| 11 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | // SPDX-License-Identifier: GPL-2.0-or-later /* * LAPB release 002 * * This code REQUIRES 2.1.15 or higher/ NET3.038 * * History * LAPB 001 Jonathan Naylor Started Coding */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/inet.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/sock.h> #include <linux/uaccess.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <net/lapb.h> /* * This routine purges all the queues of frames. */ void lapb_clear_queues(struct lapb_cb *lapb) { skb_queue_purge(&lapb->write_queue); skb_queue_purge(&lapb->ack_queue); } /* * This routine purges the input queue of those frames that have been * acknowledged. This replaces the boxes labelled "V(a) <- N(r)" on the * SDL diagram. */ void lapb_frames_acked(struct lapb_cb *lapb, unsigned short nr) { struct sk_buff *skb; int modulus; modulus = (lapb->mode & LAPB_EXTENDED) ? LAPB_EMODULUS : LAPB_SMODULUS; /* * Remove all the ack-ed frames from the ack queue. */ if (lapb->va != nr) while (skb_peek(&lapb->ack_queue) && lapb->va != nr) { skb = skb_dequeue(&lapb->ack_queue); kfree_skb(skb); lapb->va = (lapb->va + 1) % modulus; } } void lapb_requeue_frames(struct lapb_cb *lapb) { struct sk_buff *skb, *skb_prev = NULL; /* * Requeue all the un-ack-ed frames on the output queue to be picked * up by lapb_kick called from the timer. This arrangement handles the * possibility of an empty output queue. */ while ((skb = skb_dequeue(&lapb->ack_queue)) != NULL) { if (!skb_prev) skb_queue_head(&lapb->write_queue, skb); else skb_append(skb_prev, skb, &lapb->write_queue); skb_prev = skb; } } /* * Validate that the value of nr is between va and vs. Return true or * false for testing. */ int lapb_validate_nr(struct lapb_cb *lapb, unsigned short nr) { unsigned short vc = lapb->va; int modulus; modulus = (lapb->mode & LAPB_EXTENDED) ? LAPB_EMODULUS : LAPB_SMODULUS; while (vc != lapb->vs) { if (nr == vc) return 1; vc = (vc + 1) % modulus; } return nr == lapb->vs; } /* * This routine is the centralised routine for parsing the control * information for the different frame formats. */ int lapb_decode(struct lapb_cb *lapb, struct sk_buff *skb, struct lapb_frame *frame) { frame->type = LAPB_ILLEGAL; lapb_dbg(2, "(%p) S%d RX %3ph\n", lapb->dev, lapb->state, skb->data); /* We always need to look at 2 bytes, sometimes we need * to look at 3 and those cases are handled below. */ if (!pskb_may_pull(skb, 2)) return -1; if (lapb->mode & LAPB_MLP) { if (lapb->mode & LAPB_DCE) { if (skb->data[0] == LAPB_ADDR_D) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_C) frame->cr = LAPB_RESPONSE; } else { if (skb->data[0] == LAPB_ADDR_C) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_D) frame->cr = LAPB_RESPONSE; } } else { if (lapb->mode & LAPB_DCE) { if (skb->data[0] == LAPB_ADDR_B) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_A) frame->cr = LAPB_RESPONSE; } else { if (skb->data[0] == LAPB_ADDR_A) frame->cr = LAPB_COMMAND; if (skb->data[0] == LAPB_ADDR_B) frame->cr = LAPB_RESPONSE; } } skb_pull(skb, 1); if (lapb->mode & LAPB_EXTENDED) { if (!(skb->data[0] & LAPB_S)) { if (!pskb_may_pull(skb, 2)) return -1; /* * I frame - carries NR/NS/PF */ frame->type = LAPB_I; frame->ns = (skb->data[0] >> 1) & 0x7F; frame->nr = (skb->data[1] >> 1) & 0x7F; frame->pf = skb->data[1] & LAPB_EPF; frame->control[0] = skb->data[0]; frame->control[1] = skb->data[1]; skb_pull(skb, 2); } else if ((skb->data[0] & LAPB_U) == 1) { if (!pskb_may_pull(skb, 2)) return -1; /* * S frame - take out PF/NR */ frame->type = skb->data[0] & 0x0F; frame->nr = (skb->data[1] >> 1) & 0x7F; frame->pf = skb->data[1] & LAPB_EPF; frame->control[0] = skb->data[0]; frame->control[1] = skb->data[1]; skb_pull(skb, 2); } else if ((skb->data[0] & LAPB_U) == 3) { /* * U frame - take out PF */ frame->type = skb->data[0] & ~LAPB_SPF; frame->pf = skb->data[0] & LAPB_SPF; frame->control[0] = skb->data[0]; frame->control[1] = 0x00; skb_pull(skb, 1); } } else { if (!(skb->data[0] & LAPB_S)) { /* * I frame - carries NR/NS/PF */ frame->type = LAPB_I; frame->ns = (skb->data[0] >> 1) & 0x07; frame->nr = (skb->data[0] >> 5) & 0x07; frame->pf = skb->data[0] & LAPB_SPF; } else if ((skb->data[0] & LAPB_U) == 1) { /* * S frame - take out PF/NR */ frame->type = skb->data[0] & 0x0F; frame->nr = (skb->data[0] >> 5) & 0x07; frame->pf = skb->data[0] & LAPB_SPF; } else if ((skb->data[0] & LAPB_U) == 3) { /* * U frame - take out PF */ frame->type = skb->data[0] & ~LAPB_SPF; frame->pf = skb->data[0] & LAPB_SPF; } frame->control[0] = skb->data[0]; skb_pull(skb, 1); } return 0; } /* * This routine is called when the HDLC layer internally generates a * command or response for the remote machine ( eg. RR, UA etc. ). * Only supervisory or unnumbered frames are processed, FRMRs are handled * by lapb_transmit_frmr below. */ void lapb_send_control(struct lapb_cb *lapb, int frametype, int poll_bit, int type) { struct sk_buff *skb; unsigned char *dptr; if ((skb = alloc_skb(LAPB_HEADER_LEN + 3, GFP_ATOMIC)) == NULL) return; skb_reserve(skb, LAPB_HEADER_LEN + 1); if (lapb->mode & LAPB_EXTENDED) { if ((frametype & LAPB_U) == LAPB_U) { dptr = skb_put(skb, 1); *dptr = frametype; *dptr |= poll_bit ? LAPB_SPF : 0; } else { dptr = skb_put(skb, 2); dptr[0] = frametype; dptr[1] = (lapb->vr << 1); dptr[1] |= poll_bit ? LAPB_EPF : 0; } } else { dptr = skb_put(skb, 1); *dptr = frametype; *dptr |= poll_bit ? LAPB_SPF : 0; if ((frametype & LAPB_U) == LAPB_S) /* S frames carry NR */ *dptr |= (lapb->vr << 5); } lapb_transmit_buffer(lapb, skb, type); } /* * This routine generates FRMRs based on information previously stored in * the LAPB control block. */ void lapb_transmit_frmr(struct lapb_cb *lapb) { struct sk_buff *skb; unsigned char *dptr; if ((skb = alloc_skb(LAPB_HEADER_LEN + 7, GFP_ATOMIC)) == NULL) return; skb_reserve(skb, LAPB_HEADER_LEN + 1); if (lapb->mode & LAPB_EXTENDED) { dptr = skb_put(skb, 6); *dptr++ = LAPB_FRMR; *dptr++ = lapb->frmr_data.control[0]; *dptr++ = lapb->frmr_data.control[1]; *dptr++ = (lapb->vs << 1) & 0xFE; *dptr = (lapb->vr << 1) & 0xFE; if (lapb->frmr_data.cr == LAPB_RESPONSE) *dptr |= 0x01; dptr++; *dptr++ = lapb->frmr_type; lapb_dbg(1, "(%p) S%d TX FRMR %5ph\n", lapb->dev, lapb->state, &skb->data[1]); } else { dptr = skb_put(skb, 4); *dptr++ = LAPB_FRMR; *dptr++ = lapb->frmr_data.control[0]; *dptr = (lapb->vs << 1) & 0x0E; *dptr |= (lapb->vr << 5) & 0xE0; if (lapb->frmr_data.cr == LAPB_RESPONSE) *dptr |= 0x10; dptr++; *dptr++ = lapb->frmr_type; lapb_dbg(1, "(%p) S%d TX FRMR %3ph\n", lapb->dev, lapb->state, &skb->data[1]); } lapb_transmit_buffer(lapb, skb, LAPB_RESPONSE); } |
| 41 1 41 2 42 42 42 42 29 1 30 30 30 30 72 72 181 180 1 181 122 98 181 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | /* * Mu-Law conversion Plug-In Interface * Copyright (c) 1999 by Jaroslav Kysela <perex@perex.cz> * Uros Bizjak <uros@kss-loka.si> * * Based on reference implementation by Sun Microsystems, Inc. * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Library General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/time.h> #include <sound/core.h> #include <sound/pcm.h> #include "pcm_plugin.h" #define SIGN_BIT (0x80) /* Sign bit for a u-law byte. */ #define QUANT_MASK (0xf) /* Quantization field mask. */ #define NSEGS (8) /* Number of u-law segments. */ #define SEG_SHIFT (4) /* Left shift for segment number. */ #define SEG_MASK (0x70) /* Segment field mask. */ static inline int val_seg(int val) { int r = 0; val >>= 7; if (val & 0xf0) { val >>= 4; r += 4; } if (val & 0x0c) { val >>= 2; r += 2; } if (val & 0x02) r += 1; return r; } #define BIAS (0x84) /* Bias for linear code. */ /* * linear2ulaw() - Convert a linear PCM value to u-law * * In order to simplify the encoding process, the original linear magnitude * is biased by adding 33 which shifts the encoding range from (0 - 8158) to * (33 - 8191). The result can be seen in the following encoding table: * * Biased Linear Input Code Compressed Code * ------------------------ --------------- * 00000001wxyza 000wxyz * 0000001wxyzab 001wxyz * 000001wxyzabc 010wxyz * 00001wxyzabcd 011wxyz * 0001wxyzabcde 100wxyz * 001wxyzabcdef 101wxyz * 01wxyzabcdefg 110wxyz * 1wxyzabcdefgh 111wxyz * * Each biased linear code has a leading 1 which identifies the segment * number. The value of the segment number is equal to 7 minus the number * of leading 0's. The quantization interval is directly available as the * four bits wxyz. * The trailing bits (a - h) are ignored. * * Ordinarily the complement of the resulting code word is used for * transmission, and so the code word is complemented before it is returned. * * For further information see John C. Bellamy's Digital Telephony, 1982, * John Wiley & Sons, pps 98-111 and 472-476. */ static unsigned char linear2ulaw(int pcm_val) /* 2's complement (16-bit range) */ { int mask; int seg; unsigned char uval; /* Get the sign and the magnitude of the value. */ if (pcm_val < 0) { pcm_val = BIAS - pcm_val; mask = 0x7F; } else { pcm_val += BIAS; mask = 0xFF; } if (pcm_val > 0x7FFF) pcm_val = 0x7FFF; /* Convert the scaled magnitude to segment number. */ seg = val_seg(pcm_val); /* * Combine the sign, segment, quantization bits; * and complement the code word. */ uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF); return uval ^ mask; } /* * ulaw2linear() - Convert a u-law value to 16-bit linear PCM * * First, a biased linear code is derived from the code word. An unbiased * output can then be obtained by subtracting 33 from the biased code. * * Note that this function expects to be passed the complement of the * original code word. This is in keeping with ISDN conventions. */ static int ulaw2linear(unsigned char u_val) { int t; /* Complement to obtain normal u-law value. */ u_val = ~u_val; /* * Extract and bias the quantization bits. Then * shift up by the segment number and subtract out the bias. */ t = ((u_val & QUANT_MASK) << 3) + BIAS; t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT; return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS)); } /* * Basic Mu-Law plugin */ typedef void (*mulaw_f)(struct snd_pcm_plugin *plugin, const struct snd_pcm_plugin_channel *src_channels, struct snd_pcm_plugin_channel *dst_channels, snd_pcm_uframes_t frames); struct mulaw_priv { mulaw_f func; int cvt_endian; /* need endian conversion? */ unsigned int native_ofs; /* byte offset in native format */ unsigned int copy_ofs; /* byte offset in s16 format */ unsigned int native_bytes; /* byte size of the native format */ unsigned int copy_bytes; /* bytes to copy per conversion */ u16 flip; /* MSB flip for signedness, done after endian conversion */ }; static inline void cvt_s16_to_native(struct mulaw_priv *data, unsigned char *dst, u16 sample) { sample ^= data->flip; if (data->cvt_endian) sample = swab16(sample); if (data->native_bytes > data->copy_bytes) memset(dst, 0, data->native_bytes); memcpy(dst + data->native_ofs, (char *)&sample + data->copy_ofs, data->copy_bytes); } static void mulaw_decode(struct snd_pcm_plugin *plugin, const struct snd_pcm_plugin_channel *src_channels, struct snd_pcm_plugin_channel *dst_channels, snd_pcm_uframes_t frames) { struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data; int channel; int nchannels = plugin->src_format.channels; for (channel = 0; channel < nchannels; ++channel) { char *src; char *dst; int src_step, dst_step; snd_pcm_uframes_t frames1; if (!src_channels[channel].enabled) { if (dst_channels[channel].wanted) snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format); dst_channels[channel].enabled = 0; continue; } dst_channels[channel].enabled = 1; src = src_channels[channel].area.addr + src_channels[channel].area.first / 8; dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8; src_step = src_channels[channel].area.step / 8; dst_step = dst_channels[channel].area.step / 8; frames1 = frames; while (frames1-- > 0) { signed short sample = ulaw2linear(*src); cvt_s16_to_native(data, dst, sample); src += src_step; dst += dst_step; } } } static inline signed short cvt_native_to_s16(struct mulaw_priv *data, unsigned char *src) { u16 sample = 0; memcpy((char *)&sample + data->copy_ofs, src + data->native_ofs, data->copy_bytes); if (data->cvt_endian) sample = swab16(sample); sample ^= data->flip; return (signed short)sample; } static void mulaw_encode(struct snd_pcm_plugin *plugin, const struct snd_pcm_plugin_channel *src_channels, struct snd_pcm_plugin_channel *dst_channels, snd_pcm_uframes_t frames) { struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data; int channel; int nchannels = plugin->src_format.channels; for (channel = 0; channel < nchannels; ++channel) { char *src; char *dst; int src_step, dst_step; snd_pcm_uframes_t frames1; if (!src_channels[channel].enabled) { if (dst_channels[channel].wanted) snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format); dst_channels[channel].enabled = 0; continue; } dst_channels[channel].enabled = 1; src = src_channels[channel].area.addr + src_channels[channel].area.first / 8; dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8; src_step = src_channels[channel].area.step / 8; dst_step = dst_channels[channel].area.step / 8; frames1 = frames; while (frames1-- > 0) { signed short sample = cvt_native_to_s16(data, src); *dst = linear2ulaw(sample); src += src_step; dst += dst_step; } } } static snd_pcm_sframes_t mulaw_transfer(struct snd_pcm_plugin *plugin, const struct snd_pcm_plugin_channel *src_channels, struct snd_pcm_plugin_channel *dst_channels, snd_pcm_uframes_t frames) { struct mulaw_priv *data; if (snd_BUG_ON(!plugin || !src_channels || !dst_channels)) return -ENXIO; if (frames == 0) return 0; #ifdef CONFIG_SND_DEBUG { unsigned int channel; for (channel = 0; channel < plugin->src_format.channels; channel++) { if (snd_BUG_ON(src_channels[channel].area.first % 8 || src_channels[channel].area.step % 8)) return -ENXIO; if (snd_BUG_ON(dst_channels[channel].area.first % 8 || dst_channels[channel].area.step % 8)) return -ENXIO; } } #endif if (frames > dst_channels[0].frames) frames = dst_channels[0].frames; data = (struct mulaw_priv *)plugin->extra_data; data->func(plugin, src_channels, dst_channels, frames); return frames; } static void init_data(struct mulaw_priv *data, snd_pcm_format_t format) { #ifdef SNDRV_LITTLE_ENDIAN data->cvt_endian = snd_pcm_format_big_endian(format) > 0; #else data->cvt_endian = snd_pcm_format_little_endian(format) > 0; #endif if (!snd_pcm_format_signed(format)) data->flip = 0x8000; data->native_bytes = snd_pcm_format_physical_width(format) / 8; data->copy_bytes = data->native_bytes < 2 ? 1 : 2; if (snd_pcm_format_little_endian(format)) { data->native_ofs = data->native_bytes - data->copy_bytes; data->copy_ofs = 2 - data->copy_bytes; } else { /* S24 in 4bytes need an 1 byte offset */ data->native_ofs = data->native_bytes - snd_pcm_format_width(format) / 8; } } int snd_pcm_plugin_build_mulaw(struct snd_pcm_substream *plug, struct snd_pcm_plugin_format *src_format, struct snd_pcm_plugin_format *dst_format, struct snd_pcm_plugin **r_plugin) { int err; struct mulaw_priv *data; struct snd_pcm_plugin *plugin; struct snd_pcm_plugin_format *format; mulaw_f func; if (snd_BUG_ON(!r_plugin)) return -ENXIO; *r_plugin = NULL; if (snd_BUG_ON(src_format->rate != dst_format->rate)) return -ENXIO; if (snd_BUG_ON(src_format->channels != dst_format->channels)) return -ENXIO; if (dst_format->format == SNDRV_PCM_FORMAT_MU_LAW) { format = src_format; func = mulaw_encode; } else if (src_format->format == SNDRV_PCM_FORMAT_MU_LAW) { format = dst_format; func = mulaw_decode; } else { snd_BUG(); return -EINVAL; } if (!snd_pcm_format_linear(format->format)) return -EINVAL; err = snd_pcm_plugin_build(plug, "Mu-Law<->linear conversion", src_format, dst_format, sizeof(struct mulaw_priv), &plugin); if (err < 0) return err; data = (struct mulaw_priv *)plugin->extra_data; data->func = func; init_data(data, format->format); plugin->transfer = mulaw_transfer; *r_plugin = plugin; return 0; } |
| 1 1 1 1 39 13 13 1 1 1 39 30 8 1 1 38 1 39 39 38 39 39 191 189 2 3 2 1 37 116 7 32 39 5 34 5 34 39 153 146 7 187 1 185 39 39 39 26 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Main USB camera driver * * Copyright (C) 2008-2011 Jean-François Moine <http://moinejf.free.fr> * * Camera button input handling by Márton Németh * Copyright (C) 2009-2010 Márton Németh <nm127@freemail.hu> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define GSPCA_VERSION "2.14.0" #include <linux/init.h> #include <linux/fs.h> #include <linux/vmalloc.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/pagemap.h> #include <linux/io.h> #include <asm/page.h> #include <linux/uaccess.h> #include <linux/ktime.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-fh.h> #include <media/v4l2-event.h> #include "gspca.h" #if IS_ENABLED(CONFIG_INPUT) #include <linux/input.h> #include <linux/usb/input.h> #endif /* global values */ #define DEF_NURBS 3 /* default number of URBs */ #if DEF_NURBS > MAX_NURBS #error "DEF_NURBS too big" #endif MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>"); MODULE_DESCRIPTION("GSPCA USB Camera Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(GSPCA_VERSION); int gspca_debug; EXPORT_SYMBOL(gspca_debug); static void PDEBUG_MODE(struct gspca_dev *gspca_dev, int debug, char *txt, __u32 pixfmt, int w, int h) { if ((pixfmt >> 24) >= '0' && (pixfmt >> 24) <= 'z') { gspca_dbg(gspca_dev, debug, "%s %c%c%c%c %dx%d\n", txt, pixfmt & 0xff, (pixfmt >> 8) & 0xff, (pixfmt >> 16) & 0xff, pixfmt >> 24, w, h); } else { gspca_dbg(gspca_dev, debug, "%s 0x%08x %dx%d\n", txt, pixfmt, w, h); } } /* specific memory types - !! should be different from V4L2_MEMORY_xxx */ #define GSPCA_MEMORY_NO 0 /* V4L2_MEMORY_xxx starts from 1 */ #define GSPCA_MEMORY_READ 7 /* * Input and interrupt endpoint handling functions */ #if IS_ENABLED(CONFIG_INPUT) static void int_irq(struct urb *urb) { struct gspca_dev *gspca_dev = (struct gspca_dev *) urb->context; int ret; ret = urb->status; switch (ret) { case 0: if (gspca_dev->sd_desc->int_pkt_scan(gspca_dev, urb->transfer_buffer, urb->actual_length) < 0) { gspca_err(gspca_dev, "Unknown packet received\n"); } break; case -ENOENT: case -ECONNRESET: case -ENODEV: case -ESHUTDOWN: /* Stop is requested either by software or hardware is gone, * keep the ret value non-zero and don't resubmit later. */ break; default: gspca_err(gspca_dev, "URB error %i, resubmitting\n", urb->status); urb->status = 0; ret = 0; } if (ret == 0) { ret = usb_submit_urb(urb, GFP_ATOMIC); if (ret < 0) pr_err("Resubmit URB failed with error %i\n", ret); } } static int gspca_input_connect(struct gspca_dev *dev) { struct input_dev *input_dev; int err = 0; dev->input_dev = NULL; if (dev->sd_desc->int_pkt_scan || dev->sd_desc->other_input) { input_dev = input_allocate_device(); if (!input_dev) return -ENOMEM; usb_make_path(dev->dev, dev->phys, sizeof(dev->phys)); strlcat(dev->phys, "/input0", sizeof(dev->phys)); input_dev->name = dev->sd_desc->name; input_dev->phys = dev->phys; usb_to_input_id(dev->dev, &input_dev->id); input_dev->evbit[0] = BIT_MASK(EV_KEY); input_dev->keybit[BIT_WORD(KEY_CAMERA)] = BIT_MASK(KEY_CAMERA); input_dev->dev.parent = &dev->dev->dev; err = input_register_device(input_dev); if (err) { pr_err("Input device registration failed with error %i\n", err); input_dev->dev.parent = NULL; input_free_device(input_dev); } else { dev->input_dev = input_dev; } } return err; } static int alloc_and_submit_int_urb(struct gspca_dev *gspca_dev, struct usb_endpoint_descriptor *ep) { unsigned int buffer_len; int interval; struct urb *urb; struct usb_device *dev; void *buffer = NULL; int ret = -EINVAL; buffer_len = le16_to_cpu(ep->wMaxPacketSize); interval = ep->bInterval; gspca_dbg(gspca_dev, D_CONF, "found int in endpoint: 0x%x, buffer_len=%u, interval=%u\n", ep->bEndpointAddress, buffer_len, interval); dev = gspca_dev->dev; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { ret = -ENOMEM; goto error; } buffer = usb_alloc_coherent(dev, buffer_len, GFP_KERNEL, &urb->transfer_dma); if (!buffer) { ret = -ENOMEM; goto error_buffer; } usb_fill_int_urb(urb, dev, usb_rcvintpipe(dev, ep->bEndpointAddress), buffer, buffer_len, int_irq, (void *)gspca_dev, interval); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; ret = usb_submit_urb(urb, GFP_KERNEL); if (ret < 0) { gspca_err(gspca_dev, "submit int URB failed with error %i\n", ret); goto error_submit; } gspca_dev->int_urb = urb; return ret; error_submit: usb_free_coherent(dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); error_buffer: usb_free_urb(urb); error: return ret; } static void gspca_input_create_urb(struct gspca_dev *gspca_dev) { struct usb_interface *intf; struct usb_host_interface *intf_desc; struct usb_endpoint_descriptor *ep; int i; if (gspca_dev->sd_desc->int_pkt_scan) { intf = usb_ifnum_to_if(gspca_dev->dev, gspca_dev->iface); intf_desc = intf->cur_altsetting; for (i = 0; i < intf_desc->desc.bNumEndpoints; i++) { ep = &intf_desc->endpoint[i].desc; if (usb_endpoint_dir_in(ep) && usb_endpoint_xfer_int(ep)) { alloc_and_submit_int_urb(gspca_dev, ep); break; } } } } static void gspca_input_destroy_urb(struct gspca_dev *gspca_dev) { struct urb *urb; urb = gspca_dev->int_urb; if (urb) { gspca_dev->int_urb = NULL; usb_kill_urb(urb); usb_free_coherent(gspca_dev->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); usb_free_urb(urb); } } #else static inline void gspca_input_destroy_urb(struct gspca_dev *gspca_dev) { } static inline void gspca_input_create_urb(struct gspca_dev *gspca_dev) { } static inline int gspca_input_connect(struct gspca_dev *dev) { return 0; } #endif /* * fill a video frame from an URB and resubmit */ static void fill_frame(struct gspca_dev *gspca_dev, struct urb *urb) { u8 *data; /* address of data in the iso message */ int i, len, st; cam_pkt_op pkt_scan; if (urb->status != 0) { if (urb->status == -ESHUTDOWN) return; /* disconnection */ #ifdef CONFIG_PM if (gspca_dev->frozen) return; #endif gspca_err(gspca_dev, "urb status: %d\n", urb->status); urb->status = 0; goto resubmit; } pkt_scan = gspca_dev->sd_desc->pkt_scan; for (i = 0; i < urb->number_of_packets; i++) { len = urb->iso_frame_desc[i].actual_length; /* check the packet status and length */ st = urb->iso_frame_desc[i].status; if (st) { gspca_dbg(gspca_dev, D_PACK, "ISOC data error: [%d] len=%d, status=%d\n", i, len, st); gspca_dev->last_packet_type = DISCARD_PACKET; continue; } if (len == 0) { if (gspca_dev->empty_packet == 0) gspca_dev->empty_packet = 1; continue; } /* let the packet be analyzed by the subdriver */ gspca_dbg(gspca_dev, D_PACK, "packet [%d] o:%d l:%d\n", i, urb->iso_frame_desc[i].offset, len); data = (u8 *) urb->transfer_buffer + urb->iso_frame_desc[i].offset; pkt_scan(gspca_dev, data, len); } resubmit: if (!gspca_dev->streaming) return; /* resubmit the URB */ st = usb_submit_urb(urb, GFP_ATOMIC); if (st < 0) pr_err("usb_submit_urb() ret %d\n", st); } /* * ISOC message interrupt from the USB device * * Analyse each packet and call the subdriver for copy to the frame buffer. */ static void isoc_irq(struct urb *urb) { struct gspca_dev *gspca_dev = (struct gspca_dev *) urb->context; gspca_dbg(gspca_dev, D_PACK, "isoc irq\n"); if (!gspca_dev->streaming) return; fill_frame(gspca_dev, urb); } /* * bulk message interrupt from the USB device */ static void bulk_irq(struct urb *urb) { struct gspca_dev *gspca_dev = (struct gspca_dev *) urb->context; int st; gspca_dbg(gspca_dev, D_PACK, "bulk irq\n"); if (!gspca_dev->streaming) return; switch (urb->status) { case 0: break; case -ESHUTDOWN: return; /* disconnection */ default: #ifdef CONFIG_PM if (gspca_dev->frozen) return; #endif gspca_err(gspca_dev, "urb status: %d\n", urb->status); urb->status = 0; goto resubmit; } gspca_dbg(gspca_dev, D_PACK, "packet l:%d\n", urb->actual_length); gspca_dev->sd_desc->pkt_scan(gspca_dev, urb->transfer_buffer, urb->actual_length); resubmit: if (!gspca_dev->streaming) return; /* resubmit the URB */ if (gspca_dev->cam.bulk_nurbs != 0) { st = usb_submit_urb(urb, GFP_ATOMIC); if (st < 0) pr_err("usb_submit_urb() ret %d\n", st); } } /* * add data to the current frame * * This function is called by the subdrivers at interrupt level. * * To build a frame, these ones must add * - one FIRST_PACKET * - 0 or many INTER_PACKETs * - one LAST_PACKET * DISCARD_PACKET invalidates the whole frame. */ void gspca_frame_add(struct gspca_dev *gspca_dev, enum gspca_packet_type packet_type, const u8 *data, int len) { struct gspca_buffer *buf; unsigned long flags; gspca_dbg(gspca_dev, D_PACK, "add t:%d l:%d\n", packet_type, len); spin_lock_irqsave(&gspca_dev->qlock, flags); buf = list_first_entry_or_null(&gspca_dev->buf_list, typeof(*buf), list); spin_unlock_irqrestore(&gspca_dev->qlock, flags); if (packet_type == FIRST_PACKET) { /* if there is no queued buffer, discard the whole frame */ if (!buf) { gspca_dev->last_packet_type = DISCARD_PACKET; gspca_dev->sequence++; return; } gspca_dev->image = vb2_plane_vaddr(&buf->vb.vb2_buf, 0); gspca_dev->image_len = 0; } else { switch (gspca_dev->last_packet_type) { case DISCARD_PACKET: if (packet_type == LAST_PACKET) { gspca_dev->last_packet_type = packet_type; gspca_dev->image = NULL; gspca_dev->image_len = 0; } return; case LAST_PACKET: return; } } /* append the packet to the frame buffer */ if (len > 0) { if (gspca_dev->image_len + len > PAGE_ALIGN(gspca_dev->pixfmt.sizeimage)) { gspca_err(gspca_dev, "frame overflow %d > %d\n", gspca_dev->image_len + len, PAGE_ALIGN(gspca_dev->pixfmt.sizeimage)); packet_type = DISCARD_PACKET; } else { /* !! image is NULL only when last pkt is LAST or DISCARD if (gspca_dev->image == NULL) { pr_err("gspca_frame_add() image == NULL\n"); return; } */ memcpy(gspca_dev->image + gspca_dev->image_len, data, len); gspca_dev->image_len += len; } } gspca_dev->last_packet_type = packet_type; /* if last packet, invalidate packet concatenation until * next first packet, wake up the application and advance * in the queue */ if (packet_type == LAST_PACKET) { if (gspca_dev->image_len > gspca_dev->pixfmt.sizeimage) gspca_dev->image_len = gspca_dev->pixfmt.sizeimage; spin_lock_irqsave(&gspca_dev->qlock, flags); list_del(&buf->list); spin_unlock_irqrestore(&gspca_dev->qlock, flags); buf->vb.vb2_buf.timestamp = ktime_get_ns(); vb2_set_plane_payload(&buf->vb.vb2_buf, 0, gspca_dev->image_len); buf->vb.sequence = gspca_dev->sequence++; buf->vb.field = V4L2_FIELD_NONE; gspca_dbg(gspca_dev, D_FRAM, "frame complete len:%d\n", gspca_dev->image_len); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); gspca_dev->image = NULL; gspca_dev->image_len = 0; } } EXPORT_SYMBOL(gspca_frame_add); static void destroy_urbs(struct gspca_dev *gspca_dev) { struct urb *urb; unsigned int i; gspca_dbg(gspca_dev, D_STREAM, "kill transfer\n"); /* Killing all URBs guarantee that no URB completion * handler is running. Therefore, there shouldn't * be anyone trying to access gspca_dev->urb[i] */ for (i = 0; i < MAX_NURBS; i++) usb_kill_urb(gspca_dev->urb[i]); gspca_dbg(gspca_dev, D_STREAM, "releasing urbs\n"); for (i = 0; i < MAX_NURBS; i++) { urb = gspca_dev->urb[i]; if (!urb) continue; gspca_dev->urb[i] = NULL; usb_free_coherent(gspca_dev->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); usb_free_urb(urb); } } static int gspca_set_alt0(struct gspca_dev *gspca_dev) { int ret; if (gspca_dev->alt == 0) return 0; ret = usb_set_interface(gspca_dev->dev, gspca_dev->iface, 0); if (ret < 0) pr_err("set alt 0 err %d\n", ret); return ret; } /* * look for an input transfer endpoint in an alternate setting. * * If xfer_ep is invalid, return the first valid ep found, otherwise * look for exactly the ep with address equal to xfer_ep. */ static struct usb_host_endpoint *alt_xfer(struct usb_host_interface *alt, int xfer, int xfer_ep) { struct usb_host_endpoint *ep; int i, attr; for (i = 0; i < alt->desc.bNumEndpoints; i++) { ep = &alt->endpoint[i]; attr = ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; if (attr == xfer && ep->desc.wMaxPacketSize != 0 && usb_endpoint_dir_in(&ep->desc) && (xfer_ep < 0 || ep->desc.bEndpointAddress == xfer_ep)) return ep; } return NULL; } /* compute the minimum bandwidth for the current transfer */ static u32 which_bandwidth(struct gspca_dev *gspca_dev) { u32 bandwidth; /* get the (max) image size */ bandwidth = gspca_dev->pixfmt.sizeimage; /* if the image is compressed, estimate its mean size */ if (!gspca_dev->cam.needs_full_bandwidth && bandwidth < gspca_dev->pixfmt.width * gspca_dev->pixfmt.height) bandwidth = bandwidth * 3 / 8; /* 0.375 */ /* estimate the frame rate */ if (gspca_dev->sd_desc->get_streamparm) { struct v4l2_streamparm parm; gspca_dev->sd_desc->get_streamparm(gspca_dev, &parm); bandwidth *= parm.parm.capture.timeperframe.denominator; bandwidth /= parm.parm.capture.timeperframe.numerator; } else { /* don't hope more than 15 fps with USB 1.1 and * image resolution >= 640x480 */ if (gspca_dev->pixfmt.width >= 640 && gspca_dev->dev->speed == USB_SPEED_FULL) bandwidth *= 15; /* 15 fps */ else bandwidth *= 30; /* 30 fps */ } gspca_dbg(gspca_dev, D_STREAM, "min bandwidth: %d\n", bandwidth); return bandwidth; } /* endpoint table */ #define MAX_ALT 16 struct ep_tb_s { u32 alt; u32 bandwidth; }; /* * build the table of the endpoints * and compute the minimum bandwidth for the image transfer */ static int build_isoc_ep_tb(struct gspca_dev *gspca_dev, struct usb_interface *intf, struct ep_tb_s *ep_tb) { struct usb_host_endpoint *ep; int i, j, nbalt, psize, found; u32 bandwidth, last_bw; nbalt = intf->num_altsetting; if (nbalt > MAX_ALT) nbalt = MAX_ALT; /* fixme: should warn */ /* build the endpoint table */ i = 0; last_bw = 0; for (;;) { ep_tb->bandwidth = 2000 * 2000 * 120; found = 0; for (j = 0; j < nbalt; j++) { ep = alt_xfer(&intf->altsetting[j], USB_ENDPOINT_XFER_ISOC, gspca_dev->xfer_ep); if (ep == NULL) continue; if (ep->desc.bInterval == 0) { pr_err("alt %d iso endp with 0 interval\n", j); continue; } psize = le16_to_cpu(ep->desc.wMaxPacketSize); psize = (psize & 0x07ff) * (1 + ((psize >> 11) & 3)); bandwidth = psize * 1000; if (gspca_dev->dev->speed == USB_SPEED_HIGH || gspca_dev->dev->speed >= USB_SPEED_SUPER) bandwidth *= 8; bandwidth /= 1 << (ep->desc.bInterval - 1); if (bandwidth <= last_bw) continue; if (bandwidth < ep_tb->bandwidth) { ep_tb->bandwidth = bandwidth; ep_tb->alt = j; found = 1; } } if (!found) break; gspca_dbg(gspca_dev, D_STREAM, "alt %d bandwidth %d\n", ep_tb->alt, ep_tb->bandwidth); last_bw = ep_tb->bandwidth; i++; ep_tb++; } /* * If the camera: * has a usb audio class interface (a built in usb mic); and * is a usb 1 full speed device; and * uses the max full speed iso bandwidth; and * and has more than 1 alt setting * then skip the highest alt setting to spare bandwidth for the mic */ if (gspca_dev->audio && gspca_dev->dev->speed == USB_SPEED_FULL && last_bw >= 1000000 && i > 1) { gspca_dbg(gspca_dev, D_STREAM, "dev has usb audio, skipping highest alt\n"); i--; ep_tb--; } /* get the requested bandwidth and start at the highest atlsetting */ bandwidth = which_bandwidth(gspca_dev); ep_tb--; while (i > 1) { ep_tb--; if (ep_tb->bandwidth < bandwidth) break; i--; } return i; } /* * create the URBs for image transfer */ static int create_urbs(struct gspca_dev *gspca_dev, struct usb_host_endpoint *ep) { struct urb *urb; int n, nurbs, i, psize, npkt, bsize; /* calculate the packet size and the number of packets */ psize = le16_to_cpu(ep->desc.wMaxPacketSize); if (!gspca_dev->cam.bulk) { /* isoc */ /* See paragraph 5.9 / table 5-11 of the usb 2.0 spec. */ if (gspca_dev->pkt_size == 0) psize = (psize & 0x07ff) * (1 + ((psize >> 11) & 3)); else psize = gspca_dev->pkt_size; npkt = gspca_dev->cam.npkt; if (npkt == 0) npkt = 32; /* default value */ bsize = psize * npkt; gspca_dbg(gspca_dev, D_STREAM, "isoc %d pkts size %d = bsize:%d\n", npkt, psize, bsize); nurbs = DEF_NURBS; } else { /* bulk */ npkt = 0; bsize = gspca_dev->cam.bulk_size; if (bsize == 0) bsize = psize; gspca_dbg(gspca_dev, D_STREAM, "bulk bsize:%d\n", bsize); if (gspca_dev->cam.bulk_nurbs != 0) nurbs = gspca_dev->cam.bulk_nurbs; else nurbs = 1; } for (n = 0; n < nurbs; n++) { urb = usb_alloc_urb(npkt, GFP_KERNEL); if (!urb) return -ENOMEM; gspca_dev->urb[n] = urb; urb->transfer_buffer = usb_alloc_coherent(gspca_dev->dev, bsize, GFP_KERNEL, &urb->transfer_dma); if (urb->transfer_buffer == NULL) { pr_err("usb_alloc_coherent failed\n"); return -ENOMEM; } urb->dev = gspca_dev->dev; urb->context = gspca_dev; urb->transfer_buffer_length = bsize; if (npkt != 0) { /* ISOC */ urb->pipe = usb_rcvisocpipe(gspca_dev->dev, ep->desc.bEndpointAddress); urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; urb->interval = 1 << (ep->desc.bInterval - 1); urb->complete = isoc_irq; urb->number_of_packets = npkt; for (i = 0; i < npkt; i++) { urb->iso_frame_desc[i].length = psize; urb->iso_frame_desc[i].offset = psize * i; } } else { /* bulk */ urb->pipe = usb_rcvbulkpipe(gspca_dev->dev, ep->desc.bEndpointAddress); urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; urb->complete = bulk_irq; } } return 0; } /* Note: both the queue and the usb locks should be held when calling this */ static void gspca_stream_off(struct gspca_dev *gspca_dev) { gspca_dev->streaming = false; gspca_dev->usb_err = 0; if (gspca_dev->sd_desc->stopN) gspca_dev->sd_desc->stopN(gspca_dev); destroy_urbs(gspca_dev); gspca_input_destroy_urb(gspca_dev); gspca_set_alt0(gspca_dev); if (gspca_dev->present) gspca_input_create_urb(gspca_dev); if (gspca_dev->sd_desc->stop0) gspca_dev->sd_desc->stop0(gspca_dev); gspca_dbg(gspca_dev, D_STREAM, "stream off OK\n"); } /* * start the USB transfer */ static int gspca_init_transfer(struct gspca_dev *gspca_dev) { struct usb_interface *intf; struct usb_host_endpoint *ep; struct urb *urb; struct ep_tb_s ep_tb[MAX_ALT]; int n, ret, xfer, alt, alt_idx; /* reset the streaming variables */ gspca_dev->image = NULL; gspca_dev->image_len = 0; gspca_dev->last_packet_type = DISCARD_PACKET; gspca_dev->usb_err = 0; /* do the specific subdriver stuff before endpoint selection */ intf = usb_ifnum_to_if(gspca_dev->dev, gspca_dev->iface); gspca_dev->alt = gspca_dev->cam.bulk ? intf->num_altsetting : 0; if (gspca_dev->sd_desc->isoc_init) { ret = gspca_dev->sd_desc->isoc_init(gspca_dev); if (ret < 0) return ret; } xfer = gspca_dev->cam.bulk ? USB_ENDPOINT_XFER_BULK : USB_ENDPOINT_XFER_ISOC; /* if bulk or the subdriver forced an altsetting, get the endpoint */ if (gspca_dev->alt != 0) { gspca_dev->alt--; /* (previous version compatibility) */ ep = alt_xfer(&intf->altsetting[gspca_dev->alt], xfer, gspca_dev->xfer_ep); if (ep == NULL) { pr_err("bad altsetting %d\n", gspca_dev->alt); return -EIO; } ep_tb[0].alt = gspca_dev->alt; alt_idx = 1; } else { /* else, compute the minimum bandwidth * and build the endpoint table */ alt_idx = build_isoc_ep_tb(gspca_dev, intf, ep_tb); if (alt_idx <= 0) { pr_err("no transfer endpoint found\n"); return -EIO; } } /* set the highest alternate setting and * loop until urb submit succeeds */ gspca_input_destroy_urb(gspca_dev); gspca_dev->alt = ep_tb[--alt_idx].alt; alt = -1; for (;;) { if (alt != gspca_dev->alt) { alt = gspca_dev->alt; if (intf->num_altsetting > 1) { ret = usb_set_interface(gspca_dev->dev, gspca_dev->iface, alt); if (ret < 0) { if (ret == -ENOSPC) goto retry; /*fixme: ugly*/ pr_err("set alt %d err %d\n", alt, ret); goto out; } } } if (!gspca_dev->cam.no_urb_create) { gspca_dbg(gspca_dev, D_STREAM, "init transfer alt %d\n", alt); ret = create_urbs(gspca_dev, alt_xfer(&intf->altsetting[alt], xfer, gspca_dev->xfer_ep)); if (ret < 0) { destroy_urbs(gspca_dev); goto out; } } /* clear the bulk endpoint */ if (gspca_dev->cam.bulk) usb_clear_halt(gspca_dev->dev, gspca_dev->urb[0]->pipe); /* start the cam */ ret = gspca_dev->sd_desc->start(gspca_dev); if (ret < 0) { destroy_urbs(gspca_dev); goto out; } v4l2_ctrl_handler_setup(gspca_dev->vdev.ctrl_handler); gspca_dev->streaming = true; /* some bulk transfers are started by the subdriver */ if (gspca_dev->cam.bulk && gspca_dev->cam.bulk_nurbs == 0) break; /* submit the URBs */ for (n = 0; n < MAX_NURBS; n++) { urb = gspca_dev->urb[n]; if (urb == NULL) break; ret = usb_submit_urb(urb, GFP_KERNEL); if (ret < 0) break; } if (ret >= 0) break; /* transfer is started */ /* something when wrong * stop the webcam and free the transfer resources */ gspca_stream_off(gspca_dev); if (ret != -ENOSPC) { pr_err("usb_submit_urb alt %d err %d\n", gspca_dev->alt, ret); goto out; } /* the bandwidth is not wide enough * negotiate or try a lower alternate setting */ retry: gspca_err(gspca_dev, "alt %d - bandwidth not wide enough, trying again\n", alt); msleep(20); /* wait for kill complete */ if (gspca_dev->sd_desc->isoc_nego) { ret = gspca_dev->sd_desc->isoc_nego(gspca_dev); if (ret < 0) goto out; } else { if (alt_idx <= 0) { pr_err("no transfer endpoint found\n"); ret = -EIO; goto out; } gspca_dev->alt = ep_tb[--alt_idx].alt; } } out: gspca_input_create_urb(gspca_dev); return ret; } static void gspca_set_default_mode(struct gspca_dev *gspca_dev) { int i; i = gspca_dev->cam.nmodes - 1; /* take the highest mode */ gspca_dev->curr_mode = i; gspca_dev->pixfmt = gspca_dev->cam.cam_mode[i]; /* does nothing if ctrl_handler == NULL */ v4l2_ctrl_handler_setup(gspca_dev->vdev.ctrl_handler); } static int wxh_to_mode(struct gspca_dev *gspca_dev, int width, int height, u32 pixelformat) { int i; for (i = 0; i < gspca_dev->cam.nmodes; i++) { if (width == gspca_dev->cam.cam_mode[i].width && height == gspca_dev->cam.cam_mode[i].height && pixelformat == gspca_dev->cam.cam_mode[i].pixelformat) return i; } return -EINVAL; } static int wxh_to_nearest_mode(struct gspca_dev *gspca_dev, int width, int height, u32 pixelformat) { int i; for (i = gspca_dev->cam.nmodes; --i >= 0; ) { if (width >= gspca_dev->cam.cam_mode[i].width && height >= gspca_dev->cam.cam_mode[i].height && pixelformat == gspca_dev->cam.cam_mode[i].pixelformat) return i; } for (i = gspca_dev->cam.nmodes; --i > 0; ) { if (width >= gspca_dev->cam.cam_mode[i].width && height >= gspca_dev->cam.cam_mode[i].height) break; } return i; } /* * search a mode with the right pixel format */ static int gspca_get_mode(struct gspca_dev *gspca_dev, int mode, int pixfmt) { int modeU, modeD; modeU = modeD = mode; while ((modeU < gspca_dev->cam.nmodes) || modeD >= 0) { if (--modeD >= 0) { if (gspca_dev->cam.cam_mode[modeD].pixelformat == pixfmt) return modeD; } if (++modeU < gspca_dev->cam.nmodes) { if (gspca_dev->cam.cam_mode[modeU].pixelformat == pixfmt) return modeU; } } return -EINVAL; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int vidioc_g_chip_info(struct file *file, void *priv, struct v4l2_dbg_chip_info *chip) { struct gspca_dev *gspca_dev = video_drvdata(file); gspca_dev->usb_err = 0; if (gspca_dev->sd_desc->get_chip_info) return gspca_dev->sd_desc->get_chip_info(gspca_dev, chip); return chip->match.addr ? -EINVAL : 0; } static int vidioc_g_register(struct file *file, void *priv, struct v4l2_dbg_register *reg) { struct gspca_dev *gspca_dev = video_drvdata(file); gspca_dev->usb_err = 0; return gspca_dev->sd_desc->get_register(gspca_dev, reg); } static int vidioc_s_register(struct file *file, void *priv, const struct v4l2_dbg_register *reg) { struct gspca_dev *gspca_dev = video_drvdata(file); gspca_dev->usb_err = 0; return gspca_dev->sd_desc->set_register(gspca_dev, reg); } #endif static int vidioc_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *fmtdesc) { struct gspca_dev *gspca_dev = video_drvdata(file); int i, j, index; __u32 fmt_tb[8]; /* give an index to each format */ index = 0; for (i = gspca_dev->cam.nmodes; --i >= 0; ) { fmt_tb[index] = gspca_dev->cam.cam_mode[i].pixelformat; j = 0; for (;;) { if (fmt_tb[j] == fmt_tb[index]) break; j++; } if (j == index) { if (fmtdesc->index == index) break; /* new format */ index++; if (index >= ARRAY_SIZE(fmt_tb)) return -EINVAL; } } if (i < 0) return -EINVAL; /* no more format */ fmtdesc->pixelformat = fmt_tb[index]; return 0; } static int vidioc_g_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *fmt) { struct gspca_dev *gspca_dev = video_drvdata(file); u32 fmt_priv = fmt->fmt.pix.priv; fmt->fmt.pix = gspca_dev->pixfmt; /* some drivers use priv internally, so keep the original value */ fmt->fmt.pix.priv = fmt_priv; return 0; } static int try_fmt_vid_cap(struct gspca_dev *gspca_dev, struct v4l2_format *fmt) { int w, h, mode, mode2; w = fmt->fmt.pix.width; h = fmt->fmt.pix.height; PDEBUG_MODE(gspca_dev, D_CONF, "try fmt cap", fmt->fmt.pix.pixelformat, w, h); /* search the nearest mode for width and height */ mode = wxh_to_nearest_mode(gspca_dev, w, h, fmt->fmt.pix.pixelformat); /* OK if right palette */ if (gspca_dev->cam.cam_mode[mode].pixelformat != fmt->fmt.pix.pixelformat) { /* else, search the closest mode with the same pixel format */ mode2 = gspca_get_mode(gspca_dev, mode, fmt->fmt.pix.pixelformat); if (mode2 >= 0) mode = mode2; } fmt->fmt.pix = gspca_dev->cam.cam_mode[mode]; if (gspca_dev->sd_desc->try_fmt) { /* pass original resolution to subdriver try_fmt */ fmt->fmt.pix.width = w; fmt->fmt.pix.height = h; gspca_dev->sd_desc->try_fmt(gspca_dev, fmt); } return mode; /* used when s_fmt */ } static int vidioc_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *fmt) { struct gspca_dev *gspca_dev = video_drvdata(file); u32 fmt_priv = fmt->fmt.pix.priv; if (try_fmt_vid_cap(gspca_dev, fmt) < 0) return -EINVAL; /* some drivers use priv internally, so keep the original value */ fmt->fmt.pix.priv = fmt_priv; return 0; } static int vidioc_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *fmt) { struct gspca_dev *gspca_dev = video_drvdata(file); u32 fmt_priv = fmt->fmt.pix.priv; int mode; if (vb2_is_busy(&gspca_dev->queue)) return -EBUSY; mode = try_fmt_vid_cap(gspca_dev, fmt); if (mode < 0) return -EINVAL; gspca_dev->curr_mode = mode; if (gspca_dev->sd_desc->try_fmt) /* subdriver try_fmt can modify format parameters */ gspca_dev->pixfmt = fmt->fmt.pix; else gspca_dev->pixfmt = gspca_dev->cam.cam_mode[mode]; /* some drivers use priv internally, so keep the original value */ fmt->fmt.pix.priv = fmt_priv; return 0; } static int vidioc_enum_framesizes(struct file *file, void *priv, struct v4l2_frmsizeenum *fsize) { struct gspca_dev *gspca_dev = video_drvdata(file); int i; __u32 index = 0; if (gspca_dev->sd_desc->enum_framesizes) return gspca_dev->sd_desc->enum_framesizes(gspca_dev, fsize); for (i = 0; i < gspca_dev->cam.nmodes; i++) { if (fsize->pixel_format != gspca_dev->cam.cam_mode[i].pixelformat) continue; if (fsize->index == index) { fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = gspca_dev->cam.cam_mode[i].width; fsize->discrete.height = gspca_dev->cam.cam_mode[i].height; return 0; } index++; } return -EINVAL; } static int vidioc_enum_frameintervals(struct file *filp, void *priv, struct v4l2_frmivalenum *fival) { struct gspca_dev *gspca_dev = video_drvdata(filp); int mode; __u32 i; mode = wxh_to_mode(gspca_dev, fival->width, fival->height, fival->pixel_format); if (mode < 0) return -EINVAL; if (gspca_dev->cam.mode_framerates == NULL || gspca_dev->cam.mode_framerates[mode].nrates == 0) return -EINVAL; if (fival->pixel_format != gspca_dev->cam.cam_mode[mode].pixelformat) return -EINVAL; for (i = 0; i < gspca_dev->cam.mode_framerates[mode].nrates; i++) { if (fival->index == i) { fival->type = V4L2_FRMIVAL_TYPE_DISCRETE; fival->discrete.numerator = 1; fival->discrete.denominator = gspca_dev->cam.mode_framerates[mode].rates[i]; return 0; } } return -EINVAL; } static void gspca_release(struct v4l2_device *v4l2_device) { struct gspca_dev *gspca_dev = container_of(v4l2_device, struct gspca_dev, v4l2_dev); v4l2_ctrl_handler_free(gspca_dev->vdev.ctrl_handler); v4l2_device_unregister(&gspca_dev->v4l2_dev); kfree(gspca_dev->usb_buf); kfree(gspca_dev); } static int vidioc_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { struct gspca_dev *gspca_dev = video_drvdata(file); strscpy((char *)cap->driver, gspca_dev->sd_desc->name, sizeof(cap->driver)); if (gspca_dev->dev->product != NULL) { strscpy((char *)cap->card, gspca_dev->dev->product, sizeof(cap->card)); } else { snprintf((char *) cap->card, sizeof cap->card, "USB Camera (%04x:%04x)", le16_to_cpu(gspca_dev->dev->descriptor.idVendor), le16_to_cpu(gspca_dev->dev->descriptor.idProduct)); } usb_make_path(gspca_dev->dev, (char *) cap->bus_info, sizeof(cap->bus_info)); return 0; } static int vidioc_enum_input(struct file *file, void *priv, struct v4l2_input *input) { struct gspca_dev *gspca_dev = video_drvdata(file); if (input->index != 0) return -EINVAL; input->type = V4L2_INPUT_TYPE_CAMERA; input->status = gspca_dev->cam.input_flags; strscpy(input->name, gspca_dev->sd_desc->name, sizeof input->name); return 0; } static int vidioc_g_input(struct file *file, void *priv, unsigned int *i) { *i = 0; return 0; } static int vidioc_s_input(struct file *file, void *priv, unsigned int i) { if (i > 0) return -EINVAL; return 0; } static int vidioc_g_jpegcomp(struct file *file, void *priv, struct v4l2_jpegcompression *jpegcomp) { struct gspca_dev *gspca_dev = video_drvdata(file); gspca_dev->usb_err = 0; return gspca_dev->sd_desc->get_jcomp(gspca_dev, jpegcomp); } static int vidioc_s_jpegcomp(struct file *file, void *priv, const struct v4l2_jpegcompression *jpegcomp) { struct gspca_dev *gspca_dev = video_drvdata(file); gspca_dev->usb_err = 0; return gspca_dev->sd_desc->set_jcomp(gspca_dev, jpegcomp); } static int vidioc_g_parm(struct file *filp, void *priv, struct v4l2_streamparm *parm) { struct gspca_dev *gspca_dev = video_drvdata(filp); parm->parm.capture.readbuffers = gspca_dev->queue.min_queued_buffers; if (!gspca_dev->sd_desc->get_streamparm) return 0; parm->parm.capture.capability = V4L2_CAP_TIMEPERFRAME; gspca_dev->usb_err = 0; gspca_dev->sd_desc->get_streamparm(gspca_dev, parm); return gspca_dev->usb_err; } static int vidioc_s_parm(struct file *filp, void *priv, struct v4l2_streamparm *parm) { struct gspca_dev *gspca_dev = video_drvdata(filp); parm->parm.capture.readbuffers = gspca_dev->queue.min_queued_buffers; if (!gspca_dev->sd_desc->set_streamparm) { parm->parm.capture.capability = 0; return 0; } parm->parm.capture.capability = V4L2_CAP_TIMEPERFRAME; gspca_dev->usb_err = 0; gspca_dev->sd_desc->set_streamparm(gspca_dev, parm); return gspca_dev->usb_err; } static int gspca_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct gspca_dev *gspca_dev = vb2_get_drv_priv(vq); unsigned int size = PAGE_ALIGN(gspca_dev->pixfmt.sizeimage); if (*nplanes) return sizes[0] < size ? -EINVAL : 0; *nplanes = 1; sizes[0] = size; return 0; } static int gspca_buffer_prepare(struct vb2_buffer *vb) { struct gspca_dev *gspca_dev = vb2_get_drv_priv(vb->vb2_queue); unsigned long size = PAGE_ALIGN(gspca_dev->pixfmt.sizeimage); if (vb2_plane_size(vb, 0) < size) { gspca_err(gspca_dev, "buffer too small (%lu < %lu)\n", vb2_plane_size(vb, 0), size); return -EINVAL; } return 0; } static void gspca_buffer_finish(struct vb2_buffer *vb) { struct gspca_dev *gspca_dev = vb2_get_drv_priv(vb->vb2_queue); if (!gspca_dev->sd_desc->dq_callback) return; gspca_dev->usb_err = 0; if (gspca_dev->present) gspca_dev->sd_desc->dq_callback(gspca_dev); } static void gspca_buffer_queue(struct vb2_buffer *vb) { struct gspca_dev *gspca_dev = vb2_get_drv_priv(vb->vb2_queue); struct gspca_buffer *buf = to_gspca_buffer(vb); unsigned long flags; spin_lock_irqsave(&gspca_dev->qlock, flags); list_add_tail(&buf->list, &gspca_dev->buf_list); spin_unlock_irqrestore(&gspca_dev->qlock, flags); } static void gspca_return_all_buffers(struct gspca_dev *gspca_dev, enum vb2_buffer_state state) { struct gspca_buffer *buf, *node; unsigned long flags; spin_lock_irqsave(&gspca_dev->qlock, flags); list_for_each_entry_safe(buf, node, &gspca_dev->buf_list, list) { vb2_buffer_done(&buf->vb.vb2_buf, state); list_del(&buf->list); } spin_unlock_irqrestore(&gspca_dev->qlock, flags); } static int gspca_start_streaming(struct vb2_queue *vq, unsigned int count) { struct gspca_dev *gspca_dev = vb2_get_drv_priv(vq); int ret; gspca_dev->sequence = 0; ret = gspca_init_transfer(gspca_dev); if (ret) gspca_return_all_buffers(gspca_dev, VB2_BUF_STATE_QUEUED); return ret; } static void gspca_stop_streaming(struct vb2_queue *vq) { struct gspca_dev *gspca_dev = vb2_get_drv_priv(vq); gspca_stream_off(gspca_dev); /* Release all active buffers */ gspca_return_all_buffers(gspca_dev, VB2_BUF_STATE_ERROR); } static const struct vb2_ops gspca_qops = { .queue_setup = gspca_queue_setup, .buf_prepare = gspca_buffer_prepare, .buf_finish = gspca_buffer_finish, .buf_queue = gspca_buffer_queue, .start_streaming = gspca_start_streaming, .stop_streaming = gspca_stop_streaming, }; static const struct v4l2_file_operations dev_fops = { .owner = THIS_MODULE, .open = v4l2_fh_open, .release = vb2_fop_release, .unlocked_ioctl = video_ioctl2, .read = vb2_fop_read, .mmap = vb2_fop_mmap, .poll = vb2_fop_poll, }; static const struct v4l2_ioctl_ops dev_ioctl_ops = { .vidioc_querycap = vidioc_querycap, .vidioc_enum_fmt_vid_cap = vidioc_enum_fmt_vid_cap, .vidioc_try_fmt_vid_cap = vidioc_try_fmt_vid_cap, .vidioc_g_fmt_vid_cap = vidioc_g_fmt_vid_cap, .vidioc_s_fmt_vid_cap = vidioc_s_fmt_vid_cap, .vidioc_enum_input = vidioc_enum_input, .vidioc_g_input = vidioc_g_input, .vidioc_s_input = vidioc_s_input, .vidioc_g_jpegcomp = vidioc_g_jpegcomp, .vidioc_s_jpegcomp = vidioc_s_jpegcomp, .vidioc_g_parm = vidioc_g_parm, .vidioc_s_parm = vidioc_s_parm, .vidioc_enum_framesizes = vidioc_enum_framesizes, .vidioc_enum_frameintervals = vidioc_enum_frameintervals, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, #ifdef CONFIG_VIDEO_ADV_DEBUG .vidioc_g_chip_info = vidioc_g_chip_info, .vidioc_g_register = vidioc_g_register, .vidioc_s_register = vidioc_s_register, #endif .