min_data_size, int data_size, int empty, u32 min_slot) { struct extent_buffer *left = path->nodes[0]; struct extent_buffer *right; struct extent_buffer *upper; int slot; int free_space; u32 left_nritems; int ret; if (!path->nodes[1]) return 1; slot = path->slots[1]; upper = path->nodes[1]; if (slot >= btrfs_header_nritems(upper) - 1) return 1; btrfs_assert_tree_write_locked(path->nodes[1]); right = btrfs_read_node_slot(upper, slot + 1); if (IS_ERR(right)) return PTR_ERR(right); btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); free_space = btrfs_leaf_free_space(right); if (free_space < data_size) goto out_unlock; ret = btrfs_cow_block(trans, root, right, upper, slot + 1, &right, BTRFS_NESTING_RIGHT_COW); if (ret) goto out_unlock; left_nritems = btrfs_header_nritems(left); if (left_nritems == 0) goto out_unlock; if (check_sibling_keys(left, right)) { ret = -EUCLEAN; btrfs_abort_transaction(trans, ret); btrfs_tree_unlock(right); free_extent_buffer(right); return ret; } if (path->slots[0] == left_nritems && !empty) { /* Key greater than all keys in the leaf, right neighbor has * enough room for it and we're not emptying our leaf to delete * it, therefore use right neighbor to insert the new item and * no need to touch/dirty our left leaf. */ btrfs_tree_unlock(left); free_extent_buffer(left); path->nodes[0] = right; path->slots[0] = 0; path->slots[1]++; return 0; } return __push_leaf_right(trans, path, min_data_size, empty, right, free_space, left_nritems, min_slot); out_unlock: btrfs_tree_unlock(right); free_extent_buffer(right); return 1; } /* * push some data in the path leaf to the left, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise * * max_slot can put a limit on how far into the leaf we'll push items. The * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the * items */ static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_path *path, int data_size, int empty, struct extent_buffer *left, int free_space, u32 right_nritems, u32 max_slot) { struct btrfs_fs_info *fs_info = left->fs_info; struct btrfs_disk_key disk_key; struct extent_buffer *right = path->nodes[0]; int i; int push_space = 0; int push_items = 0; u32 old_left_nritems; u32 nr; int ret = 0; u32 this_item_size; u32 old_left_item_size; struct btrfs_map_token token; if (empty) nr = min(right_nritems, max_slot); else nr = min(right_nritems - 1, max_slot); for (i = 0; i < nr; i++) { if (!empty && push_items > 0) { if (path->slots[0] < i) break; if (path->slots[0] == i) { int space = btrfs_leaf_free_space(right); if (space + push_space * 2 > free_space) break; } } if (path->slots[0] == i) push_space += data_size; this_item_size = btrfs_item_size(right, i); if (this_item_size + sizeof(struct btrfs_item) + push_space > free_space) break; push_items++; push_space += this_item_size + sizeof(struct btrfs_item); } if (push_items == 0) { ret = 1; goto out; } WARN_ON(!empty && push_items == btrfs_header_nritems(right)); /* push data from right to left */ copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items); push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_offset(right, push_items - 1); copy_leaf_data(left, right, leaf_data_end(left) - push_space, btrfs_item_offset(right, push_items - 1), push_space); old_left_nritems = btrfs_header_nritems(left); BUG_ON(old_left_nritems <= 0); btrfs_init_map_token(&token, left); old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { u32 ioff; ioff = btrfs_token_item_offset(&token, i); btrfs_set_token_item_offset(&token, i, ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); } btrfs_set_header_nritems(left, old_left_nritems + push_items); /* fixup right node */ if (push_items > right_nritems) WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, right_nritems); if (push_items < right_nritems) { push_space = btrfs_item_offset(right, push_items - 1) - leaf_data_end(right); memmove_leaf_data(right, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, leaf_data_end(right), push_space); memmove_leaf_items(right, 0, push_items, btrfs_header_nritems(right) - push_items); } btrfs_init_map_token(&token, right); right_nritems -= push_items; btrfs_set_header_nritems(right, right_nritems); push_space = BTRFS_LEAF_DATA_SIZE(fs_info); for (i = 0; i < right_nritems; i++) { push_space = push_space - btrfs_token_item_size(&token, i); btrfs_set_token_item_offset(&token, i, push_space); } btrfs_mark_buffer_dirty(trans, left); if (right_nritems) btrfs_mark_buffer_dirty(trans, right); else btrfs_clear_buffer_dirty(trans, right); btrfs_item_key(right, &disk_key, 0); fixup_low_keys(trans, path, &disk_key, 1); /* then fixup the leaf pointer in the path */ if (path->slots[0] < push_items) { path->slots[0] += old_left_nritems; btrfs_tree_unlock(path->nodes[0]); free_extent_buffer(path->nodes[0]); path->nodes[0] = left; path->slots[1] -= 1; } else { btrfs_tree_unlock(left); free_extent_buffer(left); path->slots[0] -= push_items; } BUG_ON(path->slots[0] < 0); return ret; out: btrfs_tree_unlock(left); free_extent_buffer(left); return ret; } /* * push some data in the path leaf to the left, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise * * max_slot can put a limit on how far into the leaf we'll push items. The * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the * items */ static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int min_data_size, int data_size, int empty, u32 max_slot) { struct extent_buffer *right = path->nodes[0]; struct extent_buffer *left; int slot; int free_space; u32 right_nritems; int ret = 0; slot = path->slots[1]; if (slot == 0) return 1; if (!path->nodes[1]) return 1; right_nritems = btrfs_header_nritems(right); if (right_nritems == 0) return 1; btrfs_assert_tree_write_locked(path->nodes[1]); left = btrfs_read_node_slot(path->nodes[1], slot - 1); if (IS_ERR(left)) return PTR_ERR(left); btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); free_space = btrfs_leaf_free_space(left); if (free_space < data_size) { ret = 1; goto out; } ret = btrfs_cow_block(trans, root, left, path->nodes[1], slot - 1, &left, BTRFS_NESTING_LEFT_COW); if (ret) { /* we hit -ENOSPC, but it isn't fatal here */ if (ret == -ENOSPC) ret = 1; goto out; } if (check_sibling_keys(left, right)) { ret = -EUCLEAN; btrfs_abort_transaction(trans, ret); goto out; } return __push_leaf_left(trans, path, min_data_size, empty, left, free_space, right_nritems, max_slot); out: btrfs_tree_unlock(left); free_extent_buffer(left); return ret; } /* * split the path's leaf in two, making sure there is at least data_size * available for the resulting leaf level of the path. */ static noinline int copy_for_split(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct extent_buffer *l, struct extent_buffer *right, int slot, int mid, int nritems) { struct btrfs_fs_info *fs_info = trans->fs_info; int data_copy_size; int rt_data_off; int i; int ret; struct btrfs_disk_key disk_key; struct btrfs_map_token token; nritems = nritems - mid; btrfs_set_header_nritems(right, nritems); data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); copy_leaf_items(right, l, 0, mid, nritems); copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size, leaf_data_end(l), data_copy_size); rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); btrfs_init_map_token(&token, right); for (i = 0; i < nritems; i++) { u32 ioff; ioff = btrfs_token_item_offset(&token, i); btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); } btrfs_set_header_nritems(l, mid); btrfs_item_key(right, &disk_key, 0); ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); if (ret < 0) return ret; btrfs_mark_buffer_dirty(trans, right); btrfs_mark_buffer_dirty(trans, l); BUG_ON(path->slots[0] != slot); if (mid <= slot) { btrfs_tree_unlock(path->nodes[0]); free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[0] -= mid; path->slots[1] += 1; } else { btrfs_tree_unlock(right); free_extent_buffer(right); } BUG_ON(path->slots[0] < 0); return 0; } /* * double splits happen when we need to insert a big item in the middle * of a leaf. A double split can leave us with 3 mostly empty leaves: * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] * A B C * * We avoid this by trying to push the items on either side of our target * into the adjacent leaves. If all goes well we can avoid the double split * completely. */ static noinline int push_for_double_split(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int data_size) { int ret; int progress = 0; int slot; u32 nritems; int space_needed = data_size; slot = path->slots[0]; if (slot < btrfs_header_nritems(path->nodes[0])) space_needed -= btrfs_leaf_free_space(path->nodes[0]); /* * try to push all the items after our slot into the * right leaf */ ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); if (ret < 0) return ret; if (ret == 0) progress++; nritems = btrfs_header_nritems(path->nodes[0]); /* * our goal is to get our slot at the start or end of a leaf. If * we've done so we're done */ if (path->slots[0] == 0 || path->slots[0] == nritems) return 0; if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) return 0; /* try to push all the items before our slot into the next leaf */ slot = path->slots[0]; space_needed = data_size; if (slot > 0) space_needed -= btrfs_leaf_free_space(path->nodes[0]); ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); if (ret < 0) return ret; if (ret == 0) progress++; if (progress) return 0; return 1; } /* * split the path's leaf in two, making sure there is at least data_size * available for the resulting leaf level of the path. * * returns 0 if all went well and < 0 on failure. */ static noinline int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *ins_key, struct btrfs_path *path, int data_size, int extend) { struct btrfs_disk_key disk_key; struct extent_buffer *l; u32 nritems; int mid; int slot; struct extent_buffer *right; struct btrfs_fs_info *fs_info = root->fs_info; int ret = 0; int wret; int split; int num_doubles = 0; int tried_avoid_double = 0; l = path->nodes[0]; slot = path->slots[0]; if (extend && data_size + btrfs_item_size(l, slot) + sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) return -EOVERFLOW; /* first try to make some room by pushing left and right */ if (data_size && path->nodes[1]) { int space_needed = data_size; if (slot < btrfs_header_nritems(l)) space_needed -= btrfs_leaf_free_space(l); wret = push_leaf_right(trans, root, path, space_needed, space_needed, 0, 0); if (wret < 0) return wret; if (wret) { space_needed = data_size; if (slot > 0) space_needed -= btrfs_leaf_free_space(l); wret = push_leaf_left(trans, root, path, space_needed, space_needed, 0, (u32)-1); if (wret < 0) return wret; } l = path->nodes[0]; /* did the pushes work? */ if (btrfs_leaf_free_space(l) >= data_size) return 0; } if (!path->nodes[1]) { ret = insert_new_root(trans, root, path, 1); if (ret) return ret; } again: split = 1; l = path->nodes[0]; slot = path->slots[0]; nritems = btrfs_header_nritems(l); mid = (nritems + 1) / 2; if (mid <= slot) { if (nritems == 1 || leaf_space_used(l, mid, nritems - mid) + data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { if (slot >= nritems) { split = 0; } else { mid = slot; if (mid != nritems && leaf_space_used(l, mid, nritems - mid) + data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { if (data_size && !tried_avoid_double) goto push_for_double; split = 2; } } } } else { if (leaf_space_used(l, 0, mid) + data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { if (!extend && data_size && slot == 0) { split = 0; } else if ((extend || !data_size) && slot == 0) { mid = 1; } else { mid = slot; if (mid != nritems && leaf_space_used(l, mid, nritems - mid) + data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { if (data_size && !tried_avoid_double) goto push_for_double; split = 2; } } } } if (split == 0) btrfs_cpu_key_to_disk(&disk_key, ins_key); else btrfs_item_key(l, &disk_key, mid); /* * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES * subclasses, which is 8 at the time of this patch, and we've maxed it * out. In the future we could add a * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just * use BTRFS_NESTING_NEW_ROOT. */ right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), &disk_key, 0, l->start, 0, 0, num_doubles ? BTRFS_NESTING_NEW_ROOT : BTRFS_NESTING_SPLIT); if (IS_ERR(right)) return PTR_ERR(right); root_add_used_bytes(root); if (split == 0) { if (mid <= slot) { btrfs_set_header_nritems(right, 0); ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); if (ret < 0) { btrfs_tree_unlock(right); free_extent_buffer(right); return ret; } btrfs_tree_unlock(path->nodes[0]); free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[0] = 0; path->slots[1] += 1; } else { btrfs_set_header_nritems(right, 0); ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1], 1); if (ret < 0) { btrfs_tree_unlock(right); free_extent_buffer(right); return ret; } btrfs_tree_unlock(path->nodes[0]); free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[0] = 0; if (path->slots[1] == 0) fixup_low_keys(trans, path, &disk_key, 1); } /* * We create a new leaf 'right' for the required ins_len and * we'll do btrfs_mark_buffer_dirty() on this leaf after copying * the content of ins_len to 'right'. */ return ret; } ret = copy_for_split(trans, path, l, right, slot, mid, nritems); if (ret < 0) { btrfs_tree_unlock(right); free_extent_buffer(right); return ret; } if (split == 2) { BUG_ON(num_doubles != 0); num_doubles++; goto again; } return 0; push_for_double: push_for_double_split(trans, root, path, data_size); tried_avoid_double = 1; if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) return 0; goto again; } static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int ins_len) { struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; u64 extent_len = 0; u32 item_size; int ret; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && key.type != BTRFS_EXTENT_CSUM_KEY); if (btrfs_leaf_free_space(leaf) >= ins_len) return 0; item_size = btrfs_item_size(leaf, path->slots[0]); if (key.type == BTRFS_EXTENT_DATA_KEY) { fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); extent_len = btrfs_file_extent_num_bytes(leaf, fi); } btrfs_release_path(path); path->keep_locks = 1; path->search_for_split = 1; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); path->search_for_split = 0; if (ret > 0) ret = -EAGAIN; if (ret < 0) goto err; ret = -EAGAIN; leaf = path->nodes[0]; /* if our item isn't there, return now */ if (item_size != btrfs_item_size(leaf, path->slots[0])) goto err; /* the leaf has changed, it now has room. return now */ if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) goto err; if (key.type == BTRFS_EXTENT_DATA_KEY) { fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) goto err; } ret = split_leaf(trans, root, &key, path, ins_len, 1); if (ret) goto err; path->keep_locks = 0; btrfs_unlock_up_safe(path, 1); return 0; err: path->keep_locks = 0; return ret; } static noinline int split_item(struct btrfs_trans_handle *trans, struct btrfs_path *path, const struct btrfs_key *new_key, unsigned long split_offset) { struct extent_buffer *leaf; int orig_slot, slot; char *buf; u32 nritems; u32 item_size; u32 orig_offset; struct btrfs_disk_key disk_key; leaf = path->nodes[0]; /* * Shouldn't happen because the caller must have previously called * setup_leaf_for_split() to make room for the new item in the leaf. */ if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item))) return -ENOSPC; orig_slot = path->slots[0]; orig_offset = btrfs_item_offset(leaf, path->slots[0]); item_size = btrfs_item_size(leaf, path->slots[0]); buf = kmalloc(item_size, GFP_NOFS); if (!buf) return -ENOMEM; read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, path->slots[0]), item_size); slot = path->slots[0] + 1; nritems = btrfs_header_nritems(leaf); if (slot != nritems) { /* shift the items */ memmove_leaf_items(leaf, slot + 1, slot, nritems - slot); } btrfs_cpu_key_to_disk(&disk_key, new_key); btrfs_set_item_key(leaf, &disk_key, slot); btrfs_set_item_offset(leaf, slot, orig_offset); btrfs_set_item_size(leaf, slot, item_size - split_offset); btrfs_set_item_offset(leaf, orig_slot, orig_offset + item_size - split_offset); btrfs_set_item_size(leaf, orig_slot, split_offset); btrfs_set_header_nritems(leaf, nritems + 1); /* write the data for the start of the original item */ write_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, path->slots[0]), split_offset); /* write the data for the new item */ write_extent_buffer(leaf, buf + split_offset, btrfs_item_ptr_offset(leaf, slot), item_size - split_offset); btrfs_mark_buffer_dirty(trans, leaf); BUG_ON(btrfs_leaf_free_space(leaf) < 0); kfree(buf); return 0; } /* * This function splits a single item into two items, * giving 'new_key' to the new item and splitting the * old one at split_offset (from the start of the item). * * The path may be released by this operation. After * the split, the path is pointing to the old item. The * new item is going to be in the same node as the old one. * * Note, the item being split must be smaller enough to live alone on * a tree block with room for one extra struct btrfs_item * * This allows us to split the item in place, keeping a lock on the * leaf the entire time. */ int btrfs_split_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *new_key, unsigned long split_offset) { int ret; ret = setup_leaf_for_split(trans, root, path, sizeof(struct btrfs_item)); if (ret) return ret; ret = split_item(trans, path, new_key, split_offset); return ret; } /* * make the item pointed to by the path smaller. new_size indicates * how small to make it, and from_end tells us if we just chop bytes * off the end of the item or if we shift the item to chop bytes off * the front. */ void btrfs_truncate_item(struct btrfs_trans_handle *trans, const struct btrfs_path *path, u32 new_size, int from_end) { int slot; struct extent_buffer *leaf; u32 nritems; unsigned int data_end; unsigned int old_data_start; unsigned int old_size; unsigned int size_diff; int i; struct btrfs_map_token token; leaf = path->nodes[0]; slot = path->slots[0]; old_size = btrfs_item_size(leaf, slot); if (old_size == new_size) return; nritems = btrfs_header_nritems(leaf); data_end = leaf_data_end(leaf); old_data_start = btrfs_item_offset(leaf, slot); size_diff = old_size - new_size; BUG_ON(slot < 0); BUG_ON(slot >= nritems); /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ btrfs_init_map_token(&token, leaf); for (i = slot; i < nritems; i++) { u32 ioff; ioff = btrfs_token_item_offset(&token, i); btrfs_set_token_item_offset(&token, i, ioff + size_diff); } /* shift the data */ if (from_end) { memmove_leaf_data(leaf, data_end + size_diff, data_end, old_data_start + new_size - data_end); } else { struct btrfs_disk_key disk_key; u64 offset; btrfs_item_key(leaf, &disk_key, slot); if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { unsigned long ptr; struct btrfs_file_extent_item *fi; fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); fi = (struct btrfs_file_extent_item *)( (unsigned long)fi - size_diff); if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { ptr = btrfs_item_ptr_offset(leaf, slot); memmove_extent_buffer(leaf, ptr, (unsigned long)fi, BTRFS_FILE_EXTENT_INLINE_DATA_START); } } memmove_leaf_data(leaf, data_end + size_diff, data_end, old_data_start - data_end); offset = btrfs_disk_key_offset(&disk_key); btrfs_set_disk_key_offset(&disk_key, offset + size_diff); btrfs_set_item_key(leaf, &disk_key, slot); if (slot == 0) fixup_low_keys(trans, path, &disk_key, 1); } btrfs_set_item_size(leaf, slot, new_size); btrfs_mark_buffer_dirty(trans, leaf); if (btrfs_leaf_free_space(leaf) < 0) { btrfs_print_leaf(leaf); BUG(); } } /* * make the item pointed to by the path bigger, data_size is the added size. */ void btrfs_extend_item(struct btrfs_trans_handle *trans, const struct btrfs_path *path, u32 data_size) { int slot; struct extent_buffer *leaf; u32 nritems; unsigned int data_end; unsigned int old_data; unsigned int old_size; int i; struct btrfs_map_token token; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); data_end = leaf_data_end(leaf); if (btrfs_leaf_free_space(leaf) < data_size) { btrfs_print_leaf(leaf); BUG(); } slot = path->slots[0]; old_data = btrfs_item_data_end(leaf, slot); BUG_ON(slot < 0); if (slot >= nritems) { btrfs_print_leaf(leaf); btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", slot, nritems); BUG(); } /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ btrfs_init_map_token(&token, leaf); for (i = slot; i < nritems; i++) { u32 ioff; ioff = btrfs_token_item_offset(&token, i); btrfs_set_token_item_offset(&token, i, ioff - data_size); } /* shift the data */ memmove_leaf_data(leaf, data_end - data_size, data_end, old_data - data_end); data_end = old_data; old_size = btrfs_item_size(leaf, slot); btrfs_set_item_size(leaf, slot, old_size + data_size); btrfs_mark_buffer_dirty(trans, leaf); if (btrfs_leaf_free_space(leaf) < 0) { btrfs_print_leaf(leaf); BUG(); } } /* * Make space in the node before inserting one or more items. * * @trans: transaction handle * @root: root we are inserting items to * @path: points to the leaf/slot where we are going to insert new items * @batch: information about the batch of items to insert * * Main purpose is to save stack depth by doing the bulk of the work in a * function that doesn't call btrfs_search_slot */ static void setup_items_for_insert(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_item_batch *batch) { struct btrfs_fs_info *fs_info = root->fs_info; int i; u32 nritems; unsigned int data_end; struct btrfs_disk_key disk_key; struct extent_buffer *leaf; int slot; struct btrfs_map_token token; u32 total_size; /* * Before anything else, update keys in the parent and other ancestors * if needed, then release the write locks on them, so that other tasks * can use them while we modify the leaf. */ if (path->slots[0] == 0) { btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); fixup_low_keys(trans, path, &disk_key, 1); } btrfs_unlock_up_safe(path, 1); leaf = path->nodes[0]; slot = path->slots[0]; nritems = btrfs_header_nritems(leaf); data_end = leaf_data_end(leaf); total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); if (btrfs_leaf_free_space(leaf) < total_size) { btrfs_print_leaf(leaf); btrfs_crit(fs_info, "not enough freespace need %u have %d", total_size, btrfs_leaf_free_space(leaf)); BUG(); } btrfs_init_map_token(&token, leaf); if (slot != nritems) { unsigned int old_data = btrfs_item_data_end(leaf, slot); if (old_data < data_end) { btrfs_print_leaf(leaf); btrfs_crit(fs_info, "item at slot %d with data offset %u beyond data end of leaf %u", slot, old_data, data_end); BUG(); } /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ for (i = slot; i < nritems; i++) { u32 ioff; ioff = btrfs_token_item_offset(&token, i); btrfs_set_token_item_offset(&token, i, ioff - batch->total_data_size); } /* shift the items */ memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot); /* shift the data */ memmove_leaf_data(leaf, data_end - batch->total_data_size, data_end, old_data - data_end); data_end = old_data; } /* setup the item for the new data */ for (i = 0; i < batch->nr; i++) { btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); btrfs_set_item_key(leaf, &disk_key, slot + i); data_end -= batch->data_sizes[i]; btrfs_set_token_item_offset(&token, slot + i, data_end); btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); } btrfs_set_header_nritems(leaf, nritems + batch->nr); btrfs_mark_buffer_dirty(trans, leaf); if (btrfs_leaf_free_space(leaf) < 0) { btrfs_print_leaf(leaf); BUG(); } } /* * Insert a new item into a leaf. * * @trans: Transaction handle. * @root: The root of the btree. * @path: A path pointing to the target leaf and slot. * @key: The key of the new item. * @data_size: The size of the data associated with the new key. */ void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *key, u32 data_size) { struct btrfs_item_batch batch; batch.keys = key; batch.data_sizes = &data_size; batch.total_data_size = data_size; batch.nr = 1; setup_items_for_insert(trans, root, path, &batch); } /* * Given a key and some data, insert items into the tree. * This does all the path init required, making room in the tree if needed. * * Returns: 0 on success * -EEXIST if the first key already exists * < 0 on other errors */ int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_item_batch *batch) { int ret = 0; int slot; u32 total_size; total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); if (ret == 0) return -EEXIST; if (ret < 0) return ret; slot = path->slots[0]; BUG_ON(slot < 0); setup_items_for_insert(trans, root, path, batch); return 0; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *cpu_key, void *data, u32 data_size) { int ret = 0; struct btrfs_path *path; struct extent_buffer *leaf; unsigned long ptr; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); if (!ret) { leaf = path->nodes[0]; ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); write_extent_buffer(leaf, data, ptr, data_size); btrfs_mark_buffer_dirty(trans, leaf); } btrfs_free_path(path); return ret; } /* * This function duplicates an item, giving 'new_key' to the new item. * It guarantees both items live in the same tree leaf and the new item is * contiguous with the original item. * * This allows us to split a file extent in place, keeping a lock on the leaf * the entire time. */ int btrfs_duplicate_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *new_key) { struct extent_buffer *leaf; int ret; u32 item_size; leaf = path->nodes[0]; item_size = btrfs_item_size(leaf, path->slots[0]); ret = setup_leaf_for_split(trans, root, path, item_size + sizeof(struct btrfs_item)); if (ret) return ret; path->slots[0]++; btrfs_setup_item_for_insert(trans, root, path, new_key, item_size); leaf = path->nodes[0]; memcpy_extent_buffer(leaf, btrfs_item_ptr_offset(leaf, path->slots[0]), btrfs_item_ptr_offset(leaf, path->slots[0] - 1), item_size); return 0; } /* * delete the pointer from a given node. * * the tree should have been previously balanced so the deletion does not * empty a node. * * This is exported for use inside btrfs-progs, don't un-export it. */ int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level, int slot) { struct extent_buffer *parent = path->nodes[level]; u32 nritems; int ret; nritems = btrfs_header_nritems(parent); if (slot != nritems - 1) { if (level) { ret = btrfs_tree_mod_log_insert_move(parent, slot, slot + 1, nritems - slot - 1); if (ret < 0) { btrfs_abort_transaction(trans, ret); return ret; } } memmove_extent_buffer(parent, btrfs_node_key_ptr_offset(parent, slot), btrfs_node_key_ptr_offset(parent, slot + 1), sizeof(struct btrfs_key_ptr) * (nritems - slot - 1)); } else if (level) { ret = btrfs_tree_mod_log_insert_key(parent, slot, BTRFS_MOD_LOG_KEY_REMOVE); if (ret < 0) { btrfs_abort_transaction(trans, ret); return ret; } } nritems--; btrfs_set_header_nritems(parent, nritems); if (nritems == 0 && parent == root->node) { BUG_ON(btrfs_header_level(root->node) != 1); /* just turn the root into a leaf and break */ btrfs_set_header_level(root->node, 0); } else if (slot == 0) { struct btrfs_disk_key disk_key; btrfs_node_key(parent, &disk_key, 0); fixup_low_keys(trans, path, &disk_key, level + 1); } btrfs_mark_buffer_dirty(trans, parent); return 0; } /* * a helper function to delete the leaf pointed to by path->slots[1] and * path->nodes[1]. * * This deletes the pointer in path->nodes[1] and frees the leaf * block extent. zero is returned if it all worked out, < 0 otherwise. * * The path must have already been setup for deleting the leaf, including * all the proper balancing. path->nodes[1] must be locked. */ static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct extent_buffer *leaf) { int ret; WARN_ON(btrfs_header_generation(leaf) != trans->transid); ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]); if (ret < 0) return ret; /* * btrfs_free_extent is expensive, we want to make sure we * aren't holding any locks when we call it */ btrfs_unlock_up_safe(path, 0); root_sub_used_bytes(root); atomic_inc(&leaf->refs); ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); free_extent_buffer_stale(leaf); if (ret < 0) btrfs_abort_transaction(trans, ret); return ret; } /* * delete the item at the leaf level in path. If that empties * the leaf, remove it from the tree */ int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int slot, int nr) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *leaf; int ret = 0; int wret; u32 nritems; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); if (slot + nr != nritems) { const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); const int data_end = leaf_data_end(leaf); struct btrfs_map_token token; u32 dsize = 0; int i; for (i = 0; i < nr; i++) dsize += btrfs_item_size(leaf, slot + i); memmove_leaf_data(leaf, data_end + dsize, data_end, last_off - data_end); btrfs_init_map_token(&token, leaf); for (i = slot + nr; i < nritems; i++) { u32 ioff; ioff = btrfs_token_item_offset(&token, i); btrfs_set_token_item_offset(&token, i, ioff + dsize); } memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr); } btrfs_set_header_nritems(leaf, nritems - nr); nritems -= nr; /* delete the leaf if we've emptied it */ if (nritems == 0) { if (leaf == root->node) { btrfs_set_header_level(leaf, 0); } else { btrfs_clear_buffer_dirty(trans, leaf); ret = btrfs_del_leaf(trans, root, path, leaf); if (ret < 0) return ret; } } else { int used = leaf_space_used(leaf, 0, nritems); if (slot == 0) { struct btrfs_disk_key disk_key; btrfs_item_key(leaf, &disk_key, 0); fixup_low_keys(trans, path, &disk_key, 1); } /* * Try to delete the leaf if it is mostly empty. We do this by * trying to move all its items into its left and right neighbours. * If we can't move all the items, then we don't delete it - it's * not ideal, but future insertions might fill the leaf with more * items, or items from other leaves might be moved later into our * leaf due to deletions on those leaves. */ if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { u32 min_push_space; /* push_leaf_left fixes the path. * make sure the path still points to our leaf * for possible call to btrfs_del_ptr below */ slot = path->slots[1]; atomic_inc(&leaf->refs); /* * We want to be able to at least push one item to the * left neighbour leaf, and that's the first item. */ min_push_space = sizeof(struct btrfs_item) + btrfs_item_size(leaf, 0); wret = push_leaf_left(trans, root, path, 0, min_push_space, 1, (u32)-1); if (wret < 0 && wret != -ENOSPC) ret = wret; if (path->nodes[0] == leaf && btrfs_header_nritems(leaf)) { /* * If we were not able to push all items from our * leaf to its left neighbour, then attempt to * either push all the remaining items to the * right neighbour or none. There's no advantage * in pushing only some items, instead of all, as * it's pointless to end up with a leaf having * too few items while the neighbours can be full * or nearly full. */ nritems = btrfs_header_nritems(leaf); min_push_space = leaf_space_used(leaf, 0, nritems); wret = push_leaf_right(trans, root, path, 0, min_push_space, 1, 0); if (wret < 0 && wret != -ENOSPC) ret = wret; } if (btrfs_header_nritems(leaf) == 0) { path->slots[1] = slot; ret = btrfs_del_leaf(trans, root, path, leaf); if (ret < 0) return ret; free_extent_buffer(leaf); ret = 0; } else { /* if we're still in the path, make sure * we're dirty. Otherwise, one of the * push_leaf functions must have already * dirtied this buffer */ if (path->nodes[0] == leaf) btrfs_mark_buffer_dirty(trans, leaf); free_extent_buffer(leaf); } } else { btrfs_mark_buffer_dirty(trans, leaf); } } return ret; } /* * A helper function to walk down the tree starting at min_key, and looking * for nodes or leaves that are have a minimum transaction id. * This is used by the btree defrag code, and tree logging * * This does not cow, but it does stuff the starting key it finds back * into min_key, so you can call btrfs_search_slot with cow=1 on the * key and get a writable path. * * This honors path->lowest_level to prevent descent past a given level * of the tree. * * min_trans indicates the oldest transaction that you are interested * in walking through. Any nodes or leaves older than min_trans are * skipped over (without reading them). * * returns zero if something useful was found, < 0 on error and 1 if there * was nothing in the tree that matched the search criteria. */ int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, struct btrfs_path *path, u64 min_trans) { struct extent_buffer *cur; struct btrfs_key found_key; int slot; int sret; u32 nritems; int level; int ret = 1; int keep_locks = path->keep_locks; ASSERT(!path->nowait); path->keep_locks = 1; again: cur = btrfs_read_lock_root_node(root); level = btrfs_header_level(cur); WARN_ON(path->nodes[level]); path->nodes[level] = cur; path->locks[level] = BTRFS_READ_LOCK; if (btrfs_header_generation(cur) < min_trans) { ret = 1; goto out; } while (1) { nritems = btrfs_header_nritems(cur); level = btrfs_header_level(cur); sret = btrfs_bin_search(cur, 0, min_key, &slot); if (sret < 0) { ret = sret; goto out; } /* at the lowest level, we're done, setup the path and exit */ if (level == path->lowest_level) { if (slot >= nritems) goto find_next_key; ret = 0; path->slots[level] = slot; btrfs_item_key_to_cpu(cur, &found_key, slot); goto out; } if (sret && slot > 0) slot--; /* * check this node pointer against the min_trans parameters. * If it is too old, skip to the next one. */ while (slot < nritems) { u64 gen; gen = btrfs_node_ptr_generation(cur, slot); if (gen < min_trans) { slot++; continue; } break; } find_next_key: /* * we didn't find a candidate key in this node, walk forward * and find another one */ if (slot >= nritems) { path->slots[level] = slot; sret = btrfs_find_next_key(root, path, min_key, level, min_trans); if (sret == 0) { btrfs_release_path(path); goto again; } else { goto out; } } /* save our key for returning back */ btrfs_node_key_to_cpu(cur, &found_key, slot); path->slots[level] = slot; if (level == path->lowest_level) { ret = 0; goto out; } cur = btrfs_read_node_slot(cur, slot); if (IS_ERR(cur)) { ret = PTR_ERR(cur); goto out; } btrfs_tree_read_lock(cur); path->locks[level - 1] = BTRFS_READ_LOCK; path->nodes[level - 1] = cur; unlock_up(path, level, 1, 0, NULL); } out: path->keep_locks = keep_locks; if (ret == 0) { btrfs_unlock_up_safe(path, path->lowest_level + 1); memcpy(min_key, &found_key, sizeof(found_key)); } return ret; } /* * this is similar to btrfs_next_leaf, but does not try to preserve * and fixup the path. It looks for and returns the next key in the * tree based on the current path and the min_trans parameters. * * 0 is returned if another key is found, < 0 if there are any errors * and 1 is returned if there are no higher keys in the tree * * path->keep_locks should be set to 1 on the search made before * calling this function. */ int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, int level, u64 min_trans) { int slot; struct extent_buffer *c; WARN_ON(!path->keep_locks && !path->skip_locking); while (level < BTRFS_MAX_LEVEL) { if (!path->nodes[level]) return 1; slot = path->slots[level] + 1; c = path->nodes[level]; next: if (slot >= btrfs_header_nritems(c)) { int ret; int orig_lowest; struct btrfs_key cur_key; if (level + 1 >= BTRFS_MAX_LEVEL || !path->nodes[level + 1]) return 1; if (path->locks[level + 1] || path->skip_locking) { level++; continue; } slot = btrfs_header_nritems(c) - 1; if (level == 0) btrfs_item_key_to_cpu(c, &cur_key, slot); else btrfs_node_key_to_cpu(c, &cur_key, slot); orig_lowest = path->lowest_level; btrfs_release_path(path); path->lowest_level = level; ret = btrfs_search_slot(NULL, root, &cur_key, path, 0, 0); path->lowest_level = orig_lowest; if (ret < 0) return ret; c = path->nodes[level]; slot = path->slots[level]; if (ret == 0) slot++; goto next; } if (level == 0) btrfs_item_key_to_cpu(c, key, slot); else { u64 gen = btrfs_node_ptr_generation(c, slot); if (gen < min_trans) { slot++; goto next; } btrfs_node_key_to_cpu(c, key, slot); } return 0; } return 1; } int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) { int slot; int level; struct extent_buffer *c; struct extent_buffer *next; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key key; bool need_commit_sem = false; u32 nritems; int ret; int i; /* * The nowait semantics are used only for write paths, where we don't * use the tree mod log and sequence numbers. */ if (time_seq) ASSERT(!path->nowait); nritems = btrfs_header_nritems(path->nodes[0]); if (nritems == 0) return 1; btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); again: level = 1; next = NULL; btrfs_release_path(path); path->keep_locks = 1; if (time_seq) { ret = btrfs_search_old_slot(root, &key, path, time_seq); } else { if (path->need_commit_sem) { path->need_commit_sem = 0; need_commit_sem = true; if (path->nowait) { if (!down_read_trylock(&fs_info->commit_root_sem)) { ret = -EAGAIN; goto done; } } else { down_read(&fs_info->commit_root_sem); } } ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); } path->keep_locks = 0; if (ret < 0) goto done; nritems = btrfs_header_nritems(path->nodes[0]); /* * by releasing the path above we dropped all our locks. A balance * could have added more items next to the key that used to be * at the very end of the block. So, check again here and * advance the path if there are now more items available. */ if (nritems > 0 && path->slots[0] < nritems - 1) { if (ret == 0) path->slots[0]++; ret = 0; goto done; } /* * So the above check misses one case: * - after releasing the path above, someone has removed the item that * used to be at the very end of the block, and balance between leafs * gets another one with bigger key.offset to replace it. * * This one should be returned as well, or we can get leaf corruption * later(esp. in __btrfs_drop_extents()). * * And a bit more explanation about this check, * with ret > 0, the key isn't found, the path points to the slot * where it should be inserted, so the path->slots[0] item must be the * bigger one. */ if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { ret = 0; goto done; } while (level < BTRFS_MAX_LEVEL) { if (!path->nodes[level]) { ret = 1; goto done; } slot = path->slots[level] + 1; c = path->nodes[level]; if (slot >= btrfs_header_nritems(c)) { level++; if (level == BTRFS_MAX_LEVEL) { ret = 1; goto done; } continue; } /* * Our current level is where we're going to start from, and to * make sure lockdep doesn't complain we need to drop our locks * and nodes from 0 to our current level. */ for (i = 0; i < level; i++) { if (path->locks[level]) { btrfs_tree_read_unlock(path->nodes[i]); path->locks[i] = 0; } free_extent_buffer(path->nodes[i]); path->nodes[i] = NULL; } next = c; ret = read_block_for_search(root, path, &next, level, slot, &key); if (ret == -EAGAIN && !path->nowait) goto again; if (ret < 0) { btrfs_release_path(path); goto done; } if (!path->skip_locking) { ret = btrfs_try_tree_read_lock(next); if (!ret && path->nowait) { ret = -EAGAIN; goto done; } if (!ret && time_seq) { /* * If we don't get the lock, we may be racing * with push_leaf_left, holding that lock while * itself waiting for the leaf we've currently * locked. To solve this situation, we give up * on our lock and cycle. */ free_extent_buffer(next); btrfs_release_path(path); cond_resched(); goto again; } if (!ret) btrfs_tree_read_lock(next); } break; } path->slots[level] = slot; while (1) { level--; path->nodes[level] = next; path->slots[level] = 0; if (!path->skip_locking) path->locks[level] = BTRFS_READ_LOCK; if (!level) break; ret = read_block_for_search(root, path, &next, level, 0, &key); if (ret == -EAGAIN && !path->nowait) goto again; if (ret < 0) { btrfs_release_path(path); goto done; } if (!path->skip_locking) { if (path->nowait) { if (!btrfs_try_tree_read_lock(next)) { ret = -EAGAIN; goto done; } } else { btrfs_tree_read_lock(next); } } } ret = 0; done: unlock_up(path, 0, 1, 0, NULL); if (need_commit_sem) { int ret2; path->need_commit_sem = 1; ret2 = finish_need_commit_sem_search(path); up_read(&fs_info->commit_root_sem); if (ret2) ret = ret2; } return ret; } int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) { path->slots[0]++; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) return btrfs_next_old_leaf(root, path, time_seq); return 0; } /* * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps * searching until it gets past min_objectid or finds an item of 'type' * * returns 0 if something is found, 1 if nothing was found and < 0 on error */ int btrfs_previous_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid, int type) { struct btrfs_key found_key; struct extent_buffer *leaf; u32 nritems; int ret; while (1) { if (path->slots[0] == 0) { ret = btrfs_prev_leaf(root, path); if (ret != 0) return ret; } else { path->slots[0]--; } leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); if (nritems == 0) return 1; if (path->slots[0] == nritems) path->slots[0]--; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid < min_objectid) break; if (found_key.type == type) return 0; if (found_key.objectid == min_objectid && found_key.type < type) break; } return 1; } /* * search in extent tree to find a previous Metadata/Data extent item with * min objecitd. * * returns 0 if something is found, 1 if nothing was found and < 0 on error */ int btrfs_previous_extent_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid) { struct btrfs_key found_key; struct extent_buffer *leaf; u32 nritems; int ret; while (1) { if (path->slots[0] == 0) { ret = btrfs_prev_leaf(root, path); if (ret != 0) return ret; } else { path->slots[0]--; } leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); if (nritems == 0) return 1; if (path->slots[0] == nritems) path->slots[0]--; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid < min_objectid) break; if (found_key.type == BTRFS_EXTENT_ITEM_KEY || found_key.type == BTRFS_METADATA_ITEM_KEY) return 0; if (found_key.objectid == min_objectid && found_key.type < BTRFS_EXTENT_ITEM_KEY) break; } return 1; } int __init btrfs_ctree_init(void) { btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0); if (!btrfs_path_cachep) return -ENOMEM; return 0; } void __cold btrfs_ctree_exit(void) { kmem_cache_destroy(btrfs_path_cachep); } |