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; static const struct video_device gspca_template = { .name = "gspca main driver", .fops = &dev_fops, .ioctl_ops = &dev_ioctl_ops, .release = video_device_release_empty, /* We use v4l2_dev.release */ }; /* * probe and create a new gspca device * * This function must be called by the sub-driver when it is * called for probing a new device. */ int gspca_dev_probe2(struct usb_interface *intf, const struct usb_device_id *id, const struct sd_desc *sd_desc, int dev_size, struct module *module) { struct gspca_dev *gspca_dev; struct usb_device *dev = interface_to_usbdev(intf); struct vb2_queue *q; int ret; pr_info("%s-" GSPCA_VERSION " probing %04x:%04x\n", sd_desc->name, id->idVendor, id->idProduct); /* create the device */ if (dev_size < sizeof *gspca_dev) dev_size = sizeof *gspca_dev; gspca_dev = kzalloc(dev_size, GFP_KERNEL); if (!gspca_dev) { pr_err("couldn't kzalloc gspca struct\n"); return -ENOMEM; } gspca_dev->usb_buf = kzalloc(USB_BUF_SZ, GFP_KERNEL); if (!gspca_dev->usb_buf) { pr_err("out of memory\n"); ret = -ENOMEM; goto out; } gspca_dev->dev = dev; gspca_dev->iface = intf->cur_altsetting->desc.bInterfaceNumber; gspca_dev->xfer_ep = -1; /* check if any audio device */ if (dev->actconfig->desc.bNumInterfaces != 1) { int i; struct usb_interface *intf2; for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { intf2 = dev->actconfig->interface[i]; if (intf2 != NULL && intf2->altsetting != NULL && intf2->altsetting->desc.bInterfaceClass == USB_CLASS_AUDIO) { gspca_dev->audio = 1; break; } } } gspca_dev->v4l2_dev.release = gspca_release; ret = v4l2_device_register(&intf->dev, &gspca_dev->v4l2_dev); if (ret) goto out; gspca_dev->present = true; gspca_dev->sd_desc = sd_desc; gspca_dev->empty_packet = -1; /* don't check the empty packets */ gspca_dev->vdev = gspca_template; gspca_dev->vdev.v4l2_dev = &gspca_dev->v4l2_dev; gspca_dev->vdev.device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING | V4L2_CAP_READWRITE; video_set_drvdata(&gspca_dev->vdev, gspca_dev); gspca_dev->module = module; mutex_init(&gspca_dev->usb_lock); gspca_dev->vdev.lock = &gspca_dev->usb_lock; init_waitqueue_head(&gspca_dev->wq); /* Initialize the vb2 queue */ q = &gspca_dev->queue; q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; q->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ; q->drv_priv = gspca_dev; q->buf_struct_size = sizeof(struct gspca_buffer); q->ops = &gspca_qops; q->mem_ops = &vb2_vmalloc_memops; q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; q->min_queued_buffers = 2; q->lock = &gspca_dev->usb_lock; ret = vb2_queue_init(q); if (ret) goto out; gspca_dev->vdev.queue = q; INIT_LIST_HEAD(&gspca_dev->buf_list); spin_lock_init(&gspca_dev->qlock); /* configure the subdriver and initialize the USB device */ ret = sd_desc->config(gspca_dev, id); if (ret < 0) goto out; ret = sd_desc->init(gspca_dev); if (ret < 0) goto out; if (sd_desc->init_controls) ret = sd_desc->init_controls(gspca_dev); if (ret < 0) goto out; gspca_set_default_mode(gspca_dev); ret = gspca_input_connect(gspca_dev); if (ret) goto out; #ifdef CONFIG_VIDEO_ADV_DEBUG if (!gspca_dev->sd_desc->get_register) v4l2_disable_ioctl(&gspca_dev->vdev, VIDIOC_DBG_G_REGISTER); if (!gspca_dev->sd_desc->set_register) v4l2_disable_ioctl(&gspca_dev->vdev, VIDIOC_DBG_S_REGISTER); #endif if (!gspca_dev->sd_desc->get_jcomp) v4l2_disable_ioctl(&gspca_dev->vdev, VIDIOC_G_JPEGCOMP); if (!gspca_dev->sd_desc->set_jcomp) v4l2_disable_ioctl(&gspca_dev->vdev, VIDIOC_S_JPEGCOMP); /* init video stuff */ ret = video_register_device(&gspca_dev->vdev, VFL_TYPE_VIDEO, -1); if (ret < 0) { pr_err("video_register_device err %d\n", ret); goto out; } usb_set_intfdata(intf, gspca_dev); gspca_dbg(gspca_dev, D_PROBE, "%s created\n", video_device_node_name(&gspca_dev->vdev)); gspca_input_create_urb(gspca_dev); return 0; out: #if IS_ENABLED(CONFIG_INPUT) if (gspca_dev->input_dev) input_unregister_device(gspca_dev->input_dev); #endif v4l2_ctrl_handler_free(gspca_dev->vdev.ctrl_handler); v4l2_device_unregister(&gspca_dev->v4l2_dev); if (sd_desc->probe_error) sd_desc->probe_error(gspca_dev); kfree(gspca_dev->usb_buf); kfree(gspca_dev); return ret; } EXPORT_SYMBOL(gspca_dev_probe2); /* same function as the previous one, but check the interface */ int gspca_dev_probe(struct usb_interface *intf, const struct usb_device_id *id, const struct sd_desc *sd_desc, int dev_size, struct module *module) { struct usb_device *dev = interface_to_usbdev(intf); /* we don't handle multi-config cameras */ if (dev->descriptor.bNumConfigurations != 1) { pr_err("%04x:%04x too many config\n", id->idVendor, id->idProduct); return -ENODEV; } /* the USB video interface must be the first one */ if (dev->actconfig->desc.bNumInterfaces != 1 && intf->cur_altsetting->desc.bInterfaceNumber != 0) return -ENODEV; return gspca_dev_probe2(intf, id, sd_desc, dev_size, module); } EXPORT_SYMBOL(gspca_dev_probe); /* * USB disconnection * * This function must be called by the sub-driver * when the device disconnects, after the specific resources are freed. */ void gspca_disconnect(struct usb_interface *intf) { struct gspca_dev *gspca_dev = usb_get_intfdata(intf); #if IS_ENABLED(CONFIG_INPUT) struct input_dev *input_dev; #endif gspca_dbg(gspca_dev, D_PROBE, "%s disconnect\n", video_device_node_name(&gspca_dev->vdev)); mutex_lock(&gspca_dev->usb_lock); gspca_dev->present = false; destroy_urbs(gspca_dev); gspca_input_destroy_urb(gspca_dev); vb2_queue_error(&gspca_dev->queue); #if IS_ENABLED(CONFIG_INPUT) input_dev = gspca_dev->input_dev; if (input_dev) { gspca_dev->input_dev = NULL; input_unregister_device(input_dev); } #endif v4l2_device_disconnect(&gspca_dev->v4l2_dev); video_unregister_device(&gspca_dev->vdev); mutex_unlock(&gspca_dev->usb_lock); /* (this will call gspca_release() immediately or on last close) */ v4l2_device_put(&gspca_dev->v4l2_dev); } EXPORT_SYMBOL(gspca_disconnect); #ifdef CONFIG_PM int gspca_suspend(struct usb_interface *intf, pm_message_t message) { struct gspca_dev *gspca_dev = usb_get_intfdata(intf); gspca_input_destroy_urb(gspca_dev); if (!vb2_start_streaming_called(&gspca_dev->queue)) return 0; mutex_lock(&gspca_dev->usb_lock); gspca_dev->frozen = 1; /* avoid urb error messages */ gspca_dev->usb_err = 0; if (gspca_dev->sd_desc->stopN) gspca_dev->sd_desc->stopN(gspca_dev); destroy_urbs(gspca_dev); gspca_set_alt0(gspca_dev); if (gspca_dev->sd_desc->stop0) gspca_dev->sd_desc->stop0(gspca_dev); mutex_unlock(&gspca_dev->usb_lock); return 0; } EXPORT_SYMBOL(gspca_suspend); int gspca_resume(struct usb_interface *intf) { struct gspca_dev *gspca_dev = usb_get_intfdata(intf); int streaming, ret = 0; mutex_lock(&gspca_dev->usb_lock); gspca_dev->frozen = 0; gspca_dev->usb_err = 0; gspca_dev->sd_desc->init(gspca_dev); /* * Most subdrivers send all ctrl values on sd_start and thus * only write to the device registers on s_ctrl when streaming -> * Clear streaming to avoid setting all ctrls twice. */ streaming = vb2_start_streaming_called(&gspca_dev->queue); if (streaming) ret = gspca_init_transfer(gspca_dev); else gspca_input_create_urb(gspca_dev); mutex_unlock(&gspca_dev->usb_lock); return ret; } EXPORT_SYMBOL(gspca_resume); #endif /* -- module insert / remove -- */ static int __init gspca_init(void) { pr_info("v" GSPCA_VERSION " registered\n"); return 0; } static void __exit gspca_exit(void) { } module_init(gspca_init); module_exit(gspca_exit); module_param_named(debug, gspca_debug, int, 0644); MODULE_PARM_DESC(debug, "1:probe 2:config 3:stream 4:frame 5:packet 6:usbi 7:usbo"); |
| 3 3 3 3 13 13 8 2 3 13 13 13 13 13 13 12 1 14 3 22 22 17 5 17 4 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012 Bjørn Mork <bjorn@mork.no> * * The probing code is heavily inspired by cdc_ether, which is: * Copyright (C) 2003-2005 by David Brownell * Copyright (C) 2006 by Ole Andre Vadla Ravnas (ActiveSync) */ #include <linux/module.h> #include <linux/sched/signal.h> #include <linux/netdevice.h> #include <linux/ethtool.h> #include <linux/etherdevice.h> #include <linux/if_arp.h> #include <linux/kstrtox.h> #include <linux/mii.h> #include <linux/rtnetlink.h> #include <linux/usb.h> #include <linux/usb/cdc.h> #include <linux/usb/usbnet.h> #include <linux/usb/cdc-wdm.h> #include <linux/u64_stats_sync.h> /* This driver supports wwan (3G/LTE/?) devices using a vendor * specific management protocol called Qualcomm MSM Interface (QMI) - * in addition to the more common AT commands over serial interface * management * * QMI is wrapped in CDC, using CDC encapsulated commands on the * control ("master") interface of a two-interface CDC Union * resembling standard CDC ECM. The devices do not use the control * interface for any other CDC messages. Most likely because the * management protocol is used in place of the standard CDC * notifications NOTIFY_NETWORK_CONNECTION and NOTIFY_SPEED_CHANGE * * Alternatively, control and data functions can be combined in a * single USB interface. * * Handling a protocol like QMI is out of the scope for any driver. * It is exported as a character device using the cdc-wdm driver as * a subdriver, enabling userspace applications ("modem managers") to * handle it. * * These devices may alternatively/additionally be configured using AT * commands on a serial interface */ /* driver specific data */ struct qmi_wwan_state { struct usb_driver *subdriver; atomic_t pmcount; unsigned long flags; struct usb_interface *control; struct usb_interface *data; }; enum qmi_wwan_flags { QMI_WWAN_FLAG_RAWIP = 1 << 0, QMI_WWAN_FLAG_MUX = 1 << 1, QMI_WWAN_FLAG_PASS_THROUGH = 1 << 2, }; enum qmi_wwan_quirks { QMI_WWAN_QUIRK_DTR = 1 << 0, /* needs "set DTR" request */ }; struct qmimux_hdr { u8 pad; u8 mux_id; __be16 pkt_len; }; struct qmimux_priv { struct net_device *real_dev; u8 mux_id; }; static int qmimux_open(struct net_device *dev) { struct qmimux_priv *priv = netdev_priv(dev); struct net_device *real_dev = priv->real_dev; if (!(priv->real_dev->flags & IFF_UP)) return -ENETDOWN; if (netif_carrier_ok(real_dev)) netif_carrier_on(dev); return 0; } static int qmimux_stop(struct net_device *dev) { netif_carrier_off(dev); return 0; } static netdev_tx_t qmimux_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct qmimux_priv *priv = netdev_priv(dev); unsigned int len = skb->len; struct qmimux_hdr *hdr; netdev_tx_t ret; hdr = skb_push(skb, sizeof(struct qmimux_hdr)); hdr->pad = 0; hdr->mux_id = priv->mux_id; hdr->pkt_len = cpu_to_be16(len); skb->dev = priv->real_dev; ret = dev_queue_xmit(skb); if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) dev_sw_netstats_tx_add(dev, 1, len); else dev->stats.tx_dropped++; return ret; } static const struct net_device_ops qmimux_netdev_ops = { .ndo_open = qmimux_open, .ndo_stop = qmimux_stop, .ndo_start_xmit = qmimux_start_xmit, }; static void qmimux_setup(struct net_device *dev) { dev->header_ops = NULL; /* No header */ dev->type = ARPHRD_NONE; dev->hard_header_len = 0; dev->addr_len = 0; dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; dev->netdev_ops = &qmimux_netdev_ops; dev->mtu = 1500; dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS; dev->needs_free_netdev = true; } static struct net_device *qmimux_find_dev(struct usbnet *dev, u8 mux_id) { struct qmimux_priv *priv; struct list_head *iter; struct net_device *ldev; rcu_read_lock(); netdev_for_each_upper_dev_rcu(dev->net, ldev, iter) { priv = netdev_priv(ldev); if (priv->mux_id == mux_id) { rcu_read_unlock(); return ldev; } } rcu_read_unlock(); return NULL; } static bool qmimux_has_slaves(struct usbnet *dev) { return !list_empty(&dev->net->adj_list.upper); } static int qmimux_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { unsigned int len, offset = 0, pad_len, pkt_len; struct qmimux_hdr *hdr; struct net_device *net; struct sk_buff *skbn; u8 qmimux_hdr_sz = sizeof(*hdr); while (offset + qmimux_hdr_sz < skb->len) { hdr = (struct qmimux_hdr *)(skb->data + offset); len = be16_to_cpu(hdr->pkt_len); /* drop the packet, bogus length */ if (offset + len + qmimux_hdr_sz > skb->len) return 0; /* control packet, we do not know what to do */ if (hdr->pad & 0x80) goto skip; /* extract padding length and check for valid length info */ pad_len = hdr->pad & 0x3f; if (len == 0 || pad_len >= len) goto skip; pkt_len = len - pad_len; net = qmimux_find_dev(dev, hdr->mux_id); if (!net) goto skip; skbn = netdev_alloc_skb(net, pkt_len + LL_MAX_HEADER); if (!skbn) return 0; switch (skb->data[offset + qmimux_hdr_sz] & 0xf0) { case 0x40: skbn->protocol = htons(ETH_P_IP); break; case 0x60: skbn->protocol = htons(ETH_P_IPV6); break; default: /* not ip - do not know what to do */ kfree_skb(skbn); goto skip; } skb_reserve(skbn, LL_MAX_HEADER); skb_put_data(skbn, skb->data + offset + qmimux_hdr_sz, pkt_len); if (netif_rx(skbn) != NET_RX_SUCCESS) { net->stats.rx_errors++; return 0; } else { dev_sw_netstats_rx_add(net, pkt_len); } skip: offset += len + qmimux_hdr_sz; } return 1; } static ssize_t mux_id_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_device *dev = to_net_dev(d); struct qmimux_priv *priv; priv = netdev_priv(dev); return sysfs_emit(buf, "0x%02x\n", priv->mux_id); } static DEVICE_ATTR_RO(mux_id); static struct attribute *qmi_wwan_sysfs_qmimux_attrs[] = { &dev_attr_mux_id.attr, NULL, }; static struct attribute_group qmi_wwan_sysfs_qmimux_attr_group = { .name = "qmap", .attrs = qmi_wwan_sysfs_qmimux_attrs, }; static int qmimux_register_device(struct net_device *real_dev, u8 mux_id) { struct net_device *new_dev; struct qmimux_priv *priv; int err; new_dev = alloc_netdev(sizeof(struct qmimux_priv), "qmimux%d", NET_NAME_UNKNOWN, qmimux_setup); if (!new_dev) return -ENOBUFS; dev_net_set(new_dev, dev_net(real_dev)); priv = netdev_priv(new_dev); priv->mux_id = mux_id; priv->real_dev = real_dev; new_dev->sysfs_groups[0] = &qmi_wwan_sysfs_qmimux_attr_group; err = register_netdevice(new_dev); if (err < 0) goto out_free_newdev; /* Account for reference in struct qmimux_priv_priv */ dev_hold(real_dev); err = netdev_upper_dev_link(real_dev, new_dev, NULL); if (err) goto out_unregister_netdev; netif_stacked_transfer_operstate(real_dev, new_dev); return 0; out_unregister_netdev: unregister_netdevice(new_dev); dev_put(real_dev); out_free_newdev: free_netdev(new_dev); return err; } static void qmimux_unregister_device(struct net_device *dev, struct list_head *head) { struct qmimux_priv *priv = netdev_priv(dev); struct net_device *real_dev = priv->real_dev; netdev_upper_dev_unlink(real_dev, dev); unregister_netdevice_queue(dev, head); /* Get rid of the reference to real_dev */ dev_put(real_dev); } static void qmi_wwan_netdev_setup(struct net_device *net) { struct usbnet *dev = netdev_priv(net); struct qmi_wwan_state *info = (void *)&dev->data; if (info->flags & QMI_WWAN_FLAG_RAWIP) { net->header_ops = NULL; /* No header */ net->type = ARPHRD_NONE; net->hard_header_len = 0; net->addr_len = 0; net->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; set_bit(EVENT_NO_IP_ALIGN, &dev->flags); netdev_dbg(net, "mode: raw IP\n"); } else if (!net->header_ops) { /* don't bother if already set */ ether_setup(net); /* Restoring min/max mtu values set originally by usbnet */ net->min_mtu = 0; net->max_mtu = ETH_MAX_MTU; clear_bit(EVENT_NO_IP_ALIGN, &dev->flags); netdev_dbg(net, "mode: Ethernet\n"); } /* recalculate buffers after changing hard_header_len */ usbnet_change_mtu(net, net->mtu); } static ssize_t raw_ip_show(struct device *d, struct device_attribute *attr, char *buf) { struct usbnet *dev = netdev_priv(to_net_dev(d)); struct qmi_wwan_state *info = (void *)&dev->data; return sprintf(buf, "%c\n", info->flags & QMI_WWAN_FLAG_RAWIP ? 'Y' : 'N'); } static ssize_t raw_ip_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { struct usbnet *dev = netdev_priv(to_net_dev(d)); struct qmi_wwan_state *info = (void *)&dev->data; bool enable; int ret; if (kstrtobool(buf, &enable)) return -EINVAL; /* no change? */ if (enable == (info->flags & QMI_WWAN_FLAG_RAWIP)) return len; /* ip mode cannot be cleared when pass through mode is set */ if (!enable && (info->flags & QMI_WWAN_FLAG_PASS_THROUGH)) { netdev_err(dev->net, "Cannot clear ip mode on pass through device\n"); return -EINVAL; } if (!rtnl_trylock()) return restart_syscall(); /* we don't want to modify a running netdev */ if (netif_running(dev->net)) { netdev_err(dev->net, "Cannot change a running device\n"); ret = -EBUSY; goto err; } /* let other drivers deny the change */ ret = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, dev->net); ret = notifier_to_errno(ret); if (ret) { netdev_err(dev->net, "Type change was refused\n"); goto err; } if (enable) info->flags |= QMI_WWAN_FLAG_RAWIP; else info->flags &= ~QMI_WWAN_FLAG_RAWIP; qmi_wwan_netdev_setup(dev->net); call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, dev->net); ret = len; err: rtnl_unlock(); return ret; } static ssize_t add_mux_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_device *dev = to_net_dev(d); struct qmimux_priv *priv; struct list_head *iter; struct net_device *ldev; ssize_t count = 0; rcu_read_lock(); netdev_for_each_upper_dev_rcu(dev, ldev, iter) { priv = netdev_priv(ldev); count += scnprintf(&buf[count], PAGE_SIZE - count, "0x%02x\n", priv->mux_id); } rcu_read_unlock(); return count; } static ssize_t add_mux_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { struct usbnet *dev = netdev_priv(to_net_dev(d)); struct qmi_wwan_state *info = (void *)&dev->data; u8 mux_id; int ret; if (kstrtou8(buf, 0, &mux_id)) return -EINVAL; /* mux_id [1 - 254] for compatibility with ip(8) and the rmnet driver */ if (mux_id < 1 || mux_id > 254) return -EINVAL; if (!rtnl_trylock()) return restart_syscall(); if (qmimux_find_dev(dev, mux_id)) { netdev_err(dev->net, "mux_id already present\n"); ret = -EINVAL; goto err; } ret = qmimux_register_device(dev->net, mux_id); if (!ret) { info->flags |= QMI_WWAN_FLAG_MUX; ret = len; } err: rtnl_unlock(); return ret; } static ssize_t del_mux_show(struct device *d, struct device_attribute *attr, char *buf) { return add_mux_show(d, attr, buf); } static ssize_t del_mux_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { struct usbnet *dev = netdev_priv(to_net_dev(d)); struct qmi_wwan_state *info = (void *)&dev->data; struct net_device *del_dev; u8 mux_id; int ret = 0; if (kstrtou8(buf, 0, &mux_id)) return -EINVAL; if (!rtnl_trylock()) return restart_syscall(); del_dev = qmimux_find_dev(dev, mux_id); if (!del_dev) { netdev_err(dev->net, "mux_id not present\n"); ret = -EINVAL; goto err; } qmimux_unregister_device(del_dev, NULL); if (!qmimux_has_slaves(dev)) info->flags &= ~QMI_WWAN_FLAG_MUX; ret = len; err: rtnl_unlock(); return ret; } static ssize_t pass_through_show(struct device *d, struct device_attribute *attr, char *buf) { struct usbnet *dev = netdev_priv(to_net_dev(d)); struct qmi_wwan_state *info; info = (void *)&dev->data; return sprintf(buf, "%c\n", info->flags & QMI_WWAN_FLAG_PASS_THROUGH ? 'Y' : 'N'); } static ssize_t pass_through_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { struct usbnet *dev = netdev_priv(to_net_dev(d)); struct qmi_wwan_state *info; bool enable; if (kstrtobool(buf, &enable)) return -EINVAL; info = (void *)&dev->data; /* no change? */ if (enable == (info->flags & QMI_WWAN_FLAG_PASS_THROUGH)) return len; /* pass through mode can be set for raw ip devices only */ if (!(info->flags & QMI_WWAN_FLAG_RAWIP)) { netdev_err(dev->net, "Cannot set pass through mode on non ip device\n"); return -EINVAL; } if (enable) info->flags |= QMI_WWAN_FLAG_PASS_THROUGH; else info->flags &= ~QMI_WWAN_FLAG_PASS_THROUGH; return len; } static DEVICE_ATTR_RW(raw_ip); static DEVICE_ATTR_RW(add_mux); static DEVICE_ATTR_RW(del_mux); static DEVICE_ATTR_RW(pass_through); static struct attribute *qmi_wwan_sysfs_attrs[] = { &dev_attr_raw_ip.attr, &dev_attr_add_mux.attr, &dev_attr_del_mux.attr, &dev_attr_pass_through.attr, NULL, }; static struct attribute_group qmi_wwan_sysfs_attr_group = { .name = "qmi", .attrs = qmi_wwan_sysfs_attrs, }; /* default ethernet address used by the modem */ static const u8 default_modem_addr[ETH_ALEN] = {0x02, 0x50, 0xf3}; static const u8 buggy_fw_addr[ETH_ALEN] = {0x00, 0xa0, 0xc6, 0x00, 0x00, 0x00}; /* Make up an ethernet header if the packet doesn't have one. * * A firmware bug common among several devices cause them to send raw * IP packets under some circumstances. There is no way for the * driver/host to know when this will happen. And even when the bug * hits, some packets will still arrive with an intact header. * * The supported devices are only capably of sending IPv4, IPv6 and * ARP packets on a point-to-point link. Any packet with an ethernet * header will have either our address or a broadcast/multicast * address as destination. ARP packets will always have a header. * * This means that this function will reliably add the appropriate * header iff necessary, provided our hardware address does not start * with 4 or 6. * * Another common firmware bug results in all packets being addressed * to 00:a0:c6:00:00:00 despite the host address being different. * This function will also fixup such packets. */ static int qmi_wwan_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { struct qmi_wwan_state *info = (void *)&dev->data; bool rawip = info->flags & QMI_WWAN_FLAG_RAWIP; __be16 proto; /* This check is no longer done by usbnet */ if (skb->len < dev->net->hard_header_len) return 0; if (info->flags & QMI_WWAN_FLAG_MUX) return qmimux_rx_fixup(dev, skb); if (info->flags & QMI_WWAN_FLAG_PASS_THROUGH) { skb->protocol = htons(ETH_P_MAP); return 1; } switch (skb->data[0] & 0xf0) { case 0x40: proto = htons(ETH_P_IP); break; case 0x60: proto = htons(ETH_P_IPV6); break; case 0x00: if (rawip) return 0; if (is_multicast_ether_addr(skb->data)) return 1; /* possibly bogus destination - rewrite just in case */ skb_reset_mac_header(skb); goto fix_dest; default: if (rawip) return 0; /* pass along other packets without modifications */ return 1; } if (rawip) { skb_reset_mac_header(skb); skb->dev = dev->net; /* normally set by eth_type_trans */ skb->protocol = proto; return 1; } if (skb_headroom(skb) < ETH_HLEN) return 0; skb_push(skb, ETH_HLEN); skb_reset_mac_header(skb); eth_hdr(skb)->h_proto = proto; eth_zero_addr(eth_hdr(skb)->h_source); fix_dest: memcpy(eth_hdr(skb)->h_dest, dev->net->dev_addr, ETH_ALEN); return 1; } /* very simplistic detection of IPv4 or IPv6 headers */ static bool possibly_iphdr(const char *data) { return (data[0] & 0xd0) == 0x40; } /* disallow addresses which may be confused with IP headers */ static int qmi_wwan_mac_addr(struct net_device *dev, void *p) { int ret; struct sockaddr *addr = p; ret = eth_prepare_mac_addr_change(dev, p); if (ret < 0) return ret; if (possibly_iphdr(addr->sa_data)) return -EADDRNOTAVAIL; eth_commit_mac_addr_change(dev, p); return 0; } static const struct net_device_ops qmi_wwan_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = usbnet_change_mtu, .ndo_set_mac_address = qmi_wwan_mac_addr, .ndo_validate_addr = eth_validate_addr, }; /* using a counter to merge subdriver requests with our own into a * combined state */ static int qmi_wwan_manage_power(struct usbnet *dev, int on) { struct qmi_wwan_state *info = (void *)&dev->data; int rv; dev_dbg(&dev->intf->dev, "%s() pmcount=%d, on=%d\n", __func__, atomic_read(&info->pmcount), on); if ((on && atomic_add_return(1, &info->pmcount) == 1) || (!on && atomic_dec_and_test(&info->pmcount))) { /* need autopm_get/put here to ensure the usbcore sees * the new value */ rv = usb_autopm_get_interface(dev->intf); dev->intf->needs_remote_wakeup = on; if (!rv) usb_autopm_put_interface(dev->intf); } return 0; } static int qmi_wwan_cdc_wdm_manage_power(struct usb_interface *intf, int on) { struct usbnet *dev = usb_get_intfdata(intf); /* can be called while disconnecting */ if (!dev) return 0; return qmi_wwan_manage_power(dev, on); } /* collect all three endpoints and register subdriver */ static int qmi_wwan_register_subdriver(struct usbnet *dev) { int rv; struct usb_driver *subdriver = NULL; struct qmi_wwan_state *info = (void *)&dev->data; /* collect bulk endpoints */ rv = usbnet_get_endpoints(dev, info->data); if (rv < 0) goto err; /* update status endpoint if separate control interface */ if (info->control != info->data) dev->status = &info->control->cur_altsetting->endpoint[0]; /* require interrupt endpoint for subdriver */ if (!dev->status) { rv = -EINVAL; goto err; } /* for subdriver power management */ atomic_set(&info->pmcount, 0); /* register subdriver */ subdriver = usb_cdc_wdm_register(info->control, &dev->status->desc, 4096, WWAN_PORT_QMI, &qmi_wwan_cdc_wdm_manage_power); if (IS_ERR(subdriver)) { dev_err(&info->control->dev, "subdriver registration failed\n"); rv = PTR_ERR(subdriver); goto err; } /* prevent usbnet from using status endpoint */ dev->status = NULL; /* save subdriver struct for suspend/resume wrappers */ info->subdriver = subdriver; err: return rv; } /* Send CDC SetControlLineState request, setting or clearing the DTR. * "Required for Autoconnect and 9x30 to wake up" according to the * GobiNet driver. The requirement has been verified on an MDM9230 * based Sierra Wireless MC7455 */ static int qmi_wwan_change_dtr(struct usbnet *dev, bool on) { u8 intf = dev->intf->cur_altsetting->desc.bInterfaceNumber; return usbnet_write_cmd(dev, USB_CDC_REQ_SET_CONTROL_LINE_STATE, USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE, on ? 0x01 : 0x00, intf, NULL, 0); } static int qmi_wwan_bind(struct usbnet *dev, struct usb_interface *intf) { int status; u8 *buf = intf->cur_altsetting->extra; int len = intf->cur_altsetting->extralen; struct usb_interface_descriptor *desc = &intf->cur_altsetting->desc; struct usb_cdc_union_desc *cdc_union; struct usb_cdc_ether_desc *cdc_ether; struct usb_driver *driver = driver_of(intf); struct qmi_wwan_state *info = (void *)&dev->data; struct usb_cdc_parsed_header hdr; BUILD_BUG_ON((sizeof(((struct usbnet *)0)->data) < sizeof(struct qmi_wwan_state))); /* set up initial state */ info->control = intf; info->data = intf; /* and a number of CDC descriptors */ cdc_parse_cdc_header(&hdr, intf, buf, len); cdc_union = hdr.usb_cdc_union_desc; cdc_ether = hdr.usb_cdc_ether_desc; /* Use separate control and data interfaces if we found a CDC Union */ if (cdc_union) { info->data = usb_ifnum_to_if(dev->udev, cdc_union->bSlaveInterface0); if (desc->bInterfaceNumber != cdc_union->bMasterInterface0 || !info->data) { dev_err(&intf->dev, "bogus CDC Union: master=%u, slave=%u\n", cdc_union->bMasterInterface0, cdc_union->bSlaveInterface0); /* ignore and continue... */ cdc_union = NULL; info->data = intf; } } /* errors aren't fatal - we can live with the dynamic address */ if (cdc_ether && cdc_ether->wMaxSegmentSize) { dev->hard_mtu = le16_to_cpu(cdc_ether->wMaxSegmentSize); usbnet_get_ethernet_addr(dev, cdc_ether->iMACAddress); } /* claim data interface and set it up */ if (info->control != info->data) { status = usb_driver_claim_interface(driver, info->data, dev); if (status < 0) goto err; } status = qmi_wwan_register_subdriver(dev); if (status < 0 && info->control != info->data) { usb_set_intfdata(info->data, NULL); usb_driver_release_interface(driver, info->data); } /* disabling remote wakeup on MDM9x30 devices has the same * effect as clearing DTR. The device will not respond to QMI * requests until we set DTR again. This is similar to a * QMI_CTL SYNC request, clearing a lot of firmware state * including the client ID allocations. * * Our usage model allows a session to span multiple * open/close events, so we must prevent the firmware from * clearing out state the clients might need. * * MDM9x30 is the first QMI chipset with USB3 support. Abuse * this fact to enable the quirk for all USB3 devices. * * There are also chipsets with the same "set DTR" requirement * but without USB3 support. Devices based on these chips * need a quirk flag in the device ID table. */ if (dev->driver_info->data & QMI_WWAN_QUIRK_DTR || le16_to_cpu(dev->udev->descriptor.bcdUSB) >= 0x0201) { qmi_wwan_manage_power(dev, 1); qmi_wwan_change_dtr(dev, true); } /* Never use the same address on both ends of the link, even if the * buggy firmware told us to. Or, if device is assigned the well-known * buggy firmware MAC address, replace it with a random address, */ if (ether_addr_equal(dev->net->dev_addr, default_modem_addr) || ether_addr_equal(dev->net->dev_addr, buggy_fw_addr)) eth_hw_addr_random(dev->net); /* make MAC addr easily distinguishable from an IP header */ if (possibly_iphdr(dev->net->dev_addr)) { u8 addr = dev->net->dev_addr[0]; addr |= 0x02; /* set local assignment bit */ addr &= 0xbf; /* clear "IP" bit */ dev_addr_mod(dev->net, 0, &addr, 1); } dev->net->netdev_ops = &qmi_wwan_netdev_ops; dev->net->sysfs_groups[0] = &qmi_wwan_sysfs_attr_group; err: return status; } static void qmi_wwan_unbind(struct usbnet *dev, struct usb_interface *intf) { struct qmi_wwan_state *info = (void *)&dev->data; struct usb_driver *driver = driver_of(intf); struct usb_interface *other; if (info->subdriver && info->subdriver->disconnect) info->subdriver->disconnect(info->control); /* disable MDM9x30 quirk */ if (le16_to_cpu(dev->udev->descriptor.bcdUSB) >= 0x0201) { qmi_wwan_change_dtr(dev, false); qmi_wwan_manage_power(dev, 0); } /* allow user to unbind using either control or data */ if (intf == info->control) other = info->data; else other = info->control; /* only if not shared */ if (other && intf != other) { usb_set_intfdata(other, NULL); usb_driver_release_interface(driver, other); } info->subdriver = NULL; info->data = NULL; info->control = NULL; } /* suspend/resume wrappers calling both usbnet and the cdc-wdm * subdriver if present. * * NOTE: cdc-wdm also supports pre/post_reset, but we cannot provide * wrappers for those without adding usbnet reset support first. */ static int qmi_wwan_suspend(struct usb_interface *intf, pm_message_t message) { struct usbnet *dev = usb_get_intfdata(intf); struct qmi_wwan_state *info = (void *)&dev->data; int ret; /* Both usbnet_suspend() and subdriver->suspend() MUST return 0 * in system sleep context, otherwise, the resume callback has * to recover device from previous suspend failure. */ ret = usbnet_suspend(intf, message); if (ret < 0) goto err; if (intf == info->control && info->subdriver && info->subdriver->suspend) ret = info->subdriver->suspend(intf, message); if (ret < 0) usbnet_resume(intf); err: return ret; } static int qmi_wwan_resume(struct usb_interface *intf) { struct usbnet *dev = usb_get_intfdata(intf); struct qmi_wwan_state *info = (void *)&dev->data; int ret = 0; bool callsub = (intf == info->control && info->subdriver && info->subdriver->resume); if (callsub) ret = info->subdriver->resume(intf); if (ret < 0) goto err; ret = usbnet_resume(intf); if (ret < 0 && callsub) info->subdriver->suspend(intf, PMSG_SUSPEND); err: return ret; } static const struct driver_info qmi_wwan_info = { .description = "WWAN/QMI device", .flags = FLAG_WWAN | FLAG_SEND_ZLP, .bind = qmi_wwan_bind, .unbind = qmi_wwan_unbind, .manage_power = qmi_wwan_manage_power, .rx_fixup = qmi_wwan_rx_fixup, }; static const struct driver_info qmi_wwan_info_quirk_dtr = { .description = "WWAN/QMI device", .flags = FLAG_WWAN | FLAG_SEND_ZLP, .bind = qmi_wwan_bind, .unbind = qmi_wwan_unbind, .manage_power = qmi_wwan_manage_power, .rx_fixup = qmi_wwan_rx_fixup, .data = QMI_WWAN_QUIRK_DTR, }; #define HUAWEI_VENDOR_ID 0x12D1 /* map QMI/wwan function by a fixed interface number */ #define QMI_FIXED_INTF(vend, prod, num) \ USB_DEVICE_INTERFACE_NUMBER(vend, prod, num), \ .driver_info = (unsigned long)&qmi_wwan_info /* devices requiring "set DTR" quirk */ #define QMI_QUIRK_SET_DTR(vend, prod, num) \ USB_DEVICE_INTERFACE_NUMBER(vend, prod, num), \ .driver_info = (unsigned long)&qmi_wwan_info_quirk_dtr /* Gobi 1000 QMI/wwan interface number is 3 according to qcserial */ #define QMI_GOBI1K_DEVICE(vend, prod) \ QMI_FIXED_INTF(vend, prod, 3) /* Gobi 2000/3000 QMI/wwan interface number is 0 according to qcserial */ #define QMI_GOBI_DEVICE(vend, prod) \ QMI_FIXED_INTF(vend, prod, 0) /* Many devices have QMI and DIAG functions which are distinguishable * from other vendor specific functions by class, subclass and * protocol all being 0xff. The DIAG function has exactly 2 endpoints * and is silently rejected when probed. * * This makes it possible to match dynamically numbered QMI functions * as seen on e.g. many Quectel modems. */ #define QMI_MATCH_FF_FF_FF(vend, prod) \ USB_DEVICE_AND_INTERFACE_INFO(vend, prod, USB_CLASS_VENDOR_SPEC, \ USB_SUBCLASS_VENDOR_SPEC, 0xff), \ .driver_info = (unsigned long)&qmi_wwan_info_quirk_dtr static const struct usb_device_id products[] = { /* 1. CDC ECM like devices match on the control interface */ { /* Huawei E392, E398 and possibly others sharing both device id and more... */ USB_VENDOR_AND_INTERFACE_INFO(HUAWEI_VENDOR_ID, USB_CLASS_VENDOR_SPEC, 1, 9), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Vodafone/Huawei K5005 (12d1:14c8) and similar modems */ USB_VENDOR_AND_INTERFACE_INFO(HUAWEI_VENDOR_ID, USB_CLASS_VENDOR_SPEC, 1, 57), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* HUAWEI_INTERFACE_NDIS_CONTROL_QUALCOMM */ USB_VENDOR_AND_INTERFACE_INFO(HUAWEI_VENDOR_ID, USB_CLASS_VENDOR_SPEC, 0x01, 0x69), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Motorola Mapphone devices with MDM6600 */ USB_VENDOR_AND_INTERFACE_INFO(0x22b8, USB_CLASS_VENDOR_SPEC, 0xfb, 0xff), .driver_info = (unsigned long)&qmi_wwan_info, }, /* 2. Combined interface devices matching on class+protocol */ { /* Huawei E367 and possibly others in "Windows mode" */ USB_VENDOR_AND_INTERFACE_INFO(HUAWEI_VENDOR_ID, USB_CLASS_VENDOR_SPEC, 1, 7), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Huawei E392, E398 and possibly others in "Windows mode" */ USB_VENDOR_AND_INTERFACE_INFO(HUAWEI_VENDOR_ID, USB_CLASS_VENDOR_SPEC, 1, 17), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* HUAWEI_NDIS_SINGLE_INTERFACE_VDF */ USB_VENDOR_AND_INTERFACE_INFO(HUAWEI_VENDOR_ID, USB_CLASS_VENDOR_SPEC, 0x01, 0x37), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* HUAWEI_INTERFACE_NDIS_HW_QUALCOMM */ USB_VENDOR_AND_INTERFACE_INFO(HUAWEI_VENDOR_ID, USB_CLASS_VENDOR_SPEC, 0x01, 0x67), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Pantech UML290, P4200 and more */ USB_VENDOR_AND_INTERFACE_INFO(0x106c, USB_CLASS_VENDOR_SPEC, 0xf0, 0xff), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Pantech UML290 - newer firmware */ USB_VENDOR_AND_INTERFACE_INFO(0x106c, USB_CLASS_VENDOR_SPEC, 0xf1, 0xff), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Novatel USB551L and MC551 */ USB_DEVICE_AND_INTERFACE_INFO(0x1410, 0xb001, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Novatel E362 */ USB_DEVICE_AND_INTERFACE_INFO(0x1410, 0x9010, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Novatel Expedite E371 */ USB_DEVICE_AND_INTERFACE_INFO(0x1410, 0x9011, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Dell Wireless 5800 (Novatel E362) */ USB_DEVICE_AND_INTERFACE_INFO(0x413C, 0x8195, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Dell Wireless 5800 V2 (Novatel E362) */ USB_DEVICE_AND_INTERFACE_INFO(0x413C, 0x8196, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* Dell Wireless 5804 (Novatel E371) */ USB_DEVICE_AND_INTERFACE_INFO(0x413C, 0x819b, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* ADU960S */ USB_DEVICE_AND_INTERFACE_INFO(0x16d5, 0x650a, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* HP lt2523 (Novatel E371) */ USB_DEVICE_AND_INTERFACE_INFO(0x03f0, 0x421d, USB_CLASS_COMM, USB_CDC_SUBCLASS_ETHERNET, USB_CDC_PROTO_NONE), .driver_info = (unsigned long)&qmi_wwan_info, }, { /* HP lt4112 LTE/HSPA+ Gobi 4G Module (Huawei me906e) */ USB_DEVICE_AND_INTERFACE_INFO(0x03f0, 0x581d, USB_CLASS_VENDOR_SPEC, 1, 7), .driver_info = (unsigned long)&qmi_wwan_info, }, {QMI_MATCH_FF_FF_FF(0x2c7c, 0x0122)}, /* Quectel RG650V */ {QMI_MATCH_FF_FF_FF(0x2c7c, 0x0125)}, /* Quectel EC25, EC20 R2.0 Mini PCIe */ {QMI_MATCH_FF_FF_FF(0x2c7c, 0x0306)}, /* Quectel EP06/EG06/EM06 */ {QMI_MATCH_FF_FF_FF(0x2c7c, 0x0512)}, /* Quectel EG12/EM12 */ {QMI_MATCH_FF_FF_FF(0x2c7c, 0x0620)}, /* Quectel EM160R-GL */ {QMI_MATCH_FF_FF_FF(0x2c7c, 0x0800)}, /* Quectel RM500Q-GL */ {QMI_MATCH_FF_FF_FF(0x2c7c, 0x0801)}, /* Quectel RM520N */ /* 3. Combined interface devices matching on interface number */ {QMI_FIXED_INTF(0x0408, 0xea42, 4)}, /* Yota / Megafon M100-1 */ {QMI_FIXED_INTF(0x05c6, 0x6001, 3)}, /* 4G LTE usb-modem U901 */ {QMI_FIXED_INTF(0x05c6, 0x7000, 0)}, {QMI_FIXED_INTF(0x05c6, 0x7001, 1)}, {QMI_FIXED_INTF(0x05c6, 0x7002, 1)}, {QMI_FIXED_INTF(0x05c6, 0x7101, 1)}, {QMI_FIXED_INTF(0x05c6, 0x7101, 2)}, {QMI_FIXED_INTF(0x05c6, 0x7101, 3)}, {QMI_FIXED_INTF(0x05c6, 0x7102, 1)}, {QMI_FIXED_INTF(0x05c6, 0x7102, 2)}, {QMI_FIXED_INTF(0x05c6, 0x7102, 3)}, {QMI_FIXED_INTF(0x05c6, 0x8000, 7)}, {QMI_FIXED_INTF(0x05c6, 0x8001, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9000, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9003, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9005, 2)}, {QMI_FIXED_INTF(0x05c6, 0x900a, 4)}, {QMI_FIXED_INTF(0x05c6, 0x900b, 2)}, {QMI_FIXED_INTF(0x05c6, 0x900c, 4)}, {QMI_FIXED_INTF(0x05c6, 0x900c, 5)}, {QMI_FIXED_INTF(0x05c6, 0x900c, 6)}, {QMI_FIXED_INTF(0x05c6, 0x900d, 5)}, {QMI_FIXED_INTF(0x05c6, 0x900f, 3)}, {QMI_FIXED_INTF(0x05c6, 0x900f, 4)}, {QMI_FIXED_INTF(0x05c6, 0x900f, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9010, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9010, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9011, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9011, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9021, 1)}, {QMI_FIXED_INTF(0x05c6, 0x9022, 2)}, {QMI_QUIRK_SET_DTR(0x05c6, 0x9025, 4)}, /* Alcatel-sbell ASB TL131 TDD LTE (China Mobile) */ {QMI_FIXED_INTF(0x05c6, 0x9026, 3)}, {QMI_FIXED_INTF(0x05c6, 0x902e, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9031, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9032, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9033, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9033, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9033, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9033, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9034, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9034, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9034, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9034, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9034, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9035, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9036, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9037, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9038, 4)}, {QMI_FIXED_INTF(0x05c6, 0x903b, 7)}, {QMI_FIXED_INTF(0x05c6, 0x903c, 6)}, {QMI_FIXED_INTF(0x05c6, 0x903d, 6)}, {QMI_FIXED_INTF(0x05c6, 0x903e, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9043, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9046, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9046, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9046, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9047, 2)}, {QMI_FIXED_INTF(0x05c6, 0x9047, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9047, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9048, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9048, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9048, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9048, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9048, 8)}, {QMI_FIXED_INTF(0x05c6, 0x904c, 5)}, {QMI_FIXED_INTF(0x05c6, 0x904c, 6)}, {QMI_FIXED_INTF(0x05c6, 0x904c, 7)}, {QMI_FIXED_INTF(0x05c6, 0x904c, 8)}, {QMI_FIXED_INTF(0x05c6, 0x9050, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9052, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9053, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9053, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9054, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9054, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9055, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9055, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9055, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9055, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9055, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9056, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 2)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 8)}, {QMI_FIXED_INTF(0x05c6, 0x9062, 9)}, {QMI_FIXED_INTF(0x05c6, 0x9064, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9065, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9065, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9066, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9066, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9067, 1)}, {QMI_FIXED_INTF(0x05c6, 0x9068, 2)}, {QMI_FIXED_INTF(0x05c6, 0x9068, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9068, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9068, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9068, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9068, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9069, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9069, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9069, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9069, 8)}, {QMI_FIXED_INTF(0x05c6, 0x9070, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9070, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9075, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9076, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9076, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9076, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9076, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9076, 8)}, {QMI_FIXED_INTF(0x05c6, 0x9077, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9077, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9077, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9077, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9078, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9079, 4)}, {QMI_FIXED_INTF(0x05c6, 0x9079, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9079, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9079, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9079, 8)}, {QMI_FIXED_INTF(0x05c6, 0x9080, 5)}, {QMI_FIXED_INTF(0x05c6, 0x9080, 6)}, {QMI_FIXED_INTF(0x05c6, 0x9080, 7)}, {QMI_FIXED_INTF(0x05c6, 0x9080, 8)}, {QMI_FIXED_INTF(0x05c6, 0x9083, 3)}, {QMI_FIXED_INTF(0x05c6, 0x9084, 4)}, {QMI_QUIRK_SET_DTR(0x05c6, 0x9091, 2)}, /* Compal RXM-G1 */ {QMI_FIXED_INTF(0x05c6, 0x90b2, 3)}, /* ublox R410M */ {QMI_QUIRK_SET_DTR(0x05c6, 0x90db, 2)}, /* Compal RXM-G1 */ {QMI_FIXED_INTF(0x05c6, 0x920d, 0)}, {QMI_FIXED_INTF(0x05c6, 0x920d, 5)}, {QMI_QUIRK_SET_DTR(0x05c6, 0x9625, 4)}, /* YUGA CLM920-NC5 */ {QMI_FIXED_INTF(0x0846, 0x68a2, 8)}, {QMI_FIXED_INTF(0x0846, 0x68d3, 8)}, /* Netgear Aircard 779S */ {QMI_FIXED_INTF(0x12d1, 0x140c, 1)}, /* Huawei E173 */ {QMI_FIXED_INTF(0x12d1, 0x14ac, 1)}, /* Huawei E1820 */ {QMI_FIXED_INTF(0x1435, 0x0918, 3)}, /* Wistron NeWeb D16Q1 */ {QMI_FIXED_INTF(0x1435, 0x0918, 4)}, /* Wistron NeWeb D16Q1 */ {QMI_FIXED_INTF(0x1435, 0x0918, 5)}, /* Wistron NeWeb D16Q1 */ {QMI_FIXED_INTF(0x1435, 0x3185, 4)}, /* Wistron NeWeb M18Q5 */ {QMI_FIXED_INTF(0x1435, 0xd111, 4)}, /* M9615A DM11-1 D51QC */ {QMI_FIXED_INTF(0x1435, 0xd181, 3)}, /* Wistron NeWeb D18Q1 */ {QMI_FIXED_INTF(0x1435, 0xd181, 4)}, /* Wistron NeWeb D18Q1 */ {QMI_FIXED_INTF(0x1435, 0xd181, 5)}, /* Wistron NeWeb D18Q1 */ {QMI_FIXED_INTF(0x1435, 0xd182, 4)}, /* Wistron NeWeb D18 */ {QMI_FIXED_INTF(0x1435, 0xd182, 5)}, /* Wistron NeWeb D18 */ {QMI_FIXED_INTF(0x1435, 0xd191, 4)}, /* Wistron NeWeb D19Q1 */ {QMI_QUIRK_SET_DTR(0x1508, 0x1001, 4)}, /* Fibocom NL668 series */ {QMI_FIXED_INTF(0x1690, 0x7588, 4)}, /* ASKEY WWHC050 */ {QMI_FIXED_INTF(0x16d8, 0x6003, 0)}, /* CMOTech 6003 */ {QMI_FIXED_INTF(0x16d8, 0x6007, 0)}, /* CMOTech CHE-628S */ {QMI_FIXED_INTF(0x16d8, 0x6008, 0)}, /* CMOTech CMU-301 */ {QMI_FIXED_INTF(0x16d8, 0x6280, 0)}, /* CMOTech CHU-628 */ {QMI_FIXED_INTF(0x16d8, 0x7001, 0)}, /* CMOTech CHU-720S */ {QMI_FIXED_INTF(0x16d8, 0x7002, 0)}, /* CMOTech 7002 */ {QMI_FIXED_INTF(0x16d8, 0x7003, 4)}, /* CMOTech CHU-629K */ {QMI_FIXED_INTF(0x16d8, 0x7004, 3)}, /* CMOTech 7004 */ {QMI_FIXED_INTF(0x16d8, 0x7006, 5)}, /* CMOTech CGU-629 */ {QMI_FIXED_INTF(0x16d8, 0x700a, 4)}, /* CMOTech CHU-629S */ {QMI_FIXED_INTF(0x16d8, 0x7211, 0)}, /* CMOTech CHU-720I */ {QMI_FIXED_INTF(0x16d8, 0x7212, 0)}, /* CMOTech 7212 */ {QMI_FIXED_INTF(0x16d8, 0x7213, 0)}, /* CMOTech 7213 */ {QMI_FIXED_INTF(0x16d8, 0x7251, 1)}, /* CMOTech 7251 */ {QMI_FIXED_INTF(0x16d8, 0x7252, 1)}, /* CMOTech 7252 */ {QMI_FIXED_INTF(0x16d8, 0x7253, 1)}, /* CMOTech 7253 */ {QMI_FIXED_INTF(0x19d2, 0x0002, 1)}, {QMI_FIXED_INTF(0x19d2, 0x0012, 1)}, {QMI_FIXED_INTF(0x19d2, 0x0017, 3)}, {QMI_FIXED_INTF(0x19d2, 0x0019, 3)}, /* ONDA MT689DC */ {QMI_FIXED_INTF(0x19d2, 0x0021, 4)}, {QMI_FIXED_INTF(0x19d2, 0x0025, 1)}, {QMI_FIXED_INTF(0x19d2, 0x0031, 4)}, {QMI_FIXED_INTF(0x19d2, 0x0042, 4)}, {QMI_FIXED_INTF(0x19d2, 0x0049, 5)}, {QMI_FIXED_INTF(0x19d2, 0x0052, 4)}, {QMI_FIXED_INTF(0x19d2, 0x0055, 1)}, /* ZTE (Vodafone) K3520-Z */ {QMI_FIXED_INTF(0x19d2, 0x0058, 4)}, {QMI_FIXED_INTF(0x19d2, 0x0063, 4)}, /* ZTE (Vodafone) K3565-Z */ {QMI_FIXED_INTF(0x19d2, 0x0104, 4)}, /* ZTE (Vodafone) K4505-Z */ {QMI_FIXED_INTF(0x19d2, 0x0113, 5)}, {QMI_FIXED_INTF(0x19d2, 0x0118, 5)}, {QMI_FIXED_INTF(0x19d2, 0x0121, 5)}, {QMI_FIXED_INTF(0x19d2, 0x0123, 4)}, {QMI_FIXED_INTF(0x19d2, 0x0124, 5)}, {QMI_FIXED_INTF(0x19d2, 0x0125, 6)}, {QMI_FIXED_INTF(0x19d2, 0x0126, 5)}, {QMI_FIXED_INTF(0x19d2, 0x0130, 1)}, {QMI_FIXED_INTF(0x19d2, 0x0133, 3)}, {QMI_FIXED_INTF(0x19d2, 0x0141, 5)}, {QMI_FIXED_INTF(0x19d2, 0x0157, 5)}, /* ZTE MF683 */ {QMI_FIXED_INTF(0x19d2, 0x0158, 3)}, {QMI_FIXED_INTF(0x19d2, 0x0167, 4)}, /* ZTE MF820D */ {QMI_FIXED_INTF(0x19d2, 0x0168, 4)}, {QMI_FIXED_INTF(0x19d2, 0x0176, 3)}, {QMI_FIXED_INTF(0x19d2, 0x0178, 3)}, {QMI_FIXED_INTF(0x19d2, 0x0189, 4)}, /* ZTE MF290 */ {QMI_FIXED_INTF(0x19d2, 0x0191, 4)}, /* ZTE EuFi890 */ {QMI_FIXED_INTF(0x19d2, 0x0199, 1)}, /* ZTE MF820S */ {QMI_FIXED_INTF(0x19d2, 0x0200, 1)}, {QMI_FIXED_INTF(0x19d2, 0x0257, 3)}, /* ZTE MF821 */ {QMI_FIXED_INTF(0x19d2, 0x0265, 4)}, /* ONDA MT8205 4G LTE */ {QMI_FIXED_INTF(0x19d2, 0x0284, 4)}, /* ZTE MF880 */ {QMI_FIXED_INTF(0x19d2, 0x0326, 4)}, /* ZTE MF821D */ {QMI_FIXED_INTF(0x19d2, 0x0396, 3)}, /* ZTE ZM8620 */ {QMI_FIXED_INTF(0x19d2, 0x0412, 4)}, /* Telewell TW-LTE 4G */ {QMI_FIXED_INTF(0x19d2, 0x1008, 4)}, /* ZTE (Vodafone) K3570-Z */ {QMI_FIXED_INTF(0x19d2, 0x1010, 4)}, /* ZTE (Vodafone) K3571-Z */ {QMI_FIXED_INTF(0x19d2, 0x1012, 4)}, {QMI_FIXED_INTF(0x19d2, 0x1018, 3)}, /* ZTE (Vodafone) K5006-Z */ {QMI_FIXED_INTF(0x19d2, 0x1021, 2)}, {QMI_FIXED_INTF(0x19d2, 0x1245, 4)}, {QMI_FIXED_INTF(0x19d2, 0x1247, 4)}, {QMI_FIXED_INTF(0x19d2, 0x1252, 4)}, {QMI_FIXED_INTF(0x19d2, 0x1254, 4)}, {QMI_FIXED_INTF(0x19d2, 0x1255, 3)}, {QMI_FIXED_INTF(0x19d2, 0x1255, 4)}, {QMI_FIXED_INTF(0x19d2, 0x1256, 4)}, {QMI_FIXED_INTF(0x19d2, 0x1270, 5)}, /* ZTE MF667 */ {QMI_FIXED_INTF(0x19d2, 0x1275, 3)}, /* ZTE P685M */ {QMI_FIXED_INTF(0x19d2, 0x1401, 2)}, {QMI_FIXED_INTF(0x19d2, 0x1402, 2)}, /* ZTE MF60 */ {QMI_FIXED_INTF(0x19d2, 0x1424, 2)}, {QMI_FIXED_INTF(0x19d2, 0x1425, 2)}, {QMI_FIXED_INTF(0x19d2, 0x1426, 2)}, /* ZTE MF91 */ {QMI_FIXED_INTF(0x19d2, 0x1428, 2)}, /* Telewell TW-LTE 4G v2 */ {QMI_FIXED_INTF(0x19d2, 0x1432, 3)}, /* ZTE ME3620 */ {QMI_FIXED_INTF(0x19d2, 0x1485, 5)}, /* ZTE MF286D */ {QMI_FIXED_INTF(0x19d2, 0x2002, 4)}, /* ZTE (Vodafone) K3765-Z */ {QMI_FIXED_INTF(0x2001, 0x7e16, 3)}, /* D-Link DWM-221 */ {QMI_FIXED_INTF(0x2001, 0x7e19, 4)}, /* D-Link DWM-221 B1 */ {QMI_FIXED_INTF(0x2001, 0x7e35, 4)}, /* D-Link DWM-222 */ {QMI_FIXED_INTF(0x2001, 0x7e3d, 4)}, /* D-Link DWM-222 A2 */ {QMI_FIXED_INTF(0x2020, 0x2031, 4)}, /* Olicard 600 */ {QMI_FIXED_INTF(0x2020, 0x2033, 4)}, /* BroadMobi BM806U */ {QMI_QUIRK_SET_DTR(0x2020, 0x2060, 4)}, /* BroadMobi BM818 */ {QMI_FIXED_INTF(0x0f3d, 0x68a2, 8)}, /* Sierra Wireless MC7700 */ {QMI_FIXED_INTF(0x114f, 0x68a2, 8)}, /* Sierra Wireless MC7750 */ {QMI_FIXED_INTF(0x1199, 0x68a2, 8)}, /* Sierra Wireless MC7710 in QMI mode */ {QMI_FIXED_INTF(0x1199, 0x68a2, 19)}, /* Sierra Wireless MC7710 in QMI mode */ {QMI_QUIRK_SET_DTR(0x1199, 0x68c0, 8)}, /* Sierra Wireless MC7304/MC7354, WP76xx */ {QMI_QUIRK_SET_DTR(0x1199, 0x68c0, 10)},/* Sierra Wireless MC7304/MC7354 */ {QMI_FIXED_INTF(0x1199, 0x901c, 8)}, /* Sierra Wireless EM7700 */ {QMI_FIXED_INTF(0x1199, 0x901f, 8)}, /* Sierra Wireless EM7355 */ {QMI_FIXED_INTF(0x1199, 0x9041, 8)}, /* Sierra Wireless MC7305/MC7355 */ {QMI_FIXED_INTF(0x1199, 0x9041, 10)}, /* Sierra Wireless MC7305/MC7355 */ {QMI_FIXED_INTF(0x1199, 0x9051, 8)}, /* Netgear AirCard 340U */ {QMI_FIXED_INTF(0x1199, 0x9053, 8)}, /* Sierra Wireless Modem */ {QMI_FIXED_INTF(0x1199, 0x9054, 8)}, /* Sierra Wireless Modem */ {QMI_FIXED_INTF(0x1199, 0x9055, 8)}, /* Netgear AirCard 341U */ {QMI_FIXED_INTF(0x1199, 0x9056, 8)}, /* Sierra Wireless Modem */ {QMI_FIXED_INTF(0x1199, 0x9057, 8)}, {QMI_FIXED_INTF(0x1199, 0x9061, 8)}, /* Sierra Wireless Modem */ {QMI_FIXED_INTF(0x1199, 0x9063, 8)}, /* Sierra Wireless EM7305 */ {QMI_FIXED_INTF(0x1199, 0x9063, 10)}, /* Sierra Wireless EM7305 */ {QMI_QUIRK_SET_DTR(0x1199, 0x9071, 8)}, /* Sierra Wireless MC74xx */ {QMI_QUIRK_SET_DTR(0x1199, 0x9071, 10)},/* Sierra Wireless MC74xx */ {QMI_QUIRK_SET_DTR(0x1199, 0x9079, 8)}, /* Sierra Wireless EM74xx */ {QMI_QUIRK_SET_DTR(0x1199, 0x9079, 10)},/* Sierra Wireless EM74xx */ {QMI_QUIRK_SET_DTR(0x1199, 0x907b, 8)}, /* Sierra Wireless EM74xx */ {QMI_QUIRK_SET_DTR(0x1199, 0x907b, 10)},/* Sierra Wireless EM74xx */ {QMI_QUIRK_SET_DTR(0x1199, 0x9091, 8)}, /* Sierra Wireless EM7565 */ {QMI_QUIRK_SET_DTR(0x1199, 0xc081, 8)}, /* Sierra Wireless EM7590 */ {QMI_FIXED_INTF(0x1bbb, 0x011e, 4)}, /* Telekom Speedstick LTE II (Alcatel One Touch L100V LTE) */ {QMI_FIXED_INTF(0x1bbb, 0x0203, 2)}, /* Alcatel L800MA */ {QMI_FIXED_INTF(0x2357, 0x0201, 4)}, /* TP-LINK HSUPA Modem MA180 */ {QMI_FIXED_INTF(0x2357, 0x9000, 4)}, /* TP-LINK MA260 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1031, 3)}, /* Telit LE910C1-EUX */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1034, 2)}, /* Telit LE910C4-WWX */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1037, 4)}, /* Telit LE910C4-WWX */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1038, 3)}, /* Telit LE910C4-WWX */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x103a, 0)}, /* Telit LE910C4-WWX */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1040, 2)}, /* Telit LE922A */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1050, 2)}, /* Telit FN980 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1057, 2)}, /* Telit FN980 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1060, 2)}, /* Telit LN920 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1070, 2)}, /* Telit FN990A */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1077, 2)}, /* Telit FN990A w/audio */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1080, 2)}, /* Telit FE990A */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10a0, 0)}, /* Telit FN920C04 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10a4, 0)}, /* Telit FN920C04 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10a9, 0)}, /* Telit FN920C04 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10b0, 0)}, /* Telit FE990B */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10c0, 0)}, /* Telit FE910C04 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10c4, 0)}, /* Telit FE910C04 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10c8, 0)}, /* Telit FE910C04 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x10d0, 0)}, /* Telit FN990B */ {QMI_FIXED_INTF(0x1bc7, 0x1100, 3)}, /* Telit ME910 */ {QMI_FIXED_INTF(0x1bc7, 0x1101, 3)}, /* Telit ME910 dual modem */ {QMI_FIXED_INTF(0x1bc7, 0x1200, 5)}, /* Telit LE920 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1201, 2)}, /* Telit LE920, LE920A4 */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1230, 2)}, /* Telit LE910Cx */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1250, 0)}, /* Telit LE910Cx */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1260, 2)}, /* Telit LE910Cx */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1261, 2)}, /* Telit LE910Cx */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1900, 1)}, /* Telit LN940 series */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x3000, 0)}, /* Telit FN912 series */ {QMI_QUIRK_SET_DTR(0x1bc7, 0x3001, 0)}, /* Telit FN912 series */ {QMI_FIXED_INTF(0x1c9e, 0x9801, 3)}, /* Telewell TW-3G HSPA+ */ {QMI_FIXED_INTF(0x1c9e, 0x9803, 4)}, /* Telewell TW-3G HSPA+ */ {QMI_FIXED_INTF(0x1c9e, 0x9b01, 3)}, /* XS Stick W100-2 from 4G Systems */ {QMI_QUIRK_SET_DTR(0x1c9e, 0x9b05, 4)}, /* Longsung U8300 */ {QMI_QUIRK_SET_DTR(0x1c9e, 0x9b3c, 4)}, /* Longsung U9300 */ {QMI_FIXED_INTF(0x0b3c, 0xc000, 4)}, /* Olivetti Olicard 100 */ {QMI_FIXED_INTF(0x0b3c, 0xc001, 4)}, /* Olivetti Olicard 120 */ {QMI_FIXED_INTF(0x0b3c, 0xc002, 4)}, /* Olivetti Olicard 140 */ {QMI_FIXED_INTF(0x0b3c, 0xc004, 6)}, /* Olivetti Olicard 155 */ {QMI_FIXED_INTF(0x0b3c, 0xc005, 6)}, /* Olivetti Olicard 200 */ {QMI_FIXED_INTF(0x0b3c, 0xc00a, 6)}, /* Olivetti Olicard 160 */ {QMI_FIXED_INTF(0x0b3c, 0xc00b, 4)}, /* Olivetti Olicard 500 */ {QMI_FIXED_INTF(0x1e2d, 0x0060, 4)}, /* Cinterion PLxx */ {QMI_QUIRK_SET_DTR(0x1e2d, 0x006f, 8)}, /* Cinterion PLS83/PLS63 */ {QMI_FIXED_INTF(0x1e2d, 0x0053, 4)}, /* Cinterion PHxx,PXxx */ {QMI_FIXED_INTF(0x1e2d, 0x0063, 10)}, /* Cinterion ALASxx (1 RmNet) */ {QMI_FIXED_INTF(0x1e2d, 0x0082, 4)}, /* Cinterion PHxx,PXxx (2 RmNet) */ {QMI_FIXED_INTF(0x1e2d, 0x0082, 5)}, /* Cinterion PHxx,PXxx (2 RmNet) */ {QMI_FIXED_INTF(0x1e2d, 0x0083, 4)}, /* Cinterion PHxx,PXxx (1 RmNet + USB Audio)*/ {QMI_QUIRK_SET_DTR(0x1e2d, 0x00b0, 4)}, /* Cinterion CLS8 */ {QMI_FIXED_INTF(0x1e2d, 0x00b7, 0)}, /* Cinterion MV31 RmNet */ {QMI_FIXED_INTF(0x1e2d, 0x00b9, 0)}, /* Cinterion MV31 RmNet based on new baseline */ {QMI_FIXED_INTF(0x1e2d, 0x00f3, 0)}, /* Cinterion MV32-W-A RmNet */ {QMI_FIXED_INTF(0x1e2d, 0x00f4, 0)}, /* Cinterion MV32-W-B RmNet */ {QMI_FIXED_INTF(0x413c, 0x81a2, 8)}, /* Dell Wireless 5806 Gobi(TM) 4G LTE Mobile Broadband Card */ {QMI_FIXED_INTF(0x413c, 0x81a3, 8)}, /* Dell Wireless 5570 HSPA+ (42Mbps) Mobile Broadband Card */ {QMI_FIXED_INTF(0x413c, 0x81a4, 8)}, /* Dell Wireless 5570e HSPA+ (42Mbps) Mobile Broadband Card */ {QMI_FIXED_INTF(0x413c, 0x81a8, 8)}, /* Dell Wireless 5808 Gobi(TM) 4G LTE Mobile Broadband Card */ {QMI_FIXED_INTF(0x413c, 0x81a9, 8)}, /* Dell Wireless 5808e Gobi(TM) 4G LTE Mobile Broadband Card */ {QMI_FIXED_INTF(0x413c, 0x81b1, 8)}, /* Dell Wireless 5809e Gobi(TM) 4G LTE Mobile Broadband Card */ {QMI_FIXED_INTF(0x413c, 0x81b3, 8)}, /* Dell Wireless 5809e Gobi(TM) 4G LTE Mobile Broadband Card (rev3) */ {QMI_FIXED_INTF(0x413c, 0x81b6, 8)}, /* Dell Wireless 5811e */ {QMI_FIXED_INTF(0x413c, 0x81b6, 10)}, /* Dell Wireless 5811e */ {QMI_FIXED_INTF(0x413c, 0x81c2, 8)}, /* Dell Wireless 5811e */ {QMI_FIXED_INTF(0x413c, 0x81cc, 8)}, /* Dell Wireless 5816e */ {QMI_FIXED_INTF(0x413c, 0x81d7, 0)}, /* Dell Wireless 5821e */ {QMI_FIXED_INTF(0x413c, 0x81d7, 1)}, /* Dell Wireless 5821e preproduction config */ {QMI_FIXED_INTF(0x413c, 0x81e0, 0)}, /* Dell Wireless 5821e with eSIM support*/ {QMI_FIXED_INTF(0x413c, 0x81e4, 0)}, /* Dell Wireless 5829e with eSIM support*/ {QMI_FIXED_INTF(0x413c, 0x81e6, 0)}, /* Dell Wireless 5829e */ {QMI_FIXED_INTF(0x03f0, 0x4e1d, 8)}, /* HP lt4111 LTE/EV-DO/HSPA+ Gobi 4G Module */ {QMI_FIXED_INTF(0x03f0, 0x9d1d, 1)}, /* HP lt4120 Snapdragon X5 LTE */ {QMI_QUIRK_SET_DTR(0x22de, 0x9051, 2)}, /* Hucom Wireless HM-211S/K */ {QMI_FIXED_INTF(0x22de, 0x9061, 3)}, /* WeTelecom WPD-600N */ {QMI_QUIRK_SET_DTR(0x1e0e, 0x9001, 5)}, /* SIMCom 7100E, 7230E, 7600E ++ */ {QMI_QUIRK_SET_DTR(0x1e0e, 0x9071, 3)}, /* SIMCom 8230C ++ */ {QMI_QUIRK_SET_DTR(0x2c7c, 0x0121, 4)}, /* Quectel EC21 Mini PCIe */ {QMI_QUIRK_SET_DTR(0x2c7c, 0x0191, 4)}, /* Quectel EG91 */ {QMI_QUIRK_SET_DTR(0x2c7c, 0x0195, 4)}, /* Quectel EG95 */ {QMI_FIXED_INTF(0x2c7c, 0x0296, 4)}, /* Quectel BG96 */ {QMI_QUIRK_SET_DTR(0x2c7c, 0x030e, 4)}, /* Quectel EM05GV2 */ {QMI_QUIRK_SET_DTR(0x2c7c, 0x0316, 3)}, /* Quectel RG255C */ {QMI_QUIRK_SET_DTR(0x2cb7, 0x0104, 4)}, /* Fibocom NL678 series */ {QMI_QUIRK_SET_DTR(0x2cb7, 0x0112, 0)}, /* Fibocom FG132 */ {QMI_FIXED_INTF(0x0489, 0xe0b4, 0)}, /* Foxconn T77W968 LTE */ {QMI_FIXED_INTF(0x0489, 0xe0b5, 0)}, /* Foxconn T77W968 LTE with eSIM support*/ {QMI_FIXED_INTF(0x2692, 0x9025, 4)}, /* Cellient MPL200 (rebranded Qualcomm 05c6:9025) */ {QMI_QUIRK_SET_DTR(0x1546, 0x1312, 4)}, /* u-blox LARA-R6 01B */ {QMI_QUIRK_SET_DTR(0x1546, 0x1342, 4)}, /* u-blox LARA-L6 */ {QMI_QUIRK_SET_DTR(0x33f8, 0x0104, 4)}, /* Rolling RW101 RMNET */ {QMI_FIXED_INTF(0x2dee, 0x4d22, 5)}, /* MeiG Smart SRM825L */ /* 4. Gobi 1000 devices */ {QMI_GOBI1K_DEVICE(0x05c6, 0x9212)}, /* Acer Gobi Modem Device */ {QMI_GOBI1K_DEVICE(0x03f0, 0x1f1d)}, /* HP un2400 Gobi Modem Device */ {QMI_GOBI1K_DEVICE(0x04da, 0x250d)}, /* Panasonic Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x413c, 0x8172)}, /* Dell Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x1410, 0xa001)}, /* Novatel/Verizon USB-1000 */ {QMI_GOBI1K_DEVICE(0x1410, 0xa002)}, /* Novatel Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x1410, 0xa003)}, /* Novatel Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x1410, 0xa004)}, /* Novatel Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x1410, 0xa005)}, /* Novatel Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x1410, 0xa006)}, /* Novatel Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x1410, 0xa007)}, /* Novatel Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x0b05, 0x1776)}, /* Asus Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x19d2, 0xfff3)}, /* ONDA Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x05c6, 0x9001)}, /* Generic Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x05c6, 0x9002)}, /* Generic Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x05c6, 0x9202)}, /* Generic Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x05c6, 0x9203)}, /* Generic Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x05c6, 0x9222)}, /* Generic Gobi Modem device */ {QMI_GOBI1K_DEVICE(0x05c6, 0x9009)}, /* Generic Gobi Modem device */ /* 5. Gobi 2000 and 3000 devices */ {QMI_GOBI_DEVICE(0x413c, 0x8186)}, /* Dell Gobi 2000 Modem device (N0218, VU936) */ {QMI_GOBI_DEVICE(0x413c, 0x8194)}, /* Dell Gobi 3000 Composite */ {QMI_GOBI_DEVICE(0x05c6, 0x920b)}, /* Generic Gobi 2000 Modem device */ {QMI_GOBI_DEVICE(0x05c6, 0x9225)}, /* Sony Gobi 2000 Modem device (N0279, VU730) */ {QMI_GOBI_DEVICE(0x05c6, 0x9245)}, /* Samsung Gobi 2000 Modem device (VL176) */ {QMI_GOBI_DEVICE(0x03f0, 0x251d)}, /* HP Gobi 2000 Modem device (VP412) */ {QMI_GOBI_DEVICE(0x05c6, 0x9215)}, /* Acer Gobi 2000 Modem device (VP413) */ {QMI_FIXED_INTF(0x05c6, 0x9215, 4)}, /* Quectel EC20 Mini PCIe */ {QMI_GOBI_DEVICE(0x05c6, 0x9265)}, /* Asus Gobi 2000 Modem device (VR305) */ {QMI_GOBI_DEVICE(0x05c6, 0x9235)}, /* Top Global Gobi 2000 Modem device (VR306) */ {QMI_GOBI_DEVICE(0x05c6, 0x9275)}, /* iRex Technologies Gobi 2000 Modem device (VR307) */ {QMI_GOBI_DEVICE(0x0af0, 0x8120)}, /* Option GTM681W */ {QMI_GOBI_DEVICE(0x1199, 0x68a5)}, /* Sierra Wireless Modem */ {QMI_GOBI_DEVICE(0x1199, 0x68a9)}, /* Sierra Wireless Modem */ {QMI_GOBI_DEVICE(0x1199, 0x9001)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9002)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9003)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9004)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9005)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9006)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9007)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9008)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9009)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x900a)}, /* Sierra Wireless Gobi 2000 Modem device (VT773) */ {QMI_GOBI_DEVICE(0x1199, 0x9011)}, /* Sierra Wireless Gobi 2000 Modem device (MC8305) */ {QMI_GOBI_DEVICE(0x16d8, 0x8002)}, /* CMDTech Gobi 2000 Modem device (VU922) */ {QMI_GOBI_DEVICE(0x05c6, 0x9205)}, /* Gobi 2000 Modem device */ {QMI_GOBI_DEVICE(0x1199, 0x9013)}, /* Sierra Wireless Gobi 3000 Modem device (MC8355) */ {QMI_GOBI_DEVICE(0x03f0, 0x371d)}, /* HP un2430 Mobile Broadband Module */ {QMI_GOBI_DEVICE(0x1199, 0x9015)}, /* Sierra Wireless Gobi 3000 Modem device */ {QMI_GOBI_DEVICE(0x1199, 0x9019)}, /* Sierra Wireless Gobi 3000 Modem device */ {QMI_GOBI_DEVICE(0x1199, 0x901b)}, /* Sierra Wireless MC7770 */ {QMI_GOBI_DEVICE(0x12d1, 0x14f1)}, /* Sony Gobi 3000 Composite */ {QMI_GOBI_DEVICE(0x1410, 0xa021)}, /* Foxconn Gobi 3000 Modem device (Novatel E396) */ { } /* END */ }; MODULE_DEVICE_TABLE(usb, products); static bool quectel_ec20_detected(struct usb_interface *intf) { struct usb_device *dev = interface_to_usbdev(intf); if (dev->actconfig && le16_to_cpu(dev->descriptor.idVendor) == 0x05c6 && le16_to_cpu(dev->descriptor.idProduct) == 0x9215 && dev->actconfig->desc.bNumInterfaces == 5) return true; return false; } static int qmi_wwan_probe(struct usb_interface *intf, const struct usb_device_id *prod) { struct usb_device_id *id = (struct usb_device_id *)prod; struct usb_interface_descriptor *desc = &intf->cur_altsetting->desc; /* Workaround to enable dynamic IDs. This disables usbnet * blacklisting functionality. Which, if required, can be * reimplemented here by using a magic "blacklist" value * instead of 0 in the static device id table */ if (!id->driver_info) { dev_dbg(&intf->dev, "setting defaults for dynamic device id\n"); id->driver_info = (unsigned long)&qmi_wwan_info; } /* There are devices where the same interface number can be * configured as different functions. We should only bind to * vendor specific functions when matching on interface number */ if (id->match_flags & USB_DEVICE_ID_MATCH_INT_NUMBER && desc->bInterfaceClass != USB_CLASS_VENDOR_SPEC) { dev_dbg(&intf->dev, "Rejecting interface number match for class %02x\n", desc->bInterfaceClass); return -ENODEV; } /* Quectel EC20 quirk where we've QMI on interface 4 instead of 0 */ if (quectel_ec20_detected(intf) && desc->bInterfaceNumber == 0) { dev_dbg(&intf->dev, "Quectel EC20 quirk, skipping interface 0\n"); return -ENODEV; } /* Several Quectel modems supports dynamic interface configuration, so * we need to match on class/subclass/protocol. These values are * identical for the diagnostic- and QMI-interface, but bNumEndpoints is * different. Ignore the current interface if the number of endpoints * equals the number for the diag interface (two). */ if (desc->bNumEndpoints == 2) return -ENODEV; return usbnet_probe(intf, id); } static void qmi_wwan_disconnect(struct usb_interface *intf) { struct usbnet *dev = usb_get_intfdata(intf); struct qmi_wwan_state *info; struct list_head *iter; struct net_device *ldev; LIST_HEAD(list); /* called twice if separate control and data intf */ if (!dev) return; info = (void *)&dev->data; if (info->flags & QMI_WWAN_FLAG_MUX) { if (!rtnl_trylock()) { restart_syscall(); return; } rcu_read_lock(); netdev_for_each_upper_dev_rcu(dev->net, ldev, iter) qmimux_unregister_device(ldev, &list); rcu_read_unlock(); unregister_netdevice_many(&list); rtnl_unlock(); info->flags &= ~QMI_WWAN_FLAG_MUX; } usbnet_disconnect(intf); } static struct usb_driver qmi_wwan_driver = { .name = "qmi_wwan", .id_table = products, .probe = qmi_wwan_probe, .disconnect = qmi_wwan_disconnect, .suspend = qmi_wwan_suspend, .resume = qmi_wwan_resume, .reset_resume = qmi_wwan_resume, .supports_autosuspend = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(qmi_wwan_driver); MODULE_AUTHOR("Bjørn Mork <bjorn@mork.no>"); MODULE_DESCRIPTION("Qualcomm MSM Interface (QMI) WWAN driver"); MODULE_LICENSE("GPL"); |
| 7 7 5 5 9 9 1 9 6 6 4 4 4 4 4 4 2 2 2 4 4 4 15 15 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | // SPDX-License-Identifier: GPL-2.0-only /* tunnel4.c: Generic IP tunnel transformer. * * Copyright (C) 2003 David S. Miller (davem@redhat.com) */ #include <linux/init.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/mpls.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/icmp.h> #include <net/ip.h> #include <net/protocol.h> #include <net/xfrm.h> static struct xfrm_tunnel __rcu *tunnel4_handlers __read_mostly; static struct xfrm_tunnel __rcu *tunnel64_handlers __read_mostly; static struct xfrm_tunnel __rcu *tunnelmpls4_handlers __read_mostly; static DEFINE_MUTEX(tunnel4_mutex); static inline struct xfrm_tunnel __rcu **fam_handlers(unsigned short family) { return (family == AF_INET) ? &tunnel4_handlers : (family == AF_INET6) ? &tunnel64_handlers : &tunnelmpls4_handlers; } int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family) { struct xfrm_tunnel __rcu **pprev; struct xfrm_tunnel *t; int ret = -EEXIST; int priority = handler->priority; mutex_lock(&tunnel4_mutex); for (pprev = fam_handlers(family); (t = rcu_dereference_protected(*pprev, lockdep_is_held(&tunnel4_mutex))) != NULL; pprev = &t->next) { if (t->priority > priority) break; if (t->priority == priority) goto err; } handler->next = *pprev; rcu_assign_pointer(*pprev, handler); ret = 0; err: mutex_unlock(&tunnel4_mutex); return ret; } EXPORT_SYMBOL(xfrm4_tunnel_register); int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family) { struct xfrm_tunnel __rcu **pprev; struct xfrm_tunnel *t; int ret = -ENOENT; mutex_lock(&tunnel4_mutex); for (pprev = fam_handlers(family); (t = rcu_dereference_protected(*pprev, lockdep_is_held(&tunnel4_mutex))) != NULL; pprev = &t->next) { if (t == handler) { *pprev = handler->next; ret = 0; break; } } mutex_unlock(&tunnel4_mutex); synchronize_net(); return ret; } EXPORT_SYMBOL(xfrm4_tunnel_deregister); #define for_each_tunnel_rcu(head, handler) \ for (handler = rcu_dereference(head); \ handler != NULL; \ handler = rcu_dereference(handler->next)) \ static int tunnel4_rcv(struct sk_buff *skb) { struct xfrm_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto drop; for_each_tunnel_rcu(tunnel4_handlers, handler) if (!handler->handler(skb)) return 0; icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } #if IS_ENABLED(CONFIG_INET_XFRM_TUNNEL) static int tunnel4_rcv_cb(struct sk_buff *skb, u8 proto, int err) { struct xfrm_tunnel __rcu *head; struct xfrm_tunnel *handler; int ret; head = (proto == IPPROTO_IPIP) ? tunnel4_handlers : tunnel64_handlers; for_each_tunnel_rcu(head, handler) { if (handler->cb_handler) { ret = handler->cb_handler(skb, err); if (ret <= 0) return ret; } } return 0; } static const struct xfrm_input_afinfo tunnel4_input_afinfo = { .family = AF_INET, .is_ipip = true, .callback = tunnel4_rcv_cb, }; #endif #if IS_ENABLED(CONFIG_IPV6) static int tunnel64_rcv(struct sk_buff *skb) { struct xfrm_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto drop; for_each_tunnel_rcu(tunnel64_handlers, handler) if (!handler->handler(skb)) return 0; icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } #endif #if IS_ENABLED(CONFIG_MPLS) static int tunnelmpls4_rcv(struct sk_buff *skb) { struct xfrm_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct mpls_label))) goto drop; for_each_tunnel_rcu(tunnelmpls4_handlers, handler) if (!handler->handler(skb)) return 0; icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } #endif static int tunnel4_err(struct sk_buff *skb, u32 info) { struct xfrm_tunnel *handler; for_each_tunnel_rcu(tunnel4_handlers, handler) if (!handler->err_handler(skb, info)) return 0; return -ENOENT; } #if IS_ENABLED(CONFIG_IPV6) static int tunnel64_err(struct sk_buff *skb, u32 info) { struct xfrm_tunnel *handler; for_each_tunnel_rcu(tunnel64_handlers, handler) if (!handler->err_handler(skb, info)) return 0; return -ENOENT; } #endif #if IS_ENABLED(CONFIG_MPLS) static int tunnelmpls4_err(struct sk_buff *skb, u32 info) { struct xfrm_tunnel *handler; for_each_tunnel_rcu(tunnelmpls4_handlers, handler) if (!handler->err_handler(skb, info)) return 0; return -ENOENT; } #endif static const struct net_protocol tunnel4_protocol = { .handler = tunnel4_rcv, .err_handler = tunnel4_err, .no_policy = 1, }; #if IS_ENABLED(CONFIG_IPV6) static const struct net_protocol tunnel64_protocol = { .handler = tunnel64_rcv, .err_handler = tunnel64_err, .no_policy = 1, }; #endif #if IS_ENABLED(CONFIG_MPLS) static const struct net_protocol tunnelmpls4_protocol = { .handler = tunnelmpls4_rcv, .err_handler = tunnelmpls4_err, .no_policy = 1, }; #endif static int __init tunnel4_init(void) { if (inet_add_protocol(&tunnel4_protocol, IPPROTO_IPIP)) goto err; #if IS_ENABLED(CONFIG_IPV6) if (inet_add_protocol(&tunnel64_protocol, IPPROTO_IPV6)) { inet_del_protocol(&tunnel4_protocol, IPPROTO_IPIP); goto err; } #endif #if IS_ENABLED(CONFIG_MPLS) if (inet_add_protocol(&tunnelmpls4_protocol, IPPROTO_MPLS)) { inet_del_protocol(&tunnel4_protocol, IPPROTO_IPIP); #if IS_ENABLED(CONFIG_IPV6) inet_del_protocol(&tunnel64_protocol, IPPROTO_IPV6); #endif goto err; } #endif #if IS_ENABLED(CONFIG_INET_XFRM_TUNNEL) if (xfrm_input_register_afinfo(&tunnel4_input_afinfo)) { inet_del_protocol(&tunnel4_protocol, IPPROTO_IPIP); #if IS_ENABLED(CONFIG_IPV6) inet_del_protocol(&tunnel64_protocol, IPPROTO_IPV6); #endif #if IS_ENABLED(CONFIG_MPLS) inet_del_protocol(&tunnelmpls4_protocol, IPPROTO_MPLS); #endif goto err; } #endif return 0; err: pr_err("%s: can't add protocol\n", __func__); return -EAGAIN; } static void __exit tunnel4_fini(void) { #if IS_ENABLED(CONFIG_INET_XFRM_TUNNEL) if (xfrm_input_unregister_afinfo(&tunnel4_input_afinfo)) pr_err("tunnel4 close: can't remove input afinfo\n"); #endif #if IS_ENABLED(CONFIG_MPLS) if (inet_del_protocol(&tunnelmpls4_protocol, IPPROTO_MPLS)) pr_err("tunnelmpls4 close: can't remove protocol\n"); #endif #if IS_ENABLED(CONFIG_IPV6) if (inet_del_protocol(&tunnel64_protocol, IPPROTO_IPV6)) pr_err("tunnel64 close: can't remove protocol\n"); #endif if (inet_del_protocol(&tunnel4_protocol, IPPROTO_IPIP)) pr_err("tunnel4 close: can't remove protocol\n"); } module_init(tunnel4_init); module_exit(tunnel4_fini); MODULE_DESCRIPTION("IPv4 XFRM tunnel library"); MODULE_LICENSE("GPL"); |
| 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2008-2010, 2013 Dave Chinner * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_icreate_item.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" #include "xfs_ialloc.h" #include "xfs_trace.h" struct kmem_cache *xfs_icreate_cache; /* inode create item */ static inline struct xfs_icreate_item *ICR_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_icreate_item, ic_item); } /* * This returns the number of iovecs needed to log the given inode item. * * We only need one iovec for the icreate log structure. */ STATIC void xfs_icreate_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += sizeof(struct xfs_icreate_log); } /* * This is called to fill in the vector of log iovecs for the * given inode create log item. */ STATIC void xfs_icreate_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_icreate_item *icp = ICR_ITEM(lip); struct xfs_log_iovec *vecp = NULL; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICREATE, &icp->ic_format, sizeof(struct xfs_icreate_log)); } STATIC void xfs_icreate_item_release( struct xfs_log_item *lip) { kvfree(ICR_ITEM(lip)->ic_item.li_lv_shadow); kmem_cache_free(xfs_icreate_cache, ICR_ITEM(lip)); } static const struct xfs_item_ops xfs_icreate_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, .iop_size = xfs_icreate_item_size, .iop_format = xfs_icreate_item_format, .iop_release = xfs_icreate_item_release, }; /* * Initialize the inode log item for a newly allocated (in-core) inode. * * Inode extents can only reside within an AG. Hence specify the starting * block for the inode chunk by offset within an AG as well as the * length of the allocated extent. * * This joins the item to the transaction and marks it dirty so * that we don't need a separate call to do this, nor does the * caller need to know anything about the icreate item. */ void xfs_icreate_log( struct xfs_trans *tp, xfs_agnumber_t agno, xfs_agblock_t agbno, unsigned int count, unsigned int inode_size, xfs_agblock_t length, unsigned int generation) { struct xfs_icreate_item *icp; icp = kmem_cache_zalloc(xfs_icreate_cache, GFP_KERNEL | __GFP_NOFAIL); xfs_log_item_init(tp->t_mountp, &icp->ic_item, XFS_LI_ICREATE, &xfs_icreate_item_ops); icp->ic_format.icl_type = XFS_LI_ICREATE; icp->ic_format.icl_size = 1; /* single vector */ icp->ic_format.icl_ag = cpu_to_be32(agno); icp->ic_format.icl_agbno = cpu_to_be32(agbno); icp->ic_format.icl_count = cpu_to_be32(count); icp->ic_format.icl_isize = cpu_to_be32(inode_size); icp->ic_format.icl_length = cpu_to_be32(length); icp->ic_format.icl_gen = cpu_to_be32(generation); xfs_trans_add_item(tp, &icp->ic_item); tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &icp->ic_item.li_flags); } static enum xlog_recover_reorder xlog_recover_icreate_reorder( struct xlog_recover_item *item) { /* * Inode allocation buffers must be replayed before subsequent inode * items try to modify those buffers. ICREATE items are the logical * equivalent of logging a newly initialized inode buffer, so recover * these at the same time that we recover logged buffers. */ return XLOG_REORDER_BUFFER_LIST; } /* * This routine is called when an inode create format structure is found in a * committed transaction in the log. It's purpose is to initialise the inodes * being allocated on disk. This requires us to get inode cluster buffers that * match the range to be initialised, stamped with inode templates and written * by delayed write so that subsequent modifications will hit the cached buffer * and only need writing out at the end of recovery. */ STATIC int xlog_recover_icreate_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_mount *mp = log->l_mp; struct xfs_icreate_log *icl; struct xfs_ino_geometry *igeo = M_IGEO(mp); xfs_agnumber_t agno; xfs_agblock_t agbno; unsigned int count; unsigned int isize; xfs_agblock_t length; int bb_per_cluster; int cancel_count; int nbufs; int i; icl = (struct xfs_icreate_log *)item->ri_buf[0].iov_base; if (icl->icl_type != XFS_LI_ICREATE) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); return -EINVAL; } if (icl->icl_size != 1) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); return -EINVAL; } agno = be32_to_cpu(icl->icl_ag); if (agno >= mp->m_sb.sb_agcount) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); return -EINVAL; } agbno = be32_to_cpu(icl->icl_agbno); if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); return -EINVAL; } isize = be32_to_cpu(icl->icl_isize); if (isize != mp->m_sb.sb_inodesize) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); return -EINVAL; } count = be32_to_cpu(icl->icl_count); if (!count) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); return -EINVAL; } length = be32_to_cpu(icl->icl_length); if (!length || length >= mp->m_sb.sb_agblocks) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); return -EINVAL; } /* * The inode chunk is either full or sparse and we only support * m_ino_geo.ialloc_min_blks sized sparse allocations at this time. */ if (length != igeo->ialloc_blks && length != igeo->ialloc_min_blks) { xfs_warn(log->l_mp, "%s: unsupported chunk length", __func__); return -EINVAL; } /* verify inode count is consistent with extent length */ if ((count >> mp->m_sb.sb_inopblog) != length) { xfs_warn(log->l_mp, "%s: inconsistent inode count and chunk length", __func__); return -EINVAL; } /* * The icreate transaction can cover multiple cluster buffers and these * buffers could have been freed and reused. Check the individual * buffers for cancellation so we don't overwrite anything written after * a cancellation. */ bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster); nbufs = length / igeo->blocks_per_cluster; for (i = 0, cancel_count = 0; i < nbufs; i++) { xfs_daddr_t daddr; daddr = XFS_AGB_TO_DADDR(mp, agno, agbno + i * igeo->blocks_per_cluster); if (xlog_is_buffer_cancelled(log, daddr, bb_per_cluster)) cancel_count++; } /* * We currently only use icreate for a single allocation at a time. This * means we should expect either all or none of the buffers to be * cancelled. Be conservative and skip replay if at least one buffer is * cancelled, but warn the user that something is awry if the buffers * are not consistent. * * XXX: This must be refined to only skip cancelled clusters once we use * icreate for multiple chunk allocations. */ ASSERT(!cancel_count || cancel_count == nbufs); if (cancel_count) { if (cancel_count != nbufs) xfs_warn(mp, "WARNING: partial inode chunk cancellation, skipped icreate."); trace_xfs_log_recover_icreate_cancel(log, icl); return 0; } trace_xfs_log_recover_icreate_recover(log, icl); return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, length, be32_to_cpu(icl->icl_gen)); } const struct xlog_recover_item_ops xlog_icreate_item_ops = { .item_type = XFS_LI_ICREATE, .reorder = xlog_recover_icreate_reorder, .commit_pass2 = xlog_recover_icreate_commit_pass2, }; |
| 10 2 1 11 11 10 11 11 11 11 1 10 11 11 10 11 10 11 11 5 105 105 5 1 7 15 8 2 6 9 15 3 13 13 9 3 8 2 8 20 13 11 11 20 20 20 18 2 7 7 7 3 4 13 4 3 3 2 19 18 2 13 4 13 13 4 13 13 11 11 7 2 2 3 5 5 26 26 26 104 105 5 104 102 107 107 107 107 107 106 107 107 107 105 103 5 105 102 4 104 107 107 2 104 104 104 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 | // SPDX-License-Identifier: GPL-2.0-only /* * Input driver to ExplorerPS/2 device driver module. * * Copyright (c) 1999-2002 Vojtech Pavlik * Copyright (c) 2004 Dmitry Torokhov */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define MOUSEDEV_MINOR_BASE 32 #define MOUSEDEV_MINORS 31 #define MOUSEDEV_MIX 63 #include <linux/bitops.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input.h> #include <linux/random.h> #include <linux/major.h> #include <linux/device.h> #include <linux/cdev.h> #include <linux/kernel.h> MODULE_AUTHOR("Vojtech Pavlik <vojtech@ucw.cz>"); MODULE_DESCRIPTION("Mouse (ExplorerPS/2) device interfaces"); MODULE_LICENSE("GPL"); #ifndef CONFIG_INPUT_MOUSEDEV_SCREEN_X #define CONFIG_INPUT_MOUSEDEV_SCREEN_X 1024 #endif #ifndef CONFIG_INPUT_MOUSEDEV_SCREEN_Y #define CONFIG_INPUT_MOUSEDEV_SCREEN_Y 768 #endif static int xres = CONFIG_INPUT_MOUSEDEV_SCREEN_X; module_param(xres, uint, 0644); MODULE_PARM_DESC(xres, "Horizontal screen resolution"); static int yres = CONFIG_INPUT_MOUSEDEV_SCREEN_Y; module_param(yres, uint, 0644); MODULE_PARM_DESC(yres, "Vertical screen resolution"); static unsigned tap_time = 200; module_param(tap_time, uint, 0644); MODULE_PARM_DESC(tap_time, "Tap time for touchpads in absolute mode (msecs)"); struct mousedev_hw_data { int dx, dy, dz; int x, y; int abs_event; unsigned long buttons; }; struct mousedev { int open; struct input_handle handle; wait_queue_head_t wait; struct list_head client_list; spinlock_t client_lock; /* protects client_list */ struct mutex mutex; struct device dev; struct cdev cdev; bool exist; struct list_head mixdev_node; bool opened_by_mixdev; struct mousedev_hw_data packet; unsigned int pkt_count; int old_x[4], old_y[4]; int frac_dx, frac_dy; unsigned long touch; int (*open_device)(struct mousedev *mousedev); void (*close_device)(struct mousedev *mousedev); }; enum mousedev_emul { MOUSEDEV_EMUL_PS2, MOUSEDEV_EMUL_IMPS, MOUSEDEV_EMUL_EXPS }; struct mousedev_motion { int dx, dy, dz; unsigned long buttons; }; #define PACKET_QUEUE_LEN 16 struct mousedev_client { struct fasync_struct *fasync; struct mousedev *mousedev; struct list_head node; struct mousedev_motion packets[PACKET_QUEUE_LEN]; unsigned int head, tail; spinlock_t packet_lock; int pos_x, pos_y; u8 ps2[6]; unsigned char ready, buffer, bufsiz; unsigned char imexseq, impsseq; enum mousedev_emul mode; unsigned long last_buttons; }; #define MOUSEDEV_SEQ_LEN 6 static unsigned char mousedev_imps_seq[] = { 0xf3, 200, 0xf3, 100, 0xf3, 80 }; static unsigned char mousedev_imex_seq[] = { 0xf3, 200, 0xf3, 200, 0xf3, 80 }; static struct mousedev *mousedev_mix; static LIST_HEAD(mousedev_mix_list); #define fx(i) (mousedev->old_x[(mousedev->pkt_count - (i)) & 03]) #define fy(i) (mousedev->old_y[(mousedev->pkt_count - (i)) & 03]) static void mousedev_touchpad_event(struct input_dev *dev, struct mousedev *mousedev, unsigned int code, int value) { int size, tmp; enum { FRACTION_DENOM = 128 }; switch (code) { case ABS_X: fx(0) = value; if (mousedev->touch && mousedev->pkt_count >= 2) { size = input_abs_get_max(dev, ABS_X) - input_abs_get_min(dev, ABS_X); if (size == 0) size = 256 * 2; tmp = ((value - fx(2)) * 256 * FRACTION_DENOM) / size; tmp += mousedev->frac_dx; mousedev->packet.dx = tmp / FRACTION_DENOM; mousedev->frac_dx = tmp - mousedev->packet.dx * FRACTION_DENOM; } break; case ABS_Y: fy(0) = value; if (mousedev->touch && mousedev->pkt_count >= 2) { /* use X size for ABS_Y to keep the same scale */ size = input_abs_get_max(dev, ABS_X) - input_abs_get_min(dev, ABS_X); if (size == 0) size = 256 * 2; tmp = -((value - fy(2)) * 256 * FRACTION_DENOM) / size; tmp += mousedev->frac_dy; mousedev->packet.dy = tmp / FRACTION_DENOM; mousedev->frac_dy = tmp - mousedev->packet.dy * FRACTION_DENOM; } break; } } static void mousedev_abs_event(struct input_dev *dev, struct mousedev *mousedev, unsigned int code, int value) { int min, max, size; switch (code) { case ABS_X: min = input_abs_get_min(dev, ABS_X); max = input_abs_get_max(dev, ABS_X); size = max - min; if (size == 0) size = xres ? : 1; value = clamp(value, min, max); mousedev->packet.x = ((value - min) * xres) / size; mousedev->packet.abs_event = 1; break; case ABS_Y: min = input_abs_get_min(dev, ABS_Y); max = input_abs_get_max(dev, ABS_Y); size = max - min; if (size == 0) size = yres ? : 1; value = clamp(value, min, max); mousedev->packet.y = yres - ((value - min) * yres) / size; mousedev->packet.abs_event = 1; break; } } static void mousedev_rel_event(struct mousedev *mousedev, unsigned int code, int value) { switch (code) { case REL_X: mousedev->packet.dx += value; break; case REL_Y: mousedev->packet.dy -= value; break; case REL_WHEEL: mousedev->packet.dz -= value; break; } } static void mousedev_key_event(struct mousedev *mousedev, unsigned int code, int value) { int index; switch (code) { case BTN_TOUCH: case BTN_0: case BTN_LEFT: index = 0; break; case BTN_STYLUS: case BTN_1: case BTN_RIGHT: index = 1; break; case BTN_2: case BTN_FORWARD: case BTN_STYLUS2: case BTN_MIDDLE: index = 2; break; case BTN_3: case BTN_BACK: case BTN_SIDE: index = 3; break; case BTN_4: case BTN_EXTRA: index = 4; break; default: return; } if (value) { set_bit(index, &mousedev->packet.buttons); set_bit(index, &mousedev_mix->packet.buttons); } else { clear_bit(index, &mousedev->packet.buttons); clear_bit(index, &mousedev_mix->packet.buttons); } } static void mousedev_notify_readers(struct mousedev *mousedev, struct mousedev_hw_data *packet) { struct mousedev_client *client; struct mousedev_motion *p; unsigned int new_head; int wake_readers = 0; rcu_read_lock(); list_for_each_entry_rcu(client, &mousedev->client_list, node) { /* Just acquire the lock, interrupts already disabled */ spin_lock(&client->packet_lock); p = &client->packets[client->head]; if (client->ready && p->buttons != mousedev->packet.buttons) { new_head = (client->head + 1) % PACKET_QUEUE_LEN; if (new_head != client->tail) { p = &client->packets[client->head = new_head]; memset(p, 0, sizeof(struct mousedev_motion)); } } if (packet->abs_event) { p->dx += packet->x - client->pos_x; p->dy += packet->y - client->pos_y; client->pos_x = packet->x; client->pos_y = packet->y; } client->pos_x += packet->dx; client->pos_x = clamp_val(client->pos_x, 0, xres); client->pos_y += packet->dy; client->pos_y = clamp_val(client->pos_y, 0, yres); p->dx += packet->dx; p->dy += packet->dy; p->dz += packet->dz; p->buttons = mousedev->packet.buttons; if (p->dx || p->dy || p->dz || p->buttons != client->last_buttons) client->ready = 1; spin_unlock(&client->packet_lock); if (client->ready) { kill_fasync(&client->fasync, SIGIO, POLL_IN); wake_readers = 1; } } rcu_read_unlock(); if (wake_readers) wake_up_interruptible(&mousedev->wait); } static void mousedev_touchpad_touch(struct mousedev *mousedev, int value) { if (!value) { if (mousedev->touch && time_before(jiffies, mousedev->touch + msecs_to_jiffies(tap_time))) { /* * Toggle left button to emulate tap. * We rely on the fact that mousedev_mix always has 0 * motion packet so we won't mess current position. */ set_bit(0, &mousedev->packet.buttons); set_bit(0, &mousedev_mix->packet.buttons); mousedev_notify_readers(mousedev, &mousedev_mix->packet); mousedev_notify_readers(mousedev_mix, &mousedev_mix->packet); clear_bit(0, &mousedev->packet.buttons); clear_bit(0, &mousedev_mix->packet.buttons); } mousedev->touch = mousedev->pkt_count = 0; mousedev->frac_dx = 0; mousedev->frac_dy = 0; } else if (!mousedev->touch) mousedev->touch = jiffies; } static void mousedev_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { struct mousedev *mousedev = handle->private; switch (type) { case EV_ABS: /* Ignore joysticks */ if (test_bit(BTN_TRIGGER, handle->dev->keybit)) return; if (test_bit(BTN_TOOL_FINGER, handle->dev->keybit)) mousedev_touchpad_event(handle->dev, mousedev, code, value); else mousedev_abs_event(handle->dev, mousedev, code, value); break; case EV_REL: mousedev_rel_event(mousedev, code, value); break; case EV_KEY: if (value != 2) { if (code == BTN_TOUCH && test_bit(BTN_TOOL_FINGER, handle->dev->keybit)) mousedev_touchpad_touch(mousedev, value); else mousedev_key_event(mousedev, code, value); } break; case EV_SYN: if (code == SYN_REPORT) { if (mousedev->touch) { mousedev->pkt_count++; /* * Input system eats duplicate events, * but we need all of them to do correct * averaging so apply present one forward */ fx(0) = fx(1); fy(0) = fy(1); } mousedev_notify_readers(mousedev, &mousedev->packet); mousedev_notify_readers(mousedev_mix, &mousedev->packet); mousedev->packet.dx = mousedev->packet.dy = mousedev->packet.dz = 0; mousedev->packet.abs_event = 0; } break; } } static int mousedev_fasync(int fd, struct file *file, int on) { struct mousedev_client *client = file->private_data; return fasync_helper(fd, file, on, &client->fasync); } static void mousedev_free(struct device *dev) { struct mousedev *mousedev = container_of(dev, struct mousedev, dev); input_put_device(mousedev->handle.dev); kfree(mousedev); } static int mousedev_open_device(struct mousedev *mousedev) { int retval; retval = mutex_lock_interruptible(&mousedev->mutex); if (retval) return retval; if (!mousedev->exist) retval = -ENODEV; else if (!mousedev->open++) { retval = input_open_device(&mousedev->handle); if (retval) mousedev->open--; } mutex_unlock(&mousedev->mutex); return retval; } static void mousedev_close_device(struct mousedev *mousedev) { mutex_lock(&mousedev->mutex); if (mousedev->exist && !--mousedev->open) input_close_device(&mousedev->handle); mutex_unlock(&mousedev->mutex); } /* * Open all available devices so they can all be multiplexed in one. * stream. Note that this function is called with mousedev_mix->mutex * held. */ static int mixdev_open_devices(struct mousedev *mixdev) { int error; error = mutex_lock_interruptible(&mixdev->mutex); if (error) return error; if (!mixdev->open++) { struct mousedev *mousedev; list_for_each_entry(mousedev, &mousedev_mix_list, mixdev_node) { if (!mousedev->opened_by_mixdev) { if (mousedev_open_device(mousedev)) continue; mousedev->opened_by_mixdev = true; } } } mutex_unlock(&mixdev->mutex); return 0; } /* * Close all devices that were opened as part of multiplexed * device. Note that this function is called with mousedev_mix->mutex * held. */ static void mixdev_close_devices(struct mousedev *mixdev) { mutex_lock(&mixdev->mutex); if (!