79 1603 30 4762 4746 18 292 4747 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright 2019 Google LLC */ #ifndef __LINUX_BLK_CRYPTO_INTERNAL_H #define __LINUX_BLK_CRYPTO_INTERNAL_H #include <linux/bio.h> #include <linux/blk-mq.h> /* Represents a crypto mode supported by blk-crypto */ struct blk_crypto_mode { const char *name; /* name of this mode, shown in sysfs */ const char *cipher_str; /* crypto API name (for fallback case) */ unsigned int keysize; /* key size in bytes */ unsigned int ivsize; /* iv size in bytes */ }; extern const struct blk_crypto_mode blk_crypto_modes[]; #ifdef CONFIG_BLK_INLINE_ENCRYPTION int blk_crypto_sysfs_register(struct gendisk *disk); void blk_crypto_sysfs_unregister(struct gendisk *disk); void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], unsigned int inc); bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio); bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, struct bio_crypt_ctx *bc2); static inline bool bio_crypt_ctx_back_mergeable(struct request *req, struct bio *bio) { return bio_crypt_ctx_mergeable(req->crypt_ctx, blk_rq_bytes(req), bio->bi_crypt_context); } static inline bool bio_crypt_ctx_front_mergeable(struct request *req, struct bio *bio) { return bio_crypt_ctx_mergeable(bio->bi_crypt_context, bio->bi_iter.bi_size, req->crypt_ctx); } static inline bool bio_crypt_ctx_merge_rq(struct request *req, struct request *next) { return bio_crypt_ctx_mergeable(req->crypt_ctx, blk_rq_bytes(req), next->crypt_ctx); } static inline void blk_crypto_rq_set_defaults(struct request *rq) { rq->crypt_ctx = NULL; rq->crypt_keyslot = NULL; } static inline bool blk_crypto_rq_is_encrypted(struct request *rq) { return rq->crypt_ctx; } static inline bool blk_crypto_rq_has_keyslot(struct request *rq) { return rq->crypt_keyslot; } blk_status_t blk_crypto_get_keyslot(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, struct blk_crypto_keyslot **slot_ptr); void blk_crypto_put_keyslot(struct blk_crypto_keyslot *slot); int __blk_crypto_evict_key(struct blk_crypto_profile *profile, const struct blk_crypto_key *key); bool __blk_crypto_cfg_supported(struct blk_crypto_profile *profile, const struct blk_crypto_config *cfg); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline int blk_crypto_sysfs_register(struct gendisk *disk) { return 0; } static inline void blk_crypto_sysfs_unregister(struct gendisk *disk) { } static inline bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) { return true; } static inline bool bio_crypt_ctx_front_mergeable(struct request *req, struct bio *bio) { return true; } static inline bool bio_crypt_ctx_back_mergeable(struct request *req, struct bio *bio) { return true; } static inline bool bio_crypt_ctx_merge_rq(struct request *req, struct request *next) { return true; } static inline void blk_crypto_rq_set_defaults(struct request *rq) { } static inline bool blk_crypto_rq_is_encrypted(struct request *rq) { return false; } static inline bool blk_crypto_rq_has_keyslot(struct request *rq) { return false; } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ void __bio_crypt_advance(struct bio *bio, unsigned int bytes); static inline void bio_crypt_advance(struct bio *bio, unsigned int bytes) { if (bio_has_crypt_ctx(bio)) __bio_crypt_advance(bio, bytes); } void __bio_crypt_free_ctx(struct bio *bio); static inline void bio_crypt_free_ctx(struct bio *bio) { if (bio_has_crypt_ctx(bio)) __bio_crypt_free_ctx(bio); } static inline void bio_crypt_do_front_merge(struct request *rq, struct bio *bio) { #ifdef CONFIG_BLK_INLINE_ENCRYPTION if (bio_has_crypt_ctx(bio)) memcpy(rq->crypt_ctx->bc_dun, bio->bi_crypt_context->bc_dun, sizeof(rq->crypt_ctx->bc_dun)); #endif } bool __blk_crypto_bio_prep(struct bio **bio_ptr); static inline bool blk_crypto_bio_prep(struct bio **bio_ptr) { if (bio_has_crypt_ctx(*bio_ptr)) return __blk_crypto_bio_prep(bio_ptr); return true; } blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq); static inline blk_status_t blk_crypto_rq_get_keyslot(struct request *rq) { if (blk_crypto_rq_is_encrypted(rq)) return __blk_crypto_rq_get_keyslot(rq); return BLK_STS_OK; } void __blk_crypto_rq_put_keyslot(struct request *rq); static inline void blk_crypto_rq_put_keyslot(struct request *rq) { if (blk_crypto_rq_has_keyslot(rq)) __blk_crypto_rq_put_keyslot(rq); } void __blk_crypto_free_request(struct request *rq); static inline void blk_crypto_free_request(struct request *rq) { if (blk_crypto_rq_is_encrypted(rq)) __blk_crypto_free_request(rq); } int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, gfp_t gfp_mask); /** * blk_crypto_rq_bio_prep - Prepare a request's crypt_ctx when its first bio * is inserted * @rq: The request to prepare * @bio: The first bio being inserted into the request * @gfp_mask: Memory allocation flags * * Return: 0 on success, -ENOMEM if out of memory. -ENOMEM is only possible if * @gfp_mask doesn't include %__GFP_DIRECT_RECLAIM. */ static inline int blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, gfp_t gfp_mask) { if (bio_has_crypt_ctx(bio)) return __blk_crypto_rq_bio_prep(rq, bio, gfp_mask); return 0; } #ifdef CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num); bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr); int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key); #else /* CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK */ static inline int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num) { pr_warn_once("crypto API fallback is disabled\n"); return -ENOPKG; } static inline bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr) { pr_warn_once("crypto API fallback disabled; failing request.\n"); (*bio_ptr)->bi_status = BLK_STS_NOTSUPP; return false; } static inline int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) { return 0; } #endif /* CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK */ #endif /* __LINUX_BLK_CRYPTO_INTERNAL_H */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2012 Red Hat. All rights reserved. */ #ifndef BTRFS_RCU_STRING_H #define BTRFS_RCU_STRING_H #include <linux/types.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/printk.h> struct rcu_string { struct rcu_head rcu; char str[]; }; static inline struct rcu_string *rcu_string_strdup(const char *src, gfp_t mask) { size_t len = strlen(src) + 1; struct rcu_string *ret = kzalloc(sizeof(struct rcu_string) + (len * sizeof(char)), mask); if (!ret) return ret; /* Warn if the source got unexpectedly truncated. */ if (WARN_ON(strscpy(ret->str, src, len) < 0)) { kfree(ret); return NULL; } return ret; } static inline void rcu_string_free(struct rcu_string *str) { if (str) kfree_rcu(str, rcu); } #define printk_in_rcu(fmt, ...) do { \ rcu_read_lock(); \ printk(fmt, __VA_ARGS__); \ rcu_read_unlock(); \ } while (0) #define printk_ratelimited_in_rcu(fmt, ...) do { \ rcu_read_lock(); \ printk_ratelimited(fmt, __VA_ARGS__); \ rcu_read_unlock(); \ } while (0) #define rcu_str_deref(rcu_str) ({ \ struct rcu_string *__str = rcu_dereference(rcu_str); \ __str->str; \ }) #endif |
210 2 208 210 207 259 117 1 10 213 1 5 3 208 209 211 1 3 4 5 1 4 1 2 194 7 133 86 37 159 2 3 189 119 101 24 3 104 90 1 9 7 82 103 110 87 92 14 2 8 82 3 85 19 74 101 24 1 1 7 5 3 5 3 7 6 34 1 33 1 2 10 7 4 9 2 8 92 92 18 18 101 23 79 133 3 37 1 98 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 | // SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * */ #include <linux/fs.h> #include <linux/posix_acl.h> #include <linux/posix_acl_xattr.h> #include <linux/xattr.h> #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" // clang-format off #define SYSTEM_DOS_ATTRIB "system.dos_attrib" #define SYSTEM_NTFS_ATTRIB "system.ntfs_attrib" #define SYSTEM_NTFS_ATTRIB_BE "system.ntfs_attrib_be" #define SYSTEM_NTFS_SECURITY "system.ntfs_security" // clang-format on static inline size_t unpacked_ea_size(const struct EA_FULL *ea) { return ea->size ? le32_to_cpu(ea->size) : ALIGN(struct_size(ea, name, 1 + ea->name_len + le16_to_cpu(ea->elength)), 4); } static inline size_t packed_ea_size(const struct EA_FULL *ea) { return struct_size(ea, name, 1 + ea->name_len + le16_to_cpu(ea->elength)) - offsetof(struct EA_FULL, flags); } /* * find_ea * * Assume there is at least one xattr in the list. */ static inline bool find_ea(const struct EA_FULL *ea_all, u32 bytes, const char *name, u8 name_len, u32 *off, u32 *ea_sz) { u32 ea_size; *off = 0; if (!ea_all) return false; for (; *off < bytes; *off += ea_size) { const struct EA_FULL *ea = Add2Ptr(ea_all, *off); ea_size = unpacked_ea_size(ea); if (ea->name_len == name_len && !memcmp(ea->name, name, name_len)) { if (ea_sz) *ea_sz = ea_size; return true; } } return false; } /* * ntfs_read_ea - Read all extended attributes. * @ea: New allocated memory. * @info: Pointer into resident data. */ static int ntfs_read_ea(struct ntfs_inode *ni, struct EA_FULL **ea, size_t add_bytes, const struct EA_INFO **info) { int err = -EINVAL; struct ntfs_sb_info *sbi = ni->mi.sbi; struct ATTR_LIST_ENTRY *le = NULL; struct ATTRIB *attr_info, *attr_ea; void *ea_p; u32 size, off, ea_size; static_assert(le32_to_cpu(ATTR_EA_INFO) < le32_to_cpu(ATTR_EA)); *ea = NULL; *info = NULL; attr_info = ni_find_attr(ni, NULL, &le, ATTR_EA_INFO, NULL, 0, NULL, NULL); attr_ea = ni_find_attr(ni, attr_info, &le, ATTR_EA, NULL, 0, NULL, NULL); if (!attr_ea || !attr_info) return 0; *info = resident_data_ex(attr_info, sizeof(struct EA_INFO)); if (!*info) goto out; /* Check Ea limit. */ size = le32_to_cpu((*info)->size); if (size > sbi->ea_max_size) { err = -EFBIG; goto out; } if (attr_size(attr_ea) > sbi->ea_max_size) { err = -EFBIG; goto out; } if (!size) { /* EA info persists, but xattr is empty. Looks like EA problem. */ goto out; } /* Allocate memory for packed Ea. */ ea_p = kmalloc(size_add(size, add_bytes), GFP_NOFS); if (!ea_p) return -ENOMEM; if (attr_ea->non_res) { struct runs_tree run; run_init(&run); err = attr_load_runs_range(ni, ATTR_EA, NULL, 0, &run, 0, size); if (!err) err = ntfs_read_run_nb(sbi, &run, 0, ea_p, size, NULL); run_close(&run); if (err) goto out1; } else { void *p = resident_data_ex(attr_ea, size); if (!p) goto out1; memcpy(ea_p, p, size); } memset(Add2Ptr(ea_p, size), 0, add_bytes); err = -EINVAL; /* Check all attributes for consistency. */ for (off = 0; off < size; off += ea_size) { const struct EA_FULL *ef = Add2Ptr(ea_p, off); u32 bytes = size - off; /* Check if we can use field ea->size. */ if (bytes < sizeof(ef->size)) goto out1; if (ef->size) { ea_size = le32_to_cpu(ef->size); if (ea_size > bytes) goto out1; continue; } /* Check if we can use fields ef->name_len and ef->elength. */ if (bytes < offsetof(struct EA_FULL, name)) goto out1; ea_size = ALIGN(struct_size(ef, name, 1 + ef->name_len + le16_to_cpu(ef->elength)), 4); if (ea_size > bytes) goto out1; } *ea = ea_p; return 0; out1: kfree(ea_p); out: ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); return err; } /* * ntfs_list_ea * * Copy a list of xattrs names into the buffer * provided, or compute the buffer size required. * * Return: * * Number of bytes used / required on * * -ERRNO - on failure */ static ssize_t ntfs_list_ea(struct ntfs_inode *ni, char *buffer, size_t bytes_per_buffer) { const struct EA_INFO *info; struct EA_FULL *ea_all = NULL; u32 off, size; int err; size_t ret; err = ntfs_read_ea(ni, &ea_all, 0, &info); if (err) return err; if (!info || !ea_all) return 0; size = le32_to_cpu(info->size); /* Enumerate all xattrs. */ ret = 0; off = 0; while (off + sizeof(struct EA_FULL) < size) { const struct EA_FULL *ea = Add2Ptr(ea_all, off); int ea_size = unpacked_ea_size(ea); u8 name_len = ea->name_len; if (!name_len) break; if (name_len > ea_size) { ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); err = -EINVAL; /* corrupted fs. */ break; } if (buffer) { /* Check if we can use field ea->name */ if (off + ea_size > size) break; if (ret + name_len + 1 > bytes_per_buffer) { err = -ERANGE; goto out; } memcpy(buffer + ret, ea->name, name_len); buffer[ret + name_len] = 0; } ret += name_len + 1; off += ea_size; } out: kfree(ea_all); return err ? err : ret; } static int ntfs_get_ea(struct inode *inode, const char *name, size_t name_len, void *buffer, size_t size, size_t *required) { struct ntfs_inode *ni = ntfs_i(inode); const struct EA_INFO *info; struct EA_FULL *ea_all = NULL; const struct EA_FULL *ea; u32 off, len; int err; if (!(ni->ni_flags & NI_FLAG_EA)) return -ENODATA; if (!required) ni_lock(ni); len = 0; if (name_len > 255) { err = -ENAMETOOLONG; goto out; } err = ntfs_read_ea(ni, &ea_all, 0, &info); if (err) goto out; if (!info) goto out; /* Enumerate all xattrs. */ if (!find_ea(ea_all, le32_to_cpu(info->size), name, name_len, &off, NULL)) { err = -ENODATA; goto out; } ea = Add2Ptr(ea_all, off); len = le16_to_cpu(ea->elength); if (!buffer) { err = 0; goto out; } if (len > size) { err = -ERANGE; if (required) *required = len; goto out; } memcpy(buffer, ea->name + ea->name_len + 1, len); err = 0; out: kfree(ea_all); if (!required) ni_unlock(ni); return err ? err : len; } static noinline int ntfs_set_ea(struct inode *inode, const char *name, size_t name_len, const void *value, size_t val_size, int flags, bool locked, __le16 *ea_size) { struct ntfs_inode *ni = ntfs_i(inode); struct ntfs_sb_info *sbi = ni->mi.sbi; int err; struct EA_INFO ea_info; const struct EA_INFO *info; struct EA_FULL *new_ea; struct EA_FULL *ea_all = NULL; size_t add, new_pack; u32 off, size, ea_sz; __le16 size_pack; struct ATTRIB *attr; struct ATTR_LIST_ENTRY *le; struct mft_inode *mi; struct runs_tree ea_run; u64 new_sz; void *p; if (!locked) ni_lock(ni); run_init(&ea_run); if (name_len > 255) { err = -ENAMETOOLONG; goto out; } add = ALIGN(struct_size(ea_all, name, 1 + name_len + val_size), 4); err = ntfs_read_ea(ni, &ea_all, add, &info); if (err) goto out; if (!info) { memset(&ea_info, 0, sizeof(ea_info)); size = 0; size_pack = 0; } else { memcpy(&ea_info, info, sizeof(ea_info)); size = le32_to_cpu(ea_info.size); size_pack = ea_info.size_pack; } if (info && find_ea(ea_all, size, name, name_len, &off, &ea_sz)) { struct EA_FULL *ea; if (flags & XATTR_CREATE) { err = -EEXIST; goto out; } ea = Add2Ptr(ea_all, off); /* * Check simple case when we try to insert xattr with the same value * e.g. ntfs_save_wsl_perm */ if (val_size && le16_to_cpu(ea->elength) == val_size && !memcmp(ea->name + ea->name_len + 1, value, val_size)) { /* xattr already contains the required value. */ goto out; } /* Remove current xattr. */ if (ea->flags & FILE_NEED_EA) le16_add_cpu(&ea_info.count, -1); le16_add_cpu(&ea_info.size_pack, 0 - packed_ea_size(ea)); memmove(ea, Add2Ptr(ea, ea_sz), size - off - ea_sz); size -= ea_sz; memset(Add2Ptr(ea_all, size), 0, ea_sz); ea_info.size = cpu_to_le32(size); if ((flags & XATTR_REPLACE) && !val_size) { /* Remove xattr. */ goto update_ea; } } else { if (flags & XATTR_REPLACE) { err = -ENODATA; goto out; } if (!ea_all) { ea_all = kzalloc(add, GFP_NOFS); if (!ea_all) { err = -ENOMEM; goto out; } } } /* Append new xattr. */ new_ea = Add2Ptr(ea_all, size); new_ea->size = cpu_to_le32(add); new_ea->flags = 0; new_ea->name_len = name_len; new_ea->elength = cpu_to_le16(val_size); memcpy(new_ea->name, name, name_len); new_ea->name[name_len] = 0; memcpy(new_ea->name + name_len + 1, value, val_size); new_pack = le16_to_cpu(ea_info.size_pack) + packed_ea_size(new_ea); ea_info.size_pack = cpu_to_le16(new_pack); /* New size of ATTR_EA. */ size += add; ea_info.size = cpu_to_le32(size); /* * 1. Check ea_info.size_pack for overflow. * 2. New attribute size must fit value from $AttrDef */ if (new_pack > 0xffff || size > sbi->ea_max_size) { ntfs_inode_warn( inode, "The size of extended attributes must not exceed 64KiB"); err = -EFBIG; // -EINVAL? goto out; } update_ea: if (!info) { /* Create xattr. */ if (!size) { err = 0; goto out; } err = ni_insert_resident(ni, sizeof(struct EA_INFO), ATTR_EA_INFO, NULL, 0, NULL, NULL, NULL); if (err) goto out; err = ni_insert_resident(ni, 0, ATTR_EA, NULL, 0, NULL, NULL, NULL); if (err) goto out; } new_sz = size; err = attr_set_size(ni, ATTR_EA, NULL, 0, &ea_run, new_sz, &new_sz, false, NULL); if (err) goto out; le = NULL; attr = ni_find_attr(ni, NULL, &le, ATTR_EA_INFO, NULL, 0, NULL, &mi); if (!attr) { err = -EINVAL; goto out; } if (!size) { /* Delete xattr, ATTR_EA_INFO */ ni_remove_attr_le(ni, attr, mi, le); } else { p = resident_data_ex(attr, sizeof(struct EA_INFO)); if (!p) { err = -EINVAL; goto out; } memcpy(p, &ea_info, sizeof(struct EA_INFO)); mi->dirty = true; } le = NULL; attr = ni_find_attr(ni, NULL, &le, ATTR_EA, NULL, 0, NULL, &mi); if (!attr) { err = -EINVAL; goto out; } if (!size) { /* Delete xattr, ATTR_EA */ ni_remove_attr_le(ni, attr, mi, le); } else if (attr->non_res) { err = attr_load_runs_range(ni, ATTR_EA, NULL, 0, &ea_run, 0, size); if (err) goto out; err = ntfs_sb_write_run(sbi, &ea_run, 0, ea_all, size, 0); if (err) goto out; } else { p = resident_data_ex(attr, size); if (!p) { err = -EINVAL; goto out; } memcpy(p, ea_all, size); mi->dirty = true; } /* Check if we delete the last xattr. */ if (size) ni->ni_flags |= NI_FLAG_EA; else ni->ni_flags &= ~NI_FLAG_EA; if (ea_info.size_pack != size_pack) ni->ni_flags |= NI_FLAG_UPDATE_PARENT; if (ea_size) *ea_size = ea_info.size_pack; mark_inode_dirty(&ni->vfs_inode); out: if (!locked) ni_unlock(ni); run_close(&ea_run); kfree(ea_all); return err; } #ifdef CONFIG_NTFS3_FS_POSIX_ACL /* * ntfs_get_acl - inode_operations::get_acl */ struct posix_acl *ntfs_get_acl(struct mnt_idmap *idmap, struct dentry *dentry, int type) { struct inode *inode = d_inode(dentry); struct ntfs_inode *ni = ntfs_i(inode); const char *name; size_t name_len; struct posix_acl *acl; size_t req; int err; void *buf; /* Allocate PATH_MAX bytes. */ buf = __getname(); if (!buf) return ERR_PTR(-ENOMEM); /* Possible values of 'type' was already checked above. */ if (type == ACL_TYPE_ACCESS) { name = XATTR_NAME_POSIX_ACL_ACCESS; name_len = sizeof(XATTR_NAME_POSIX_ACL_ACCESS) - 1; } else { name = XATTR_NAME_POSIX_ACL_DEFAULT; name_len = sizeof(XATTR_NAME_POSIX_ACL_DEFAULT) - 1; } ni_lock(ni); err = ntfs_get_ea(inode, name, name_len, buf, PATH_MAX, &req); ni_unlock(ni); /* Translate extended attribute to acl. */ if (err >= 0) { acl = posix_acl_from_xattr(&init_user_ns, buf, err); } else if (err == -ENODATA) { acl = NULL; } else { acl = ERR_PTR(err); } if (!IS_ERR(acl)) set_cached_acl(inode, type, acl); __putname(buf); return acl; } static noinline int ntfs_set_acl_ex(struct mnt_idmap *idmap, struct inode *inode, struct posix_acl *acl, int type, bool init_acl) { const char *name; size_t size, name_len; void *value; int err; int flags; umode_t mode; if (S_ISLNK(inode->i_mode)) return -EOPNOTSUPP; mode = inode->i_mode; switch (type) { case ACL_TYPE_ACCESS: /* Do not change i_mode if we are in init_acl */ if (acl && !init_acl) { err = posix_acl_update_mode(idmap, inode, &mode, &acl); if (err) return err; } name = XATTR_NAME_POSIX_ACL_ACCESS; name_len = sizeof(XATTR_NAME_POSIX_ACL_ACCESS) - 1; break; case ACL_TYPE_DEFAULT: if (!S_ISDIR(inode->i_mode)) return acl ? -EACCES : 0; name = XATTR_NAME_POSIX_ACL_DEFAULT; name_len = sizeof(XATTR_NAME_POSIX_ACL_DEFAULT) - 1; break; default: return -EINVAL; } if (!acl) { /* Remove xattr if it can be presented via mode. */ size = 0; value = NULL; flags = XATTR_REPLACE; } else { size = posix_acl_xattr_size(acl->a_count); value = kmalloc(size, GFP_NOFS); if (!value) return -ENOMEM; err = posix_acl_to_xattr(&init_user_ns, acl, value, size); if (err < 0) goto out; flags = 0; } err = ntfs_set_ea(inode, name, name_len, value, size, flags, 0, NULL); if (err == -ENODATA && !size) err = 0; /* Removing non existed xattr. */ if (!err) { set_cached_acl(inode, type, acl); inode->i_mode = mode; inode_set_ctime_current(inode); mark_inode_dirty(inode); } out: kfree(value); return err; } /* * ntfs_set_acl - inode_operations::set_acl */ int ntfs_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, struct posix_acl *acl, int type) { return ntfs_set_acl_ex(idmap, d_inode(dentry), acl, type, false); } /* * ntfs_init_acl - Initialize the ACLs of a new inode. * * Called from ntfs_create_inode(). */ int ntfs_init_acl(struct mnt_idmap *idmap, struct inode *inode, struct inode *dir) { struct posix_acl *default_acl, *acl; int err; err = posix_acl_create(dir, &inode->i_mode, &default_acl, &acl); if (err) return err; if (default_acl) { err = ntfs_set_acl_ex(idmap, inode, default_acl, ACL_TYPE_DEFAULT, true); posix_acl_release(default_acl); } else { inode->i_default_acl = NULL; } if (acl) { if (!err) err = ntfs_set_acl_ex(idmap, inode, acl, ACL_TYPE_ACCESS, true); posix_acl_release(acl); } else { inode->i_acl = NULL; } return err; } #endif /* * ntfs_acl_chmod - Helper for ntfs3_setattr(). */ int ntfs_acl_chmod(struct mnt_idmap *idmap, struct dentry *dentry) { struct inode *inode = d_inode(dentry); struct super_block *sb = inode->i_sb; if (!(sb->s_flags & SB_POSIXACL)) return 0; if (S_ISLNK(inode->i_mode)) return -EOPNOTSUPP; return posix_acl_chmod(idmap, dentry, inode->i_mode); } /* * ntfs_listxattr - inode_operations::listxattr */ ssize_t ntfs_listxattr(struct dentry *dentry, char *buffer, size_t size) { struct inode *inode = d_inode(dentry); struct ntfs_inode *ni = ntfs_i(inode); ssize_t ret; if (!(ni->ni_flags & NI_FLAG_EA)) { /* no xattr in file */ return 0; } ni_lock(ni); ret = ntfs_list_ea(ni, buffer, size); ni_unlock(ni); return ret; } static int ntfs_getxattr(const struct xattr_handler *handler, struct dentry *de, struct inode *inode, const char *name, void *buffer, size_t size) { int err; struct ntfs_inode *ni = ntfs_i(inode); if (unlikely(ntfs3_forced_shutdown(inode->i_sb))) return -EIO; /* Dispatch request. */ if (!strcmp(name, SYSTEM_DOS_ATTRIB)) { /* system.dos_attrib */ if (!buffer) { err = sizeof(u8); } else if (size < sizeof(u8)) { err = -ENODATA; } else { err = sizeof(u8); *(u8 *)buffer = le32_to_cpu(ni->std_fa); } goto out; } if (!strcmp(name, SYSTEM_NTFS_ATTRIB) || !strcmp(name, SYSTEM_NTFS_ATTRIB_BE)) { /* system.ntfs_attrib */ if (!buffer) { err = sizeof(u32); } else if (size < sizeof(u32)) { err = -ENODATA; } else { err = sizeof(u32); *(u32 *)buffer = le32_to_cpu(ni->std_fa); if (!strcmp(name, SYSTEM_NTFS_ATTRIB_BE)) *(__be32 *)buffer = cpu_to_be32(*(u32 *)buffer); } goto out; } if (!strcmp(name, SYSTEM_NTFS_SECURITY)) { /* system.ntfs_security*/ struct SECURITY_DESCRIPTOR_RELATIVE *sd = NULL; size_t sd_size = 0; if (!is_ntfs3(ni->mi.sbi)) { /* We should get nt4 security. */ err = -EINVAL; goto out; } else if (le32_to_cpu(ni->std_security_id) < SECURITY_ID_FIRST) { err = -ENOENT; goto out; } err = ntfs_get_security_by_id(ni->mi.sbi, ni->std_security_id, &sd, &sd_size); if (err) goto out; if (!is_sd_valid(sd, sd_size)) { ntfs_inode_warn( inode, "looks like you get incorrect security descriptor id=%u", ni->std_security_id); } if (!buffer) { err = sd_size; } else if (size < sd_size) { err = -ENODATA; } else { err = sd_size; memcpy(buffer, sd, sd_size); } kfree(sd); goto out; } /* Deal with NTFS extended attribute. */ err = ntfs_get_ea(inode, name, strlen(name), buffer, size, NULL); out: return err; } /* * ntfs_setxattr - inode_operations::setxattr */ static noinline int ntfs_setxattr(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *de, struct inode *inode, const char *name, const void *value, size_t size, int flags) { int err = -EINVAL; struct ntfs_inode *ni = ntfs_i(inode); enum FILE_ATTRIBUTE new_fa; /* Dispatch request. */ if (!strcmp(name, SYSTEM_DOS_ATTRIB)) { if (sizeof(u8) != size) goto out; new_fa = cpu_to_le32(*(u8 *)value); goto set_new_fa; } if (!strcmp(name, SYSTEM_NTFS_ATTRIB) || !strcmp(name, SYSTEM_NTFS_ATTRIB_BE)) { if (size != sizeof(u32)) goto out; if (!strcmp(name, SYSTEM_NTFS_ATTRIB_BE)) new_fa = cpu_to_le32(be32_to_cpu(*(__be32 *)value)); else new_fa = cpu_to_le32(*(u32 *)value); if (S_ISREG(inode->i_mode)) { /* Process compressed/sparsed in special way. */ ni_lock(ni); err = ni_new_attr_flags(ni, new_fa); ni_unlock(ni); if (err) goto out; } set_new_fa: /* * Thanks Mark Harmstone: * Keep directory bit consistency. */ if (S_ISDIR(inode->i_mode)) new_fa |= FILE_ATTRIBUTE_DIRECTORY; else new_fa &= ~FILE_ATTRIBUTE_DIRECTORY; if (ni->std_fa != new_fa) { ni->std_fa = new_fa; if (new_fa & FILE_ATTRIBUTE_READONLY) inode->i_mode &= ~0222; else inode->i_mode |= 0222; /* Std attribute always in primary record. */ ni->mi.dirty = true; mark_inode_dirty(inode); } err = 0; goto out; } if (!strcmp(name, SYSTEM_NTFS_SECURITY)) { /* system.ntfs_security*/ __le32 security_id; bool inserted; struct ATTR_STD_INFO5 *std; if (!is_ntfs3(ni->mi.sbi)) { /* * We should replace ATTR_SECURE. * Skip this way cause it is nt4 feature. */ err = -EINVAL; goto out; } if (!is_sd_valid(value, size)) { err = -EINVAL; ntfs_inode_warn( inode, "you try to set invalid security descriptor"); goto out; } err = ntfs_insert_security(ni->mi.sbi, value, size, &security_id, &inserted); if (err) goto out; ni_lock(ni); std = ni_std5(ni); if (!std) { err = -EINVAL; } else if (std->security_id != security_id) { std->security_id = ni->std_security_id = security_id; /* Std attribute always in primary record. */ ni->mi.dirty = true; mark_inode_dirty(&ni->vfs_inode); } ni_unlock(ni); goto out; } /* Deal with NTFS extended attribute. */ err = ntfs_set_ea(inode, name, strlen(name), value, size, flags, 0, NULL); out: inode_set_ctime_current(inode); mark_inode_dirty(inode); return err; } /* * ntfs_save_wsl_perm * * save uid/gid/mode in xattr */ int ntfs_save_wsl_perm(struct inode *inode, __le16 *ea_size) { int err; __le32 value; struct ntfs_inode *ni = ntfs_i(inode); ni_lock(ni); value = cpu_to_le32(i_uid_read(inode)); err = ntfs_set_ea(inode, "$LXUID", sizeof("$LXUID") - 1, &value, sizeof(value), 0, true, ea_size); if (err) goto out; value = cpu_to_le32(i_gid_read(inode)); err = ntfs_set_ea(inode, "$LXGID", sizeof("$LXGID") - 1, &value, sizeof(value), 0, true, ea_size); if (err) goto out; value = cpu_to_le32(inode->i_mode); err = ntfs_set_ea(inode, "$LXMOD", sizeof("$LXMOD") - 1, &value, sizeof(value), 0, true, ea_size); if (err) goto out; if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { value = cpu_to_le32(inode->i_rdev); err = ntfs_set_ea(inode, "$LXDEV", sizeof("$LXDEV") - 1, &value, sizeof(value), 0, true, ea_size); if (err) goto out; } out: ni_unlock(ni); /* In case of error should we delete all WSL xattr? */ return err; } /* * ntfs_get_wsl_perm * * get uid/gid/mode from xattr * it is called from ntfs_iget5->ntfs_read_mft */ void ntfs_get_wsl_perm(struct inode *inode) { size_t sz; __le32 value[3]; if (ntfs_get_ea(inode, "$LXUID", sizeof("$LXUID") - 1, &value[0], sizeof(value[0]), &sz) == sizeof(value[0]) && ntfs_get_ea(inode, "$LXGID", sizeof("$LXGID") - 1, &value[1], sizeof(value[1]), &sz) == sizeof(value[1]) && ntfs_get_ea(inode, "$LXMOD", sizeof("$LXMOD") - 1, &value[2], sizeof(value[2]), &sz) == sizeof(value[2])) { i_uid_write(inode, (uid_t)le32_to_cpu(value[0])); i_gid_write(inode, (gid_t)le32_to_cpu(value[1])); inode->i_mode = le32_to_cpu(value[2]); if (ntfs_get_ea(inode, "$LXDEV", sizeof("$$LXDEV") - 1, &value[0], sizeof(value), &sz) == sizeof(value[0])) { inode->i_rdev = le32_to_cpu(value[0]); } } } static bool ntfs_xattr_user_list(struct dentry *dentry) { return true; } // clang-format off static const struct xattr_handler ntfs_other_xattr_handler = { .prefix = "", .get = ntfs_getxattr, .set = ntfs_setxattr, .list = ntfs_xattr_user_list, }; const struct xattr_handler * const ntfs_xattr_handlers[] = { &ntfs_other_xattr_handler, NULL, }; // clang-format on |
56 11810 11829 32 56 113 113 29 1 53 53 53 32 34 4 4 4 4 4 4 4 4 4 4 4 4 4 10 10 10 4 4 3 1 4 4 4 4 29 19 29 29 31 31 29 29 29 15 18 18 18 20 20 1 1 1 1 59 61 61 61 61 61 20 20 20 20 20 20 81 64 81 14 14 14 14 14 11787 11749 11786 11743 32 32 32 32 32 32 32 32 32 32 32 31 32 32 32 32 32 32 32 32 32 32 32 32 2 31 32 32 32 32 32 32 34 34 34 34 34 34 34 34 34 34 34 34 34 34 55 55 56 56 55 56 55 56 55 51 13 56 46 15 48 4 6 34 31 56 55 55 56 56 55 55 55 54 25 39 54 56 18 6 15 15 15 18 18 52 53 53 53 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 11757 11758 11712 11715 11704 11726 11724 11758 11735 11724 11722 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 | // SPDX-License-Identifier: GPL-2.0+ /* * Base port operations for 8250/16550-type serial ports * * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. * Split from 8250_core.c, Copyright (C) 2001 Russell King. * * A note about mapbase / membase * * mapbase is the physical address of the IO port. * membase is an 'ioremapped' cookie. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/console.h> #include <linux/gpio/consumer.h> #include <linux/sysrq.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/tty.h> #include <linux/ratelimit.h> #include <linux/tty_flip.h> #include <linux/serial.h> #include <linux/serial_8250.h> #include <linux/nmi.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/pm_runtime.h> #include <linux/ktime.h> #include <asm/io.h> #include <asm/irq.h> #include "8250.h" /* * Debugging. */ #if 0 #define DEBUG_AUTOCONF(fmt...) printk(fmt) #else #define DEBUG_AUTOCONF(fmt...) do { } while (0) #endif /* * Here we define the default xmit fifo size used for each type of UART. */ static const struct serial8250_config uart_config[] = { [PORT_UNKNOWN] = { .name = "unknown", .fifo_size = 1, .tx_loadsz = 1, }, [PORT_8250] = { .name = "8250", .fifo_size = 1, .tx_loadsz = 1, }, [PORT_16450] = { .name = "16450", .fifo_size = 1, .tx_loadsz = 1, }, [PORT_16550] = { .name = "16550", .fifo_size = 1, .tx_loadsz = 1, }, [PORT_16550A] = { .name = "16550A", .fifo_size = 16, .tx_loadsz = 16, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .rxtrig_bytes = {1, 4, 8, 14}, .flags = UART_CAP_FIFO, }, [PORT_CIRRUS] = { .name = "Cirrus", .fifo_size = 1, .tx_loadsz = 1, }, [PORT_16650] = { .name = "ST16650", .fifo_size = 1, .tx_loadsz = 1, .flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP, }, [PORT_16650V2] = { .name = "ST16650V2", .fifo_size = 32, .tx_loadsz = 16, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 | UART_FCR_T_TRIG_00, .rxtrig_bytes = {8, 16, 24, 28}, .flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP, }, [PORT_16750] = { .name = "TI16750", .fifo_size = 64, .tx_loadsz = 64, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 | UART_FCR7_64BYTE, .rxtrig_bytes = {1, 16, 32, 56}, .flags = UART_CAP_FIFO | UART_CAP_SLEEP | UART_CAP_AFE, }, [PORT_STARTECH] = { .name = "Startech", .fifo_size = 1, .tx_loadsz = 1, }, [PORT_16C950] = { .name = "16C950/954", .fifo_size = 128, .tx_loadsz = 128, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01, .rxtrig_bytes = {16, 32, 112, 120}, /* UART_CAP_EFR breaks billionon CF bluetooth card. */ .flags = UART_CAP_FIFO | UART_CAP_SLEEP, }, [PORT_16654] = { .name = "ST16654", .fifo_size = 64, .tx_loadsz = 32, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 | UART_FCR_T_TRIG_10, .rxtrig_bytes = {8, 16, 56, 60}, .flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP, }, [PORT_16850] = { .name = "XR16850", .fifo_size = 128, .tx_loadsz = 128, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP, }, [PORT_RSA] = { .name = "RSA", .fifo_size = 2048, .tx_loadsz = 2048, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_11, .flags = UART_CAP_FIFO, }, [PORT_NS16550A] = { .name = "NS16550A", .fifo_size = 16, .tx_loadsz = 16, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .flags = UART_CAP_FIFO | UART_NATSEMI, }, [PORT_XSCALE] = { .name = "XScale", .fifo_size = 32, .tx_loadsz = 32, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .flags = UART_CAP_FIFO | UART_CAP_UUE | UART_CAP_RTOIE, }, [PORT_OCTEON] = { .name = "OCTEON", .fifo_size = 64, .tx_loadsz = 64, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .flags = UART_CAP_FIFO, }, [PORT_U6_16550A] = { .name = "U6_16550A", .fifo_size = 64, .tx_loadsz = 64, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .flags = UART_CAP_FIFO | UART_CAP_AFE, }, [PORT_TEGRA] = { .name = "Tegra", .fifo_size = 32, .tx_loadsz = 8, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 | UART_FCR_T_TRIG_01, .rxtrig_bytes = {1, 4, 8, 14}, .flags = UART_CAP_FIFO | UART_CAP_RTOIE, }, [PORT_XR17D15X] = { .name = "XR17D15X", .fifo_size = 64, .tx_loadsz = 64, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .flags = UART_CAP_FIFO | UART_CAP_AFE | UART_CAP_EFR | UART_CAP_SLEEP, }, [PORT_XR17V35X] = { .name = "XR17V35X", .fifo_size = 256, .tx_loadsz = 256, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_11 | UART_FCR_T_TRIG_11, .flags = UART_CAP_FIFO | UART_CAP_AFE | UART_CAP_EFR | UART_CAP_SLEEP, }, [PORT_LPC3220] = { .name = "LPC3220", .fifo_size = 64, .tx_loadsz = 32, .fcr = UART_FCR_DMA_SELECT | UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_00 | UART_FCR_T_TRIG_00, .flags = UART_CAP_FIFO, }, [PORT_BRCM_TRUMANAGE] = { .name = "TruManage", .fifo_size = 1, .tx_loadsz = 1024, .flags = UART_CAP_HFIFO, }, [PORT_8250_CIR] = { .name = "CIR port" }, [PORT_ALTR_16550_F32] = { .name = "Altera 16550 FIFO32", .fifo_size = 32, .tx_loadsz = 32, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .rxtrig_bytes = {1, 8, 16, 30}, .flags = UART_CAP_FIFO | UART_CAP_AFE, }, [PORT_ALTR_16550_F64] = { .name = "Altera 16550 FIFO64", .fifo_size = 64, .tx_loadsz = 64, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .rxtrig_bytes = {1, 16, 32, 62}, .flags = UART_CAP_FIFO | UART_CAP_AFE, }, [PORT_ALTR_16550_F128] = { .name = "Altera 16550 FIFO128", .fifo_size = 128, .tx_loadsz = 128, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .rxtrig_bytes = {1, 32, 64, 126}, .flags = UART_CAP_FIFO | UART_CAP_AFE, }, /* * tx_loadsz is set to 63-bytes instead of 64-bytes to implement * workaround of errata A-008006 which states that tx_loadsz should * be configured less than Maximum supported fifo bytes. */ [PORT_16550A_FSL64] = { .name = "16550A_FSL64", .fifo_size = 64, .tx_loadsz = 63, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 | UART_FCR7_64BYTE, .flags = UART_CAP_FIFO | UART_CAP_NOTEMT, }, [PORT_RT2880] = { .name = "Palmchip BK-3103", .fifo_size = 16, .tx_loadsz = 16, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .rxtrig_bytes = {1, 4, 8, 14}, .flags = UART_CAP_FIFO, }, [PORT_DA830] = { .name = "TI DA8xx/66AK2x", .fifo_size = 16, .tx_loadsz = 16, .fcr = UART_FCR_DMA_SELECT | UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .rxtrig_bytes = {1, 4, 8, 14}, .flags = UART_CAP_FIFO | UART_CAP_AFE, }, [PORT_MTK_BTIF] = { .name = "MediaTek BTIF", .fifo_size = 16, .tx_loadsz = 16, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT, .flags = UART_CAP_FIFO, }, [PORT_NPCM] = { .name = "Nuvoton 16550", .fifo_size = 16, .tx_loadsz = 16, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT, .rxtrig_bytes = {1, 4, 8, 14}, .flags = UART_CAP_FIFO, }, [PORT_SUNIX] = { .name = "Sunix", .fifo_size = 128, .tx_loadsz = 128, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10, .rxtrig_bytes = {1, 32, 64, 112}, .flags = UART_CAP_FIFO | UART_CAP_SLEEP, }, [PORT_ASPEED_VUART] = { .name = "ASPEED VUART", .fifo_size = 16, .tx_loadsz = 16, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_00, .rxtrig_bytes = {1, 4, 8, 14}, .flags = UART_CAP_FIFO, }, [PORT_MCHP16550A] = { .name = "MCHP16550A", .fifo_size = 256, .tx_loadsz = 256, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01, .rxtrig_bytes = {2, 66, 130, 194}, .flags = UART_CAP_FIFO, }, [PORT_BCM7271] = { .name = "Broadcom BCM7271 UART", .fifo_size = 32, .tx_loadsz = 32, .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01, .rxtrig_bytes = {1, 8, 16, 30}, .flags = UART_CAP_FIFO | UART_CAP_AFE, }, }; /* Uart divisor latch read */ static u32 default_serial_dl_read(struct uart_8250_port *up) { /* Assign these in pieces to truncate any bits above 7. */ unsigned char dll = serial_in(up, UART_DLL); unsigned char dlm = serial_in(up, UART_DLM); return dll | dlm << 8; } /* Uart divisor latch write */ static void default_serial_dl_write(struct uart_8250_port *up, u32 value) { serial_out(up, UART_DLL, value & 0xff); serial_out(up, UART_DLM, value >> 8 & 0xff); } static unsigned int hub6_serial_in(struct uart_port *p, int offset) { offset = offset << p->regshift; outb(p->hub6 - 1 + offset, p->iobase); return inb(p->iobase + 1); } static void hub6_serial_out(struct uart_port *p, int offset, int value) { offset = offset << p->regshift; outb(p->hub6 - 1 + offset, p->iobase); outb(value, p->iobase + 1); } static unsigned int mem_serial_in(struct uart_port *p, int offset) { offset = offset << p->regshift; return readb(p->membase + offset); } static void mem_serial_out(struct uart_port *p, int offset, int value) { offset = offset << p->regshift; writeb(value, p->membase + offset); } static void mem16_serial_out(struct uart_port *p, int offset, int value) { offset = offset << p->regshift; writew(value, p->membase + offset); } static unsigned int mem16_serial_in(struct uart_port *p, int offset) { offset = offset << p->regshift; return readw(p->membase + offset); } static void mem32_serial_out(struct uart_port *p, int offset, int value) { offset = offset << p->regshift; writel(value, p->membase + offset); } static unsigned int mem32_serial_in(struct uart_port *p, int offset) { offset = offset << p->regshift; return readl(p->membase + offset); } static void mem32be_serial_out(struct uart_port *p, int offset, int value) { offset = offset << p->regshift; iowrite32be(value, p->membase + offset); } static unsigned int mem32be_serial_in(struct uart_port *p, int offset) { offset = offset << p->regshift; return ioread32be(p->membase + offset); } static unsigned int io_serial_in(struct uart_port *p, int offset) { offset = offset << p->regshift; return inb(p->iobase + offset); } static void io_serial_out(struct uart_port *p, int offset, int value) { offset = offset << p->regshift; outb(value, p->iobase + offset); } static int serial8250_default_handle_irq(struct uart_port *port); static void set_io_from_upio(struct uart_port *p) { struct uart_8250_port *up = up_to_u8250p(p); up->dl_read = default_serial_dl_read; up->dl_write = default_serial_dl_write; switch (p->iotype) { case UPIO_HUB6: p->serial_in = hub6_serial_in; p->serial_out = hub6_serial_out; break; case UPIO_MEM: p->serial_in = mem_serial_in; p->serial_out = mem_serial_out; break; case UPIO_MEM16: p->serial_in = mem16_serial_in; p->serial_out = mem16_serial_out; break; case UPIO_MEM32: p->serial_in = mem32_serial_in; p->serial_out = mem32_serial_out; break; case UPIO_MEM32BE: p->serial_in = mem32be_serial_in; p->serial_out = mem32be_serial_out; break; default: p->serial_in = io_serial_in; p->serial_out = io_serial_out; break; } /* Remember loaded iotype */ up->cur_iotype = p->iotype; p->handle_irq = serial8250_default_handle_irq; } static void serial_port_out_sync(struct uart_port *p, int offset, int value) { switch (p->iotype) { case UPIO_MEM: case UPIO_MEM16: case UPIO_MEM32: case UPIO_MEM32BE: case UPIO_AU: p->serial_out(p, offset, value); p->serial_in(p, UART_LCR); /* safe, no side-effects */ break; default: p->serial_out(p, offset, value); } } /* * FIFO support. */ static void serial8250_clear_fifos(struct uart_8250_port *p) { if (p->capabilities & UART_CAP_FIFO) { serial_out(p, UART_FCR, UART_FCR_ENABLE_FIFO); serial_out(p, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT); serial_out(p, UART_FCR, 0); } } static enum hrtimer_restart serial8250_em485_handle_start_tx(struct hrtimer *t); static enum hrtimer_restart serial8250_em485_handle_stop_tx(struct hrtimer *t); void serial8250_clear_and_reinit_fifos(struct uart_8250_port *p) { serial8250_clear_fifos(p); serial_out(p, UART_FCR, p->fcr); } EXPORT_SYMBOL_GPL(serial8250_clear_and_reinit_fifos); void serial8250_rpm_get(struct uart_8250_port *p) { if (!(p->capabilities & UART_CAP_RPM)) return; pm_runtime_get_sync(p->port.dev); } EXPORT_SYMBOL_GPL(serial8250_rpm_get); void serial8250_rpm_put(struct uart_8250_port *p) { if (!(p->capabilities & UART_CAP_RPM)) return; pm_runtime_mark_last_busy(p->port.dev); pm_runtime_put_autosuspend(p->port.dev); } EXPORT_SYMBOL_GPL(serial8250_rpm_put); /** * serial8250_em485_init() - put uart_8250_port into rs485 emulating * @p: uart_8250_port port instance * * The function is used to start rs485 software emulating on the * &struct uart_8250_port* @p. Namely, RTS is switched before/after * transmission. The function is idempotent, so it is safe to call it * multiple times. * * The caller MUST enable interrupt on empty shift register before * calling serial8250_em485_init(). This interrupt is not a part of * 8250 standard, but implementation defined. * * The function is supposed to be called from .rs485_config callback * or from any other callback protected with p->port.lock spinlock. * * See also serial8250_em485_destroy() * * Return 0 - success, -errno - otherwise */ static int serial8250_em485_init(struct uart_8250_port *p) { /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&p->port.lock); if (p->em485) goto deassert_rts; p->em485 = kmalloc(sizeof(struct uart_8250_em485), GFP_ATOMIC); if (!p->em485) return -ENOMEM; hrtimer_init(&p->em485->stop_tx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hrtimer_init(&p->em485->start_tx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); p->em485->stop_tx_timer.function = &serial8250_em485_handle_stop_tx; p->em485->start_tx_timer.function = &serial8250_em485_handle_start_tx; p->em485->port = p; p->em485->active_timer = NULL; p->em485->tx_stopped = true; deassert_rts: if (p->em485->tx_stopped) p->rs485_stop_tx(p); return 0; } /** * serial8250_em485_destroy() - put uart_8250_port into normal state * @p: uart_8250_port port instance * * The function is used to stop rs485 software emulating on the * &struct uart_8250_port* @p. The function is idempotent, so it is safe to * call it multiple times. * * The function is supposed to be called from .rs485_config callback * or from any other callback protected with p->port.lock spinlock. * * See also serial8250_em485_init() */ void serial8250_em485_destroy(struct uart_8250_port *p) { if (!p->em485) return; hrtimer_cancel(&p->em485->start_tx_timer); hrtimer_cancel(&p->em485->stop_tx_timer); kfree(p->em485); p->em485 = NULL; } EXPORT_SYMBOL_GPL(serial8250_em485_destroy); struct serial_rs485 serial8250_em485_supported = { .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | SER_RS485_TERMINATE_BUS | SER_RS485_RX_DURING_TX, .delay_rts_before_send = 1, .delay_rts_after_send = 1, }; EXPORT_SYMBOL_GPL(serial8250_em485_supported); /** * serial8250_em485_config() - generic ->rs485_config() callback * @port: uart port * @termios: termios structure * @rs485: rs485 settings * * Generic callback usable by 8250 uart drivers to activate rs485 settings * if the uart is incapable of driving RTS as a Transmit Enable signal in * hardware, relying on software emulation instead. */ int serial8250_em485_config(struct uart_port *port, struct ktermios *termios, struct serial_rs485 *rs485) { struct uart_8250_port *up = up_to_u8250p(port); /* * Both serial8250_em485_init() and serial8250_em485_destroy() * are idempotent. */ if (rs485->flags & SER_RS485_ENABLED) return serial8250_em485_init(up); serial8250_em485_destroy(up); return 0; } EXPORT_SYMBOL_GPL(serial8250_em485_config); /* * These two wrappers ensure that enable_runtime_pm_tx() can be called more than * once and disable_runtime_pm_tx() will still disable RPM because the fifo is * empty and the HW can idle again. */ void serial8250_rpm_get_tx(struct uart_8250_port *p) { unsigned char rpm_active; if (!(p->capabilities & UART_CAP_RPM)) return; rpm_active = xchg(&p->rpm_tx_active, 1); if (rpm_active) return; pm_runtime_get_sync(p->port.dev); } EXPORT_SYMBOL_GPL(serial8250_rpm_get_tx); void serial8250_rpm_put_tx(struct uart_8250_port *p) { unsigned char rpm_active; if (!(p->capabilities & UART_CAP_RPM)) return; rpm_active = xchg(&p->rpm_tx_active, 0); if (!rpm_active) return; pm_runtime_mark_last_busy(p->port.dev); pm_runtime_put_autosuspend(p->port.dev); } EXPORT_SYMBOL_GPL(serial8250_rpm_put_tx); /* * IER sleep support. UARTs which have EFRs need the "extended * capability" bit enabled. Note that on XR16C850s, we need to * reset LCR to write to IER. */ static void serial8250_set_sleep(struct uart_8250_port *p, int sleep) { unsigned char lcr = 0, efr = 0; serial8250_rpm_get(p); if (p->capabilities & UART_CAP_SLEEP) { /* Synchronize UART_IER access against the console. */ uart_port_lock_irq(&p->port); if (p->capabilities & UART_CAP_EFR) { lcr = serial_in(p, UART_LCR); efr = serial_in(p, UART_EFR); serial_out(p, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(p, UART_EFR, UART_EFR_ECB); serial_out(p, UART_LCR, 0); } serial_out(p, UART_IER, sleep ? UART_IERX_SLEEP : 0); if (p->capabilities & UART_CAP_EFR) { serial_out(p, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(p, UART_EFR, efr); serial_out(p, UART_LCR, lcr); } uart_port_unlock_irq(&p->port); } serial8250_rpm_put(p); } static void serial8250_clear_IER(struct uart_8250_port *up) { if (up->capabilities & UART_CAP_UUE) serial_out(up, UART_IER, UART_IER_UUE); else serial_out(up, UART_IER, 0); } #ifdef CONFIG_SERIAL_8250_RSA /* * Attempts to turn on the RSA FIFO. Returns zero on failure. * We set the port uart clock rate if we succeed. */ static int __enable_rsa(struct uart_8250_port *up) { unsigned char mode; int result; mode = serial_in(up, UART_RSA_MSR); result = mode & UART_RSA_MSR_FIFO; if (!result) { serial_out(up, UART_RSA_MSR, mode | UART_RSA_MSR_FIFO); mode = serial_in(up, UART_RSA_MSR); result = mode & UART_RSA_MSR_FIFO; } if (result) up->port.uartclk = SERIAL_RSA_BAUD_BASE * 16; return result; } static void enable_rsa(struct uart_8250_port *up) { if (up->port.type == PORT_RSA) { if (up->port.uartclk != SERIAL_RSA_BAUD_BASE * 16) { uart_port_lock_irq(&up->port); __enable_rsa(up); uart_port_unlock_irq(&up->port); } if (up->port.uartclk == SERIAL_RSA_BAUD_BASE * 16) serial_out(up, UART_RSA_FRR, 0); } } /* * Attempts to turn off the RSA FIFO. Returns zero on failure. * It is unknown why interrupts were disabled in here. However, * the caller is expected to preserve this behaviour by grabbing * the spinlock before calling this function. */ static void disable_rsa(struct uart_8250_port *up) { unsigned char mode; int result; if (up->port.type == PORT_RSA && up->port.uartclk == SERIAL_RSA_BAUD_BASE * 16) { uart_port_lock_irq(&up->port); mode = serial_in(up, UART_RSA_MSR); result = !(mode & UART_RSA_MSR_FIFO); if (!result) { serial_out(up, UART_RSA_MSR, mode & ~UART_RSA_MSR_FIFO); mode = serial_in(up, UART_RSA_MSR); result = !