--mixdev->open) { struct mousedev *mousedev; list_for_each_entry(mousedev, &mousedev_mix_list, mixdev_node) { if (mousedev->opened_by_mixdev) { mousedev->opened_by_mixdev = false; mousedev_close_device(mousedev); } } } mutex_unlock(&mixdev->mutex); } static void mousedev_attach_client(struct mousedev *mousedev, struct mousedev_client *client) { spin_lock(&mousedev->client_lock); list_add_tail_rcu(&client->node, &mousedev->client_list); spin_unlock(&mousedev->client_lock); } static void mousedev_detach_client(struct mousedev *mousedev, struct mousedev_client *client) { spin_lock(&mousedev->client_lock); list_del_rcu(&client->node); spin_unlock(&mousedev->client_lock); synchronize_rcu(); } static int mousedev_release(struct inode *inode, struct file *file) { struct mousedev_client *client = file->private_data; struct mousedev *mousedev = client->mousedev; mousedev_detach_client(mousedev, client); kfree(client); mousedev->close_device(mousedev); return 0; } static int mousedev_open(struct inode *inode, struct file *file) { struct mousedev_client *client; struct mousedev *mousedev; int error; #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX if (imajor(inode) == MISC_MAJOR) mousedev = mousedev_mix; else #endif mousedev = container_of(inode->i_cdev, struct mousedev, cdev); client = kzalloc(sizeof(struct mousedev_client), GFP_KERNEL); if (!client) return -ENOMEM; spin_lock_init(&client->packet_lock); client->pos_x = xres / 2; client->pos_y = yres / 2; client->mousedev = mousedev; mousedev_attach_client(mousedev, client); error = mousedev->open_device(mousedev); if (error) goto err_free_client; file->private_data = client; stream_open(inode, file); return 0; err_free_client: mousedev_detach_client(mousedev, client); kfree(client); return error; } static void mousedev_packet(struct mousedev_client *client, u8 *ps2_data) { struct mousedev_motion *p = &client->packets[client->tail]; s8 dx, dy, dz; dx = clamp_val(p->dx, -127, 127); p->dx -= dx; dy = clamp_val(p->dy, -127, 127); p->dy -= dy; ps2_data[0] = BIT(3); ps2_data[0] |= ((dx & BIT(7)) >> 3) | ((dy & BIT(7)) >> 2); ps2_data[0] |= p->buttons & 0x07; ps2_data[1] = dx; ps2_data[2] = dy; switch (client->mode) { case MOUSEDEV_EMUL_EXPS: dz = clamp_val(p->dz, -7, 7); p->dz -= dz; ps2_data[3] = (dz & 0x0f) | ((p->buttons & 0x18) << 1); client->bufsiz = 4; break; case MOUSEDEV_EMUL_IMPS: dz = clamp_val(p->dz, -127, 127); p->dz -= dz; ps2_data[0] |= ((p->buttons & 0x10) >> 3) | ((p->buttons & 0x08) >> 1); ps2_data[3] = dz; client->bufsiz = 4; break; case MOUSEDEV_EMUL_PS2: default: p->dz = 0; ps2_data[0] |= ((p->buttons & 0x10) >> 3) | ((p->buttons & 0x08) >> 1); client->bufsiz = 3; break; } if (!p->dx && !p->dy && !p->dz) { if (client->tail == client->head) { client->ready = 0; client->last_buttons = p->buttons; } else client->tail = (client->tail + 1) % PACKET_QUEUE_LEN; } } static void mousedev_generate_response(struct mousedev_client *client, int command) { client->ps2[0] = 0xfa; /* ACK */ switch (command) { case 0xeb: /* Poll */ mousedev_packet(client, &client->ps2[1]); client->bufsiz++; /* account for leading ACK */ break; case 0xf2: /* Get ID */ switch (client->mode) { case MOUSEDEV_EMUL_PS2: client->ps2[1] = 0; break; case MOUSEDEV_EMUL_IMPS: client->ps2[1] = 3; break; case MOUSEDEV_EMUL_EXPS: client->ps2[1] = 4; break; } client->bufsiz = 2; break; case 0xe9: /* Get info */ client->ps2[1] = 0x60; client->ps2[2] = 3; client->ps2[3] = 200; client->bufsiz = 4; break; case 0xff: /* Reset */ client->impsseq = client->imexseq = 0; client->mode = MOUSEDEV_EMUL_PS2; client->ps2[1] = 0xaa; client->ps2[2] = 0x00; client->bufsiz = 3; break; default: client->bufsiz = 1; break; } client->buffer = client->bufsiz; } static ssize_t mousedev_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct mousedev_client *client = file->private_data; unsigned char c; unsigned int i; for (i = 0; i < count; i++) { if (get_user(c, buffer + i)) return -EFAULT; spin_lock_irq(&client->packet_lock); if (c == mousedev_imex_seq[client->imexseq]) { if (++client->imexseq == MOUSEDEV_SEQ_LEN) { client->imexseq = 0; client->mode = MOUSEDEV_EMUL_EXPS; } } else client->imexseq = 0; if (c == mousedev_imps_seq[client->impsseq]) { if (++client->impsseq == MOUSEDEV_SEQ_LEN) { client->impsseq = 0; client->mode = MOUSEDEV_EMUL_IMPS; } } else client->impsseq = 0; mousedev_generate_response(client, c); spin_unlock_irq(&client->packet_lock); cond_resched(); } kill_fasync(&client->fasync, SIGIO, POLL_IN); wake_up_interruptible(&client->mousedev->wait); return count; } static ssize_t mousedev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct mousedev_client *client = file->private_data; struct mousedev *mousedev = client->mousedev; u8 data[sizeof(client->ps2)]; int retval = 0; if (!client->ready && !client->buffer && mousedev->exist && (file->f_flags & O_NONBLOCK)) return -EAGAIN; retval = wait_event_interruptible(mousedev->wait, !mousedev->exist || client->ready || client->buffer); if (retval) return retval; if (!mousedev->exist) return -ENODEV; spin_lock_irq(&client->packet_lock); if (!client->buffer && client->ready) { mousedev_packet(client, client->ps2); client->buffer = client->bufsiz; } if (count > client->buffer) count = client->buffer; memcpy(data, client->ps2 + client->bufsiz - client->buffer, count); client->buffer -= count; spin_unlock_irq(&client->packet_lock); if (copy_to_user(buffer, data, count)) return -EFAULT; return count; } /* No kernel lock - fine */ static __poll_t mousedev_poll(struct file *file, poll_table *wait) { struct mousedev_client *client = file->private_data; struct mousedev *mousedev = client->mousedev; __poll_t mask; poll_wait(file, &mousedev->wait, wait); mask = mousedev->exist ? EPOLLOUT | EPOLLWRNORM : EPOLLHUP | EPOLLERR; if (client->ready || client->buffer) mask |= EPOLLIN | EPOLLRDNORM; return mask; } static const struct file_operations mousedev_fops = { .owner = THIS_MODULE, .read = mousedev_read, .write = mousedev_write, .poll = mousedev_poll, .open = mousedev_open, .release = mousedev_release, .fasync = mousedev_fasync, .llseek = noop_llseek, }; /* * Mark device non-existent. This disables writes, ioctls and * prevents new users from opening the device. Already posted * blocking reads will stay, however new ones will fail. */ static void mousedev_mark_dead(struct mousedev *mousedev) { mutex_lock(&mousedev->mutex); mousedev->exist = false; mutex_unlock(&mousedev->mutex); } /* * Wake up users waiting for IO so they can disconnect from * dead device. */ static void mousedev_hangup(struct mousedev *mousedev) { struct mousedev_client *client; spin_lock(&mousedev->client_lock); list_for_each_entry(client, &mousedev->client_list, node) kill_fasync(&client->fasync, SIGIO, POLL_HUP); spin_unlock(&mousedev->client_lock); wake_up_interruptible(&mousedev->wait); } static void mousedev_cleanup(struct mousedev *mousedev) { struct input_handle *handle = &mousedev->handle; mousedev_mark_dead(mousedev); mousedev_hangup(mousedev); /* mousedev is marked dead so no one else accesses mousedev->open */ if (mousedev->open) input_close_device(handle); } static int mousedev_reserve_minor(bool mixdev) { int minor; if (mixdev) { minor = input_get_new_minor(MOUSEDEV_MIX, 1, false); if (minor < 0) pr_err("failed to reserve mixdev minor: %d\n", minor); } else { minor = input_get_new_minor(MOUSEDEV_MINOR_BASE, MOUSEDEV_MINORS, true); if (minor < 0) pr_err("failed to reserve new minor: %d\n", minor); } return minor; } static struct mousedev *mousedev_create(struct input_dev *dev, struct input_handler *handler, bool mixdev) { struct mousedev *mousedev; int minor; int error; minor = mousedev_reserve_minor(mixdev); if (minor < 0) { error = minor; goto err_out; } mousedev = kzalloc(sizeof(struct mousedev), GFP_KERNEL); if (!mousedev) { error = -ENOMEM; goto err_free_minor; } INIT_LIST_HEAD(&mousedev->client_list); INIT_LIST_HEAD(&mousedev->mixdev_node); spin_lock_init(&mousedev->client_lock); mutex_init(&mousedev->mutex); lockdep_set_subclass(&mousedev->mutex, mixdev ? SINGLE_DEPTH_NESTING : 0); init_waitqueue_head(&mousedev->wait); if (mixdev) { dev_set_name(&mousedev->dev, "mice"); mousedev->open_device = mixdev_open_devices; mousedev->close_device = mixdev_close_devices; } else { int dev_no = minor; /* Normalize device number if it falls into legacy range */ if (dev_no < MOUSEDEV_MINOR_BASE + MOUSEDEV_MINORS) dev_no -= MOUSEDEV_MINOR_BASE; dev_set_name(&mousedev->dev, "mouse%d", dev_no); mousedev->open_device = mousedev_open_device; mousedev->close_device = mousedev_close_device; } mousedev->exist = true; mousedev->handle.dev = input_get_device(dev); mousedev->handle.name = dev_name(&mousedev->dev); mousedev->handle.handler = handler; mousedev->handle.private = mousedev; mousedev->dev.class = &input_class; if (dev) mousedev->dev.parent = &dev->dev; mousedev->dev.devt = MKDEV(INPUT_MAJOR, minor); mousedev->dev.release = mousedev_free; device_initialize(&mousedev->dev); if (!mixdev) { error = input_register_handle(&mousedev->handle); if (error) goto err_free_mousedev; } cdev_init(&mousedev->cdev, &mousedev_fops); error = cdev_device_add(&mousedev->cdev, &mousedev->dev); if (error) goto err_cleanup_mousedev; return mousedev; err_cleanup_mousedev: mousedev_cleanup(mousedev); if (!mixdev) input_unregister_handle(&mousedev->handle); err_free_mousedev: put_device(&mousedev->dev); err_free_minor: input_free_minor(minor); err_out: return ERR_PTR(error); } static void mousedev_destroy(struct mousedev *mousedev) { cdev_device_del(&mousedev->cdev, &mousedev->dev); mousedev_cleanup(mousedev); input_free_minor(MINOR(mousedev->dev.devt)); if (mousedev != mousedev_mix) input_unregister_handle(&mousedev->handle); put_device(&mousedev->dev); } static int mixdev_add_device(struct mousedev *mousedev) { int retval; retval = mutex_lock_interruptible(&mousedev_mix->mutex); if (retval) return retval; if (mousedev_mix->open) { retval = mousedev_open_device(mousedev); if (retval) goto out; mousedev->opened_by_mixdev = true; } get_device(&mousedev->dev); list_add_tail(&mousedev->mixdev_node, &mousedev_mix_list); out: mutex_unlock(&mousedev_mix->mutex); return retval; } static void mixdev_remove_device(struct mousedev *mousedev) { mutex_lock(&mousedev_mix->mutex); if (mousedev->opened_by_mixdev) { mousedev->opened_by_mixdev = false; mousedev_close_device(mousedev); } list_del_init(&mousedev->mixdev_node); mutex_unlock(&mousedev_mix->mutex); put_device(&mousedev->dev); } static int mousedev_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct mousedev *mousedev; int error; mousedev = mousedev_create(dev, handler, false); if (IS_ERR(mousedev)) return PTR_ERR(mousedev); error = mixdev_add_device(mousedev); if (error) { mousedev_destroy(mousedev); return error; } return 0; } static void mousedev_disconnect(struct input_handle *handle) { struct mousedev *mousedev = handle->private; mixdev_remove_device(mousedev); mousedev_destroy(mousedev); } static const struct input_device_id mousedev_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_RELBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) }, .keybit = { [BIT_WORD(BTN_LEFT)] = BIT_MASK(BTN_LEFT) }, .relbit = { BIT_MASK(REL_X) | BIT_MASK(REL_Y) }, }, /* A mouse like device, at least one button, two relative axes */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_RELBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) }, .relbit = { BIT_MASK(REL_WHEEL) }, }, /* A separate scrollwheel */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) }, .keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) }, .absbit = { BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) }, }, /* A tablet like device, at least touch detection, two absolute axes */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) }, .keybit = { [BIT_WORD(BTN_TOOL_FINGER)] = BIT_MASK(BTN_TOOL_FINGER) }, .absbit = { BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) | BIT_MASK(ABS_PRESSURE) | BIT_MASK(ABS_TOOL_WIDTH) }, }, /* A touchpad */ { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) }, .keybit = { [BIT_WORD(BTN_LEFT)] = BIT_MASK(BTN_LEFT) }, .absbit = { BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) }, }, /* Mouse-like device with absolute X and Y but ordinary clicks, like hp ILO2 High Performance mouse */ { }, /* Terminating entry */ }; MODULE_DEVICE_TABLE(input, mousedev_ids); static struct input_handler mousedev_handler = { .event = mousedev_event, .connect = mousedev_connect, .disconnect = mousedev_disconnect, .legacy_minors = true, .minor = MOUSEDEV_MINOR_BASE, .name = "mousedev", .id_table = mousedev_ids, }; #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX #include <linux/miscdevice.h> static struct miscdevice psaux_mouse = { .minor = PSMOUSE_MINOR, .name = "psaux", .fops = &mousedev_fops, }; static bool psaux_registered; static void __init mousedev_psaux_register(void) { int error; error = misc_register(&psaux_mouse); if (error) pr_warn("could not register psaux device, error: %d\n", error); else psaux_registered = true; } static void __exit mousedev_psaux_unregister(void) { if (psaux_registered) misc_deregister(&psaux_mouse); } #else static inline void mousedev_psaux_register(void) { } static inline void mousedev_psaux_unregister(void) { } #endif static int __init mousedev_init(void) { int error; mousedev_mix = mousedev_create(NULL, &mousedev_handler, true); if (IS_ERR(mousedev_mix)) return PTR_ERR(mousedev_mix); error = input_register_handler(&mousedev_handler); if (error) { mousedev_destroy(mousedev_mix); return error; } mousedev_psaux_register(); pr_info("PS/2 mouse device common for all mice\n"); return 0; } static void __exit mousedev_exit(void) { mousedev_psaux_unregister(); input_unregister_handler(&mousedev_handler); mousedev_destroy(mousedev_mix); } module_init(mousedev_init); module_exit(mousedev_exit); |
| 19220 3999 16183 112 111 111 112 24 111 55 56 41 1483 1 1470 1465 10 9 7 6 1463 3 1466 1466 2 18 11 7 23 153 234 3339 15254 1403 1404 1403 1404 47 46 47 47 46 41 40 7 2006 139 2525 742 744 742 251 600 354 359 355 69 348 354 1959 1963 1963 1963 1462 1460 49 1421 1460 82 84 84 83 556 416 61 18689 15830 15820 15583 15601 1850 14071 15658 15593 3779 4426 7 55 25 3 37 40 50 50 2 32 2 31 35 7 33 33 205 205 5 5 1 11 11 6 5 22 1 9 2 11 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 | // SPDX-License-Identifier: GPL-2.0-only /* * Generic pidhash and scalable, time-bounded PID allocator * * (C) 2002-2003 Nadia Yvette Chambers, IBM * (C) 2004 Nadia Yvette Chambers, Oracle * (C) 2002-2004 Ingo Molnar, Red Hat * * pid-structures are backing objects for tasks sharing a given ID to chain * against. There is very little to them aside from hashing them and * parking tasks using given ID's on a list. * * The hash is always changed with the tasklist_lock write-acquired, * and the hash is only accessed with the tasklist_lock at least * read-acquired, so there's no additional SMP locking needed here. * * We have a list of bitmap pages, which bitmaps represent the PID space. * Allocating and freeing PIDs is completely lockless. The worst-case * allocation scenario when all but one out of 1 million PIDs possible are * allocated already: the scanning of 32 list entries and at most PAGE_SIZE * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). * * Pid namespaces: * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM * Many thanks to Oleg Nesterov for comments and help * */ #include <linux/mm.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/rculist.h> #include <linux/memblock.h> #include <linux/pid_namespace.h> #include <linux/init_task.h> #include <linux/syscalls.h> #include <linux/proc_ns.h> #include <linux/refcount.h> #include <linux/anon_inodes.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/idr.h> #include <linux/pidfs.h> #include <linux/seqlock.h> #include <net/sock.h> #include <uapi/linux/pidfd.h> struct pid init_struct_pid = { .count = REFCOUNT_INIT(1), .tasks = { { .first = NULL }, { .first = NULL }, { .first = NULL }, }, .level = 0, .numbers = { { .nr = 0, .ns = &init_pid_ns, }, } }; static int pid_max_min = RESERVED_PIDS + 1; static int pid_max_max = PID_MAX_LIMIT; /* * PID-map pages start out as NULL, they get allocated upon * first use and are never deallocated. This way a low pid_max * value does not cause lots of bitmaps to be allocated, but * the scheme scales to up to 4 million PIDs, runtime. */ struct pid_namespace init_pid_ns = { .ns.__ns_ref = REFCOUNT_INIT(2), .idr = IDR_INIT(init_pid_ns.idr), .pid_allocated = PIDNS_ADDING, .level = 0, .child_reaper = &init_task, .user_ns = &init_user_ns, .ns.inum = ns_init_inum(&init_pid_ns), #ifdef CONFIG_PID_NS .ns.ops = &pidns_operations, #endif .pid_max = PID_MAX_DEFAULT, #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, #endif .ns.ns_type = ns_common_type(&init_pid_ns), }; EXPORT_SYMBOL_GPL(init_pid_ns); static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock); void put_pid(struct pid *pid) { struct pid_namespace *ns; if (!pid) return; ns = pid->numbers[pid->level].ns; if (refcount_dec_and_test(&pid->count)) { pidfs_free_pid(pid); kmem_cache_free(ns->pid_cachep, pid); put_pid_ns(ns); } } EXPORT_SYMBOL_GPL(put_pid); static void delayed_put_pid(struct rcu_head *rhp) { struct pid *pid = container_of(rhp, struct pid, rcu); put_pid(pid); } void free_pid(struct pid *pid) { int i; lockdep_assert_not_held(&tasklist_lock); spin_lock(&pidmap_lock); for (i = 0; i <= pid->level; i++) { struct upid *upid = pid->numbers + i; struct pid_namespace *ns = upid->ns; switch (--ns->pid_allocated) { case 2: case 1: /* When all that is left in the pid namespace * is the reaper wake up the reaper. The reaper * may be sleeping in zap_pid_ns_processes(). */ wake_up_process(ns->child_reaper); break; case PIDNS_ADDING: /* Handle a fork failure of the first process */ WARN_ON(ns->child_reaper); ns->pid_allocated = 0; break; } idr_remove(&ns->idr, upid->nr); } pidfs_remove_pid(pid); spin_unlock(&pidmap_lock); call_rcu(&pid->rcu, delayed_put_pid); } void free_pids(struct pid **pids) { int tmp; /* * This can batch pidmap_lock. */ for (tmp = PIDTYPE_MAX; --tmp >= 0; ) if (pids[tmp]) free_pid(pids[tmp]); } struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size) { struct pid *pid; enum pid_type type; int i, nr; struct pid_namespace *tmp; struct upid *upid; int retval = -ENOMEM; /* * set_tid_size contains the size of the set_tid array. Starting at * the most nested currently active PID namespace it tells alloc_pid() * which PID to set for a process in that most nested PID namespace * up to set_tid_size PID namespaces. It does not have to set the PID * for a process in all nested PID namespaces but set_tid_size must * never be greater than the current ns->level + 1. */ if (set_tid_size > ns->level + 1) return ERR_PTR(-EINVAL); pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); if (!pid) return ERR_PTR(retval); tmp = ns; pid->level = ns->level; for (i = ns->level; i >= 0; i--) { int tid = 0; int pid_max = READ_ONCE(tmp->pid_max); if (set_tid_size) { tid = set_tid[ns->level - i]; retval = -EINVAL; if (tid < 1 || tid >= pid_max) goto out_free; /* * Also fail if a PID != 1 is requested and * no PID 1 exists. */ if (tid != 1 && !tmp->child_reaper) goto out_free; retval = -EPERM; if (!checkpoint_restore_ns_capable(tmp->user_ns)) goto out_free; set_tid_size--; } idr_preload(GFP_KERNEL); spin_lock(&pidmap_lock); if (tid) { nr = idr_alloc(&tmp->idr, NULL, tid, tid + 1, GFP_ATOMIC); /* * If ENOSPC is returned it means that the PID is * alreay in use. Return EEXIST in that case. */ if (nr == -ENOSPC) nr = -EEXIST; } else { int pid_min = 1; /* * init really needs pid 1, but after reaching the * maximum wrap back to RESERVED_PIDS */ if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) pid_min = RESERVED_PIDS; /* * Store a null pointer so find_pid_ns does not find * a partially initialized PID (see below). */ nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, pid_max, GFP_ATOMIC); } spin_unlock(&pidmap_lock); idr_preload_end(); if (nr < 0) { retval = (nr == -ENOSPC) ? -EAGAIN : nr; goto out_free; } pid->numbers[i].nr = nr; pid->numbers[i].ns = tmp; tmp = tmp->parent; } /* * ENOMEM is not the most obvious choice especially for the case * where the child subreaper has already exited and the pid * namespace denies the creation of any new processes. But ENOMEM * is what we have exposed to userspace for a long time and it is * documented behavior for pid namespaces. So we can't easily * change it even if there were an error code better suited. */ retval = -ENOMEM; get_pid_ns(ns); refcount_set(&pid->count, 1); spin_lock_init(&pid->lock); for (type = 0; type < PIDTYPE_MAX; ++type) INIT_HLIST_HEAD(&pid->tasks[type]); init_waitqueue_head(&pid->wait_pidfd); INIT_HLIST_HEAD(&pid->inodes); upid = pid->numbers + ns->level; idr_preload(GFP_KERNEL); spin_lock(&pidmap_lock); if (!(ns->pid_allocated & PIDNS_ADDING)) goto out_unlock; pidfs_add_pid(pid); for ( ; upid >= pid->numbers; --upid) { /* Make the PID visible to find_pid_ns. */ idr_replace(&upid->ns->idr, pid, upid->nr); upid->ns->pid_allocated++; } spin_unlock(&pidmap_lock); idr_preload_end(); return pid; out_unlock: spin_unlock(&pidmap_lock); idr_preload_end(); put_pid_ns(ns); out_free: spin_lock(&pidmap_lock); while (++i <= ns->level) { upid = pid->numbers + i; idr_remove(&upid->ns->idr, upid->nr); } /* On failure to allocate the first pid, reset the state */ if (ns->pid_allocated == PIDNS_ADDING) idr_set_cursor(&ns->idr, 0); spin_unlock(&pidmap_lock); kmem_cache_free(ns->pid_cachep, pid); return ERR_PTR(retval); } void disable_pid_allocation(struct pid_namespace *ns) { spin_lock(&pidmap_lock); ns->pid_allocated &= ~PIDNS_ADDING; spin_unlock(&pidmap_lock); } struct pid *find_pid_ns(int nr, struct pid_namespace *ns) { return idr_find(&ns->idr, nr); } EXPORT_SYMBOL_GPL(find_pid_ns); struct pid *find_vpid(int nr) { return find_pid_ns(nr, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(find_vpid); static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) { return (type == PIDTYPE_PID) ? &task->thread_pid : &task->signal->pids[type]; } /* * attach_pid() must be called with the tasklist_lock write-held. */ void attach_pid(struct task_struct *task, enum pid_type type) { struct pid *pid; lockdep_assert_held_write(&tasklist_lock); pid = *task_pid_ptr(task, type); hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); } static void __change_pid(struct pid **pids, struct task_struct *task, enum pid_type type, struct pid *new) { struct pid **pid_ptr, *pid; int tmp; lockdep_assert_held_write(&tasklist_lock); pid_ptr = task_pid_ptr(task, type); pid = *pid_ptr; hlist_del_rcu(&task->pid_links[type]); *pid_ptr = new; for (tmp = PIDTYPE_MAX; --tmp >= 0; ) if (pid_has_task(pid, tmp)) return; WARN_ON(pids[type]); pids[type] = pid; } void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type) { __change_pid(pids, task, type, NULL); } void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type, struct pid *pid) { __change_pid(pids, task, type, pid); attach_pid(task, type); } void exchange_tids(struct task_struct *left, struct task_struct *right) { struct pid *pid1 = left->thread_pid; struct pid *pid2 = right->thread_pid; struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; lockdep_assert_held_write(&tasklist_lock); /* Swap the single entry tid lists */ hlists_swap_heads_rcu(head1, head2); /* Swap the per task_struct pid */ rcu_assign_pointer(left->thread_pid, pid2); rcu_assign_pointer(right->thread_pid, pid1); /* Swap the cached value */ WRITE_ONCE(left->pid, pid_nr(pid2)); WRITE_ONCE(right->pid, pid_nr(pid1)); } /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type type) { WARN_ON_ONCE(type == PIDTYPE_PID); lockdep_assert_held_write(&tasklist_lock); hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); } struct task_struct *pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result = NULL; if (pid) { struct hlist_node *first; first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), lockdep_tasklist_lock_is_held()); if (first) result = hlist_entry(first, struct task_struct, pid_links[(type)]); } return result; } EXPORT_SYMBOL(pid_task); /* * Must be called under rcu_read_lock(). */ struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) { RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "find_task_by_pid_ns() needs rcu_read_lock() protection"); return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); } struct task_struct *find_task_by_vpid(pid_t vnr) { return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); } struct task_struct *find_get_task_by_vpid(pid_t nr) { struct task_struct *task; rcu_read_lock(); task = find_task_by_vpid(nr); if (task) get_task_struct(task); rcu_read_unlock(); return task; } struct pid *get_task_pid(struct task_struct *task, enum pid_type type) { struct pid *pid; rcu_read_lock(); pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(get_task_pid); struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result; rcu_read_lock(); result = pid_task(pid, type); if (result) get_task_struct(result); rcu_read_unlock(); return result; } EXPORT_SYMBOL_GPL(get_pid_task); struct pid *find_get_pid(pid_t nr) { struct pid *pid; rcu_read_lock(); pid = get_pid(find_vpid(nr)); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(find_get_pid); pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) { struct upid *upid; pid_t nr = 0; if (pid && ns && ns->level <= pid->level) { upid = &pid->numbers[ns->level]; if (upid->ns == ns) nr = upid->nr; } return nr; } EXPORT_SYMBOL_GPL(pid_nr_ns); pid_t pid_vnr(struct pid *pid) { return pid_nr_ns(pid, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(pid_vnr); pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns) { pid_t nr = 0; rcu_read_lock(); if (!ns) ns = task_active_pid_ns(current); if (ns) nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); rcu_read_unlock(); return nr; } EXPORT_SYMBOL(__task_pid_nr_ns); struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) { return ns_of_pid(task_pid(tsk)); } EXPORT_SYMBOL_GPL(task_active_pid_ns); /* * Used by proc to find the first pid that is greater than or equal to nr. * * If there is a pid at nr this function is exactly the same as find_pid_ns. */ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) { return idr_get_next(&ns->idr, &nr); } EXPORT_SYMBOL_GPL(find_ge_pid); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) { CLASS(fd, f)(fd); struct pid *pid; if (fd_empty(f)) return ERR_PTR(-EBADF); pid = pidfd_pid(fd_file(f)); if (!IS_ERR(pid)) { get_pid(pid); *flags = fd_file(f)->f_flags; } return pid; } /** * pidfd_get_task() - Get the task associated with a pidfd * * @pidfd: pidfd for which to get the task * @flags: flags associated with this pidfd * * Return the task associated with @pidfd. The function takes a reference on * the returned task. The caller is responsible for releasing that reference. * * Return: On success, the task_struct associated with the pidfd. * On error, a negative errno number will be returned. */ struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) { unsigned int f_flags = 0; struct pid *pid; struct task_struct *task; enum pid_type type; switch (pidfd) { case PIDFD_SELF_THREAD: type = PIDTYPE_PID; pid = get_task_pid(current, type); break; case PIDFD_SELF_THREAD_GROUP: type = PIDTYPE_TGID; pid = get_task_pid(current, type); break; default: pid = pidfd_get_pid(pidfd, &f_flags); if (IS_ERR(pid)) return ERR_CAST(pid); type = PIDTYPE_TGID; break; } task = get_pid_task(pid, type); put_pid(pid); if (!task) return ERR_PTR(-ESRCH); *flags = f_flags; return task; } /** * pidfd_create() - Create a new pid file descriptor. * * @pid: struct pid that the pidfd will reference * @flags: flags to pass * * This creates a new pid file descriptor with the O_CLOEXEC flag set. * * Note, that this function can only be called after the fd table has * been unshared to avoid leaking the pidfd to the new process. * * This symbol should not be explicitly exported to loadable modules. * * Return: On success, a cloexec pidfd is returned. * On error, a negative errno number will be returned. */ static int pidfd_create(struct pid *pid, unsigned int flags) { int pidfd; struct file *pidfd_file; pidfd = pidfd_prepare(pid, flags, &pidfd_file); if (pidfd < 0) return pidfd; fd_install(pidfd, pidfd_file); return pidfd; } /** * sys_pidfd_open() - Open new pid file descriptor. * * @pid: pid for which to retrieve a pidfd * @flags: flags to pass * * This creates a new pid file descriptor with the O_CLOEXEC flag set for * the task identified by @pid. Without PIDFD_THREAD flag the target task * must be a thread-group leader. * * Return: On success, a cloexec pidfd is returned. * On error, a negative errno number will be returned. */ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) { int fd; struct pid *p; if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) return -EINVAL; if (pid <= 0) return -EINVAL; p = find_get_pid(pid); if (!p) return -ESRCH; fd = pidfd_create(p, flags); put_pid(p); return fd; } #ifdef CONFIG_SYSCTL static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) { return &task_active_pid_ns(current)->set; } static int set_is_seen(struct ctl_table_set *set) { return &task_active_pid_ns(current)->set == set; } static int pid_table_root_permissions(struct ctl_table_header *head, const struct ctl_table *table) { struct pid_namespace *pidns = container_of(head->set, struct pid_namespace, set); int mode = table->mode; if (ns_capable_noaudit(pidns->user_ns, CAP_SYS_ADMIN) || uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) mode = (mode & S_IRWXU) >> 6; else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) mode = (mode & S_IRWXG) >> 3; else mode = mode & S_IROTH; return (mode << 6) | (mode << 3) | mode; } static void pid_table_root_set_ownership(struct ctl_table_header *head, kuid_t *uid, kgid_t *gid) { struct pid_namespace *pidns = container_of(head->set, struct pid_namespace, set); kuid_t ns_root_uid; kgid_t ns_root_gid; ns_root_uid = make_kuid(pidns->user_ns, 0); if (uid_valid(ns_root_uid)) *uid = ns_root_uid; ns_root_gid = make_kgid(pidns->user_ns, 0); if (gid_valid(ns_root_gid)) *gid = ns_root_gid; } static struct ctl_table_root pid_table_root = { .lookup = pid_table_root_lookup, .permissions = pid_table_root_permissions, .set_ownership = pid_table_root_set_ownership, }; static int proc_do_cad_pid(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct pid *new_pid; pid_t tmp_pid; int r; struct ctl_table tmp_table = *table; tmp_pid = pid_vnr(cad_pid); tmp_table.data = &tmp_pid; r = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); if (r || !write) return r; new_pid = find_get_pid(tmp_pid); if (!new_pid) return -ESRCH; put_pid(xchg(&cad_pid, new_pid)); return 0; } static const struct ctl_table pid_table[] = { { .procname = "pid_max", .data = &init_pid_ns.pid_max, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &pid_max_min, .extra2 = &pid_max_max, }, #ifdef CONFIG_PROC_SYSCTL { .procname = "cad_pid", .maxlen = sizeof(int), .mode = 0600, .proc_handler = proc_do_cad_pid, }, #endif }; #endif int register_pidns_sysctls(struct pid_namespace *pidns) { #ifdef CONFIG_SYSCTL struct ctl_table *tbl; setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); if (!tbl) return -ENOMEM; tbl->data = &pidns->pid_max; pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, PIDS_PER_CPU_DEFAULT * num_possible_cpus())); pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, ARRAY_SIZE(pid_table)); if (!pidns->sysctls) { kfree(tbl); retire_sysctl_set(&pidns->set); return -ENOMEM; } #endif return 0; } void unregister_pidns_sysctls(struct pid_namespace *pidns) { #ifdef CONFIG_SYSCTL const struct ctl_table *tbl; tbl = pidns->sysctls->ctl_table_arg; unregister_sysctl_table(pidns->sysctls); retire_sysctl_set(&pidns->set); kfree(tbl); #endif } void __init pid_idr_init(void) { /* Verify no one has done anything silly: */ BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); /* bump default and minimum pid_max based on number of cpus */ init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, PIDS_PER_CPU_DEFAULT * num_possible_cpus())); pid_max_min = max_t(int, pid_max_min, PIDS_PER_CPU_MIN * num_possible_cpus()); pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); idr_init(&init_pid_ns.idr); init_pid_ns.pid_cachep = kmem_cache_create("pid", struct_size_t(struct pid, numbers, 1), __alignof__(struct pid), SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); } static __init int pid_namespace_sysctl_init(void) { #ifdef CONFIG_SYSCTL /* "kernel" directory will have already been initialized. */ BUG_ON(register_pidns_sysctls(&init_pid_ns)); #endif return 0; } subsys_initcall(pid_namespace_sysctl_init); static struct file *__pidfd_fget(struct task_struct *task, int fd) { struct file *file; int ret; ret = down_read_killable(&task->signal->exec_update_lock); if (ret) return ERR_PTR(ret); if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) file = fget_task(task, fd); else file = ERR_PTR(-EPERM); up_read(&task->signal->exec_update_lock); if (!file) { /* * It is possible that the target thread is exiting; it can be * either: * 1. before exit_signals(), which gives a real fd * 2. before exit_files() takes the task_lock() gives a real fd * 3. after exit_files() releases task_lock(), ->files is NULL; * this has PF_EXITING, since it was set in exit_signals(), * __pidfd_fget() returns EBADF. * In case 3 we get EBADF, but that really means ESRCH, since * the task is currently exiting and has freed its files * struct, so we fix it up. */ if (task->flags & PF_EXITING) file = ERR_PTR(-ESRCH); else file = ERR_PTR(-EBADF); } return file; } static int pidfd_getfd(struct pid *pid, int fd) { struct task_struct *task; struct file *file; int ret; task = get_pid_task(pid, PIDTYPE_PID); if (!task) return -ESRCH; file = __pidfd_fget(task, fd); put_task_struct(task); if (IS_ERR(file)) return PTR_ERR(file); ret = receive_fd(file, NULL, O_CLOEXEC); fput(file); return ret; } /** * sys_pidfd_getfd() - Get a file descriptor from another process * * @pidfd: the pidfd file descriptor of the process * @fd: the file descriptor number to get * @flags: flags on how to get the fd (reserved) * * This syscall gets a copy of a file descriptor from another process * based on the pidfd, and file descriptor number. It requires that * the calling process has the ability to ptrace the process represented * by the pidfd. The process which is having its file descriptor copied * is otherwise unaffected. * * Return: On success, a cloexec file descriptor is returned. * On error, a negative errno number will be returned. */ SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, unsigned int, flags) { struct pid *pid; /* flags is currently unused - make sure it's unset */ if (flags) return -EINVAL; CLASS(fd, f)(pidfd); if (fd_empty(f)) return -EBADF; pid = pidfd_pid(fd_file(f)); if (IS_ERR(pid)) return PTR_ERR(pid); return pidfd_getfd(pid, fd); } |
| 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 | // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" static char *resp_state_name[] = { [RESPST_NONE] = "NONE", [RESPST_GET_REQ] = "GET_REQ", [RESPST_CHK_PSN] = "CHK_PSN", [RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ", [RESPST_CHK_OP_VALID] = "CHK_OP_VALID", [RESPST_CHK_RESOURCE] = "CHK_RESOURCE", [RESPST_CHK_LENGTH] = "CHK_LENGTH", [RESPST_CHK_RKEY] = "CHK_RKEY", [RESPST_EXECUTE] = "EXECUTE", [RESPST_READ_REPLY] = "READ_REPLY", [RESPST_ATOMIC_REPLY] = "ATOMIC_REPLY", [RESPST_ATOMIC_WRITE_REPLY] = "ATOMIC_WRITE_REPLY", [RESPST_PROCESS_FLUSH] = "PROCESS_FLUSH", [RESPST_COMPLETE] = "COMPLETE", [RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE", [RESPST_CLEANUP] = "CLEANUP", [RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST", [RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE", [RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE", [RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC", [RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ", [RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST", [RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C", [RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E", [RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ", [RESPST_ERR_RNR] = "ERR_RNR", [RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION", [RESPST_ERR_INVALIDATE_RKEY] = "ERR_INVALIDATE_RKEY_VIOLATION", [RESPST_ERR_LENGTH] = "ERR_LENGTH", [RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW", [RESPST_ERROR] = "ERROR", [RESPST_DONE] = "DONE", [RESPST_EXIT] = "EXIT", }; /* rxe_recv calls here to add a request packet to the input queue */ void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb) { skb_queue_tail(&qp->req_pkts, skb); rxe_sched_task(&qp->recv_task); } static inline enum resp_states get_req(struct rxe_qp *qp, struct rxe_pkt_info **pkt_p) { struct sk_buff *skb; skb = skb_peek(&qp->req_pkts); if (!skb) return RESPST_EXIT; *pkt_p = SKB_TO_PKT(skb); return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN; } static enum resp_states check_psn(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { int diff = psn_compare(pkt->psn, qp->resp.psn); struct rxe_dev *rxe = to_rdev(qp->ibqp.device); switch (qp_type(qp)) { case IB_QPT_RC: if (diff > 0) { if (qp->resp.sent_psn_nak) return RESPST_CLEANUP; qp->resp.sent_psn_nak = 1; rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ); return RESPST_ERR_PSN_OUT_OF_SEQ; } else if (diff < 0) { rxe_counter_inc(rxe, RXE_CNT_DUP_REQ); return RESPST_DUPLICATE_REQUEST; } if (qp->resp.sent_psn_nak) qp->resp.sent_psn_nak = 0; break; case IB_QPT_UC: if (qp->resp.drop_msg || diff != 0) { if (pkt->mask & RXE_START_MASK) { qp->resp.drop_msg = 0; return RESPST_CHK_OP_SEQ; } qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; default: break; } return RESPST_CHK_OP_SEQ; } static enum resp_states check_op_seq(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: switch (qp->resp.opcode) { case IB_OPCODE_RC_SEND_FIRST: case IB_OPCODE_RC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } case IB_OPCODE_RC_RDMA_WRITE_FIRST: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } default: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_ERR_MISSING_OPCODE_FIRST; default: return RESPST_CHK_OP_VALID; } } break; case IB_QPT_UC: switch (qp->resp.opcode) { case IB_OPCODE_UC_SEND_FIRST: case IB_OPCODE_UC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } case IB_OPCODE_UC_RDMA_WRITE_FIRST: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } default: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: qp->resp.drop_msg = 1; return RESPST_CLEANUP; default: return RESPST_CHK_OP_VALID; } } break; default: return RESPST_CHK_OP_VALID; } } static bool check_qp_attr_access(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { if (((pkt->mask & RXE_READ_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) || ((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) || ((pkt->mask & RXE_ATOMIC_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) return false; if (pkt->mask & RXE_FLUSH_MASK) { u32 flush_type = feth_plt(pkt); if ((flush_type & IB_FLUSH_GLOBAL && !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) || (flush_type & IB_FLUSH_PERSISTENT && !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT))) return false; } return true; } static enum resp_states check_op_valid(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: if (!check_qp_attr_access(qp, pkt)) return RESPST_ERR_UNSUPPORTED_OPCODE; break; case IB_QPT_UC: if ((pkt->mask & RXE_WRITE_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) { qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; case IB_QPT_UD: case IB_QPT_GSI: break; default: WARN_ON_ONCE(1); break; } return RESPST_CHK_RESOURCE; } static enum resp_states get_srq_wqe(struct rxe_qp *qp) { struct rxe_srq *srq = qp->srq; struct rxe_queue *q = srq->rq.queue; struct rxe_recv_wqe *wqe; struct ib_event ev; unsigned int count; size_t size; unsigned long flags; if (srq->error) return RESPST_ERR_RNR; spin_lock_irqsave(&srq->rq.consumer_lock, flags); wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT); if (!wqe) { spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); return RESPST_ERR_RNR; } /* don't trust user space data */ if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) { spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n"); return RESPST_ERR_MALFORMED_WQE; } size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge); memcpy(&qp->resp.srq_wqe, wqe, size); qp->resp.wqe = &qp->resp.srq_wqe.wqe; queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT); count = queue_count(q, QUEUE_TYPE_FROM_CLIENT); if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) { srq->limit = 0; goto event; } spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); return RESPST_CHK_LENGTH; event: spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); ev.device = qp->ibqp.device; ev.element.srq = qp->ibqp.srq; ev.event = IB_EVENT_SRQ_LIMIT_REACHED; srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context); return RESPST_CHK_LENGTH; } static enum resp_states check_resource(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_srq *srq = qp->srq; if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) { /* it is the requesters job to not send * too many read/atomic ops, we just * recycle the responder resource queue */ if (likely(qp->attr.max_dest_rd_atomic > 0)) return RESPST_CHK_LENGTH; else return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ; } if (pkt->mask & RXE_RWR_MASK) { if (srq) return get_srq_wqe(qp); qp->resp.wqe = queue_head(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT); return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR; } return RESPST_CHK_LENGTH; } static enum resp_states rxe_resp_check_length(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { /* * See IBA C9-92 * For UD QPs we only check if the packet will fit in the * receive buffer later. For RDMA operations additional * length checks are performed in check_rkey. */ if ((qp_type(qp) == IB_QPT_GSI) || (qp_type(qp) == IB_QPT_UD)) { unsigned int payload = payload_size(pkt); unsigned int recv_buffer_len = 0; int i; for (i = 0; i < qp->resp.wqe->dma.num_sge; i++) recv_buffer_len += qp->resp.wqe->dma.sge[i].length; if (payload + sizeof(union rdma_network_hdr) > recv_buffer_len) { rxe_dbg_qp(qp, "The receive buffer is too small for this UD packet.\n"); return RESPST_ERR_LENGTH; } } if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) || (qp_type(qp) == IB_QPT_UC))) { unsigned int mtu = qp->mtu; unsigned int payload = payload_size(pkt); if ((pkt->mask & RXE_START_MASK) && (pkt->mask & RXE_END_MASK)) { if (unlikely(payload > mtu)) { rxe_dbg_qp(qp, "only packet too long\n"); return RESPST_ERR_LENGTH; } } else if ((pkt->mask & RXE_START_MASK) || (pkt->mask & RXE_MIDDLE_MASK)) { if (unlikely(payload != mtu)) { rxe_dbg_qp(qp, "first or middle packet not mtu\n"); return RESPST_ERR_LENGTH; } } else if (pkt->mask & RXE_END_MASK) { if (unlikely((payload == 0) || (payload > mtu))) { rxe_dbg_qp(qp, "last packet zero or too long\n"); return RESPST_ERR_LENGTH; } } } /* See IBA C9-94 */ if (pkt->mask & RXE_RETH_MASK) { if (reth_len(pkt) > (1U << 31)) { rxe_dbg_qp(qp, "dma length too long\n"); return RESPST_ERR_LENGTH; } } if (pkt->mask & RXE_RDMA_OP_MASK) return RESPST_CHK_RKEY; else return RESPST_EXECUTE; } /* if the reth length field is zero we can assume nothing * about the rkey value and should not validate or use it. * Instead set qp->resp.rkey to 0 which is an invalid rkey * value since the minimum index part is 1. */ static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { unsigned int length = reth_len(pkt); qp->resp.va = reth_va(pkt); qp->resp.offset = 0; qp->resp.resid = length; qp->resp.length = length; if (pkt->mask & RXE_READ_OR_WRITE_MASK && length == 0) qp->resp.rkey = 0; else qp->resp.rkey = reth_rkey(pkt); } static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { qp->resp.va = atmeth_va(pkt); qp->resp.offset = 0; qp->resp.rkey = atmeth_rkey(pkt); qp->resp.resid = sizeof(u64); } /* resolve the packet rkey to qp->resp.mr or set qp->resp.mr to NULL * if an invalid rkey is received or the rdma length is zero. For middle * or last packets use the stored value of mr. */ static enum resp_states check_rkey(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_mr *mr = NULL; struct rxe_mw *mw = NULL; u64 va; u32 rkey; u32 resid; u32 pktlen; int mtu = qp->mtu; enum resp_states state; int access = 0; /* parse RETH or ATMETH header for first/only packets * for va, length, rkey, etc. or use current value for * middle/last packets. */ if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { if (pkt->mask & RXE_RETH_MASK) qp_resp_from_reth(qp, pkt); access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ : IB_ACCESS_REMOTE_WRITE; } else if (pkt->mask & RXE_FLUSH_MASK) { u32 flush_type = feth_plt(pkt); if (pkt->mask & RXE_RETH_MASK) qp_resp_from_reth(qp, pkt); if (flush_type & IB_FLUSH_GLOBAL) access |= IB_ACCESS_FLUSH_GLOBAL; if (flush_type & IB_FLUSH_PERSISTENT) access |= IB_ACCESS_FLUSH_PERSISTENT; } else if (pkt->mask & RXE_ATOMIC_MASK) { qp_resp_from_atmeth(qp, pkt); access = IB_ACCESS_REMOTE_ATOMIC; } else { /* shouldn't happen */ WARN_ON(1); } /* A zero-byte read or write op is not required to * set an addr or rkey. See C9-88 */ if ((pkt->mask & RXE_READ_OR_WRITE_MASK) && (pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) { qp->resp.mr = NULL; return RESPST_EXECUTE; } va = qp->resp.va; rkey = qp->resp.rkey; resid = qp->resp.resid; pktlen = payload_size(pkt); if (rkey_is_mw(rkey)) { mw = rxe_lookup_mw(qp, access, rkey); if (!mw) { rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey); state = RESPST_ERR_RKEY_VIOLATION; goto err; } mr = mw->mr; if (!mr) { rxe_dbg_qp(qp, "MW doesn't have an MR\n"); state = RESPST_ERR_RKEY_VIOLATION; goto err; } if (mw->access & IB_ZERO_BASED) qp->resp.offset = mw->addr; rxe_get(mr); rxe_put(mw); mw = NULL; } else { mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE); if (!mr) { rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey); state = RESPST_ERR_RKEY_VIOLATION; goto err; } } if (pkt->mask & RXE_FLUSH_MASK) { /* FLUSH MR may not set va or resid * no need to check range since we will flush whole mr */ if (feth_sel(pkt) == IB_FLUSH_MR) goto skip_check_range; } if (mr_check_range(mr, va + qp->resp.offset, resid)) { state = RESPST_ERR_RKEY_VIOLATION; goto err; } skip_check_range: if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { if (resid > mtu) { if (pktlen != mtu || bth_pad(pkt)) { state = RESPST_ERR_LENGTH; goto err; } } else { if (pktlen != resid) { state = RESPST_ERR_LENGTH; goto err; } if ((bth_pad(pkt) != (0x3 & (-resid)))) { /* This case may not be exactly that * but nothing else fits. */ state = RESPST_ERR_LENGTH; goto err; } } } WARN_ON_ONCE(qp->resp.mr); qp->resp.mr = mr; return RESPST_EXECUTE; err: qp->resp.mr = NULL; if (mr) rxe_put(mr); if (mw) rxe_put(mw); return state; } static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr, int data_len) { int err; err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma, data_addr, data_len, RXE_TO_MR_OBJ); if (unlikely(err)) return (err == -ENOSPC) ? RESPST_ERR_LENGTH : RESPST_ERR_MALFORMED_WQE; return RESPST_NONE; } static enum resp_states write_data_in(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc = RESPST_NONE; int err; int data_len = payload_size(pkt); err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset, payload_addr(pkt), data_len, RXE_TO_MR_OBJ); if (err) { rc = RESPST_ERR_RKEY_VIOLATION; goto out; } qp->resp.va += data_len; qp->resp.resid -= data_len; out: return rc; } static struct resp_res *rxe_prepare_res(struct rxe_qp *qp, struct rxe_pkt_info *pkt, int type) { struct resp_res *res; u32 pkts; res = &qp->resp.resources[qp->resp.res_head]; rxe_advance_resp_resource(qp); free_rd_atomic_resource(res); res->type = type; res->replay = 0; switch (type) { case RXE_READ_MASK: res->read.va = qp->resp.va + qp->resp.offset; res->read.va_org = qp->resp.va + qp->resp.offset; res->read.resid = qp->resp.resid; res->read.length = qp->resp.resid; res->read.rkey = qp->resp.rkey; pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1); res->first_psn = pkt->psn; res->cur_psn = pkt->psn; res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK; res->state = rdatm_res_state_new; break; case RXE_ATOMIC_MASK: case RXE_ATOMIC_WRITE_MASK: res->first_psn = pkt->psn; res->last_psn = pkt->psn; res->cur_psn = pkt->psn; break; case RXE_FLUSH_MASK: res->flush.va = qp->resp.va + qp->resp.offset; res->flush.length = qp->resp.length; res->flush.type = feth_plt(pkt); res->flush.level = feth_sel(pkt); } return res; } static enum resp_states process_flush(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { u64 length, start; struct rxe_mr *mr = qp->resp.mr; struct resp_res *res = qp->resp.res; /* oA19-14, oA19-15 */ if (res && res->replay) return RESPST_ACKNOWLEDGE; else if (!res) { res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK); qp->resp.res = res; } if (res->flush.level == IB_FLUSH_RANGE) { start = res->flush.va; length = res->flush.length; } else { /* level == IB_FLUSH_MR */ start = mr->ibmr.iova; length = mr->ibmr.length; } if (res->flush.type & IB_FLUSH_PERSISTENT) { if (rxe_flush_pmem_iova(mr, start, length)) return RESPST_ERR_RKEY_VIOLATION; /* Make data persistent. */ wmb(); } else if (res->flush.type & IB_FLUSH_GLOBAL) { /* Make data global visibility. */ wmb(); } qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; return RESPST_ACKNOWLEDGE; } static enum resp_states atomic_reply(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_mr *mr = qp->resp.mr; struct resp_res *res = qp->resp.res; int err; if (!res) { res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK); qp->resp.res = res; } if (!res->replay) { u64 iova = qp->resp.va + qp->resp.offset; if (is_odp_mr(mr)) err = rxe_odp_atomic_op(mr, iova, pkt->opcode, atmeth_comp(pkt), atmeth_swap_add(pkt), &res->atomic.orig_val); else err = rxe_mr_do_atomic_op(mr, iova, pkt->opcode, atmeth_comp(pkt), atmeth_swap_add(pkt), &res->atomic.orig_val); if (err) return err; qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; } return RESPST_ACKNOWLEDGE; } static enum resp_states atomic_write_reply(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct resp_res *res = qp->resp.res; struct rxe_mr *mr; u64 value; u64 iova; int err; if (!res) { res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK); qp->resp.res = res; } if (res->replay) return RESPST_ACKNOWLEDGE; mr = qp->resp.mr; value = *(u64 *)payload_addr(pkt); iova = qp->resp.va + qp->resp.offset; /* See IBA oA19-28 */ if (unlikely(mr->state != RXE_MR_STATE_VALID)) { rxe_dbg_mr(mr, "mr not in valid state\n"); return RESPST_ERR_RKEY_VIOLATION; } if (is_odp_mr(mr)) err = rxe_odp_do_atomic_write(mr, iova, value); else err = rxe_mr_do_atomic_write(mr, iova, value); if (err) return err; qp->resp.resid = 0; qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; return RESPST_ACKNOWLEDGE; } static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp, struct rxe_pkt_info *ack, int opcode, int payload, u32 psn, u8 syndrome) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct sk_buff *skb; int paylen; int pad; int err; /* * allocate packet */ pad = (-payload) & 0x3; paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE; skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack); if (!skb) return NULL; ack->qp = qp; ack->opcode = opcode; ack->mask = rxe_opcode[opcode].mask; ack->paylen = paylen; ack->psn = psn; bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL, qp->attr.dest_qp_num, 0, psn); if (ack->mask & RXE_AETH_MASK) { aeth_set_syn(ack, syndrome); aeth_set_msn(ack, qp->resp.msn); } if (ack->mask & RXE_ATMACK_MASK) atmack_set_orig(ack, qp->resp.res->atomic.orig_val); err = rxe_prepare(&qp->pri_av, ack, skb); if (err) { kfree_skb(skb); return NULL; } return skb; } /** * rxe_recheck_mr - revalidate MR from rkey and get a reference * @qp: the qp * @rkey: the rkey * * This code allows the MR to be invalidated or deregistered or * the MW if one was used to be invalidated or deallocated. * It is assumed that the access permissions if originally good * are OK and the mappings to be unchanged. * * TODO: If someone reregisters an MR to change its size or * access permissions during the processing of an RDMA read * we should kill the responder resource and complete the * operation with an error. * * Return: mr on success else NULL */ static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_mr *mr; struct rxe_mw *mw; if (rkey_is_mw(rkey)) { mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8); if (!mw) return NULL; mr = mw->mr; if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID || !mr || mr->state != RXE_MR_STATE_VALID) { rxe_put(mw); return NULL; } rxe_get(mr); rxe_put(mw); return mr; } mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8); if (!mr) return NULL; if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) { rxe_put(mr); return NULL; } return mr; } /* RDMA read response. If res is not NULL, then we have a current RDMA request * being processed or replayed. */ static enum resp_states read_reply(struct rxe_qp *qp, struct rxe_pkt_info *req_pkt) { struct rxe_pkt_info ack_pkt; struct sk_buff *skb; int mtu = qp->mtu; enum resp_states state; int payload; int opcode; int err; struct resp_res *res = qp->resp.res; struct rxe_mr *mr; if (!res) { res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK); qp->resp.res = res; } if (res->state == rdatm_res_state_new) { if (!res->replay || qp->resp.length == 0) { /* if length == 0 mr will be NULL (is ok) * otherwise qp->resp.mr holds a ref on mr * which we transfer to mr and drop below. */ mr = qp->resp.mr; qp->resp.mr = NULL; } else { mr = rxe_recheck_mr(qp, res->read.rkey); if (!mr) return RESPST_ERR_RKEY_VIOLATION; } if (res->read.resid <= mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST; } else { /* re-lookup mr from rkey on all later packets. * length will be non-zero. This can fail if someone * modifies or destroys the mr since the first packet. */ mr = rxe_recheck_mr(qp, res->read.rkey); if (!mr) return RESPST_ERR_RKEY_VIOLATION; if (res->read.resid > mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST; } res->state = rdatm_res_state_next; payload = min_t(int, res->read.resid, mtu); skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload, res->cur_psn, AETH_ACK_UNLIMITED); if (!skb) { state = RESPST_ERR_RNR; goto err_out; } err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt), payload, RXE_FROM_MR_OBJ); if (err) { kfree_skb(skb); state = RESPST_ERR_RKEY_VIOLATION; goto err_out; } if (bth_pad(&ack_pkt)) { u8 *pad = payload_addr(&ack_pkt) + payload; memset(pad, 0, bth_pad(&ack_pkt)); } /* rxe_xmit_packet always consumes the skb */ err = rxe_xmit_packet(qp, &ack_pkt, skb); if (err) { state = RESPST_ERR_RNR; goto err_out; } res->read.va += payload; res->read.resid -= payload; res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK; if (res->read.resid > 0) { state = RESPST_DONE; } else { qp->resp.res = NULL; if (!res->replay) qp->resp.opcode = -1; if (psn_compare(res->cur_psn, qp->resp.psn) >= 0) qp->resp.psn = res->cur_psn; state = RESPST_CLEANUP; } err_out: if (mr) rxe_put(mr); return state; } static int invalidate_rkey(struct rxe_qp *qp, u32 rkey) { if (rkey_is_mw(rkey)) return rxe_invalidate_mw(qp, rkey); else return rxe_invalidate_mr(qp, rkey); } /* Executes a new request. A retried request never reach that function (send * and writes are discarded, and reads and atomics are retried elsewhere. */ static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states err; struct sk_buff *skb = PKT_TO_SKB(pkt); union rdma_network_hdr hdr; if (pkt->mask & RXE_SEND_MASK) { if (qp_type(qp) == IB_QPT_UD || qp_type(qp) == IB_QPT_GSI) { if (skb->protocol == htons(ETH_P_IP)) { memset(&hdr.reserved, 0, sizeof(hdr.reserved)); memcpy(&hdr.roce4grh, ip_hdr(skb), sizeof(hdr.roce4grh)); err = send_data_in(qp, &hdr, sizeof(hdr)); } else { err = send_data_in(qp, ipv6_hdr(skb), sizeof(hdr)); } if (err) return err; } err = send_data_in(qp, payload_addr(pkt), payload_size(pkt)); if (err) return err; } else if (pkt->mask & RXE_WRITE_MASK) { err = write_data_in(qp, pkt); if (err) return err; } else if (pkt->mask & RXE_READ_MASK) { /* For RDMA Read we can increment the msn now. See C9-148. */ qp->resp.msn++; return RESPST_READ_REPLY; } else if (pkt->mask & RXE_ATOMIC_MASK) { return RESPST_ATOMIC_REPLY; } else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) { return RESPST_ATOMIC_WRITE_REPLY; } else if (pkt->mask & RXE_FLUSH_MASK) { return RESPST_PROCESS_FLUSH; } else { /* Unreachable */ WARN_ON_ONCE(1); } if (pkt->mask & RXE_IETH_MASK) { u32 rkey = ieth_rkey(pkt); err = invalidate_rkey(qp, rkey); if (err) return RESPST_ERR_INVALIDATE_RKEY; } if (pkt->mask & RXE_END_MASK) /* We successfully processed this new request. */ qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; if (pkt->mask & RXE_COMP_MASK) return RESPST_COMPLETE; else if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static enum resp_states do_complete(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_cqe cqe; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; struct rxe_recv_wqe *wqe = qp->resp.wqe; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); unsigned long flags; if (!wqe) goto finish; memset(&cqe, 0, sizeof(cqe)); if (qp->rcq->is_user) { uwc->status = qp->resp.status; uwc->qp_num = qp->ibqp.qp_num; uwc->wr_id = wqe->wr_id; } else { wc->status = qp->resp.status; wc->qp = &qp->ibqp; wc->wr_id = wqe->wr_id; } if (wc->status == IB_WC_SUCCESS) { rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV); wc->opcode = (pkt->mask & RXE_IMMDT_MASK && pkt->mask & RXE_WRITE_MASK) ? IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV; wc->byte_len = (pkt->mask & RXE_IMMDT_MASK && pkt->mask & RXE_WRITE_MASK) ? qp->resp.length : wqe->dma.length - wqe->dma.resid; /* fields after byte_len are different between kernel and user * space */ if (qp->rcq->is_user) { uwc->wc_flags = IB_WC_GRH; if (pkt->mask & RXE_IMMDT_MASK) { uwc->wc_flags |= IB_WC_WITH_IMM; uwc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { uwc->wc_flags |= IB_WC_WITH_INVALIDATE; uwc->ex.invalidate_rkey = ieth_rkey(pkt); } if (pkt->mask & RXE_DETH_MASK) uwc->src_qp = deth_sqp(pkt); uwc->port_num = qp->attr.port_num; } else { struct sk_buff *skb = PKT_TO_SKB(pkt); wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE; if (skb->protocol == htons(ETH_P_IP)) wc->network_hdr_type = RDMA_NETWORK_IPV4; else wc->network_hdr_type = RDMA_NETWORK_IPV6; if (is_vlan_dev(skb->dev)) { wc->wc_flags |= IB_WC_WITH_VLAN; wc->vlan_id = vlan_dev_vlan_id(skb->dev); } if (pkt->mask & RXE_IMMDT_MASK) { wc->wc_flags |= IB_WC_WITH_IMM; wc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { wc->wc_flags |= IB_WC_WITH_INVALIDATE; wc->ex.invalidate_rkey = ieth_rkey(pkt); } if (pkt->mask & RXE_DETH_MASK) wc->src_qp = deth_sqp(pkt); wc->port_num = qp->attr.port_num; } } else { if (wc->status != IB_WC_WR_FLUSH_ERR) rxe_err_qp(qp, "non-flush error status = %d\n", wc->status); } /* have copy for srq and reference for !srq */ if (!qp->srq) queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT); qp->resp.wqe = NULL; if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1)) return RESPST_ERR_CQ_OVERFLOW; finish: spin_lock_irqsave(&qp->state_lock, flags); if (unlikely(qp_state(qp) == IB_QPS_ERR)) { spin_unlock_irqrestore(&qp->state_lock, flags); return RESPST_CHK_RESOURCE; } spin_unlock_irqrestore(&qp->state_lock, flags); if (unlikely(!pkt)) return RESPST_DONE; if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn, int opcode, const char *msg) { int err; struct rxe_pkt_info ack_pkt; struct sk_buff *skb; skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome); if (!skb) return -ENOMEM; err = rxe_xmit_packet(qp, &ack_pkt, skb); if (err) rxe_dbg_qp(qp, "Failed sending %s\n", msg); return err; } static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { return send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_ACKNOWLEDGE, "ACK"); } static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { int ret = send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK"); /* have to clear this since it is used to trigger * long read replies */ qp->resp.res = NULL; return ret; } static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { int ret = send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY, "RDMA READ response of length zero ACK"); /* have to clear this since it is used to trigger * long read replies */ qp->resp.res = NULL; return ret; } static enum resp_states acknowledge(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { if (qp_type(qp) != IB_QPT_RC) return RESPST_CLEANUP; if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED) send_ack(qp, qp->resp.aeth_syndrome, pkt->psn); else if (pkt->mask & RXE_ATOMIC_MASK) send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK)) send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); else if (bth_ack(pkt)) send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); return RESPST_CLEANUP; } static enum resp_states cleanup(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct sk_buff *skb; if (pkt) { skb = skb_dequeue(&qp->req_pkts); rxe_put(qp); kfree_skb(skb); ib_device_put(qp->ibqp.device); } if (qp->resp.mr) { rxe_put(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_DONE; } static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn) { int i; for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) { struct resp_res *res = &qp->resp.resources[i]; if (res->type == 0) continue; if (psn_compare(psn, res->first_psn) >= 0 && psn_compare(psn, res->last_psn) <= 0) { return res; } } return NULL; } static enum resp_states duplicate_request(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc; u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK; if (pkt->mask & RXE_SEND_MASK || pkt->mask & RXE_WRITE_MASK) { /* SEND. Ack again and cleanup. C9-105. */ send_ack(qp, AETH_ACK_UNLIMITED, prev_psn); return RESPST_CLEANUP; } else if (pkt->mask & RXE_FLUSH_MASK) { struct resp_res *res; /* Find the operation in our list of responder resources. */ res = find_resource(qp, pkt->psn); if (res) { res->replay = 1; res->cur_psn = pkt->psn; qp->resp.res = res; rc = RESPST_PROCESS_FLUSH; goto out; } /* Resource not found. Class D error. Drop the request. */ rc = RESPST_CLEANUP; goto out; } else if (pkt->mask & RXE_READ_MASK) { struct resp_res *res; res = find_resource(qp, pkt->psn); if (!res) { /* Resource not found. Class D error. Drop the * request. */ rc = RESPST_CLEANUP; goto out; } else { /* Ensure this new request is the same as the previous * one or a subset of it. */ u64 iova = reth_va(pkt); u32 resid = reth_len(pkt); if (iova < res->read.va_org || resid > res->read.length || (iova + resid) > (res->read.va_org + res->read.length)) { rc = RESPST_CLEANUP; goto out; } if (reth_rkey(pkt) != res->read.rkey) { rc = RESPST_CLEANUP; goto out; } res->cur_psn = pkt->psn; res->state = (pkt->psn == res->first_psn) ? rdatm_res_state_new : rdatm_res_state_replay; res->replay = 1; /* Reset the resource, except length. */ res->read.va_org = iova; res->read.va = iova; res->read.resid = resid; /* Replay the RDMA read reply. */ qp->resp.res = res; rc = RESPST_READ_REPLY; goto out; } } else { struct resp_res *res; /* Find the operation in our list of responder resources. */ res = find_resource(qp, pkt->psn); if (res) { res->replay = 1; res->cur_psn = pkt->psn; qp->resp.res = res; rc = pkt->mask & RXE_ATOMIC_MASK ? RESPST_ATOMIC_REPLY : RESPST_ATOMIC_WRITE_REPLY; goto out; } /* Resource not found. Class D error. Drop the request. */ rc = RESPST_CLEANUP; goto out; } out: return rc; } /* Process a class A or C. Both are treated the same in this implementation. */ static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome, enum ib_wc_status status) { qp->resp.aeth_syndrome = syndrome; qp->resp.status = status; /* indicate that we should go through the ERROR state */ qp->resp.goto_error = 1; } static enum resp_states do_class_d1e_error(struct rxe_qp *qp) { /* UC */ if (qp->srq) { /* Class E */ qp->resp.drop_msg = 1; if (qp->resp.wqe) { qp->resp.status = IB_WC_REM_INV_REQ_ERR; return RESPST_COMPLETE; } else { return RESPST_CLEANUP; } } else { /* Class D1. This packet may be the start of a * new message and could be valid. The previous * message is invalid and ignored. reset the * recv wr to its original state */ if (qp->resp.wqe) { qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length; qp->resp.wqe->dma.cur_sge = 0; qp->resp.wqe->dma.sge_offset = 0; qp->resp.opcode = -1; } if (qp->resp.mr) { rxe_put(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_CLEANUP; } } /* drain incoming request packet queue */ static void drain_req_pkts(struct rxe_qp *qp) { struct sk_buff *skb; while ((skb = skb_dequeue(&qp->req_pkts))) { rxe_put(qp); kfree_skb(skb); ib_device_put(qp->ibqp.device); } } /* complete receive wqe with flush error */ static int flush_recv_wqe(struct rxe_qp *qp, struct rxe_recv_wqe *wqe) { struct rxe_cqe cqe = {}; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; int err; if (qp->rcq->is_user) { uwc->wr_id = wqe->wr_id; uwc->status = IB_WC_WR_FLUSH_ERR; uwc->qp_num = qp_num(qp); } else { wc->wr_id = wqe->wr_id; wc->status = IB_WC_WR_FLUSH_ERR; wc->qp = &qp->ibqp; } err = rxe_cq_post(qp->rcq, &cqe, 0); if (err) rxe_dbg_cq(qp->rcq, "post cq failed err = %d\n", err); return err; } /* drain and optionally complete the recive queue * if unable to complete a wqe stop completing and * just flush the remaining wqes */ static void flush_recv_queue(struct rxe_qp *qp, bool notify) { struct rxe_queue *q = qp->rq.queue; struct rxe_recv_wqe *wqe; int err; if (qp->srq) { if (notify && qp->ibqp.event_handler) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } return; } /* recv queue not created. nothing to do. */ if (!qp->rq.queue) return; while ((wqe = queue_head(q, q->type))) { if (notify) { err = flush_recv_wqe(qp, wqe); if (err) notify = 0; } queue_advance_consumer(q, q->type); } qp->resp.wqe = NULL; } int rxe_receiver(struct rxe_qp *qp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); enum resp_states state; struct rxe_pkt_info *pkt = NULL; int ret; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if (!qp->valid || qp_state(qp) == IB_QPS_ERR || qp_state(qp) == IB_QPS_RESET) { bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR); drain_req_pkts(qp); flush_recv_queue(qp, notify); spin_unlock_irqrestore(&qp->state_lock, flags); goto exit; } spin_unlock_irqrestore(&qp->state_lock, flags); qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED; state = RESPST_GET_REQ; while (1) { rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]); switch (state) { case RESPST_GET_REQ: state = get_req(qp, &pkt); break; case RESPST_CHK_PSN: state = check_psn(qp, pkt); break; case RESPST_CHK_OP_SEQ: state = check_op_seq(qp, pkt); break; case RESPST_CHK_OP_VALID: state = check_op_valid(qp, pkt); break; case RESPST_CHK_RESOURCE: state = check_resource(qp, pkt); break; case RESPST_CHK_LENGTH: state = rxe_resp_check_length(qp, pkt); break; case RESPST_CHK_RKEY: state = check_rkey(qp, pkt); break; case RESPST_EXECUTE: state = execute(qp, pkt); break; case RESPST_COMPLETE: state = do_complete(qp, pkt); break; case RESPST_READ_REPLY: state = read_reply(qp, pkt); break; case RESPST_ATOMIC_REPLY: state = atomic_reply(qp, pkt); break; case RESPST_ATOMIC_WRITE_REPLY: state = atomic_write_reply(qp, pkt); break; case RESPST_PROCESS_FLUSH: state = process_flush(qp, pkt); break; case RESPST_ACKNOWLEDGE: state = acknowledge(qp, pkt); break; case RESPST_CLEANUP: state = cleanup(qp, pkt); break; case RESPST_DUPLICATE_REQUEST: state = duplicate_request(qp, pkt); break; case RESPST_ERR_PSN_OUT_OF_SEQ: /* RC only - Class B. Drop packet. */ send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn); state = RESPST_CLEANUP; break; case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ: case RESPST_ERR_MISSING_OPCODE_FIRST: case RESPST_ERR_MISSING_OPCODE_LAST_C: case RESPST_ERR_UNSUPPORTED_OPCODE: case RESPST_ERR_MISALIGNED_ATOMIC: /* RC Only - Class C. */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_MISSING_OPCODE_LAST_D1E: state = do_class_d1e_error(qp); break; case RESPST_ERR_RNR: if (qp_type(qp) == IB_QPT_RC) { rxe_counter_inc(rxe, RXE_CNT_SND_RNR); /* RC - class B */ send_ack(qp, AETH_RNR_NAK | (~AETH_TYPE_MASK & qp->attr.min_rnr_timer), pkt->psn); } else { /* UD/UC - class D */ qp->resp.drop_msg = 1; } state = RESPST_CLEANUP; break; case RESPST_ERR_RKEY_VIOLATION: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR, IB_WC_REM_ACCESS_ERR); state = RESPST_COMPLETE; } else { qp->resp.drop_msg = 1; if (qp->srq) { /* UC/SRQ Class D */ qp->resp.status = IB_WC_REM_ACCESS_ERR; state = RESPST_COMPLETE; } else { /* UC/non-SRQ Class E. */ state = RESPST_CLEANUP; } } break; case RESPST_ERR_INVALIDATE_RKEY: /* RC - Class J. */ qp->resp.goto_error = 1; qp->resp.status = IB_WC_REM_INV_REQ_ERR; state = RESPST_COMPLETE; break; case RESPST_ERR_LENGTH: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; } else if (qp->srq) { /* UC/UD - class E */ qp->resp.status = IB_WC_REM_INV_REQ_ERR; state = RESPST_COMPLETE; } else { /* UC/UD - class D */ qp->resp.drop_msg = 1; state = RESPST_CLEANUP; } break; case RESPST_ERR_MALFORMED_WQE: /* All, Class A. */ do_class_ac_error(qp, AETH_NAK_REM_OP_ERR, IB_WC_LOC_QP_OP_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_CQ_OVERFLOW: /* All - Class G */ state = RESPST_ERROR; break; case RESPST_DONE: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto done; case RESPST_EXIT: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto exit; case RESPST_ERROR: qp->resp.goto_error = 0; rxe_dbg_qp(qp, "moved to error state\n"); rxe_qp_error(qp); goto exit; default: WARN_ON_ONCE(1); } } /* A non-zero return value will cause rxe_do_task to * exit its loop and end the work item. A zero return * will continue looping and return to rxe_responder */ done: ret = 0; goto out; exit: ret = -EAGAIN; out: return ret; } |
| 1091 5 1085 10 1084 9 1085 32 1086 2 4 1068 1068 2 9 9 28 1068 4 1071 1068 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | // SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/io_uring.h> #include <uapi/linux/io_uring.h> #include "io_uring.h" #include "rsrc.h" #include "nop.h" struct io_nop { /* NOTE: kiocb has the file as the first member, so don't do it here */ struct file *file; int result; int fd; unsigned int flags; __u64 extra1; __u64 extra2; }; #define NOP_FLAGS (IORING_NOP_INJECT_RESULT | IORING_NOP_FIXED_FILE | \ IORING_NOP_FIXED_BUFFER | IORING_NOP_FILE | \ IORING_NOP_TW | IORING_NOP_CQE32) int io_nop_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_nop *nop = io_kiocb_to_cmd(req, struct io_nop); nop->flags = READ_ONCE(sqe->nop_flags); if (nop->flags & ~NOP_FLAGS) return -EINVAL; if (nop->flags & IORING_NOP_INJECT_RESULT) nop->result = READ_ONCE(sqe->len); else nop->result = 0; if (nop->flags & IORING_NOP_FILE) nop->fd = READ_ONCE(sqe->fd); else nop->fd = -1; if (nop->flags & IORING_NOP_FIXED_BUFFER) req->buf_index = READ_ONCE(sqe->buf_index); if (nop->flags & IORING_NOP_CQE32) { struct io_ring_ctx *ctx = req->ctx; if (!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))) return -EINVAL; nop->extra1 = READ_ONCE(sqe->off); nop->extra2 = READ_ONCE(sqe->addr); } return 0; } int io_nop(struct io_kiocb *req, unsigned int issue_flags) { struct io_nop *nop = io_kiocb_to_cmd(req, struct io_nop); int ret = nop->result; if (nop->flags & IORING_NOP_FILE) { if (nop->flags & IORING_NOP_FIXED_FILE) { req->file = io_file_get_fixed(req, nop->fd, issue_flags); req->flags |= REQ_F_FIXED_FILE; } else { req->file = io_file_get_normal(req, nop->fd); } if (!req->file) { ret = -EBADF; goto done; } } if (nop->flags & IORING_NOP_FIXED_BUFFER) { if (!io_find_buf_node(req, issue_flags)) ret = -EFAULT; } done: if (ret < 0) req_set_fail(req); if (nop->flags & IORING_NOP_CQE32) io_req_set_res32(req, nop->result, 0, nop->extra1, nop->extra2); else io_req_set_res(req, nop->result, 0); if (nop->flags & IORING_NOP_TW) { req->io_task_work.func = io_req_task_complete; io_req_task_work_add(req); return IOU_ISSUE_SKIP_COMPLETE; } return IOU_COMPLETE; } |
| 12 14 420 207 217 582 212 212 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_ZONES_H #define _NF_CONNTRACK_ZONES_H #include <linux/netfilter/nf_conntrack_zones_common.h> #include <net/netfilter/nf_conntrack.h> static inline const struct nf_conntrack_zone * nf_ct_zone(const struct nf_conn *ct) { #ifdef CONFIG_NF_CONNTRACK_ZONES return &ct->zone; #else return &nf_ct_zone_dflt; #endif } static inline const struct nf_conntrack_zone * nf_ct_zone_init(struct nf_conntrack_zone *zone, u16 id, u8 dir, u8 flags) { zone->id = id; zone->flags = flags; zone->dir = dir; return zone; } static inline const struct nf_conntrack_zone * nf_ct_zone_tmpl(const struct nf_conn *tmpl, const struct sk_buff *skb, struct nf_conntrack_zone *tmp) { #ifdef CONFIG_NF_CONNTRACK_ZONES if (!tmpl) return &nf_ct_zone_dflt; if (tmpl->zone.flags & NF_CT_FLAG_MARK) return nf_ct_zone_init(tmp, skb->mark, tmpl->zone.dir, 0); #endif return nf_ct_zone(tmpl); } static inline void nf_ct_zone_add(struct nf_conn *ct, const struct nf_conntrack_zone *zone) { #ifdef CONFIG_NF_CONNTRACK_ZONES ct->zone = *zone; #endif } static inline bool nf_ct_zone_matches_dir(const struct nf_conntrack_zone *zone, enum ip_conntrack_dir dir) { return zone->dir & (1 << dir); } static inline u16 nf_ct_zone_id(const struct nf_conntrack_zone *zone, enum ip_conntrack_dir dir) { #ifdef CONFIG_NF_CONNTRACK_ZONES return nf_ct_zone_matches_dir(zone, dir) ? zone->id : NF_CT_DEFAULT_ZONE_ID; #else return NF_CT_DEFAULT_ZONE_ID; #endif } static inline bool nf_ct_zone_equal(const struct nf_conn *a, const struct nf_conntrack_zone *b, enum ip_conntrack_dir dir) { #ifdef CONFIG_NF_CONNTRACK_ZONES return nf_ct_zone_id(nf_ct_zone(a), dir) == nf_ct_zone_id(b, dir); #else return true; #endif } static inline bool nf_ct_zone_equal_any(const struct nf_conn *a, const struct nf_conntrack_zone *b) { #ifdef CONFIG_NF_CONNTRACK_ZONES return nf_ct_zone(a)->id == b->id; #else return true; #endif } #endif /* _NF_CONNTRACK_ZONES_H */ |
| 17953 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2005-2010 IBM Corporation * * Authors: * Mimi Zohar <zohar@us.ibm.com> * Kylene Hall <kjhall@us.ibm.com> * * File: evm.h */ #ifndef __INTEGRITY_EVM_H #define __INTEGRITY_EVM_H #include <linux/xattr.h> #include <linux/security.h> #include "../integrity.h" #define EVM_INIT_HMAC 0x0001 #define EVM_INIT_X509 0x0002 #define EVM_ALLOW_METADATA_WRITES 0x0004 #define EVM_SETUP_COMPLETE 0x80000000 /* userland has signaled key load */ #define EVM_KEY_MASK (EVM_INIT_HMAC | EVM_INIT_X509) #define EVM_INIT_MASK (EVM_INIT_HMAC | EVM_INIT_X509 | EVM_SETUP_COMPLETE | \ EVM_ALLOW_METADATA_WRITES) struct xattr_list { struct list_head list; char *name; bool enabled; }; #define EVM_NEW_FILE 0x00000001 #define EVM_IMMUTABLE_DIGSIG 0x00000002 /* EVM integrity metadata associated with an inode */ struct evm_iint_cache { unsigned long flags; enum integrity_status evm_status:4; struct integrity_inode_attributes metadata_inode; }; extern struct lsm_blob_sizes evm_blob_sizes; static inline struct evm_iint_cache *evm_iint_inode(const struct inode *inode) { if (unlikely(!inode->i_security)) return NULL; return inode->i_security + evm_blob_sizes.lbs_inode; } extern int evm_initialized; #define EVM_ATTR_FSUUID 0x0001 extern int evm_hmac_attrs; /* List of EVM protected security xattrs */ extern struct list_head evm_config_xattrnames; struct evm_digest { struct ima_digest_data_hdr hdr; char digest[IMA_MAX_DIGEST_SIZE]; } __packed; int evm_protected_xattr(const char *req_xattr_name); int evm_init_key(void); int evm_update_evmxattr(struct dentry *dentry, const char *req_xattr_name, const char *req_xattr_value, size_t req_xattr_value_len); int evm_calc_hmac(struct dentry *dentry, const char *req_xattr_name, const char *req_xattr_value, size_t req_xattr_value_len, struct evm_digest *data, struct evm_iint_cache *iint); int evm_calc_hash(struct dentry *dentry, const char *req_xattr_name, const char *req_xattr_value, size_t req_xattr_value_len, char type, struct evm_digest *data, struct evm_iint_cache *iint); int evm_init_hmac(struct inode *inode, const struct xattr *xattrs, char *hmac_val); int evm_init_secfs(void); #endif |
| 45 43 2 8 8 37 5 22 36 39 17 8 15 21 3 21 2 36 27 6 22 4 3 2 5 9 3 17 37 1 37 37 2 21 2 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | // SPDX-License-Identifier: GPL-2.0-only /* * LZO1X Decompressor from LZO * * Copyright (C) 1996-2012 Markus F.X.J. Oberhumer <markus@oberhumer.com> * * The full LZO package can be found at: * http://www.oberhumer.com/opensource/lzo/ * * Changed for Linux kernel use by: * Nitin Gupta <nitingupta910@gmail.com> * Richard Purdie <rpurdie@openedhand.com> */ #ifndef STATIC #include <linux/module.h> #include <linux/kernel.h> #endif #include <linux/unaligned.h> #include <linux/lzo.h> #include "lzodefs.h" #define HAVE_IP(x) ((size_t)(ip_end - ip) >= (size_t)(x)) #define HAVE_OP(x) ((size_t)(op_end - op) >= (size_t)(x)) #define NEED_IP(x) if (unlikely(!HAVE_IP(x))) goto input_overrun #define NEED_OP(x) if (unlikely(!HAVE_OP(x))) goto output_overrun #define TEST_LB(m_pos) if (unlikely((m_pos) < out)) goto lookbehind_overrun /* This MAX_255_COUNT is the maximum number of times we can add 255 to a base * count without overflowing an integer. The multiply will overflow when * multiplying 255 by more than MAXINT/255. The sum will overflow earlier * depending on the base count. Since the base count is taken from a u8 * and a few bits, it is safe to assume that it will always be lower than * or equal to 2*255, thus we can always prevent any overflow by accepting * two less 255 steps. See Documentation/staging/lzo.rst for more information. */ #define MAX_255_COUNT ((((size_t)~0) / 255) - 2) int lzo1x_decompress_safe(const unsigned char *in, size_t in_len, unsigned char *out, size_t *out_len) { unsigned char *op; const unsigned char *ip; size_t t, next; size_t state = 0; const unsigned char *m_pos; const unsigned char * const ip_end = in + in_len; unsigned char * const op_end = out + *out_len; unsigned char bitstream_version; op = out; ip = in; if (unlikely(in_len < 3)) goto input_overrun; if (likely(in_len >= 5) && likely(*ip == 17)) { bitstream_version = ip[1]; ip += 2; } else { bitstream_version = 0; } if (*ip > 17) { t = *ip++ - 17; if (t < 4) { next = t; goto match_next; } goto copy_literal_run; } for (;;) { t = *ip++; if (t < 16) { if (likely(state == 0)) { if (unlikely(t == 0)) { size_t offset; const unsigned char *ip_last = ip; while (unlikely(*ip == 0)) { ip++; NEED_IP(1); } offset = ip - ip_last; if (unlikely(offset > MAX_255_COUNT)) return LZO_E_ERROR; offset = (offset << 8) - offset; t += offset + 15 + *ip++; } t += 3; copy_literal_run: #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) if (likely(HAVE_IP(t + 15) && HAVE_OP(t + 15))) { const unsigned char *ie = ip + t; unsigned char *oe = op + t; do { COPY8(op, ip); op += 8; ip += 8; COPY8(op, ip); op += 8; ip += 8; } while (ip < ie); ip = ie; op = oe; } else #endif { NEED_OP(t); NEED_IP(t + 3); do { *op++ = *ip++; } while (--t > 0); } state = 4; continue; } else if (state != 4) { next = t & 3; m_pos = op - 1; m_pos -= t >> 2; m_pos -= *ip++ << 2; TEST_LB(m_pos); NEED_OP(2); op[0] = m_pos[0]; op[1] = m_pos[1]; op += 2; goto match_next; } else { next = t & 3; m_pos = op - (1 + M2_MAX_OFFSET); m_pos -= t >> 2; m_pos -= *ip++ << 2; t = 3; } } else if (t >= 64) { next = t & 3; m_pos = op - 1; m_pos -= (t >> 2) & 7; m_pos -= *ip++ << 3; t = (t >> 5) - 1 + (3 - 1); } else if (t >= 32) { t = (t & 31) + (3 - 1); if (unlikely(t == 2)) { size_t offset; const unsigned char *ip_last = ip; while (unlikely(*ip == 0)) { ip++; NEED_IP(1); } offset = ip - ip_last; if (unlikely(offset > MAX_255_COUNT)) return LZO_E_ERROR; offset = (offset << 8) - offset; t += offset + 31 + *ip++; NEED_IP(2); } m_pos = op - 1; next = get_unaligned_le16(ip); ip += 2; m_pos -= next >> 2; next &= 3; } else { NEED_IP(2); next = get_unaligned_le16(ip); if (((next & 0xfffc) == 0xfffc) && ((t & 0xf8) == 0x18) && likely(bitstream_version)) { NEED_IP(3); t &= 7; t |= ip[2] << 3; t += MIN_ZERO_RUN_LENGTH; NEED_OP(t); memset(op, 0, t); op += t; next &= 3; ip += 3; goto match_next; } else { m_pos = op; m_pos -= (t & 8) << 11; t = (t & 7) + (3 - 1); if (unlikely(t == 2)) { size_t offset; const unsigned char *ip_last = ip; while (unlikely(*ip == 0)) { ip++; NEED_IP(1); } offset = ip - ip_last; if (unlikely(offset > MAX_255_COUNT)) return LZO_E_ERROR; offset = (offset << 8) - offset; t += offset + 7 + *ip++; NEED_IP(2); next = get_unaligned_le16(ip); } ip += 2; m_pos -= next >> 2; next &= 3; if (m_pos == op) goto eof_found; m_pos -= 0x4000; } } TEST_LB(m_pos); #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) if (op - m_pos >= 8) { unsigned char *oe = op + t; if (likely(HAVE_OP(t + 15))) { do { COPY8(op, m_pos); op += 8; m_pos += 8; COPY8(op, m_pos); op += 8; m_pos += 8; } while (op < oe); op = oe; if (HAVE_IP(6)) { state = next; COPY4(op, ip); op += next; ip += next; continue; } } else { NEED_OP(t); do { *op++ = *m_pos++; } while (op < oe); } } else #endif { unsigned char *oe = op + t; NEED_OP(t); op[0] = m_pos[0]; op[1] = m_pos[1]; op += 2; m_pos += 2; do { *op++ = *m_pos++; } while (op < oe); } match_next: state = next; t = next; #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) if (likely(HAVE_IP(6) && HAVE_OP(4))) { COPY4(op, ip); op += t; ip += t; } else #endif { NEED_IP(t + 3); NEED_OP(t); while (t > 0) { *op++ = *ip++; t--; } } } eof_found: *out_len = op - out; return (t != 3 ? LZO_E_ERROR : ip == ip_end ? LZO_E_OK : ip < ip_end ? LZO_E_INPUT_NOT_CONSUMED : LZO_E_INPUT_OVERRUN); input_overrun: *out_len = op - out; return LZO_E_INPUT_OVERRUN; output_overrun: *out_len = op - out; return LZO_E_OUTPUT_OVERRUN; lookbehind_overrun: *out_len = op - out; return LZO_E_LOOKBEHIND_OVERRUN; } #ifndef STATIC EXPORT_SYMBOL_GPL(lzo1x_decompress_safe); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("LZO1X Decompressor"); #endif |
| 5 3 2 2 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPVS: Weighted Fail Over module * * Authors: Kenny Mathis <kmathis@chokepoint.net> * * Changes: * Kenny Mathis : added initial functionality based on weight */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <net/ip_vs.h> /* Weighted Fail Over Module */ static struct ip_vs_dest * ip_vs_fo_schedule(struct ip_vs_service *svc, const struct sk_buff *skb, struct ip_vs_iphdr *iph) { struct ip_vs_dest *dest, *hweight = NULL; int hw = 0; /* Track highest weight */ IP_VS_DBG(6, "ip_vs_fo_schedule(): Scheduling...\n"); /* Basic failover functionality * Find virtual server with highest weight and send it traffic */ list_for_each_entry_rcu(dest, &svc->destinations, n_list) { if (!(dest->flags & IP_VS_DEST_F_OVERLOAD) && atomic_read(&dest->weight) > hw) { hweight = dest; hw = atomic_read(&dest->weight); } } if (hweight) { IP_VS_DBG_BUF(6, "FO: server %s:%u activeconns %d weight %d\n", IP_VS_DBG_ADDR(hweight->af, &hweight->addr), ntohs(hweight->port), atomic_read(&hweight->activeconns), atomic_read(&hweight->weight)); return hweight; } ip_vs_scheduler_err(svc, "no destination available"); return NULL; } static struct ip_vs_scheduler ip_vs_fo_scheduler = { .name = "fo", .refcnt = ATOMIC_INIT(0), .module = THIS_MODULE, .n_list = LIST_HEAD_INIT(ip_vs_fo_scheduler.n_list), .schedule = ip_vs_fo_schedule, }; static int __init ip_vs_fo_init(void) { return register_ip_vs_scheduler(&ip_vs_fo_scheduler); } static void __exit ip_vs_fo_cleanup(void) { unregister_ip_vs_scheduler(&ip_vs_fo_scheduler); synchronize_rcu(); } module_init(ip_vs_fo_init); module_exit(ip_vs_fo_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ipvs weighted failover scheduler"); |
| 159 159 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * i2c-core.h - interfaces internal to the I2C framework */ #include <linux/kconfig.h> #include <linux/rwsem.h> struct i2c_devinfo { struct list_head list; int busnum; struct i2c_board_info board_info; }; /* board_lock protects board_list and first_dynamic_bus_num. * only i2c core components are allowed to use these symbols. */ extern struct rw_semaphore __i2c_board_lock; extern struct list_head __i2c_board_list; extern int __i2c_first_dynamic_bus_num; int i2c_check_7bit_addr_validity_strict(unsigned short addr); int i2c_dev_irq_from_resources(const struct resource *resources, unsigned int num_resources); /* * We only allow atomic transfers for very late communication, e.g. to access a * PMIC when powering down. Atomic transfers are a corner case and not for * generic use! */ static inline bool i2c_in_atomic_xfer_mode(void) { return system_state > SYSTEM_RUNNING && (IS_ENABLED(CONFIG_PREEMPT_COUNT) ? !preemptible() : irqs_disabled()); } static inline int __i2c_lock_bus_helper(struct i2c_adapter *adap) { int ret = 0; if (i2c_in_atomic_xfer_mode()) { WARN(!adap->algo->master_xfer_atomic && !adap->algo->smbus_xfer_atomic, "No atomic I2C transfer handler for '%s'\n", dev_name(&adap->dev)); ret = i2c_trylock_bus(adap, I2C_LOCK_SEGMENT) ? 0 : -EAGAIN; } else { i2c_lock_bus(adap, I2C_LOCK_SEGMENT); } return ret; } static inline int __i2c_check_suspended(struct i2c_adapter *adap) { if (test_bit(I2C_ALF_IS_SUSPENDED, &adap->locked_flags)) { if (!test_and_set_bit(I2C_ALF_SUSPEND_REPORTED, &adap->locked_flags)) dev_WARN(&adap->dev, "Transfer while suspended\n"); return -ESHUTDOWN; } return 0; } #ifdef CONFIG_ACPI void i2c_acpi_register_devices(struct i2c_adapter *adap); int i2c_acpi_get_irq(struct i2c_client *client, bool *wake_capable); #else /* CONFIG_ACPI */ static inline void i2c_acpi_register_devices(struct i2c_adapter *adap) { } static inline int i2c_acpi_get_irq(struct i2c_client *client, bool *wake_capable) { return 0; } #endif /* CONFIG_ACPI */ extern struct notifier_block i2c_acpi_notifier; #ifdef CONFIG_ACPI_I2C_OPREGION int i2c_acpi_install_space_handler(struct i2c_adapter *adapter); void i2c_acpi_remove_space_handler(struct i2c_adapter *adapter); #else /* CONFIG_ACPI_I2C_OPREGION */ static inline int i2c_acpi_install_space_handler(struct i2c_adapter *adapter) { return 0; } static inline void i2c_acpi_remove_space_handler(struct i2c_adapter *adapter) { } #endif /* CONFIG_ACPI_I2C_OPREGION */ #ifdef CONFIG_OF void of_i2c_register_devices(struct i2c_adapter *adap); const struct of_device_id *i2c_of_match_device(const struct of_device_id *matches, struct i2c_client *client); #else static inline void of_i2c_register_devices(struct i2c_adapter *adap) { } static inline const struct of_device_id *i2c_of_match_device(const struct of_device_id *matches, struct i2c_client *client) { return NULL; } #endif extern struct notifier_block i2c_of_notifier; #if IS_ENABLED(CONFIG_I2C_SMBUS) int i2c_setup_smbus_alert(struct i2c_adapter *adap); #else static inline int i2c_setup_smbus_alert(struct i2c_adapter *adap) { return 0; } #endif |
| 16 16 16 34 34 34 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | // SPDX-License-Identifier: GPL-2.0-only /* * LCD Lowlevel Control Abstraction * * Copyright (C) 2003,2004 Hewlett-Packard Company * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/lcd.h> #include <linux/notifier.h> #include <linux/ctype.h> #include <linux/err.h> #include <linux/slab.h> static DEFINE_MUTEX(lcd_dev_list_mutex); static LIST_HEAD(lcd_dev_list); static void lcd_notify_blank(struct lcd_device *ld, struct device *display_dev, int power) { guard(mutex)(&ld->ops_lock); if (!ld->ops || !ld->ops->set_power) return; if (ld->ops->controls_device && !ld->ops->controls_device(ld, display_dev)) return; ld->ops->set_power(ld, power); } void lcd_notify_blank_all(struct device *display_dev, int power) { struct lcd_device *ld; guard(mutex)(&lcd_dev_list_mutex); list_for_each_entry(ld, &lcd_dev_list, entry) lcd_notify_blank(ld, display_dev, power); } EXPORT_SYMBOL(lcd_notify_blank_all); static void lcd_notify_mode_change(struct lcd_device *ld, struct device *display_dev, unsigned int width, unsigned int height) { guard(mutex)(&ld->ops_lock); if (!ld->ops || !ld->ops->set_mode) return; if (ld->ops->controls_device && !ld->ops->controls_device(ld, display_dev)) return; ld->ops->set_mode(ld, width, height); } void lcd_notify_mode_change_all(struct device *display_dev, unsigned int width, unsigned int height) { struct lcd_device *ld; guard(mutex)(&lcd_dev_list_mutex); list_for_each_entry(ld, &lcd_dev_list, entry) lcd_notify_mode_change(ld, display_dev, width, height); } EXPORT_SYMBOL(lcd_notify_mode_change_all); static ssize_t lcd_power_show(struct device *dev, struct device_attribute *attr, char *buf) { int rc; struct lcd_device *ld = to_lcd_device(dev); mutex_lock(&ld->ops_lock); if (ld->ops && ld->ops->get_power) rc = sprintf(buf, "%d\n", ld->ops->get_power(ld)); else rc = -ENXIO; mutex_unlock(&ld->ops_lock); return rc; } static ssize_t lcd_power_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc; struct lcd_device *ld = to_lcd_device(dev); unsigned long power; rc = kstrtoul(buf, 0, &power); if (rc) return rc; rc = -ENXIO; mutex_lock(&ld->ops_lock); if (ld->ops && ld->ops->set_power) { pr_debug("set power to %lu\n", power); ld->ops->set_power(ld, power); rc = count; } mutex_unlock(&ld->ops_lock); return rc; } static DEVICE_ATTR_RW(lcd_power); static ssize_t contrast_show(struct device *dev, struct device_attribute *attr, char *buf) { int rc = -ENXIO; struct lcd_device *ld = to_lcd_device(dev); mutex_lock(&ld->ops_lock); if (ld->ops && ld->ops->get_contrast) rc = sprintf(buf, "%d\n", ld->ops->get_contrast(ld)); mutex_unlock(&ld->ops_lock); return rc; } static ssize_t contrast_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc; struct lcd_device *ld = to_lcd_device(dev); unsigned long contrast; rc = kstrtoul(buf, 0, &contrast); if (rc) return rc; rc = -ENXIO; mutex_lock(&ld->ops_lock); if (ld->ops && ld->ops->set_contrast) { pr_debug("set contrast to %lu\n", contrast); ld->ops->set_contrast(ld, contrast); rc = count; } mutex_unlock(&ld->ops_lock); return rc; } static DEVICE_ATTR_RW(contrast); static ssize_t max_contrast_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lcd_device *ld = to_lcd_device(dev); return sprintf(buf, "%d\n", ld->props.max_contrast); } static DEVICE_ATTR_RO(max_contrast); static void lcd_device_release(struct device *dev) { struct lcd_device *ld = to_lcd_device(dev); kfree(ld); } static struct attribute *lcd_device_attrs[] = { &dev_attr_lcd_power.attr, &dev_attr_contrast.attr, &dev_attr_max_contrast.attr, NULL, }; ATTRIBUTE_GROUPS(lcd_device); static const struct class lcd_class = { .name = "lcd", .dev_groups = lcd_device_groups, }; /** * lcd_device_register - register a new object of lcd_device class. * @name: the name of the new object(must be the same as the name of the * respective framebuffer device). * @parent: pointer to the parent's struct device . * @devdata: an optional pointer to be stored in the device. The * methods may retrieve it by using lcd_get_data(ld). * @ops: the lcd operations structure. * * Creates and registers a new lcd device. Returns either an ERR_PTR() * or a pointer to the newly allocated device. */ struct lcd_device *lcd_device_register(const char *name, struct device *parent, void *devdata, const struct lcd_ops *ops) { struct lcd_device *new_ld; int rc; pr_debug("lcd_device_register: name=%s\n", name); new_ld = kzalloc(sizeof(struct lcd_device), GFP_KERNEL); if (!new_ld) return ERR_PTR(-ENOMEM); mutex_init(&new_ld->ops_lock); mutex_init(&new_ld->update_lock); new_ld->dev.class = &lcd_class; new_ld->dev.parent = parent; new_ld->dev.release = lcd_device_release; dev_set_name(&new_ld->dev, "%s", name); dev_set_drvdata(&new_ld->dev, devdata); new_ld->ops = ops; rc = device_register(&new_ld->dev); if (rc) { put_device(&new_ld->dev); return ERR_PTR(rc); } guard(mutex)(&lcd_dev_list_mutex); list_add(&new_ld->entry, &lcd_dev_list); return new_ld; } EXPORT_SYMBOL(lcd_device_register); /** * lcd_device_unregister - unregisters a object of lcd_device class. * @ld: the lcd device object to be unregistered and freed. * * Unregisters a previously registered via lcd_device_register object. */ void lcd_device_unregister(struct lcd_device *ld) { if (!ld) return; guard(mutex)(&lcd_dev_list_mutex); list_del(&ld->entry); mutex_lock(&ld->ops_lock); ld->ops = NULL; mutex_unlock(&ld->ops_lock); device_unregister(&ld->dev); } EXPORT_SYMBOL(lcd_device_unregister); static void devm_lcd_device_release(struct device *dev, void *res) { struct lcd_device *lcd = *(struct lcd_device **)res; lcd_device_unregister(lcd); } static int devm_lcd_device_match(struct device *dev, void *res, void *data) { struct lcd_device **r = res; return *r == data; } /** * devm_lcd_device_register - resource managed lcd_device_register() * @dev: the device to register * @name: the name of the device * @parent: a pointer to the parent device * @devdata: an optional pointer to be stored for private driver use * @ops: the lcd operations structure * * @return a struct lcd on success, or an ERR_PTR on error * * Managed lcd_device_register(). The lcd_device returned from this function * are automatically freed on driver detach. See lcd_device_register() * for more information. */ struct lcd_device *devm_lcd_device_register(struct device *dev, const char *name, struct device *parent, void *devdata, const struct lcd_ops *ops) { struct lcd_device **ptr, *lcd; ptr = devres_alloc(devm_lcd_device_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); lcd = lcd_device_register(name, parent, devdata, ops); if (!IS_ERR(lcd)) { *ptr = lcd; devres_add(dev, ptr); } else { devres_free(ptr); } return lcd; } EXPORT_SYMBOL(devm_lcd_device_register); /** * devm_lcd_device_unregister - resource managed lcd_device_unregister() * @dev: the device to unregister * @ld: the lcd device to unregister * * Deallocated a lcd allocated with devm_lcd_device_register(). Normally * this function will not need to be called and the resource management * code will ensure that the resource is freed. */ void devm_lcd_device_unregister(struct device *dev, struct lcd_device *ld) { int rc; rc = devres_release(dev, devm_lcd_device_release, devm_lcd_device_match, ld); WARN_ON(rc); } EXPORT_SYMBOL(devm_lcd_device_unregister); static void __exit lcd_class_exit(void) { class_unregister(&lcd_class); } static int __init lcd_class_init(void) { int ret; ret = class_register(&lcd_class); if (ret) { pr_warn("Unable to create backlight class; errno = %d\n", ret); return ret; } return 0; } /* * if this is compiled into the kernel, we need to ensure that the * class is registered before users of the class try to register lcd's */ postcore_initcall(lcd_class_init); module_exit(lcd_class_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jamey Hicks <jamey.hicks@hp.com>, Andrew Zabolotny <zap@homelink.ru>"); MODULE_DESCRIPTION("LCD Lowlevel Control Abstraction"); |
| 336 335 9 1 1 1 8 2 7 8 7 8 17 20 15 15 15 15 21 3 18 3 18 359 360 336 1 336 351 352 352 351 348 347 18 1 17 17 16 17 11 6 17 17 15 13 17 15 17 359 360 360 339 339 352 24 352 348 348 328 328 328 327 328 360 27 360 337 359 359 336 360 360 360 337 326 360 326 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Information interface for ALSA driver * Copyright (c) by Jaroslav Kysela <perex@perex.cz> */ #include <linux/init.h> #include <linux/time.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/module.h> #include <sound/core.h> #include <sound/minors.h> #include <sound/info.h> #include <linux/utsname.h> #include <linux/proc_fs.h> #include <linux/mutex.h> int snd_info_check_reserved_words(const char *str) { static const char * const reserved[] = { "version", "meminfo", "memdebug", "detect", "devices", "oss", "cards", "timers", "synth", "pcm", "seq", NULL }; const char * const *xstr = reserved; while (*xstr) { if (!strcmp(*xstr, str)) return 0; xstr++; } if (!strncmp(str, "card", 4)) return 0; return 1; } static DEFINE_MUTEX(info_mutex); struct snd_info_private_data { struct snd_info_buffer *rbuffer; struct snd_info_buffer *wbuffer; struct snd_info_entry *entry; void *file_private_data; }; static int snd_info_version_init(void); static void snd_info_clear_entries(struct snd_info_entry *entry); /* */ static struct snd_info_entry *snd_proc_root; struct snd_info_entry *snd_seq_root; EXPORT_SYMBOL(snd_seq_root); #ifdef CONFIG_SND_OSSEMUL struct snd_info_entry *snd_oss_root; #endif static int alloc_info_private(struct snd_info_entry *entry, struct snd_info_private_data **ret) { struct snd_info_private_data *data; if (!entry || !entry->p) return -ENODEV; if (!try_module_get(entry->module)) return -EFAULT; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { module_put(entry->module); return -ENOMEM; } data->entry = entry; *ret = data; return 0; } static bool valid_pos(loff_t pos, size_t count) { if (pos < 0 || (long) pos != pos || (ssize_t) count < 0) return false; if ((unsigned long) pos + (unsigned long) count < (unsigned long) pos) return false; return true; } /* * file ops for binary proc files */ static loff_t snd_info_entry_llseek(struct file *file, loff_t offset, int orig) { struct snd_info_private_data *data; struct snd_info_entry *entry; loff_t size; data = file->private_data; entry = data->entry; guard(mutex)(&entry->access); if (entry->c.ops->llseek) return entry->c.ops->llseek(entry, data->file_private_data, file, offset, orig); size = entry->size; switch (orig) { case SEEK_SET: break; case SEEK_CUR: offset += file->f_pos; break; case SEEK_END: if (!size) return -EINVAL; offset += size; break; default: return -EINVAL; } if (offset < 0) return -EINVAL; if (size && offset > size) offset = size; file->f_pos = offset; return offset; } static ssize_t snd_info_entry_read(struct file *file, char __user *buffer, size_t count, loff_t * offset) { struct snd_info_private_data *data = file->private_data; struct snd_info_entry *entry = data->entry; size_t size; loff_t pos; pos = *offset; if (!valid_pos(pos, count)) return -EIO; if (pos >= entry->size) return 0; size = entry->size - pos; size = min(count, size); size = entry->c.ops->read(entry, data->file_private_data, file, buffer, size, pos); if ((ssize_t) size > 0) *offset = pos + size; return size; } static ssize_t snd_info_entry_write(struct file *file, const char __user *buffer, size_t count, loff_t * offset) { struct snd_info_private_data *data = file->private_data; struct snd_info_entry *entry = data->entry; ssize_t size = 0; loff_t pos; pos = *offset; if (!valid_pos(pos, count)) return -EIO; if (count > 0) { size_t maxsize = entry->size - pos; count = min(count, maxsize); size = entry->c.ops->write(entry, data->file_private_data, file, buffer, count, pos); } if (size > 0) *offset = pos + size; return size; } static __poll_t snd_info_entry_poll(struct file *file, poll_table *wait) { struct snd_info_private_data *data = file->private_data; struct snd_info_entry *entry = data->entry; __poll_t mask = 0; if (entry->c.ops->poll) return entry->c.ops->poll(entry, data->file_private_data, file, wait); if (entry->c.ops->read) mask |= EPOLLIN | EPOLLRDNORM; if (entry->c.ops->write) mask |= EPOLLOUT | EPOLLWRNORM; return mask; } static long snd_info_entry_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct snd_info_private_data *data = file->private_data; struct snd_info_entry *entry = data->entry; if (!entry->c.ops->ioctl) return -ENOTTY; return entry->c.ops->ioctl(entry, data->file_private_data, file, cmd, arg); } static int snd_info_entry_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file_inode(file); struct snd_info_private_data *data; struct snd_info_entry *entry; data = file->private_data; if (data == NULL) return 0; entry = data->entry; if (!entry->c.ops->mmap) return -ENXIO; return entry->c.ops->mmap(entry, data->file_private_data, inode, file, vma); } static int snd_info_entry_open(struct inode *inode, struct file *file) { struct snd_info_entry *entry = pde_data(inode); struct snd_info_private_data *data; int mode, err; guard(mutex)(&info_mutex); err = alloc_info_private(entry, &data); if (err < 0) return err; mode = file->f_flags & O_ACCMODE; if (((mode == O_RDONLY || mode == O_RDWR) && !entry->c.ops->read) || ((mode == O_WRONLY || mode == O_RDWR) && !entry->c.ops->write)) { err = -ENODEV; goto error; } if (entry->c.ops->open) { err = entry->c.ops->open(entry, mode, &data->file_private_data); if (err < 0) goto error; } file->private_data = data; return 0; error: kfree(data); module_put(entry->module); return err; } static int snd_info_entry_release(struct inode *inode, struct file *file) { struct snd_info_private_data *data = file->private_data; struct snd_info_entry *entry = data->entry; if (entry->c.ops->release) entry->c.ops->release(entry, file->f_flags & O_ACCMODE, data->file_private_data); module_put(entry->module); kfree(data); return 0; } static const struct proc_ops snd_info_entry_operations = { .proc_lseek = snd_info_entry_llseek, .proc_read = snd_info_entry_read, .proc_write = snd_info_entry_write, .proc_poll = snd_info_entry_poll, .proc_ioctl = snd_info_entry_ioctl, .proc_mmap = snd_info_entry_mmap, .proc_open = snd_info_entry_open, .proc_release = snd_info_entry_release, }; /* * file ops for text proc files */ static ssize_t snd_info_text_entry_write(struct file *file, const char __user *buffer, size_t count, loff_t *offset) { struct seq_file *m = file->private_data; struct snd_info_private_data *data = m->private; struct snd_info_entry *entry = data->entry; struct snd_info_buffer *buf; loff_t pos; size_t next; if (!entry->c.text.write) return -EIO; pos = *offset; if (!valid_pos(pos, count)) return -EIO; next = pos + count; /* don't handle too large text inputs */ if (next > 16 * 1024) return -EIO; guard(mutex)(&entry->access); buf = data->wbuffer; if (!buf) { data->wbuffer = buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (!buf) return -ENOMEM; } if (next > buf->len) { char *nbuf = kvzalloc(PAGE_ALIGN(next), GFP_KERNEL); if (!nbuf) return -ENOMEM; kvfree(buf->buffer); buf->buffer = nbuf; buf->len = PAGE_ALIGN(next); } if (copy_from_user(buf->buffer + pos, buffer, count)) return -EFAULT; buf->size = next; *offset = next; return count; } static int snd_info_seq_show(struct seq_file *seq, void *p) { struct snd_info_private_data *data = seq->private; struct snd_info_entry *entry = data->entry; if (!entry->c.text.read) { return -EIO; } else { data->rbuffer->buffer = (char *)seq; /* XXX hack! */ entry->c.text.read(entry, data->rbuffer); } return 0; } static int snd_info_text_entry_open(struct inode *inode, struct file *file) { struct snd_info_entry *entry = pde_data(inode); struct snd_info_private_data *data; int err; guard(mutex)(&info_mutex); err = alloc_info_private(entry, &data); if (err < 0) return err; data->rbuffer = kzalloc(sizeof(*data->rbuffer), GFP_KERNEL); if (!data->rbuffer) { err = -ENOMEM; goto error; } if (entry->size) err = single_open_size(file, snd_info_seq_show, data, entry->size); else err = single_open(file, snd_info_seq_show, data); if (err < 0) goto error; return 0; error: kfree(data->rbuffer); kfree(data); module_put(entry->module); return err; } static int snd_info_text_entry_release(struct inode *inode, struct file *file) { struct seq_file *m = file->private_data; struct snd_info_private_data *data = m->private; struct snd_info_entry *entry = data->entry; if (data->wbuffer && entry->c.text.write) entry->c.text.write(entry, data->wbuffer); single_release(inode, file); kfree(data->rbuffer); if (data->wbuffer) { kvfree(data->wbuffer->buffer); kfree(data->wbuffer); } module_put(entry->module); kfree(data); return 0; } static const struct proc_ops snd_info_text_entry_ops = { .proc_open = snd_info_text_entry_open, .proc_release = snd_info_text_entry_release, .proc_write = snd_info_text_entry_write, .proc_lseek = seq_lseek, .proc_read = seq_read, }; static struct snd_info_entry *create_subdir(struct module *mod, const char *name) { struct snd_info_entry *entry; entry = snd_info_create_module_entry(mod, name, NULL); if (!entry) return NULL; entry->mode = S_IFDIR | 0555; if (snd_info_register(entry) < 0) { snd_info_free_entry(entry); return NULL; } return entry; } static struct snd_info_entry * snd_info_create_entry(const char *name, struct snd_info_entry *parent, struct module *module); int __init snd_info_init(void) { snd_proc_root = snd_info_create_entry("asound", NULL, THIS_MODULE); if (!snd_proc_root) return -ENOMEM; snd_proc_root->mode = S_IFDIR | 0555; snd_proc_root->p = proc_mkdir("asound", NULL); if (!snd_proc_root->p) goto error; #ifdef CONFIG_SND_OSSEMUL snd_oss_root = create_subdir(THIS_MODULE, "oss"); if (!snd_oss_root) goto error; #endif #if IS_ENABLED(CONFIG_SND_SEQUENCER) snd_seq_root = create_subdir(THIS_MODULE, "seq"); if (!snd_seq_root) goto error; #endif if (snd_info_version_init() < 0 || snd_minor_info_init() < 0 || snd_minor_info_oss_init() < 0 || snd_card_info_init() < 0 || snd_info_minor_register() < 0) goto error; return 0; error: snd_info_free_entry(snd_proc_root); return -ENOMEM; } int __exit snd_info_done(void) { snd_info_free_entry(snd_proc_root); return 0; } static void snd_card_id_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_card *card = entry->private_data; snd_iprintf(buffer, "%s\n", card->id); } /* * create a card proc file * called from init.c */ int snd_info_card_create(struct snd_card *card) { char str[8]; struct snd_info_entry *entry; if (snd_BUG_ON(!card)) return -ENXIO; sprintf(str, "card%i", card->number); entry = create_subdir(card->module, str); if (!entry) return -ENOMEM; card->proc_root = entry; return snd_card_ro_proc_new(card, "id", card, snd_card_id_read); } /* * register the card proc file * called from init.c * can be called multiple times for reinitialization */ int snd_info_card_register(struct snd_card *card) { struct proc_dir_entry *p; int err; if (snd_BUG_ON(!card)) return -ENXIO; err = snd_info_register(card->proc_root); if (err < 0) return err; if (!strcmp(card->id, card->proc_root->name)) return 0; if (card->proc_root_link) return 0; p = proc_symlink(card->id, snd_proc_root->p, card->proc_root->name); if (!p) return -ENOMEM; card->proc_root_link = p; return 0; } /* * called on card->id change */ void snd_info_card_id_change(struct snd_card *card) { guard(mutex)(&info_mutex); if (card->proc_root_link) { proc_remove(card->proc_root_link); card->proc_root_link = NULL; } if (strcmp(card->id, card->proc_root->name)) card->proc_root_link = proc_symlink(card->id, snd_proc_root->p, card->proc_root->name); } /* * de-register the card proc file * called from init.c */ void snd_info_card_disconnect(struct snd_card *card) { if (!card) return; proc_remove(card->proc_root_link); if (card->proc_root) proc_remove(card->proc_root->p); guard(mutex)(&info_mutex); if (card->proc_root) snd_info_clear_entries(card->proc_root); card->proc_root_link = NULL; card->proc_root = NULL; } /* * release the card proc file resources * called from init.c */ int snd_info_card_free(struct snd_card *card) { if (!card) return 0; snd_info_free_entry(card->proc_root); card->proc_root = NULL; return 0; } /** * snd_info_get_line - read one line from the procfs buffer * @buffer: the procfs buffer * @line: the buffer to store * @len: the max. buffer size * * Reads one line from the buffer and stores the string. * * Return: Zero if successful, or 1 if error or EOF. */ int snd_info_get_line(struct snd_info_buffer *buffer, char *line, int len) { int c; if (snd_BUG_ON(!buffer)) return 1; if (!buffer->buffer) return 1; if (len <= 0 || buffer->stop || buffer->error) return 1; while (!buffer->stop) { c = buffer->buffer[buffer->curr++]; if (buffer->curr >= buffer->size) buffer->stop = 1; if (c == '\n') break; if (len > 1) { len--; *line++ = c; } } *line = '\0'; return 0; } EXPORT_SYMBOL(snd_info_get_line); /** * snd_info_get_str - parse a string token * @dest: the buffer to store the string token * @src: the original string * @len: the max. length of token - 1 * * Parses the original string and copy a token to the given * string buffer. * * Return: The updated pointer of the original string so that * it can be used for the next call. */ const char *snd_info_get_str(char *dest, const char *src, int len) { int c; while (*src == ' ' || *src == '\t') src++; if (*src == '"' || *src == '\'') { c = *src++; while (--len > 0 && *src && *src != c) { *dest++ = *src++; } if (*src == c) src++; } else { while (--len > 0 && *src && *src != ' ' && *src != '\t') { *dest++ = *src++; } } *dest = 0; while (*src == ' ' || *src == '\t') src++; return src; } EXPORT_SYMBOL(snd_info_get_str); /* * snd_info_create_entry - create an info entry * @name: the proc file name * @parent: the parent directory * * Creates an info entry with the given file name and initializes as * the default state. * * Usually called from other functions such as * snd_info_create_card_entry(). * * Return: The pointer of the new instance, or %NULL on failure. */ static struct snd_info_entry * snd_info_create_entry(const char *name, struct snd_info_entry *parent, struct module *module) { struct snd_info_entry *entry; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (entry == NULL) return NULL; entry->name = kstrdup(name, GFP_KERNEL); if (entry->name == NULL) { kfree(entry); return NULL; } entry->mode = S_IFREG | 0444; entry->content = SNDRV_INFO_CONTENT_TEXT; mutex_init(&entry->access); INIT_LIST_HEAD(&entry->children); INIT_LIST_HEAD(&entry->list); entry->parent = parent; entry->module = module; if (parent) { guard(mutex)(&parent->access); list_add_tail(&entry->list, &parent->children); } return entry; } /** * snd_info_create_module_entry - create an info entry for the given module * @module: the module pointer * @name: the file name * @parent: the parent directory * * Creates a new info entry and assigns it to the given module. * * Return: The pointer of the new instance, or %NULL on failure. */ struct snd_info_entry *snd_info_create_module_entry(struct module * module, const char *name, struct snd_info_entry *parent) { if (!parent) parent = snd_proc_root; return snd_info_create_entry(name, parent, module); } EXPORT_SYMBOL(snd_info_create_module_entry); /** * snd_info_create_card_entry - create an info entry for the given card * @card: the card instance * @name: the file name * @parent: the parent directory * * Creates a new info entry and assigns it to the given card. * * Return: The pointer of the new instance, or %NULL on failure. */ struct snd_info_entry *snd_info_create_card_entry(struct snd_card *card, const char *name, struct snd_info_entry * parent) { if (!parent) parent = card->proc_root; return snd_info_create_entry(name, parent, card->module); } EXPORT_SYMBOL(snd_info_create_card_entry); static void snd_info_clear_entries(struct snd_info_entry *entry) { struct snd_info_entry *p; if (!entry->p) return; list_for_each_entry(p, &entry->children, list) snd_info_clear_entries(p); entry->p = NULL; } /** * snd_info_free_entry - release the info entry * @entry: the info entry * * Releases the info entry. */ void snd_info_free_entry(struct snd_info_entry * entry) { struct snd_info_entry *p, *n; if (!entry) return; if (entry->p) { proc_remove(entry->p); guard(mutex)(&info_mutex); snd_info_clear_entries(entry); } /* free all children at first */ list_for_each_entry_safe(p, n, &entry->children, list) snd_info_free_entry(p); p = entry->parent; if (p) { guard(mutex)(&p->access); list_del(&entry->list); } kfree(entry->name); if (entry->private_free) entry->private_free(entry); kfree(entry); } EXPORT_SYMBOL(snd_info_free_entry); static int __snd_info_register(struct snd_info_entry *entry) { struct proc_dir_entry *root, *p = NULL; if (snd_BUG_ON(!entry)) return -ENXIO; root = entry->parent == NULL ? snd_proc_root->p : entry->parent->p; guard(mutex)(&info_mutex); if (entry->p || !root) return 0; if (S_ISDIR(entry->mode)) { p = proc_mkdir_mode(entry->name, entry->mode, root); if (!p) return -ENOMEM; } else { const struct proc_ops *ops; if (entry->content == SNDRV_INFO_CONTENT_DATA) ops = &snd_info_entry_operations; else ops = &snd_info_text_entry_ops; p = proc_create_data(entry->name, entry->mode, root, ops, entry); if (!p) return -ENOMEM; proc_set_size(p, entry->size); } entry->p = p; return 0; } /** * snd_info_register - register the info entry * @entry: the info entry * * Registers the proc info entry. * The all children entries are registered recursively. * * Return: Zero if successful, or a negative error code on failure. */ int snd_info_register(struct snd_info_entry *entry) { struct snd_info_entry *p; int err; if (!entry->p) { err = __snd_info_register(entry); if (err < 0) return err; } list_for_each_entry(p, &entry->children, list) { err = snd_info_register(p); if (err < 0) return err; } return 0; } EXPORT_SYMBOL(snd_info_register); /** * snd_card_rw_proc_new - Create a read/write text proc file entry for the card * @card: the card instance * @name: the file name * @private_data: the arbitrary private data * @read: the read callback * @write: the write callback, NULL for read-only * * This proc file entry will be registered via snd_card_register() call, and * it will be removed automatically at the card removal, too. * * Return: zero if successful, or a negative error code */ int snd_card_rw_proc_new(struct snd_card *card, const char *name, void *private_data, void (*read)(struct snd_info_entry *, struct snd_info_buffer *), void (*write)(struct snd_info_entry *entry, struct snd_info_buffer *buffer)) { struct snd_info_entry *entry; entry = snd_info_create_card_entry(card, name, card->proc_root); if (!entry) return -ENOMEM; snd_info_set_text_ops(entry, private_data, read); if (write) { entry->mode |= 0200; entry->c.text.write = write; } return 0; } EXPORT_SYMBOL_GPL(snd_card_rw_proc_new); /* */ static void snd_info_version_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { snd_iprintf(buffer, "Advanced Linux Sound Architecture Driver Version k%s.\n", init_utsname()->release); } static int __init snd_info_version_init(void) { struct snd_info_entry *entry; entry = snd_info_create_module_entry(THIS_MODULE, "version", NULL); if (entry == NULL) return -ENOMEM; entry->c.text.read = snd_info_version_read; return snd_info_register(entry); /* freed in error path */ } |
| 2 2 1 1 1 6 6 6 6 6 6 1 6 6 6 6 1 1 1 1 1 1 1 6 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | // SPDX-License-Identifier: GPL-2.0 /* * (C) 2001 Clemson University and The University of Chicago * (C) 2011 Omnibond Systems * * Changes by Acxiom Corporation to implement generic service_operation() * function, Copyright Acxiom Corporation, 2005. * * See COPYING in top-level directory. */ /* * In-kernel waitqueue operations. */ #include "protocol.h" #include "orangefs-kernel.h" #include "orangefs-bufmap.h" static int wait_for_matching_downcall(struct orangefs_kernel_op_s *op, long timeout, int flags) __acquires(op->lock); static void orangefs_clean_up_interrupted_operation(struct orangefs_kernel_op_s *op) __releases(op->lock); /* * What we do in this function is to walk the list of operations that are * present in the request queue and mark them as purged. * NOTE: This is called from the device close after client-core has * guaranteed that no new operations could appear on the list since the * client-core is anyway going to exit. */ void purge_waiting_ops(void) { struct orangefs_kernel_op_s *op, *tmp; spin_lock(&orangefs_request_list_lock); list_for_each_entry_safe(op, tmp, &orangefs_request_list, list) { gossip_debug(GOSSIP_WAIT_DEBUG, "pvfs2-client-core: purging op tag %llu %s\n", llu(op->tag), get_opname_string(op)); set_op_state_purged(op); gossip_debug(GOSSIP_DEV_DEBUG, "%s: op:%s: op_state:%d: process:%s:\n", __func__, get_opname_string(op), op->op_state, current->comm); } spin_unlock(&orangefs_request_list_lock); } /* * submits a ORANGEFS operation and waits for it to complete * * Note op->downcall.status will contain the status of the operation (in * errno format), whether provided by pvfs2-client or a result of failure to * service the operation. If the caller wishes to distinguish, then * op->state can be checked to see if it was serviced or not. * * Returns contents of op->downcall.status for convenience */ int service_operation(struct orangefs_kernel_op_s *op, const char *op_name, int flags) { long timeout = MAX_SCHEDULE_TIMEOUT; int ret = 0; DEFINE_WAIT(wait_entry); op->upcall.tgid = current->tgid; op->upcall.pid = current->pid; retry_servicing: op->downcall.status = 0; gossip_debug(GOSSIP_WAIT_DEBUG, "%s: %s op:%p: process:%s: pid:%d:\n", __func__, op_name, op, current->comm, current->pid); /* * If ORANGEFS_OP_NO_MUTEX was set in flags, we need to avoid * acquiring the request_mutex because we're servicing a * high priority remount operation and the request_mutex is * already taken. */ if (!(flags & ORANGEFS_OP_NO_MUTEX)) { if (flags & ORANGEFS_OP_INTERRUPTIBLE) ret = mutex_lock_interruptible(&orangefs_request_mutex); else ret = mutex_lock_killable(&orangefs_request_mutex); /* * check to see if we were interrupted while waiting for * mutex */ if (ret < 0) { op->downcall.status = ret; gossip_debug(GOSSIP_WAIT_DEBUG, "%s: service_operation interrupted.\n", __func__); return ret; } } /* queue up the operation */ spin_lock(&orangefs_request_list_lock); spin_lock(&op->lock); set_op_state_waiting(op); gossip_debug(GOSSIP_DEV_DEBUG, "%s: op:%s: op_state:%d: process:%s:\n", __func__, get_opname_string(op), op->op_state, current->comm); /* add high priority remount op to the front of the line. */ if (flags & ORANGEFS_OP_PRIORITY) list_add(&op->list, &orangefs_request_list); else list_add_tail(&op->list, &orangefs_request_list); spin_unlock(&op->lock); wake_up_interruptible(&orangefs_request_list_waitq); if (!__is_daemon_in_service()) { gossip_debug(GOSSIP_WAIT_DEBUG, "%s:client core is NOT in service.\n", __func__); /* * Don't wait for the userspace component to return if * the filesystem is being umounted anyway. */ if (op->upcall.type == ORANGEFS_VFS_OP_FS_UMOUNT) timeout = 0; else timeout = op_timeout_secs * HZ; } spin_unlock(&orangefs_request_list_lock); if (!(flags & ORANGEFS_OP_NO_MUTEX)) mutex_unlock(&orangefs_request_mutex); ret = wait_for_matching_downcall(op, timeout, flags); gossip_debug(GOSSIP_WAIT_DEBUG, "%s: wait_for_matching_downcall returned %d for %p\n", __func__, ret, op); /* got matching downcall; make sure status is in errno format */ if (!ret) { spin_unlock(&op->lock); op->downcall.status = orangefs_normalize_to_errno(op->downcall.status); ret = op->downcall.status; goto out; } /* failed to get matching downcall */ if (ret == -ETIMEDOUT) { gossip_err("%s: %s -- wait timed out; aborting attempt.\n", __func__, op_name); } /* * remove a waiting op from the request list or * remove an in-progress op from the in-progress list. */ orangefs_clean_up_interrupted_operation(op); op->downcall.status = ret; /* retry if operation has not been serviced and if requested */ if (ret == -EAGAIN) { op->attempts++; timeout = op_timeout_secs * HZ; gossip_debug(GOSSIP_WAIT_DEBUG, "orangefs: tag %llu (%s)" " -- operation to be retried (%d attempt)\n", llu(op->tag), op_name, op->attempts); /* * io ops (ops that use the shared memory buffer) have * to be returned to their caller for a retry. Other ops * can just be recycled here. */ if (!op->uses_shared_memory) goto retry_servicing; } out: gossip_debug(GOSSIP_WAIT_DEBUG, "%s: %s returning: %d for %p.\n", __func__, op_name, ret, op); return ret; } /* This can get called on an I/O op if it had a bad service_operation. */ bool orangefs_cancel_op_in_progress(struct orangefs_kernel_op_s *op) { u64 tag = op->tag; if (!op_state_in_progress(op)) return false; op->slot_to_free = op->upcall.req.io.buf_index; memset(&op->upcall, 0, sizeof(op->upcall)); memset(&op->downcall, 0, sizeof(op->downcall)); op->upcall.type = ORANGEFS_VFS_OP_CANCEL; op->upcall.req.cancel.op_tag = tag; op->downcall.type = ORANGEFS_VFS_OP_INVALID; op->downcall.status = -1; orangefs_new_tag(op); spin_lock(&orangefs_request_list_lock); /* orangefs_request_list_lock is enough of a barrier here */ if (!__is_daemon_in_service()) { spin_unlock(&orangefs_request_list_lock); return false; } spin_lock(&op->lock); set_op_state_waiting(op); gossip_debug(GOSSIP_DEV_DEBUG, "%s: op:%s: op_state:%d: process:%s:\n", __func__, get_opname_string(op), op->op_state, current->comm); list_add(&op->list, &orangefs_request_list); spin_unlock(&op->lock); spin_unlock(&orangefs_request_list_lock); gossip_debug(GOSSIP_WAIT_DEBUG, "Attempting ORANGEFS operation cancellation of tag %llu\n", llu(tag)); return true; } /* * Change an op to the "given up" state and remove it from its list. */ static void orangefs_clean_up_interrupted_operation(struct orangefs_kernel_op_s *op) __releases(op->lock) { /* * handle interrupted cases depending on what state we were in when * the interruption is detected. * * Called with op->lock held. */ /* * List manipulation code elsewhere will ignore ops that * have been given up upon. */ op->op_state |= OP_VFS_STATE_GIVEN_UP; if (list_empty(&op->list)) { /* caught copying to/from daemon */ BUG_ON(op_state_serviced(op)); spin_unlock(&op->lock); wait_for_completion(&op->waitq); } else if (op_state_waiting(op)) { /* * upcall hasn't been read; remove op from upcall request * list. */ spin_unlock(&op->lock); spin_lock(&orangefs_request_list_lock); list_del_init(&op->list); spin_unlock(&orangefs_request_list_lock); gossip_debug(GOSSIP_WAIT_DEBUG, "Interrupted: Removed op %p from request_list\n", op); } else if (op_state_in_progress(op)) { /* op must be removed from the in progress htable */ spin_unlock(&op->lock); spin_lock(&orangefs_htable_ops_in_progress_lock); list_del_init(&op->list); spin_unlock(&orangefs_htable_ops_in_progress_lock); gossip_debug(GOSSIP_WAIT_DEBUG, "Interrupted: Removed op %p" " from htable_ops_in_progress\n", op); } else { spin_unlock(&op->lock); gossip_err("interrupted operation is in a weird state 0x%x\n", op->op_state); } reinit_completion(&op->waitq); } /* * Sleeps on waitqueue waiting for matching downcall. * If client-core finishes servicing, then we are good to go. * else if client-core exits, we get woken up here, and retry with a timeout * * When this call returns to the caller, the specified op will no * longer be in either the in_progress hash table or on the request list. * * Returns 0 on success and -errno on failure * Errors are: * EAGAIN in case we want the caller to requeue and try again.. * EINTR/EIO/ETIMEDOUT indicating we are done trying to service this * operation since client-core seems to be exiting too often * or if we were interrupted. * * Returns with op->lock taken. */ static int wait_for_matching_downcall(struct orangefs_kernel_op_s *op, long timeout, int flags) __acquires(op->lock) { long n; int writeback = flags & ORANGEFS_OP_WRITEBACK, interruptible = flags & ORANGEFS_OP_INTERRUPTIBLE; /* * There's a "schedule_timeout" inside of these wait * primitives, during which the op is out of the hands of the * user process that needs something done and is being * manipulated by the client-core process. */ if (writeback) n = wait_for_completion_io_timeout(&op->waitq, timeout); else if (!writeback && interruptible) n = wait_for_completion_interruptible_timeout(&op->waitq, timeout); else /* !writeback && !interruptible but compiler complains */ n = wait_for_completion_killable_timeout(&op->waitq, timeout); spin_lock(&op->lock); if (op_state_serviced(op)) return 0; if (unlikely(n < 0)) { gossip_debug(GOSSIP_WAIT_DEBUG, "%s: operation interrupted, tag %llu, %p\n", __func__, llu(op->tag), op); return -EINTR; } if (op_state_purged(op)) { gossip_debug(GOSSIP_WAIT_DEBUG, "%s: operation purged, tag %llu, %p, %d\n", __func__, llu(op->tag), op, op->attempts); return (op->attempts < ORANGEFS_PURGE_RETRY_COUNT) ? -EAGAIN : -EIO; } /* must have timed out, then... */ gossip_debug(GOSSIP_WAIT_DEBUG, "%s: operation timed out, tag %llu, %p, %d)\n", __func__, llu(op->tag), op, op->attempts); return -ETIMEDOUT; } |
| 4 87 58 492 270 408 201 435 406 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic scatter and gather helpers. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Adam J. Richter <adam@yggdrasil.com> * Copyright (c) 2004 Jean-Luc Cooke <jlcooke@certainkey.com> * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SCATTERWALK_H #define _CRYPTO_SCATTERWALK_H #include <linux/errno.h> #include <linux/highmem.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/types.h> struct scatter_walk { /* Must be the first member, see struct skcipher_walk. */ union { void *const addr; /* Private API field, do not touch. */ union crypto_no_such_thing *__addr; }; struct scatterlist *sg; unsigned int offset; }; struct skcipher_walk { union { /* Virtual address of the source. */ struct { struct { const void *const addr; } virt; } src; /* Private field for the API, do not use. */ struct scatter_walk in; }; union { /* Virtual address of the destination. */ struct { struct { void *const addr; } virt; } dst; /* Private field for the API, do not use. */ struct scatter_walk out; }; unsigned int nbytes; unsigned int total; u8 *page; u8 *buffer; u8 *oiv; void *iv; unsigned int ivsize; int flags; unsigned int blocksize; unsigned int stride; unsigned int alignmask; }; static inline void scatterwalk_crypto_chain(struct scatterlist *head, struct scatterlist *sg, int num) { if (sg) sg_chain(head, num, sg); else sg_mark_end(head); } static inline void scatterwalk_start(struct scatter_walk *walk, struct scatterlist *sg) { walk->sg = sg; walk->offset = sg->offset; } /* * This is equivalent to scatterwalk_start(walk, sg) followed by * scatterwalk_skip(walk, pos). */ static inline void scatterwalk_start_at_pos(struct scatter_walk *walk, struct scatterlist *sg, unsigned int pos) { while (pos > sg->length) { pos -= sg->length; sg = sg_next(sg); } walk->sg = sg; walk->offset = sg->offset + pos; } static inline unsigned int scatterwalk_clamp(struct scatter_walk *walk, unsigned int nbytes) { unsigned int len_this_sg; unsigned int limit; if (walk->offset >= walk->sg->offset + walk->sg->length) scatterwalk_start(walk, sg_next(walk->sg)); len_this_sg = walk->sg->offset + walk->sg->length - walk->offset; /* * HIGHMEM case: the page may have to be mapped into memory. To avoid * the complexity of having to map multiple pages at once per sg entry, * clamp the returned length to not cross a page boundary. * * !HIGHMEM case: no mapping is needed; all pages of the sg entry are * already mapped contiguously in the kernel's direct map. For improved * performance, allow the walker to return data segments that cross a * page boundary. Do still cap the length to PAGE_SIZE, since some * users rely on that to avoid disabling preemption for too long when * using SIMD. It's also needed for when skcipher_walk uses a bounce * page due to the data not being aligned to the algorithm's alignmask. */ if (IS_ENABLED(CONFIG_HIGHMEM)) limit = PAGE_SIZE - offset_in_page(walk->offset); else limit = PAGE_SIZE; return min3(nbytes, len_this_sg, limit); } /* * Create a scatterlist that represents the remaining data in a walk. Uses * chaining to reference the original scatterlist, so this uses at most two * entries in @sg_out regardless of the number of entries in the original list. * Assumes that sg_init_table() was already done. */ static inline void scatterwalk_get_sglist(struct scatter_walk *walk, struct scatterlist sg_out[2]) { if (walk->offset >= walk->sg->offset + walk->sg->length) scatterwalk_start(walk, sg_next(walk->sg)); sg_set_page(sg_out, sg_page(walk->sg), walk->sg->offset + walk->sg->length - walk->offset, walk->offset); scatterwalk_crypto_chain(sg_out, sg_next(walk->sg), 2); } static inline void scatterwalk_map(struct scatter_walk *walk) { struct page *base_page = sg_page(walk->sg); unsigned int offset = walk->offset; void *addr; if (IS_ENABLED(CONFIG_HIGHMEM)) { struct page *page; page = base_page + (offset >> PAGE_SHIFT); offset = offset_in_page(offset); addr = kmap_local_page(page) + offset; } else { /* * When !HIGHMEM we allow the walker to return segments that * span a page boundary; see scatterwalk_clamp(). To make it * clear that in this case we're working in the linear buffer of * the whole sg entry in the kernel's direct map rather than * within the mapped buffer of a single page, compute the * address as an offset from the page_address() of the first * page of the sg entry. Either way the result is the address * in the direct map, but this makes it clearer what is really * going on. */ addr = page_address(base_page) + offset; } walk->__addr = addr; } /** * scatterwalk_next() - Get the next data buffer in a scatterlist walk * @walk: the scatter_walk * @total: the total number of bytes remaining, > 0 * * A virtual address for the next segment of data from the scatterlist will * be placed into @walk->addr. The caller must call scatterwalk_done_src() * or scatterwalk_done_dst() when it is done using this virtual address. * * Returns: the next number of bytes available, <= @total */ static inline unsigned int scatterwalk_next(struct scatter_walk *walk, unsigned int total) { unsigned int nbytes = scatterwalk_clamp(walk, total); scatterwalk_map(walk); return nbytes; } static inline void scatterwalk_unmap(struct scatter_walk *walk) { if (IS_ENABLED(CONFIG_HIGHMEM)) kunmap_local(walk->__addr); } static inline void scatterwalk_advance(struct scatter_walk *walk, unsigned int nbytes) { walk->offset += nbytes; } /** * scatterwalk_done_src() - Finish one step of a walk of source scatterlist * @walk: the scatter_walk * @nbytes: the number of bytes processed this step, less than or equal to the * number of bytes that scatterwalk_next() returned. * * Use this if the mapped address was not written to, i.e. it is source data. */ static inline void scatterwalk_done_src(struct scatter_walk *walk, unsigned int nbytes) { scatterwalk_unmap(walk); scatterwalk_advance(walk, nbytes); } /** * scatterwalk_done_dst() - Finish one step of a walk of destination scatterlist * @walk: the scatter_walk * @nbytes: the number of bytes processed this step, less than or equal to the * number of bytes that scatterwalk_next() returned. * * Use this if the mapped address may have been written to, i.e. it is * destination data. */ static inline void scatterwalk_done_dst(struct scatter_walk *walk, unsigned int nbytes) { scatterwalk_unmap(walk); /* * Explicitly check ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE instead of just * relying on flush_dcache_page() being a no-op when not implemented, * since otherwise the BUG_ON in sg_page() does not get optimized out. * This also avoids having to consider whether the loop would get * reliably optimized out or not. */ if (ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE) { struct page *base_page; unsigned int offset; int start, end, i; base_page = sg_page(walk->sg); offset = walk->offset; start = offset >> PAGE_SHIFT; end = start + (nbytes >> PAGE_SHIFT); end += (offset_in_page(offset) + offset_in_page(nbytes) + PAGE_SIZE - 1) >> PAGE_SHIFT; for (i = start; i < end; i++) flush_dcache_page(base_page + i); } scatterwalk_advance(walk, nbytes); } void scatterwalk_skip(struct scatter_walk *walk, unsigned int nbytes); void memcpy_from_scatterwalk(void *buf, struct scatter_walk *walk, unsigned int nbytes); void memcpy_to_scatterwalk(struct scatter_walk *walk, const void *buf, unsigned int nbytes); void memcpy_from_sglist(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes); void memcpy_to_sglist(struct scatterlist *sg, unsigned int start, const void *buf, unsigned int nbytes); void memcpy_sglist(struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); /* In new code, please use memcpy_{from,to}_sglist() directly instead. */ static inline void scatterwalk_map_and_copy(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out) { if (out) memcpy_to_sglist(sg, start, buf, nbytes); else memcpy_from_sglist(buf, sg, start, nbytes); } struct scatterlist *scatterwalk_ffwd(struct scatterlist dst[2], struct scatterlist *src, unsigned int len); int skcipher_walk_first(struct skcipher_walk *walk, bool atomic); int skcipher_walk_done(struct skcipher_walk *walk, int res); static inline void skcipher_walk_abort(struct skcipher_walk *walk) { skcipher_walk_done(walk, -ECANCELED); } #endif /* _CRYPTO_SCATTERWALK_H */ |
| 26 38 932 939 939 936 941 45 895 3 36 904 884 57 22 918 937 937 901 39 938 69 870 902 36 45 894 40 900 45 894 937 850 91 936 939 939 45 884 3 893 895 12 12 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 | // SPDX-License-Identifier: GPL-2.0 /* * Functions related to setting various queue properties from drivers */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/bio.h> #include <linux/blk-integrity.h> #include <linux/pagemap.h> #include <linux/backing-dev-defs.h> #include <linux/gcd.h> #include <linux/lcm.h> #include <linux/jiffies.h> #include <linux/gfp.h> #include <linux/dma-mapping.h> #include <linux/t10-pi.h> #include <linux/crc64.h> #include "blk.h" #include "blk-rq-qos.h" #include "blk-wbt.h" void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) { WRITE_ONCE(q->rq_timeout, timeout); } EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); /** * blk_set_stacking_limits - set default limits for stacking devices * @lim: the queue_limits structure to reset * * Prepare queue limits for applying limits from underlying devices using * blk_stack_limits(). */ void blk_set_stacking_limits(struct queue_limits *lim) { memset(lim, 0, sizeof(*lim)); lim->logical_block_size = SECTOR_SIZE; lim->physical_block_size = SECTOR_SIZE; lim->io_min = SECTOR_SIZE; lim->discard_granularity = SECTOR_SIZE; lim->dma_alignment = SECTOR_SIZE - 1; lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; /* Inherit limits from component devices */ lim->max_segments = USHRT_MAX; lim->max_discard_segments = USHRT_MAX; lim->max_hw_sectors = UINT_MAX; lim->max_segment_size = UINT_MAX; lim->max_sectors = UINT_MAX; lim->max_dev_sectors = UINT_MAX; lim->max_write_zeroes_sectors = UINT_MAX; lim->max_hw_wzeroes_unmap_sectors = UINT_MAX; lim->max_user_wzeroes_unmap_sectors = UINT_MAX; lim->max_hw_zone_append_sectors = UINT_MAX; lim->max_user_discard_sectors = UINT_MAX; lim->atomic_write_hw_max = UINT_MAX; } EXPORT_SYMBOL(blk_set_stacking_limits); void blk_apply_bdi_limits(struct backing_dev_info *bdi, struct queue_limits *lim) { u64 io_opt = lim->io_opt; /* * For read-ahead of large files to be effective, we need to read ahead * at least twice the optimal I/O size. For rotational devices that do * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O * size to avoid falling back to the (rather inefficient) small default * read-ahead size. * * There is no hardware limitation for the read-ahead size and the user * might have increased the read-ahead size through sysfs, so don't ever * decrease it. */ if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL)) io_opt = (u64)lim->max_sectors << SECTOR_SHIFT; bdi->ra_pages = max3(bdi->ra_pages, io_opt * 2 >> PAGE_SHIFT, VM_READAHEAD_PAGES); bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; } static int blk_validate_zoned_limits(struct queue_limits *lim) { if (!(lim->features & BLK_FEAT_ZONED)) { if (WARN_ON_ONCE(lim->max_open_zones) || WARN_ON_ONCE(lim->max_active_zones) || WARN_ON_ONCE(lim->zone_write_granularity) || WARN_ON_ONCE(lim->max_zone_append_sectors)) return -EINVAL; return 0; } if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) return -EINVAL; /* * Given that active zones include open zones, the maximum number of * open zones cannot be larger than the maximum number of active zones. */ if (lim->max_active_zones && lim->max_open_zones > lim->max_active_zones) return -EINVAL; if (lim->zone_write_granularity < lim->logical_block_size) lim->zone_write_granularity = lim->logical_block_size; /* * The Zone Append size is limited by the maximum I/O size and the zone * size given that it can't span zones. * * If no max_hw_zone_append_sectors limit is provided, the block layer * will emulated it, else we're also bound by the hardware limit. */ lim->max_zone_append_sectors = min_not_zero(lim->max_hw_zone_append_sectors, min(lim->chunk_sectors, lim->max_hw_sectors)); return 0; } static int blk_validate_integrity_limits(struct queue_limits *lim) { struct blk_integrity *bi = &lim->integrity; if (!bi->metadata_size) { if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { pr_warn("invalid PI settings.\n"); return -EINVAL; } bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY; return 0; } if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { pr_warn("integrity support disabled.\n"); return -EINVAL; } if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && (bi->flags & BLK_INTEGRITY_REF_TAG)) { pr_warn("ref tag not support without checksum.\n"); return -EINVAL; } if (bi->pi_tuple_size > bi->metadata_size) { pr_warn("pi_tuple_size (%u) exceeds metadata_size (%u)\n", bi->pi_tuple_size, bi->metadata_size); return -EINVAL; } switch (bi->csum_type) { case BLK_INTEGRITY_CSUM_NONE: if (bi->pi_tuple_size) { pr_warn("pi_tuple_size must be 0 when checksum type is none\n"); return -EINVAL; } break; case BLK_INTEGRITY_CSUM_CRC: case BLK_INTEGRITY_CSUM_IP: if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) { pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n", sizeof(struct t10_pi_tuple), bi->pi_tuple_size); return -EINVAL; } break; case BLK_INTEGRITY_CSUM_CRC64: if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) { pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n", sizeof(struct crc64_pi_tuple), bi->pi_tuple_size); return -EINVAL; } break; } if (!bi->interval_exp) bi->interval_exp = ilog2(lim->logical_block_size); return 0; } /* * Returns max guaranteed bytes which we can fit in a bio. * * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector), * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from * the first and last segments. */ static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim) { unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments); unsigned int length; length = min(max_segments, 2) * lim->logical_block_size; if (max_segments > 2) length += (max_segments - 2) * PAGE_SIZE; return length; } static void blk_atomic_writes_update_limits(struct queue_limits *lim) { unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT, blk_queue_max_guaranteed_bio(lim)); unit_limit = rounddown_pow_of_two(unit_limit); lim->atomic_write_max_sectors = min(lim->atomic_write_hw_max >> SECTOR_SHIFT, lim->max_hw_sectors); lim->atomic_write_unit_min = min(lim->atomic_write_hw_unit_min, unit_limit); lim->atomic_write_unit_max = min(lim->atomic_write_hw_unit_max, unit_limit); lim->atomic_write_boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT; } /* * Test whether any boundary is aligned with any chunk size. Stacked * devices store any stripe size in t->chunk_sectors. */ static bool blk_valid_atomic_writes_boundary(unsigned int chunk_sectors, unsigned int boundary_sectors) { if (!chunk_sectors || !boundary_sectors) return true; if (boundary_sectors > chunk_sectors && boundary_sectors % chunk_sectors) return false; if (chunk_sectors > boundary_sectors && chunk_sectors % boundary_sectors) return false; return true; } static void blk_validate_atomic_write_limits(struct queue_limits *lim) { unsigned int boundary_sectors; unsigned int atomic_write_hw_max_sectors = lim->atomic_write_hw_max >> SECTOR_SHIFT; if (!(lim->features & BLK_FEAT_ATOMIC_WRITES)) goto unsupported; /* UINT_MAX indicates stacked limits in initial state */ if (lim->atomic_write_hw_max == UINT_MAX) goto unsupported; if (!lim->atomic_write_hw_max) goto unsupported; if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min))) goto unsupported; if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max))) goto unsupported; if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min > lim->atomic_write_hw_unit_max)) goto unsupported; if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max > lim->atomic_write_hw_max)) goto unsupported; if (WARN_ON_ONCE(lim->chunk_sectors && atomic_write_hw_max_sectors > lim->chunk_sectors)) goto unsupported; boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT; if (boundary_sectors) { if (WARN_ON_ONCE(lim->atomic_write_hw_max > lim->atomic_write_hw_boundary)) goto unsupported; if (WARN_ON_ONCE(!blk_valid_atomic_writes_boundary( lim->chunk_sectors, boundary_sectors))) goto unsupported; /* * The boundary size just needs to be a multiple of unit_max * (and not necessarily a power-of-2), so this following check * could be relaxed in future. * Furthermore, if needed, unit_max could even be reduced so * that it is compliant with a !power-of-2 boundary. */ if (!is_power_of_2(boundary_sectors)) goto unsupported; } blk_atomic_writes_update_limits(lim); return; unsupported: lim->atomic_write_max_sectors = 0; lim->atomic_write_boundary_sectors = 0; lim->atomic_write_unit_min = 0; lim->atomic_write_unit_max = 0; } /* * Check that the limits in lim are valid, initialize defaults for unset * values, and cap values based on others where needed. */ int blk_validate_limits(struct queue_limits *lim) { unsigned int max_hw_sectors; unsigned int logical_block_sectors; unsigned long seg_size; int err; /* * Unless otherwise specified, default to 512 byte logical blocks and a * physical block size equal to the logical block size. */ if (!lim->logical_block_size) lim->logical_block_size = SECTOR_SIZE; else if (blk_validate_block_size(lim->logical_block_size)) { pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size); return -EINVAL; } if (lim->physical_block_size < lim->logical_block_size) { lim->physical_block_size = lim->logical_block_size; } else if (!is_power_of_2(lim->physical_block_size)) { pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size); return -EINVAL; } /* * The minimum I/O size defaults to the physical block size unless * explicitly overridden. */ if (lim->io_min < lim->physical_block_size) lim->io_min = lim->physical_block_size; /* * The optimal I/O size may not be aligned to physical block size * (because it may be limited by dma engines which have no clue about * block size of the disks attached to them), so we round it down here. */ lim->io_opt = round_down(lim->io_opt, lim->physical_block_size); /* * max_hw_sectors has a somewhat weird default for historical reason, * but driver really should set their own instead of relying on this * value. * * The block layer relies on the fact that every driver can * handle at lest a page worth of data per I/O, and needs the value * aligned to the logical block size. */ if (!lim->max_hw_sectors) lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) return -EINVAL; logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) return -EINVAL; lim->max_hw_sectors = round_down(lim->max_hw_sectors, logical_block_sectors); /* * The actual max_sectors value is a complex beast and also takes the * max_dev_sectors value (set by SCSI ULPs) and a user configurable * value into account. The ->max_sectors value is always calculated * from these, so directly setting it won't have any effect. */ max_hw_sectors = min_not_zero(lim->max_hw_sectors, lim->max_dev_sectors); if (lim->max_user_sectors) { if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE) return -EINVAL; lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { lim->max_sectors = min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { lim->max_sectors = min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); } else { lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); } lim->max_sectors = round_down(lim->max_sectors, logical_block_sectors); /* * Random default for the maximum number of segments. Driver should not * rely on this and set their own. */ if (!lim->max_segments) lim->max_segments = BLK_MAX_SEGMENTS; if (lim->max_hw_wzeroes_unmap_sectors && lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors) return -EINVAL; lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors, lim->max_user_wzeroes_unmap_sectors); lim->max_discard_sectors = min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); /* * When discard is not supported, discard_granularity should be reported * as 0 to userspace. */ if (lim->max_discard_sectors) lim->discard_granularity = max(lim->discard_granularity, lim->physical_block_size); else lim->discard_granularity = 0; if (!lim->max_discard_segments) lim->max_discard_segments = 1; /* * By default there is no limit on the segment boundary alignment, * but if there is one it can't be smaller than the page size as * that would break all the normal I/O patterns. */ if (!lim->seg_boundary_mask) lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1)) return -EINVAL; /* * Stacking device may have both virtual boundary and max segment * size limit, so allow this setting now, and long-term the two * might need to move out of stacking limits since we have immutable * bvec and lower layer bio splitting is supposed to handle the two * correctly. */ if (lim->virt_boundary_mask) { if (!lim->max_segment_size) lim->max_segment_size = UINT_MAX; } else { /* * The maximum segment size has an odd historic 64k default that * drivers probably should override. Just like the I/O size we * require drivers to at least handle a full page per segment. */ if (!lim->max_segment_size) lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE)) return -EINVAL; } /* setup min segment size for building new segment in fast path */ if (lim->seg_boundary_mask > lim->max_segment_size - 1) seg_size = lim->max_segment_size; else seg_size = lim->seg_boundary_mask + 1; lim->min_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE); /* * We require drivers to at least do logical block aligned I/O, but * historically could not check for that due to the separate calls * to set the limits. Once the transition is finished the check * below should be narrowed down to check the logical block size. */ if (!lim->dma_alignment) lim->dma_alignment = SECTOR_SIZE - 1; if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) return -EINVAL; if (lim->alignment_offset) { lim->alignment_offset &= (lim->physical_block_size - 1); lim->flags &= ~BLK_FLAG_MISALIGNED; } if (!