(mode & UART_RSA_MSR_FIFO); } if (result) up->port.uartclk = SERIAL_RSA_BAUD_BASE_LO * 16; uart_port_unlock_irq(&up->port); } } #endif /* CONFIG_SERIAL_8250_RSA */ /* * This is a quickie test to see how big the FIFO is. * It doesn't work at all the time, more's the pity. */ static int size_fifo(struct uart_8250_port *up) { unsigned char old_fcr, old_mcr, old_lcr; u32 old_dl; int count; old_lcr = serial_in(up, UART_LCR); serial_out(up, UART_LCR, 0); old_fcr = serial_in(up, UART_FCR); old_mcr = serial8250_in_MCR(up); serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT); serial8250_out_MCR(up, UART_MCR_LOOP); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); old_dl = serial_dl_read(up); serial_dl_write(up, 0x0001); serial_out(up, UART_LCR, UART_LCR_WLEN8); for (count = 0; count < 256; count++) serial_out(up, UART_TX, count); mdelay(20);/* FIXME - schedule_timeout */ for (count = 0; (serial_in(up, UART_LSR) & UART_LSR_DR) && (count < 256); count++) serial_in(up, UART_RX); serial_out(up, UART_FCR, old_fcr); serial8250_out_MCR(up, old_mcr); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); serial_dl_write(up, old_dl); serial_out(up, UART_LCR, old_lcr); return count; } /* * Read UART ID using the divisor method - set DLL and DLM to zero * and the revision will be in DLL and device type in DLM. We * preserve the device state across this. */ static unsigned int autoconfig_read_divisor_id(struct uart_8250_port *p) { unsigned char old_lcr; unsigned int id, old_dl; old_lcr = serial_in(p, UART_LCR); serial_out(p, UART_LCR, UART_LCR_CONF_MODE_A); old_dl = serial_dl_read(p); serial_dl_write(p, 0); id = serial_dl_read(p); serial_dl_write(p, old_dl); serial_out(p, UART_LCR, old_lcr); return id; } /* * This is a helper routine to autodetect StarTech/Exar/Oxsemi UART's. * When this function is called we know it is at least a StarTech * 16650 V2, but it might be one of several StarTech UARTs, or one of * its clones. (We treat the broken original StarTech 16650 V1 as a * 16550, and why not? Startech doesn't seem to even acknowledge its * existence.) * * What evil have men's minds wrought... */ static void autoconfig_has_efr(struct uart_8250_port *up) { unsigned int id1, id2, id3, rev; /* * Everything with an EFR has SLEEP */ up->capabilities |= UART_CAP_EFR | UART_CAP_SLEEP; /* * First we check to see if it's an Oxford Semiconductor UART. * * If we have to do this here because some non-National * Semiconductor clone chips lock up if you try writing to the * LSR register (which serial_icr_read does) */ /* * Check for Oxford Semiconductor 16C950. * * EFR [4] must be set else this test fails. * * This shouldn't be necessary, but Mike Hudson (Exoray@isys.ca) * claims that it's needed for 952 dual UART's (which are not * recommended for new designs). */ up->acr = 0; serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_EFR, UART_EFR_ECB); serial_out(up, UART_LCR, 0x00); id1 = serial_icr_read(up, UART_ID1); id2 = serial_icr_read(up, UART_ID2); id3 = serial_icr_read(up, UART_ID3); rev = serial_icr_read(up, UART_REV); DEBUG_AUTOCONF("950id=%02x:%02x:%02x:%02x ", id1, id2, id3, rev); if (id1 == 0x16 && id2 == 0xC9 && (id3 == 0x50 || id3 == 0x52 || id3 == 0x54)) { up->port.type = PORT_16C950; /* * Enable work around for the Oxford Semiconductor 952 rev B * chip which causes it to seriously miscalculate baud rates * when DLL is 0. */ if (id3 == 0x52 && rev == 0x01) up->bugs |= UART_BUG_QUOT; return; } /* * We check for a XR16C850 by setting DLL and DLM to 0, and then * reading back DLL and DLM. The chip type depends on the DLM * value read back: * 0x10 - XR16C850 and the DLL contains the chip revision. * 0x12 - XR16C2850. * 0x14 - XR16C854. */ id1 = autoconfig_read_divisor_id(up); DEBUG_AUTOCONF("850id=%04x ", id1); id2 = id1 >> 8; if (id2 == 0x10 || id2 == 0x12 || id2 == 0x14) { up->port.type = PORT_16850; return; } /* * It wasn't an XR16C850. * * We distinguish between the '654 and the '650 by counting * how many bytes are in the FIFO. I'm using this for now, * since that's the technique that was sent to me in the * serial driver update, but I'm not convinced this works. * I've had problems doing this in the past. -TYT */ if (size_fifo(up) == 64) up->port.type = PORT_16654; else up->port.type = PORT_16650V2; } /* * We detected a chip without a FIFO. Only two fall into * this category - the original 8250 and the 16450. The * 16450 has a scratch register (accessible with LCR=0) */ static void autoconfig_8250(struct uart_8250_port *up) { unsigned char scratch, status1, status2; up->port.type = PORT_8250; scratch = serial_in(up, UART_SCR); serial_out(up, UART_SCR, 0xa5); status1 = serial_in(up, UART_SCR); serial_out(up, UART_SCR, 0x5a); status2 = serial_in(up, UART_SCR); serial_out(up, UART_SCR, scratch); if (status1 == 0xa5 && status2 == 0x5a) up->port.type = PORT_16450; } static int broken_efr(struct uart_8250_port *up) { /* * Exar ST16C2550 "A2" devices incorrectly detect as * having an EFR, and report an ID of 0x0201. See * http://linux.derkeiler.com/Mailing-Lists/Kernel/2004-11/4812.html */ if (autoconfig_read_divisor_id(up) == 0x0201 && size_fifo(up) == 16) return 1; return 0; } /* * We know that the chip has FIFOs. Does it have an EFR? The * EFR is located in the same register position as the IIR and * we know the top two bits of the IIR are currently set. The * EFR should contain zero. Try to read the EFR. */ static void autoconfig_16550a(struct uart_8250_port *up) { unsigned char status1, status2; unsigned int iersave; /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&up->port.lock); up->port.type = PORT_16550A; up->capabilities |= UART_CAP_FIFO; if (!IS_ENABLED(CONFIG_SERIAL_8250_16550A_VARIANTS) && !(up->port.flags & UPF_FULL_PROBE)) return; /* * Check for presence of the EFR when DLAB is set. * Only ST16C650V1 UARTs pass this test. */ serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); if (serial_in(up, UART_EFR) == 0) { serial_out(up, UART_EFR, 0xA8); if (serial_in(up, UART_EFR) != 0) { DEBUG_AUTOCONF("EFRv1 "); up->port.type = PORT_16650; up->capabilities |= UART_CAP_EFR | UART_CAP_SLEEP; } else { serial_out(up, UART_LCR, 0); serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE); status1 = serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED_16750; serial_out(up, UART_FCR, 0); serial_out(up, UART_LCR, 0); if (status1 == UART_IIR_FIFO_ENABLED_16750) up->port.type = PORT_16550A_FSL64; else DEBUG_AUTOCONF("Motorola 8xxx DUART "); } serial_out(up, UART_EFR, 0); return; } /* * Maybe it requires 0xbf to be written to the LCR. * (other ST16C650V2 UARTs, TI16C752A, etc) */ serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); if (serial_in(up, UART_EFR) == 0 && !broken_efr(up)) { DEBUG_AUTOCONF("EFRv2 "); autoconfig_has_efr(up); return; } /* * Check for a National Semiconductor SuperIO chip. * Attempt to switch to bank 2, read the value of the LOOP bit * from EXCR1. Switch back to bank 0, change it in MCR. Then * switch back to bank 2, read it from EXCR1 again and check * it's changed. If so, set baud_base in EXCR2 to 921600. -- dwmw2 */ serial_out(up, UART_LCR, 0); status1 = serial8250_in_MCR(up); serial_out(up, UART_LCR, 0xE0); status2 = serial_in(up, 0x02); /* EXCR1 */ if (!((status2 ^ status1) & UART_MCR_LOOP)) { serial_out(up, UART_LCR, 0); serial8250_out_MCR(up, status1 ^ UART_MCR_LOOP); serial_out(up, UART_LCR, 0xE0); status2 = serial_in(up, 0x02); /* EXCR1 */ serial_out(up, UART_LCR, 0); serial8250_out_MCR(up, status1); if ((status2 ^ status1) & UART_MCR_LOOP) { unsigned short quot; serial_out(up, UART_LCR, 0xE0); quot = serial_dl_read(up); quot <<= 3; if (ns16550a_goto_highspeed(up)) serial_dl_write(up, quot); serial_out(up, UART_LCR, 0); up->port.uartclk = 921600*16; up->port.type = PORT_NS16550A; up->capabilities |= UART_NATSEMI; return; } } /* * No EFR. Try to detect a TI16750, which only sets bit 5 of * the IIR when 64 byte FIFO mode is enabled when DLAB is set. * Try setting it with and without DLAB set. Cheap clones * set bit 5 without DLAB set. */ serial_out(up, UART_LCR, 0); serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE); status1 = serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED_16750; serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE); status2 = serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED_16750; serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO); serial_out(up, UART_LCR, 0); DEBUG_AUTOCONF("iir1=%d iir2=%d ", status1, status2); if (status1 == UART_IIR_FIFO_ENABLED_16550A && status2 == UART_IIR_FIFO_ENABLED_16750) { up->port.type = PORT_16750; up->capabilities |= UART_CAP_AFE | UART_CAP_SLEEP; return; } /* * Try writing and reading the UART_IER_UUE bit (b6). * If it works, this is probably one of the Xscale platform's * internal UARTs. * We're going to explicitly set the UUE bit to 0 before * trying to write and read a 1 just to make sure it's not * already a 1 and maybe locked there before we even start. */ iersave = serial_in(up, UART_IER); serial_out(up, UART_IER, iersave & ~UART_IER_UUE); if (!(serial_in(up, UART_IER) & UART_IER_UUE)) { /* * OK it's in a known zero state, try writing and reading * without disturbing the current state of the other bits. */ serial_out(up, UART_IER, iersave | UART_IER_UUE); if (serial_in(up, UART_IER) & UART_IER_UUE) { /* * It's an Xscale. * We'll leave the UART_IER_UUE bit set to 1 (enabled). */ DEBUG_AUTOCONF("Xscale "); up->port.type = PORT_XSCALE; up->capabilities |= UART_CAP_UUE | UART_CAP_RTOIE; return; } } else { /* * If we got here we couldn't force the IER_UUE bit to 0. * Log it and continue. */ DEBUG_AUTOCONF("Couldn't force IER_UUE to 0 "); } serial_out(up, UART_IER, iersave); /* * We distinguish between 16550A and U6 16550A by counting * how many bytes are in the FIFO. */ if (up->port.type == PORT_16550A && size_fifo(up) == 64) { up->port.type = PORT_U6_16550A; up->capabilities |= UART_CAP_AFE; } } /* * This routine is called by rs_init() to initialize a specific serial * port. It determines what type of UART chip this serial port is * using: 8250, 16450, 16550, 16550A. The important question is * whether or not this UART is a 16550A or not, since this will * determine whether or not we can use its FIFO features or not. */ static void autoconfig(struct uart_8250_port *up) { unsigned char status1, scratch, scratch2, scratch3; unsigned char save_lcr, save_mcr; struct uart_port *port = &up->port; unsigned long flags; unsigned int old_capabilities; if (!port->iobase && !port->mapbase && !port->membase) return; DEBUG_AUTOCONF("%s: autoconf (0x%04lx, 0x%p): ", port->name, port->iobase, port->membase); /* * We really do need global IRQs disabled here - we're going to * be frobbing the chips IRQ enable register to see if it exists. * * Synchronize UART_IER access against the console. */ uart_port_lock_irqsave(port, &flags); up->capabilities = 0; up->bugs = 0; if (!(port->flags & UPF_BUGGY_UART)) { /* * Do a simple existence test first; if we fail this, * there's no point trying anything else. * * 0x80 is used as a nonsense port to prevent against * false positives due to ISA bus float. The * assumption is that 0x80 is a non-existent port; * which should be safe since include/asm/io.h also * makes this assumption. * * Note: this is safe as long as MCR bit 4 is clear * and the device is in "PC" mode. */ scratch = serial_in(up, UART_IER); serial_out(up, UART_IER, 0); #ifdef __i386__ outb(0xff, 0x080); #endif /* * Mask out IER[7:4] bits for test as some UARTs (e.g. TL * 16C754B) allow only to modify them if an EFR bit is set. */ scratch2 = serial_in(up, UART_IER) & UART_IER_ALL_INTR; serial_out(up, UART_IER, UART_IER_ALL_INTR); #ifdef __i386__ outb(0, 0x080); #endif scratch3 = serial_in(up, UART_IER) & UART_IER_ALL_INTR; serial_out(up, UART_IER, scratch); if (scratch2 != 0 || scratch3 != UART_IER_ALL_INTR) { /* * We failed; there's nothing here */ uart_port_unlock_irqrestore(port, flags); DEBUG_AUTOCONF("IER test failed (%02x, %02x) ", scratch2, scratch3); goto out; } } save_mcr = serial8250_in_MCR(up); save_lcr = serial_in(up, UART_LCR); /* * Check to see if a UART is really there. Certain broken * internal modems based on the Rockwell chipset fail this * test, because they apparently don't implement the loopback * test mode. So this test is skipped on the COM 1 through * COM 4 ports. This *should* be safe, since no board * manufacturer would be stupid enough to design a board * that conflicts with COM 1-4 --- we hope! */ if (!(port->flags & UPF_SKIP_TEST)) { serial8250_out_MCR(up, UART_MCR_LOOP | UART_MCR_OUT2 | UART_MCR_RTS); status1 = serial_in(up, UART_MSR) & UART_MSR_STATUS_BITS; serial8250_out_MCR(up, save_mcr); if (status1 != (UART_MSR_DCD | UART_MSR_CTS)) { uart_port_unlock_irqrestore(port, flags); DEBUG_AUTOCONF("LOOP test failed (%02x) ", status1); goto out; } } /* * We're pretty sure there's a port here. Lets find out what * type of port it is. The IIR top two bits allows us to find * out if it's 8250 or 16450, 16550, 16550A or later. This * determines what we test for next. * * We also initialise the EFR (if any) to zero for later. The * EFR occupies the same register location as the FCR and IIR. */ serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_EFR, 0); serial_out(up, UART_LCR, 0); serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO); switch (serial_in(up, UART_IIR) & UART_IIR_FIFO_ENABLED) { case UART_IIR_FIFO_ENABLED_8250: autoconfig_8250(up); break; case UART_IIR_FIFO_ENABLED_16550: port->type = PORT_16550; break; case UART_IIR_FIFO_ENABLED_16550A: autoconfig_16550a(up); break; default: port->type = PORT_UNKNOWN; break; } #ifdef CONFIG_SERIAL_8250_RSA /* * Only probe for RSA ports if we got the region. */ if (port->type == PORT_16550A && up->probe & UART_PROBE_RSA && __enable_rsa(up)) port->type = PORT_RSA; #endif serial_out(up, UART_LCR, save_lcr); port->fifosize = uart_config[up->port.type].fifo_size; old_capabilities = up->capabilities; up->capabilities = uart_config[port->type].flags; up->tx_loadsz = uart_config[port->type].tx_loadsz; if (port->type == PORT_UNKNOWN) goto out_unlock; /* * Reset the UART. */ #ifdef CONFIG_SERIAL_8250_RSA if (port->type == PORT_RSA) serial_out(up, UART_RSA_FRR, 0); #endif serial8250_out_MCR(up, save_mcr); serial8250_clear_fifos(up); serial_in(up, UART_RX); serial8250_clear_IER(up); out_unlock: uart_port_unlock_irqrestore(port, flags); /* * Check if the device is a Fintek F81216A */ if (port->type == PORT_16550A && port->iotype == UPIO_PORT) fintek_8250_probe(up); if (up->capabilities != old_capabilities) { dev_warn(port->dev, "detected caps %08x should be %08x\n", old_capabilities, up->capabilities); } out: DEBUG_AUTOCONF("iir=%d ", scratch); DEBUG_AUTOCONF("type=%s\n", uart_config[port->type].name); } static void autoconfig_irq(struct uart_8250_port *up) { struct uart_port *port = &up->port; unsigned char save_mcr, save_ier; unsigned char save_ICP = 0; unsigned int ICP = 0; unsigned long irqs; int irq; if (port->flags & UPF_FOURPORT) { ICP = (port->iobase & 0xfe0) | 0x1f; save_ICP = inb_p(ICP); outb_p(0x80, ICP); inb_p(ICP); } /* forget possible initially masked and pending IRQ */ probe_irq_off(probe_irq_on()); save_mcr = serial8250_in_MCR(up); /* Synchronize UART_IER access against the console. */ uart_port_lock_irq(port); save_ier = serial_in(up, UART_IER); uart_port_unlock_irq(port); serial8250_out_MCR(up, UART_MCR_OUT1 | UART_MCR_OUT2); irqs = probe_irq_on(); serial8250_out_MCR(up, 0); udelay(10); if (port->flags & UPF_FOURPORT) { serial8250_out_MCR(up, UART_MCR_DTR | UART_MCR_RTS); } else { serial8250_out_MCR(up, UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2); } /* Synchronize UART_IER access against the console. */ uart_port_lock_irq(port); serial_out(up, UART_IER, UART_IER_ALL_INTR); uart_port_unlock_irq(port); serial_in(up, UART_LSR); serial_in(up, UART_RX); serial_in(up, UART_IIR); serial_in(up, UART_MSR); serial_out(up, UART_TX, 0xFF); udelay(20); irq = probe_irq_off(irqs); serial8250_out_MCR(up, save_mcr); /* Synchronize UART_IER access against the console. */ uart_port_lock_irq(port); serial_out(up, UART_IER, save_ier); uart_port_unlock_irq(port); if (port->flags & UPF_FOURPORT) outb_p(save_ICP, ICP); port->irq = (irq > 0) ? irq : 0; } static void serial8250_stop_rx(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&port->lock); serial8250_rpm_get(up); up->ier &= ~(UART_IER_RLSI | UART_IER_RDI); up->port.read_status_mask &= ~UART_LSR_DR; serial_port_out(port, UART_IER, up->ier); serial8250_rpm_put(up); } /** * serial8250_em485_stop_tx() - generic ->rs485_stop_tx() callback * @p: uart 8250 port * * Generic callback usable by 8250 uart drivers to stop rs485 transmission. */ void serial8250_em485_stop_tx(struct uart_8250_port *p) { unsigned char mcr = serial8250_in_MCR(p); /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&p->port.lock); if (p->port.rs485.flags & SER_RS485_RTS_AFTER_SEND) mcr |= UART_MCR_RTS; else mcr &= ~UART_MCR_RTS; serial8250_out_MCR(p, mcr); /* * Empty the RX FIFO, we are not interested in anything * received during the half-duplex transmission. * Enable previously disabled RX interrupts. */ if (!(p->port.rs485.flags & SER_RS485_RX_DURING_TX)) { serial8250_clear_and_reinit_fifos(p); p->ier |= UART_IER_RLSI | UART_IER_RDI; serial_port_out(&p->port, UART_IER, p->ier); } } EXPORT_SYMBOL_GPL(serial8250_em485_stop_tx); static enum hrtimer_restart serial8250_em485_handle_stop_tx(struct hrtimer *t) { struct uart_8250_em485 *em485 = container_of(t, struct uart_8250_em485, stop_tx_timer); struct uart_8250_port *p = em485->port; unsigned long flags; serial8250_rpm_get(p); uart_port_lock_irqsave(&p->port, &flags); if (em485->active_timer == &em485->stop_tx_timer) { p->rs485_stop_tx(p); em485->active_timer = NULL; em485->tx_stopped = true; } uart_port_unlock_irqrestore(&p->port, flags); serial8250_rpm_put(p); return HRTIMER_NORESTART; } static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) { hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); } static void __stop_tx_rs485(struct uart_8250_port *p, u64 stop_delay) { struct uart_8250_em485 *em485 = p->em485; /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&p->port.lock); stop_delay += (u64)p->port.rs485.delay_rts_after_send * NSEC_PER_MSEC; /* * rs485_stop_tx() is going to set RTS according to config * AND flush RX FIFO if required. */ if (stop_delay > 0) { em485->active_timer = &em485->stop_tx_timer; hrtimer_start(&em485->stop_tx_timer, ns_to_ktime(stop_delay), HRTIMER_MODE_REL); } else { p->rs485_stop_tx(p); em485->active_timer = NULL; em485->tx_stopped = true; } } static inline void __stop_tx(struct uart_8250_port *p) { struct uart_8250_em485 *em485 = p->em485; if (em485) { u16 lsr = serial_lsr_in(p); u64 stop_delay = 0; if (!(lsr & UART_LSR_THRE)) return; /* * To provide required timing and allow FIFO transfer, * __stop_tx_rs485() must be called only when both FIFO and * shift register are empty. The device driver should either * enable interrupt on TEMT or set UART_CAP_NOTEMT that will * enlarge stop_tx_timer by the tx time of one frame to cover * for emptying of the shift register. */ if (!(lsr & UART_LSR_TEMT)) { if (!(p->capabilities & UART_CAP_NOTEMT)) return; /* * RTS might get deasserted too early with the normal * frame timing formula. It seems to suggest THRE might * get asserted already during tx of the stop bit * rather than after it is fully sent. * Roughly estimate 1 extra bit here with / 7. */ stop_delay = p->port.frame_time + DIV_ROUND_UP(p->port.frame_time, 7); } __stop_tx_rs485(p, stop_delay); } if (serial8250_clear_THRI(p)) serial8250_rpm_put_tx(p); } static void serial8250_stop_tx(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); serial8250_rpm_get(up); __stop_tx(up); /* * We really want to stop the transmitter from sending. */ if (port->type == PORT_16C950) { up->acr |= UART_ACR_TXDIS; serial_icr_write(up, UART_ACR, up->acr); } serial8250_rpm_put(up); } static inline void __start_tx(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); if (up->dma && !up->dma->tx_dma(up)) return; if (serial8250_set_THRI(up)) { if (up->bugs & UART_BUG_TXEN) { u16 lsr = serial_lsr_in(up); if (lsr & UART_LSR_THRE) serial8250_tx_chars(up); } } /* * Re-enable the transmitter if we disabled it. */ if (port->type == PORT_16C950 && up->acr & UART_ACR_TXDIS) { up->acr &= ~UART_ACR_TXDIS; serial_icr_write(up, UART_ACR, up->acr); } } /** * serial8250_em485_start_tx() - generic ->rs485_start_tx() callback * @up: uart 8250 port * * Generic callback usable by 8250 uart drivers to start rs485 transmission. * Assumes that setting the RTS bit in the MCR register means RTS is high. * (Some chips use inverse semantics.) Further assumes that reception is * stoppable by disabling the UART_IER_RDI interrupt. (Some chips set the * UART_LSR_DR bit even when UART_IER_RDI is disabled, foiling this approach.) */ void serial8250_em485_start_tx(struct uart_8250_port *up) { unsigned char mcr = serial8250_in_MCR(up); if (!(up->port.rs485.flags & SER_RS485_RX_DURING_TX)) serial8250_stop_rx(&up->port); if (up->port.rs485.flags & SER_RS485_RTS_ON_SEND) mcr |= UART_MCR_RTS; else mcr &= ~UART_MCR_RTS; serial8250_out_MCR(up, mcr); } EXPORT_SYMBOL_GPL(serial8250_em485_start_tx); /* Returns false, if start_tx_timer was setup to defer TX start */ static bool start_tx_rs485(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); struct uart_8250_em485 *em485 = up->em485; /* * While serial8250_em485_handle_stop_tx() is a noop if * em485->active_timer != &em485->stop_tx_timer, it might happen that * the timer is still armed and triggers only after the current bunch of * chars is send and em485->active_timer == &em485->stop_tx_timer again. * So cancel the timer. There is still a theoretical race condition if * the timer is already running and only comes around to check for * em485->active_timer when &em485->stop_tx_timer is armed again. */ if (em485->active_timer == &em485->stop_tx_timer) hrtimer_try_to_cancel(&em485->stop_tx_timer); em485->active_timer = NULL; if (em485->tx_stopped) { em485->tx_stopped = false; up->rs485_start_tx(up); if (up->port.rs485.delay_rts_before_send > 0) { em485->active_timer = &em485->start_tx_timer; start_hrtimer_ms(&em485->start_tx_timer, up->port.rs485.delay_rts_before_send); return false; } } return true; } static enum hrtimer_restart serial8250_em485_handle_start_tx(struct hrtimer *t) { struct uart_8250_em485 *em485 = container_of(t, struct uart_8250_em485, start_tx_timer); struct uart_8250_port *p = em485->port; unsigned long flags; uart_port_lock_irqsave(&p->port, &flags); if (em485->active_timer == &em485->start_tx_timer) { __start_tx(&p->port); em485->active_timer = NULL; } uart_port_unlock_irqrestore(&p->port, flags); return HRTIMER_NORESTART; } static void serial8250_start_tx(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); struct uart_8250_em485 *em485 = up->em485; /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&port->lock); if (!port->x_char && kfifo_is_empty(&port->state->port.xmit_fifo)) return; serial8250_rpm_get_tx(up); if (em485) { if ((em485->active_timer == &em485->start_tx_timer) || !start_tx_rs485(port)) return; } __start_tx(port); } static void serial8250_throttle(struct uart_port *port) { port->throttle(port); } static void serial8250_unthrottle(struct uart_port *port) { port->unthrottle(port); } static void serial8250_disable_ms(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&port->lock); /* no MSR capabilities */ if (up->bugs & UART_BUG_NOMSR) return; mctrl_gpio_disable_ms(up->gpios); up->ier &= ~UART_IER_MSI; serial_port_out(port, UART_IER, up->ier); } static void serial8250_enable_ms(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); /* Port locked to synchronize UART_IER access against the console. */ lockdep_assert_held_once(&port->lock); /* no MSR capabilities */ if (up->bugs & UART_BUG_NOMSR) return; mctrl_gpio_enable_ms(up->gpios); up->ier |= UART_IER_MSI; serial8250_rpm_get(up); serial_port_out(port, UART_IER, up->ier); serial8250_rpm_put(up); } void serial8250_read_char(struct uart_8250_port *up, u16 lsr) { struct uart_port *port = &up->port; u8 ch, flag = TTY_NORMAL; if (likely(lsr & UART_LSR_DR)) ch = serial_in(up, UART_RX); else /* * Intel 82571 has a Serial Over Lan device that will * set UART_LSR_BI without setting UART_LSR_DR when * it receives a break. To avoid reading from the * receive buffer without UART_LSR_DR bit set, we * just force the read character to be 0 */ ch = 0; port->icount.rx++; lsr |= up->lsr_saved_flags; up->lsr_saved_flags = 0; if (unlikely(lsr & UART_LSR_BRK_ERROR_BITS)) { if (lsr & UART_LSR_BI) { lsr &= ~(UART_LSR_FE | UART_LSR_PE); port->icount.brk++; /* * We do the SysRQ and SAK checking * here because otherwise the break * may get masked by ignore_status_mask * or read_status_mask. */ if (uart_handle_break(port)) return; } else if (lsr & UART_LSR_PE) port->icount.parity++; else if (lsr & UART_LSR_FE) port->icount.frame++; if (lsr & UART_LSR_OE) port->icount.overrun++; /* * Mask off conditions which should be ignored. */ lsr &= port->read_status_mask; if (lsr & UART_LSR_BI) { dev_dbg(port->dev, "handling break\n"); flag = TTY_BREAK; } else if (lsr & UART_LSR_PE) flag = TTY_PARITY; else if (lsr & UART_LSR_FE) flag = TTY_FRAME; } if (uart_prepare_sysrq_char(port, ch)) return; uart_insert_char(port, lsr, UART_LSR_OE, ch, flag); } EXPORT_SYMBOL_GPL(serial8250_read_char); /* * serial8250_rx_chars - Read characters. The first LSR value must be passed in. * * Returns LSR bits. The caller should rely only on non-Rx related LSR bits * (such as THRE) because the LSR value might come from an already consumed * character. */ u16 serial8250_rx_chars(struct uart_8250_port *up, u16 lsr) { struct uart_port *port = &up->port; int max_count = 256; do { serial8250_read_char(up, lsr); if (--max_count == 0) break; lsr = serial_in(up, UART_LSR); } while (lsr & (UART_LSR_DR | UART_LSR_BI)); tty_flip_buffer_push(&port->state->port); return lsr; } EXPORT_SYMBOL_GPL(serial8250_rx_chars); void serial8250_tx_chars(struct uart_8250_port *up) { struct uart_port *port = &up->port; struct tty_port *tport = &port->state->port; int count; if (port->x_char) { uart_xchar_out(port, UART_TX); return; } if (uart_tx_stopped(port)) { serial8250_stop_tx(port); return; } if (kfifo_is_empty(&tport->xmit_fifo)) { __stop_tx(up); return; } count = up->tx_loadsz; do { unsigned char c; if (!uart_fifo_get(port, &c)) break; serial_out(up, UART_TX, c); if (up->bugs & UART_BUG_TXRACE) { /* * The Aspeed BMC virtual UARTs have a bug where data * may get stuck in the BMC's Tx FIFO from bursts of * writes on the APB interface. * * Delay back-to-back writes by a read cycle to avoid * stalling the VUART. Read a register that won't have * side-effects and discard the result. */ serial_in(up, UART_SCR); } if ((up->capabilities & UART_CAP_HFIFO) && !uart_lsr_tx_empty(serial_in(up, UART_LSR))) break; /* The BCM2835 MINI UART THRE bit is really a not-full bit. */ if ((up->capabilities & UART_CAP_MINI) && !(serial_in(up, UART_LSR) & UART_LSR_THRE)) break; } while (--count > 0); if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) uart_write_wakeup(port); /* * With RPM enabled, we have to wait until the FIFO is empty before the * HW can go idle. So we get here once again with empty FIFO and disable * the interrupt and RPM in __stop_tx() */ if (kfifo_is_empty(&tport->xmit_fifo) && !(up->capabilities & UART_CAP_RPM)) __stop_tx(up); } EXPORT_SYMBOL_GPL(serial8250_tx_chars); /* Caller holds uart port lock */ unsigned int serial8250_modem_status(struct uart_8250_port *up) { struct uart_port *port = &up->port; unsigned int status = serial_in(up, UART_MSR); status |= up->msr_saved_flags; up->msr_saved_flags = 0; if (status & UART_MSR_ANY_DELTA && up->ier & UART_IER_MSI && port->state != NULL) { if (status & UART_MSR_TERI) port->icount.rng++; if (status & UART_MSR_DDSR) port->icount.dsr++; if (status & UART_MSR_DDCD) uart_handle_dcd_change(port, status & UART_MSR_DCD); if (status & UART_MSR_DCTS) uart_handle_cts_change(port, status & UART_MSR_CTS); wake_up_interruptible(&port->state->port.delta_msr_wait); } return status; } EXPORT_SYMBOL_GPL(serial8250_modem_status); static bool handle_rx_dma(struct uart_8250_port *up, unsigned int iir) { switch (iir & 0x3f) { case UART_IIR_THRI: /* * Postpone DMA or not decision to IIR_RDI or IIR_RX_TIMEOUT * because it's impossible to do an informed decision about * that with IIR_THRI. * * This also fixes one known DMA Rx corruption issue where * DR is asserted but DMA Rx only gets a corrupted zero byte * (too early DR?). */ return false; case UART_IIR_RDI: if (!up->dma->rx_running) break; fallthrough; case UART_IIR_RLSI: case UART_IIR_RX_TIMEOUT: serial8250_rx_dma_flush(up); return true; } return up->dma->rx_dma(up); } /* * This handles the interrupt from one port. */ int serial8250_handle_irq(struct uart_port *port, unsigned int iir) { struct uart_8250_port *up = up_to_u8250p(port); struct tty_port *tport = &port->state->port; bool skip_rx = false; unsigned long flags; u16 status; if (iir & UART_IIR_NO_INT) return 0; uart_port_lock_irqsave(port, &flags); status = serial_lsr_in(up); /* * If port is stopped and there are no error conditions in the * FIFO, then don't drain the FIFO, as this may lead to TTY buffer * overflow. Not servicing, RX FIFO would trigger auto HW flow * control when FIFO occupancy reaches preset threshold, thus * halting RX. This only works when auto HW flow control is * available. */ if (!(status & (UART_LSR_FIFOE | UART_LSR_BRK_ERROR_BITS)) && (port->status & (UPSTAT_AUTOCTS | UPSTAT_AUTORTS)) && !(port->read_status_mask & UART_LSR_DR)) skip_rx = true; if (status & (UART_LSR_DR | UART_LSR_BI) && !skip_rx) { struct irq_data *d; d = irq_get_irq_data(port->irq); if (d && irqd_is_wakeup_set(d)) pm_wakeup_event(tport->tty->dev, 0); if (!up->dma || handle_rx_dma(up, iir)) status = serial8250_rx_chars(up, status); } serial8250_modem_status(up); if ((status & UART_LSR_THRE) && (up->ier & UART_IER_THRI)) { if (!up->dma || up->dma->tx_err) serial8250_tx_chars(up); else if (!up->dma->tx_running) __stop_tx(up); } uart_unlock_and_check_sysrq_irqrestore(port, flags); return 1; } EXPORT_SYMBOL_GPL(serial8250_handle_irq); static int serial8250_default_handle_irq(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); unsigned int iir; int ret; serial8250_rpm_get(up); iir = serial_port_in(port, UART_IIR); ret = serial8250_handle_irq(port, iir); serial8250_rpm_put(up); return ret; } /* * Newer 16550 compatible parts such as the SC16C650 & Altera 16550 Soft IP * have a programmable TX threshold that triggers the THRE interrupt in * the IIR register. In this case, the THRE interrupt indicates the FIFO * has space available. Load it up with tx_loadsz bytes. */ static int serial8250_tx_threshold_handle_irq(struct uart_port *port) { unsigned long flags; unsigned int iir = serial_port_in(port, UART_IIR); /* TX Threshold IRQ triggered so load up FIFO */ if ((iir & UART_IIR_ID) == UART_IIR_THRI) { struct uart_8250_port *up = up_to_u8250p(port); uart_port_lock_irqsave(port, &flags); serial8250_tx_chars(up); uart_port_unlock_irqrestore(port, flags); } iir = serial_port_in(port, UART_IIR); return serial8250_handle_irq(port, iir); } static unsigned int serial8250_tx_empty(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); unsigned int result = 0; unsigned long flags; serial8250_rpm_get(up); uart_port_lock_irqsave(port, &flags); if (!serial8250_tx_dma_running(up) && uart_lsr_tx_empty(serial_lsr_in(up))) result = TIOCSER_TEMT; uart_port_unlock_irqrestore(port, flags); serial8250_rpm_put(up); return result; } unsigned int serial8250_do_get_mctrl(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); unsigned int status; unsigned int val; serial8250_rpm_get(up); status = serial8250_modem_status(up); serial8250_rpm_put(up); val = serial8250_MSR_to_TIOCM(status); if (up->gpios) return mctrl_gpio_get(up->gpios, &val); return val; } EXPORT_SYMBOL_GPL(serial8250_do_get_mctrl); static unsigned int serial8250_get_mctrl(struct uart_port *port) { if (port->get_mctrl) return port->get_mctrl(port); return serial8250_do_get_mctrl(port); } void serial8250_do_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct uart_8250_port *up = up_to_u8250p(port); unsigned char mcr; mcr = serial8250_TIOCM_to_MCR(mctrl); mcr |= up->mcr; serial8250_out_MCR(up, mcr); } EXPORT_SYMBOL_GPL(serial8250_do_set_mctrl); static void serial8250_set_mctrl(struct uart_port *port, unsigned int mctrl) { if (port->rs485.flags & SER_RS485_ENABLED) return; if (port->set_mctrl) port->set_mctrl(port, mctrl); else serial8250_do_set_mctrl(port, mctrl); } static void serial8250_break_ctl(struct uart_port *port, int break_state) { struct uart_8250_port *up = up_to_u8250p(port); unsigned long flags; serial8250_rpm_get(up); uart_port_lock_irqsave(port, &flags); if (break_state == -1) up->lcr |= UART_LCR_SBC; else up->lcr &= ~UART_LCR_SBC; serial_port_out(port, UART_LCR, up->lcr); uart_port_unlock_irqrestore(port, flags); serial8250_rpm_put(up); } static void wait_for_lsr(struct uart_8250_port *up, int bits) { unsigned int status, tmout = 10000; /* Wait up to 10ms for the character(s) to be sent. */ for (;;) { status = serial_lsr_in(up); if ((status & bits) == bits) break; if (--tmout == 0) break; udelay(1); touch_nmi_watchdog(); } } /* * Wait for transmitter & holding register to empty */ static void wait_for_xmitr(struct uart_8250_port *up, int bits) { unsigned int tmout; wait_for_lsr(up, bits); /* Wait up to 1s for flow control if necessary */ if (up->port.flags & UPF_CONS_FLOW) { for (tmout = 1000000; tmout; tmout--) { unsigned int msr = serial_in(up, UART_MSR); up->msr_saved_flags |= msr & MSR_SAVE_FLAGS; if (msr & UART_MSR_CTS) break; udelay(1); touch_nmi_watchdog(); } } } #ifdef CONFIG_CONSOLE_POLL /* * Console polling routines for writing and reading from the uart while * in an interrupt or debug context. */ static int serial8250_get_poll_char(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); int status; u16 lsr; serial8250_rpm_get(up); lsr = serial_port_in(port, UART_LSR); if (!(lsr & UART_LSR_DR)) { status = NO_POLL_CHAR; goto out; } status = serial_port_in(port, UART_RX); out: serial8250_rpm_put(up); return status; } static void serial8250_put_poll_char(struct uart_port *port, unsigned char c) { unsigned int ier; struct uart_8250_port *up = up_to_u8250p(port); /* * Normally the port is locked to synchronize UART_IER access * against the console. However, this function is only used by * KDB/KGDB, where it may not be possible to acquire the port * lock because all other CPUs are quiesced. The quiescence * should allow safe lockless usage here. */ serial8250_rpm_get(up); /* * First save the IER then disable the interrupts */ ier = serial_port_in(port, UART_IER); serial8250_clear_IER(up); wait_for_xmitr(up, UART_LSR_BOTH_EMPTY); /* * Send the character out. */ serial_port_out(port, UART_TX, c); /* * Finally, wait for transmitter to become empty * and restore the IER */ wait_for_xmitr(up, UART_LSR_BOTH_EMPTY); serial_port_out(port, UART_IER, ier); serial8250_rpm_put(up); } #endif /* CONFIG_CONSOLE_POLL */ int serial8250_do_startup(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); unsigned long flags; unsigned char iir; int retval; u16 lsr; if (!port->fifosize) port->fifosize = uart_config[port->type].fifo_size; if (!up->tx_loadsz) up->tx_loadsz = uart_config[port->type].tx_loadsz; if (!up->capabilities) up->capabilities = uart_config[port->type].flags; up->mcr = 0; if (port->iotype != up->cur_iotype) set_io_from_upio(port); serial8250_rpm_get(up); if (port->type == PORT_16C950) { /* * Wake up and initialize UART * * Synchronize UART_IER access against the console. */ uart_port_lock_irqsave(port, &flags); up->acr = 0; serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B); serial_port_out(port, UART_EFR, UART_EFR_ECB); serial_port_out(port, UART_IER, 0); serial_port_out(port, UART_LCR, 0); serial_icr_write(up, UART_CSR, 0); /* Reset the UART */ serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B); serial_port_out(port, UART_EFR, UART_EFR_ECB); serial_port_out(port, UART_LCR, 0); uart_port_unlock_irqrestore(port, flags); } if (port->type == PORT_DA830) { /* * Reset the port * * Synchronize UART_IER access against the console. */ uart_port_lock_irqsave(port, &flags); serial_port_out(port, UART_IER, 0); serial_port_out(port, UART_DA830_PWREMU_MGMT, 0); uart_port_unlock_irqrestore(port, flags); mdelay(10); /* Enable Tx, Rx and free run mode */ serial_port_out(port, UART_DA830_PWREMU_MGMT, UART_DA830_PWREMU_MGMT_UTRST | UART_DA830_PWREMU_MGMT_URRST | UART_DA830_PWREMU_MGMT_FREE); } #ifdef CONFIG_SERIAL_8250_RSA /* * If this is an RSA port, see if we can kick it up to the * higher speed clock. */ enable_rsa(up); #endif /* * Clear the FIFO buffers and disable them. * (they will be reenabled in set_termios()) */ serial8250_clear_fifos(up); /* * Clear the interrupt registers. */ serial_port_in(port, UART_LSR); serial_port_in(port, UART_RX); serial_port_in(port, UART_IIR); serial_port_in(port, UART_MSR); /* * At this point, there's no way the LSR could still be 0xff; * if it is, then bail out, because there's likely no UART * here. */ if (!(port->flags & UPF_BUGGY_UART) && (serial_port_in(port, UART_LSR) == 0xff)) { dev_info_ratelimited(port->dev, "LSR safety check engaged!\n"); retval = -ENODEV; goto out; } /* * For a XR16C850, we need to set the trigger levels */ if (port->type == PORT_16850) { unsigned char fctr; serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); fctr = serial_in(up, UART_FCTR) & ~(UART_FCTR_RX|UART_FCTR_TX); serial_port_out(port, UART_FCTR, fctr | UART_FCTR_TRGD | UART_FCTR_RX); serial_port_out(port, UART_TRG, UART_TRG_96); serial_port_out(port, UART_FCTR, fctr | UART_FCTR_TRGD | UART_FCTR_TX); serial_port_out(port, UART_TRG, UART_TRG_96); serial_port_out(port, UART_LCR, 0); } /* * For the Altera 16550 variants, set TX threshold trigger level. */ if (((port->type == PORT_ALTR_16550_F32) || (port->type == PORT_ALTR_16550_F64) || (port->type == PORT_ALTR_16550_F128)) && (port->fifosize > 1)) { /* Bounds checking of TX threshold (valid 0 to fifosize-2) */ if ((up->tx_loadsz < 2) || (up->tx_loadsz > port->fifosize)) { dev_err(port->dev, "TX FIFO Threshold errors, skipping\n"); } else { serial_port_out(port, UART_ALTR_AFR, UART_ALTR_EN_TXFIFO_LW); serial_port_out(port, UART_ALTR_TX_LOW, port->fifosize - up->tx_loadsz); port->handle_irq = serial8250_tx_threshold_handle_irq; } } /* Check if we need to have shared IRQs */ if (port->irq && (up->port.flags & UPF_SHARE_IRQ)) up->port.irqflags |= IRQF_SHARED; retval = up->ops->setup_irq(up); if (retval) goto out; if (port->irq && !(up->port.flags & UPF_NO_THRE_TEST)) { unsigned char iir1; if (port->irqflags & IRQF_SHARED) disable_irq_nosync(port->irq); /* * Test for UARTs that do not reassert THRE when the * transmitter is idle and the interrupt has already * been cleared. Real 16550s should always reassert * this interrupt whenever the transmitter is idle and * the interrupt is enabled. Delays are necessary to * allow register changes to become visible. * * Synchronize UART_IER access against the console. */ uart_port_lock_irqsave(port, &flags); wait_for_xmitr(up, UART_LSR_THRE); serial_port_out_sync(port, UART_IER, UART_IER_THRI); udelay(1); /* allow THRE to set */ iir1 = serial_port_in(port, UART_IIR); serial_port_out(port, UART_IER, 0); serial_port_out_sync(port, UART_IER, UART_IER_THRI); udelay(1); /* allow a working UART time to re-assert THRE */ iir = serial_port_in(port, UART_IIR); serial_port_out(port, UART_IER, 0); uart_port_unlock_irqrestore(port, flags); if (port->irqflags & IRQF_SHARED) enable_irq(port->irq); /* * If the interrupt is not reasserted, or we otherwise * don't trust the iir, setup a timer to kick the UART * on a regular basis. */ if ((!(iir1 & UART_IIR_NO_INT) && (iir & UART_IIR_NO_INT)) || up->port.flags & UPF_BUG_THRE) { up->bugs |= UART_BUG_THRE; } } up->ops->setup_timer(up); /* * Now, initialize the UART */ serial_port_out(port, UART_LCR, UART_LCR_WLEN8); uart_port_lock_irqsave(port, &flags); if (up->port.flags & UPF_FOURPORT) { if (!up->port.irq) up->port.mctrl |= TIOCM_OUT1; } else /* * Most PC uarts need OUT2 raised to enable interrupts. */ if (port->irq) up->port.mctrl |= TIOCM_OUT2; serial8250_set_mctrl(port, port->mctrl); /* * Serial over Lan (SoL) hack: * Intel 8257x Gigabit ethernet chips have a 16550 emulation, to be * used for Serial Over Lan. Those chips take a longer time than a * normal serial device to signalize that a transmission data was * queued. Due to that, the above test generally fails. One solution * would be to delay the reading of iir. However, this is not * reliable, since the timeout is variable. So, let's just don't * test if we receive TX irq. This way, we'll never enable * UART_BUG_TXEN. */ if (up->port.quirks & UPQ_NO_TXEN_TEST) goto dont_test_tx_en; /* * Do a quick test to see if we receive an interrupt when we enable * the TX irq. */ serial_port_out(port, UART_IER, UART_IER_THRI); lsr = serial_port_in(port, UART_LSR); iir = serial_port_in(port, UART_IIR); serial_port_out(port, UART_IER, 0); if (lsr & UART_LSR_TEMT && iir & UART_IIR_NO_INT) { if (!(up->bugs & UART_BUG_TXEN)) { up->bugs |= UART_BUG_TXEN; dev_dbg(port->dev, "enabling bad tx status workarounds\n"); } } else { up->bugs &= ~UART_BUG_TXEN; } dont_test_tx_en: uart_port_unlock_irqrestore(port, flags); /* * Clear the interrupt registers again for luck, and clear the * saved flags to avoid getting false values from polling * routines or the previous session. */ serial_port_in(port, UART_LSR); serial_port_in(port, UART_RX); serial_port_in(port, UART_IIR); serial_port_in(port, UART_MSR); up->lsr_saved_flags = 0; up->msr_saved_flags = 0; /* * Request DMA channels for both RX and TX. */ if (up->dma) { const char *msg = NULL; if (uart_console(port)) msg = "forbid DMA for kernel console"; else if (serial8250_request_dma(up)) msg = "failed to request DMA"; if (msg) { dev_warn_ratelimited(port->dev, "%s\n", msg); up->dma = NULL; } } /* * Set the IER shadow for rx interrupts but defer actual interrupt * enable until after the FIFOs are enabled; otherwise, an already- * active sender can swamp the interrupt handler with "too much work". */ up->ier = UART_IER_RLSI | UART_IER_RDI; if (port->flags & UPF_FOURPORT) { unsigned int icp; /* * Enable interrupts on the AST Fourport board */ icp = (port->iobase & 0xfe0) | 0x01f; outb_p(0x80, icp); inb_p(icp); } retval = 0; out: serial8250_rpm_put(up); return retval; } EXPORT_SYMBOL_GPL(serial8250_do_startup); static int serial8250_startup(struct uart_port *port) { if (port->startup) return port->startup(port); return serial8250_do_startup(port); } void serial8250_do_shutdown(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); unsigned long flags; serial8250_rpm_get(up); /* * Disable interrupts from this port * * Synchronize UART_IER access against the console. */ uart_port_lock_irqsave(port, &flags); up->ier = 0; serial_port_out(port, UART_IER, 0); uart_port_unlock_irqrestore(port, flags); synchronize_irq(port->irq); if (up->dma) serial8250_release_dma(up); uart_port_lock_irqsave(port, &flags); if (port->flags & UPF_FOURPORT) { /* reset interrupts on the AST Fourport board */ inb((port->iobase & 0xfe0) | 0x1f); port->mctrl |= TIOCM_OUT1; } else port->mctrl &= ~TIOCM_OUT2; serial8250_set_mctrl(port, port->mctrl); uart_port_unlock_irqrestore(port, flags); /* * Disable break condition and FIFOs */ serial_port_out(port, UART_LCR, serial_port_in(port, UART_LCR) & ~UART_LCR_SBC); serial8250_clear_fifos(up); #ifdef CONFIG_SERIAL_8250_RSA /* * Reset the RSA board back to 115kbps compat mode. */ disable_rsa(up); #endif /* * Read data port to reset things, and then unlink from * the IRQ chain. */ serial_port_in(port, UART_RX); serial8250_rpm_put(up); up->ops->release_irq(up); } EXPORT_SYMBOL_GPL(serial8250_do_shutdown); static void serial8250_shutdown(struct uart_port *port) { if (port->shutdown) port->shutdown(port); else serial8250_do_shutdown(port); } static unsigned int serial8250_do_get_divisor(struct uart_port *port, unsigned int baud, unsigned int *frac) { upf_t magic_multiplier = port->flags & UPF_MAGIC_MULTIPLIER; struct uart_8250_port *up = up_to_u8250p(port); unsigned int quot; /* * Handle magic divisors for baud rates above baud_base on SMSC * Super I/O chips. We clamp custom rates from clk/6 and clk/12 * up to clk/4 (0x8001) and clk/8 (0x8002) respectively. These * magic divisors actually reprogram the baud rate generator's * reference clock derived from chips's 14.318MHz clock input. * * Documentation claims that with these magic divisors the base * frequencies of 7.3728MHz and 3.6864MHz are used respectively * for the extra baud rates of 460800bps and 230400bps rather * than the usual base frequency of 1.8462MHz. However empirical * evidence contradicts that. * * Instead bit 7 of the DLM register (bit 15 of the divisor) is * effectively used as a clock prescaler selection bit for the * base frequency of 7.3728MHz, always used. If set to 0, then * the base frequency is divided by 4 for use by the Baud Rate * Generator, for the usual arrangement where the value of 1 of * the divisor produces the baud rate of 115200bps. Conversely, * if set to 1 and high-speed operation has been enabled with the * Serial Port Mode Register in the Device Configuration Space, * then the base frequency is supplied directly to the Baud Rate * Generator, so for the divisor values of 0x8001, 0x8002, 0x8003, * 0x8004, etc. the respective baud rates produced are 460800bps, * 230400bps, 153600bps, 115200bps, etc. * * In all cases only low 15 bits of the divisor are used to divide * the baud base and therefore 32767 is the maximum divisor value * possible, even though documentation says that the programmable * Baud Rate Generator is capable of dividing the internal PLL * clock by any divisor from 1 to 65535. */ if (magic_multiplier && baud >= port->uartclk / 6) quot = 0x8001; else if (magic_multiplier && baud >= port->uartclk / 12) quot = 0x8002; else quot = uart_get_divisor(port, baud); /* * Oxford Semi 952 rev B workaround */ if (up->bugs & UART_BUG_QUOT && (quot & 0xff) == 0) quot++; return quot; } static unsigned int serial8250_get_divisor(struct uart_port *port, unsigned int baud, unsigned int *frac) { if (port->get_divisor) return port->get_divisor(port, baud, frac); return serial8250_do_get_divisor(port, baud, frac); } static unsigned char serial8250_compute_lcr(struct uart_8250_port *up, tcflag_t c_cflag) { unsigned char cval; cval = UART_LCR_WLEN(tty_get_char_size(c_cflag)); if (c_cflag & CSTOPB) cval |= UART_LCR_STOP; if (c_cflag & PARENB) cval |= UART_LCR_PARITY; if (!