(lim->features & BLK_FEAT_WRITE_CACHE)) lim->features &= ~BLK_FEAT_FUA; blk_validate_atomic_write_limits(lim); err = blk_validate_integrity_limits(lim); if (err) return err; return blk_validate_zoned_limits(lim); } EXPORT_SYMBOL_GPL(blk_validate_limits); /* * Set the default limits for a newly allocated queue. @lim contains the * initial limits set by the driver, which could be no limit in which case * all fields are cleared to zero. */ int blk_set_default_limits(struct queue_limits *lim) { /* * Most defaults are set by capping the bounds in blk_validate_limits, * but these limits are special and need an explicit initialization to * the max value here. */ lim->max_user_discard_sectors = UINT_MAX; lim->max_user_wzeroes_unmap_sectors = UINT_MAX; return blk_validate_limits(lim); } /** * queue_limits_commit_update - commit an atomic update of queue limits * @q: queue to update * @lim: limits to apply * * Apply the limits in @lim that were obtained from queue_limits_start_update() * and updated by the caller to @q. The caller must have frozen the queue or * ensure that there are no outstanding I/Os by other means. * * Returns 0 if successful, else a negative error code. */ int queue_limits_commit_update(struct request_queue *q, struct queue_limits *lim) { int error; error = blk_validate_limits(lim); if (error) goto out_unlock; #ifdef CONFIG_BLK_INLINE_ENCRYPTION if (q->crypto_profile && lim->integrity.tag_size) { pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); error = -EINVAL; goto out_unlock; } #endif q->limits = *lim; if (q->disk) blk_apply_bdi_limits(q->disk->bdi, lim); out_unlock: mutex_unlock(&q->limits_lock); return error; } EXPORT_SYMBOL_GPL(queue_limits_commit_update); /** * queue_limits_commit_update_frozen - commit an atomic update of queue limits * @q: queue to update * @lim: limits to apply * * Apply the limits in @lim that were obtained from queue_limits_start_update() * and updated with the new values by the caller to @q. Freezes the queue * before the update and unfreezes it after. * * Returns 0 if successful, else a negative error code. */ int queue_limits_commit_update_frozen(struct request_queue *q, struct queue_limits *lim) { unsigned int memflags; int ret; memflags = blk_mq_freeze_queue(q); ret = queue_limits_commit_update(q, lim); blk_mq_unfreeze_queue(q, memflags); return ret; } EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen); /** * queue_limits_set - apply queue limits to queue * @q: queue to update * @lim: limits to apply * * Apply the limits in @lim that were freshly initialized to @q. * To update existing limits use queue_limits_start_update() and * queue_limits_commit_update() instead. * * Returns 0 if successful, else a negative error code. */ int queue_limits_set(struct request_queue *q, struct queue_limits *lim) { mutex_lock(&q->limits_lock); return queue_limits_commit_update(q, lim); } EXPORT_SYMBOL_GPL(queue_limits_set); static int queue_limit_alignment_offset(const struct queue_limits *lim, sector_t sector) { unsigned int granularity = max(lim->physical_block_size, lim->io_min); unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) << SECTOR_SHIFT; return (granularity + lim->alignment_offset - alignment) % granularity; } static unsigned int queue_limit_discard_alignment( const struct queue_limits *lim, sector_t sector) { unsigned int alignment, granularity, offset; if (!lim->max_discard_sectors) return 0; /* Why are these in bytes, not sectors? */ alignment = lim->discard_alignment >> SECTOR_SHIFT; granularity = lim->discard_granularity >> SECTOR_SHIFT; /* Offset of the partition start in 'granularity' sectors */ offset = sector_div(sector, granularity); /* And why do we do this modulus *again* in blkdev_issue_discard()? */ offset = (granularity + alignment - offset) % granularity; /* Turn it back into bytes, gaah */ return offset << SECTOR_SHIFT; } static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) { sectors = round_down(sectors, lbs >> SECTOR_SHIFT); if (sectors < PAGE_SIZE >> SECTOR_SHIFT) sectors = PAGE_SIZE >> SECTOR_SHIFT; return sectors; } /* Check if second and later bottom devices are compliant */ static bool blk_stack_atomic_writes_tail(struct queue_limits *t, struct queue_limits *b) { /* We're not going to support different boundary sizes.. yet */ if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary) return false; /* Can't support this */ if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max) return false; /* Or this */ if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min) return false; t->atomic_write_hw_max = min(t->atomic_write_hw_max, b->atomic_write_hw_max); t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min, b->atomic_write_hw_unit_min); t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max, b->atomic_write_hw_unit_max); return true; } static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t) { unsigned int chunk_bytes; if (!t->chunk_sectors) return; /* * If chunk sectors is so large that its value in bytes overflows * UINT_MAX, then just shift it down so it definitely will fit. * We don't support atomic writes of such a large size anyway. */ if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes)) chunk_bytes = t->chunk_sectors; /* * Find values for limits which work for chunk size. * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk * size, as the chunk size is not restricted to a power-of-2. * So we need to find highest power-of-2 which works for the chunk * size. * As an example scenario, we could have t->unit_max = 16K and * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a * value aligned with both limits, i.e. 8K in this example. */ t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max, max_pow_of_two_factor(chunk_bytes)); t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min, t->atomic_write_hw_unit_max); t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes); } /* Check stacking of first bottom device */ static bool blk_stack_atomic_writes_head(struct queue_limits *t, struct queue_limits *b) { if (!blk_valid_atomic_writes_boundary(t->chunk_sectors, b->atomic_write_hw_boundary >> SECTOR_SHIFT)) return false; t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max; t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min; t->atomic_write_hw_max = b->atomic_write_hw_max; t->atomic_write_hw_boundary = b->atomic_write_hw_boundary; return true; } static void blk_stack_atomic_writes_limits(struct queue_limits *t, struct queue_limits *b, sector_t start) { if (!(b->features & BLK_FEAT_ATOMIC_WRITES)) goto unsupported; if (!b->atomic_write_hw_unit_min) goto unsupported; if (!blk_atomic_write_start_sect_aligned(start, b)) goto unsupported; /* UINT_MAX indicates no stacking of bottom devices yet */ if (t->atomic_write_hw_max == UINT_MAX) { if (!blk_stack_atomic_writes_head(t, b)) goto unsupported; } else { if (!blk_stack_atomic_writes_tail(t, b)) goto unsupported; } blk_stack_atomic_writes_chunk_sectors(t); return; unsupported: t->atomic_write_hw_max = 0; t->atomic_write_hw_unit_max = 0; t->atomic_write_hw_unit_min = 0; t->atomic_write_hw_boundary = 0; } /** * blk_stack_limits - adjust queue_limits for stacked devices * @t: the stacking driver limits (top device) * @b: the underlying queue limits (bottom, component device) * @start: first data sector within component device * * Description: * This function is used by stacking drivers like MD and DM to ensure * that all component devices have compatible block sizes and * alignments. The stacking driver must provide a queue_limits * struct (top) and then iteratively call the stacking function for * all component (bottom) devices. The stacking function will * attempt to combine the values and ensure proper alignment. * * Returns 0 if the top and bottom queue_limits are compatible. The * top device's block sizes and alignment offsets may be adjusted to * ensure alignment with the bottom device. If no compatible sizes * and alignments exist, -1 is returned and the resulting top * queue_limits will have the misaligned flag set to indicate that * the alignment_offset is undefined. */ int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t start) { unsigned int top, bottom, alignment; int ret = 0; t->features |= (b->features & BLK_FEAT_INHERIT_MASK); /* * Some feaures need to be supported both by the stacking driver and all * underlying devices. The stacking driver sets these flags before * stacking the limits, and this will clear the flags if any of the * underlying devices does not support it. */ if (!(b->features & BLK_FEAT_NOWAIT)) t->features &= ~BLK_FEAT_NOWAIT; if (!(b->features & BLK_FEAT_POLL)) t->features &= ~BLK_FEAT_POLL; t->flags |= (b->flags & BLK_FLAG_MISALIGNED); t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); t->max_user_sectors = min_not_zero(t->max_user_sectors, b->max_user_sectors); t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, b->max_write_zeroes_sectors); t->max_user_wzeroes_unmap_sectors = min(t->max_user_wzeroes_unmap_sectors, b->max_user_wzeroes_unmap_sectors); t->max_hw_wzeroes_unmap_sectors = min(t->max_hw_wzeroes_unmap_sectors, b->max_hw_wzeroes_unmap_sectors); t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors, b->max_hw_zone_append_sectors); t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, b->seg_boundary_mask); t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, b->virt_boundary_mask); t->max_segments = min_not_zero(t->max_segments, b->max_segments); t->max_discard_segments = min_not_zero(t->max_discard_segments, b->max_discard_segments); t->max_integrity_segments = min_not_zero(t->max_integrity_segments, b->max_integrity_segments); t->max_segment_size = min_not_zero(t->max_segment_size, b->max_segment_size); alignment = queue_limit_alignment_offset(b, start); /* Bottom device has different alignment. Check that it is * compatible with the current top alignment. */ if (t->alignment_offset != alignment) { top = max(t->physical_block_size, t->io_min) + t->alignment_offset; bottom = max(b->physical_block_size, b->io_min) + alignment; /* Verify that top and bottom intervals line up */ if (max(top, bottom) % min(top, bottom)) { t->flags |= BLK_FLAG_MISALIGNED; ret = -1; } } t->logical_block_size = max(t->logical_block_size, b->logical_block_size); t->physical_block_size = max(t->physical_block_size, b->physical_block_size); t->io_min = max(t->io_min, b->io_min); t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); t->dma_alignment = max(t->dma_alignment, b->dma_alignment); /* Set non-power-of-2 compatible chunk_sectors boundary */ if (b->chunk_sectors) t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); /* Physical block size a multiple of the logical block size? */ if (t->physical_block_size & (t->logical_block_size - 1)) { t->physical_block_size = t->logical_block_size; t->flags |= BLK_FLAG_MISALIGNED; ret = -1; } /* Minimum I/O a multiple of the physical block size? */ if (t->io_min & (t->physical_block_size - 1)) { t->io_min = t->physical_block_size; t->flags |= BLK_FLAG_MISALIGNED; ret = -1; } /* Optimal I/O a multiple of the physical block size? */ if (t->io_opt & (t->physical_block_size - 1)) { t->io_opt = 0; t->flags |= BLK_FLAG_MISALIGNED; ret = -1; } /* chunk_sectors a multiple of the physical block size? */ if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) { t->chunk_sectors = 0; t->flags |= BLK_FLAG_MISALIGNED; ret = -1; } /* Find lowest common alignment_offset */ t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) % max(t->physical_block_size, t->io_min); /* Verify that new alignment_offset is on a logical block boundary */ if (t->alignment_offset & (t->logical_block_size - 1)) { t->flags |= BLK_FLAG_MISALIGNED; ret = -1; } t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); /* Discard alignment and granularity */ if (b->discard_granularity) { alignment = queue_limit_discard_alignment(b, start); t->max_discard_sectors = min_not_zero(t->max_discard_sectors, b->max_discard_sectors); t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, b->max_hw_discard_sectors); t->discard_granularity = max(t->discard_granularity, b->discard_granularity); t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % t->discard_granularity; } t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, b->max_secure_erase_sectors); t->zone_write_granularity = max(t->zone_write_granularity, b->zone_write_granularity); if (!(t->features & BLK_FEAT_ZONED)) { t->zone_write_granularity = 0; t->max_zone_append_sectors = 0; } blk_stack_atomic_writes_limits(t, b, start); return ret; } EXPORT_SYMBOL(blk_stack_limits); /** * queue_limits_stack_bdev - adjust queue_limits for stacked devices * @t: the stacking driver limits (top device) * @bdev: the underlying block device (bottom) * @offset: offset to beginning of data within component device * @pfx: prefix to use for warnings logged * * Description: * This function is used by stacking drivers like MD and DM to ensure * that all component devices have compatible block sizes and * alignments. The stacking driver must provide a queue_limits * struct (top) and then iteratively call the stacking function for * all component (bottom) devices. The stacking function will * attempt to combine the values and ensure proper alignment. */ void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, sector_t offset, const char *pfx) { if (blk_stack_limits(t, bdev_limits(bdev), get_start_sect(bdev) + offset)) pr_notice("%s: Warning: Device %pg is misaligned\n", pfx, bdev); } EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); /** * queue_limits_stack_integrity - stack integrity profile * @t: target queue limits * @b: base queue limits * * Check if the integrity profile in the @b can be stacked into the * target @t. Stacking is possible if either: * * a) does not have any integrity information stacked into it yet * b) the integrity profile in @b is identical to the one in @t * * If @b can be stacked into @t, return %true. Else return %false and clear the * integrity information in @t. */ bool queue_limits_stack_integrity(struct queue_limits *t, struct queue_limits *b) { struct blk_integrity *ti = &t->integrity; struct blk_integrity *bi = &b->integrity; if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) return true; if (ti->flags & BLK_INTEGRITY_STACKED) { if (ti->metadata_size != bi->metadata_size) goto incompatible; if (ti->interval_exp != bi->interval_exp) goto incompatible; if (ti->tag_size != bi->tag_size) goto incompatible; if (ti->csum_type != bi->csum_type) goto incompatible; if (ti->pi_tuple_size != bi->pi_tuple_size) goto incompatible; if ((ti->flags & BLK_INTEGRITY_REF_TAG) != (bi->flags & BLK_INTEGRITY_REF_TAG)) goto incompatible; } else { ti->flags = BLK_INTEGRITY_STACKED; ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) | (bi->flags & BLK_INTEGRITY_REF_TAG); ti->csum_type = bi->csum_type; ti->pi_tuple_size = bi->pi_tuple_size; ti->metadata_size = bi->metadata_size; ti->pi_offset = bi->pi_offset; ti->interval_exp = bi->interval_exp; ti->tag_size = bi->tag_size; } return true; incompatible: memset(ti, 0, sizeof(*ti)); return false; } EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); /** * blk_set_queue_depth - tell the block layer about the device queue depth * @q: the request queue for the device * @depth: queue depth * */ void blk_set_queue_depth(struct request_queue *q, unsigned int depth) { q->queue_depth = depth; rq_qos_queue_depth_changed(q); } EXPORT_SYMBOL(blk_set_queue_depth); int bdev_alignment_offset(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q->limits.flags & BLK_FLAG_MISALIGNED) return -1; if (bdev_is_partition(bdev)) return queue_limit_alignment_offset(&q->limits, bdev->bd_start_sect); return q->limits.alignment_offset; } EXPORT_SYMBOL_GPL(bdev_alignment_offset); unsigned int bdev_discard_alignment(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (bdev_is_partition(bdev)) return queue_limit_discard_alignment(&q->limits, bdev->bd_start_sect); return q->limits.discard_alignment; } EXPORT_SYMBOL_GPL(bdev_discard_alignment); |
| 4 671 421 241 70 37 2744 29 18836 124 118 16 17396 967 162 3798 2337 172 5 1 19643 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Berkeley style UIO structures - Alan Cox 1994. */ #ifndef __LINUX_UIO_H #define __LINUX_UIO_H #include <linux/kernel.h> #include <linux/mm_types.h> #include <linux/ucopysize.h> #include <uapi/linux/uio.h> struct page; struct folio_queue; typedef unsigned int __bitwise iov_iter_extraction_t; struct kvec { void *iov_base; /* and that should *never* hold a userland pointer */ size_t iov_len; }; enum iter_type { /* iter types */ ITER_UBUF, ITER_IOVEC, ITER_BVEC, ITER_KVEC, ITER_FOLIOQ, ITER_XARRAY, ITER_DISCARD, }; #define ITER_SOURCE 1 // == WRITE #define ITER_DEST 0 // == READ struct iov_iter_state { size_t iov_offset; size_t count; unsigned long nr_segs; }; struct iov_iter { u8 iter_type; bool nofault; bool data_source; size_t iov_offset; /* * Hack alert: overlay ubuf_iovec with iovec + count, so * that the members resolve correctly regardless of the type * of iterator used. This means that you can use: * * &iter->__ubuf_iovec or iter->__iov * * interchangably for the user_backed cases, hence simplifying * some of the cases that need to deal with both. */ union { /* * This really should be a const, but we cannot do that without * also modifying any of the zero-filling iter init functions. * Leave it non-const for now, but it should be treated as such. */ struct iovec __ubuf_iovec; struct { union { /* use iter_iov() to get the current vec */ const struct iovec *__iov; const struct kvec *kvec; const struct bio_vec *bvec; const struct folio_queue *folioq; struct xarray *xarray; void __user *ubuf; }; size_t count; }; }; union { unsigned long nr_segs; u8 folioq_slot; loff_t xarray_start; }; }; typedef __u16 uio_meta_flags_t; struct uio_meta { uio_meta_flags_t flags; u16 app_tag; u64 seed; struct iov_iter iter; }; static inline const struct iovec *iter_iov(const struct iov_iter *iter) { if (iter->iter_type == ITER_UBUF) return (const struct iovec *) &iter->__ubuf_iovec; return iter->__iov; } #define iter_iov_addr(iter) (iter_iov(iter)->iov_base + (iter)->iov_offset) static inline size_t iter_iov_len(const struct iov_iter *i) { if (i->iter_type == ITER_UBUF) return i->count; return iter_iov(i)->iov_len - i->iov_offset; } static inline enum iter_type iov_iter_type(const struct iov_iter *i) { return i->iter_type; } static inline void iov_iter_save_state(struct iov_iter *iter, struct iov_iter_state *state) { state->iov_offset = iter->iov_offset; state->count = iter->count; state->nr_segs = iter->nr_segs; } static inline bool iter_is_ubuf(const struct iov_iter *i) { return iov_iter_type(i) == ITER_UBUF; } static inline bool iter_is_iovec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_IOVEC; } static inline bool iov_iter_is_kvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_KVEC; } static inline bool iov_iter_is_bvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_BVEC; } static inline bool iov_iter_is_discard(const struct iov_iter *i) { return iov_iter_type(i) == ITER_DISCARD; } static inline bool iov_iter_is_folioq(const struct iov_iter *i) { return iov_iter_type(i) == ITER_FOLIOQ; } static inline bool iov_iter_is_xarray(const struct iov_iter *i) { return iov_iter_type(i) == ITER_XARRAY; } static inline unsigned char iov_iter_rw(const struct iov_iter *i) { return i->data_source ? WRITE : READ; } static inline bool user_backed_iter(const struct iov_iter *i) { return iter_is_ubuf(i) || iter_is_iovec(i); } /* * Total number of bytes covered by an iovec. * * NOTE that it is not safe to use this function until all the iovec's * segment lengths have been validated. Because the individual lengths can * overflow a size_t when added together. */ static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs) { unsigned long seg; size_t ret = 0; for (seg = 0; seg < nr_segs; seg++) ret += iov[seg].iov_len; return ret; } void iov_iter_advance(struct iov_iter *i, size_t bytes); void iov_iter_revert(struct iov_iter *i, size_t bytes); size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t bytes); size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t bytes); size_t iov_iter_single_seg_count(const struct iov_iter *i); size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset, size_t bytes, struct iov_iter *i); size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i); static inline size_t copy_folio_to_iter(struct folio *folio, size_t offset, size_t bytes, struct iov_iter *i) { return copy_page_to_iter(&folio->page, offset, bytes, i); } static inline size_t copy_folio_from_iter(struct folio *folio, size_t offset, size_t bytes, struct iov_iter *i) { return copy_page_from_iter(&folio->page, offset, bytes, i); } size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, struct iov_iter *i); static __always_inline __must_check size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (check_copy_size(addr, bytes, true)) return _copy_to_iter(addr, bytes, i); return 0; } static __always_inline __must_check size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { if (check_copy_size(addr, bytes, false)) return _copy_from_iter(addr, bytes, i); return 0; } static __always_inline __must_check bool copy_to_iter_full(const void *addr, size_t bytes, struct iov_iter *i) { size_t copied = copy_to_iter(addr, bytes, i); if (likely(copied == bytes)) return true; iov_iter_revert(i, copied); return false; } static __always_inline __must_check bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) { size_t copied = copy_from_iter(addr, bytes, i); if (likely(copied == bytes)) return true; iov_iter_revert(i, copied); return false; } static __always_inline __must_check size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (check_copy_size(addr, bytes, false)) return _copy_from_iter_nocache(addr, bytes, i); return 0; } static __always_inline __must_check bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) { size_t copied = copy_from_iter_nocache(addr, bytes, i); if (likely(copied == bytes)) return true; iov_iter_revert(i, copied); return false; } #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /* * Note, users like pmem that depend on the stricter semantics of * _copy_from_iter_flushcache() than _copy_from_iter_nocache() must check for * IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the * destination is flushed from the cache on return. */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_from_iter_flushcache _copy_from_iter_nocache #endif #ifdef CONFIG_ARCH_HAS_COPY_MC size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_mc_to_iter _copy_to_iter #endif size_t iov_iter_zero(size_t bytes, struct iov_iter *); unsigned long iov_iter_alignment(const struct iov_iter *i); unsigned long iov_iter_gap_alignment(const struct iov_iter *i); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count); void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count); void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, const struct folio_queue *folioq, unsigned int first_slot, unsigned int offset, size_t count); void iov_iter_xarray(struct iov_iter *i, unsigned int direction, struct xarray *xarray, loff_t start, size_t count); ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start); ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start); int iov_iter_npages(const struct iov_iter *i, int maxpages); void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags); static inline size_t iov_iter_count(const struct iov_iter *i) { return i->count; } /* * Cap the iov_iter by given limit; note that the second argument is * *not* the new size - it's upper limit for such. Passing it a value * greater than the amount of data in iov_iter is fine - it'll just do * nothing in that case. */ static inline void iov_iter_truncate(struct iov_iter *i, u64 count) { /* * count doesn't have to fit in size_t - comparison extends both * operands to u64 here and any value that would be truncated by * conversion in assignement is by definition greater than all * values of size_t, including old i->count. */ if (i->count > count) i->count = count; } /* * reexpand a previously truncated iterator; count must be no more than how much * we had shrunk it. */ static inline void iov_iter_reexpand(struct iov_iter *i, size_t count) { i->count = count; } static inline int iov_iter_npages_cap(struct iov_iter *i, int maxpages, size_t max_bytes) { size_t shorted = 0; int npages; if (iov_iter_count(i) > max_bytes) { shorted = iov_iter_count(i) - max_bytes; iov_iter_truncate(i, max_bytes); } npages = iov_iter_npages(i, maxpages); if (shorted) iov_iter_reexpand(i, iov_iter_count(i) + shorted); return npages; } struct iovec *iovec_from_user(const struct iovec __user *uvector, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat); ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i); ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat); int import_ubuf(int type, void __user *buf, size_t len, struct iov_iter *i); static inline void iov_iter_ubuf(struct iov_iter *i, unsigned int direction, void __user *buf, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter) { .iter_type = ITER_UBUF, .data_source = direction, .ubuf = buf, .count = count, .nr_segs = 1 }; } /* Flags for iov_iter_get/extract_pages*() */ /* Allow P2PDMA on the extracted pages */ #define ITER_ALLOW_P2PDMA ((__force iov_iter_extraction_t)0x01) ssize_t iov_iter_extract_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, iov_iter_extraction_t extraction_flags, size_t *offset0); /** * iov_iter_extract_will_pin - Indicate how pages from the iterator will be retained * @iter: The iterator * * Examine the iterator and indicate by returning true or false as to how, if * at all, pages extracted from the iterator will be retained by the extraction * function. * * %true indicates that the pages will have a pin placed in them that the * caller must unpin. This is must be done for DMA/async DIO to force fork() * to forcibly copy a page for the child (the parent must retain the original * page). * * %false indicates that no measures are taken and that it's up to the caller * to retain the pages. */ static inline bool iov_iter_extract_will_pin(const struct iov_iter *iter) { return user_backed_iter(iter); } struct sg_table; ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t len, struct sg_table *sgtable, unsigned int sg_max, iov_iter_extraction_t extraction_flags); #endif |
| 18 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2024 Google LLC * * dbitmap - dynamically sized bitmap library. * * Used by the binder driver to optimize the allocation of the smallest * available descriptor ID. Each bit in the bitmap represents the state * of an ID. * * A dbitmap can grow or shrink as needed. This part has been designed * considering that users might need to briefly release their locks in * order to allocate memory for the new bitmap. These operations then, * are verified to determine if the grow or shrink is sill valid. * * This library does not provide protection against concurrent access * by itself. Binder uses the proc->outer_lock for this purpose. */ #ifndef _LINUX_DBITMAP_H #define _LINUX_DBITMAP_H #include <linux/bitmap.h> #define NBITS_MIN BITS_PER_TYPE(unsigned long) struct dbitmap { unsigned int nbits; unsigned long *map; }; static inline int dbitmap_enabled(struct dbitmap *dmap) { return !!dmap->nbits; } static inline void dbitmap_free(struct dbitmap *dmap) { dmap->nbits = 0; kfree(dmap->map); dmap->map = NULL; } /* Returns the nbits that a dbitmap can shrink to, 0 if not possible. */ static inline unsigned int dbitmap_shrink_nbits(struct dbitmap *dmap) { unsigned int bit; if (dmap->nbits <= NBITS_MIN) return 0; /* * Determine if the bitmap can shrink based on the position of * its last set bit. If the bit is within the first quarter of * the bitmap then shrinking is possible. In this case, the * bitmap should shrink to half its current size. */ bit = find_last_bit(dmap->map, dmap->nbits); if (bit < (dmap->nbits >> 2)) return dmap->nbits >> 1; /* find_last_bit() returns dmap->nbits when no bits are set. */ if (bit == dmap->nbits) return NBITS_MIN; return 0; } /* Replace the internal bitmap with a new one of different size */ static inline void dbitmap_replace(struct dbitmap *dmap, unsigned long *new, unsigned int nbits) { bitmap_copy(new, dmap->map, min(dmap->nbits, nbits)); kfree(dmap->map); dmap->map = new; dmap->nbits = nbits; } static inline void dbitmap_shrink(struct dbitmap *dmap, unsigned long *new, unsigned int nbits) { if (!new) return; /* * Verify that shrinking to @nbits is still possible. The @new * bitmap might have been allocated without locks, so this call * could now be outdated. In this case, free @new and move on. */ if (!dbitmap_enabled(dmap) || dbitmap_shrink_nbits(dmap) != nbits) { kfree(new); return; } dbitmap_replace(dmap, new, nbits); } /* Returns the nbits that a dbitmap can grow to. */ static inline unsigned int dbitmap_grow_nbits(struct dbitmap *dmap) { return dmap->nbits << 1; } static inline void dbitmap_grow(struct dbitmap *dmap, unsigned long *new, unsigned int nbits) { /* * Verify that growing to @nbits is still possible. The @new * bitmap might have been allocated without locks, so this call * could now be outdated. In this case, free @new and move on. */ if (!dbitmap_enabled(dmap) || nbits <= dmap->nbits) { kfree(new); return; } /* * Check for ENOMEM after confirming the grow operation is still * required. This ensures we only disable the dbitmap when it's * necessary. Once the dbitmap is disabled, binder will fallback * to slow_desc_lookup_olocked(). */ if (!new) { dbitmap_free(dmap); return; } dbitmap_replace(dmap, new, nbits); } /* * Finds and sets the next zero bit in the bitmap. Upon success @bit * is populated with the index and 0 is returned. Otherwise, -ENOSPC * is returned to indicate that a dbitmap_grow() is needed. */ static inline int dbitmap_acquire_next_zero_bit(struct dbitmap *dmap, unsigned long offset, unsigned long *bit) { unsigned long n; n = find_next_zero_bit(dmap->map, dmap->nbits, offset); if (n == dmap->nbits) return -ENOSPC; *bit = n; set_bit(n, dmap->map); return 0; } static inline void dbitmap_clear_bit(struct dbitmap *dmap, unsigned long bit) { clear_bit(bit, dmap->map); } static inline int dbitmap_init(struct dbitmap *dmap) { dmap->map = bitmap_zalloc(NBITS_MIN, GFP_KERNEL); if (!dmap->map) { dmap->nbits = 0; return -ENOMEM; } dmap->nbits = NBITS_MIN; return 0; } #endif |
| 2385 2382 49 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright 2011-2014 Autronica Fire and Security AS * * 2011-2014 Arvid Brodin, arvid.brodin@alten.se * * include file for HSR and PRP. */ #ifndef __HSR_SLAVE_H #define __HSR_SLAVE_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include "hsr_main.h" int hsr_add_port(struct hsr_priv *hsr, struct net_device *dev, enum hsr_port_type pt, struct netlink_ext_ack *extack); void hsr_del_port(struct hsr_port *port); bool hsr_port_exists(const struct net_device *dev); static inline struct hsr_port *hsr_port_get_rtnl(const struct net_device *dev) { ASSERT_RTNL(); return hsr_port_exists(dev) ? rtnl_dereference(dev->rx_handler_data) : NULL; } static inline struct hsr_port *hsr_port_get_rcu(const struct net_device *dev) { return hsr_port_exists(dev) ? rcu_dereference(dev->rx_handler_data) : NULL; } bool hsr_invalid_dan_ingress_frame(__be16 protocol); #endif /* __HSR_SLAVE_H */ |
| 1164 1167 256 257 257 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright(c) 2017 Intel Corporation. All rights reserved. */ #include <linux/pagemap.h> #include <linux/module.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/magic.h> #include <linux/cdev.h> #include <linux/slab.h> #include <linux/uio.h> #include <linux/dax.h> #include <linux/fs.h> #include <linux/cacheinfo.h> #include "dax-private.h" /** * struct dax_device - anchor object for dax services * @inode: core vfs * @cdev: optional character interface for "device dax" * @private: dax driver private data * @flags: state and boolean properties * @ops: operations for this device * @holder_data: holder of a dax_device: could be filesystem or mapped device * @holder_ops: operations for the inner holder */ struct dax_device { struct inode inode; struct cdev cdev; void *private; unsigned long flags; const struct dax_operations *ops; void *holder_data; const struct dax_holder_operations *holder_ops; }; static dev_t dax_devt; DEFINE_STATIC_SRCU(dax_srcu); static struct vfsmount *dax_mnt; static DEFINE_IDA(dax_minor_ida); static struct kmem_cache *dax_cache __read_mostly; static struct super_block *dax_superblock __read_mostly; int dax_read_lock(void) { return srcu_read_lock(&dax_srcu); } EXPORT_SYMBOL_GPL(dax_read_lock); void dax_read_unlock(int id) { srcu_read_unlock(&dax_srcu, id); } EXPORT_SYMBOL_GPL(dax_read_unlock); #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX) #include <linux/blkdev.h> static DEFINE_XARRAY(dax_hosts); int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk) { return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL); } EXPORT_SYMBOL_GPL(dax_add_host); void dax_remove_host(struct gendisk *disk) { xa_erase(&dax_hosts, (unsigned long)disk); } EXPORT_SYMBOL_GPL(dax_remove_host); /** * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax * @bdev: block device to find a dax_device for * @start_off: returns the byte offset into the dax_device that @bdev starts * @holder: filesystem or mapped device inside the dax_device * @ops: operations for the inner holder */ struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off, void *holder, const struct dax_holder_operations *ops) { struct dax_device *dax_dev; u64 part_size; int id; if (!blk_queue_dax(bdev->bd_disk->queue)) return NULL; *start_off = get_start_sect(bdev) * SECTOR_SIZE; part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE; if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) { pr_info("%pg: error: unaligned partition for dax\n", bdev); return NULL; } id = dax_read_lock(); dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk); if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode)) dax_dev = NULL; else if (holder) { if (!cmpxchg(&dax_dev->holder_data, NULL, holder)) dax_dev->holder_ops = ops; else dax_dev = NULL; } dax_read_unlock(id); return dax_dev; } EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev); void fs_put_dax(struct dax_device *dax_dev, void *holder) { if (dax_dev && holder && cmpxchg(&dax_dev->holder_data, holder, NULL) == holder) dax_dev->holder_ops = NULL; put_dax(dax_dev); } EXPORT_SYMBOL_GPL(fs_put_dax); #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */ enum dax_device_flags { /* !alive + rcu grace period == no new operations / mappings */ DAXDEV_ALIVE, /* gate whether dax_flush() calls the low level flush routine */ DAXDEV_WRITE_CACHE, /* flag to check if device supports synchronous flush */ DAXDEV_SYNC, /* do not leave the caches dirty after writes */ DAXDEV_NOCACHE, /* handle CPU fetch exceptions during reads */ DAXDEV_NOMC, }; /** * dax_direct_access() - translate a device pgoff to an absolute pfn * @dax_dev: a dax_device instance representing the logical memory range * @pgoff: offset in pages from the start of the device to translate * @nr_pages: number of consecutive pages caller can handle relative to @pfn * @mode: indicator on normal access or recovery write * @kaddr: output parameter that returns a virtual address mapping of pfn * @pfn: output parameter that returns an absolute pfn translation of @pgoff * * Return: negative errno if an error occurs, otherwise the number of * pages accessible at the device relative @pgoff. */ long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, enum dax_access_mode mode, void **kaddr, unsigned long *pfn) { long avail; if (!dax_dev) return -EOPNOTSUPP; if (!dax_alive(dax_dev)) return -ENXIO; if (nr_pages < 0) return -EINVAL; avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn); if (!avail) return -ERANGE; return min(avail, nr_pages); } EXPORT_SYMBOL_GPL(dax_direct_access); size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i) { if (!dax_alive(dax_dev)) return 0; /* * The userspace address for the memory copy has already been validated * via access_ok() in vfs_write, so use the 'no check' version to bypass * the HARDENED_USERCOPY overhead. */ if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags)) return _copy_from_iter_flushcache(addr, bytes, i); return _copy_from_iter(addr, bytes, i); } size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i) { if (!dax_alive(dax_dev)) return 0; /* * The userspace address for the memory copy has already been validated * via access_ok() in vfs_red, so use the 'no check' version to bypass * the HARDENED_USERCOPY overhead. */ if (test_bit(DAXDEV_NOMC, &dax_dev->flags)) return _copy_mc_to_iter(addr, bytes, i); return _copy_to_iter(addr, bytes, i); } int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, size_t nr_pages) { int ret; if (!dax_alive(dax_dev)) return -ENXIO; /* * There are no callers that want to zero more than one page as of now. * Once users are there, this check can be removed after the * device mapper code has been updated to split ranges across targets. */ if (nr_pages != 1) return -EIO; ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages); return dax_mem2blk_err(ret); } EXPORT_SYMBOL_GPL(dax_zero_page_range); size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *iter) { if (!dax_dev->ops->recovery_write) return 0; return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter); } EXPORT_SYMBOL_GPL(dax_recovery_write); int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off, u64 len, int mf_flags) { int rc, id; id = dax_read_lock(); if (!dax_alive(dax_dev)) { rc = -ENXIO; goto out; } if (!dax_dev->holder_ops) { rc = -EOPNOTSUPP; goto out; } rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags); out: dax_read_unlock(id); return rc; } EXPORT_SYMBOL_GPL(dax_holder_notify_failure); #ifdef CONFIG_ARCH_HAS_PMEM_API void arch_wb_cache_pmem(void *addr, size_t size); void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) { if (unlikely(!dax_write_cache_enabled(dax_dev))) return; arch_wb_cache_pmem(addr, size); } #else void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) { } #endif EXPORT_SYMBOL_GPL(dax_flush); void dax_write_cache(struct dax_device *dax_dev, bool wc) { if (wc) set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); else clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); } EXPORT_SYMBOL_GPL(dax_write_cache); bool dax_write_cache_enabled(struct dax_device *dax_dev) { return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); } EXPORT_SYMBOL_GPL(dax_write_cache_enabled); bool dax_synchronous(struct dax_device *dax_dev) { return test_bit(DAXDEV_SYNC, &dax_dev->flags); } EXPORT_SYMBOL_GPL(dax_synchronous); void set_dax_synchronous(struct dax_device *dax_dev) { set_bit(DAXDEV_SYNC, &dax_dev->flags); } EXPORT_SYMBOL_GPL(set_dax_synchronous); void set_dax_nocache(struct dax_device *dax_dev) { set_bit(DAXDEV_NOCACHE, &dax_dev->flags); } EXPORT_SYMBOL_GPL(set_dax_nocache); void set_dax_nomc(struct dax_device *dax_dev) { set_bit(DAXDEV_NOMC, &dax_dev->flags); } EXPORT_SYMBOL_GPL(set_dax_nomc); bool dax_alive(struct dax_device *dax_dev) { lockdep_assert_held(&dax_srcu); return test_bit(DAXDEV_ALIVE, &dax_dev->flags); } EXPORT_SYMBOL_GPL(dax_alive); /* * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring * that any fault handlers or operations that might have seen * dax_alive(), have completed. Any operations that start after * synchronize_srcu() has run will abort upon seeing !dax_alive(). * * Note, because alloc_dax() returns an ERR_PTR() on error, callers * typically store its result into a local variable in order to check * the result. Therefore, care must be taken to populate the struct * device dax_dev field make sure the dax_dev is not leaked. */ void kill_dax(struct dax_device *dax_dev) { if (!dax_dev) return; if (dax_dev->holder_data != NULL) dax_holder_notify_failure(dax_dev, 0, U64_MAX, MF_MEM_PRE_REMOVE); clear_bit(DAXDEV_ALIVE, &dax_dev->flags); synchronize_srcu(&dax_srcu); /* clear holder data */ dax_dev->holder_ops = NULL; dax_dev->holder_data = NULL; } EXPORT_SYMBOL_GPL(kill_dax); void run_dax(struct dax_device *dax_dev) { set_bit(DAXDEV_ALIVE, &dax_dev->flags); } EXPORT_SYMBOL_GPL(run_dax); static struct inode *dax_alloc_inode(struct super_block *sb) { struct dax_device *dax_dev; struct inode *inode; dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL); if (!dax_dev) return NULL; inode = &dax_dev->inode; inode->i_rdev = 0; return inode; } static struct dax_device *to_dax_dev(struct inode *inode) { return container_of(inode, struct dax_device, inode); } static void dax_free_inode(struct inode *inode) { struct dax_device *dax_dev = to_dax_dev(inode); if (inode->i_rdev) ida_free(&dax_minor_ida, iminor(inode)); kmem_cache_free(dax_cache, dax_dev); } static void dax_destroy_inode(struct inode *inode) { struct dax_device *dax_dev = to_dax_dev(inode); WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags), "kill_dax() must be called before final iput()\n"); } static const struct super_operations dax_sops = { .statfs = simple_statfs, .alloc_inode = dax_alloc_inode, .destroy_inode = dax_destroy_inode, .free_inode = dax_free_inode, .drop_inode = inode_just_drop, }; static int dax_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC); if (!ctx) return -ENOMEM; ctx->ops = &dax_sops; return 0; } static struct file_system_type dax_fs_type = { .name = "dax", .init_fs_context = dax_init_fs_context, .kill_sb = kill_anon_super, }; static int dax_test(struct inode *inode, void *data) { dev_t devt = *(dev_t *) data; return inode->i_rdev == devt; } static int dax_set(struct inode *inode, void *data) { dev_t devt = *(dev_t *) data; inode->i_rdev = devt; return 0; } static struct dax_device *dax_dev_get(dev_t devt) { struct dax_device *dax_dev; struct inode *inode; inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31), dax_test, dax_set, &devt); if (!inode) return NULL; dax_dev = to_dax_dev(inode); if (inode->i_state & I_NEW) { set_bit(DAXDEV_ALIVE, &dax_dev->flags); inode->i_cdev = &dax_dev->cdev; inode->i_mode = S_IFCHR; inode->i_flags = S_DAX; mapping_set_gfp_mask(&inode->i_data, GFP_USER); unlock_new_inode(inode); } return dax_dev; } struct dax_device *alloc_dax(void *private, const struct dax_operations *ops) { struct dax_device *dax_dev; dev_t devt; int minor; /* * Unavailable on architectures with virtually aliased data caches, * except for device-dax (NULL operations pointer), which does * not use aliased mappings from the kernel. */ if (ops && cpu_dcache_is_aliasing()) return ERR_PTR(-EOPNOTSUPP); if (WARN_ON_ONCE(ops && !ops->zero_page_range)) return ERR_PTR(-EINVAL); minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL); if (minor < 0) return ERR_PTR(-ENOMEM); devt = MKDEV(MAJOR(dax_devt), minor); dax_dev = dax_dev_get(devt); if (!dax_dev) goto err_dev; dax_dev->ops = ops; dax_dev->private = private; return dax_dev; err_dev: ida_free(&dax_minor_ida, minor); return ERR_PTR(-ENOMEM); } EXPORT_SYMBOL_GPL(alloc_dax); void put_dax(struct dax_device *dax_dev) { if (!dax_dev) return; iput(&dax_dev->inode); } EXPORT_SYMBOL_GPL(put_dax); /** * dax_holder() - obtain the holder of a dax device * @dax_dev: a dax_device instance * * Return: the holder's data which represents the holder if registered, * otherwize NULL. */ void *dax_holder(struct dax_device *dax_dev) { return dax_dev->holder_data; } EXPORT_SYMBOL_GPL(dax_holder); /** * inode_dax: convert a public inode into its dax_dev * @inode: An inode with i_cdev pointing to a dax_dev * * Note this is not equivalent to to_dax_dev() which is for private * internal use where we know the inode filesystem type == dax_fs_type. */ struct dax_device *inode_dax(struct inode *inode) { struct cdev *cdev = inode->i_cdev; return container_of(cdev, struct dax_device, cdev); } EXPORT_SYMBOL_GPL(inode_dax); struct inode *dax_inode(struct dax_device *dax_dev) { return &dax_dev->inode; } EXPORT_SYMBOL_GPL(dax_inode); void *dax_get_private(struct dax_device *dax_dev) { if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags)) return NULL; return dax_dev->private; } EXPORT_SYMBOL_GPL(dax_get_private); static void init_once(void *_dax_dev) { struct dax_device *dax_dev = _dax_dev; struct inode *inode = &dax_dev->inode; memset(dax_dev, 0, sizeof(*dax_dev)); inode_init_once(inode); } static int dax_fs_init(void) { int rc; dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0, SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, init_once); if (!dax_cache) return -ENOMEM; dax_mnt = kern_mount(&dax_fs_type); if (IS_ERR(dax_mnt)) { rc = PTR_ERR(dax_mnt); goto err_mount; } dax_superblock = dax_mnt->mnt_sb; return 0; err_mount: kmem_cache_destroy(dax_cache); return rc; } static void dax_fs_exit(void) { kern_unmount(dax_mnt); rcu_barrier(); kmem_cache_destroy(dax_cache); } static int __init dax_core_init(void) { int rc; rc = dax_fs_init(); if (rc) return rc; rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax"); if (rc) goto err_chrdev; rc = dax_bus_init(); if (rc) goto err_bus; return 0; err_bus: unregister_chrdev_region(dax_devt, MINORMASK+1); err_chrdev: dax_fs_exit(); return 0; } static void __exit dax_core_exit(void) { dax_bus_exit(); unregister_chrdev_region(dax_devt, MINORMASK+1); ida_destroy(&dax_minor_ida); dax_fs_exit(); } MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("DAX: direct access to differentiated memory"); MODULE_LICENSE("GPL v2"); subsys_initcall(dax_core_init); module_exit(dax_core_exit); |