(c_cflag & PARODD)) cval |= UART_LCR_EPAR; if (c_cflag & CMSPAR) cval |= UART_LCR_SPAR; return cval; } void serial8250_do_set_divisor(struct uart_port *port, unsigned int baud, unsigned int quot, unsigned int quot_frac) { struct uart_8250_port *up = up_to_u8250p(port); /* Workaround to enable 115200 baud on OMAP1510 internal ports */ if (is_omap1510_8250(up)) { if (baud == 115200) { quot = 1; serial_port_out(port, UART_OMAP_OSC_12M_SEL, 1); } else serial_port_out(port, UART_OMAP_OSC_12M_SEL, 0); } /* * For NatSemi, switch to bank 2 not bank 1, to avoid resetting EXCR2, * otherwise just set DLAB */ if (up->capabilities & UART_NATSEMI) serial_port_out(port, UART_LCR, 0xe0); else serial_port_out(port, UART_LCR, up->lcr | UART_LCR_DLAB); serial_dl_write(up, quot); } EXPORT_SYMBOL_GPL(serial8250_do_set_divisor); static void serial8250_set_divisor(struct uart_port *port, unsigned int baud, unsigned int quot, unsigned int quot_frac) { if (port->set_divisor) port->set_divisor(port, baud, quot, quot_frac); else serial8250_do_set_divisor(port, baud, quot, quot_frac); } static unsigned int serial8250_get_baud_rate(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { unsigned int tolerance = port->uartclk / 100; unsigned int min; unsigned int max; /* * Handle magic divisors for baud rates above baud_base on SMSC * Super I/O chips. Enable custom rates of clk/4 and clk/8, but * disable divisor values beyond 32767, which are unavailable. */ if (port->flags & UPF_MAGIC_MULTIPLIER) { min = port->uartclk / 16 / UART_DIV_MAX >> 1; max = (port->uartclk + tolerance) / 4; } else { min = port->uartclk / 16 / UART_DIV_MAX; max = (port->uartclk + tolerance) / 16; } /* * Ask the core to calculate the divisor for us. * Allow 1% tolerance at the upper limit so uart clks marginally * slower than nominal still match standard baud rates without * causing transmission errors. */ return uart_get_baud_rate(port, termios, old, min, max); } /* * Note in order to avoid the tty port mutex deadlock don't use the next method * within the uart port callbacks. Primarily it's supposed to be utilized to * handle a sudden reference clock rate change. */ void serial8250_update_uartclk(struct uart_port *port, unsigned int uartclk) { struct tty_port *tport = &port->state->port; struct tty_struct *tty; tty = tty_port_tty_get(tport); if (!tty) { mutex_lock(&tport->mutex); port->uartclk = uartclk; mutex_unlock(&tport->mutex); return; } down_write(&tty->termios_rwsem); mutex_lock(&tport->mutex); if (port->uartclk == uartclk) goto out_unlock; port->uartclk = uartclk; if (!tty_port_initialized(tport)) goto out_unlock; serial8250_do_set_termios(port, &tty->termios, NULL); out_unlock: mutex_unlock(&tport->mutex); up_write(&tty->termios_rwsem); tty_kref_put(tty); } EXPORT_SYMBOL_GPL(serial8250_update_uartclk); void serial8250_do_set_termios(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { struct uart_8250_port *up = up_to_u8250p(port); unsigned char cval; unsigned long flags; unsigned int baud, quot, frac = 0; if (up->capabilities & UART_CAP_MINI) { termios->c_cflag &= ~(CSTOPB | PARENB | PARODD | CMSPAR); if ((termios->c_cflag & CSIZE) == CS5 || (termios->c_cflag & CSIZE) == CS6) termios->c_cflag = (termios->c_cflag & ~CSIZE) | CS7; } cval = serial8250_compute_lcr(up, termios->c_cflag); baud = serial8250_get_baud_rate(port, termios, old); quot = serial8250_get_divisor(port, baud, &frac); /* * Ok, we're now changing the port state. Do it with * interrupts disabled. * * Synchronize UART_IER access against the console. */ serial8250_rpm_get(up); uart_port_lock_irqsave(port, &flags); up->lcr = cval; /* Save computed LCR */ if (up->capabilities & UART_CAP_FIFO && port->fifosize > 1) { if (baud < 2400 && !up->dma) { up->fcr &= ~UART_FCR_TRIGGER_MASK; up->fcr |= UART_FCR_TRIGGER_1; } } /* * MCR-based auto flow control. When AFE is enabled, RTS will be * deasserted when the receive FIFO contains more characters than * the trigger, or the MCR RTS bit is cleared. */ if (up->capabilities & UART_CAP_AFE) { up->mcr &= ~UART_MCR_AFE; if (termios->c_cflag & CRTSCTS) up->mcr |= UART_MCR_AFE; } /* * Update the per-port timeout. */ uart_update_timeout(port, termios->c_cflag, baud); port->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR; if (termios->c_iflag & INPCK) port->read_status_mask |= UART_LSR_FE | UART_LSR_PE; if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) port->read_status_mask |= UART_LSR_BI; /* * Characters to ignore */ port->ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) port->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE; if (termios->c_iflag & IGNBRK) { port->ignore_status_mask |= UART_LSR_BI; /* * If we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) port->ignore_status_mask |= UART_LSR_OE; } /* * ignore all characters if CREAD is not set */ if ((termios->c_cflag & CREAD) == 0) port->ignore_status_mask |= UART_LSR_DR; /* * CTS flow control flag and modem status interrupts */ up->ier &= ~UART_IER_MSI; if (!(up->bugs & UART_BUG_NOMSR) && UART_ENABLE_MS(&up->port, termios->c_cflag)) up->ier |= UART_IER_MSI; if (up->capabilities & UART_CAP_UUE) up->ier |= UART_IER_UUE; if (up->capabilities & UART_CAP_RTOIE) up->ier |= UART_IER_RTOIE; serial_port_out(port, UART_IER, up->ier); if (up->capabilities & UART_CAP_EFR) { unsigned char efr = 0; /* * TI16C752/Startech hardware flow control. FIXME: * - TI16C752 requires control thresholds to be set. * - UART_MCR_RTS is ineffective if auto-RTS mode is enabled. */ if (termios->c_cflag & CRTSCTS) efr |= UART_EFR_CTS; serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B); if (port->flags & UPF_EXAR_EFR) serial_port_out(port, UART_XR_EFR, efr); else serial_port_out(port, UART_EFR, efr); } serial8250_set_divisor(port, baud, quot, frac); /* * LCR DLAB must be set to enable 64-byte FIFO mode. If the FCR * is written without DLAB set, this mode will be disabled. */ if (port->type == PORT_16750) serial_port_out(port, UART_FCR, up->fcr); serial_port_out(port, UART_LCR, up->lcr); /* reset DLAB */ if (port->type != PORT_16750) { /* emulated UARTs (Lucent Venus 167x) need two steps */ if (up->fcr & UART_FCR_ENABLE_FIFO) serial_port_out(port, UART_FCR, UART_FCR_ENABLE_FIFO); serial_port_out(port, UART_FCR, up->fcr); /* set fcr */ } serial8250_set_mctrl(port, port->mctrl); uart_port_unlock_irqrestore(port, flags); serial8250_rpm_put(up); /* Don't rewrite B0 */ if (tty_termios_baud_rate(termios)) tty_termios_encode_baud_rate(termios, baud, baud); } EXPORT_SYMBOL(serial8250_do_set_termios); static void serial8250_set_termios(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { if (port->set_termios) port->set_termios(port, termios, old); else serial8250_do_set_termios(port, termios, old); } void serial8250_do_set_ldisc(struct uart_port *port, struct ktermios *termios) { if (termios->c_line == N_PPS) { port->flags |= UPF_HARDPPS_CD; uart_port_lock_irq(port); serial8250_enable_ms(port); uart_port_unlock_irq(port); } else { port->flags &= ~UPF_HARDPPS_CD; if (!UART_ENABLE_MS(port, termios->c_cflag)) { uart_port_lock_irq(port); serial8250_disable_ms(port); uart_port_unlock_irq(port); } } } EXPORT_SYMBOL_GPL(serial8250_do_set_ldisc); static void serial8250_set_ldisc(struct uart_port *port, struct ktermios *termios) { if (port->set_ldisc) port->set_ldisc(port, termios); else serial8250_do_set_ldisc(port, termios); } void serial8250_do_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { struct uart_8250_port *p = up_to_u8250p(port); serial8250_set_sleep(p, state != 0); } EXPORT_SYMBOL(serial8250_do_pm); static void serial8250_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { if (port->pm) port->pm(port, state, oldstate); else serial8250_do_pm(port, state, oldstate); } static unsigned int serial8250_port_size(struct uart_8250_port *pt) { if (pt->port.mapsize) return pt->port.mapsize; if (is_omap1_8250(pt)) return 0x16 << pt->port.regshift; return 8 << pt->port.regshift; } /* * Resource handling. */ static int serial8250_request_std_resource(struct uart_8250_port *up) { unsigned int size = serial8250_port_size(up); struct uart_port *port = &up->port; int ret = 0; switch (port->iotype) { case UPIO_AU: case UPIO_TSI: case UPIO_MEM32: case UPIO_MEM32BE: case UPIO_MEM16: case UPIO_MEM: if (!port->mapbase) { ret = -EINVAL; break; } if (!request_mem_region(port->mapbase, size, "serial")) { ret = -EBUSY; break; } if (port->flags & UPF_IOREMAP) { port->membase = ioremap(port->mapbase, size); if (!port->membase) { release_mem_region(port->mapbase, size); ret = -ENOMEM; } } break; case UPIO_HUB6: case UPIO_PORT: if (!request_region(port->iobase, size, "serial")) ret = -EBUSY; break; } return ret; } static void serial8250_release_std_resource(struct uart_8250_port *up) { unsigned int size = serial8250_port_size(up); struct uart_port *port = &up->port; switch (port->iotype) { case UPIO_AU: case UPIO_TSI: case UPIO_MEM32: case UPIO_MEM32BE: case UPIO_MEM16: case UPIO_MEM: if (!port->mapbase) break; if (port->flags & UPF_IOREMAP) { iounmap(port->membase); port->membase = NULL; } release_mem_region(port->mapbase, size); break; case UPIO_HUB6: case UPIO_PORT: release_region(port->iobase, size); break; } } static void serial8250_release_port(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); serial8250_release_std_resource(up); } static int serial8250_request_port(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); return serial8250_request_std_resource(up); } static int fcr_get_rxtrig_bytes(struct uart_8250_port *up) { const struct serial8250_config *conf_type = &uart_config[up->port.type]; unsigned char bytes; bytes = conf_type->rxtrig_bytes[UART_FCR_R_TRIG_BITS(up->fcr)]; return bytes ? bytes : -EOPNOTSUPP; } static int bytes_to_fcr_rxtrig(struct uart_8250_port *up, unsigned char bytes) { const struct serial8250_config *conf_type = &uart_config[up->port.type]; int i; if (!conf_type->rxtrig_bytes[UART_FCR_R_TRIG_BITS(UART_FCR_R_TRIG_00)]) return -EOPNOTSUPP; for (i = 1; i < UART_FCR_R_TRIG_MAX_STATE; i++) { if (bytes < conf_type->rxtrig_bytes[i]) /* Use the nearest lower value */ return (--i) << UART_FCR_R_TRIG_SHIFT; } return UART_FCR_R_TRIG_11; } static int do_get_rxtrig(struct tty_port *port) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport = state->uart_port; struct uart_8250_port *up = up_to_u8250p(uport); if (!(up->capabilities & UART_CAP_FIFO) || uport->fifosize <= 1) return -EINVAL; return fcr_get_rxtrig_bytes(up); } static int do_serial8250_get_rxtrig(struct tty_port *port) { int rxtrig_bytes; mutex_lock(&port->mutex); rxtrig_bytes = do_get_rxtrig(port); mutex_unlock(&port->mutex); return rxtrig_bytes; } static ssize_t rx_trig_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tty_port *port = dev_get_drvdata(dev); int rxtrig_bytes; rxtrig_bytes = do_serial8250_get_rxtrig(port); if (rxtrig_bytes < 0) return rxtrig_bytes; return sysfs_emit(buf, "%d\n", rxtrig_bytes); } static int do_set_rxtrig(struct tty_port *port, unsigned char bytes) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport = state->uart_port; struct uart_8250_port *up = up_to_u8250p(uport); int rxtrig; if (!(up->capabilities & UART_CAP_FIFO) || uport->fifosize <= 1) return -EINVAL; rxtrig = bytes_to_fcr_rxtrig(up, bytes); if (rxtrig < 0) return rxtrig; serial8250_clear_fifos(up); up->fcr &= ~UART_FCR_TRIGGER_MASK; up->fcr |= (unsigned char)rxtrig; serial_out(up, UART_FCR, up->fcr); return 0; } static int do_serial8250_set_rxtrig(struct tty_port *port, unsigned char bytes) { int ret; mutex_lock(&port->mutex); ret = do_set_rxtrig(port, bytes); mutex_unlock(&port->mutex); return ret; } static ssize_t rx_trig_bytes_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tty_port *port = dev_get_drvdata(dev); unsigned char bytes; int ret; if (!count) return -EINVAL; ret = kstrtou8(buf, 10, &bytes); if (ret < 0) return ret; ret = do_serial8250_set_rxtrig(port, bytes); if (ret < 0) return ret; return count; } static DEVICE_ATTR_RW(rx_trig_bytes); static struct attribute *serial8250_dev_attrs[] = { &dev_attr_rx_trig_bytes.attr, NULL }; static struct attribute_group serial8250_dev_attr_group = { .attrs = serial8250_dev_attrs, }; static void register_dev_spec_attr_grp(struct uart_8250_port *up) { const struct serial8250_config *conf_type = &uart_config[up->port.type]; if (conf_type->rxtrig_bytes[0]) up->port.attr_group = &serial8250_dev_attr_group; } static void serial8250_config_port(struct uart_port *port, int flags) { struct uart_8250_port *up = up_to_u8250p(port); int ret; /* * Find the region that we can probe for. This in turn * tells us whether we can probe for the type of port. */ ret = serial8250_request_std_resource(up); if (ret < 0) return; if (port->iotype != up->cur_iotype) set_io_from_upio(port); if (flags & UART_CONFIG_TYPE) autoconfig(up); /* HW bugs may trigger IRQ while IIR == NO_INT */ if (port->type == PORT_TEGRA) up->bugs |= UART_BUG_NOMSR; if (port->type != PORT_UNKNOWN && flags & UART_CONFIG_IRQ) autoconfig_irq(up); if (port->type == PORT_UNKNOWN) serial8250_release_std_resource(up); register_dev_spec_attr_grp(up); up->fcr = uart_config[up->port.type].fcr; } static int serial8250_verify_port(struct uart_port *port, struct serial_struct *ser) { if (ser->irq >= nr_irqs || ser->irq < 0 || ser->baud_base < 9600 || ser->type < PORT_UNKNOWN || ser->type >= ARRAY_SIZE(uart_config) || ser->type == PORT_CIRRUS || ser->type == PORT_STARTECH) return -EINVAL; return 0; } static const char *serial8250_type(struct uart_port *port) { int type = port->type; if (type >= ARRAY_SIZE(uart_config)) type = 0; return uart_config[type].name; } static const struct uart_ops serial8250_pops = { .tx_empty = serial8250_tx_empty, .set_mctrl = serial8250_set_mctrl, .get_mctrl = serial8250_get_mctrl, .stop_tx = serial8250_stop_tx, .start_tx = serial8250_start_tx, .throttle = serial8250_throttle, .unthrottle = serial8250_unthrottle, .stop_rx = serial8250_stop_rx, .enable_ms = serial8250_enable_ms, .break_ctl = serial8250_break_ctl, .startup = serial8250_startup, .shutdown = serial8250_shutdown, .set_termios = serial8250_set_termios, .set_ldisc = serial8250_set_ldisc, .pm = serial8250_pm, .type = serial8250_type, .release_port = serial8250_release_port, .request_port = serial8250_request_port, .config_port = serial8250_config_port, .verify_port = serial8250_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = serial8250_get_poll_char, .poll_put_char = serial8250_put_poll_char, #endif }; void serial8250_init_port(struct uart_8250_port *up) { struct uart_port *port = &up->port; spin_lock_init(&port->lock); port->ctrl_id = 0; port->pm = NULL; port->ops = &serial8250_pops; port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_8250_CONSOLE); up->cur_iotype = 0xFF; } EXPORT_SYMBOL_GPL(serial8250_init_port); void serial8250_set_defaults(struct uart_8250_port *up) { struct uart_port *port = &up->port; if (up->port.flags & UPF_FIXED_TYPE) { unsigned int type = up->port.type; if (!up->port.fifosize) up->port.fifosize = uart_config[type].fifo_size; if (!up->tx_loadsz) up->tx_loadsz = uart_config[type].tx_loadsz; if (!up->capabilities) up->capabilities = uart_config[type].flags; } set_io_from_upio(port); /* default dma handlers */ if (up->dma) { if (!up->dma->tx_dma) up->dma->tx_dma = serial8250_tx_dma; if (!up->dma->rx_dma) up->dma->rx_dma = serial8250_rx_dma; } } EXPORT_SYMBOL_GPL(serial8250_set_defaults); #ifdef CONFIG_SERIAL_8250_CONSOLE static void serial8250_console_putchar(struct uart_port *port, unsigned char ch) { struct uart_8250_port *up = up_to_u8250p(port); wait_for_xmitr(up, UART_LSR_THRE); serial_port_out(port, UART_TX, ch); } /* * Restore serial console when h/w power-off detected */ static void serial8250_console_restore(struct uart_8250_port *up) { struct uart_port *port = &up->port; struct ktermios termios; unsigned int baud, quot, frac = 0; termios.c_cflag = port->cons->cflag; termios.c_ispeed = port->cons->ispeed; termios.c_ospeed = port->cons->ospeed; if (port->state->port.tty && termios.c_cflag == 0) { termios.c_cflag = port->state->port.tty->termios.c_cflag; termios.c_ispeed = port->state->port.tty->termios.c_ispeed; termios.c_ospeed = port->state->port.tty->termios.c_ospeed; } baud = serial8250_get_baud_rate(port, &termios, NULL); quot = serial8250_get_divisor(port, baud, &frac); serial8250_set_divisor(port, baud, quot, frac); serial_port_out(port, UART_LCR, up->lcr); serial8250_out_MCR(up, up->mcr | UART_MCR_DTR | UART_MCR_RTS); } /* * Print a string to the serial port using the device FIFO * * It sends fifosize bytes and then waits for the fifo * to get empty. */ static void serial8250_console_fifo_write(struct uart_8250_port *up, const char *s, unsigned int count) { int i; const char *end = s + count; unsigned int fifosize = up->tx_loadsz; bool cr_sent = false; while (s != end) { wait_for_lsr(up, UART_LSR_THRE); for (i = 0; i < fifosize && s != end; ++i) { if (*s == '\n' && !cr_sent) { serial_out(up, UART_TX, '\r'); cr_sent = true; } else { serial_out(up, UART_TX, *s++); cr_sent = false; } } } } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... * * The console_lock must be held when we get here. * * Doing runtime PM is really a bad idea for the kernel console. * Thus, we assume the function is called when device is powered up. */ void serial8250_console_write(struct uart_8250_port *up, const char *s, unsigned int count) { struct uart_8250_em485 *em485 = up->em485; struct uart_port *port = &up->port; unsigned long flags; unsigned int ier, use_fifo; int locked = 1; touch_nmi_watchdog(); if (oops_in_progress) locked = uart_port_trylock_irqsave(port, &flags); else uart_port_lock_irqsave(port, &flags); /* * First save the IER then disable the interrupts */ ier = serial_port_in(port, UART_IER); serial8250_clear_IER(up); /* check scratch reg to see if port powered off during system sleep */ if (up->canary && (up->canary != serial_port_in(port, UART_SCR))) { serial8250_console_restore(up); up->canary = 0; } if (em485) { if (em485->tx_stopped) up->rs485_start_tx(up); mdelay(port->rs485.delay_rts_before_send); } use_fifo = (up->capabilities & UART_CAP_FIFO) && /* * BCM283x requires to check the fifo * after each byte. */ !(up->capabilities & UART_CAP_MINI) && /* * tx_loadsz contains the transmit fifo size */ up->tx_loadsz > 1 && (up->fcr & UART_FCR_ENABLE_FIFO) && port->state && test_bit(TTY_PORT_INITIALIZED, &port->state->port.iflags) && /* * After we put a data in the fifo, the controller will send * it regardless of the CTS state. Therefore, only use fifo * if we don't use control flow. */ !(up->port.flags & UPF_CONS_FLOW); if (likely(use_fifo)) serial8250_console_fifo_write(up, s, count); else uart_console_write(port, s, count, serial8250_console_putchar); /* * Finally, wait for transmitter to become empty * and restore the IER */ wait_for_xmitr(up, UART_LSR_BOTH_EMPTY); if (em485) { mdelay(port->rs485.delay_rts_after_send); if (em485->tx_stopped) up->rs485_stop_tx(up); } serial_port_out(port, UART_IER, ier); /* * The receive handling will happen properly because the * receive ready bit will still be set; it is not cleared * on read. However, modem control will not, we must * call it if we have saved something in the saved flags * while processing with interrupts off. */ if (up->msr_saved_flags) serial8250_modem_status(up); if (locked) uart_port_unlock_irqrestore(port, flags); } static unsigned int probe_baud(struct uart_port *port) { unsigned char lcr, dll, dlm; unsigned int quot; lcr = serial_port_in(port, UART_LCR); serial_port_out(port, UART_LCR, lcr | UART_LCR_DLAB); dll = serial_port_in(port, UART_DLL); dlm = serial_port_in(port, UART_DLM); serial_port_out(port, UART_LCR, lcr); quot = (dlm << 8) | dll; return (port->uartclk / 16) / quot; } int serial8250_console_setup(struct uart_port *port, char *options, bool probe) { int baud = 9600; int bits = 8; int parity = 'n'; int flow = 'n'; int ret; if (!port->iobase && !port->membase) return -ENODEV; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); else if (probe) baud = probe_baud(port); ret = uart_set_options(port, port->cons, baud, parity, bits, flow); if (ret) return ret; if (port->dev) pm_runtime_get_sync(port->dev); return 0; } int serial8250_console_exit(struct uart_port *port) { if (port->dev) pm_runtime_put_sync(port->dev); return 0; } #endif /* CONFIG_SERIAL_8250_CONSOLE */ MODULE_DESCRIPTION("Base port operations for 8250/16550-type serial ports"); MODULE_LICENSE("GPL"); |
11 11 11 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | // SPDX-License-Identifier: GPL-2.0-or-later /* * DVB USB framework * * Copyright (C) 2004-6 Patrick Boettcher <patrick.boettcher@posteo.de> * Copyright (C) 2012 Antti Palosaari <crope@iki.fi> */ #include "dvb_usb_common.h" static int dvb_usb_v2_generic_io(struct dvb_usb_device *d, u8 *wbuf, u16 wlen, u8 *rbuf, u16 rlen) { int ret, actual_length; if (!wbuf || !wlen || !d->props->generic_bulk_ctrl_endpoint || !d->props->generic_bulk_ctrl_endpoint_response) { dev_dbg(&d->udev->dev, "%s: failed=%d\n", __func__, -EINVAL); return -EINVAL; } dev_dbg(&d->udev->dev, "%s: >>> %*ph\n", __func__, wlen, wbuf); ret = usb_bulk_msg(d->udev, usb_sndbulkpipe(d->udev, d->props->generic_bulk_ctrl_endpoint), wbuf, wlen, &actual_length, 2000); if (ret) { dev_err(&d->udev->dev, "%s: usb_bulk_msg() failed=%d\n", KBUILD_MODNAME, ret); return ret; } if (actual_length != wlen) { dev_err(&d->udev->dev, "%s: usb_bulk_msg() write length=%d, actual=%d\n", KBUILD_MODNAME, wlen, actual_length); return -EIO; } /* an answer is expected */ if (rbuf && rlen) { if (d->props->generic_bulk_ctrl_delay) usleep_range(d->props->generic_bulk_ctrl_delay, d->props->generic_bulk_ctrl_delay + 20000); ret = usb_bulk_msg(d->udev, usb_rcvbulkpipe(d->udev, d->props->generic_bulk_ctrl_endpoint_response), rbuf, rlen, &actual_length, 2000); if (ret) dev_err(&d->udev->dev, "%s: 2nd usb_bulk_msg() failed=%d\n", KBUILD_MODNAME, ret); dev_dbg(&d->udev->dev, "%s: <<< %*ph\n", __func__, actual_length, rbuf); } return ret; } int dvb_usbv2_generic_rw(struct dvb_usb_device *d, u8 *wbuf, u16 wlen, u8 *rbuf, u16 rlen) { int ret; mutex_lock(&d->usb_mutex); ret = dvb_usb_v2_generic_io(d, wbuf, wlen, rbuf, rlen); mutex_unlock(&d->usb_mutex); return ret; } EXPORT_SYMBOL(dvb_usbv2_generic_rw); int dvb_usbv2_generic_write(struct dvb_usb_device *d, u8 *buf, u16 len) { int ret; mutex_lock(&d->usb_mutex); ret = dvb_usb_v2_generic_io(d, buf, len, NULL, 0); mutex_unlock(&d->usb_mutex); return ret; } EXPORT_SYMBOL(dvb_usbv2_generic_write); int dvb_usbv2_generic_rw_locked(struct dvb_usb_device *d, u8 *wbuf, u16 wlen, u8 *rbuf, u16 rlen) { return dvb_usb_v2_generic_io(d, wbuf, wlen, rbuf, rlen); } EXPORT_SYMBOL(dvb_usbv2_generic_rw_locked); int dvb_usbv2_generic_write_locked(struct dvb_usb_device *d, u8 *buf, u16 len) { return dvb_usb_v2_generic_io(d, buf, len, NULL, 0); } EXPORT_SYMBOL(dvb_usbv2_generic_write_locked); |
55 2 1 13 41 34 76 2 16 16 1 57 17 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/net.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/types.h> #include <net/pkt_sched.h> #include "sch_mqprio_lib.h" /* Returns true if the intervals [a, b) and [c, d) overlap. */ static bool intervals_overlap(int a, int b, int c, int d) { int left = max(a, c), right = min(b, d); return left < right; } static int mqprio_validate_queue_counts(struct net_device *dev, const struct tc_mqprio_qopt *qopt, bool allow_overlapping_txqs, struct netlink_ext_ack *extack) { int i, j; for (i = 0; i < qopt->num_tc; i++) { unsigned int last = qopt->offset[i] + qopt->count[i]; if (!qopt->count[i]) { NL_SET_ERR_MSG_FMT_MOD(extack, "No queues for TC %d", i); return -EINVAL; } /* Verify the queue count is in tx range being equal to the * real_num_tx_queues indicates the last queue is in use. */ if (qopt->offset[i] >= dev->real_num_tx_queues || last > dev->real_num_tx_queues) { NL_SET_ERR_MSG_FMT_MOD(extack, "Queues %d:%d for TC %d exceed the %d TX queues available", qopt->count[i], qopt->offset[i], i, dev->real_num_tx_queues); return -EINVAL; } if (allow_overlapping_txqs) continue; /* Verify that the offset and counts do not overlap */ for (j = i + 1; j < qopt->num_tc; j++) { if (intervals_overlap(qopt->offset[i], last, qopt->offset[j], qopt->offset[j] + qopt->count[j])) { NL_SET_ERR_MSG_FMT_MOD(extack, "TC %d queues %d@%d overlap with TC %d queues %d@%d", i, qopt->count[i], qopt->offset[i], j, qopt->count[j], qopt->offset[j]); return -EINVAL; } } } return 0; } int mqprio_validate_qopt(struct net_device *dev, struct tc_mqprio_qopt *qopt, bool validate_queue_counts, bool allow_overlapping_txqs, struct netlink_ext_ack *extack) { int i, err; /* Verify num_tc is not out of max range */ if (qopt->num_tc > TC_MAX_QUEUE) { NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); return -EINVAL; } /* Verify priority mapping uses valid tcs */ for (i = 0; i <= TC_BITMASK; i++) { if (qopt->prio_tc_map[i] >= qopt->num_tc) { NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); return -EINVAL; } } if (validate_queue_counts) { err = mqprio_validate_queue_counts(dev, qopt, allow_overlapping_txqs, extack); if (err) return err; } return 0; } EXPORT_SYMBOL_GPL(mqprio_validate_qopt); void mqprio_qopt_reconstruct(struct net_device *dev, struct tc_mqprio_qopt *qopt) { int tc, num_tc = netdev_get_num_tc(dev); qopt->num_tc = num_tc; memcpy(qopt->prio_tc_map, dev->prio_tc_map, sizeof(qopt->prio_tc_map)); for (tc = 0; tc < num_tc; tc++) { qopt->count[tc] = dev->tc_to_txq[tc].count; qopt->offset[tc] = dev->tc_to_txq[tc].offset; } } EXPORT_SYMBOL_GPL(mqprio_qopt_reconstruct); void mqprio_fp_to_offload(u32 fp[TC_QOPT_MAX_QUEUE], struct tc_mqprio_qopt_offload *mqprio) { unsigned long preemptible_tcs = 0; int tc; for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) if (fp[tc] == TC_FP_PREEMPTIBLE) preemptible_tcs |= BIT(tc); mqprio->preemptible_tcs = preemptible_tcs; } EXPORT_SYMBOL_GPL(mqprio_fp_to_offload); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Shared mqprio qdisc code currently between taprio and mqprio"); |
6 37 40 63 15 35 6 1 58 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | /* SPDX-License-Identifier: GPL-2.0 */ /****************************************************************************** * x86_emulate.h * * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. * * Copyright (c) 2005 Keir Fraser * * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 */ #ifndef _ASM_X86_KVM_X86_EMULATE_H #define _ASM_X86_KVM_X86_EMULATE_H #include <asm/desc_defs.h> #include "fpu.h" struct x86_emulate_ctxt; enum x86_intercept; enum x86_intercept_stage; struct x86_exception { u8 vector; bool error_code_valid; u16 error_code; bool nested_page_fault; u64 address; /* cr2 or nested page fault gpa */ u8 async_page_fault; unsigned long exit_qualification; }; /* * This struct is used to carry enough information from the instruction * decoder to main KVM so that a decision can be made whether the * instruction needs to be intercepted or not. */ struct x86_instruction_info { u8 intercept; /* which intercept */ u8 rep_prefix; /* rep prefix? */ u8 modrm_mod; /* mod part of modrm */ u8 modrm_reg; /* index of register used */ u8 modrm_rm; /* rm part of modrm */ u64 src_val; /* value of source operand */ u64 dst_val; /* value of destination operand */ u8 src_bytes; /* size of source operand */ u8 dst_bytes; /* size of destination operand */ u8 ad_bytes; /* size of src/dst address */ u64 next_rip; /* rip following the instruction */ }; /* * x86_emulate_ops: * * These operations represent the instruction emulator's interface to memory. * There are two categories of operation: those that act on ordinary memory * regions (*_std), and those that act on memory regions known to require * special treatment or emulation (*_emulated). * * The emulator assumes that an instruction accesses only one 'emulated memory' * location, that this location is the given linear faulting address (cr2), and * that this is one of the instruction's data operands. Instruction fetches and * stack operations are assumed never to access emulated memory. The emulator * automatically deduces which operand of a string-move operation is accessing * emulated memory, and assumes that the other operand accesses normal memory. * * NOTES: * 1. The emulator isn't very smart about emulated vs. standard memory. * 'Emulated memory' access addresses should be checked for sanity. * 'Normal memory' accesses may fault, and the caller must arrange to * detect and handle reentrancy into the emulator via recursive faults. * Accesses may be unaligned and may cross page boundaries. * 2. If the access fails (cannot emulate, or a standard access faults) then * it is up to the memop to propagate the fault to the guest VM via * some out-of-band mechanism, unknown to the emulator. The memop signals * failure by returning X86EMUL_PROPAGATE_FAULT to the emulator, which will * then immediately bail. * 3. Valid access sizes are 1, 2, 4 and 8 bytes. On x86/32 systems only * cmpxchg8b_emulated need support 8-byte accesses. * 4. The emulator cannot handle 64-bit mode emulation on an x86/32 system. */ /* Access completed successfully: continue emulation as normal. */ #define X86EMUL_CONTINUE 0 /* Access is unhandleable: bail from emulation and return error to caller. */ #define X86EMUL_UNHANDLEABLE 1 /* Terminate emulation but return success to the caller. */ #define X86EMUL_PROPAGATE_FAULT 2 /* propagate a generated fault to guest */ #define X86EMUL_RETRY_INSTR 3 /* retry the instruction for some reason */ #define X86EMUL_CMPXCHG_FAILED 4 /* cmpxchg did not see expected value */ #define X86EMUL_IO_NEEDED 5 /* IO is needed to complete emulation */ #define X86EMUL_INTERCEPTED 6 /* Intercepted by nested VMCB/VMCS */ /* x86-specific emulation flags */ #define X86EMUL_F_WRITE BIT(0) #define X86EMUL_F_FETCH BIT(1) #define X86EMUL_F_IMPLICIT BIT(2) #define X86EMUL_F_INVLPG BIT(3) struct x86_emulate_ops { void (*vm_bugged)(struct x86_emulate_ctxt *ctxt); /* * read_gpr: read a general purpose register (rax - r15) * * @reg: gpr number. */ ulong (*read_gpr)(struct x86_emulate_ctxt *ctxt, unsigned reg); /* * write_gpr: write a general purpose register (rax - r15) * * @reg: gpr number. * @val: value to write. */ void (*write_gpr)(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val); /* * read_std: Read bytes of standard (non-emulated/special) memory. * Used for descriptor reading. * @addr: [IN ] Linear address from which to read. * @val: [OUT] Value read from memory, zero-extended to 'u_long'. * @bytes: [IN ] Number of bytes to read from memory. * @system:[IN ] Whether the access is forced to be at CPL0. */ int (*read_std)(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *fault, bool system); /* * write_std: Write bytes of standard (non-emulated/special) memory. * Used for descriptor writing. * @addr: [IN ] Linear address to which to write. * @val: [OUT] Value write to memory, zero-extended to 'u_long'. * @bytes: [IN ] Number of bytes to write to memory. * @system:[IN ] Whether the access is forced to be at CPL0. */ int (*write_std)(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *fault, bool system); /* * fetch: Read bytes of standard (non-emulated/special) memory. * Used for instruction fetch. * @addr: [IN ] Linear address from which to read. * @val: [OUT] Value read from memory, zero-extended to 'u_long'. * @bytes: [IN ] Number of bytes to read from memory. */ int (*fetch)(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *fault); /* * read_emulated: Read bytes from emulated/special memory area. * @addr: [IN ] Linear address from which to read. * @val: [OUT] Value read from memory, zero-extended to 'u_long'. * @bytes: [IN ] Number of bytes to read from memory. */ int (*read_emulated)(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *fault); /* * write_emulated: Write bytes to emulated/special memory area. * @addr: [IN ] Linear address to which to write. * @val: [IN ] Value to write to memory (low-order bytes used as * required). * @bytes: [IN ] Number of bytes to write to memory. */ int (*write_emulated)(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *val, unsigned int bytes, struct x86_exception *fault); /* * cmpxchg_emulated: Emulate an atomic (LOCKed) CMPXCHG operation on an * emulated/special memory area. * @addr: [IN ] Linear address to access. * @old: [IN ] Value expected to be current at @addr. * @new: [IN ] Value to write to @addr. * @bytes: [IN ] Number of bytes to access using CMPXCHG. */ int (*cmpxchg_emulated)(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *old, const void *new, unsigned int bytes, struct x86_exception *fault); void (*invlpg)(struct x86_emulate_ctxt *ctxt, ulong addr); int (*pio_in_emulated)(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, void *val, unsigned int count); int (*pio_out_emulated)(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, const void *val, unsigned int count); bool (*get_segment)(struct x86_emulate_ctxt *ctxt, u16 *selector, struct desc_struct *desc, u32 *base3, int seg); void (*set_segment)(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_struct *desc, u32 base3, int seg); unsigned long (*get_cached_segment_base)(struct x86_emulate_ctxt *ctxt, int seg); void (*get_gdt)(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt); void (*get_idt)(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt); void (*set_gdt)(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt); void (*set_idt)(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt); ulong (*get_cr)(struct x86_emulate_ctxt *ctxt, int cr); int (*set_cr)(struct x86_emulate_ctxt *ctxt, int cr, ulong val); int (*cpl)(struct x86_emulate_ctxt *ctxt); ulong (*get_dr)(struct x86_emulate_ctxt *ctxt, int dr); int (*set_dr)(struct x86_emulate_ctxt *ctxt, int dr, ulong value); int (*set_msr_with_filter)(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 data); int (*get_msr_with_filter)(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 *pdata); int (*get_msr)(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 *pdata); int (*check_rdpmc_early)(struct x86_emulate_ctxt *ctxt, u32 pmc); int (*read_pmc)(struct x86_emulate_ctxt *ctxt, u32 pmc, u64 *pdata); void (*halt)(struct x86_emulate_ctxt *ctxt); void (*wbinvd)(struct x86_emulate_ctxt *ctxt); int (*fix_hypercall)(struct x86_emulate_ctxt *ctxt); int (*intercept)(struct x86_emulate_ctxt *ctxt, struct x86_instruction_info *info, enum x86_intercept_stage stage); bool (*get_cpuid)(struct x86_emulate_ctxt *ctxt, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool exact_only); bool (*guest_has_movbe)(struct x86_emulate_ctxt *ctxt); bool (*guest_has_fxsr)(struct x86_emulate_ctxt *ctxt); bool (*guest_has_rdpid)(struct x86_emulate_ctxt *ctxt); bool (*guest_cpuid_is_intel_compatible)(struct x86_emulate_ctxt *ctxt); void (*set_nmi_mask)(struct x86_emulate_ctxt *ctxt, bool masked); bool (*is_smm)(struct x86_emulate_ctxt *ctxt); bool (*is_guest_mode)(struct x86_emulate_ctxt *ctxt); int (*leave_smm)(struct x86_emulate_ctxt *ctxt); void (*triple_fault)(struct x86_emulate_ctxt *ctxt); int (*set_xcr)(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr); gva_t (*get_untagged_addr)(struct x86_emulate_ctxt *ctxt, gva_t addr, unsigned int flags); }; /* Type, address-of, and value of an instruction's operand. */ struct operand { enum { OP_REG, OP_MEM, OP_MEM_STR, OP_IMM, OP_XMM, OP_MM, OP_NONE } type; unsigned int bytes; unsigned int count; union { unsigned long orig_val; u64 orig_val64; }; union { unsigned long *reg; struct segmented_address { ulong ea; unsigned seg; } mem; unsigned xmm; unsigned mm; } addr; union { unsigned long val; u64 val64; char valptr[sizeof(sse128_t)]; sse128_t vec_val; u64 mm_val; void *data; }; }; struct fetch_cache { u8 data[15]; u8 *ptr; u8 *end; }; struct read_cache { u8 data[1024]; unsigned long pos; unsigned long end; }; /* Execution mode, passed to the emulator. */ enum x86emul_mode { X86EMUL_MODE_REAL, /* Real mode. */ X86EMUL_MODE_VM86, /* Virtual 8086 mode. */ X86EMUL_MODE_PROT16, /* 16-bit protected mode. */ X86EMUL_MODE_PROT32, /* 32-bit protected mode. */ X86EMUL_MODE_PROT64, /* 64-bit (long) mode. */ }; /* * fastop functions are declared as taking a never-defined fastop parameter, * so they can't be called from C directly. */ struct fastop; typedef void (*fastop_t)(struct fastop *); /* * The emulator's _regs array tracks only the GPRs, i.e. excludes RIP. RIP is * tracked/accessed via _eip, and except for RIP relative addressing, which * also uses _eip, RIP cannot be a register operand nor can it be an operand in * a ModRM or SIB byte. */ #ifdef CONFIG_X86_64 #define NR_EMULATOR_GPRS 16 #else #define NR_EMULATOR_GPRS 8 #endif struct x86_emulate_ctxt { void *vcpu; const struct x86_emulate_ops *ops; /* Register state before/after emulation. */ unsigned long eflags; unsigned long eip; /* eip before instruction emulation */ /* Emulated execution mode, represented by an X86EMUL_MODE value. */ enum x86emul_mode mode; /* interruptibility state, as a result of execution of STI or MOV SS */ int interruptibility; bool perm_ok; /* do not check permissions if true */ bool tf; /* TF value before instruction (after for syscall/sysret) */ bool have_exception; struct x86_exception exception; /* GPA available */ bool gpa_available; gpa_t gpa_val; /* * decode cache */ /* current opcode length in bytes */ u8 opcode_len; u8 b; u8 intercept; u8 op_bytes; u8 ad_bytes; union { int (*execute)(struct x86_emulate_ctxt *ctxt); fastop_t fop; }; int (*check_perm)(struct x86_emulate_ctxt *ctxt); bool rip_relative; u8 rex_prefix; u8 lock_prefix; u8 rep_prefix; /* bitmaps of registers in _regs[] that can be read */ u16 regs_valid; /* bitmaps of registers in _regs[] that have been written */ u16 regs_dirty; /* modrm */ u8 modrm; u8 modrm_mod; u8 modrm_reg; u8 modrm_rm; u8 modrm_seg; u8 seg_override; u64 d; unsigned long _eip; /* Here begins the usercopy section. */ struct operand src; struct operand src2; struct operand dst; struct operand memop; unsigned long _regs[NR_EMULATOR_GPRS]; struct operand *memopp; struct fetch_cache fetch; struct read_cache io_read; struct read_cache mem_read; bool is_branch; }; #define KVM_EMULATOR_BUG_ON(cond, ctxt) \ ({ \ int __ret = (cond); \ \ if (WARN_ON_ONCE(__ret)) \ ctxt->ops->vm_bugged(ctxt); \ unlikely(__ret); \ }) /* Repeat String Operation Prefix */ #define REPE_PREFIX 0xf3 #define REPNE_PREFIX 0xf2 /* CPUID vendors */ #define X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx 0x68747541 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx 0x444d4163 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_edx 0x69746e65 #define X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx 0x69444d41 #define X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx 0x21726574 #define X86EMUL_CPUID_VENDOR_AMDisbetterI_edx 0x74656273 #define X86EMUL_CPUID_VENDOR_HygonGenuine_ebx 0x6f677948 #define X86EMUL_CPUID_VENDOR_HygonGenuine_ecx 0x656e6975 #define X86EMUL_CPUID_VENDOR_HygonGenuine_edx 0x6e65476e #define X86EMUL_CPUID_VENDOR_GenuineIntel_ebx 0x756e6547 #define X86EMUL_CPUID_VENDOR_GenuineIntel_ecx 0x6c65746e #define X86EMUL_CPUID_VENDOR_GenuineIntel_edx 0x49656e69 #define X86EMUL_CPUID_VENDOR_CentaurHauls_ebx 0x746e6543 #define X86EMUL_CPUID_VENDOR_CentaurHauls_ecx 0x736c7561 #define X86EMUL_CPUID_VENDOR_CentaurHauls_edx 0x48727561 static inline bool is_guest_vendor_intel(u32 ebx, u32 ecx, u32 edx) { return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx; } static inline bool is_guest_vendor_amd(u32 ebx, u32 ecx, u32 edx) { return (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx && ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx && edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx) || (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx && ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx && edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx); } static inline bool is_guest_vendor_hygon(u32 ebx, u32 ecx, u32 edx) { return ebx == X86EMUL_CPUID_VENDOR_HygonGenuine_ebx && ecx == X86EMUL_CPUID_VENDOR_HygonGenuine_ecx && edx == X86EMUL_CPUID_VENDOR_HygonGenuine_edx; } enum x86_intercept_stage { X86_ICTP_NONE = 0, /* Allow zero-init to not match anything */ X86_ICPT_PRE_EXCEPT, X86_ICPT_POST_EXCEPT, X86_ICPT_POST_MEMACCESS, }; enum x86_intercept { x86_intercept_none, x86_intercept_cr_read, x86_intercept_cr_write, x86_intercept_clts, x86_intercept_lmsw, x86_intercept_smsw, x86_intercept_dr_read, x86_intercept_dr_write, x86_intercept_lidt, x86_intercept_sidt, x86_intercept_lgdt, x86_intercept_sgdt, x86_intercept_lldt, x86_intercept_sldt, x86_intercept_ltr, x86_intercept_str, x86_intercept_rdtsc, x86_intercept_rdpmc, x86_intercept_pushf, x86_intercept_popf, x86_intercept_cpuid, x86_intercept_rsm, x86_intercept_iret, x86_intercept_intn, x86_intercept_invd, x86_intercept_pause, x86_intercept_hlt, x86_intercept_invlpg, x86_intercept_invlpga, x86_intercept_vmrun, x86_intercept_vmload, x86_intercept_vmsave, x86_intercept_vmmcall, x86_intercept_stgi, x86_intercept_clgi, x86_intercept_skinit, x86_intercept_rdtscp, x86_intercept_rdpid, x86_intercept_icebp, x86_intercept_wbinvd, x86_intercept_monitor, x86_intercept_mwait, x86_intercept_rdmsr, x86_intercept_wrmsr, x86_intercept_in, x86_intercept_ins, x86_intercept_out, x86_intercept_outs, x86_intercept_xsetbv, nr_x86_intercepts }; /* Host execution mode. */ #if defined(CONFIG_X86_32) #define X86EMUL_MODE_HOST X86EMUL_MODE_PROT32 #elif defined(CONFIG_X86_64) #define X86EMUL_MODE_HOST X86EMUL_MODE_PROT64 #endif int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type); bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt); #define EMULATION_FAILED -1 #define EMULATION_OK 0 #define EMULATION_RESTART 1 #define EMULATION_INTERCEPTED 2 void init_decode_cache(struct x86_emulate_ctxt *ctxt); int x86_emulate_insn(struct x86_emulate_ctxt *ctxt); int emulator_task_switch(struct x86_emulate_ctxt *ctxt, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code); int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq); void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt); void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt); bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt); static inline ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr) { if (KVM_EMULATOR_BUG_ON(nr >= NR_EMULATOR_GPRS, ctxt)) nr &= NR_EMULATOR_GPRS - 1; if (!(ctxt->regs_valid & (1 << nr))) { ctxt->regs_valid |= 1 << nr; ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr); } return ctxt->_regs[nr]; } static inline ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr) { if (KVM_EMULATOR_BUG_ON(nr >= NR_EMULATOR_GPRS, ctxt)) nr &= NR_EMULATOR_GPRS - 1; BUILD_BUG_ON(sizeof(ctxt->regs_dirty) * BITS_PER_BYTE < NR_EMULATOR_GPRS); BUILD_BUG_ON(sizeof(ctxt->regs_valid) * BITS_PER_BYTE < NR_EMULATOR_GPRS); ctxt->regs_valid |= 1 << nr; ctxt->regs_dirty |= 1 << nr; return &ctxt->_regs[nr]; } static inline ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr) { reg_read(ctxt, nr); return reg_write(ctxt, nr); } #endif /* _ASM_X86_KVM_X86_EMULATE_H */ |
28 560 33 56 7 4 6 3 3 16 7 12 1 491 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2023 Isovalent */ #ifndef __NET_TCX_H #define __NET_TCX_H #include <linux/bpf.h> #include <linux/bpf_mprog.h> #include <net/sch_generic.h> struct mini_Qdisc; struct tcx_entry { struct mini_Qdisc __rcu *miniq; struct bpf_mprog_bundle bundle; u32 miniq_active; struct rcu_head rcu; }; struct tcx_link { struct bpf_link link; struct net_device *dev; u32 location; }; static inline void tcx_set_ingress(struct sk_buff *skb, bool ingress) { #ifdef CONFIG_NET_XGRESS skb->tc_at_ingress = ingress; #endif } #ifdef CONFIG_NET_XGRESS static inline struct tcx_entry *tcx_entry(struct bpf_mprog_entry *entry) { struct bpf_mprog_bundle *bundle = entry->parent; return container_of(bundle, struct tcx_entry, bundle); } static inline struct tcx_link *tcx_link(const struct bpf_link *link) { return container_of(link, struct tcx_link, link); } void tcx_inc(void); void tcx_dec(void); static inline void tcx_entry_sync(void) { /* bpf_mprog_entry got a/b swapped, therefore ensure that * there are no inflight users on the old one anymore. */ synchronize_rcu(); } static inline void tcx_entry_update(struct net_device *dev, struct bpf_mprog_entry *entry, bool ingress) { ASSERT_RTNL(); if (ingress) rcu_assign_pointer(dev->tcx_ingress, entry); else rcu_assign_pointer(dev->tcx_egress, entry); } static inline struct bpf_mprog_entry * tcx_entry_fetch(struct net_device *dev, bool ingress) { ASSERT_RTNL(); if (ingress) return rcu_dereference_rtnl(dev->tcx_ingress); else return rcu_dereference_rtnl(dev->tcx_egress); } static inline struct bpf_mprog_entry *tcx_entry_create_noprof(void) { struct tcx_entry *tcx = kzalloc_noprof(sizeof(*tcx), GFP_KERNEL); if (tcx) { bpf_mprog_bundle_init(&tcx->bundle); return &tcx->bundle.a; } return NULL; } #define tcx_entry_create(...) alloc_hooks(tcx_entry_create_noprof(__VA_ARGS__)) static inline void tcx_entry_free(struct bpf_mprog_entry *entry) { kfree_rcu(tcx_entry(entry), rcu); } static inline struct bpf_mprog_entry * tcx_entry_fetch_or_create(struct net_device *dev, bool ingress, bool *created) { struct bpf_mprog_entry *entry = tcx_entry_fetch(dev, ingress); *created = false; if (!entry) { entry = tcx_entry_create(); if (!entry) return NULL; *created = true; } return entry; } static inline void tcx_skeys_inc(bool ingress) { tcx_inc(); if (ingress) net_inc_ingress_queue(); else net_inc_egress_queue(); } static inline void tcx_skeys_dec(bool ingress) { if (ingress) net_dec_ingress_queue(); else net_dec_egress_queue(); tcx_dec(); } static inline void tcx_miniq_inc(struct bpf_mprog_entry *entry) { ASSERT_RTNL(); tcx_entry(entry)->miniq_active++; } static inline void tcx_miniq_dec(struct bpf_mprog_entry *entry) { ASSERT_RTNL(); tcx_entry(entry)->miniq_active--; } static inline bool tcx_entry_is_active(struct bpf_mprog_entry *entry) { ASSERT_RTNL(); return bpf_mprog_total(entry) || tcx_entry(entry)->miniq_active; } static inline enum tcx_action_base tcx_action_code(struct sk_buff *skb, int code) { switch (code) { case TCX_PASS: skb->tc_index = qdisc_skb_cb(skb)->tc_classid; fallthrough; case TCX_DROP: case TCX_REDIRECT: return code; case TCX_NEXT: default: return TCX_NEXT; } } #endif /* CONFIG_NET_XGRESS */ #if defined(CONFIG_NET_XGRESS) && defined(CONFIG_BPF_SYSCALL) int tcx_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog); int tcx_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); int tcx_prog_detach(const union bpf_attr *attr, struct bpf_prog *prog); void tcx_uninstall(struct net_device *dev, bool ingress); int tcx_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr); static inline void dev_tcx_uninstall(struct net_device *dev) { ASSERT_RTNL(); tcx_uninstall(dev, true); tcx_uninstall(dev, false); } #else static inline int tcx_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_prog_detach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { return -EINVAL; } static inline void dev_tcx_uninstall(struct net_device *dev) { } #endif /* CONFIG_NET_XGRESS && CONFIG_BPF_SYSCALL */ #endif /* __NET_TCX_H */ |
4 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/hfsplus/xattr_trusted.c * * Vyacheslav Dubeyko <slava@dubeyko.com> * * Handler for trusted extended attributes. */ #include <linux/nls.h> #include "hfsplus_fs.h" #include "xattr.h" static int hfsplus_trusted_getxattr(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { return hfsplus_getxattr(inode, name, buffer, size, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); } static int hfsplus_trusted_setxattr(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *unused, struct inode *inode, const char *name, const void *buffer, size_t size, int flags) { return hfsplus_setxattr(inode, name, buffer, size, flags, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); } const struct xattr_handler hfsplus_xattr_trusted_handler = { .prefix = XATTR_TRUSTED_PREFIX, .get = hfsplus_trusted_getxattr, .set = hfsplus_trusted_setxattr, }; |
22 307 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ext4/truncate.h * * Common inline functions needed for truncate support */ /* * Truncate blocks that were not used by write. We have to truncate the * pagecache as well so that corresponding buffers get properly unmapped. */ static inline void ext4_truncate_failed_write(struct inode *inode) { struct address_space *mapping = inode->i_mapping; /* * We don't need to call ext4_break_layouts() because the blocks we * are truncating were never visible to userspace. */ filemap_invalidate_lock(mapping); truncate_inode_pages(mapping, inode->i_size); ext4_truncate(inode); filemap_invalidate_unlock(mapping); } /* * Work out how many blocks we need to proceed with the next chunk of a * truncate transaction. */ static inline unsigned long ext4_blocks_for_truncate(struct inode *inode) { ext4_lblk_t needed; needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); /* Give ourselves just enough room to cope with inodes in which * i_blocks is corrupt: we've seen disk corruptions in the past * which resulted in random data in an inode which looked enough * like a regular file for ext4 to try to delete it. Things * will go a bit crazy if that happens, but at least we should * try not to panic the whole kernel. */ if (needed < 2) needed = 2; /* But we need to bound the transaction so we don't overflow the * journal. */ if (needed > EXT4_MAX_TRANS_DATA) needed = EXT4_MAX_TRANS_DATA; return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; } |
8 5 5 3 8 8 5 3 4 1 3 4 1 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. */ #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/pkt_sched.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_bonding.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <net/arp.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <asm/byteorder.h> #include <net/bonding.h> #include <net/bond_alb.h> static const u8 mac_v6_allmcast[ETH_ALEN + 2] __long_aligned = { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 }; static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; #pragma pack(1) struct learning_pkt { u8 mac_dst[ETH_ALEN]; u8 mac_src[ETH_ALEN]; __be16 type; u8 padding[ETH_ZLEN - ETH_HLEN]; }; struct arp_pkt { __be16 hw_addr_space; __be16 prot_addr_space; u8 hw_addr_len; u8 prot_addr_len; __be16 op_code; u8 mac_src[ETH_ALEN]; /* sender hardware address */ __be32 ip_src; /* sender IP address */ u8 mac_dst[ETH_ALEN]; /* target hardware address */ __be32 ip_dst; /* target IP address */ }; #pragma pack() /* Forward declaration */ static void alb_send_learning_packets(struct slave *slave, const u8 mac_addr[], bool strict_match); static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp); static void rlb_src_unlink(struct bonding *bond, u32 index); static void rlb_src_link(struct bonding *bond, u32 ip_src_hash, u32 ip_dst_hash); static inline u8 _simple_hash(const u8 *hash_start, int hash_size) { int i; u8 hash = 0; for (i = 0; i < hash_size; i++) hash ^= hash_start[i]; return hash; } /*********************** tlb specific functions ***************************/ static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) { if (save_load) { entry->load_history = 1 + entry->tx_bytes / BOND_TLB_REBALANCE_INTERVAL; entry->tx_bytes = 0; } entry->tx_slave = NULL; entry->next = TLB_NULL_INDEX; entry->prev = TLB_NULL_INDEX; } static inline void tlb_init_slave(struct slave *slave) { SLAVE_TLB_INFO(slave).load = 0; SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; } static void __tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) { struct tlb_client_info *tx_hash_table; u32 index; /* clear slave from tx_hashtbl */ tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; /* skip this if we've already freed the tx hash table */ if (tx_hash_table) { index = SLAVE_TLB_INFO(slave).head; while (index != TLB_NULL_INDEX) { u32 next_index = tx_hash_table[index].next; tlb_init_table_entry(&tx_hash_table[index], save_load); index = next_index; } } tlb_init_slave(slave); } static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) { spin_lock_bh(&bond->mode_lock); __tlb_clear_slave(bond, slave, save_load); spin_unlock_bh(&bond->mode_lock); } /* Must be called before starting the monitor timer */ static int tlb_initialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); struct tlb_client_info *new_hashtbl; int i; new_hashtbl = kzalloc(size, GFP_KERNEL); if (!new_hashtbl) return -ENOMEM; spin_lock_bh(&bond->mode_lock); bond_info->tx_hashtbl = new_hashtbl; for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) tlb_init_table_entry(&bond_info->tx_hashtbl[i], 0); spin_unlock_bh(&bond->mode_lock); return 0; } /* Must be called only after all slaves have been released */ static void tlb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); spin_lock_bh(&bond->mode_lock); kfree(bond_info->tx_hashtbl); bond_info->tx_hashtbl = NULL; spin_unlock_bh(&bond->mode_lock); } static long long compute_gap(struct slave *slave) { return (s64) (slave->speed << 20) - /* Convert to Megabit per sec */ (s64) (SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ } static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) { struct slave *slave, *least_loaded; struct list_head *iter; long long max_gap; least_loaded = NULL; max_gap = LLONG_MIN; /* Find the slave with the largest gap */ bond_for_each_slave_rcu(bond, slave, iter) { if (bond_slave_can_tx(slave)) { long long gap = compute_gap(slave); if (max_gap < gap) { least_loaded = slave; max_gap = gap; } } } return least_loaded; } static struct slave *__tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct tlb_client_info *hash_table; struct slave *assigned_slave; hash_table = bond_info->tx_hashtbl; assigned_slave = hash_table[hash_index].tx_slave; if (!assigned_slave) { assigned_slave = tlb_get_least_loaded_slave(bond); if (assigned_slave) { struct tlb_slave_info *slave_info = &(SLAVE_TLB_INFO(assigned_slave)); u32 next_index = slave_info->head; hash_table[hash_index].tx_slave = assigned_slave; hash_table[hash_index].next = next_index; hash_table[hash_index].prev = TLB_NULL_INDEX; if (next_index != TLB_NULL_INDEX) hash_table[next_index].prev = hash_index; slave_info->head = hash_index; slave_info->load += hash_table[hash_index].load_history; } } if (assigned_slave) hash_table[hash_index].tx_bytes += skb_len; return assigned_slave; } static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) { struct slave *tx_slave; /* We don't need to disable softirq here, because * tlb_choose_channel() is only called by bond_alb_xmit() * which already has softirq disabled. */ spin_lock(&bond->mode_lock); tx_slave = __tlb_choose_channel(bond, hash_index, skb_len); spin_unlock(&bond->mode_lock); return tx_slave; } /*********************** rlb specific functions ***************************/ /* when an ARP REPLY is received from a client update its info * in the rx_hashtbl */ static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; spin_lock_bh(&bond->mode_lock); hash_index = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src)); client_info = &(bond_info->rx_hashtbl[hash_index]); if ((client_info->assigned) && (client_info->ip_src == arp->ip_dst) && (client_info->ip_dst == arp->ip_src) && (!ether_addr_equal_64bits(client_info->mac_dst, arp->mac_src))) { /* update the clients MAC address */ ether_addr_copy(client_info->mac_dst, arp->mac_src); client_info->ntt = 1; bond_info->rx_ntt = 1; } spin_unlock_bh(&bond->mode_lock); } static int rlb_arp_recv(const struct sk_buff *skb, struct bonding *bond, struct slave *slave) { struct arp_pkt *arp, _arp; if (skb->protocol != cpu_to_be16(ETH_P_ARP)) goto out; arp = skb_header_pointer(skb, 0, sizeof(_arp), &_arp); if (!arp) goto out; /* We received an ARP from arp->ip_src. * We might have used this IP address previously (on the bonding host * itself or on a system that is bridged together with the bond). * However, if arp->mac_src is different than what is stored in * rx_hashtbl, some other host is now using the IP and we must prevent * sending out client updates with this IP address and the old MAC * address. * Clean up all hash table entries that have this address as ip_src but * have a different mac_src. */ rlb_purge_src_ip(bond, arp); if (arp->op_code == htons(ARPOP_REPLY)) { /* update rx hash table for this ARP */ rlb_update_entry_from_arp(bond, arp); slave_dbg(bond->dev, slave->dev, "Server received an ARP Reply from client\n"); } out: return RX_HANDLER_ANOTHER; } /* Caller must hold rcu_read_lock() */ static struct slave *__rlb_next_rx_slave(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *before = NULL, *rx_slave = NULL, *slave; struct list_head *iter; bool found = false; bond_for_each_slave_rcu(bond, slave, iter) { if (!bond_slave_can_tx(slave)) continue; if (!found) { if (!before || before->speed < slave->speed) before = slave; } else { if (!rx_slave || rx_slave->speed < slave->speed) rx_slave = slave; } if (slave == bond_info->rx_slave) found = true; } /* we didn't find anything after the current or we have something * better before and up to the current slave */ if (!rx_slave || (before && rx_slave->speed < before->speed)) rx_slave = before; if (rx_slave) bond_info->rx_slave = rx_slave; return rx_slave; } /* Caller must hold RTNL, rcu_read_lock is obtained only to silence checkers */ static struct slave *rlb_next_rx_slave(struct bonding *bond) { struct slave *rx_slave; ASSERT_RTNL(); rcu_read_lock(); rx_slave = __rlb_next_rx_slave(bond); rcu_read_unlock(); return rx_slave; } /* teach the switch the mac of a disabled slave * on the primary for fault tolerance * * Caller must hold RTNL */ static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, const u8 addr[]) { struct slave *curr_active = rtnl_dereference(bond->curr_active_slave); if (!curr_active) return; if (!bond->alb_info.primary_is_promisc) { if (!dev_set_promiscuity(curr_active->dev, 1)) bond->alb_info.primary_is_promisc = 1; else bond->alb_info.primary_is_promisc = 0; } bond->alb_info.rlb_promisc_timeout_counter = 0; alb_send_learning_packets(curr_active, addr, true); } /* slave being removed should not be active at this point * * Caller must hold rtnl. */ static void rlb_clear_slave(struct bonding *bond, struct slave *slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *rx_hash_table; u32 index, next_index; /* clear slave from rx_hashtbl */ spin_lock_bh(&bond->mode_lock); rx_hash_table = bond_info->rx_hashtbl; index = bond_info->rx_hashtbl_used_head; for (; index != RLB_NULL_INDEX; index = next_index) { next_index = rx_hash_table[index].used_next; if (rx_hash_table[index].slave == slave) { struct slave *assigned_slave = rlb_next_rx_slave(bond); if (assigned_slave) { rx_hash_table[index].slave = assigned_slave; if (is_valid_ether_addr(rx_hash_table[index].mac_dst)) { bond_info->rx_hashtbl[index].ntt = 1; bond_info->rx_ntt = 1; /* A slave has been removed from the * table because it is either disabled * or being released. We must retry the * update to avoid clients from not * being updated & disconnecting when * there is stress */ bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; } } else { /* there is no active slave */ rx_hash_table[index].slave = NULL; } } } spin_unlock_bh(&bond->mode_lock); if (slave != rtnl_dereference(bond->curr_active_slave)) rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); } static void rlb_update_client(struct rlb_client_info *client_info) { int i; if (!client_info->slave || !is_valid_ether_addr(client_info->mac_dst)) return; for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { struct sk_buff *skb; skb = arp_create(ARPOP_REPLY, ETH_P_ARP, client_info->ip_dst, client_info->slave->dev, client_info->ip_src, client_info->mac_dst, client_info->slave->dev->dev_addr, client_info->mac_dst); if (!skb) { slave_err(client_info->slave->bond->dev, client_info->slave->dev, "failed to create an ARP packet\n"); continue; } skb->dev = client_info->slave->dev; if (client_info->vlan_id) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), client_info->vlan_id); } arp_xmit(skb); } } /* sends ARP REPLIES that update the clients that need updating */ static void rlb_update_rx_clients(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; spin_lock_bh(&bond->mode_lock); hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if (client_info->ntt) { rlb_update_client(client_info); if (bond_info->rlb_update_retry_counter == 0) client_info->ntt = 0; } } /* do not update the entries again until this counter is zero so that * not to confuse the clients. */ bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; spin_unlock_bh(&bond->mode_lock); } /* The slave was assigned a new mac address - update the clients */ static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; int ntt = 0; u32 hash_index; spin_lock_bh(&bond->mode_lock); hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if ((client_info->slave == slave) && is_valid_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; ntt = 1; } } /* update the team's flag only after the whole iteration */ if (ntt) { bond_info->rx_ntt = 1; /* fasten the change */ bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; } spin_unlock_bh(&bond->mode_lock); } /* mark all clients using src_ip to be updated */ static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *client_info; u32 hash_index; spin_lock(&bond->mode_lock); hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); if (!client_info->slave) { netdev_err(bond->dev, "found a client with no channel in the client's hash table\n"); continue; } /* update all clients using this src_ip, that are not assigned * to the team's address (curr_active_slave) and have a known * unicast mac address. */ if ((client_info->ip_src == src_ip) && !ether_addr_equal_64bits(client_info->slave->dev->dev_addr, bond->dev->dev_addr) && is_valid_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; bond_info->rx_ntt = 1; } } spin_unlock(&bond->mode_lock); } static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond, const struct arp_pkt *arp) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *assigned_slave, *curr_active_slave; struct rlb_client_info *client_info; u32 hash_index = 0; spin_lock(&bond->mode_lock); curr_active_slave = rcu_dereference(bond->curr_active_slave); hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_dst)); client_info = &(bond_info->rx_hashtbl[hash_index]); if (client_info->assigned) { if ((client_info->ip_src == arp->ip_src) && (client_info->ip_dst == arp->ip_dst)) { /* the entry is already assigned to this client */ if (!is_broadcast_ether_addr(arp->mac_dst)) { /* update mac address from arp */ ether_addr_copy(client_info->mac_dst, arp->mac_dst); } ether_addr_copy(client_info->mac_src, arp->mac_src); assigned_slave = client_info->slave; if (assigned_slave) { spin_unlock(&bond->mode_lock); return assigned_slave; } } else { /* the entry is already assigned to some other client, * move the old client to primary (curr_active_slave) so * that the new client can be assigned to this entry. */ if (curr_active_slave && client_info->slave != curr_active_slave) { client_info->slave = curr_active_slave; rlb_update_client(client_info); } } } /* assign a new slave */ assigned_slave = __rlb_next_rx_slave(bond); if (assigned_slave) { if (!(client_info->assigned && client_info->ip_src == arp->ip_src)) { /* ip_src is going to be updated, * fix the src hash list */ u32 hash_src = _simple_hash((u8 *)&arp->ip_src, sizeof(arp->ip_src)); rlb_src_unlink(bond, hash_index); rlb_src_link(bond, hash_src, hash_index); } client_info->ip_src = arp->ip_src; client_info->ip_dst = arp->ip_dst; /* arp->mac_dst is broadcast for arp requests. * will be updated with clients actual unicast mac address * upon receiving an arp reply. */ ether_addr_copy(client_info->mac_dst, arp->mac_dst); ether_addr_copy(client_info->mac_src, arp->mac_src); client_info->slave = assigned_slave; if (is_valid_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; bond->alb_info.rx_ntt = 1; } else { client_info->ntt = 0; } if (vlan_get_tag(skb, &client_info->vlan_id)) client_info->vlan_id = 0; if (!client_info->assigned) { u32 prev_tbl_head = bond_info->rx_hashtbl_used_head; bond_info->rx_hashtbl_used_head = hash_index; client_info->used_next = prev_tbl_head; if (prev_tbl_head != RLB_NULL_INDEX) { bond_info->rx_hashtbl[prev_tbl_head].used_prev = hash_index; } client_info->assigned = 1; } } spin_unlock(&bond->mode_lock); return assigned_slave; } /* chooses (and returns) transmit channel for arp reply * does not choose channel for other arp types since they are * sent on the curr_active_slave */ static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) { struct slave *tx_slave = NULL; struct net_device *dev; struct arp_pkt *arp; if (!pskb_network_may_pull(skb, sizeof(*arp))) return NULL; arp = (struct arp_pkt *)skb_network_header(skb); /* Don't modify or load balance ARPs that do not originate * from the bond itself or a VLAN directly above the bond. */ if (!bond_slave_has_mac_rcu(bond, arp->mac_src)) return NULL; dev = ip_dev_find(dev_net(bond->dev), arp->ip_src); if (dev) { if (netif_is_any_bridge_master(dev)) { dev_put(dev); return NULL; } dev_put(dev); } if (arp->op_code == htons(ARPOP_REPLY)) { /* the arp must be sent on the selected rx channel */ tx_slave = rlb_choose_channel(skb, bond, arp); if (tx_slave) bond_hw_addr_copy(arp->mac_src, tx_slave->dev->dev_addr, tx_slave->dev->addr_len); netdev_dbg(bond->dev, "(slave %s): Server sent ARP Reply packet\n", tx_slave ? tx_slave->dev->name : "NULL"); } else if (arp->op_code == htons(ARPOP_REQUEST)) { /* Create an entry in the rx_hashtbl for this client as a * place holder. * When the arp reply is received the entry will be updated * with the correct unicast address of the client. */ tx_slave = rlb_choose_channel(skb, bond, arp); /* The ARP reply packets must be delayed so that * they can cancel out the influence of the ARP request. */ bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; /* arp requests are broadcast and are sent on the primary * the arp request will collapse all clients on the subnet to * the primary slave. We must register these clients to be * updated with their assigned mac. */ rlb_req_update_subnet_clients(bond, arp->ip_src); netdev_dbg(bond->dev, "(slave %s): Server sent ARP Request packet\n", tx_slave ? tx_slave->dev->name : "NULL"); } return tx_slave; } static void rlb_rebalance(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct slave *assigned_slave; struct rlb_client_info *client_info; int ntt; u32 hash_index; spin_lock_bh(&bond->mode_lock); ntt = 0; hash_index = bond_info->rx_hashtbl_used_head; for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->used_next) { client_info = &(bond_info->rx_hashtbl[hash_index]); assigned_slave = __rlb_next_rx_slave(bond); if (assigned_slave && (client_info->slave != assigned_slave)) { client_info->slave = assigned_slave; if (!is_zero_ether_addr(client_info->mac_dst)) { client_info->ntt = 1; ntt = 1; } } } /* update the team's flag only after the whole iteration */ if (ntt) bond_info->rx_ntt = 1; spin_unlock_bh(&bond->mode_lock); } /* Caller must hold mode_lock */ static void rlb_init_table_entry_dst(struct rlb_client_info *entry) { entry->used_next = RLB_NULL_INDEX; entry->used_prev = RLB_NULL_INDEX; entry->assigned = 0; entry->slave = NULL; entry->vlan_id = 0; } static void rlb_init_table_entry_src(struct rlb_client_info *entry) { entry->src_first = RLB_NULL_INDEX; entry->src_prev = RLB_NULL_INDEX; entry->src_next = RLB_NULL_INDEX; } static void rlb_init_table_entry(struct rlb_client_info *entry) { memset(entry, 0, sizeof(struct rlb_client_info)); rlb_init_table_entry_dst(entry); rlb_init_table_entry_src(entry); } static void rlb_delete_table_entry_dst(struct bonding *bond, u32 index) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 next_index = bond_info->rx_hashtbl[index].used_next; u32 prev_index = bond_info->rx_hashtbl[index].used_prev; if (index == bond_info->rx_hashtbl_used_head) bond_info->rx_hashtbl_used_head = next_index; if (prev_index != RLB_NULL_INDEX) bond_info->rx_hashtbl[prev_index].used_next = next_index; if (next_index != RLB_NULL_INDEX) bond_info->rx_hashtbl[next_index].used_prev = prev_index; } /* unlink a rlb hash table entry from the src list */ static void rlb_src_unlink(struct bonding *bond, u32 index) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 next_index = bond_info->rx_hashtbl[index].src_next; u32 prev_index = bond_info->rx_hashtbl[index].src_prev; bond_info->rx_hashtbl[index].src_next = RLB_NULL_INDEX; bond_info->rx_hashtbl[index].src_prev = RLB_NULL_INDEX; if (next_index != RLB_NULL_INDEX) bond_info->rx_hashtbl[next_index].src_prev = prev_index; if (prev_index == RLB_NULL_INDEX) return; /* is prev_index pointing to the head of this list? */ if (bond_info->rx_hashtbl[prev_index].src_first == index) bond_info->rx_hashtbl[prev_index].src_first = next_index; else bond_info->rx_hashtbl[prev_index].src_next = next_index; } static void rlb_delete_table_entry(struct bonding *bond, u32 index) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]); rlb_delete_table_entry_dst(bond, index); rlb_init_table_entry_dst(entry); rlb_src_unlink(bond, index); } /* add the rx_hashtbl[ip_dst_hash] entry to the list * of entries with identical ip_src_hash */ static void rlb_src_link(struct bonding *bond, u32 ip_src_hash, u32 ip_dst_hash) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 next; bond_info->rx_hashtbl[ip_dst_hash].src_prev = ip_src_hash; next = bond_info->rx_hashtbl[ip_src_hash].src_first; bond_info->rx_hashtbl[ip_dst_hash].src_next = next; if (next != RLB_NULL_INDEX) bond_info->rx_hashtbl[next].src_prev = ip_dst_hash; bond_info->rx_hashtbl[ip_src_hash].src_first = ip_dst_hash; } /* deletes all rx_hashtbl entries with arp->ip_src if their mac_src does * not match arp->mac_src */ static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 ip_src_hash = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src)); u32 index; spin_lock_bh(&bond->mode_lock); index = bond_info->rx_hashtbl[ip_src_hash].src_first; while (index != RLB_NULL_INDEX) { struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]); u32 next_index = entry->src_next; if (entry->ip_src == arp->ip_src && !ether_addr_equal_64bits(arp->mac_src, entry->mac_src)) rlb_delete_table_entry(bond, index); index = next_index; } spin_unlock_bh(&bond->mode_lock); } static int rlb_initialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct rlb_client_info *new_hashtbl; int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); int i; new_hashtbl = kmalloc(size, GFP_KERNEL); if (!new_hashtbl) return -1; spin_lock_bh(&bond->mode_lock); bond_info->rx_hashtbl = new_hashtbl; bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX; for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) rlb_init_table_entry(bond_info->rx_hashtbl + i); spin_unlock_bh(&bond->mode_lock); /* register to receive ARPs */ bond->recv_probe = rlb_arp_recv; return 0; } static void rlb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); spin_lock_bh(&bond->mode_lock); kfree(bond_info->rx_hashtbl); bond_info->rx_hashtbl = NULL; bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX; spin_unlock_bh(&bond->mode_lock); } static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); u32 curr_index; spin_lock_bh(&bond->mode_lock); curr_index = bond_info->rx_hashtbl_used_head; while (curr_index != RLB_NULL_INDEX) { struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); u32 next_index = bond_info->rx_hashtbl[curr_index].used_next; if (curr->vlan_id == vlan_id) rlb_delete_table_entry(bond, curr_index); curr_index = next_index; } spin_unlock_bh(&bond->mode_lock); } /*********************** tlb/rlb shared functions *********************/ static void alb_send_lp_vid(struct slave *slave, const u8 mac_addr[], __be16 vlan_proto, u16 vid) { struct learning_pkt pkt; struct sk_buff *skb; int size = sizeof(struct learning_pkt); memset(&pkt, 0, size); ether_addr_copy(pkt.mac_dst, mac_addr); ether_addr_copy(pkt.mac_src, mac_addr); pkt.type = cpu_to_be16(ETH_P_LOOPBACK); skb = dev_alloc_skb(size); if (!skb) return; skb_put_data(skb, &pkt, size); skb_reset_mac_header(skb); skb->network_header = skb->mac_header + ETH_HLEN; skb->protocol = pkt.type; skb->priority = TC_PRIO_CONTROL; skb->dev = slave->dev; slave_dbg(slave->bond->dev, slave->dev, "Send learning packet: mac %pM vlan %d\n", mac_addr, vid); if (vid) __vlan_hwaccel_put_tag(skb, vlan_proto, vid); dev_queue_xmit(skb); } struct alb_walk_data { struct bonding *bond; struct slave *slave; const u8 *mac_addr; bool strict_match; }; static int alb_upper_dev_walk(struct net_device *upper, struct netdev_nested_priv *priv) { struct alb_walk_data *data = (struct alb_walk_data *)priv->data; bool strict_match = data->strict_match; const u8 *mac_addr = data->mac_addr; struct bonding *bond = data->bond; struct slave *slave = data->slave; struct bond_vlan_tag *tags; if (is_vlan_dev(upper) && bond->dev->lower_level == upper->lower_level - 1) { if (upper->addr_assign_type == NET_ADDR_STOLEN) { alb_send_lp_vid(slave, mac_addr, vlan_dev_vlan_proto(upper), vlan_dev_vlan_id(upper)); } else { alb_send_lp_vid(slave, upper->dev_addr, vlan_dev_vlan_proto(upper), vlan_dev_vlan_id(upper)); } } /* If this is a macvlan device, then only send updates * when strict_match is turned off. */ if (netif_is_macvlan(upper) && !strict_match) { tags = bond_verify_device_path(bond->dev, upper, 0); if (IS_ERR_OR_NULL(tags)) return -ENOMEM; alb_send_lp_vid(slave, upper->dev_addr, tags[0].vlan_proto, tags[0].vlan_id); kfree(tags); } return 0; } static void alb_send_learning_packets(struct slave *slave, const u8 mac_addr[], bool strict_match) { struct bonding *bond = bond_get_bond_by_slave(slave); struct netdev_nested_priv priv; struct alb_walk_data data = { .strict_match = strict_match, .mac_addr = mac_addr, .slave = slave, .bond = bond, }; priv.data = (void *)&data; /* send untagged */ alb_send_lp_vid(slave, mac_addr, 0, 0); /* loop through all devices and see if we need to send a packet * for that device. */ rcu_read_lock(); netdev_walk_all_upper_dev_rcu(bond->dev, alb_upper_dev_walk, &priv); rcu_read_unlock(); } static int alb_set_slave_mac_addr(struct slave *slave, const u8 addr[], unsigned int len) { struct net_device *dev = slave->dev; struct sockaddr_storage ss; if (BOND_MODE(slave->bond) == BOND_MODE_TLB) { __dev_addr_set(dev, addr, len); return 0; } /* for rlb each slave must have a unique hw mac addresses so that * each slave will receive packets destined to a different mac */ memcpy(ss.__data, addr, len); ss.ss_family = dev->type; if (dev_set_mac_address(dev, (struct sockaddr *)&ss, NULL)) { slave_err(slave->bond->dev, dev, "dev_set_mac_address on slave failed! ALB mode requires that the base driver support setting the hw address also when the network device's interface is open\n"); return -EOPNOTSUPP; } return 0; } /* Swap MAC addresses between two slaves. * * Called with RTNL held, and no other locks. */ static void alb_swap_mac_addr(struct slave *slave1, struct slave *slave2) { u8 tmp_mac_addr[MAX_ADDR_LEN]; bond_hw_addr_copy(tmp_mac_addr, slave1->dev->dev_addr, slave1->dev->addr_len); alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, slave2->dev->addr_len); alb_set_slave_mac_addr(slave2, tmp_mac_addr, slave1->dev->addr_len); } /* Send learning packets after MAC address swap. * * Called with RTNL and no other locks */ static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, struct slave *slave2) { int slaves_state_differ = (bond_slave_can_tx(slave1) != bond_slave_can_tx(slave2)); struct slave *disabled_slave = NULL; ASSERT_RTNL(); /* fasten the change in the switch */ if (bond_slave_can_tx(slave1)) { alb_send_learning_packets(slave1, slave1->dev->dev_addr, false); if (bond->alb_info.rlb_enabled) { /* inform the clients that the mac address * has changed */ rlb_req_update_slave_clients(bond, slave1); } } else { disabled_slave = slave1; } if (bond_slave_can_tx(slave2)) { alb_send_learning_packets(slave2, slave2->dev->dev_addr, false); if (bond->alb_info.rlb_enabled) { /* inform the clients that the mac address * has changed */ rlb_req_update_slave_clients(bond, slave2); } } else { disabled_slave = slave2; } if (bond->alb_info.rlb_enabled && slaves_state_differ) { /* A disabled slave was assigned an active mac addr */ rlb_teach_disabled_mac_on_primary(bond, disabled_slave->dev->dev_addr); } } /** * alb_change_hw_addr_on_detach * @bond: bonding we're working on * @slave: the slave that was just detached * * We assume that @slave was already detached from the slave list. * * If @slave's permanent hw address is different both from its current * address and from @bond's address, then somewhere in the bond there's * a slave that has @slave's permanet address as its current address. * We'll make sure that slave no longer uses @slave's permanent address. * * Caller must hold RTNL and no other locks */ static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) { int perm_curr_diff; int perm_bond_diff; struct slave *found_slave; perm_curr_diff = !ether_addr_equal_64bits(slave->perm_hwaddr, slave->dev->dev_addr); perm_bond_diff = !ether_addr_equal_64bits(slave->perm_hwaddr, bond->dev->dev_addr); if (perm_curr_diff && perm_bond_diff) { found_slave = bond_slave_has_mac(bond, slave->perm_hwaddr); if (found_slave) { alb_swap_mac_addr(slave, found_slave); alb_fasten_mac_swap(bond, slave, found_slave); } } } /** * alb_handle_addr_collision_on_attach * @bond: bonding we're working on * @slave: the slave that was just attached * * checks uniqueness of slave's mac address and handles the case the * new slave uses the bonds mac address. * * If the permanent hw address of @slave is @bond's hw address, we need to * find a different hw address to give @slave, that isn't in use by any other * slave in the bond. This address must be, of course, one of the permanent * addresses of the other slaves. * * We go over the slave list, and for each slave there we compare its * permanent hw address with the current address of all the other slaves. * If no match was found, then we've found a slave with a permanent address * that isn't used by any other slave in the bond, so we can assign it to * @slave. * * assumption: this function is called before @slave is attached to the * bond slave list. */ static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) { struct slave *has_bond_addr = rcu_access_pointer(bond->curr_active_slave); struct slave *tmp_slave1, *free_mac_slave = NULL; struct list_head *iter; if (!bond_has_slaves(bond)) { /* this is the first slave */ return 0; } /* if slave's mac address differs from bond's mac address * check uniqueness of slave's mac address against the other * slaves in the bond. */ if (!ether_addr_equal_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) { if (!bond_slave_has_mac(bond, slave->dev->dev_addr)) return 0; /* Try setting slave mac to bond address and fall-through * to code handling that situation below... */ alb_set_slave_mac_addr(slave, bond->dev->dev_addr, bond->dev->addr_len); } /* The slave's address is equal to the address of the bond. * Search for a spare address in the bond for this slave. */ bond_for_each_slave(bond, tmp_slave1, iter) { if (!bond_slave_has_mac(bond, tmp_slave1->perm_hwaddr)) { /* no slave has tmp_slave1's perm addr * as its curr addr */ free_mac_slave = tmp_slave1; break; } if (!has_bond_addr) { if (ether_addr_equal_64bits(tmp_slave1->dev->dev_addr, bond->dev->dev_addr)) { has_bond_addr = tmp_slave1; } } } if (free_mac_slave) { alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, free_mac_slave->dev->addr_len); slave_warn(bond->dev, slave->dev, "the slave hw address is in use by the bond; giving it the hw address of %s\n", free_mac_slave->dev->name); } else if (has_bond_addr) { slave_err(bond->dev, slave->dev, "the slave hw address is in use by the bond; couldn't find a slave with a free hw address to give it (this should not have happened)\n"); return -EFAULT; } return 0; } /** * alb_set_mac_address * @bond: bonding we're working on * @addr: MAC address to set * * In TLB mode all slaves are configured to the bond's hw address, but set * their dev_addr field to different addresses (based on their permanent hw * addresses). * * For each slave, this function sets the interface to the new address and then * changes its dev_addr field to its previous value. * * Unwinding assumes bond's mac address has not yet changed. */ static int alb_set_mac_address(struct bonding *bond, void *addr) { struct slave *slave, *rollback_slave; struct list_head *iter; struct sockaddr_storage ss; char tmp_addr[MAX_ADDR_LEN]; int res; if (bond->alb_info.rlb_enabled) return 0; bond_for_each_slave(bond, slave, iter) { /* save net_device's current hw address */ bond_hw_addr_copy(tmp_addr, slave->dev->dev_addr, slave->dev->addr_len); res = dev_set_mac_address(slave->dev, addr, NULL); /* restore net_device's hw address */ dev_addr_set(slave->dev, tmp_addr); if (res) goto unwind; } return 0; unwind: memcpy(ss.__data, bond->dev->dev_addr, bond->dev->addr_len); ss.ss_family = bond->dev->type; /* unwind from head to the slave that failed */ bond_for_each_slave(bond, rollback_slave, iter) { if (rollback_slave == slave) break; bond_hw_addr_copy(tmp_addr, rollback_slave->dev->dev_addr, rollback_slave->dev->addr_len); dev_set_mac_address(rollback_slave->dev, (struct sockaddr *)&ss, NULL); dev_addr_set(rollback_slave->dev, tmp_addr); } return res; } /* determine if the packet is NA or NS */ static bool alb_determine_nd(struct sk_buff *skb, struct bonding *bond) { struct ipv6hdr *ip6hdr; struct icmp6hdr *hdr; if (!pskb_network_may_pull(skb, sizeof(*ip6hdr))) return true; ip6hdr = ipv6_hdr(skb); if (ip6hdr->nexthdr != IPPROTO_ICMPV6) return false; if (!pskb_network_may_pull(skb, sizeof(*ip6hdr) + sizeof(*hdr))) return true; hdr = icmp6_hdr(skb); return hdr->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT || hdr->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION; } /************************ exported alb functions ************************/ int bond_alb_initialize(struct bonding *bond, int rlb_enabled) { int res; res = tlb_initialize(bond); if (res) return res; if (rlb_enabled) { res = rlb_initialize(bond); if (res) { tlb_deinitialize(bond); return res; } bond->alb_info.rlb_enabled = 1; } else { bond->alb_info.rlb_enabled = 0; } return 0; } void bond_alb_deinitialize(struct bonding *bond) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); tlb_deinitialize(bond); if (bond_info->rlb_enabled) rlb_deinitialize(bond); } static netdev_tx_t bond_do_alb_xmit(struct sk_buff *skb, struct bonding *bond, struct slave *tx_slave) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct ethhdr *eth_data = eth_hdr(skb); if (!tx_slave) { /* unbalanced or unassigned, send through primary */ tx_slave = rcu_dereference(bond->curr_active_slave); if (bond->params.tlb_dynamic_lb) bond_info->unbalanced_load += skb->len; } if (tx_slave && bond_slave_can_tx(tx_slave)) { if (tx_slave != rcu_access_pointer(bond->curr_active_slave)) { ether_addr_copy(eth_data->h_source, tx_slave->dev->dev_addr); } return bond_dev_queue_xmit(bond, skb, tx_slave->dev); } if (tx_slave && bond->params.tlb_dynamic_lb) { spin_lock(&bond->mode_lock); __tlb_clear_slave(bond, tx_slave, 0); spin_unlock(&bond->mode_lock); } /* no suitable interface, frame not sent */ return bond_tx_drop(bond->dev, skb); } struct slave *bond_xmit_tlb_slave_get(struct bonding *bond, struct sk_buff *skb) { struct slave *tx_slave = NULL; struct ethhdr *eth_data; u32 hash_index; skb_reset_mac_header(skb); eth_data = eth_hdr(skb); /* Do not TX balance any multicast or broadcast */ if (!is_multicast_ether_addr(eth_data->h_dest)) { switch (skb->protocol) { case htons(ETH_P_IPV6): if (alb_determine_nd(skb, bond)) break; fallthrough; case htons(ETH_P_IP): hash_index = bond_xmit_hash(bond, skb); if (bond->params.tlb_dynamic_lb) { tx_slave = tlb_choose_channel(bond, hash_index & 0xFF, skb->len); } else { struct bond_up_slave *slaves; unsigned int count; slaves = rcu_dereference(bond->usable_slaves); count = slaves ? READ_ONCE(slaves->count) : 0; if (likely(count)) tx_slave = slaves->arr[hash_index % count]; } break; } } return tx_slave; } netdev_tx_t bond_tlb_xmit(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = netdev_priv(bond_dev); struct slave *tx_slave; tx_slave = bond_xmit_tlb_slave_get(bond, skb); return bond_do_alb_xmit(skb, bond, tx_slave); } struct slave *bond_xmit_alb_slave_get(struct bonding *bond, struct sk_buff *skb) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); static const __be32 ip_bcast = htonl(0xffffffff); struct slave *tx_slave = NULL; const u8 *hash_start = NULL; bool do_tx_balance = true; struct ethhdr *eth_data; u32 hash_index = 0; int hash_size = 0; skb_reset_mac_header(skb); eth_data = eth_hdr(skb); switch (ntohs(skb->protocol)) { case ETH_P_IP: { const struct iphdr *iph; if (is_broadcast_ether_addr(eth_data->h_dest) || !pskb_network_may_pull(skb, sizeof(*iph))) { do_tx_balance = false; break; } iph = ip_hdr(skb); if (iph->daddr == ip_bcast || iph->protocol == IPPROTO_IGMP) { do_tx_balance = false; break; } hash_start = (char *)&(iph->daddr); hash_size = sizeof(iph->daddr); break; } case ETH_P_IPV6: { const struct ipv6hdr *ip6hdr; /* IPv6 doesn't really use broadcast mac address, but leave * that here just in case. */ if (is_broadcast_ether_addr(eth_data->h_dest)) { do_tx_balance = false; break; } /* IPv6 uses all-nodes multicast as an equivalent to * broadcasts in IPv4. */ if (ether_addr_equal_64bits(eth_data->h_dest, mac_v6_allmcast)) { do_tx_balance = false; break; } if (alb_determine_nd(skb, bond)) { do_tx_balance = false; break; } /* The IPv6 header is pulled by alb_determine_nd */ /* Additionally, DAD probes should not be tx-balanced as that * will lead to false positives for duplicate addresses and * prevent address configuration from working. */ ip6hdr = ipv6_hdr(skb); if (ipv6_addr_any(&ip6hdr->saddr)) { do_tx_balance = false; break; } hash_start = (char *)&ip6hdr->daddr; hash_size = sizeof(ip6hdr->daddr); break; } case ETH_P_ARP: do_tx_balance = false; if (bond_info->rlb_enabled) tx_slave = rlb_arp_xmit(skb, bond); break; default: do_tx_balance = false; break; } if (do_tx_balance) { if (bond->params.tlb_dynamic_lb) { hash_index = _simple_hash(hash_start, hash_size); tx_slave = tlb_choose_channel(bond, hash_index, skb->len); } else { /* * do_tx_balance means we are free to select the tx_slave * So we do exactly what tlb would do for hash selection */ struct bond_up_slave *slaves; unsigned int count; slaves = rcu_dereference(bond->usable_slaves); count = slaves ? READ_ONCE(slaves->count) : 0; if (likely(count)) tx_slave = slaves->arr[bond_xmit_hash(bond, skb) % count]; } } return tx_slave; } netdev_tx_t bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = netdev_priv(bond_dev); struct slave *tx_slave = NULL; tx_slave = bond_xmit_alb_slave_get(bond, skb); return bond_do_alb_xmit(skb, bond, tx_slave); } void bond_alb_monitor(struct work_struct *work) { struct bonding *bond = container_of(work, struct bonding, alb_work.work); struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); struct list_head *iter; struct slave *slave; if (!bond_has_slaves(bond)) { atomic_set(&bond_info->tx_rebalance_counter, 0); bond_info->lp_counter = 0; goto re_arm; } rcu_read_lock(); atomic_inc(&bond_info->tx_rebalance_counter); bond_info->lp_counter++; /* send learning packets */ if (bond_info->lp_counter >= BOND_ALB_LP_TICKS(bond)) { bool strict_match; bond_for_each_slave_rcu(bond, slave, iter) { /* If updating current_active, use all currently * user mac addresses (!strict_match). Otherwise, only * use mac of the slave device. * In RLB mode, we always use strict matches. */ strict_match = (slave != rcu_access_pointer(bond->curr_active_slave) || bond_info->rlb_enabled); alb_send_learning_packets(slave, slave->dev->dev_addr, strict_match); } bond_info->lp_counter = 0; } /* rebalance tx traffic */ if (atomic_read(&bond_info->tx_rebalance_counter) >= BOND_TLB_REBALANCE_TICKS) { bond_for_each_slave_rcu(bond, slave, iter) { tlb_clear_slave(bond, slave, 1); if (slave == rcu_access_pointer(bond->curr_active_slave)) { SLAVE_TLB_INFO(slave).load = bond_info->unbalanced_load / BOND_TLB_REBALANCE_INTERVAL; bond_info->unbalanced_load = 0; } } atomic_set(&bond_info->tx_rebalance_counter, 0); } if (bond_info->rlb_enabled) { if (bond_info->primary_is_promisc && (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { /* dev_set_promiscuity requires rtnl and * nothing else. Avoid race with bond_close. */ rcu_read_unlock(); if (!rtnl_trylock()) goto re_arm; bond_info->rlb_promisc_timeout_counter = 0; /* If the primary was set to promiscuous mode * because a slave was disabled then * it can now leave promiscuous mode. */ dev_set_promiscuity(rtnl_dereference(bond->curr_active_slave)->dev, -1); bond_info->primary_is_promisc = 0; rtnl_unlock(); rcu_read_lock(); } if (bond_info->rlb_rebalance) { bond_info->rlb_rebalance = 0; rlb_rebalance(bond); } /* check if clients need updating */ if (bond_info->rx_ntt) { if (bond_info->rlb_update_delay_counter) { --bond_info->rlb_update_delay_counter; } else { rlb_update_rx_clients(bond); if (bond_info->rlb_update_retry_counter) --bond_info->rlb_update_retry_counter; else bond_info->rx_ntt = 0; } } } rcu_read_unlock(); re_arm: queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); } /* assumption: called before the slave is attached to the bond * and not locked by the bond lock */ int bond_alb_init_slave(struct bonding *bond, struct slave *slave) { int res; res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, slave->dev->addr_len); if (res) return res; res = alb_handle_addr_collision_on_attach(bond, slave); if (res) return res; tlb_init_slave(slave); /* order a rebalance ASAP */ atomic_set(&bond->alb_info.tx_rebalance_counter, BOND_TLB_REBALANCE_TICKS); if (bond->alb_info.rlb_enabled) bond->alb_info.rlb_rebalance = 1; return 0; } /* Remove slave from tlb and rlb hash tables, and fix up MAC addresses * if necessary. * * Caller must hold RTNL and no other locks */ void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) { if (bond_has_slaves(bond)) alb_change_hw_addr_on_detach(bond, slave); tlb_clear_slave(bond, slave, 0); if (bond->alb_info.rlb_enabled) { bond->alb_info.rx_slave = NULL; rlb_clear_slave(bond, slave); } } void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) { struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); if (link == BOND_LINK_DOWN) { tlb_clear_slave(bond, slave, 0); if (bond->alb_info.rlb_enabled) rlb_clear_slave(bond, slave); } else if (link == BOND_LINK_UP) { /* order a rebalance ASAP */ atomic_set(&bond_info->tx_rebalance_counter, BOND_TLB_REBALANCE_TICKS); if (bond->alb_info.rlb_enabled) { bond->alb_info.rlb_rebalance = 1; /* If the updelay module parameter is smaller than the * forwarding delay of the switch the rebalance will * not work because the rebalance arp replies will * not be forwarded to the clients.. */ } } if (bond_is_nondyn_tlb(bond)) { if (bond_update_slave_arr(bond, NULL)) pr_err("Failed to build slave-array for TLB mode.\n"); } } /** * bond_alb_handle_active_change - assign new curr_active_slave * @bond: our bonding struct * @new_slave: new slave to assign * * Set the bond->curr_active_slave to @new_slave and handle * mac address swapping and promiscuity changes as needed. * * Caller must hold RTNL */ void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) { struct slave *swap_slave; struct slave *curr_active; curr_active = rtnl_dereference(bond->curr_active_slave); if (curr_active == new_slave) return; if (curr_active && bond->alb_info.primary_is_promisc) { dev_set_promiscuity(curr_active->dev, -1); bond->alb_info.primary_is_promisc = 0; bond->alb_info.rlb_promisc_timeout_counter = 0; } swap_slave = curr_active; rcu_assign_pointer(bond->curr_active_slave, new_slave); if (!new_slave || !bond_has_slaves(bond)) return; /* set the new curr_active_slave to the bonds mac address * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave */ if (!swap_slave) swap_slave = bond_slave_has_mac(bond, bond->dev->dev_addr); /* Arrange for swap_slave and new_slave to temporarily be * ignored so we can mess with their MAC addresses without * fear of interference from transmit activity. */ if (swap_slave) tlb_clear_slave(bond, swap_slave, 1); tlb_clear_slave(bond, new_slave, 1); /* in TLB mode, the slave might flip down/up with the old dev_addr, * and thus filter bond->dev_addr's packets, so force bond's mac */ if (BOND_MODE(bond) == BOND_MODE_TLB) { struct sockaddr_storage ss; u8 tmp_addr[MAX_ADDR_LEN]; bond_hw_addr_copy(tmp_addr, new_slave->dev->dev_addr, new_slave->dev->addr_len); bond_hw_addr_copy(ss.__data, bond->dev->dev_addr, bond->dev->addr_len); ss.ss_family = bond->dev->type; /* we don't care if it can't change its mac, best effort */ dev_set_mac_address(new_slave->dev, (struct sockaddr *)&ss, NULL); dev_addr_set(new_slave->dev, tmp_addr); } /* curr_active_slave must be set before calling alb_swap_mac_addr */ if (swap_slave) { /* swap mac address */ alb_swap_mac_addr(swap_slave, new_slave); alb_fasten_mac_swap(bond, swap_slave, new_slave); } else { /* set the new_slave to the bond mac address */ alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, bond->dev->addr_len); alb_send_learning_packets(new_slave, bond->dev->dev_addr, false); } } /* Called with RTNL */ int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) { struct bonding *bond = netdev_priv(bond_dev); struct sockaddr_storage *ss = addr; struct slave *curr_active; struct slave *swap_slave; int res; if (!is_valid_ether_addr(ss->__data)) return -EADDRNOTAVAIL; res = alb_set_mac_address(bond, addr); if (res) return res; dev_addr_set(bond_dev, ss->__data); /* If there is no curr_active_slave there is nothing else to do. * Otherwise we'll need to pass the new address to it and handle * duplications. */ curr_active = rtnl_dereference(bond->curr_active_slave); if (!curr_active) return 0; swap_slave = bond_slave_has_mac(bond, bond_dev->dev_addr); if (swap_slave) { alb_swap_mac_addr(swap_slave, curr_active); alb_fasten_mac_swap(bond, swap_slave, curr_active); } else { alb_set_slave_mac_addr(curr_active, bond_dev->dev_addr, bond_dev->addr_len); alb_send_learning_packets(curr_active, bond_dev->dev_addr, false); if (bond->alb_info.rlb_enabled) { /* inform clients mac address has changed */ rlb_req_update_slave_clients(bond, curr_active); } } return 0; } void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) { if (bond->alb_info.rlb_enabled) rlb_clear_vlan(bond, vlan_id); } |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 79 79 79 2 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | // SPDX-License-Identifier: GPL-2.0-only /* * HT handling * * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi> * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007, Michael Wu <flamingice@sourmilk.net> * Copyright 2007-2010, Intel Corporation * Copyright 2017 Intel Deutschland GmbH * Copyright(c) 2020-2024 Intel Corporation */ #include <linux/ieee80211.h> #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "rate.h" static void __check_htcap_disable(struct ieee80211_ht_cap *ht_capa, struct ieee80211_ht_cap *ht_capa_mask, struct ieee80211_sta_ht_cap *ht_cap, u16 flag) { __le16 le_flag = cpu_to_le16(flag); if (ht_capa_mask->cap_info & le_flag) { if (!(ht_capa->cap_info & le_flag)) ht_cap->cap &= ~flag; } } static void __check_htcap_enable(struct ieee80211_ht_cap *ht_capa, struct ieee80211_ht_cap *ht_capa_mask, struct ieee80211_sta_ht_cap *ht_cap, u16 flag) { __le16 le_flag = cpu_to_le16(flag); if ((ht_capa_mask->cap_info & le_flag) && (ht_capa->cap_info & le_flag)) ht_cap->cap |= flag; } void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_ht_cap *ht_cap) { struct ieee80211_ht_cap *ht_capa, *ht_capa_mask; u8 *scaps, *smask; int i; if (!ht_cap->ht_supported) return; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: ht_capa = &sdata->u.mgd.ht_capa; ht_capa_mask = &sdata->u.mgd.ht_capa_mask; break; case NL80211_IFTYPE_ADHOC: ht_capa = &sdata->u.ibss.ht_capa; ht_capa_mask = &sdata->u.ibss.ht_capa_mask; break; default: WARN_ON_ONCE(1); return; } scaps = (u8 *)(&ht_capa->mcs.rx_mask); smask = (u8 *)(&ht_capa_mask->mcs.rx_mask); /* NOTE: If you add more over-rides here, update register_hw * ht_capa_mod_mask logic in main.c as well. * And, if this method can ever change ht_cap.ht_supported, fix * the check in ieee80211_add_ht_ie. */ /* check for HT over-rides, MCS rates first. */ for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { u8 m = smask[i]; ht_cap->mcs.rx_mask[i] &= ~m; /* turn off all masked bits */ /* Add back rates that are supported */ ht_cap->mcs.rx_mask[i] |= (m & scaps[i]); } /* Force removal of HT-40 capabilities? */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_SUP_WIDTH_20_40); __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_SGI_40); /* Allow user to disable SGI-20 (SGI-40 is handled above) */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_SGI_20); /* Allow user to disable the max-AMSDU bit. */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_MAX_AMSDU); /* Allow user to disable LDPC */ __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_LDPC_CODING); /* Allow user to enable 40 MHz intolerant bit. */ __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_40MHZ_INTOLERANT); /* Allow user to enable TX STBC bit */ __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, IEEE80211_HT_CAP_TX_STBC); /* Allow user to configure RX STBC bits */ if (ht_capa_mask->cap_info & cpu_to_le16(IEEE80211_HT_CAP_RX_STBC)) ht_cap->cap |= le16_to_cpu(ht_capa->cap_info) & IEEE80211_HT_CAP_RX_STBC; /* Allow user to decrease AMPDU factor */ if (ht_capa_mask->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_FACTOR) { u8 n = ht_capa->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_FACTOR; if (n < ht_cap->ampdu_factor) ht_cap->ampdu_factor = n; } /* Allow the user to increase AMPDU density. */ if (ht_capa_mask->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_DENSITY) { u8 n = (ht_capa->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_DENSITY) >> IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT; if (n > ht_cap->ampdu_density) ht_cap->ampdu_density = n; } } bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_ht_cap *ht_cap_ie, struct link_sta_info *link_sta) { struct ieee80211_bss_conf *link_conf; struct sta_info *sta = link_sta->sta; struct ieee80211_sta_ht_cap ht_cap, own_cap; u8 ampdu_info, tx_mcs_set_cap; int i, max_tx_streams; bool changed; enum ieee80211_sta_rx_bandwidth bw; enum nl80211_chan_width width; memset(&ht_cap, 0, sizeof(ht_cap)); if (!ht_cap_ie || !sband->ht_cap.ht_supported) goto apply; ht_cap.ht_supported = true; own_cap = sband->ht_cap; /* * If user has specified capability over-rides, take care * of that if the station we're setting up is the AP or TDLS peer that * we advertised a restricted capability set to. Override * our own capabilities and then use those below. */ if (sdata->vif.type == NL80211_IFTYPE_STATION || sdata->vif.type == NL80211_IFTYPE_ADHOC) ieee80211_apply_htcap_overrides(sdata, &own_cap); /* * The bits listed in this expression should be * the same for the peer and us, if the station * advertises more then we can't use those thus * we mask them out. */ ht_cap.cap = le16_to_cpu(ht_cap_ie->cap_info) & (own_cap.cap | ~(IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40)); /* * The STBC bits are asymmetric -- if we don't have * TX then mask out the peer's RX and vice versa. */ if (!(own_cap.cap & IEEE80211_HT_CAP_TX_STBC)) ht_cap.cap &= ~IEEE80211_HT_CAP_RX_STBC; if (!(own_cap.cap & IEEE80211_HT_CAP_RX_STBC)) ht_cap.cap &= ~IEEE80211_HT_CAP_TX_STBC; ampdu_info = ht_cap_ie->ampdu_params_info; ht_cap.ampdu_factor = ampdu_info & IEEE80211_HT_AMPDU_PARM_FACTOR; ht_cap.ampdu_density = (ampdu_info & IEEE80211_HT_AMPDU_PARM_DENSITY) >> 2; /* own MCS TX capabilities */ tx_mcs_set_cap = own_cap.mcs.tx_params; /* Copy peer MCS TX capabilities, the driver might need them. */ ht_cap.mcs.tx_params = ht_cap_ie->mcs.tx_params; /* can we TX with MCS rates? */ if (!(tx_mcs_set_cap & IEEE80211_HT_MCS_TX_DEFINED)) goto apply; /* Counting from 0, therefore +1 */ if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_RX_DIFF) max_tx_streams = ((tx_mcs_set_cap & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; else max_tx_streams = IEEE80211_HT_MCS_TX_MAX_STREAMS; /* * 802.11n-2009 20.3.5 / 20.6 says: * - indices 0 to 7 and 32 are single spatial stream * - 8 to 31 are multiple spatial streams using equal modulation * [8..15 for two streams, 16..23 for three and 24..31 for four] * - remainder are multiple spatial streams using unequal modulation */ for (i = 0; i < max_tx_streams; i++) ht_cap.mcs.rx_mask[i] = own_cap.mcs.rx_mask[i] & ht_cap_ie->mcs.rx_mask[i]; if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION) for (i = IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE; i < IEEE80211_HT_MCS_MASK_LEN; i++) ht_cap.mcs.rx_mask[i] = own_cap.mcs.rx_mask[i] & ht_cap_ie->mcs.rx_mask[i]; /* handle MCS rate 32 too */ if (own_cap.mcs.rx_mask[32/8] & ht_cap_ie->mcs.rx_mask[32/8] & 1) ht_cap.mcs.rx_mask[32/8] |= 1; /* set Rx highest rate */ ht_cap.mcs.rx_highest = ht_cap_ie->mcs.rx_highest; if (ht_cap.cap & IEEE80211_HT_CAP_MAX_AMSDU) link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_7935; else link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_3839; ieee80211_sta_recalc_aggregates(&sta->sta); apply: changed = memcmp(&link_sta->pub->ht_cap, &ht_cap, sizeof(ht_cap)); memcpy(&link_sta->pub->ht_cap, &ht_cap, sizeof(ht_cap)); rcu_read_lock(); link_conf = rcu_dereference(sdata->vif.link_conf[link_sta->link_id]); if (WARN_ON(!link_conf)) width = NL80211_CHAN_WIDTH_20_NOHT; else width = link_conf->chanreq.oper.width; switch (width) { default: WARN_ON_ONCE(1); fallthrough; case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: bw = IEEE80211_STA_RX_BW_20; break; case NL80211_CHAN_WIDTH_40: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_320: bw = ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; break; } rcu_read_unlock(); link_sta->pub->bandwidth = bw; link_sta->cur_max_bandwidth = ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { enum ieee80211_smps_mode smps_mode; switch ((ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> IEEE80211_HT_CAP_SM_PS_SHIFT) { case WLAN_HT_CAP_SM_PS_INVALID: case WLAN_HT_CAP_SM_PS_STATIC: smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_CAP_SM_PS_DYNAMIC: smps_mode = IEEE80211_SMPS_DYNAMIC; break; case WLAN_HT_CAP_SM_PS_DISABLED: smps_mode = IEEE80211_SMPS_OFF; break; } if (smps_mode != link_sta->pub->smps_mode) changed = true; link_sta->pub->smps_mode = smps_mode; } else { link_sta->pub->smps_mode = IEEE80211_SMPS_OFF; } return changed; } void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta, enum ieee80211_agg_stop_reason reason) { int i; lockdep_assert_wiphy(sta->local->hw.wiphy); for (i = 0; i < IEEE80211_NUM_TIDS; i++) __ieee80211_stop_rx_ba_session(sta, i, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_LEAVE_QBSS, reason != AGG_STOP_DESTROY_STA && reason != AGG_STOP_PEER_REQUEST); for (i = 0; i < IEEE80211_NUM_TIDS; i++) __ieee80211_stop_tx_ba_session(sta, i, reason); /* * In case the tear down is part of a reconfigure due to HW restart * request, it is possible that the low level driver requested to stop * the BA session, so handle it to properly clean tid_tx data. */ if(reason == AGG_STOP_DESTROY_STA) { wiphy_work_cancel(sta->local->hw.wiphy, &sta->ampdu_mlme.work); for (i = 0; i < IEEE80211_NUM_TIDS; i++) { struct tid_ampdu_tx *tid_tx = rcu_dereference_protected_tid_tx(sta, i); if (!tid_tx) continue; if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) ieee80211_stop_tx_ba_cb(sta, i, tid_tx); } } } void ieee80211_ba_session_work(struct wiphy *wiphy, struct wiphy_work *work) { struct sta_info *sta = container_of(work, struct sta_info, ampdu_mlme.work); struct tid_ampdu_tx *tid_tx; bool blocked; int tid; lockdep_assert_wiphy(sta->local->hw.wiphy); /* When this flag is set, new sessions should be blocked. */ blocked = test_sta_flag(sta, WLAN_STA_BLOCK_BA); for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { if (test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_timer_expired)) __ieee80211_stop_rx_ba_session( sta, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_TIMEOUT, true); if (test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_stop_requested)) __ieee80211_stop_rx_ba_session( sta, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_UNSPECIFIED, true); if (!blocked && test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_manage_offl)) __ieee80211_start_rx_ba_session(sta, 0, 0, 0, 1, tid, IEEE80211_MAX_AMPDU_BUF_HT, false, true, NULL); if (test_and_clear_bit(tid + IEEE80211_NUM_TIDS, sta->ampdu_mlme.tid_rx_manage_offl)) __ieee80211_stop_rx_ba_session( sta, tid, WLAN_BACK_RECIPIENT, 0, false); spin_lock_bh(&sta->lock); tid_tx = sta->ampdu_mlme.tid_start_tx[tid]; if (!blocked && tid_tx) { struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); struct ieee80211_sub_if_data *sdata = vif_to_sdata(txqi->txq.vif); struct fq *fq = &sdata->local->fq; spin_lock_bh(&fq->lock); /* Allow only frags to be dequeued */ set_bit(IEEE80211_TXQ_STOP, &txqi->flags); if (!skb_queue_empty(&txqi->frags)) { /* Fragmented Tx is ongoing, wait for it to * finish. Reschedule worker to retry later. */ spin_unlock_bh(&fq->lock); spin_unlock_bh(&sta->lock); /* Give the task working on the txq a chance * to send out the queued frags */ synchronize_net(); wiphy_work_queue(sdata->local->hw.wiphy, work); return; } spin_unlock_bh(&fq->lock); /* * Assign it over to the normal tid_tx array * where it "goes live". */ sta->ampdu_mlme.tid_start_tx[tid] = NULL; /* could there be a race? */ if (sta->ampdu_mlme.tid_tx[tid]) kfree(tid_tx); else ieee80211_assign_tid_tx(sta, tid, tid_tx); spin_unlock_bh(&sta->lock); ieee80211_tx_ba_session_handle_start(sta, tid); continue; } spin_unlock_bh(&sta->lock); tid_tx = rcu_dereference_protected_tid_tx(sta, tid); if (!tid_tx) continue; if (!blocked && test_and_clear_bit(HT_AGG_STATE_START_CB, &tid_tx->state)) ieee80211_start_tx_ba_cb(sta, tid, tid_tx); if (test_and_clear_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state)) __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_LOCAL_REQUEST); if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) ieee80211_stop_tx_ba_cb(sta, tid, tid_tx); } } void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, u16 tid, u16 initiator, u16 reason_code) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 params; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = ieee80211_mgmt_ba(skb, da, sdata); skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA; params = (u16)(initiator << 11); /* bit 11 initiator */ params |= (u16)(tid << 12); /* bit 15:12 TID number */ mgmt->u.action.u.delba.params = cpu_to_le16(params); mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code); ieee80211_tx_skb(sdata, skb); } void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len) { u16 tid, params; u16 initiator; params = le16_to_cpu(mgmt->u.action.u.delba.params); tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12; initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11; ht_dbg_ratelimited(sdata, "delba from %pM (%s) tid %d reason code %d\n", mgmt->sa, initiator ? "initiator" : "recipient", tid, le16_to_cpu(mgmt->u.action.u.delba.reason_code)); if (initiator == WLAN_BACK_INITIATOR) __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_INITIATOR, 0, true); else __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_PEER_REQUEST); } enum nl80211_smps_mode ieee80211_smps_mode_to_smps_mode(enum ieee80211_smps_mode smps) { switch (smps) { case IEEE80211_SMPS_OFF: return NL80211_SMPS_OFF; case IEEE80211_SMPS_STATIC: return NL80211_SMPS_STATIC; case IEEE80211_SMPS_DYNAMIC: return NL80211_SMPS_DYNAMIC; default: return NL80211_SMPS_OFF; } } int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps, const u8 *da, const u8 *bssid, int link_id) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *action_frame; struct ieee80211_tx_info *info; u8 status_link_id = link_id < 0 ? 0 : link_id; /* 27 = header + category + action + smps mode */ skb = dev_alloc_skb(27 + local->hw.extra_tx_headroom); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); action_frame = skb_put(skb, 27); memcpy(action_frame->da, da, ETH_ALEN); memcpy(action_frame->sa, sdata->dev->dev_addr, ETH_ALEN); memcpy(action_frame->bssid, bssid, ETH_ALEN); action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); action_frame->u.action.category = WLAN_CATEGORY_HT; action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS; switch (smps) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); smps = IEEE80211_SMPS_OFF; fallthrough; case IEEE80211_SMPS_OFF: action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DISABLED; break; case IEEE80211_SMPS_STATIC: action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_STATIC; break; case IEEE80211_SMPS_DYNAMIC: action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DYNAMIC; break; } /* we'll do more on status of this frame */ info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; /* we have 13 bits, and need 6: link_id 4, smps 2 */ info->status_data = IEEE80211_STATUS_TYPE_SMPS | u16_encode_bits(status_link_id << 2 | smps, IEEE80211_STATUS_SUBDATA_MASK); ieee80211_tx_skb_tid(sdata, skb, 7, link_id); return 0; } void ieee80211_request_smps(struct ieee80211_vif *vif, unsigned int link_id, enum ieee80211_smps_mode smps_mode) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_link_data *link; if (WARN_ON_ONCE(vif->type != NL80211_IFTYPE_STATION)) return; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) goto out; trace_api_request_smps(sdata->local, sdata, link, smps_mode); if (link->u.mgd.driver_smps_mode == smps_mode) goto out; link->u.mgd.driver_smps_mode = smps_mode; wiphy_work_queue(sdata->local->hw.wiphy, &link->u.mgd.request_smps_work); out: rcu_read_unlock(); } /* this might change ... don't want non-open drivers using it */ EXPORT_SYMBOL_GPL(ieee80211_request_smps); |
5 2 1 6 6 1 3 2 4 8 1 1 2 4 1 1 8 5 2 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2007, Frank A Kingswood <frank@kingswood-consulting.co.uk> * Copyright 2007, Werner Cornelius <werner@cornelius-consult.de> * Copyright 2009, Boris Hajduk <boris@hajduk.org> * * ch341.c implements a serial port driver for the Winchiphead CH341. * * The CH341 device can be used to implement an RS232 asynchronous * serial port, an IEEE-1284 parallel printer port or a memory-like * interface. In all cases the CH341 supports an I2C interface as well. * This driver only supports the asynchronous serial interface. */ #include <linux/kernel.h> #include <linux/tty.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/serial.h> #include <linux/serial.h> #include <asm/unaligned.h> #define DEFAULT_BAUD_RATE 9600 #define DEFAULT_TIMEOUT 1000 /* flags for IO-Bits */ #define CH341_BIT_RTS (1 << 6) #define CH341_BIT_DTR (1 << 5) /******************************/ /* interrupt pipe definitions */ /******************************/ /* always 4 interrupt bytes */ /* first irq byte normally 0x08 */ /* second irq byte base 0x7d + below */ /* third irq byte base 0x94 + below */ /* fourth irq byte normally 0xee */ /* second interrupt byte */ #define CH341_MULT_STAT 0x04 /* multiple status since last interrupt event */ /* status returned in third interrupt answer byte, inverted in data from irq */ #define CH341_BIT_CTS 0x01 #define CH341_BIT_DSR 0x02 #define CH341_BIT_RI 0x04 #define CH341_BIT_DCD 0x08 #define CH341_BITS_MODEM_STAT 0x0f /* all bits */ /* Break support - the information used to implement this was gleaned from * the Net/FreeBSD uchcom.c driver by Takanori Watanabe. Domo arigato. */ #define CH341_REQ_READ_VERSION 0x5F #define CH341_REQ_WRITE_REG 0x9A #define CH341_REQ_READ_REG 0x95 #define CH341_REQ_SERIAL_INIT 0xA1 #define CH341_REQ_MODEM_CTRL 0xA4 #define CH341_REG_BREAK 0x05 #define CH341_REG_PRESCALER 0x12 #define CH341_REG_DIVISOR 0x13 #define CH341_REG_LCR 0x18 #define CH341_REG_LCR2 0x25 #define CH341_NBREAK_BITS 0x01 #define CH341_LCR_ENABLE_RX 0x80 #define CH341_LCR_ENABLE_TX 0x40 #define CH341_LCR_MARK_SPACE 0x20 #define CH341_LCR_PAR_EVEN 0x10 #define CH341_LCR_ENABLE_PAR 0x08 #define CH341_LCR_STOP_BITS_2 0x04 #define CH341_LCR_CS8 0x03 #define CH341_LCR_CS7 0x02 #define CH341_LCR_CS6 0x01 #define CH341_LCR_CS5 0x00 #define CH341_QUIRK_LIMITED_PRESCALER BIT(0) #define CH341_QUIRK_SIMULATE_BREAK BIT(1) static const struct usb_device_id id_table[] = { { USB_DEVICE(0x1a86, 0x5523) }, { USB_DEVICE(0x1a86, 0x7522) }, { USB_DEVICE(0x1a86, 0x7523) }, { USB_DEVICE(0x2184, 0x0057) }, { USB_DEVICE(0x4348, 0x5523) }, { USB_DEVICE(0x9986, 0x7523) }, { }, }; MODULE_DEVICE_TABLE(usb, id_table); struct ch341_private { spinlock_t lock; /* access lock */ unsigned baud_rate; /* set baud rate */ u8 mcr; u8 msr; u8 lcr; unsigned long quirks; u8 version; unsigned long break_end; }; static void ch341_set_termios(struct tty_struct *tty, struct usb_serial_port *port, const struct ktermios *old_termios); static int ch341_control_out(struct usb_device *dev, u8 request, u16 value, u16 index) { int r; dev_dbg(&dev->dev, "%s - (%02x,%04x,%04x)\n", __func__, request, value, index); r = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), request, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, value, index, NULL, 0, DEFAULT_TIMEOUT); if (r < 0) dev_err(&dev->dev, "failed to send control message: %d\n", r); return r; } static int ch341_control_in(struct usb_device *dev, u8 request, u16 value, u16 index, char *buf, unsigned bufsize) { int r; dev_dbg(&dev->dev, "%s - (%02x,%04x,%04x,%u)\n", __func__, request, value, index, bufsize); r = usb_control_msg_recv(dev, 0, request, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, value, index, buf, bufsize, DEFAULT_TIMEOUT, GFP_KERNEL); if (r) { dev_err(&dev->dev, "failed to receive control message: %d\n", r); return r; } return 0; } #define CH341_CLKRATE 48000000 #define CH341_CLK_DIV(ps, fact) (1 << (12 - 3 * (ps) - (fact))) #define CH341_MIN_RATE(ps) (CH341_CLKRATE / (CH341_CLK_DIV((ps), 1) * 512)) static const speed_t ch341_min_rates[] = { CH341_MIN_RATE(0), CH341_MIN_RATE(1), CH341_MIN_RATE(2), CH341_MIN_RATE(3), }; /* Supported range is 46 to 3000000 bps. */ #define CH341_MIN_BPS DIV_ROUND_UP(CH341_CLKRATE, CH341_CLK_DIV(0, 0) * 256) #define CH341_MAX_BPS (CH341_CLKRATE / (CH341_CLK_DIV(3, 0) * 2)) /* * The device line speed is given by the following equation: * * baudrate = 48000000 / (2^(12 - 3 * ps - fact) * div), where * * 0 <= ps <= 3, * 0 <= fact <= 1, * 2 <= div <= 256 if fact = 0, or * 9 <= div <= 256 if fact = 1 */ static int ch341_get_divisor(struct ch341_private *priv, speed_t speed) { unsigned int fact, div, clk_div; bool force_fact0 = false; int ps; /* * Clamp to supported range, this makes the (ps < 0) and (div < 2) * sanity checks below redundant. */ speed = clamp_val(speed, CH341_MIN_BPS, CH341_MAX_BPS); /* * Start with highest possible base clock (fact = 1) that will give a * divisor strictly less than 512. */ fact = 1; for (ps = 3; ps >= 0; ps--) { if (speed > ch341_min_rates[ps]) break; } if (ps < 0) return -EINVAL; /* Determine corresponding divisor, rounding down. */ clk_div = CH341_CLK_DIV(ps, fact); div = CH341_CLKRATE / (clk_div * speed); /* Some devices require a lower base clock if ps < 3. */ if (ps < 3 && (priv->quirks & CH341_QUIRK_LIMITED_PRESCALER)) force_fact0 = true; /* Halve base clock (fact = 0) if required. */ if (div < 9 || div > 255 || force_fact0) { div /= 2; clk_div *= 2; fact = 0; } if (div < 2) return -EINVAL; /* * Pick next divisor if resulting rate is closer to the requested one, * scale up to avoid rounding errors on low rates. */ if (16 * CH341_CLKRATE / (clk_div * div) - 16 * speed >= 16 * speed - 16 * CH341_CLKRATE / (clk_div * (div + 1))) div++; /* * Prefer lower base clock (fact = 0) if even divisor. * * Note that this makes the receiver more tolerant to errors. */ if (fact == 1 && div % 2 == 0) { div /= 2; fact = 0; } return (0x100 - div) << 8 | fact << 2 | ps; } static int ch341_set_baudrate_lcr(struct usb_device *dev, struct ch341_private *priv, speed_t baud_rate, u8 lcr) { int val; int r; if (!baud_rate) return -EINVAL; val = ch341_get_divisor(priv, baud_rate); if (val < 0) return -EINVAL; /* * CH341A buffers data until a full endpoint-size packet (32 bytes) * has been received unless bit 7 is set. * * At least one device with version 0x27 appears to have this bit * inverted. */ if (priv->version > 0x27) val |= BIT(7); r = ch341_control_out(dev, CH341_REQ_WRITE_REG, CH341_REG_DIVISOR << 8 | CH341_REG_PRESCALER, val); if (r) return r; /* * Chip versions before version 0x30 as read using * CH341_REQ_READ_VERSION used separate registers for line control * (stop bits, parity and word length). Version 0x30 and above use * CH341_REG_LCR only and CH341_REG_LCR2 is always set to zero. */ if (priv->version < 0x30) return 0; r = ch341_control_out(dev, CH341_REQ_WRITE_REG, CH341_REG_LCR2 << 8 | CH341_REG_LCR, lcr); if (r) return r; return r; } static int ch341_set_handshake(struct usb_device *dev, u8 control) { return ch341_control_out(dev, CH341_REQ_MODEM_CTRL, ~control, 0); } static int ch341_get_status(struct usb_device *dev, struct ch341_private *priv) { const unsigned int size = 2; u8 buffer[2]; int r; unsigned long flags; r = ch341_control_in(dev, CH341_REQ_READ_REG, 0x0706, 0, buffer, size); if (r) return r; spin_lock_irqsave(&priv->lock, flags); priv->msr = (~(*buffer)) & CH341_BITS_MODEM_STAT; spin_unlock_irqrestore(&priv->lock, flags); return 0; } /* -------------------------------------------------------------------------- */ static int ch341_configure(struct usb_device *dev, struct ch341_private *priv) { const unsigned int size = 2; u8 buffer[2]; int r; /* expect two bytes 0x27 0x00 */ r = ch341_control_in(dev, CH341_REQ_READ_VERSION, 0, 0, buffer, size); if (r) return r; priv->version = buffer[0]; dev_dbg(&dev->dev, "Chip version: 0x%02x\n", priv->version); r = ch341_control_out(dev, CH341_REQ_SERIAL_INIT, 0, 0); if (r < 0) return r; r = ch341_set_baudrate_lcr(dev, priv, priv->baud_rate, priv->lcr); if (r < 0) return r; r = ch341_set_handshake(dev, priv->mcr); if (r < 0) return r; return 0; } static int ch341_detect_quirks(struct usb_serial_port *port) { struct ch341_private *priv = usb_get_serial_port_data(port); struct usb_device *udev = port->serial->dev; const unsigned int size = 2; unsigned long quirks = 0; u8 buffer[2]; int r; /* * A subset of CH34x devices does not support all features. The * prescaler is limited and there is no support for sending a RS232 * break condition. A read failure when trying to set up the latter is * used to detect these devices. */ r = usb_control_msg_recv(udev, 0, CH341_REQ_READ_REG, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, CH341_REG_BREAK, 0, &buffer, size, DEFAULT_TIMEOUT, GFP_KERNEL); if (r == -EPIPE) { dev_info(&port->dev, "break control not supported, using simulated break\n"); quirks = CH341_QUIRK_LIMITED_PRESCALER | CH341_QUIRK_SIMULATE_BREAK; r = 0; } else if (r) { dev_err(&port->dev, "failed to read break control: %d\n", r); } if (quirks) { dev_dbg(&port->dev, "enabling quirk flags: 0x%02lx\n", quirks); priv->quirks |= quirks; } return r; } static int ch341_port_probe(struct usb_serial_port *port) { struct ch341_private *priv; int r; priv = kzalloc(sizeof(struct ch341_private), GFP_KERNEL); if (!priv) return -ENOMEM; spin_lock_init(&priv->lock); priv->baud_rate = DEFAULT_BAUD_RATE; /* * Some CH340 devices appear unable to change the initial LCR * settings, so set a sane 8N1 default. */ priv->lcr = CH341_LCR_ENABLE_RX | CH341_LCR_ENABLE_TX | CH341_LCR_CS8; r = ch341_configure(port->serial->dev, priv); if (r < 0) goto error; usb_set_serial_port_data(port, priv); r = ch341_detect_quirks(port); if (r < 0) goto error; return 0; error: kfree(priv); return r; } static void ch341_port_remove(struct usb_serial_port *port) { struct ch341_private *priv; priv = usb_get_serial_port_data(port); kfree(priv); } static int ch341_carrier_raised(struct usb_serial_port *port) { struct ch341_private *priv = usb_get_serial_port_data(port); if (priv->msr & CH341_BIT_DCD) return 1; return 0; } static void ch341_dtr_rts(struct usb_serial_port *port, int on) { struct ch341_private *priv = usb_get_serial_port_data(port); unsigned long flags; /* drop DTR and RTS */ spin_lock_irqsave(&priv->lock, flags); if (on) priv->mcr |= CH341_BIT_RTS | CH341_BIT_DTR; else priv->mcr &= ~(CH341_BIT_RTS | CH341_BIT_DTR); spin_unlock_irqrestore(&priv->lock, flags); ch341_set_handshake(port->serial->dev, priv->mcr); } static void ch341_close(struct usb_serial_port *port) { usb_serial_generic_close(port); usb_kill_urb(port->interrupt_in_urb); } /* open this device, set default parameters */ static int ch341_open(struct tty_struct *tty, struct usb_serial_port *port) { struct ch341_private *priv = usb_get_serial_port_data(port); int r; if (tty) ch341_set_termios(tty, port, NULL); dev_dbg(&port->dev, "%s - submitting interrupt urb\n", __func__); r = usb_submit_urb(port->interrupt_in_urb, GFP_KERNEL); if (r) { dev_err(&port->dev, "%s - failed to submit interrupt urb: %d\n", __func__, r); return r; } r = ch341_get_status(port->serial->dev, priv); if (r < 0) { dev_err(&port->dev, "failed to read modem status: %d\n", r); goto err_kill_interrupt_urb; } r = usb_serial_generic_open(tty, port); if (r) goto err_kill_interrupt_urb; return 0; err_kill_interrupt_urb: usb_kill_urb(port->interrupt_in_urb); return r; } /* Old_termios contains the original termios settings and * tty->termios contains the new setting to be used. */ static void ch341_set_termios(struct tty_struct *tty, struct usb_serial_port *port, const struct ktermios *old_termios) { struct ch341_private *priv = usb_get_serial_port_data(port); unsigned baud_rate; unsigned long flags; u8 lcr; int r; /* redundant changes may cause the chip to lose bytes */ if (old_termios && !tty_termios_hw_change(&tty->termios, old_termios)) return; baud_rate = tty_get_baud_rate(tty); lcr = CH341_LCR_ENABLE_RX | CH341_LCR_ENABLE_TX; switch (C_CSIZE(tty)) { case CS5: lcr |= CH341_LCR_CS5; break; case CS6: lcr |= CH341_LCR_CS6; break; case CS7: lcr |= CH341_LCR_CS7; break; case CS8: lcr |= CH341_LCR_CS8; break; } if (C_PARENB(tty)) { lcr |= CH341_LCR_ENABLE_PAR; if (C_PARODD(tty) == 0) lcr |= CH341_LCR_PAR_EVEN; if (C_CMSPAR(tty)) lcr |= CH341_LCR_MARK_SPACE; } if (C_CSTOPB(tty)) lcr |= CH341_LCR_STOP_BITS_2; if (baud_rate) { priv->baud_rate = baud_rate; r = ch341_set_baudrate_lcr(port->serial->dev, priv, priv->baud_rate, lcr); if (r < 0 && old_termios) { priv->baud_rate = tty_termios_baud_rate(old_termios); tty_termios_copy_hw(&tty->termios, old_termios); } else if (r == 0) { priv->lcr = lcr; } } spin_lock_irqsave(&priv->lock, flags); if (C_BAUD(tty) == B0) priv->mcr &= ~(CH341_BIT_DTR | CH341_BIT_RTS); else if (old_termios && (old_termios->c_cflag & CBAUD) == B0) priv->mcr |= (CH341_BIT_DTR | CH341_BIT_RTS); spin_unlock_irqrestore(&priv->lock, flags); ch341_set_handshake(port->serial->dev, priv->mcr); } /* * A subset of all CH34x devices don't support a real break condition and * reading CH341_REG_BREAK fails (see also ch341_detect_quirks). This function * simulates a break condition by lowering the baud rate to the minimum * supported by the hardware upon enabling the break condition and sending * a NUL byte. * * Incoming data is corrupted while the break condition is being simulated. * * Normally the duration of the break condition can be controlled individually * by userspace using TIOCSBRK and TIOCCBRK or by passing an argument to * TCSBRKP. Due to how the simulation is implemented the duration can't be * controlled. The duration is always about (1s / 46bd * 9bit) = 196ms. */ static int ch341_simulate_break(struct tty_struct *tty, int break_state) { struct usb_serial_port *port = tty->driver_data; struct ch341_private *priv = usb_get_serial_port_data(port); unsigned long now, delay; int r, r2; if (break_state != 0) { dev_dbg(&port->dev, "enter break state requested\n"); r = ch341_set_baudrate_lcr(port->serial->dev, priv, CH341_MIN_BPS, CH341_LCR_ENABLE_RX | CH341_LCR_ENABLE_TX | CH341_LCR_CS8); if (r < 0) { dev_err(&port->dev, "failed to change baud rate to %u: %d\n", CH341_MIN_BPS, r); goto restore; } r = tty_put_char(tty, '\0'); if (r < 0) { dev_err(&port->dev, "failed to write NUL byte for simulated break condition: %d\n", r); goto restore; } /* * Compute expected transmission duration including safety * margin. The original baud rate is only restored after the * computed point in time. * * 11 bits = 1 start, 8 data, 1 stop, 1 margin */ priv->break_end = jiffies + (11 * HZ / CH341_MIN_BPS); return 0; } dev_dbg(&port->dev, "leave break state requested\n"); now = jiffies; if (time_before(now, priv->break_end)) { /* Wait until NUL byte is written */ delay = priv->break_end - now; dev_dbg(&port->dev, "wait %d ms while transmitting NUL byte at %u baud\n", jiffies_to_msecs(delay), CH341_MIN_BPS); schedule_timeout_interruptible(delay); } r = 0; restore: /* Restore original baud rate */ r2 = ch341_set_baudrate_lcr(port->serial->dev, priv, priv->baud_rate, priv->lcr); if (r2 < 0) { dev_err(&port->dev, "restoring original baud rate of %u failed: %d\n", priv->baud_rate, r2); return r2; } return r; } static int ch341_break_ctl(struct tty_struct *tty, int break_state) { const uint16_t ch341_break_reg = ((uint16_t) CH341_REG_LCR << 8) | CH341_REG_BREAK; struct usb_serial_port *port = tty->driver_data; struct ch341_private *priv = usb_get_serial_port_data(port); int r; uint16_t reg_contents; uint8_t break_reg[2]; if (priv->quirks & CH341_QUIRK_SIMULATE_BREAK) return ch341_simulate_break(tty, break_state); r = ch341_control_in(port->serial->dev, CH341_REQ_READ_REG, ch341_break_reg, 0, break_reg, 2); if (r) { dev_err(&port->dev, "%s - USB control read error (%d)\n", __func__, r); if (r > 0) r = -EIO; return r; } dev_dbg(&port->dev, "%s - initial ch341 break register contents - reg1: %x, reg2: %x\n", __func__, break_reg[0], break_reg[1]); if (break_state != 0) { dev_dbg(&port->dev, "%s - Enter break state requested\n", __func__); break_reg[0] &= ~CH341_NBREAK_BITS; break_reg[1] &= ~CH341_LCR_ENABLE_TX; } else { dev_dbg(&port->dev, "%s - Leave break state requested\n", __func__); break_reg[0] |= CH341_NBREAK_BITS; break_reg[1] |= CH341_LCR_ENABLE_TX; } dev_dbg(&port->dev, "%s - New ch341 break register contents - reg1: %x, reg2: %x\n", __func__, break_reg[0], break_reg[1]); reg_contents = get_unaligned_le16(break_reg); r = ch341_control_out(port->serial->dev, CH341_REQ_WRITE_REG, ch341_break_reg, reg_contents); if (r < 0) { dev_err(&port->dev, "%s - USB control write error (%d)\n", __func__, r); return r; } return 0; } static int ch341_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { struct usb_serial_port *port = tty->driver_data; struct ch341_private *priv = usb_get_serial_port_data(port); unsigned long flags; u8 control; spin_lock_irqsave(&priv->lock, flags); if (set & TIOCM_RTS) priv->mcr |= CH341_BIT_RTS; if (set & TIOCM_DTR) priv->mcr |= CH341_BIT_DTR; if (clear & TIOCM_RTS) priv->mcr &= ~CH341_BIT_RTS; if (clear & TIOCM_DTR) priv->mcr &= ~CH341_BIT_DTR; control = priv->mcr; spin_unlock_irqrestore(&priv->lock, flags); return ch341_set_handshake(port->serial->dev, control); } static void ch341_update_status(struct usb_serial_port *port, unsigned char *data, size_t len) { struct ch341_private *priv = usb_get_serial_port_data(port); struct tty_struct *tty; unsigned long flags; u8 status; u8 delta; if (len < 4) return; status = ~data[2] & CH341_BITS_MODEM_STAT; spin_lock_irqsave(&priv->lock, flags); delta = status ^ priv->msr; priv->msr = status; spin_unlock_irqrestore(&priv->lock, flags); if (data[1] & CH341_MULT_STAT) dev_dbg(&port->dev, "%s - multiple status change\n", __func__); if (!delta) return; if (delta & CH341_BIT_CTS) port->icount.cts++; if (delta & CH341_BIT_DSR) port->icount.dsr++; if (delta & CH341_BIT_RI) port->icount.rng++; if (delta & CH341_BIT_DCD) { port->icount.dcd++; tty = tty_port_tty_get(&port->port); if (tty) { usb_serial_handle_dcd_change(port, tty, status & CH341_BIT_DCD); tty_kref_put(tty); } } wake_up_interruptible(&port->port.delta_msr_wait); } static void ch341_read_int_callback(struct urb *urb) { struct usb_serial_port *port = urb->context; unsigned char *data = urb->transfer_buffer; unsigned int len = urb->actual_length; int status; switch (urb->status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(&urb->dev->dev, "%s - urb shutting down: %d\n", __func__, urb->status); return; default: dev_dbg(&urb->dev->dev, "%s - nonzero urb status: %d\n", __func__, urb->status); goto exit; } usb_serial_debug_data(&port->dev, __func__, len, data); ch341_update_status(port, data, len); exit: status = usb_submit_urb(urb, GFP_ATOMIC); if (status) { dev_err(&urb->dev->dev, "%s - usb_submit_urb failed: %d\n", __func__, status); } } static int ch341_tiocmget(struct tty_struct *tty) { struct usb_serial_port *port = tty->driver_data; struct ch341_private *priv = usb_get_serial_port_data(port); unsigned long flags; u8 mcr; u8 status; unsigned int result; spin_lock_irqsave(&priv->lock, flags); mcr = priv->mcr; status = priv->msr; spin_unlock_irqrestore(&priv->lock, flags); result = ((mcr & CH341_BIT_DTR) ? TIOCM_DTR : 0) | ((mcr & CH341_BIT_RTS) ? TIOCM_RTS : 0) | ((status & CH341_BIT_CTS) ? TIOCM_CTS : 0) | ((status & CH341_BIT_DSR) ? TIOCM_DSR : 0) | ((status & CH341_BIT_RI) ? TIOCM_RI : 0) | ((status & CH341_BIT_DCD) ? TIOCM_CD : 0); dev_dbg(&port->dev, "%s - result = %x\n", __func__, result); return result; } static int ch341_reset_resume(struct usb_serial *serial) { struct usb_serial_port *port = serial->port[0]; struct ch341_private *priv; int ret; priv = usb_get_serial_port_data(port); if (!priv) return 0; /* reconfigure ch341 serial port after bus-reset */ ch341_configure(serial->dev, priv); if (tty_port_initialized(&port->port)) { ret = usb_submit_urb(port->interrupt_in_urb, GFP_NOIO); if (ret) { dev_err(&port->dev, "failed to submit interrupt urb: %d\n", ret); return ret; } ret = ch341_get_status(port->serial->dev, priv); if (ret < 0) { dev_err(&port->dev, "failed to read modem status: %d\n", ret); } } return usb_serial_generic_resume(serial); } static struct usb_serial_driver ch341_device = { .driver = { .owner = THIS_MODULE, .name = "ch341-uart", }, .id_table = id_table, .num_ports = 1, .open = ch341_open, .dtr_rts = ch341_dtr_rts, .carrier_raised = ch341_carrier_raised, .close = ch341_close, .set_termios = ch341_set_termios, .break_ctl = ch341_break_ctl, .tiocmget = ch341_tiocmget, .tiocmset = ch341_tiocmset, .tiocmiwait = usb_serial_generic_tiocmiwait, .read_int_callback = ch341_read_int_callback, .port_probe = ch341_port_probe, .port_remove = ch341_port_remove, .reset_resume = ch341_reset_resume, }; static struct usb_serial_driver * const serial_drivers[] = { &ch341_device, NULL }; module_usb_serial_driver(serial_drivers, id_table); MODULE_DESCRIPTION("Winchiphead CH341 USB Serial driver"); MODULE_LICENSE("GPL v2"); |
6 7 5660 5660 7 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | // SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_address.h> #include <linux/of_iommu.h> #include <linux/of_reserved_mem.h> #include <linux/dma-direct.h> /* for bus_dma_region */ #include <linux/dma-map-ops.h> #include <linux/init.h> #include <linux/mod_devicetable.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <asm/errno.h> #include "of_private.h" /** * of_match_device - Tell if a struct device matches an of_device_id list * @matches: array of of device match structures to search in * @dev: the of device structure to match against * * Used by a driver to check whether an platform_device present in the * system is in its list of supported devices. */ const struct of_device_id *of_match_device(const struct of_device_id *matches, const struct device *dev) { if (!matches || !dev->of_node || dev->of_node_reused) return NULL; return of_match_node(matches, dev->of_node); } EXPORT_SYMBOL(of_match_device); static void of_dma_set_restricted_buffer(struct device *dev, struct device_node *np) { struct device_node *node, *of_node = dev->of_node; int count, i; if (!IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL)) return; count = of_property_count_elems_of_size(of_node, "memory-region", sizeof(u32)); /* * If dev->of_node doesn't exist or doesn't contain memory-region, try * the OF node having DMA configuration. */ if (count <= 0) { of_node = np; count = of_property_count_elems_of_size( of_node, "memory-region", sizeof(u32)); } for (i = 0; i < count; i++) { node = of_parse_phandle(of_node, "memory-region", i); /* * There might be multiple memory regions, but only one * restricted-dma-pool region is allowed. */ if (of_device_is_compatible(node, "restricted-dma-pool") && of_device_is_available(node)) { of_node_put(node); break; } of_node_put(node); } /* * Attempt to initialize a restricted-dma-pool region if one was found. * Note that count can hold a negative error code. */ if (i < count && of_reserved_mem_device_init_by_idx(dev, of_node, i)) dev_warn(dev, "failed to initialise \"restricted-dma-pool\" memory node\n"); } /** * of_dma_configure_id - Setup DMA configuration * @dev: Device to apply DMA configuration * @np: Pointer to OF node having DMA configuration * @force_dma: Whether device is to be set up by of_dma_configure() even if * DMA capability is not explicitly described by firmware. * @id: Optional const pointer value input id * * Try to get devices's DMA configuration from DT and update it * accordingly. * * If platform code needs to use its own special DMA configuration, it * can use a platform bus notifier and handle BUS_NOTIFY_ADD_DEVICE events * to fix up DMA configuration. */ int of_dma_configure_id(struct device *dev, struct device_node *np, bool force_dma, const u32 *id) { const struct bus_dma_region *map = NULL; struct device_node *bus_np; u64 mask, end = 0; bool coherent, set_map = false; int ret; if (np == dev->of_node) bus_np = __of_get_dma_parent(np); else bus_np = of_node_get(np); ret = of_dma_get_range(bus_np, &map); of_node_put(bus_np); if (ret < 0) { /* * For legacy reasons, we have to assume some devices need * DMA configuration regardless of whether "dma-ranges" is * correctly specified or not. */ if (!force_dma) return ret == -ENODEV ? 0 : ret; } else { /* Determine the overall bounds of all DMA regions */ end = dma_range_map_max(map); set_map = true; } /* * If @dev is expected to be DMA-capable then the bus code that created * it should have initialised its dma_mask pointer by this point. For * now, we'll continue the legacy behaviour of coercing it to the * coherent mask if not, but we'll no longer do so quietly. */ if (!dev->dma_mask) { dev_warn(dev, "DMA mask not set\n"); dev->dma_mask = &dev->coherent_dma_mask; } if (!end && dev->coherent_dma_mask) end = dev->coherent_dma_mask; else if (!end) end = (1ULL << 32) - 1; /* * Limit coherent and dma mask based on size and default mask * set by the driver. */ mask = DMA_BIT_MASK(ilog2(end) + 1); dev->coherent_dma_mask &= mask; *dev->dma_mask &= mask; /* ...but only set bus limit and range map if we found valid dma-ranges earlier */ if (set_map) { dev->bus_dma_limit = end; dev->dma_range_map = map; } coherent = of_dma_is_coherent(np); dev_dbg(dev, "device is%sdma coherent\n", coherent ? " " : " not "); ret = of_iommu_configure(dev, np, id); if (ret == -EPROBE_DEFER) { /* Don't touch range map if it wasn't set from a valid dma-ranges */ if (set_map) dev->dma_range_map = NULL; kfree(map); return -EPROBE_DEFER; } /* Take all other IOMMU errors to mean we'll just carry on without it */ dev_dbg(dev, "device is%sbehind an iommu\n", !ret ? " " : " not "); arch_setup_dma_ops(dev, coherent); if (ret) of_dma_set_restricted_buffer(dev, np); return 0; } EXPORT_SYMBOL_GPL(of_dma_configure_id); const void *of_device_get_match_data(const struct device *dev) { const struct of_device_id *match; match = of_match_device(dev->driver->of_match_table, dev); if (!match) return NULL; return match->data; } EXPORT_SYMBOL(of_device_get_match_data); /** * of_device_modalias - Fill buffer with newline terminated modalias string * @dev: Calling device * @str: Modalias string * @len: Size of @str */ ssize_t of_device_modalias(struct device *dev, char *str, ssize_t len) { ssize_t sl; if (!dev || !dev->of_node || dev->of_node_reused) return -ENODEV; sl = of_modalias(dev->of_node, str, len - 2); if (sl < 0) return sl; if (sl > len - 2) return -ENOMEM; str[sl++] = '\n'; str[sl] = 0; return sl; } EXPORT_SYMBOL_GPL(of_device_modalias); /** * of_device_uevent - Display OF related uevent information * @dev: Device to display the uevent information for * @env: Kernel object's userspace event reference to fill up */ void of_device_uevent(const struct device *dev, struct kobj_uevent_env *env) { const char *compat, *type; struct alias_prop *app; struct property *p; int seen = 0; if ((!dev) || (!dev->of_node)) return; add_uevent_var(env, "OF_NAME=%pOFn", dev->of_node); add_uevent_var(env, "OF_FULLNAME=%pOF", dev->of_node); type = of_node_get_device_type(dev->of_node); if (type) add_uevent_var(env, "OF_TYPE=%s", type); /* Since the compatible field can contain pretty much anything * it's not really legal to split it out with commas. We split it * up using a number of environment variables instead. */ of_property_for_each_string(dev->of_node, "compatible", p, compat) { add_uevent_var(env, "OF_COMPATIBLE_%d=%s", seen, compat); seen++; } add_uevent_var(env, "OF_COMPATIBLE_N=%d", seen); seen = 0; mutex_lock(&of_mutex); list_for_each_entry(app, &aliases_lookup, link) { if (dev->of_node == app->np) { add_uevent_var(env, "OF_ALIAS_%d=%s", seen, app->alias); seen++; } } mutex_unlock(&of_mutex); } EXPORT_SYMBOL_GPL(of_device_uevent); int of_device_uevent_modalias(const struct device *dev, struct kobj_uevent_env *env) { int sl; if ((!dev) || (!dev->of_node) || dev->of_node_reused) return -ENODEV; /* Devicetree modalias is tricky, we add it in 2 steps */ if (add_uevent_var(env, "MODALIAS=")) return -ENOMEM; sl = of_modalias(dev->of_node, &env->buf[env->buflen-1], sizeof(env->buf) - env->buflen); if (sl < 0) return sl; if (sl >= (sizeof(env->buf) - env->buflen)) return -ENOMEM; env->buflen += sl; return 0; } EXPORT_SYMBOL_GPL(of_device_uevent_modalias); /** * of_device_make_bus_id - Use the device node data to assign a unique name * @dev: pointer to device structure that is linked to a device tree node * * This routine will first try using the translated bus address to * derive a unique name. If it cannot, then it will prepend names from * parent nodes until a unique name can be derived. */ void of_device_make_bus_id(struct device *dev) { struct device_node *node = dev->of_node; const __be32 *reg; u64 addr; u32 mask; /* Construct the name, using parent nodes if necessary to ensure uniqueness */ while (node->parent) { /* * If the address can be translated, then that is as much * uniqueness as we need. Make it the first component and return */ reg = of_get_property(node, "reg", NULL); if (reg && (addr = of_translate_address(node, reg)) != OF_BAD_ADDR) { if (!of_property_read_u32(node, "mask", &mask)) dev_set_name(dev, dev_name(dev) ? "%llx.%x.%pOFn:%s" : "%llx.%x.%pOFn", addr, ffs(mask) - 1, node, dev_name(dev)); else dev_set_name(dev, dev_name(dev) ? "%llx.%pOFn:%s" : "%llx.%pOFn", addr, node, dev_name(dev)); return; } /* format arguments only used if dev_name() resolves to NULL */ dev_set_name(dev, dev_name(dev) ? "%s:%s" : "%s", kbasename(node->full_name), dev_name(dev)); node = node->parent; } } EXPORT_SYMBOL_GPL(of_device_make_bus_id); |
21 5 16 16 4 4 7 2 2 2 2 2 2 2 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | // SPDX-License-Identifier: GPL-2.0-only /* * * Generic part shared by ipv4 and ipv6 backends. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_core.h> #include <net/netfilter/nf_tables.h> #include <linux/in.h> #include <net/xfrm.h> static const struct nla_policy nft_xfrm_policy[NFTA_XFRM_MAX + 1] = { [NFTA_XFRM_KEY] = NLA_POLICY_MAX(NLA_BE32, 255), [NFTA_XFRM_DIR] = { .type = NLA_U8 }, [NFTA_XFRM_SPNUM] = NLA_POLICY_MAX(NLA_BE32, 255), [NFTA_XFRM_DREG] = { .type = NLA_U32 }, }; struct nft_xfrm { enum nft_xfrm_keys key:8; u8 dreg; u8 dir; u8 spnum; u8 len; }; static int nft_xfrm_get_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_xfrm *priv = nft_expr_priv(expr); unsigned int len = 0; u32 spnum = 0; u8 dir; if (!tb[NFTA_XFRM_KEY] || !tb[NFTA_XFRM_DIR] || !tb[NFTA_XFRM_DREG]) return -EINVAL; switch (ctx->family) { case NFPROTO_IPV4: case NFPROTO_IPV6: case NFPROTO_INET: break; default: return -EOPNOTSUPP; } priv->key = ntohl(nla_get_be32(tb[NFTA_XFRM_KEY])); switch (priv->key) { case NFT_XFRM_KEY_REQID: case NFT_XFRM_KEY_SPI: len = sizeof(u32); break; case NFT_XFRM_KEY_DADDR_IP4: case NFT_XFRM_KEY_SADDR_IP4: len = sizeof(struct in_addr); break; case NFT_XFRM_KEY_DADDR_IP6: case NFT_XFRM_KEY_SADDR_IP6: len = sizeof(struct in6_addr); break; default: return -EINVAL; } dir = nla_get_u8(tb[NFTA_XFRM_DIR]); switch (dir) { case XFRM_POLICY_IN: case XFRM_POLICY_OUT: priv->dir = dir; break; default: return -EINVAL; } if (tb[NFTA_XFRM_SPNUM]) spnum = ntohl(nla_get_be32(tb[NFTA_XFRM_SPNUM])); if (spnum >= XFRM_MAX_DEPTH) return -ERANGE; priv->spnum = spnum; priv->len = len; return nft_parse_register_store(ctx, tb[NFTA_XFRM_DREG], &priv->dreg, NULL, NFT_DATA_VALUE, len); } /* Return true if key asks for daddr/saddr and current * state does have a valid address (BEET, TUNNEL). */ static bool xfrm_state_addr_ok(enum nft_xfrm_keys k, u8 family, u8 mode) { switch (k) { case NFT_XFRM_KEY_DADDR_IP4: case NFT_XFRM_KEY_SADDR_IP4: if (family == NFPROTO_IPV4) break; return false; case NFT_XFRM_KEY_DADDR_IP6: case NFT_XFRM_KEY_SADDR_IP6: if (family == NFPROTO_IPV6) break; return false; default: return true; } return mode == XFRM_MODE_BEET || mode == XFRM_MODE_TUNNEL; } static void nft_xfrm_state_get_key(const struct nft_xfrm *priv, struct nft_regs *regs, const struct xfrm_state *state) { u32 *dest = ®s->data[priv->dreg]; if (!xfrm_state_addr_ok(priv->key, state->props.family, state->props.mode)) { regs->verdict.code = NFT_BREAK; return; } switch (priv->key) { case NFT_XFRM_KEY_UNSPEC: case __NFT_XFRM_KEY_MAX: WARN_ON_ONCE(1); break; case NFT_XFRM_KEY_DADDR_IP4: *dest = (__force __u32)state->id.daddr.a4; return; case NFT_XFRM_KEY_DADDR_IP6: memcpy(dest, &state->id.daddr.in6, sizeof(struct in6_addr)); return; case NFT_XFRM_KEY_SADDR_IP4: *dest = (__force __u32)state->props.saddr.a4; return; case NFT_XFRM_KEY_SADDR_IP6: memcpy(dest, &state->props.saddr.in6, sizeof(struct in6_addr)); return; case NFT_XFRM_KEY_REQID: *dest = state->props.reqid; return; case NFT_XFRM_KEY_SPI: *dest = (__force __u32)state->id.spi; return; } regs->verdict.code = NFT_BREAK; } static void nft_xfrm_get_eval_in(const struct nft_xfrm *priv, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct sec_path *sp = skb_sec_path(pkt->skb); const struct xfrm_state *state; if (sp == NULL || sp->len <= priv->spnum) { regs->verdict.code = NFT_BREAK; return; } state = sp->xvec[priv->spnum]; nft_xfrm_state_get_key(priv, regs, state); } static void nft_xfrm_get_eval_out(const struct nft_xfrm *priv, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct dst_entry *dst = skb_dst(pkt->skb); int i; for (i = 0; dst && dst->xfrm; dst = ((const struct xfrm_dst *)dst)->child, i++) { if (i < priv->spnum) continue; nft_xfrm_state_get_key(priv, regs, dst->xfrm); return; } regs->verdict.code = NFT_BREAK; } static void nft_xfrm_get_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_xfrm *priv = nft_expr_priv(expr); switch (priv->dir) { case XFRM_POLICY_IN: nft_xfrm_get_eval_in(priv, regs, pkt); break; case XFRM_POLICY_OUT: nft_xfrm_get_eval_out(priv, regs, pkt); break; default: WARN_ON_ONCE(1); regs->verdict.code = NFT_BREAK; break; } } static int nft_xfrm_get_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_xfrm *priv = nft_expr_priv(expr); if (nft_dump_register(skb, NFTA_XFRM_DREG, priv->dreg)) return -1; if (nla_put_be32(skb, NFTA_XFRM_KEY, htonl(priv->key))) return -1; if (nla_put_u8(skb, NFTA_XFRM_DIR, priv->dir)) return -1; if (nla_put_be32(skb, NFTA_XFRM_SPNUM, htonl(priv->spnum))) return -1; return 0; } static int nft_xfrm_validate(const struct nft_ctx *ctx, const struct nft_expr *expr) { const struct nft_xfrm *priv = nft_expr_priv(expr); unsigned int hooks; if (ctx->family != NFPROTO_IPV4 && ctx->family != NFPROTO_IPV6 && ctx->family != NFPROTO_INET) return -EOPNOTSUPP; switch (priv->dir) { case XFRM_POLICY_IN: hooks = (1 << NF_INET_FORWARD) | (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_PRE_ROUTING); break; case XFRM_POLICY_OUT: hooks = (1 << NF_INET_FORWARD) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_POST_ROUTING); break; default: WARN_ON_ONCE(1); return -EINVAL; } return nft_chain_validate_hooks(ctx->chain, hooks); } static bool nft_xfrm_reduce(struct nft_regs_track *track, const struct nft_expr *expr) { const struct nft_xfrm *priv = nft_expr_priv(expr); const struct nft_xfrm *xfrm; if (!nft_reg_track_cmp(track, expr, priv->dreg)) { nft_reg_track_update(track, expr, priv->dreg, priv->len); return false; } xfrm = nft_expr_priv(track->regs[priv->dreg].selector); if (priv->key != xfrm->key || priv->dreg != xfrm->dreg || priv->dir != xfrm->dir || priv->spnum != xfrm->spnum) { nft_reg_track_update(track, expr, priv->dreg, priv->len); return false; } if (!track->regs[priv->dreg].bitwise) return true; return nft_expr_reduce_bitwise(track, expr); } static struct nft_expr_type nft_xfrm_type; static const struct nft_expr_ops nft_xfrm_get_ops = { .type = &nft_xfrm_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_xfrm)), .eval = nft_xfrm_get_eval, .init = nft_xfrm_get_init, .dump = nft_xfrm_get_dump, .validate = nft_xfrm_validate, .reduce = nft_xfrm_reduce, }; static struct nft_expr_type nft_xfrm_type __read_mostly = { .name = "xfrm", .ops = &nft_xfrm_get_ops, .policy = nft_xfrm_policy, .maxattr = NFTA_XFRM_MAX, .owner = THIS_MODULE, }; static int __init nft_xfrm_module_init(void) { return nft_register_expr(&nft_xfrm_type); } static void __exit nft_xfrm_module_exit(void) { nft_unregister_expr(&nft_xfrm_type); } module_init(nft_xfrm_module_init); module_exit(nft_xfrm_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("nf_tables: xfrm/IPSec matching"); MODULE_AUTHOR("Florian Westphal <fw@strlen.de>"); MODULE_AUTHOR("Máté Eckl <ecklm94@gmail.com>"); MODULE_ALIAS_NFT_EXPR("xfrm"); |
1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | /* file-mmu.c: ramfs MMU-based file operations * * Resizable simple ram filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. * * Usage limits added by David Gibson, Linuxcare Australia. * This file is released under the GPL. */ /* * NOTE! This filesystem is probably most useful * not as a real filesystem, but as an example of * how virtual filesystems can be written. * * It doesn't get much simpler than this. Consider * that this file implements the full semantics of * a POSIX-compliant read-write filesystem. * * Note in particular how the filesystem does not * need to implement any data structures of its own * to keep track of the virtual data: using the VFS * caches is sufficient. */ #include <linux/fs.h> #include <linux/mm.h> #include <linux/ramfs.h> #include <linux/sched.h> #include "internal.h" static unsigned long ramfs_mmu_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); } const struct file_operations ramfs_file_operations = { .read_iter = generic_file_read_iter, .write_iter = generic_file_write_iter, .mmap = generic_file_mmap, .fsync = noop_fsync, .splice_read = filemap_splice_read, .splice_write = iter_file_splice_write, .llseek = generic_file_llseek, .get_unmapped_area = ramfs_mmu_get_unmapped_area, }; const struct inode_operations ramfs_file_inode_operations = { .setattr = simple_setattr, .getattr = simple_getattr, }; |
32 72 72 60 42 60 65 6 72 160 50 24 70 32 174 143 74 74 72 50 1 74 112 32 112 112 324 18 296 184 76 184 12 4 9 313 25 296 264 179 80 677 336 354 445 334 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/fat/cache.c * * Written 1992,1993 by Werner Almesberger * * Mar 1999. AV. Changed cache, so that it uses the starting cluster instead * of inode number. * May 1999. AV. Fixed the bogosity with FAT32 (read "FAT28"). Fscking lusers. */ #include <linux/slab.h> #include "fat.h" /* this must be > 0. */ #define FAT_MAX_CACHE 8 struct fat_cache { struct list_head cache_list; int nr_contig; /* number of contiguous clusters */ int fcluster; /* cluster number in the file. */ int dcluster; /* cluster number on disk. */ }; struct fat_cache_id { unsigned int id; int nr_contig; int fcluster; int dcluster; }; static inline int fat_max_cache(struct inode *inode) { return FAT_MAX_CACHE; } static struct kmem_cache *fat_cache_cachep; static void init_once(void *foo) { struct fat_cache *cache = (struct fat_cache *)foo; INIT_LIST_HEAD(&cache->cache_list); } int __init fat_cache_init(void) { fat_cache_cachep = kmem_cache_create("fat_cache", sizeof(struct fat_cache), 0, SLAB_RECLAIM_ACCOUNT, init_once); if (fat_cache_cachep == NULL) return -ENOMEM; return 0; } void fat_cache_destroy(void) { kmem_cache_destroy(fat_cache_cachep); } static inline struct fat_cache *fat_cache_alloc(struct inode *inode) { return kmem_cache_alloc(fat_cache_cachep, GFP_NOFS); } static inline void fat_cache_free(struct fat_cache *cache) { BUG_ON(!list_empty(&cache->cache_list)); kmem_cache_free(fat_cache_cachep, cache); } static inline void fat_cache_update_lru(struct inode *inode, struct fat_cache *cache) { if (MSDOS_I(inode)->cache_lru.next != &cache->cache_list) list_move(&cache->cache_list, &MSDOS_I(inode)->cache_lru); } static int fat_cache_lookup(struct inode *inode, int fclus, struct fat_cache_id *cid, int *cached_fclus, int *cached_dclus) { static struct fat_cache nohit = { .fcluster = 0, }; struct fat_cache *hit = &nohit, *p; int offset = -1; spin_lock(&MSDOS_I(inode)->cache_lru_lock); list_for_each_entry(p, &MSDOS_I(inode)->cache_lru, cache_list) { /* Find the cache of "fclus" or nearest cache. */ if (p->fcluster <= fclus && hit->fcluster < p->fcluster) { hit = p; if ((hit->fcluster + hit->nr_contig) < fclus) { offset = hit->nr_contig; } else { offset = fclus - hit->fcluster; break; } } } if (hit != &nohit) { fat_cache_update_lru(inode, hit); cid->id = MSDOS_I(inode)->cache_valid_id; cid->nr_contig = hit->nr_contig; cid->fcluster = hit->fcluster; cid->dcluster = hit->dcluster; *cached_fclus = cid->fcluster + offset; *cached_dclus = cid->dcluster + offset; } spin_unlock(&MSDOS_I(inode)->cache_lru_lock); return offset; } static struct fat_cache *fat_cache_merge(struct inode *inode, struct fat_cache_id *new) { struct fat_cache *p; list_for_each_entry(p, &MSDOS_I(inode)->cache_lru, cache_list) { /* Find the same part as "new" in cluster-chain. */ if (p->fcluster == new->fcluster) { BUG_ON(p->dcluster != new->dcluster); if (new->nr_contig > p->nr_contig) p->nr_contig = new->nr_contig; return p; } } return NULL; } static void fat_cache_add(struct inode *inode, struct fat_cache_id *new) { struct fat_cache *cache, *tmp; if (new->fcluster == -1) /* dummy cache */ return; spin_lock(&MSDOS_I(inode)->cache_lru_lock); if (new->id != FAT_CACHE_VALID && new->id != MSDOS_I(inode)->cache_valid_id) goto out; /* this cache was invalidated */ cache = fat_cache_merge(inode, new); if (cache == NULL) { if (MSDOS_I(inode)->nr_caches < fat_max_cache(inode)) { MSDOS_I(inode)->nr_caches++; spin_unlock(&MSDOS_I(inode)->cache_lru_lock); tmp = fat_cache_alloc(inode); if (!tmp) { spin_lock(&MSDOS_I(inode)->cache_lru_lock); MSDOS_I(inode)->nr_caches--; spin_unlock(&MSDOS_I(inode)->cache_lru_lock); return; } spin_lock(&MSDOS_I(inode)->cache_lru_lock); cache = fat_cache_merge(inode, new); if (cache != NULL) { MSDOS_I(inode)->nr_caches--; fat_cache_free(tmp); goto out_update_lru; } cache = tmp; } else { struct list_head *p = MSDOS_I(inode)->cache_lru.prev; cache = list_entry(p, struct fat_cache, cache_list); } cache->fcluster = new->fcluster; cache->dcluster = new->dcluster; cache->nr_contig = new->nr_contig; } out_update_lru: fat_cache_update_lru(inode, cache); out: spin_unlock(&MSDOS_I(inode)->cache_lru_lock); } /* * Cache invalidation occurs rarely, thus the LRU chain is not updated. It * fixes itself after a while. */ static void __fat_cache_inval_inode(struct inode *inode) { struct msdos_inode_info *i = MSDOS_I(inode); struct fat_cache *cache; while (!list_empty(&i->cache_lru)) { cache = list_entry(i->cache_lru.next, struct fat_cache, cache_list); list_del_init(&cache->cache_list); i->nr_caches--; fat_cache_free(cache); } /* Update. The copy of caches before this id is discarded. */ i->cache_valid_id++; if (i->cache_valid_id == FAT_CACHE_VALID) i->cache_valid_id++; } void fat_cache_inval_inode(struct inode *inode) { spin_lock(&MSDOS_I(inode)->cache_lru_lock); __fat_cache_inval_inode(inode); spin_unlock(&MSDOS_I(inode)->cache_lru_lock); } static inline int cache_contiguous(struct fat_cache_id *cid, int dclus) { cid->nr_contig++; return ((cid->dcluster + cid->nr_contig) == dclus); } static inline void cache_init(struct fat_cache_id *cid, int fclus, int dclus) { cid->id = FAT_CACHE_VALID; cid->fcluster = fclus; cid->dcluster = dclus; cid->nr_contig = 0; } int fat_get_cluster(struct inode *inode, int cluster, int *fclus, int *dclus) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); const int limit = sb->s_maxbytes >> sbi->cluster_bits; struct fat_entry fatent; struct fat_cache_id cid; int nr; BUG_ON(MSDOS_I(inode)->i_start == 0); *fclus = 0; *dclus = MSDOS_I(inode)->i_start; if (!fat_valid_entry(sbi, *dclus)) { fat_fs_error_ratelimit(sb, "%s: invalid start cluster (i_pos %lld, start %08x)", __func__, MSDOS_I(inode)->i_pos, *dclus); return -EIO; } if (cluster == 0) return 0; if (fat_cache_lookup(inode, cluster, &cid, fclus, dclus) < 0) { /* * dummy, always not contiguous * This is reinitialized by cache_init(), later. */ cache_init(&cid, -1, -1); } fatent_init(&fatent); while (*fclus < cluster) { /* prevent the infinite loop of cluster chain */ if (*fclus > limit) { fat_fs_error_ratelimit(sb, "%s: detected the cluster chain loop (i_pos %lld)", __func__, MSDOS_I(inode)->i_pos); nr = -EIO; goto out; } nr = fat_ent_read(inode, &fatent, *dclus); if (nr < 0) goto out; else if (nr == FAT_ENT_FREE) { fat_fs_error_ratelimit(sb, "%s: invalid cluster chain (i_pos %lld)", __func__, MSDOS_I(inode)->i_pos); nr = -EIO; goto out; } else if (nr == FAT_ENT_EOF) { fat_cache_add(inode, &cid); goto out; } (*fclus)++; *dclus = nr; if (!cache_contiguous(&cid, *dclus)) cache_init(&cid, *fclus, *dclus); } nr = 0; fat_cache_add(inode, &cid); out: fatent_brelse(&fatent); return nr; } static int fat_bmap_cluster(struct inode *inode, int cluster) { struct super_block *sb = inode->i_sb; int ret, fclus, dclus; if (MSDOS_I(inode)->i_start == 0) return 0; ret = fat_get_cluster(inode, cluster, &fclus, &dclus); if (ret < 0) return ret; else if (ret == FAT_ENT_EOF) { fat_fs_error(sb, "%s: request beyond EOF (i_pos %lld)", __func__, MSDOS_I(inode)->i_pos); return -EIO; } return dclus; } int fat_get_mapped_cluster(struct inode *inode, sector_t sector, sector_t last_block, unsigned long *mapped_blocks, sector_t *bmap) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); int cluster, offset; cluster = sector >> (sbi->cluster_bits - sb->s_blocksize_bits); offset = sector & (sbi->sec_per_clus - 1); cluster = fat_bmap_cluster(inode, cluster); if (cluster < 0) return cluster; else if (cluster) { *bmap = fat_clus_to_blknr(sbi, cluster) + offset; *mapped_blocks = sbi->sec_per_clus - offset; if (*mapped_blocks > last_block - sector) *mapped_blocks = last_block - sector; } return 0; } static int is_exceed_eof(struct inode *inode, sector_t sector, sector_t *last_block, int create) { struct super_block *sb = inode->i_sb; const unsigned long blocksize = sb->s_blocksize; const unsigned char blocksize_bits = sb->s_blocksize_bits; *last_block = (i_size_read(inode) + (blocksize - 1)) >> blocksize_bits; if (sector >= *last_block) { if (!create) return 1; /* * ->mmu_private can access on only allocation path. * (caller must hold ->i_mutex) */ *last_block = (MSDOS_I(inode)->mmu_private + (blocksize - 1)) >> blocksize_bits; if (sector >= *last_block) return 1; } return 0; } int fat_bmap(struct inode *inode, sector_t sector, sector_t *phys, unsigned long *mapped_blocks, int create, bool from_bmap) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); sector_t last_block; *phys = 0; *mapped_blocks = 0; if (!is_fat32(sbi) && (inode->i_ino == MSDOS_ROOT_INO)) { if (sector < (sbi->dir_entries >> sbi->dir_per_block_bits)) { *phys = sector + sbi->dir_start; *mapped_blocks = 1; } return 0; } if (!from_bmap) { if (is_exceed_eof(inode, sector, &last_block, create)) return 0; } else { last_block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); if (sector >= last_block) return 0; } return fat_get_mapped_cluster(inode, sector, last_block, mapped_blocks, phys); } |
56 56 55 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | // SPDX-License-Identifier: GPL-2.0-or-later /* mpihelp-mul_3.c - MPI helper functions * Copyright (C) 1994, 1996, 1997, 1998, 2001 Free Software Foundation, Inc. * * This file is part of GnuPG. * * Note: This code is heavily based on the GNU MP Library. * Actually it's the same code with only minor changes in the * way the data is stored; this is to support the abstraction * of an optional secure memory allocation which may be used * to avoid revealing of sensitive data due to paging etc. * The GNU MP Library itself is published under the LGPL; * however I decided to publish this code under the plain GPL. */ #include "mpi-internal.h" #include "longlong.h" mpi_limb_t mpihelp_submul_1(mpi_ptr_t res_ptr, mpi_ptr_t s1_ptr, mpi_size_t s1_size, mpi_limb_t s2_limb) { mpi_limb_t cy_limb; mpi_size_t j; mpi_limb_t prod_high, prod_low; mpi_limb_t x; /* The loop counter and index J goes from -SIZE to -1. This way * the loop becomes faster. */ j = -s1_size; res_ptr -= j; s1_ptr -= j; cy_limb = 0; do { umul_ppmm(prod_high, prod_low, s1_ptr[j], s2_limb); prod_low += cy_limb; cy_limb = (prod_low < cy_limb ? 1 : 0) + prod_high; x = res_ptr[j]; prod_low = x - prod_low; cy_limb += prod_low > x ? 1 : 0; res_ptr[j] = prod_low; } while (++j); return cy_limb; } |
5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 | /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ /* * Copyright (c) 2017, Mellanox Technologies inc. All rights reserved. */ #ifndef _UVERBS_IOCTL_ #define _UVERBS_IOCTL_ #include <rdma/uverbs_types.h> #include <linux/uaccess.h> #include <rdma/rdma_user_ioctl.h> #include <rdma/ib_user_ioctl_verbs.h> #include <rdma/ib_user_ioctl_cmds.h> /* * ======================================= * Verbs action specifications * ======================================= */ enum uverbs_attr_type { UVERBS_ATTR_TYPE_NA, UVERBS_ATTR_TYPE_PTR_IN, UVERBS_ATTR_TYPE_PTR_OUT, UVERBS_ATTR_TYPE_IDR, UVERBS_ATTR_TYPE_FD, UVERBS_ATTR_TYPE_RAW_FD, UVERBS_ATTR_TYPE_ENUM_IN, UVERBS_ATTR_TYPE_IDRS_ARRAY, }; enum uverbs_obj_access { UVERBS_ACCESS_READ, UVERBS_ACCESS_WRITE, UVERBS_ACCESS_NEW, UVERBS_ACCESS_DESTROY }; /* Specification of a single attribute inside the ioctl message */ /* good size 16 */ struct uverbs_attr_spec { u8 type; /* * Support extending attributes by length. Allow the user to provide * more bytes than ptr.len, but check that everything after is zero'd * by the user. */ u8 zero_trailing:1; /* * Valid only for PTR_IN. Allocate and copy the data inside * the parser */ u8 alloc_and_copy:1; u8 mandatory:1; /* True if this is from UVERBS_ATTR_UHW */ u8 is_udata:1; union { struct { /* Current known size to kernel */ u16 len; /* User isn't allowed to provide something < min_len */ u16 min_len; } ptr; struct { /* * higher bits mean the namespace and lower bits mean * the type id within the namespace. */ u16 obj_type; u8 access; } obj; struct { u8 num_elems; } enum_def; } u; /* This weird split lets us remove some padding */ union { struct { /* * The enum attribute can select one of the attributes * contained in the ids array. Currently only PTR_IN * attributes are supported in the ids array. */ const struct uverbs_attr_spec *ids; } enum_def; struct { /* * higher bits mean the namespace and lower bits mean * the type id within the namespace. */ u16 obj_type; u16 min_len; u16 max_len; u8 access; } objs_arr; } u2; }; /* * Information about the API is loaded into a radix tree. For IOCTL we start * with a tuple of: * object_id, attr_id, method_id * * Which is a 48 bit value, with most of the bits guaranteed to be zero. Based * on the current kernel support this is compressed into 16 bit key for the * radix tree. Since this compression is entirely internal to the kernel the * below limits can be revised if the kernel gains additional data. * * With 64 leafs per node this is a 3 level radix tree. * * The tree encodes multiple types, and uses a scheme where OBJ_ID,0,0 returns * the object slot, and OBJ_ID,METH_ID,0 and returns the method slot. * * This also encodes the tables for the write() and write() extended commands * using the coding * OBJ_ID,UVERBS_API_METHOD_IS_WRITE,command # * OBJ_ID,UVERBS_API_METHOD_IS_WRITE_EX,command_ex # * ie the WRITE path is treated as a special method type in the ioctl * framework. */ enum uapi_radix_data { UVERBS_API_NS_FLAG = 1U << UVERBS_ID_NS_SHIFT, UVERBS_API_ATTR_KEY_BITS = 6, UVERBS_API_ATTR_KEY_MASK = GENMASK(UVERBS_API_ATTR_KEY_BITS - 1, 0), UVERBS_API_ATTR_BKEY_LEN = (1 << UVERBS_API_ATTR_KEY_BITS) - 1, UVERBS_API_WRITE_KEY_NUM = 1 << UVERBS_API_ATTR_KEY_BITS, UVERBS_API_METHOD_KEY_BITS = 5, UVERBS_API_METHOD_KEY_SHIFT = UVERBS_API_ATTR_KEY_BITS, UVERBS_API_METHOD_KEY_NUM_CORE = 22, UVERBS_API_METHOD_IS_WRITE = 30 << UVERBS_API_METHOD_KEY_SHIFT, UVERBS_API_METHOD_IS_WRITE_EX = 31 << UVERBS_API_METHOD_KEY_SHIFT, UVERBS_API_METHOD_KEY_NUM_DRIVER = (UVERBS_API_METHOD_IS_WRITE >> UVERBS_API_METHOD_KEY_SHIFT) - UVERBS_API_METHOD_KEY_NUM_CORE, UVERBS_API_METHOD_KEY_MASK = GENMASK( UVERBS_API_METHOD_KEY_BITS + UVERBS_API_METHOD_KEY_SHIFT - 1, UVERBS_API_METHOD_KEY_SHIFT), UVERBS_API_OBJ_KEY_BITS = 5, UVERBS_API_OBJ_KEY_SHIFT = UVERBS_API_METHOD_KEY_BITS + UVERBS_API_METHOD_KEY_SHIFT, UVERBS_API_OBJ_KEY_NUM_CORE = 20, UVERBS_API_OBJ_KEY_NUM_DRIVER = (1 << UVERBS_API_OBJ_KEY_BITS) - UVERBS_API_OBJ_KEY_NUM_CORE, UVERBS_API_OBJ_KEY_MASK = GENMASK(31, UVERBS_API_OBJ_KEY_SHIFT), /* This id guaranteed to not exist in the radix tree */ UVERBS_API_KEY_ERR = 0xFFFFFFFF, }; static inline __attribute_const__ u32 uapi_key_obj(u32 id) { if (id & UVERBS_API_NS_FLAG) { id &= ~UVERBS_API_NS_FLAG; if (id >= UVERBS_API_OBJ_KEY_NUM_DRIVER) return UVERBS_API_KEY_ERR; id = id + UVERBS_API_OBJ_KEY_NUM_CORE; } else { if (id >= UVERBS_API_OBJ_KEY_NUM_CORE) return UVERBS_API_KEY_ERR; } return id << UVERBS_API_OBJ_KEY_SHIFT; } static inline __attribute_const__ bool uapi_key_is_object(u32 key) { return (key & ~UVERBS_API_OBJ_KEY_MASK) == 0; } static inline __attribute_const__ u32 uapi_key_ioctl_method(u32 id) { if (id & UVERBS_API_NS_FLAG) { id &= ~UVERBS_API_NS_FLAG; if (id >= UVERBS_API_METHOD_KEY_NUM_DRIVER) return UVERBS_API_KEY_ERR; id = id + UVERBS_API_METHOD_KEY_NUM_CORE; } else { id++; if (id >= UVERBS_API_METHOD_KEY_NUM_CORE) return UVERBS_API_KEY_ERR; } return id << UVERBS_API_METHOD_KEY_SHIFT; } static inline __attribute_const__ u32 uapi_key_write_method(u32 id) { if (id >= UVERBS_API_WRITE_KEY_NUM) return UVERBS_API_KEY_ERR; return UVERBS_API_METHOD_IS_WRITE | id; } static inline __attribute_const__ u32 uapi_key_write_ex_method(u32 id) { if (id >= UVERBS_API_WRITE_KEY_NUM) return UVERBS_API_KEY_ERR; return UVERBS_API_METHOD_IS_WRITE_EX | id; } static inline __attribute_const__ u32 uapi_key_attr_to_ioctl_method(u32 attr_key) { return attr_key & (UVERBS_API_OBJ_KEY_MASK | UVERBS_API_METHOD_KEY_MASK); } static inline __attribute_const__ bool uapi_key_is_ioctl_method(u32 key) { unsigned int method = key & UVERBS_API_METHOD_KEY_MASK; return method != 0 && method < UVERBS_API_METHOD_IS_WRITE && (key & UVERBS_API_ATTR_KEY_MASK) == 0; } static inline __attribute_const__ bool uapi_key_is_write_method(u32 key) { return (key & UVERBS_API_METHOD_KEY_MASK) == UVERBS_API_METHOD_IS_WRITE; } static inline __attribute_const__ bool uapi_key_is_write_ex_method(u32 key) { return (key & UVERBS_API_METHOD_KEY_MASK) == UVERBS_API_METHOD_IS_WRITE_EX; } static inline __attribute_const__ u32 uapi_key_attrs_start(u32 ioctl_method_key) { /* 0 is the method slot itself */ return ioctl_method_key + 1; } static inline __attribute_const__ u32 uapi_key_attr(u32 id) { /* * The attr is designed to fit in the typical single radix tree node * of 64 entries. Since allmost all methods have driver attributes we * organize things so that the driver and core attributes interleave to * reduce the length of the attributes array in typical cases. */ if (id & UVERBS_API_NS_FLAG) { id &= ~UVERBS_API_NS_FLAG; id++; if (id >= 1 << (UVERBS_API_ATTR_KEY_BITS - 1)) return UVERBS_API_KEY_ERR; id = (id << 1) | 0; } else { if (id >= 1 << (UVERBS_API_ATTR_KEY_BITS - 1)) return UVERBS_API_KEY_ERR; id = (id << 1) | 1; } return id; } /* Only true for ioctl methods */ static inline __attribute_const__ bool uapi_key_is_attr(u32 key) { unsigned int method = key & UVERBS_API_METHOD_KEY_MASK; return method != 0 && method < UVERBS_API_METHOD_IS_WRITE && (key & UVERBS_API_ATTR_KEY_MASK) != 0; } /* * This returns a value in the range [0 to UVERBS_API_ATTR_BKEY_LEN), * basically it undoes the reservation of 0 in the ID numbering. attr_key * must already be masked with UVERBS_API_ATTR_KEY_MASK, or be the output of * uapi_key_attr(). */ static inline __attribute_const__ u32 uapi_bkey_attr(u32 attr_key) { return attr_key - 1; } static inline __attribute_const__ u32 uapi_bkey_to_key_attr(u32 attr_bkey) { return attr_bkey + 1; } /* * ======================================= * Verbs definitions * ======================================= */ struct uverbs_attr_def { u16 id; struct uverbs_attr_spec attr; }; struct uverbs_method_def { u16 id; /* Combination of bits from enum UVERBS_ACTION_FLAG_XXXX */ u32 flags; size_t num_attrs; const struct uverbs_attr_def * const (*attrs)[]; int (*handler)(struct uverbs_attr_bundle *attrs); }; struct uverbs_object_def { u16 id; const struct uverbs_obj_type *type_attrs; size_t num_methods; const struct uverbs_method_def * const (*methods)[]; }; enum uapi_definition_kind { UAPI_DEF_END = 0, UAPI_DEF_OBJECT_START, UAPI_DEF_WRITE, UAPI_DEF_CHAIN_OBJ_TREE, UAPI_DEF_CHAIN, UAPI_DEF_IS_SUPPORTED_FUNC, UAPI_DEF_IS_SUPPORTED_DEV_FN, }; enum uapi_definition_scope { UAPI_SCOPE_OBJECT = 1, UAPI_SCOPE_METHOD = 2, }; struct uapi_definition { u8 kind; u8 scope; union { struct { u16 object_id; } object_start; struct { u16 command_num; u8 is_ex:1; u8 has_udata:1; u8 has_resp:1; u8 req_size; u8 resp_size; } write; }; union { bool (*func_is_supported)(struct ib_device *device); int (*func_write)(struct uverbs_attr_bundle *attrs); const struct uapi_definition *chain; const struct uverbs_object_def *chain_obj_tree; size_t needs_fn_offset; }; }; /* Define things connected to object_id */ #define DECLARE_UVERBS_OBJECT(_object_id, ...) \ { \ .kind = UAPI_DEF_OBJECT_START, \ .object_start = { .object_id = _object_id }, \ }, \ ##__VA_ARGS__ /* Use in a var_args of DECLARE_UVERBS_OBJECT */ #define DECLARE_UVERBS_WRITE(_command_num, _func, _cmd_desc, ...) \ { \ .kind = UAPI_DEF_WRITE, \ .scope = UAPI_SCOPE_OBJECT, \ .write = { .is_ex = 0, .command_num = _command_num }, \ .func_write = _func, \ _cmd_desc, \ }, \ ##__VA_ARGS__ /* Use in a var_args of DECLARE_UVERBS_OBJECT */ #define DECLARE_UVERBS_WRITE_EX(_command_num, _func, _cmd_desc, ...) \ { \ .kind = UAPI_DEF_WRITE, \ .scope = UAPI_SCOPE_OBJECT, \ .write = { .is_ex = 1, .command_num = _command_num }, \ .func_write = _func, \ _cmd_desc, \ }, \ ##__VA_ARGS__ /* * Object is only supported if the function pointer named ibdev_fn in struct * ib_device is not NULL. */ #define UAPI_DEF_OBJ_NEEDS_FN(ibdev_fn) \ { \ .kind = UAPI_DEF_IS_SUPPORTED_DEV_FN, \ .scope = UAPI_SCOPE_OBJECT, \ .needs_fn_offset = \ offsetof(struct ib_device_ops, ibdev_fn) + \ BUILD_BUG_ON_ZERO(sizeof_field(struct ib_device_ops, \ ibdev_fn) != \ sizeof(void *)), \ } /* * Method is only supported if the function pointer named ibdev_fn in struct * ib_device is not NULL. */ #define UAPI_DEF_METHOD_NEEDS_FN(ibdev_fn) \ { \ .kind = UAPI_DEF_IS_SUPPORTED_DEV_FN, \ .scope = UAPI_SCOPE_METHOD, \ .needs_fn_offset = \ offsetof(struct ib_device_ops, ibdev_fn) + \ BUILD_BUG_ON_ZERO(sizeof_field(struct ib_device_ops, \ ibdev_fn) != \ sizeof(void *)), \ } /* Call a function to determine if the entire object is supported or not */ #define UAPI_DEF_IS_OBJ_SUPPORTED(_func) \ { \ .kind = UAPI_DEF_IS_SUPPORTED_FUNC, \ .scope = UAPI_SCOPE_OBJECT, .func_is_supported = _func, \ } /* Include another struct uapi_definition in this one */ #define UAPI_DEF_CHAIN(_def_var) \ { \ .kind = UAPI_DEF_CHAIN, .chain = _def_var, \ } /* Temporary until the tree base description is replaced */ #define UAPI_DEF_CHAIN_OBJ_TREE(_object_enum, _object_ptr, ...) \ { \ .kind = UAPI_DEF_CHAIN_OBJ_TREE, \ .object_start = { .object_id = _object_enum }, \ .chain_obj_tree = _object_ptr, \ }, \ ##__VA_ARGS__ #define UAPI_DEF_CHAIN_OBJ_TREE_NAMED(_object_enum, ...) \ UAPI_DEF_CHAIN_OBJ_TREE(_object_enum, \ PTR_IF(IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS), \ &UVERBS_OBJECT(_object_enum)), \ ##__VA_ARGS__) /* * ======================================= * Attribute Specifications * ======================================= */ #define UVERBS_ATTR_SIZE(_min_len, _len) \ .u.ptr.min_len = _min_len, .u.ptr.len = _len #define UVERBS_ATTR_NO_DATA() UVERBS_ATTR_SIZE(0, 0) /* * Specifies a uapi structure that cannot be extended. The user must always * supply the whole structure and nothing more. The structure must be declared * in a header under include/uapi/rdma. */ #define UVERBS_ATTR_TYPE(_type) \ .u.ptr.min_len = sizeof(_type), .u.ptr.len = sizeof(_type) /* * Specifies a uapi structure where the user must provide at least up to * member 'last'. Anything after last and up until the end of the structure * can be non-zero, anything longer than the end of the structure must be * zero. The structure must be declared in a header under include/uapi/rdma. */ #define UVERBS_ATTR_STRUCT(_type, _last) \ .zero_trailing = 1, \ UVERBS_ATTR_SIZE(offsetofend(_type, _last), sizeof(_type)) /* * Specifies at least min_len bytes must be passed in, but the amount can be * larger, up to the protocol maximum size. No check for zeroing is done. */ #define UVERBS_ATTR_MIN_SIZE(_min_len) UVERBS_ATTR_SIZE(_min_len, USHRT_MAX) /* Must be used in the '...' of any UVERBS_ATTR */ #define UA_ALLOC_AND_COPY .alloc_and_copy = 1 #define UA_MANDATORY .mandatory = 1 #define UA_OPTIONAL .mandatory = 0 /* * min_len must be bigger than 0 and _max_len must be smaller than 4095. Only * READ\WRITE accesses are supported. */ #define UVERBS_ATTR_IDRS_ARR(_attr_id, _idr_type, _access, _min_len, _max_len, \ ...) \ (&(const struct uverbs_attr_def){ \ .id = (_attr_id) + \ BUILD_BUG_ON_ZERO((_min_len) == 0 || \ (_max_len) > \ PAGE_SIZE / sizeof(void *) || \ (_min_len) > (_max_len) || \ (_access) == UVERBS_ACCESS_NEW || \ (_access) == UVERBS_ACCESS_DESTROY), \ .attr = { .type = UVERBS_ATTR_TYPE_IDRS_ARRAY, \ .u2.objs_arr.obj_type = _idr_type, \ .u2.objs_arr.access = _access, \ .u2.objs_arr.min_len = _min_len, \ .u2.objs_arr.max_len = _max_len, \ __VA_ARGS__ } }) /* * Only for use with UVERBS_ATTR_IDR, allows any uobject type to be accepted, * the user must validate the type of the uobject instead. */ #define UVERBS_IDR_ANY_OBJECT 0xFFFF #define UVERBS_ATTR_IDR(_attr_id, _idr_type, _access, ...) \ (&(const struct uverbs_attr_def){ \ .id = _attr_id, \ .attr = { .type = UVERBS_ATTR_TYPE_IDR, \ .u.obj.obj_type = _idr_type, \ .u.obj.access = _access, \ __VA_ARGS__ } }) #define UVERBS_ATTR_FD(_attr_id, _fd_type, _access, ...) \ (&(const struct uverbs_attr_def){ \ .id = (_attr_id) + \ BUILD_BUG_ON_ZERO((_access) != UVERBS_ACCESS_NEW && \ (_access) != UVERBS_ACCESS_READ), \ .attr = { .type = UVERBS_ATTR_TYPE_FD, \ .u.obj.obj_type = _fd_type, \ .u.obj.access = _access, \ __VA_ARGS__ } }) #define UVERBS_ATTR_RAW_FD(_attr_id, ...) \ (&(const struct uverbs_attr_def){ \ .id = (_attr_id), \ .attr = { .type = UVERBS_ATTR_TYPE_RAW_FD, __VA_ARGS__ } }) #define UVERBS_ATTR_PTR_IN(_attr_id, _type, ...) \ (&(const struct uverbs_attr_def){ \ .id = _attr_id, \ .attr = { .type = UVERBS_ATTR_TYPE_PTR_IN, \ _type, \ __VA_ARGS__ } }) #define UVERBS_ATTR_PTR_OUT(_attr_id, _type, ...) \ (&(const struct uverbs_attr_def){ \ .id = _attr_id, \ .attr = { .type = UVERBS_ATTR_TYPE_PTR_OUT, \ _type, \ __VA_ARGS__ } }) /* _enum_arry should be a 'static const union uverbs_attr_spec[]' */ #define UVERBS_ATTR_ENUM_IN(_attr_id, _enum_arr, ...) \ (&(const struct uverbs_attr_def){ \ .id = _attr_id, \ .attr = { .type = UVERBS_ATTR_TYPE_ENUM_IN, \ .u2.enum_def.ids = _enum_arr, \ .u.enum_def.num_elems = ARRAY_SIZE(_enum_arr), \ __VA_ARGS__ }, \ }) /* An input value that is a member in the enum _enum_type. */ #define UVERBS_ATTR_CONST_IN(_attr_id, _enum_type, ...) \ UVERBS_ATTR_PTR_IN( \ _attr_id, \ UVERBS_ATTR_SIZE( \ sizeof(u64) + BUILD_BUG_ON_ZERO(!sizeof(_enum_type)), \ sizeof(u64)), \ __VA_ARGS__) /* * An input value that is a bitwise combination of values of _enum_type. * This permits the flag value to be passed as either a u32 or u64, it must * be retrieved via uverbs_get_flag(). */ #define UVERBS_ATTR_FLAGS_IN(_attr_id, _enum_type, ...) \ UVERBS_ATTR_PTR_IN( \ _attr_id, \ UVERBS_ATTR_SIZE(sizeof(u32) + BUILD_BUG_ON_ZERO( \ !sizeof(_enum_type *)), \ sizeof(u64)), \ __VA_ARGS__) /* * This spec is used in order to pass information to the hardware driver in a * legacy way. Every verb that could get driver specific data should get this * spec. */ #define UVERBS_ATTR_UHW() \ UVERBS_ATTR_PTR_IN(UVERBS_ATTR_UHW_IN, \ UVERBS_ATTR_MIN_SIZE(0), \ UA_OPTIONAL, \ .is_udata = 1), \ UVERBS_ATTR_PTR_OUT(UVERBS_ATTR_UHW_OUT, \ UVERBS_ATTR_MIN_SIZE(0), \ UA_OPTIONAL, \ .is_udata = 1) /* ================================================= * Parsing infrastructure * ================================================= */ struct uverbs_ptr_attr { /* * If UVERBS_ATTR_SPEC_F_ALLOC_AND_COPY is set then the 'ptr' is * used. */ union { void *ptr; u64 data; }; u16 len; u16 uattr_idx; u8 enum_id; }; struct uverbs_obj_attr { struct ib_uobject *uobject; const struct uverbs_api_attr *attr_elm; }; struct uverbs_objs_arr_attr { struct ib_uobject **uobjects; u16 len; }; struct uverbs_attr { union { struct uverbs_ptr_attr ptr_attr; struct uverbs_obj_attr obj_attr; struct uverbs_objs_arr_attr objs_arr_attr; }; }; struct uverbs_attr_bundle { struct_group_tagged(uverbs_attr_bundle_hdr, hdr, struct ib_udata driver_udata; struct ib_udata ucore; struct ib_uverbs_file *ufile; struct ib_ucontext *context; struct ib_uobject *uobject; DECLARE_BITMAP(attr_present, UVERBS_API_ATTR_BKEY_LEN); ); struct uverbs_attr attrs[]; }; static inline bool uverbs_attr_is_valid(const struct uverbs_attr_bundle *attrs_bundle, unsigned int idx) { return test_bit(uapi_bkey_attr(uapi_key_attr(idx)), attrs_bundle->attr_present); } /** * rdma_udata_to_drv_context - Helper macro to get the driver's context out of * ib_udata which is embedded in uverbs_attr_bundle. * * If udata is not NULL this cannot fail. Otherwise a NULL udata will result * in a NULL ucontext pointer, as a safety precaution. Callers should be using * 'udata' to determine if the driver call is in user or kernel mode, not * 'ucontext'. * */ static inline struct uverbs_attr_bundle * rdma_udata_to_uverbs_attr_bundle(struct ib_udata *udata) { return container_of(udata, struct uverbs_attr_bundle, driver_udata); } #define rdma_udata_to_drv_context(udata, drv_dev_struct, member) \ (udata ? container_of(rdma_udata_to_uverbs_attr_bundle(udata)->context, \ drv_dev_struct, member) : (drv_dev_struct *)NULL) #define IS_UVERBS_COPY_ERR(_ret) ((_ret) && (_ret) != -ENOENT) static inline const struct uverbs_attr *uverbs_attr_get(const struct uverbs_attr_bundle *attrs_bundle, u16 idx) { if (!uverbs_attr_is_valid(attrs_bundle, idx)) return ERR_PTR(-ENOENT); return &attrs_bundle->attrs[uapi_bkey_attr(uapi_key_attr(idx))]; } static inline int uverbs_attr_get_enum_id(const struct uverbs_attr_bundle *attrs_bundle, u16 idx) { const struct uverbs_attr *attr = uverbs_attr_get(attrs_bundle, idx); if (IS_ERR(attr)) return PTR_ERR(attr); return attr->ptr_attr.enum_id; } static inline void *uverbs_attr_get_obj(const struct uverbs_attr_bundle *attrs_bundle, u16 idx) { const struct uverbs_attr *attr; attr = uverbs_attr_get(attrs_bundle, idx); if (IS_ERR(attr)) return ERR_CAST(attr); return attr->obj_attr.uobject->object; } static inline struct ib_uobject *uverbs_attr_get_uobject(const struct uverbs_attr_bundle *attrs_bundle, u16 idx) { const struct uverbs_attr *attr = uverbs_attr_get(attrs_bundle, idx); if (IS_ERR(attr)) return ERR_CAST(attr); return attr->obj_attr.uobject; } static inline int uverbs_attr_get_len(const struct uverbs_attr_bundle *attrs_bundle, u16 idx) { const struct uverbs_attr *attr = uverbs_attr_get(attrs_bundle, idx); if (IS_ERR(attr)) return PTR_ERR(attr); return attr->ptr_attr.len; } void uverbs_finalize_uobj_create(const struct uverbs_attr_bundle *attrs_bundle, u16 idx); /* * uverbs_attr_ptr_get_array_size() - Get array size pointer by a ptr * attribute. * @attrs: The attribute bundle * @idx: The ID of the attribute * @elem_size: The size of the element in the array */ static inline int uverbs_attr_ptr_get_array_size(struct uverbs_attr_bundle *attrs, u16 idx, size_t elem_size) { int size = uverbs_attr_get_len(attrs, idx); if (size < 0) return size; if (size % elem_size) return -EINVAL; return size / elem_size; } /** * uverbs_attr_get_uobjs_arr() - Provides array's properties for attribute for * UVERBS_ATTR_TYPE_IDRS_ARRAY. * @arr: Returned pointer to array of pointers for uobjects or NULL if * the attribute isn't provided. * * Return: The array length or 0 if no attribute was provided. */ static inline int uverbs_attr_get_uobjs_arr( const struct uverbs_attr_bundle *attrs_bundle, u16 attr_idx, struct ib_uobject ***arr) { const struct uverbs_attr *attr = uverbs_attr_get(attrs_bundle, attr_idx); if (IS_ERR(attr)) { *arr = NULL; return 0; } *arr = attr->objs_arr_attr.uobjects; return attr->objs_arr_attr.len; } static inline bool uverbs_attr_ptr_is_inline(const struct uverbs_attr *attr) { return attr->ptr_attr.len <= sizeof(attr->ptr_attr.data); } static inline void *uverbs_attr_get_alloced_ptr( const struct uverbs_attr_bundle *attrs_bundle, u16 idx) { const struct uverbs_attr *attr = uverbs_attr_get(attrs_bundle, idx); if (IS_ERR(attr)) return (void *)attr; return uverbs_attr_ptr_is_inline(attr) ? (void *)&attr->ptr_attr.data : attr->ptr_attr.ptr; } static inline int _uverbs_copy_from(void *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, size_t size) { const struct uverbs_attr *attr = uverbs_attr_get(attrs_bundle, idx); if (IS_ERR(attr)) return PTR_ERR(attr); /* * Validation ensures attr->ptr_attr.len >= size. If the caller is * using UVERBS_ATTR_SPEC_F_MIN_SZ_OR_ZERO then it must call * uverbs_copy_from_or_zero. */ if (unlikely(size < attr->ptr_attr.len)) return -EINVAL; if (uverbs_attr_ptr_is_inline(attr)) memcpy(to, &attr->ptr_attr.data, attr->ptr_attr.len); else if (copy_from_user(to, u64_to_user_ptr(attr->ptr_attr.data), attr->ptr_attr.len)) return -EFAULT; return 0; } static inline int _uverbs_copy_from_or_zero(void *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, size_t size) { const struct uverbs_attr *attr = uverbs_attr_get(attrs_bundle, idx); size_t min_size; if (IS_ERR(attr)) return PTR_ERR(attr); min_size = min_t(size_t, size, attr->ptr_attr.len); if (uverbs_attr_ptr_is_inline(attr)) memcpy(to, &attr->ptr_attr.data, min_size); else if (copy_from_user(to, u64_to_user_ptr(attr->ptr_attr.data), min_size)) return -EFAULT; if (size > min_size) memset(to + min_size, 0, size - min_size); return 0; } #define uverbs_copy_from(to, attrs_bundle, idx) \ _uverbs_copy_from(to, attrs_bundle, idx, sizeof(*to)) #define uverbs_copy_from_or_zero(to, attrs_bundle, idx) \ _uverbs_copy_from_or_zero(to, attrs_bundle, idx, sizeof(*to)) static inline struct ib_ucontext * ib_uverbs_get_ucontext(const struct uverbs_attr_bundle *attrs) { return ib_uverbs_get_ucontext_file(attrs->ufile); } #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) int uverbs_get_flags64(u64 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, u64 allowed_bits); int uverbs_get_flags32(u32 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, u64 allowed_bits); int uverbs_copy_to(const struct uverbs_attr_bundle *attrs_bundle, size_t idx, const void *from, size_t size); __malloc void *_uverbs_alloc(struct uverbs_attr_bundle *bundle, size_t size, gfp_t flags); static inline __malloc void *uverbs_alloc(struct uverbs_attr_bundle *bundle, size_t size) { return _uverbs_alloc(bundle, size, GFP_KERNEL); } static inline __malloc void *uverbs_zalloc(struct uverbs_attr_bundle *bundle, size_t size) { return _uverbs_alloc(bundle, size, GFP_KERNEL | __GFP_ZERO); } static inline __malloc void *uverbs_kcalloc(struct uverbs_attr_bundle *bundle, size_t n, size_t size) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return ERR_PTR(-EOVERFLOW); return uverbs_zalloc(bundle, bytes); } int _uverbs_get_const_signed(s64 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, s64 lower_bound, u64 upper_bound, s64 *def_val); int _uverbs_get_const_unsigned(u64 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, u64 upper_bound, u64 *def_val); int uverbs_copy_to_struct_or_zero(const struct uverbs_attr_bundle *bundle, size_t idx, const void *from, size_t size); #else static inline int uverbs_get_flags64(u64 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, u64 allowed_bits) { return -EINVAL; } static inline int uverbs_get_flags32(u32 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, u64 allowed_bits) { return -EINVAL; } static inline int uverbs_copy_to(const struct uverbs_attr_bundle *attrs_bundle, size_t idx, const void *from, size_t size) { return -EINVAL; } static inline __malloc void *uverbs_alloc(struct uverbs_attr_bundle *bundle, size_t size) { return ERR_PTR(-EINVAL); } static inline __malloc void *uverbs_zalloc(struct uverbs_attr_bundle *bundle, size_t size) { return ERR_PTR(-EINVAL); } static inline int _uverbs_get_const(s64 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, s64 lower_bound, u64 upper_bound, s64 *def_val) { return -EINVAL; } static inline int uverbs_copy_to_struct_or_zero(const struct uverbs_attr_bundle *bundle, size_t idx, const void *from, size_t size) { return -EINVAL; } static inline int _uverbs_get_const_signed(s64 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, s64 lower_bound, u64 upper_bound, s64 *def_val) { return -EINVAL; } static inline int _uverbs_get_const_unsigned(u64 *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx, u64 upper_bound, u64 *def_val) { return -EINVAL; } #endif #define uverbs_get_const_signed(_to, _attrs_bundle, _idx) \ ({ \ s64 _val; \ int _ret = \ _uverbs_get_const_signed(&_val, _attrs_bundle, _idx, \ type_min(typeof(*(_to))), \ type_max(typeof(*(_to))), NULL); \ (*(_to)) = _val; \ _ret; \ }) #define uverbs_get_const_unsigned(_to, _attrs_bundle, _idx) \ ({ \ u64 _val; \ int _ret = \ _uverbs_get_const_unsigned(&_val, _attrs_bundle, _idx, \ type_max(typeof(*(_to))), NULL); \ (*(_to)) = _val; \ _ret; \ }) #define uverbs_get_const_default_signed(_to, _attrs_bundle, _idx, _default) \ ({ \ s64 _val; \ s64 _def_val = _default; \ int _ret = \ _uverbs_get_const_signed(&_val, _attrs_bundle, _idx, \ type_min(typeof(*(_to))), \ type_max(typeof(*(_to))), &_def_val); \ (*(_to)) = _val; \ _ret; \ }) #define uverbs_get_const_default_unsigned(_to, _attrs_bundle, _idx, _default) \ ({ \ u64 _val; \ u64 _def_val = _default; \ int _ret = \ _uverbs_get_const_unsigned(&_val, _attrs_bundle, _idx, \ type_max(typeof(*(_to))), &_def_val); \ (*(_to)) = _val; \ _ret; \ }) #define uverbs_get_const(_to, _attrs_bundle, _idx) \ (is_signed_type(typeof(*(_to))) ? \ uverbs_get_const_signed(_to, _attrs_bundle, _idx) : \ uverbs_get_const_unsigned(_to, _attrs_bundle, _idx)) \ #define uverbs_get_const_default(_to, _attrs_bundle, _idx, _default) \ (is_signed_type(typeof(*(_to))) ? \ uverbs_get_const_default_signed(_to, _attrs_bundle, _idx, \ _default) : \ uverbs_get_const_default_unsigned(_to, _attrs_bundle, _idx, \ _default)) static inline int uverbs_get_raw_fd(int *to, const struct uverbs_attr_bundle *attrs_bundle, size_t idx) { return uverbs_get_const_signed(to, attrs_bundle, idx); } #endif |
10 32517 99 32217 4041 4 18 4354 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * kref.h - library routines for handling generic reference counted objects * * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com> * Copyright (C) 2004 IBM Corp. * * based on kobject.h which was: * Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org> * Copyright (C) 2002-2003 Open Source Development Labs */ #ifndef _KREF_H_ #define _KREF_H_ #include <linux/spinlock.h> #include <linux/refcount.h> struct kref { refcount_t refcount; }; #define KREF_INIT(n) { .refcount = REFCOUNT_INIT(n), } /** * kref_init - initialize object. * @kref: object in question. */ static inline void kref_init(struct kref *kref) { refcount_set(&kref->refcount, 1); } static inline unsigned int kref_read(const struct kref *kref) { return refcount_read(&kref->refcount); } /** * kref_get - increment refcount for object. * @kref: object. */ static inline void kref_get(struct kref *kref) { refcount_inc(&kref->refcount); } /** * kref_put - decrement refcount for object. * @kref: object. * @release: pointer to the function that will clean up the object when the * last reference to the object is released. * This pointer is required, and it is not acceptable to pass kfree * in as this function. * * Decrement the refcount, and if 0, call release(). * Return 1 if the object was removed, otherwise return 0. Beware, if this * function returns 0, you still can not count on the kref from remaining in * memory. Only use the return value if you want to see if the kref is now * gone, not present. */ static inline int kref_put(struct kref *kref, void (*release)(struct kref *kref)) { if (refcount_dec_and_test(&kref->refcount)) { release(kref); return 1; } return 0; } static inline int kref_put_mutex(struct kref *kref, void (*release)(struct kref *kref), struct mutex *lock) { if (refcount_dec_and_mutex_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } static inline int kref_put_lock(struct kref *kref, void (*release)(struct kref *kref), spinlock_t *lock) { if (refcount_dec_and_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } /** * kref_get_unless_zero - Increment refcount for object unless it is zero. * @kref: object. * * Return non-zero if the increment succeeded. Otherwise return 0. * * This function is intended to simplify locking around refcounting for * objects that can be looked up from a lookup structure, and which are * removed from that lookup structure in the object destructor. * Operations on such objects require at least a read lock around * lookup + kref_get, and a write lock around kref_put + remove from lookup * structure. Furthermore, RCU implementations become extremely tricky. * With a lookup followed by a kref_get_unless_zero *with return value check* * locking in the kref_put path can be deferred to the actual removal from * the lookup structure and RCU lookups become trivial. */ static inline int __must_check kref_get_unless_zero(struct kref *kref) { return refcount_inc_not_zero(&kref->refcount); } #endif /* _KREF_H_ */ |
13 13 13 13 13 13 13 19 1 2 3 13 3 3 3 1 1 1 1 4 3 1 3 2 1 28 28 6 7 1 236 17 13 206 206 7 33 186 227 53 40 147 86 86 52 52 99 35 20 50 176 30 35 58 41 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 | #include <linux/bpf.h> #include <linux/btf.h> #include <linux/err.h> #include <linux/irq_work.h> #include <linux/slab.h> #include <linux/filter.h> #include <linux/mm.h> #include <linux/vmalloc.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/kmemleak.h> #include <uapi/linux/btf.h> #include <linux/btf_ids.h> #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ #define RINGBUF_PGOFF \ (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) /* consumer page and producer page */ #define RINGBUF_POS_PAGES 2 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) struct bpf_ringbuf { wait_queue_head_t waitq; struct irq_work work; u64 mask; struct page **pages; int nr_pages; spinlock_t spinlock ____cacheline_aligned_in_smp; /* For user-space producer ring buffers, an atomic_t busy bit is used * to synchronize access to the ring buffers in the kernel, rather than * the spinlock that is used for kernel-producer ring buffers. This is * done because the ring buffer must hold a lock across a BPF program's * callback: * * __bpf_user_ringbuf_peek() // lock acquired * -> program callback_fn() * -> __bpf_user_ringbuf_sample_release() // lock released * * It is unsafe and incorrect to hold an IRQ spinlock across what could * be a long execution window, so we instead simply disallow concurrent * access to the ring buffer by kernel consumers, and return -EBUSY from * __bpf_user_ringbuf_peek() if the busy bit is held by another task. */ atomic_t busy ____cacheline_aligned_in_smp; /* Consumer and producer counters are put into separate pages to * allow each position to be mapped with different permissions. * This prevents a user-space application from modifying the * position and ruining in-kernel tracking. The permissions of the * pages depend on who is producing samples: user-space or the * kernel. Note that the pending counter is placed in the same * page as the producer, so that it shares the same cache line. * * Kernel-producer * --------------- * The producer position and data pages are mapped as r/o in * userspace. For this approach, bits in the header of samples are * used to signal to user-space, and to other producers, whether a * sample is currently being written. * * User-space producer * ------------------- * Only the page containing the consumer position is mapped r/o in * user-space. User-space producers also use bits of the header to * communicate to the kernel, but the kernel must carefully check and * validate each sample to ensure that they're correctly formatted, and * fully contained within the ring buffer. */ unsigned long consumer_pos __aligned(PAGE_SIZE); unsigned long producer_pos __aligned(PAGE_SIZE); unsigned long pending_pos; char data[] __aligned(PAGE_SIZE); }; struct bpf_ringbuf_map { struct bpf_map map; struct bpf_ringbuf *rb; }; /* 8-byte ring buffer record header structure */ struct bpf_ringbuf_hdr { u32 len; u32 pg_off; }; static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) { const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | __GFP_ZERO; int nr_meta_pages = RINGBUF_NR_META_PAGES; int nr_data_pages = data_sz >> PAGE_SHIFT; int nr_pages = nr_meta_pages + nr_data_pages; struct page **pages, *page; struct bpf_ringbuf *rb; size_t array_size; int i; /* Each data page is mapped twice to allow "virtual" * continuous read of samples wrapping around the end of ring * buffer area: * ------------------------------------------------------ * | meta pages | real data pages | same data pages | * ------------------------------------------------------ * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | * ------------------------------------------------------ * | | TA DA | TA DA | * ------------------------------------------------------ * ^^^^^^^ * | * Here, no need to worry about special handling of wrapped-around * data due to double-mapped data pages. This works both in kernel and * when mmap()'ed in user-space, simplifying both kernel and * user-space implementations significantly. */ array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); pages = bpf_map_area_alloc(array_size, numa_node); if (!pages) return NULL; for (i = 0; i < nr_pages; i++) { page = alloc_pages_node(numa_node, flags, 0); if (!page) { nr_pages = i; goto err_free_pages; } pages[i] = page; if (i >= nr_meta_pages) pages[nr_data_pages + i] = page; } rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, VM_MAP | VM_USERMAP, PAGE_KERNEL); if (rb) { kmemleak_not_leak(pages); rb->pages = pages; rb->nr_pages = nr_pages; return rb; } err_free_pages: for (i = 0; i < nr_pages; i++) __free_page(pages[i]); bpf_map_area_free(pages); return NULL; } static void bpf_ringbuf_notify(struct irq_work *work) { struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); wake_up_all(&rb->waitq); } /* Maximum size of ring buffer area is limited by 32-bit page offset within * record header, counted in pages. Reserve 8 bits for extensibility, and * take into account few extra pages for consumer/producer pages and * non-mmap()'able parts, the current maximum size would be: * * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) * * This gives 64GB limit, which seems plenty for single ring buffer. Now * considering that the maximum value of data_sz is (4GB - 1), there * will be no overflow, so just note the size limit in the comments. */ static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) { struct bpf_ringbuf *rb; rb = bpf_ringbuf_area_alloc(data_sz, numa_node); if (!rb) return NULL; spin_lock_init(&rb->spinlock); atomic_set(&rb->busy, 0); init_waitqueue_head(&rb->waitq); init_irq_work(&rb->work, bpf_ringbuf_notify); rb->mask = data_sz - 1; rb->consumer_pos = 0; rb->producer_pos = 0; rb->pending_pos = 0; return rb; } static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) { struct bpf_ringbuf_map *rb_map; if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) return ERR_PTR(-EINVAL); if (attr->key_size || attr->value_size || !is_power_of_2(attr->max_entries) || !PAGE_ALIGNED(attr->max_entries)) return ERR_PTR(-EINVAL); rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); if (!rb_map) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&rb_map->map, attr); rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); if (!rb_map->rb) { bpf_map_area_free(rb_map); return ERR_PTR(-ENOMEM); } return &rb_map->map; } static void bpf_ringbuf_free(struct bpf_ringbuf *rb) { /* copy pages pointer and nr_pages to local variable, as we are going * to unmap rb itself with vunmap() below */ struct page **pages = rb->pages; int i, nr_pages = rb->nr_pages; vunmap(rb); for (i = 0; i < nr_pages; i++) __free_page(pages[i]); bpf_map_area_free(pages); } static void ringbuf_map_free(struct bpf_map *map) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); bpf_ringbuf_free(rb_map->rb); bpf_map_area_free(rb_map); } static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) { return ERR_PTR(-ENOTSUPP); } static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return -ENOTSUPP; } static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) { return -ENOTSUPP; } static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -ENOTSUPP; } static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); if (vma->vm_flags & VM_WRITE) { /* allow writable mapping for the consumer_pos only */ if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) return -EPERM; } else { vm_flags_clear(vma, VM_MAYWRITE); } /* remap_vmalloc_range() checks size and offset constraints */ return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); } static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); if (vma->vm_flags & VM_WRITE) { if (vma->vm_pgoff == 0) /* Disallow writable mappings to the consumer pointer, * and allow writable mappings to both the producer * position, and the ring buffer data itself. */ return -EPERM; } else { vm_flags_clear(vma, VM_MAYWRITE); } /* remap_vmalloc_range() checks size and offset constraints */ return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); } static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) { unsigned long cons_pos, prod_pos; cons_pos = smp_load_acquire(&rb->consumer_pos); prod_pos = smp_load_acquire(&rb->producer_pos); return prod_pos - cons_pos; } static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) { return rb->mask + 1; } static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, struct poll_table_struct *pts) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); poll_wait(filp, &rb_map->rb->waitq, pts); if (ringbuf_avail_data_sz(rb_map->rb)) return EPOLLIN | EPOLLRDNORM; return 0; } static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, struct poll_table_struct *pts) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); poll_wait(filp, &rb_map->rb->waitq, pts); if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) return EPOLLOUT | EPOLLWRNORM; return 0; } static u64 ringbuf_map_mem_usage(const struct bpf_map *map) { struct bpf_ringbuf *rb; int nr_data_pages; int nr_meta_pages; u64 usage = sizeof(struct bpf_ringbuf_map); rb = container_of(map, struct bpf_ringbuf_map, map)->rb; usage += (u64)rb->nr_pages << PAGE_SHIFT; nr_meta_pages = RINGBUF_NR_META_PAGES; nr_data_pages = map->max_entries >> PAGE_SHIFT; usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); return usage; } BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) const struct bpf_map_ops ringbuf_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = ringbuf_map_alloc, .map_free = ringbuf_map_free, .map_mmap = ringbuf_map_mmap_kern, .map_poll = ringbuf_map_poll_kern, .map_lookup_elem = ringbuf_map_lookup_elem, .map_update_elem = ringbuf_map_update_elem, .map_delete_elem = ringbuf_map_delete_elem, .map_get_next_key = ringbuf_map_get_next_key, .map_mem_usage = ringbuf_map_mem_usage, .map_btf_id = &ringbuf_map_btf_ids[0], }; BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) const struct bpf_map_ops user_ringbuf_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = ringbuf_map_alloc, .map_free = ringbuf_map_free, .map_mmap = ringbuf_map_mmap_user, .map_poll = ringbuf_map_poll_user, .map_lookup_elem = ringbuf_map_lookup_elem, .map_update_elem = ringbuf_map_update_elem, .map_delete_elem = ringbuf_map_delete_elem, .map_get_next_key = ringbuf_map_get_next_key, .map_mem_usage = ringbuf_map_mem_usage, .map_btf_id = &user_ringbuf_map_btf_ids[0], }; /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, * calculate offset from record metadata to ring buffer in pages, rounded * down. This page offset is stored as part of record metadata and allows to * restore struct bpf_ringbuf * from record pointer. This page offset is * stored at offset 4 of record metadata header. */ static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, struct bpf_ringbuf_hdr *hdr) { return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; } /* Given pointer to ring buffer record header, restore pointer to struct * bpf_ringbuf itself by using page offset stored at offset 4 */ static struct bpf_ringbuf * bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) { unsigned long addr = (unsigned long)(void *)hdr; unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; return (void*)((addr & PAGE_MASK) - off); } static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) { unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags; struct bpf_ringbuf_hdr *hdr; u32 len, pg_off, tmp_size, hdr_len; if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) return NULL; len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); if (len > ringbuf_total_data_sz(rb)) return NULL; cons_pos = smp_load_acquire(&rb->consumer_pos); if (in_nmi()) { if (!spin_trylock_irqsave(&rb->spinlock, flags)) return NULL; } else { spin_lock_irqsave(&rb->spinlock, flags); } pend_pos = rb->pending_pos; prod_pos = rb->producer_pos; new_prod_pos = prod_pos + len; while (pend_pos < prod_pos) { hdr = (void *)rb->data + (pend_pos & rb->mask); hdr_len = READ_ONCE(hdr->len); if (hdr_len & BPF_RINGBUF_BUSY_BIT) break; tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT; tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8); pend_pos += tmp_size; } rb->pending_pos = pend_pos; /* check for out of ringbuf space: * - by ensuring producer position doesn't advance more than * (ringbuf_size - 1) ahead * - by ensuring oldest not yet committed record until newest * record does not span more than (ringbuf_size - 1) */ if (new_prod_pos - cons_pos > rb->mask || new_prod_pos - pend_pos > rb->mask) { spin_unlock_irqrestore(&rb->spinlock, flags); return NULL; } hdr = (void *)rb->data + (prod_pos & rb->mask); pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); hdr->len = size | BPF_RINGBUF_BUSY_BIT; hdr->pg_off = pg_off; /* pairs with consumer's smp_load_acquire() */ smp_store_release(&rb->producer_pos, new_prod_pos); spin_unlock_irqrestore(&rb->spinlock, flags); return (void *)hdr + BPF_RINGBUF_HDR_SZ; } BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) { struct bpf_ringbuf_map *rb_map; if (unlikely(flags)) return 0; rb_map = container_of(map, struct bpf_ringbuf_map, map); return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); } const struct bpf_func_proto bpf_ringbuf_reserve_proto = { .func = bpf_ringbuf_reserve, .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) { unsigned long rec_pos, cons_pos; struct bpf_ringbuf_hdr *hdr; struct bpf_ringbuf *rb; u32 new_len; hdr = sample - BPF_RINGBUF_HDR_SZ; rb = bpf_ringbuf_restore_from_rec(hdr); new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; if (discard) new_len |= BPF_RINGBUF_DISCARD_BIT; /* update record header with correct final size prefix */ xchg(&hdr->len, new_len); /* if consumer caught up and is waiting for our record, notify about * new data availability */ rec_pos = (void *)hdr - (void *)rb->data; cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; if (flags & BPF_RB_FORCE_WAKEUP) irq_work_queue(&rb->work); else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) irq_work_queue(&rb->work); } BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) { bpf_ringbuf_commit(sample, flags, false /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_submit_proto = { .func = bpf_ringbuf_submit, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) { bpf_ringbuf_commit(sample, flags, true /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_discard_proto = { .func = bpf_ringbuf_discard, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, u64, flags) { struct bpf_ringbuf_map *rb_map; void *rec; if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) return -EINVAL; rb_map = container_of(map, struct bpf_ringbuf_map, map); rec = __bpf_ringbuf_reserve(rb_map->rb, size); if (!rec) return -EAGAIN; memcpy(rec, data, size); bpf_ringbuf_commit(rec, flags, false /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_output_proto = { .func = bpf_ringbuf_output, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) { struct bpf_ringbuf *rb; rb = container_of(map, struct bpf_ringbuf_map, map)->rb; switch (flags) { case BPF_RB_AVAIL_DATA: return ringbuf_avail_data_sz(rb); case BPF_RB_RING_SIZE: return ringbuf_total_data_sz(rb); case BPF_RB_CONS_POS: return smp_load_acquire(&rb->consumer_pos); case BPF_RB_PROD_POS: return smp_load_acquire(&rb->producer_pos); default: return 0; } } const struct bpf_func_proto bpf_ringbuf_query_proto = { .func = bpf_ringbuf_query, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) { struct bpf_ringbuf_map *rb_map; void *sample; int err; if (unlikely(flags)) { bpf_dynptr_set_null(ptr); return -EINVAL; } err = bpf_dynptr_check_size(size); if (err) { bpf_dynptr_set_null(ptr); return err; } rb_map = container_of(map, struct bpf_ringbuf_map, map); sample = __bpf_ringbuf_reserve(rb_map->rb, size); if (!sample) { bpf_dynptr_set_null(ptr); return -EINVAL; } bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); return 0; } const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { .func = bpf_ringbuf_reserve_dynptr, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT, }; BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) { if (!ptr->data) return 0; bpf_ringbuf_commit(ptr->data, flags, false /* discard */); bpf_dynptr_set_null(ptr); return 0; } const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { .func = bpf_ringbuf_submit_dynptr, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) { if (!ptr->data) return 0; bpf_ringbuf_commit(ptr->data, flags, true /* discard */); bpf_dynptr_set_null(ptr); return 0; } const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { .func = bpf_ringbuf_discard_dynptr, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) { int err; u32 hdr_len, sample_len, total_len, flags, *hdr; u64 cons_pos, prod_pos; /* Synchronizes with smp_store_release() in user-space producer. */ prod_pos = smp_load_acquire(&rb->producer_pos); if (prod_pos % 8) return -EINVAL; /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ cons_pos = smp_load_acquire(&rb->consumer_pos); if (cons_pos >= prod_pos) return -ENODATA; hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); /* Synchronizes with smp_store_release() in user-space producer. */ hdr_len = smp_load_acquire(hdr); flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); sample_len = hdr_len & ~flags; total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); /* The sample must fit within the region advertised by the producer position. */ if (total_len > prod_pos - cons_pos) return -EINVAL; /* The sample must fit within the data region of the ring buffer. */ if (total_len > ringbuf_total_data_sz(rb)) return -E2BIG; /* The sample must fit into a struct bpf_dynptr. */ err = bpf_dynptr_check_size(sample_len); if (err) return -E2BIG; if (flags & BPF_RINGBUF_DISCARD_BIT) { /* If the discard bit is set, the sample should be skipped. * * Update the consumer pos, and return -EAGAIN so the caller * knows to skip this sample and try to read the next one. */ smp_store_release(&rb->consumer_pos, cons_pos + total_len); return -EAGAIN; } if (flags & BPF_RINGBUF_BUSY_BIT) return -ENODATA; *sample = (void *)((uintptr_t)rb->data + (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); *size = sample_len; return 0; } static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) { u64 consumer_pos; u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); /* Using smp_load_acquire() is unnecessary here, as the busy-bit * prevents another task from writing to consumer_pos after it was read * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). */ consumer_pos = rb->consumer_pos; /* Synchronizes with smp_load_acquire() in user-space producer. */ smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); } BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, void *, callback_fn, void *, callback_ctx, u64, flags) { struct bpf_ringbuf *rb; long samples, discarded_samples = 0, ret = 0; bpf_callback_t callback = (bpf_callback_t)callback_fn; u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; int busy = 0; if (unlikely(flags & ~wakeup_flags)) return -EINVAL; rb = container_of(map, struct bpf_ringbuf_map, map)->rb; /* If another consumer is already consuming a sample, wait for them to finish. */ if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) return -EBUSY; for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { int err; u32 size; void *sample; struct bpf_dynptr_kern dynptr; err = __bpf_user_ringbuf_peek(rb, &sample, &size); if (err) { if (err == -ENODATA) { break; } else if (err == -EAGAIN) { discarded_samples++; continue; } else { ret = err; goto schedule_work_return; } } bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); __bpf_user_ringbuf_sample_release(rb, size, flags); } ret = samples - discarded_samples; schedule_work_return: /* Prevent the clearing of the busy-bit from being reordered before the * storing of any rb consumer or producer positions. */ atomic_set_release(&rb->busy, 0); if (flags & BPF_RB_FORCE_WAKEUP) irq_work_queue(&rb->work); else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) irq_work_queue(&rb->work); return ret; } const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { .func = bpf_user_ringbuf_drain, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_FUNC, .arg3_type = ARG_PTR_TO_STACK_OR_NULL, .arg4_type = ARG_ANYTHING, }; |
1 1 9 9 1 2 2 2 1 1 1 1 1 1 6 6 1 1 1 1 1 1 13 13 1 1 4 2 1 2 1 1 2 1 14 14 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | // SPDX-License-Identifier: GPL-2.0-only /* * File: pn_netlink.c * * Phonet netlink interface * * Copyright (C) 2008 Nokia Corporation. * * Authors: Sakari Ailus <sakari.ailus@nokia.com> * Remi Denis-Courmont */ #include <linux/kernel.h> #include <linux/netlink.h> #include <linux/phonet.h> #include <linux/slab.h> #include <net/sock.h> #include <net/phonet/pn_dev.h> /* Device address handling */ static int fill_addr(struct sk_buff *skb, struct net_device *dev, u8 addr, u32 portid, u32 seq, int event); void phonet_address_notify(int event, struct net_device *dev, u8 addr) { struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(NLMSG_ALIGN(sizeof(struct ifaddrmsg)) + nla_total_size(1), GFP_KERNEL); if (skb == NULL) goto errout; err = fill_addr(skb, dev, addr, 0, 0, event); if (err < 0) { WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, dev_net(dev), 0, RTNLGRP_PHONET_IFADDR, NULL, GFP_KERNEL); return; errout: rtnl_set_sk_err(dev_net(dev), RTNLGRP_PHONET_IFADDR, err); } static const struct nla_policy ifa_phonet_policy[IFA_MAX+1] = { [IFA_LOCAL] = { .type = NLA_U8 }, }; static int addr_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tb[IFA_MAX+1]; struct net_device *dev; struct ifaddrmsg *ifm; int err; u8 pnaddr; if (!netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; if (!netlink_capable(skb, CAP_SYS_ADMIN)) return -EPERM; ASSERT_RTNL(); err = nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_phonet_policy, extack); if (err < 0) return err; ifm = nlmsg_data(nlh); if (tb[IFA_LOCAL] == NULL) return -EINVAL; pnaddr = nla_get_u8(tb[IFA_LOCAL]); if (pnaddr & 3) /* Phonet addresses only have 6 high-order bits */ return -EINVAL; dev = __dev_get_by_index(net, ifm->ifa_index); if (dev == NULL) return -ENODEV; if (nlh->nlmsg_type == RTM_NEWADDR) err = phonet_address_add(dev, pnaddr); else err = phonet_address_del(dev, pnaddr); if (!err) phonet_address_notify(nlh->nlmsg_type, dev, pnaddr); return err; } static int fill_addr(struct sk_buff *skb, struct net_device *dev, u8 addr, u32 portid, u32 seq, int event) { struct ifaddrmsg *ifm; struct nlmsghdr *nlh; nlh = nlmsg_put(skb, portid, seq, event, sizeof(*ifm), 0); if (nlh == NULL) return -EMSGSIZE; ifm = nlmsg_data(nlh); ifm->ifa_family = AF_PHONET; ifm->ifa_prefixlen = 0; ifm->ifa_flags = IFA_F_PERMANENT; ifm->ifa_scope = RT_SCOPE_LINK; ifm->ifa_index = dev->ifindex; if (nla_put_u8(skb, IFA_LOCAL, addr)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int getaddr_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct phonet_device_list *pndevs; struct phonet_device *pnd; int dev_idx = 0, dev_start_idx = cb->args[0]; int addr_idx = 0, addr_start_idx = cb->args[1]; pndevs = phonet_device_list(sock_net(skb->sk)); rcu_read_lock(); list_for_each_entry_rcu(pnd, &pndevs->list, list) { u8 addr; if (dev_idx > dev_start_idx) addr_start_idx = 0; if (dev_idx++ < dev_start_idx) continue; addr_idx = 0; for_each_set_bit(addr, pnd->addrs, 64) { if (addr_idx++ < addr_start_idx) continue; if (fill_addr(skb, pnd->netdev, addr << 2, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWADDR) < 0) goto out; } } out: rcu_read_unlock(); cb->args[0] = dev_idx; cb->args[1] = addr_idx; return skb->len; } /* Routes handling */ static int fill_route(struct sk_buff *skb, struct net_device *dev, u8 dst, u32 portid, u32 seq, int event) { struct rtmsg *rtm; struct nlmsghdr *nlh; nlh = nlmsg_put(skb, portid, seq, event, sizeof(*rtm), 0); if (nlh == NULL) return -EMSGSIZE; rtm = nlmsg_data(nlh); rtm->rtm_family = AF_PHONET; rtm->rtm_dst_len = 6; rtm->rtm_src_len = 0; rtm->rtm_tos = 0; rtm->rtm_table = RT_TABLE_MAIN; rtm->rtm_protocol = RTPROT_STATIC; rtm->rtm_scope = RT_SCOPE_UNIVERSE; rtm->rtm_type = RTN_UNICAST; rtm->rtm_flags = 0; if (nla_put_u8(skb, RTA_DST, dst) || nla_put_u32(skb, RTA_OIF, READ_ONCE(dev->ifindex))) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } void rtm_phonet_notify(int event, struct net_device *dev, u8 dst) { struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(NLMSG_ALIGN(sizeof(struct rtmsg)) + nla_total_size(1) + nla_total_size(4), GFP_KERNEL); if (skb == NULL) goto errout; err = fill_route(skb, dev, dst, 0, 0, event); if (err < 0) { WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, dev_net(dev), 0, RTNLGRP_PHONET_ROUTE, NULL, GFP_KERNEL); return; errout: rtnl_set_sk_err(dev_net(dev), RTNLGRP_PHONET_ROUTE, err); } static const struct nla_policy rtm_phonet_policy[RTA_MAX+1] = { [RTA_DST] = { .type = NLA_U8 }, [RTA_OIF] = { .type = NLA_U32 }, }; static int route_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tb[RTA_MAX+1]; struct net_device *dev; struct rtmsg *rtm; int err; u8 dst; if (!netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; if (!netlink_capable(skb, CAP_SYS_ADMIN)) return -EPERM; ASSERT_RTNL(); err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_phonet_policy, extack); if (err < 0) return err; rtm = nlmsg_data(nlh); if (rtm->rtm_table != RT_TABLE_MAIN || rtm->rtm_type != RTN_UNICAST) return -EINVAL; if (tb[RTA_DST] == NULL || tb[RTA_OIF] == NULL) return -EINVAL; dst = nla_get_u8(tb[RTA_DST]); if (dst & 3) /* Phonet addresses only have 6 high-order bits */ return -EINVAL; dev = __dev_get_by_index(net, nla_get_u32(tb[RTA_OIF])); if (dev == NULL) return -ENODEV; if (nlh->nlmsg_type == RTM_NEWROUTE) err = phonet_route_add(dev, dst); else err = phonet_route_del(dev, dst); if (!err) rtm_phonet_notify(nlh->nlmsg_type, dev, dst); return err; } static int route_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); int err = 0; u8 addr; rcu_read_lock(); for (addr = cb->args[0]; addr < 64; addr++) { struct net_device *dev = phonet_route_get_rcu(net, addr << 2); if (!dev) continue; err = fill_route(skb, dev, addr << 2, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWROUTE); if (err < 0) break; } rcu_read_unlock(); cb->args[0] = addr; return err; } int __init phonet_netlink_register(void) { int err = rtnl_register_module(THIS_MODULE, PF_PHONET, RTM_NEWADDR, addr_doit, NULL, 0); if (err) return err; /* Further rtnl_register_module() cannot fail */ rtnl_register_module(THIS_MODULE, PF_PHONET, RTM_DELADDR, addr_doit, NULL, 0); rtnl_register_module(THIS_MODULE, PF_PHONET, RTM_GETADDR, NULL, getaddr_dumpit, 0); rtnl_register_module(THIS_MODULE, PF_PHONET, RTM_NEWROUTE, route_doit, NULL, 0); rtnl_register_module(THIS_MODULE, PF_PHONET, RTM_DELROUTE, route_doit, NULL, 0); rtnl_register_module(THIS_MODULE, PF_PHONET, RTM_GETROUTE, NULL, route_dumpit, RTNL_FLAG_DUMP_UNLOCKED); return 0; } |
51 51 3 51 24 30 51 14 14 1 14 12 2 2 4 4 3 1 4 4 1 3 4 2 2 2 14 14 3 3 1 2 9 9 4 5 3 1 5 2 2 2 2 3 4 5 2 3 2 1 1 3 46 7 46 46 29 12 2 5 4 46 2 4 4 46 4 42 9 42 3 2 40 5 41 5 5 2 2 25 63 63 3 3 1 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | // SPDX-License-Identifier: GPL-2.0-only /* * Off-channel operation helpers * * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi> * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007, Michael Wu <flamingice@sourmilk.net> * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2019, 2022-2024 Intel Corporation */ #include <linux/export.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" /* * Tell our hardware to disable PS. * Optionally inform AP that we will go to sleep so that it will buffer * the frames while we are doing off-channel work. This is optional * because we *may* be doing work on-operating channel, and want our * hardware unconditionally awake, but still let the AP send us normal frames. */ static void ieee80211_offchannel_ps_enable(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool offchannel_ps_enabled = false; /* FIXME: what to do when local->pspolling is true? */ del_timer_sync(&local->dynamic_ps_timer); del_timer_sync(&ifmgd->bcn_mon_timer); del_timer_sync(&ifmgd->conn_mon_timer); wiphy_work_cancel(local->hw.wiphy, &local->dynamic_ps_enable_work); if (local->hw.conf.flags & IEEE80211_CONF_PS) { offchannel_ps_enabled = true; local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } if (!offchannel_ps_enabled || !ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) /* * If power save was enabled, no need to send a nullfunc * frame because AP knows that we are sleeping. But if the * hardware is creating the nullfunc frame for power save * status (ie. IEEE80211_HW_PS_NULLFUNC_STACK is not * enabled) and power save was enabled, the firmware just * sent a null frame with power save disabled. So we need * to send a new nullfunc frame to inform the AP that we * are again sleeping. */ ieee80211_send_nullfunc(local, sdata, true); } /* inform AP that we are awake again */ static void ieee80211_offchannel_ps_disable(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; if (!local->ps_sdata) ieee80211_send_nullfunc(local, sdata, false); else if (local->hw.conf.dynamic_ps_timeout > 0) { /* * the dynamic_ps_timer had been running before leaving the * operating channel, restart the timer now and send a nullfunc * frame to inform the AP that we are awake so that AP sends * the buffered packets (if any). */ ieee80211_send_nullfunc(local, sdata, false); mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); } ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); } void ieee80211_offchannel_stop_vifs(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(!local->emulate_chanctx)) return; /* * notify the AP about us leaving the channel and stop all * STA interfaces. */ /* * Stop queues and transmit all frames queued by the driver * before sending nullfunc to enable powersave at the AP. */ ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL, false); ieee80211_flush_queues(local, NULL, false); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE || sdata->vif.type == NL80211_IFTYPE_NAN) continue; if (sdata->vif.type != NL80211_IFTYPE_MONITOR) set_bit(SDATA_STATE_OFFCHANNEL, &sdata->state); /* Check to see if we should disable beaconing. */ if (sdata->vif.bss_conf.enable_beacon) { set_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state); sdata->vif.bss_conf.enable_beacon = false; ieee80211_link_info_change_notify( sdata, &sdata->deflink, BSS_CHANGED_BEACON_ENABLED); } if (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.associated) ieee80211_offchannel_ps_enable(sdata); } } void ieee80211_offchannel_return(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(!local->emulate_chanctx)) return; list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) continue; if (sdata->vif.type != NL80211_IFTYPE_MONITOR) clear_bit(SDATA_STATE_OFFCHANNEL, &sdata->state); if (!ieee80211_sdata_running(sdata)) continue; /* Tell AP we're back */ if (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.associated) ieee80211_offchannel_ps_disable(sdata); if (test_and_clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state)) { sdata->vif.bss_conf.enable_beacon = true; ieee80211_link_info_change_notify( sdata, &sdata->deflink, BSS_CHANGED_BEACON_ENABLED); } } ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL, false); } static void ieee80211_roc_notify_destroy(struct ieee80211_roc_work *roc) { /* was never transmitted */ if (roc->frame) { cfg80211_mgmt_tx_status(&roc->sdata->wdev, roc->mgmt_tx_cookie, roc->frame->data, roc->frame->len, false, GFP_KERNEL); ieee80211_free_txskb(&roc->sdata->local->hw, roc->frame); } if (!roc->mgmt_tx_cookie) cfg80211_remain_on_channel_expired(&roc->sdata->wdev, roc->cookie, roc->chan, GFP_KERNEL); else cfg80211_tx_mgmt_expired(&roc->sdata->wdev, roc->mgmt_tx_cookie, roc->chan, GFP_KERNEL); list_del(&roc->list); kfree(roc); } static unsigned long ieee80211_end_finished_rocs(struct ieee80211_local *local, unsigned long now) { struct ieee80211_roc_work *roc, *tmp; long remaining_dur_min = LONG_MAX; lockdep_assert_wiphy(local->hw.wiphy); list_for_each_entry_safe(roc, tmp, &local->roc_list, list) { long remaining; if (!roc->started) break; remaining = roc->start_time + msecs_to_jiffies(roc->duration) - now; /* In case of HW ROC, it is possible that the HW finished the * ROC session before the actual requested time. In such a case * end the ROC session (disregarding the remaining time). */ if (roc->abort || roc->hw_begun || remaining <= 0) ieee80211_roc_notify_destroy(roc); else remaining_dur_min = min(remaining_dur_min, remaining); } return remaining_dur_min; } static bool ieee80211_recalc_sw_work(struct ieee80211_local *local, unsigned long now) { long dur = ieee80211_end_finished_rocs(local, now); if (dur == LONG_MAX) return false; wiphy_delayed_work_queue(local->hw.wiphy, &local->roc_work, dur); return true; } static void ieee80211_handle_roc_started(struct ieee80211_roc_work *roc, unsigned long start_time) { if (WARN_ON(roc->notified)) return; roc->start_time = start_time; roc->started = true; if (roc->mgmt_tx_cookie) { if (!WARN_ON(!roc->frame)) { ieee80211_tx_skb_tid_band(roc->sdata, roc->frame, 7, roc->chan->band); roc->frame = NULL; } } else { cfg80211_ready_on_channel(&roc->sdata->wdev, roc->cookie, roc->chan, roc->req_duration, GFP_KERNEL); } roc->notified = true; } static void ieee80211_hw_roc_start(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, hw_roc_start); struct ieee80211_roc_work *roc; lockdep_assert_wiphy(local->hw.wiphy); list_for_each_entry(roc, &local->roc_list, list) { if (!roc->started) break; roc->hw_begun = true; ieee80211_handle_roc_started(roc, local->hw_roc_start_time); } } void ieee80211_ready_on_channel(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); local->hw_roc_start_time = jiffies; trace_api_ready_on_channel(local); wiphy_work_q |