| 3 3 1 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | // SPDX-License-Identifier: GPL-2.0+ /* * pcmda12.c * Driver for Winsystems PC-104 based PCM-D/A-12 8-channel AO board. * * COMEDI - Linux Control and Measurement Device Interface * Copyright (C) 2006 Calin A. Culianu <calin@ajvar.org> */ /* * Driver: pcmda12 * Description: A driver for the Winsystems PCM-D/A-12 * Devices: [Winsystems] PCM-D/A-12 (pcmda12) * Author: Calin Culianu <calin@ajvar.org> * Updated: Fri, 13 Jan 2006 12:01:01 -0500 * Status: works * * A driver for the relatively straightforward-to-program PCM-D/A-12. * This board doesn't support commands, and the only way to set its * analog output range is to jumper the board. As such, * comedi_data_write() ignores the range value specified. * * The board uses 16 consecutive I/O addresses starting at the I/O port * base address. Each address corresponds to the LSB then MSB of a * particular channel from 0-7. * * Note that the board is not ISA-PNP capable and thus needs the I/O * port comedi_config parameter. * * Note that passing a nonzero value as the second config option will * enable "simultaneous xfer" mode for this board, in which AO writes * will not take effect until a subsequent read of any AO channel. This * is so that one can speed up programming by preloading all AO registers * with values before simultaneously setting them to take effect with one * read command. * * Configuration Options: * [0] - I/O port base address * [1] - Do Simultaneous Xfer (see description) */ #include <linux/module.h> #include <linux/comedi/comedidev.h> /* AI range is not configurable, it's set by jumpers on the board */ static const struct comedi_lrange pcmda12_ranges = { 3, { UNI_RANGE(5), UNI_RANGE(10), BIP_RANGE(5) } }; struct pcmda12_private { int simultaneous_xfer_mode; }; static int pcmda12_ao_insn_write(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct pcmda12_private *devpriv = dev->private; unsigned int chan = CR_CHAN(insn->chanspec); unsigned int val = s->readback[chan]; unsigned long ioreg = dev->iobase + (chan * 2); int i; for (i = 0; i < insn->n; ++i) { val = data[i]; outb(val & 0xff, ioreg); outb((val >> 8) & 0xff, ioreg + 1); /* * Initiate transfer if not in simultaneaous xfer * mode by reading one of the AO registers. */ if (!devpriv->simultaneous_xfer_mode) inb(ioreg); } s->readback[chan] = val; return insn->n; } static int pcmda12_ao_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct pcmda12_private *devpriv = dev->private; /* * Initiate simultaneaous xfer mode by reading one of the * AO registers. All analog outputs will then be updated. */ if (devpriv->simultaneous_xfer_mode) inb(dev->iobase); return comedi_readback_insn_read(dev, s, insn, data); } static void pcmda12_ao_reset(struct comedi_device *dev, struct comedi_subdevice *s) { int i; for (i = 0; i < s->n_chan; ++i) { outb(0, dev->iobase + (i * 2)); outb(0, dev->iobase + (i * 2) + 1); } /* Initiate transfer by reading one of the AO registers. */ inb(dev->iobase); } static int pcmda12_attach(struct comedi_device *dev, struct comedi_devconfig *it) { struct pcmda12_private *devpriv; struct comedi_subdevice *s; int ret; ret = comedi_request_region(dev, it->options[0], 0x10); if (ret) return ret; devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); if (!devpriv) return -ENOMEM; devpriv->simultaneous_xfer_mode = it->options[1]; ret = comedi_alloc_subdevices(dev, 1); if (ret) return ret; s = &dev->subdevices[0]; s->type = COMEDI_SUBD_AO; s->subdev_flags = SDF_READABLE | SDF_WRITABLE; s->n_chan = 8; s->maxdata = 0x0fff; s->range_table = &pcmda12_ranges; s->insn_write = pcmda12_ao_insn_write; s->insn_read = pcmda12_ao_insn_read; ret = comedi_alloc_subdev_readback(s); if (ret) return ret; pcmda12_ao_reset(dev, s); return 0; } static struct comedi_driver pcmda12_driver = { .driver_name = "pcmda12", .module = THIS_MODULE, .attach = pcmda12_attach, .detach = comedi_legacy_detach, }; module_comedi_driver(pcmda12_driver); MODULE_AUTHOR("Comedi https://www.comedi.org"); MODULE_DESCRIPTION("Comedi low-level driver"); MODULE_LICENSE("GPL"); |
| 88 3 1 85 141 143 2 141 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Squashfs - a compressed read only filesystem for Linux * * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 * Phillip Lougher <phillip@squashfs.org.uk> * * id.c */ /* * This file implements code to handle uids and gids. * * For space efficiency regular files store uid and gid indexes, which are * converted to 32-bit uids/gids using an id look up table. This table is * stored compressed into metadata blocks. A second index table is used to * locate these. This second index table for speed of access (and because it * is small) is read at mount time and cached in memory. */ #include <linux/fs.h> #include <linux/vfs.h> #include <linux/slab.h> #include "squashfs_fs.h" #include "squashfs_fs_sb.h" #include "squashfs.h" /* * Map uid/gid index into real 32-bit uid/gid using the id look up table */ int squashfs_get_id(struct super_block *sb, unsigned int index, unsigned int *id) { struct squashfs_sb_info *msblk = sb->s_fs_info; int block = SQUASHFS_ID_BLOCK(index); int offset = SQUASHFS_ID_BLOCK_OFFSET(index); u64 start_block; __le32 disk_id; int err; if (index >= msblk->ids) return -EINVAL; start_block = le64_to_cpu(msblk->id_table[block]); err = squashfs_read_metadata(sb, &disk_id, &start_block, &offset, sizeof(disk_id)); if (err < 0) return err; *id = le32_to_cpu(disk_id); return 0; } /* * Read uncompressed id lookup table indexes from disk into memory */ __le64 *squashfs_read_id_index_table(struct super_block *sb, u64 id_table_start, u64 next_table, unsigned short no_ids) { unsigned int length = SQUASHFS_ID_BLOCK_BYTES(no_ids); unsigned int indexes = SQUASHFS_ID_BLOCKS(no_ids); int n; __le64 *table; u64 start, end; TRACE("In read_id_index_table, length %d\n", length); /* Sanity check values */ /* there should always be at least one id */ if (no_ids == 0) return ERR_PTR(-EINVAL); /* * The computed size of the index table (length bytes) should exactly * match the table start and end points */ if (length != (next_table - id_table_start)) return ERR_PTR(-EINVAL); table = squashfs_read_table(sb, id_table_start, length); if (IS_ERR(table)) return table; /* * table[0], table[1], ... table[indexes - 1] store the locations * of the compressed id blocks. Each entry should be less than * the next (i.e. table[0] < table[1]), and the difference between them * should be SQUASHFS_METADATA_SIZE or less. table[indexes - 1] * should be less than id_table_start, and again the difference * should be SQUASHFS_METADATA_SIZE or less */ for (n = 0; n < (indexes - 1); n++) { start = le64_to_cpu(table[n]); end = le64_to_cpu(table[n + 1]); if (start >= end || (end - start) > (SQUASHFS_METADATA_SIZE + SQUASHFS_BLOCK_OFFSET)) { kfree(table); return ERR_PTR(-EINVAL); } } start = le64_to_cpu(table[indexes - 1]); if (start >= id_table_start || (id_table_start - start) > (SQUASHFS_METADATA_SIZE + SQUASHFS_BLOCK_OFFSET)) { kfree(table); return ERR_PTR(-EINVAL); } return table; } |
| 221 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* SCTP kernel reference Implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel reference Implementation * * Various protocol defined structures. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Or submit a bug report through the following website: * http://www.sf.net/projects/lksctp * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Jon Grimm <jgrimm@us.ibm.com> * Xingang Guo <xingang.guo@intel.com> * randall@sctp.chicago.il.us * kmorneau@cisco.com * qxie1@email.mot.com * Sridhar Samudrala <sri@us.ibm.com> * Kevin Gao <kevin.gao@intel.com> * * Any bugs reported given to us we will try to fix... any fixes shared will * be incorporated into the next SCTP release. */ #ifndef __LINUX_SCTP_H__ #define __LINUX_SCTP_H__ #include <linux/in.h> /* We need in_addr. */ #include <linux/in6.h> /* We need in6_addr. */ #include <linux/skbuff.h> #include <uapi/linux/sctp.h> /* Section 3.1. SCTP Common Header Format */ struct sctphdr { __be16 source; __be16 dest; __be32 vtag; __le32 checksum; }; static inline struct sctphdr *sctp_hdr(const struct sk_buff *skb) { return (struct sctphdr *)skb_transport_header(skb); } /* Section 3.2. Chunk Field Descriptions. */ struct sctp_chunkhdr { __u8 type; __u8 flags; __be16 length; }; /* Section 3.2. Chunk Type Values. * [Chunk Type] identifies the type of information contained in the Chunk * Value field. It takes a value from 0 to 254. The value of 255 is * reserved for future use as an extension field. */ enum sctp_cid { SCTP_CID_DATA = 0, SCTP_CID_INIT = 1, SCTP_CID_INIT_ACK = 2, SCTP_CID_SACK = 3, SCTP_CID_HEARTBEAT = 4, SCTP_CID_HEARTBEAT_ACK = 5, SCTP_CID_ABORT = 6, SCTP_CID_SHUTDOWN = 7, SCTP_CID_SHUTDOWN_ACK = 8, SCTP_CID_ERROR = 9, SCTP_CID_COOKIE_ECHO = 10, SCTP_CID_COOKIE_ACK = 11, SCTP_CID_ECN_ECNE = 12, SCTP_CID_ECN_CWR = 13, SCTP_CID_SHUTDOWN_COMPLETE = 14, /* AUTH Extension Section 4.1 */ SCTP_CID_AUTH = 0x0F, /* sctp ndata 5.1. I-DATA */ SCTP_CID_I_DATA = 0x40, /* PR-SCTP Sec 3.2 */ SCTP_CID_FWD_TSN = 0xC0, /* Use hex, as defined in ADDIP sec. 3.1 */ SCTP_CID_ASCONF = 0xC1, SCTP_CID_I_FWD_TSN = 0xC2, SCTP_CID_ASCONF_ACK = 0x80, SCTP_CID_RECONF = 0x82, SCTP_CID_PAD = 0x84, }; /* enum */ /* Section 3.2 * Chunk Types are encoded such that the highest-order two bits specify * the action that must be taken if the processing endpoint does not * recognize the Chunk Type. */ enum { SCTP_CID_ACTION_DISCARD = 0x00, SCTP_CID_ACTION_DISCARD_ERR = 0x40, SCTP_CID_ACTION_SKIP = 0x80, SCTP_CID_ACTION_SKIP_ERR = 0xc0, }; enum { SCTP_CID_ACTION_MASK = 0xc0, }; /* This flag is used in Chunk Flags for ABORT and SHUTDOWN COMPLETE. * * 3.3.7 Abort Association (ABORT) (6): * The T bit is set to 0 if the sender had a TCB that it destroyed. * If the sender did not have a TCB it should set this bit to 1. */ enum { SCTP_CHUNK_FLAG_T = 0x01 }; /* * Set the T bit * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Type = 14 |Reserved |T| Length = 4 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * Chunk Flags: 8 bits * * Reserved: 7 bits * Set to 0 on transmit and ignored on receipt. * * T bit: 1 bit * The T bit is set to 0 if the sender had a TCB that it destroyed. If * the sender did NOT have a TCB it should set this bit to 1. * * Note: Special rules apply to this chunk for verification, please * see Section 8.5.1 for details. */ #define sctp_test_T_bit(c) ((c)->chunk_hdr->flags & SCTP_CHUNK_FLAG_T) /* RFC 2960 * Section 3.2.1 Optional/Variable-length Parmaeter Format. */ struct sctp_paramhdr { __be16 type; __be16 length; }; enum sctp_param { /* RFC 2960 Section 3.3.5 */ SCTP_PARAM_HEARTBEAT_INFO = cpu_to_be16(1), /* RFC 2960 Section 3.3.2.1 */ SCTP_PARAM_IPV4_ADDRESS = cpu_to_be16(5), SCTP_PARAM_IPV6_ADDRESS = cpu_to_be16(6), SCTP_PARAM_STATE_COOKIE = cpu_to_be16(7), SCTP_PARAM_UNRECOGNIZED_PARAMETERS = cpu_to_be16(8), SCTP_PARAM_COOKIE_PRESERVATIVE = cpu_to_be16(9), SCTP_PARAM_HOST_NAME_ADDRESS = cpu_to_be16(11), SCTP_PARAM_SUPPORTED_ADDRESS_TYPES = cpu_to_be16(12), SCTP_PARAM_ECN_CAPABLE = cpu_to_be16(0x8000), /* AUTH Extension Section 3 */ SCTP_PARAM_RANDOM = cpu_to_be16(0x8002), SCTP_PARAM_CHUNKS = cpu_to_be16(0x8003), SCTP_PARAM_HMAC_ALGO = cpu_to_be16(0x8004), /* Add-IP: Supported Extensions, Section 4.2 */ SCTP_PARAM_SUPPORTED_EXT = cpu_to_be16(0x8008), /* PR-SCTP Sec 3.1 */ SCTP_PARAM_FWD_TSN_SUPPORT = cpu_to_be16(0xc000), /* Add-IP Extension. Section 3.2 */ SCTP_PARAM_ADD_IP = cpu_to_be16(0xc001), SCTP_PARAM_DEL_IP = cpu_to_be16(0xc002), SCTP_PARAM_ERR_CAUSE = cpu_to_be16(0xc003), SCTP_PARAM_SET_PRIMARY = cpu_to_be16(0xc004), SCTP_PARAM_SUCCESS_REPORT = cpu_to_be16(0xc005), SCTP_PARAM_ADAPTATION_LAYER_IND = cpu_to_be16(0xc006), /* RE-CONFIG. Section 4 */ SCTP_PARAM_RESET_OUT_REQUEST = cpu_to_be16(0x000d), SCTP_PARAM_RESET_IN_REQUEST = cpu_to_be16(0x000e), SCTP_PARAM_RESET_TSN_REQUEST = cpu_to_be16(0x000f), SCTP_PARAM_RESET_RESPONSE = cpu_to_be16(0x0010), SCTP_PARAM_RESET_ADD_OUT_STREAMS = cpu_to_be16(0x0011), SCTP_PARAM_RESET_ADD_IN_STREAMS = cpu_to_be16(0x0012), }; /* enum */ /* RFC 2960 Section 3.2.1 * The Parameter Types are encoded such that the highest-order two bits * specify the action that must be taken if the processing endpoint does * not recognize the Parameter Type. * */ enum { SCTP_PARAM_ACTION_DISCARD = cpu_to_be16(0x0000), SCTP_PARAM_ACTION_DISCARD_ERR = cpu_to_be16(0x4000), SCTP_PARAM_ACTION_SKIP = cpu_to_be16(0x8000), SCTP_PARAM_ACTION_SKIP_ERR = cpu_to_be16(0xc000), }; enum { SCTP_PARAM_ACTION_MASK = cpu_to_be16(0xc000), }; /* RFC 2960 Section 3.3.1 Payload Data (DATA) (0) */ struct sctp_datahdr { __be32 tsn; __be16 stream; __be16 ssn; __u32 ppid; }; struct sctp_data_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_datahdr data_hdr; }; struct sctp_idatahdr { __be32 tsn; __be16 stream; __be16 reserved; __be32 mid; union { __u32 ppid; __be32 fsn; }; }; struct sctp_idata_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_idatahdr data_hdr; }; /* DATA Chuck Specific Flags */ enum { SCTP_DATA_MIDDLE_FRAG = 0x00, SCTP_DATA_LAST_FRAG = 0x01, SCTP_DATA_FIRST_FRAG = 0x02, SCTP_DATA_NOT_FRAG = 0x03, SCTP_DATA_UNORDERED = 0x04, SCTP_DATA_SACK_IMM = 0x08, }; enum { SCTP_DATA_FRAG_MASK = 0x03, }; /* RFC 2960 Section 3.3.2 Initiation (INIT) (1) * * This chunk is used to initiate a SCTP association between two * endpoints. */ struct sctp_inithdr { __be32 init_tag; __be32 a_rwnd; __be16 num_outbound_streams; __be16 num_inbound_streams; __be32 initial_tsn; /* __u8 params[]; */ }; struct sctp_init_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_inithdr init_hdr; }; /* Section 3.3.2.1. IPv4 Address Parameter (5) */ struct sctp_ipv4addr_param { struct sctp_paramhdr param_hdr; struct in_addr addr; }; /* Section 3.3.2.1. IPv6 Address Parameter (6) */ struct sctp_ipv6addr_param { struct sctp_paramhdr param_hdr; struct in6_addr addr; }; /* Section 3.3.2.1 Cookie Preservative (9) */ struct sctp_cookie_preserve_param { struct sctp_paramhdr param_hdr; __be32 lifespan_increment; }; /* Section 3.3.2.1 Host Name Address (11) */ struct sctp_hostname_param { struct sctp_paramhdr param_hdr; uint8_t hostname[]; }; /* Section 3.3.2.1 Supported Address Types (12) */ struct sctp_supported_addrs_param { struct sctp_paramhdr param_hdr; __be16 types[]; }; /* ADDIP Section 3.2.6 Adaptation Layer Indication */ struct sctp_adaptation_ind_param { struct sctp_paramhdr param_hdr; __be32 adaptation_ind; }; /* ADDIP Section 4.2.7 Supported Extensions Parameter */ struct sctp_supported_ext_param { struct sctp_paramhdr param_hdr; __u8 chunks[]; }; /* AUTH Section 3.1 Random */ struct sctp_random_param { struct sctp_paramhdr param_hdr; __u8 random_val[]; }; /* AUTH Section 3.2 Chunk List */ struct sctp_chunks_param { struct sctp_paramhdr param_hdr; __u8 chunks[]; }; /* AUTH Section 3.3 HMAC Algorithm */ struct sctp_hmac_algo_param { struct sctp_paramhdr param_hdr; __be16 hmac_ids[]; }; /* RFC 2960. Section 3.3.3 Initiation Acknowledgement (INIT ACK) (2): * The INIT ACK chunk is used to acknowledge the initiation of an SCTP * association. */ struct sctp_initack_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_inithdr init_hdr; }; /* Section 3.3.3.1 State Cookie (7) */ struct sctp_cookie_param { struct sctp_paramhdr p; __u8 body[]; }; /* Section 3.3.3.1 Unrecognized Parameters (8) */ struct sctp_unrecognized_param { struct sctp_paramhdr param_hdr; struct sctp_paramhdr unrecognized; }; /* * 3.3.4 Selective Acknowledgement (SACK) (3): * * This chunk is sent to the peer endpoint to acknowledge received DATA * chunks and to inform the peer endpoint of gaps in the received * subsequences of DATA chunks as represented by their TSNs. */ struct sctp_gap_ack_block { __be16 start; __be16 end; }; union sctp_sack_variable { struct sctp_gap_ack_block gab; __be32 dup; }; struct sctp_sackhdr { __be32 cum_tsn_ack; __be32 a_rwnd; __be16 num_gap_ack_blocks; __be16 num_dup_tsns; /* union sctp_sack_variable variable[]; */ }; struct sctp_sack_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_sackhdr sack_hdr; }; /* RFC 2960. Section 3.3.5 Heartbeat Request (HEARTBEAT) (4): * * An endpoint should send this chunk to its peer endpoint to probe the * reachability of a particular destination transport address defined in * the present association. */ struct sctp_heartbeathdr { struct sctp_paramhdr info; }; struct sctp_heartbeat_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_heartbeathdr hb_hdr; }; /* PAD chunk could be bundled with heartbeat chunk to probe pmtu */ struct sctp_pad_chunk { struct sctp_chunkhdr uh; }; /* For the abort and shutdown ACK we must carry the init tag in the * common header. Just the common header is all that is needed with a * chunk descriptor. */ struct sctp_abort_chunk { struct sctp_chunkhdr uh; }; /* For the graceful shutdown we must carry the tag (in common header) * and the highest consecutive acking value. */ struct sctp_shutdownhdr { __be32 cum_tsn_ack; }; struct sctp_shutdown_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_shutdownhdr shutdown_hdr; }; /* RFC 2960. Section 3.3.10 Operation Error (ERROR) (9) */ struct sctp_errhdr { __be16 cause; __be16 length; /* __u8 variable[]; */ }; struct sctp_operr_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_errhdr err_hdr; }; /* RFC 2960 3.3.10 - Operation Error * * Cause Code: 16 bits (unsigned integer) * * Defines the type of error conditions being reported. * Cause Code * Value Cause Code * --------- ---------------- * 1 Invalid Stream Identifier * 2 Missing Mandatory Parameter * 3 Stale Cookie Error * 4 Out of Resource * 5 Unresolvable Address * 6 Unrecognized Chunk Type * 7 Invalid Mandatory Parameter * 8 Unrecognized Parameters * 9 No User Data * 10 Cookie Received While Shutting Down */ enum sctp_error { SCTP_ERROR_NO_ERROR = cpu_to_be16(0x00), SCTP_ERROR_INV_STRM = cpu_to_be16(0x01), SCTP_ERROR_MISS_PARAM = cpu_to_be16(0x02), SCTP_ERROR_STALE_COOKIE = cpu_to_be16(0x03), SCTP_ERROR_NO_RESOURCE = cpu_to_be16(0x04), SCTP_ERROR_DNS_FAILED = cpu_to_be16(0x05), SCTP_ERROR_UNKNOWN_CHUNK = cpu_to_be16(0x06), SCTP_ERROR_INV_PARAM = cpu_to_be16(0x07), SCTP_ERROR_UNKNOWN_PARAM = cpu_to_be16(0x08), SCTP_ERROR_NO_DATA = cpu_to_be16(0x09), SCTP_ERROR_COOKIE_IN_SHUTDOWN = cpu_to_be16(0x0a), /* SCTP Implementation Guide: * 11 Restart of an association with new addresses * 12 User Initiated Abort * 13 Protocol Violation * 14 Restart of an Association with New Encapsulation Port */ SCTP_ERROR_RESTART = cpu_to_be16(0x0b), SCTP_ERROR_USER_ABORT = cpu_to_be16(0x0c), SCTP_ERROR_PROTO_VIOLATION = cpu_to_be16(0x0d), SCTP_ERROR_NEW_ENCAP_PORT = cpu_to_be16(0x0e), /* ADDIP Section 3.3 New Error Causes * * Four new Error Causes are added to the SCTP Operational Errors, * primarily for use in the ASCONF-ACK chunk. * * Value Cause Code * --------- ---------------- * 0x00A0 Request to Delete Last Remaining IP Address. * 0x00A1 Operation Refused Due to Resource Shortage. * 0x00A2 Request to Delete Source IP Address. * 0x00A3 Association Aborted due to illegal ASCONF-ACK * 0x00A4 Request refused - no authorization. */ SCTP_ERROR_DEL_LAST_IP = cpu_to_be16(0x00A0), SCTP_ERROR_RSRC_LOW = cpu_to_be16(0x00A1), SCTP_ERROR_DEL_SRC_IP = cpu_to_be16(0x00A2), SCTP_ERROR_ASCONF_ACK = cpu_to_be16(0x00A3), SCTP_ERROR_REQ_REFUSED = cpu_to_be16(0x00A4), /* AUTH Section 4. New Error Cause * * This section defines a new error cause that will be sent if an AUTH * chunk is received with an unsupported HMAC identifier. * illustrates the new error cause. * * Cause Code Error Cause Name * -------------------------------------------------------------- * 0x0105 Unsupported HMAC Identifier */ SCTP_ERROR_UNSUP_HMAC = cpu_to_be16(0x0105) }; /* RFC 2960. Appendix A. Explicit Congestion Notification. * Explicit Congestion Notification Echo (ECNE) (12) */ struct sctp_ecnehdr { __be32 lowest_tsn; }; struct sctp_ecne_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_ecnehdr ence_hdr; }; /* RFC 2960. Appendix A. Explicit Congestion Notification. * Congestion Window Reduced (CWR) (13) */ struct sctp_cwrhdr { __be32 lowest_tsn; }; /* PR-SCTP * 3.2 Forward Cumulative TSN Chunk Definition (FORWARD TSN) * * Forward Cumulative TSN chunk has the following format: * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Type = 192 | Flags = 0x00 | Length = Variable | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | New Cumulative TSN | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Stream-1 | Stream Sequence-1 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * \ / * / \ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Stream-N | Stream Sequence-N | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * Chunk Flags: * * Set to all zeros on transmit and ignored on receipt. * * New Cumulative TSN: 32 bit u_int * * This indicates the new cumulative TSN to the data receiver. Upon * the reception of this value, the data receiver MUST consider * any missing TSNs earlier than or equal to this value as received * and stop reporting them as gaps in any subsequent SACKs. * * Stream-N: 16 bit u_int * * This field holds a stream number that was skipped by this * FWD-TSN. * * Stream Sequence-N: 16 bit u_int * This field holds the sequence number associated with the stream * that was skipped. The stream sequence field holds the largest stream * sequence number in this stream being skipped. The receiver of * the FWD-TSN's can use the Stream-N and Stream Sequence-N fields * to enable delivery of any stranded TSN's that remain on the stream * re-ordering queues. This field MUST NOT report TSN's corresponding * to DATA chunk that are marked as unordered. For ordered DATA * chunks this field MUST be filled in. */ struct sctp_fwdtsn_skip { __be16 stream; __be16 ssn; }; struct sctp_fwdtsn_hdr { __be32 new_cum_tsn; /* struct sctp_fwdtsn_skip skip[]; */ }; struct sctp_fwdtsn_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_fwdtsn_hdr fwdtsn_hdr; }; struct sctp_ifwdtsn_skip { __be16 stream; __u8 reserved; __u8 flags; __be32 mid; }; struct sctp_ifwdtsn_hdr { __be32 new_cum_tsn; /* struct sctp_ifwdtsn_skip skip[]; */ }; struct sctp_ifwdtsn_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_ifwdtsn_hdr fwdtsn_hdr; }; /* ADDIP * Section 3.1.1 Address Configuration Change Chunk (ASCONF) * * Serial Number: 32 bits (unsigned integer) * This value represents a Serial Number for the ASCONF Chunk. The * valid range of Serial Number is from 0 to 2^32-1. * Serial Numbers wrap back to 0 after reaching 2^32 -1. * * Address Parameter: 8 or 20 bytes (depending on type) * The address is an address of the sender of the ASCONF chunk, * the address MUST be considered part of the association by the * peer endpoint. This field may be used by the receiver of the * ASCONF to help in finding the association. This parameter MUST * be present in every ASCONF message i.e. it is a mandatory TLV * parameter. * * ASCONF Parameter: TLV format * Each Address configuration change is represented by a TLV * parameter as defined in Section 3.2. One or more requests may * be present in an ASCONF Chunk. * * Section 3.1.2 Address Configuration Acknowledgement Chunk (ASCONF-ACK) * * Serial Number: 32 bits (unsigned integer) * This value represents the Serial Number for the received ASCONF * Chunk that is acknowledged by this chunk. This value is copied * from the received ASCONF Chunk. * * ASCONF Parameter Response: TLV format * The ASCONF Parameter Response is used in the ASCONF-ACK to * report status of ASCONF processing. */ struct sctp_addip_param { struct sctp_paramhdr param_hdr; __be32 crr_id; }; struct sctp_addiphdr { __be32 serial; /* __u8 params[]; */ }; struct sctp_addip_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_addiphdr addip_hdr; }; /* AUTH * Section 4.1 Authentication Chunk (AUTH) * * This chunk is used to hold the result of the HMAC calculation. * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Type = 0x0F | Flags=0 | Length | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Shared Key Identifier | HMAC Identifier | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | * \ HMAC / * / \ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * Type: 1 byte (unsigned integer) * This value MUST be set to 0x0F for all AUTH-chunks. * * Flags: 1 byte (unsigned integer) * Set to zero on transmit and ignored on receipt. * * Length: 2 bytes (unsigned integer) * This value holds the length of the HMAC in bytes plus 8. * * Shared Key Identifier: 2 bytes (unsigned integer) * This value describes which endpoint pair shared key is used. * * HMAC Identifier: 2 bytes (unsigned integer) * This value describes which message digest is being used. Table 2 * shows the currently defined values. * * The following Table 2 shows the currently defined values for HMAC * identifiers. * * +-----------------+--------------------------+ * | HMAC Identifier | Message Digest Algorithm | * +-----------------+--------------------------+ * | 0 | Reserved | * | 1 | SHA-1 defined in [8] | * | 2 | Reserved | * | 3 | SHA-256 defined in [8] | * +-----------------+--------------------------+ * * * HMAC: n bytes (unsigned integer) This hold the result of the HMAC * calculation. */ struct sctp_authhdr { __be16 shkey_id; __be16 hmac_id; /* __u8 hmac[]; */ }; struct sctp_auth_chunk { struct sctp_chunkhdr chunk_hdr; struct sctp_authhdr auth_hdr; }; struct sctp_infox { struct sctp_info *sctpinfo; struct sctp_association *asoc; }; struct sctp_reconf_chunk { struct sctp_chunkhdr chunk_hdr; /* __u8 params[]; */ }; struct sctp_strreset_outreq { struct sctp_paramhdr param_hdr; __be32 request_seq; __be32 response_seq; __be32 send_reset_at_tsn; __be16 list_of_streams[]; }; struct sctp_strreset_inreq { struct sctp_paramhdr param_hdr; __be32 request_seq; __be16 list_of_streams[]; }; struct sctp_strreset_tsnreq { struct sctp_paramhdr param_hdr; __be32 request_seq; }; struct sctp_strreset_addstrm { struct sctp_paramhdr param_hdr; __be32 request_seq; __be16 number_of_streams; __be16 reserved; }; enum { SCTP_STRRESET_NOTHING_TO_DO = 0x00, SCTP_STRRESET_PERFORMED = 0x01, SCTP_STRRESET_DENIED = 0x02, SCTP_STRRESET_ERR_WRONG_SSN = 0x03, SCTP_STRRESET_ERR_IN_PROGRESS = 0x04, SCTP_STRRESET_ERR_BAD_SEQNO = 0x05, SCTP_STRRESET_IN_PROGRESS = 0x06, }; struct sctp_strreset_resp { struct sctp_paramhdr param_hdr; __be32 response_seq; __be32 result; }; struct sctp_strreset_resptsn { struct sctp_paramhdr param_hdr; __be32 response_seq; __be32 result; __be32 senders_next_tsn; __be32 receivers_next_tsn; }; enum { SCTP_DSCP_SET_MASK = 0x1, SCTP_DSCP_VAL_MASK = 0xfc, SCTP_FLOWLABEL_SET_MASK = 0x100000, SCTP_FLOWLABEL_VAL_MASK = 0xfffff }; /* UDP Encapsulation * draft-tuexen-tsvwg-sctp-udp-encaps-cons-03.html#section-4-4 * * The error cause indicating an "Restart of an Association with * New Encapsulation Port" * * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Cause Code = 14 | Cause Length = 8 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Current Encapsulation Port | New Encapsulation Port | * +-------------------------------+-------------------------------+ */ struct sctp_new_encap_port_hdr { __be16 cur_port; __be16 new_port; }; /* Round an int up to the next multiple of 4. */ #define SCTP_PAD4(s) (((s)+3)&~3) /* Truncate to the previous multiple of 4. */ #define SCTP_TRUNC4(s) ((s)&~3) #endif /* __LINUX_SCTP_H__ */ |
| 3 3 40 37 3 38 38 40 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 | // SPDX-License-Identifier: GPL-2.0 /* * ACPI helpers for GPIO API * * Copyright (C) 2012, Intel Corporation * Authors: Mathias Nyman <mathias.nyman@linux.intel.com> * Mika Westerberg <mika.westerberg@linux.intel.com> */ #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/mutex.h> #include <linux/pinctrl/pinctrl.h> #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <linux/gpio/machine.h> #include "gpiolib.h" #include "gpiolib-acpi.h" /** * struct acpi_gpio_event - ACPI GPIO event handler data * * @node: list-entry of the events list of the struct acpi_gpio_chip * @handle: handle of ACPI method to execute when the IRQ triggers * @handler: handler function to pass to request_irq() when requesting the IRQ * @pin: GPIO pin number on the struct gpio_chip * @irq: Linux IRQ number for the event, for request_irq() / free_irq() * @irqflags: flags to pass to request_irq() when requesting the IRQ * @irq_is_wake: If the ACPI flags indicate the IRQ is a wakeup source * @irq_requested:True if request_irq() has been done * @desc: struct gpio_desc for the GPIO pin for this event */ struct acpi_gpio_event { struct list_head node; acpi_handle handle; irq_handler_t handler; unsigned int pin; unsigned int irq; unsigned long irqflags; bool irq_is_wake; bool irq_requested; struct gpio_desc *desc; }; struct acpi_gpio_connection { struct list_head node; unsigned int pin; struct gpio_desc *desc; }; struct acpi_gpio_chip { /* * ACPICA requires that the first field of the context parameter * passed to acpi_install_address_space_handler() is large enough * to hold struct acpi_connection_info. */ struct acpi_connection_info conn_info; struct list_head conns; struct mutex conn_lock; struct gpio_chip *chip; struct list_head events; struct list_head deferred_req_irqs_list_entry; }; /** * struct acpi_gpio_info - ACPI GPIO specific information * @adev: reference to ACPI device which consumes GPIO resource * @flags: GPIO initialization flags * @gpioint: if %true this GPIO is of type GpioInt otherwise type is GpioIo * @wake_capable: wake capability as provided by ACPI * @pin_config: pin bias as provided by ACPI * @polarity: interrupt polarity as provided by ACPI * @triggering: triggering type as provided by ACPI * @debounce: debounce timeout as provided by ACPI * @quirks: Linux specific quirks as provided by struct acpi_gpio_mapping */ struct acpi_gpio_info { struct acpi_device *adev; enum gpiod_flags flags; bool gpioint; bool wake_capable; int pin_config; int polarity; int triggering; unsigned int debounce; unsigned int quirks; }; static int acpi_gpiochip_find(struct gpio_chip *gc, const void *data) { /* First check the actual GPIO device */ if (device_match_acpi_handle(&gc->gpiodev->dev, data)) return true; /* * When the ACPI device is artificially split to the banks of GPIOs, * where each of them is represented by a separate GPIO device, * the firmware node of the physical device may not be shared among * the banks as they may require different values for the same property, * e.g., number of GPIOs in a certain bank. In such case the ACPI handle * of a GPIO device is NULL and can not be used. Hence we have to check * the parent device to be sure that there is no match before bailing * out. */ if (gc->parent) return device_match_acpi_handle(gc->parent, data); return false; } /** * acpi_get_gpiod() - Translate ACPI GPIO pin to GPIO descriptor usable with GPIO API * @path: ACPI GPIO controller full path name, (e.g. "\\_SB.GPO1") * @pin: ACPI GPIO pin number (0-based, controller-relative) * * Returns: * GPIO descriptor to use with Linux generic GPIO API. * If the GPIO cannot be translated or there is an error an ERR_PTR is * returned. * * Specifically returns %-EPROBE_DEFER if the referenced GPIO * controller does not have GPIO chip registered at the moment. This is to * support probe deferral. */ static struct gpio_desc *acpi_get_gpiod(char *path, unsigned int pin) { acpi_handle handle; acpi_status status; status = acpi_get_handle(NULL, path, &handle); if (ACPI_FAILURE(status)) return ERR_PTR(-ENODEV); struct gpio_device *gdev __free(gpio_device_put) = gpio_device_find(handle, acpi_gpiochip_find); if (!gdev) return ERR_PTR(-EPROBE_DEFER); /* * FIXME: keep track of the reference to the GPIO device somehow * instead of putting it here. */ return gpio_device_get_desc(gdev, pin); } static irqreturn_t acpi_gpio_irq_handler(int irq, void *data) { struct acpi_gpio_event *event = data; acpi_evaluate_object(event->handle, NULL, NULL, NULL); return IRQ_HANDLED; } static irqreturn_t acpi_gpio_irq_handler_evt(int irq, void *data) { struct acpi_gpio_event *event = data; acpi_execute_simple_method(event->handle, NULL, event->pin); return IRQ_HANDLED; } static void acpi_gpio_chip_dh(acpi_handle handle, void *data) { /* The address of this function is used as a key. */ } bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio) { struct acpi_resource_gpio *gpio; if (ares->type != ACPI_RESOURCE_TYPE_GPIO) return false; gpio = &ares->data.gpio; if (gpio->connection_type != ACPI_RESOURCE_GPIO_TYPE_INT) return false; *agpio = gpio; return true; } EXPORT_SYMBOL_GPL(acpi_gpio_get_irq_resource); /** * acpi_gpio_get_io_resource - Fetch details of an ACPI resource if it is a GPIO * I/O resource or return False if not. * @ares: Pointer to the ACPI resource to fetch * @agpio: Pointer to a &struct acpi_resource_gpio to store the output pointer * * Returns: * %true if GpioIo resource is found, %false otherwise. */ bool acpi_gpio_get_io_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio) { struct acpi_resource_gpio *gpio; if (ares->type != ACPI_RESOURCE_TYPE_GPIO) return false; gpio = &ares->data.gpio; if (gpio->connection_type != ACPI_RESOURCE_GPIO_TYPE_IO) return false; *agpio = gpio; return true; } EXPORT_SYMBOL_GPL(acpi_gpio_get_io_resource); static void acpi_gpiochip_request_irq(struct acpi_gpio_chip *acpi_gpio, struct acpi_gpio_event *event) { struct device *parent = acpi_gpio->chip->parent; int ret, value; ret = request_threaded_irq(event->irq, NULL, event->handler, event->irqflags | IRQF_ONESHOT, "ACPI:Event", event); if (ret) { dev_err(parent, "Failed to setup interrupt handler for %d\n", event->irq); return; } if (event->irq_is_wake) enable_irq_wake(event->irq); event->irq_requested = true; /* Make sure we trigger the initial state of edge-triggered IRQs */ if (acpi_gpio_need_run_edge_events_on_boot() && (event->irqflags & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING))) { value = gpiod_get_raw_value_cansleep(event->desc); if (((event->irqflags & IRQF_TRIGGER_RISING) && value == 1) || ((event->irqflags & IRQF_TRIGGER_FALLING) && value == 0)) event->handler(event->irq, event); } } static void acpi_gpiochip_request_irqs(struct acpi_gpio_chip *acpi_gpio) { struct acpi_gpio_event *event; list_for_each_entry(event, &acpi_gpio->events, node) acpi_gpiochip_request_irq(acpi_gpio, event); } static enum gpiod_flags acpi_gpio_to_gpiod_flags(const struct acpi_resource_gpio *agpio, int polarity) { /* GpioInt() implies input configuration */ if (agpio->connection_type == ACPI_RESOURCE_GPIO_TYPE_INT) return GPIOD_IN; switch (agpio->io_restriction) { case ACPI_IO_RESTRICT_INPUT: return GPIOD_IN; case ACPI_IO_RESTRICT_OUTPUT: /* * ACPI GPIO resources don't contain an initial value for the * GPIO. Therefore we deduce that value from the pull field * and the polarity instead. If the pin is pulled up we assume * default to be high, if it is pulled down we assume default * to be low, otherwise we leave pin untouched. For active low * polarity values will be switched. See also * Documentation/firmware-guide/acpi/gpio-properties.rst. */ switch (agpio->pin_config) { case ACPI_PIN_CONFIG_PULLUP: return polarity == GPIO_ACTIVE_LOW ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH; case ACPI_PIN_CONFIG_PULLDOWN: return polarity == GPIO_ACTIVE_LOW ? GPIOD_OUT_HIGH : GPIOD_OUT_LOW; default: break; } break; default: break; } /* * Assume that the BIOS has configured the direction and pull * accordingly. */ return GPIOD_ASIS; } static struct gpio_desc *acpi_request_own_gpiod(struct gpio_chip *chip, struct acpi_resource_gpio *agpio, unsigned int index, const char *label) { int polarity = GPIO_ACTIVE_HIGH; enum gpiod_flags flags = acpi_gpio_to_gpiod_flags(agpio, polarity); unsigned int pin = agpio->pin_table[index]; struct gpio_desc *desc; int ret; desc = gpiochip_request_own_desc(chip, pin, label, polarity, flags); if (IS_ERR(desc)) return desc; /* ACPI uses hundredths of milliseconds units */ ret = gpio_set_debounce_timeout(desc, agpio->debounce_timeout * 10); if (ret) dev_warn(chip->parent, "Failed to set debounce-timeout for pin 0x%04X, err %d\n", pin, ret); return desc; } static bool acpi_gpio_irq_is_wake(struct device *parent, const struct acpi_resource_gpio *agpio) { unsigned int pin = agpio->pin_table[0]; if (agpio->wake_capable != ACPI_WAKE_CAPABLE) return false; if (acpi_gpio_in_ignore_list(ACPI_GPIO_IGNORE_WAKE, dev_name(parent), pin)) { dev_info(parent, "Ignoring wakeup on pin %u\n", pin); return false; } return true; } /* Always returns AE_OK so that we keep looping over the resources */ static acpi_status acpi_gpiochip_alloc_event(struct acpi_resource *ares, void *context) { struct acpi_gpio_chip *acpi_gpio = context; struct gpio_chip *chip = acpi_gpio->chip; struct acpi_resource_gpio *agpio; acpi_handle handle, evt_handle; struct acpi_gpio_event *event; irq_handler_t handler = NULL; struct gpio_desc *desc; unsigned int pin; int ret, irq; if (!acpi_gpio_get_irq_resource(ares, &agpio)) return AE_OK; handle = ACPI_HANDLE(chip->parent); pin = agpio->pin_table[0]; if (pin <= 255) { char ev_name[8]; sprintf(ev_name, "_%c%02X", agpio->triggering == ACPI_EDGE_SENSITIVE ? 'E' : 'L', pin); if (ACPI_SUCCESS(acpi_get_handle(handle, ev_name, &evt_handle))) handler = acpi_gpio_irq_handler; } if (!handler) { if (ACPI_SUCCESS(acpi_get_handle(handle, "_EVT", &evt_handle))) handler = acpi_gpio_irq_handler_evt; } if (!handler) return AE_OK; if (acpi_gpio_in_ignore_list(ACPI_GPIO_IGNORE_INTERRUPT, dev_name(chip->parent), pin)) { dev_info(chip->parent, "Ignoring interrupt on pin %u\n", pin); return AE_OK; } desc = acpi_request_own_gpiod(chip, agpio, 0, "ACPI:Event"); if (IS_ERR(desc)) { dev_err(chip->parent, "Failed to request GPIO for pin 0x%04X, err %ld\n", pin, PTR_ERR(desc)); return AE_OK; } ret = gpiochip_lock_as_irq(chip, pin); if (ret) { dev_err(chip->parent, "Failed to lock GPIO pin 0x%04X as interrupt, err %d\n", pin, ret); goto fail_free_desc; } irq = gpiod_to_irq(desc); if (irq < 0) { dev_err(chip->parent, "Failed to translate GPIO pin 0x%04X to IRQ, err %d\n", pin, irq); goto fail_unlock_irq; } event = kzalloc(sizeof(*event), GFP_KERNEL); if (!event) goto fail_unlock_irq; event->irqflags = IRQF_ONESHOT; if (agpio->triggering == ACPI_LEVEL_SENSITIVE) { if (agpio->polarity == ACPI_ACTIVE_HIGH) event->irqflags |= IRQF_TRIGGER_HIGH; else event->irqflags |= IRQF_TRIGGER_LOW; } else { switch (agpio->polarity) { case ACPI_ACTIVE_HIGH: event->irqflags |= IRQF_TRIGGER_RISING; break; case ACPI_ACTIVE_LOW: event->irqflags |= IRQF_TRIGGER_FALLING; break; default: event->irqflags |= IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING; break; } } event->handle = evt_handle; event->handler = handler; event->irq = irq; event->irq_is_wake = acpi_gpio_irq_is_wake(chip->parent, agpio); event->pin = pin; event->desc = desc; list_add_tail(&event->node, &acpi_gpio->events); return AE_OK; fail_unlock_irq: gpiochip_unlock_as_irq(chip, pin); fail_free_desc: gpiochip_free_own_desc(desc); return AE_OK; } /** * acpi_gpiochip_request_interrupts() - Register isr for gpio chip ACPI events * @chip: GPIO chip * * ACPI5 platforms can use GPIO signaled ACPI events. These GPIO interrupts are * handled by ACPI event methods which need to be called from the GPIO * chip's interrupt handler. acpi_gpiochip_request_interrupts() finds out which * GPIO pins have ACPI event methods and assigns interrupt handlers that calls * the ACPI event methods for those pins. */ void acpi_gpiochip_request_interrupts(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; acpi_handle handle; acpi_status status; if (!chip->parent || !chip->to_irq) return; handle = ACPI_HANDLE(chip->parent); if (!handle) return; status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio); if (ACPI_FAILURE(status)) return; if (acpi_quirk_skip_gpio_event_handlers()) return; acpi_walk_resources(handle, METHOD_NAME__AEI, acpi_gpiochip_alloc_event, acpi_gpio); if (acpi_gpio_add_to_deferred_list(&acpi_gpio->deferred_req_irqs_list_entry)) return; acpi_gpiochip_request_irqs(acpi_gpio); } EXPORT_SYMBOL_GPL(acpi_gpiochip_request_interrupts); /** * acpi_gpiochip_free_interrupts() - Free GPIO ACPI event interrupts. * @chip: GPIO chip * * Free interrupts associated with GPIO ACPI event method for the given * GPIO chip. */ void acpi_gpiochip_free_interrupts(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; struct acpi_gpio_event *event, *ep; acpi_handle handle; acpi_status status; if (!chip->parent || !chip->to_irq) return; handle = ACPI_HANDLE(chip->parent); if (!handle) return; status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio); if (ACPI_FAILURE(status)) return; acpi_gpio_remove_from_deferred_list(&acpi_gpio->deferred_req_irqs_list_entry); list_for_each_entry_safe_reverse(event, ep, &acpi_gpio->events, node) { if (event->irq_requested) { if (event->irq_is_wake) disable_irq_wake(event->irq); free_irq(event->irq, event); } gpiochip_unlock_as_irq(chip, event->pin); gpiochip_free_own_desc(event->desc); list_del(&event->node); kfree(event); } } EXPORT_SYMBOL_GPL(acpi_gpiochip_free_interrupts); void __init acpi_gpio_process_deferred_list(struct list_head *list) { struct acpi_gpio_chip *acpi_gpio, *tmp; list_for_each_entry_safe(acpi_gpio, tmp, list, deferred_req_irqs_list_entry) acpi_gpiochip_request_irqs(acpi_gpio); } int acpi_dev_add_driver_gpios(struct acpi_device *adev, const struct acpi_gpio_mapping *gpios) { if (adev && gpios) { adev->driver_gpios = gpios; return 0; } return -EINVAL; } EXPORT_SYMBOL_GPL(acpi_dev_add_driver_gpios); void acpi_dev_remove_driver_gpios(struct acpi_device *adev) { if (adev) adev->driver_gpios = NULL; } EXPORT_SYMBOL_GPL(acpi_dev_remove_driver_gpios); static void acpi_dev_release_driver_gpios(void *adev) { acpi_dev_remove_driver_gpios(adev); } int devm_acpi_dev_add_driver_gpios(struct device *dev, const struct acpi_gpio_mapping *gpios) { struct acpi_device *adev = ACPI_COMPANION(dev); int ret; ret = acpi_dev_add_driver_gpios(adev, gpios); if (ret) return ret; return devm_add_action_or_reset(dev, acpi_dev_release_driver_gpios, adev); } EXPORT_SYMBOL_GPL(devm_acpi_dev_add_driver_gpios); static bool acpi_get_driver_gpio_data(struct acpi_device *adev, const char *name, int index, struct fwnode_reference_args *args, unsigned int *quirks) { const struct acpi_gpio_mapping *gm; if (!adev || !adev->driver_gpios) return false; for (gm = adev->driver_gpios; gm->name; gm++) if (!strcmp(name, gm->name) && gm->data && index < gm->size) { const struct acpi_gpio_params *params = gm->data + index; args->fwnode = acpi_fwnode_handle(adev); args->args[0] = params->crs_entry_index; args->args[1] = params->line_index; args->args[2] = params->active_low; args->nargs = 3; *quirks = gm->quirks; return true; } return false; } static int __acpi_gpio_update_gpiod_flags(enum gpiod_flags *flags, enum gpiod_flags update) { const enum gpiod_flags mask = GPIOD_FLAGS_BIT_DIR_SET | GPIOD_FLAGS_BIT_DIR_OUT | GPIOD_FLAGS_BIT_DIR_VAL; int ret = 0; /* * Check if the BIOS has IoRestriction with explicitly set direction * and update @flags accordingly. Otherwise use whatever caller asked * for. */ if (update & GPIOD_FLAGS_BIT_DIR_SET) { enum gpiod_flags diff = *flags ^ update; /* * Check if caller supplied incompatible GPIO initialization * flags. * * Return %-EINVAL to notify that firmware has different * settings and we are going to use them. */ if (((*flags & GPIOD_FLAGS_BIT_DIR_SET) && (diff & GPIOD_FLAGS_BIT_DIR_OUT)) || ((*flags & GPIOD_FLAGS_BIT_DIR_OUT) && (diff & GPIOD_FLAGS_BIT_DIR_VAL))) ret = -EINVAL; *flags = (*flags & ~mask) | (update & mask); } return ret; } static int acpi_gpio_update_gpiod_flags(enum gpiod_flags *flags, struct acpi_gpio_info *info) { struct device *dev = &info->adev->dev; enum gpiod_flags old = *flags; int ret; ret = __acpi_gpio_update_gpiod_flags(&old, info->flags); if (info->quirks & ACPI_GPIO_QUIRK_NO_IO_RESTRICTION) { if (ret) dev_warn(dev, FW_BUG "GPIO not in correct mode, fixing\n"); } else { if (ret) dev_dbg(dev, "Override GPIO initialization flags\n"); *flags = old; } return ret; } static int acpi_gpio_update_gpiod_lookup_flags(unsigned long *lookupflags, struct acpi_gpio_info *info) { switch (info->pin_config) { case ACPI_PIN_CONFIG_PULLUP: *lookupflags |= GPIO_PULL_UP; break; case ACPI_PIN_CONFIG_PULLDOWN: *lookupflags |= GPIO_PULL_DOWN; break; case ACPI_PIN_CONFIG_NOPULL: *lookupflags |= GPIO_PULL_DISABLE; break; default: break; } if (info->polarity == GPIO_ACTIVE_LOW) *lookupflags |= GPIO_ACTIVE_LOW; return 0; } struct acpi_gpio_lookup { struct acpi_gpio_params params; struct acpi_gpio_info *info; struct gpio_desc *desc; int n; }; static int acpi_populate_gpio_lookup(struct acpi_resource *ares, void *data) { struct acpi_gpio_lookup *lookup = data; struct acpi_gpio_params *params = &lookup->params; struct acpi_gpio_info *info = lookup->info; if (ares->type != ACPI_RESOURCE_TYPE_GPIO) return 1; if (!lookup->desc) { const struct acpi_resource_gpio *agpio = &ares->data.gpio; bool gpioint = agpio->connection_type == ACPI_RESOURCE_GPIO_TYPE_INT; struct gpio_desc *desc; u16 pin_index; if (info->quirks & ACPI_GPIO_QUIRK_ONLY_GPIOIO && gpioint) params->crs_entry_index++; if (lookup->n++ != params->crs_entry_index) return 1; pin_index = params->line_index; if (pin_index >= agpio->pin_table_length) return 1; if (info->quirks & ACPI_GPIO_QUIRK_ABSOLUTE_NUMBER) desc = gpio_to_desc(agpio->pin_table[pin_index]); else desc = acpi_get_gpiod(agpio->resource_source.string_ptr, agpio->pin_table[pin_index]); lookup->desc = desc; info->pin_config = agpio->pin_config; info->debounce = agpio->debounce_timeout; info->gpioint = gpioint; info->wake_capable = acpi_gpio_irq_is_wake(&info->adev->dev, agpio); /* * Polarity and triggering are only specified for GpioInt * resource. * Note: we expect here: * - ACPI_ACTIVE_LOW == GPIO_ACTIVE_LOW * - ACPI_ACTIVE_HIGH == GPIO_ACTIVE_HIGH */ if (info->gpioint) { info->polarity = agpio->polarity; info->triggering = agpio->triggering; } else { info->polarity = params->active_low; } info->flags = acpi_gpio_to_gpiod_flags(agpio, info->polarity); } return 1; } static int acpi_gpio_resource_lookup(struct acpi_gpio_lookup *lookup) { struct acpi_gpio_info *info = lookup->info; struct acpi_device *adev = info->adev; struct list_head res_list; int ret; INIT_LIST_HEAD(&res_list); ret = acpi_dev_get_resources(adev, &res_list, acpi_populate_gpio_lookup, lookup); if (ret < 0) return ret; acpi_dev_free_resource_list(&res_list); if (!lookup->desc) return -ENOENT; return 0; } static int acpi_gpio_property_lookup(struct fwnode_handle *fwnode, const char *propname, struct acpi_gpio_lookup *lookup) { struct fwnode_reference_args args; struct acpi_gpio_params *params = &lookup->params; struct acpi_gpio_info *info = lookup->info; unsigned int index = params->crs_entry_index; unsigned int quirks = 0; int ret; memset(&args, 0, sizeof(args)); ret = __acpi_node_get_property_reference(fwnode, propname, index, 3, &args); if (ret) { struct acpi_device *adev; adev = to_acpi_device_node(fwnode); if (!acpi_get_driver_gpio_data(adev, propname, index, &args, &quirks)) return ret; } /* * The property was found and resolved, so need to lookup the GPIO based * on returned args. */ if (!to_acpi_device_node(args.fwnode)) return -EINVAL; if (args.nargs != 3) return -EPROTO; params->crs_entry_index = args.args[0]; params->line_index = args.args[1]; params->active_low = !!args.args[2]; info->adev = to_acpi_device_node(args.fwnode); info->quirks = quirks; return 0; } /** * acpi_get_gpiod_by_index() - get a GPIO descriptor from device resources * @adev: pointer to a ACPI device to get GPIO from * @propname: Property name of the GPIO (optional) * @lookup: pointer to struct acpi_gpio_lookup to fill in * * Function goes through ACPI resources for @adev and based on @lookup.index looks * up a GpioIo/GpioInt resource, translates it to the Linux GPIO descriptor, * and returns it. @lookup.index matches GpioIo/GpioInt resources only so if there * are total 3 GPIO resources, the index goes from 0 to 2. * * If @propname is specified the GPIO is looked using device property. In * that case @index is used to select the GPIO entry in the property value * (in case of multiple). * * Returns: * 0 on success, negative errno on failure. * * The @lookup is filled with GPIO descriptor to use with Linux generic GPIO API. * If the GPIO cannot be translated an error will be returned. * * Note: if the GPIO resource has multiple entries in the pin list, this * function only returns the first. */ static int acpi_get_gpiod_by_index(struct acpi_device *adev, const char *propname, struct acpi_gpio_lookup *lookup) { struct acpi_gpio_params *params = &lookup->params; struct acpi_gpio_info *info = lookup->info; int ret; if (propname) { dev_dbg(&adev->dev, "GPIO: looking up %s\n", propname); ret = acpi_gpio_property_lookup(acpi_fwnode_handle(adev), propname, lookup); if (ret) return ret; dev_dbg(&adev->dev, "GPIO: _DSD returned %s %u %u %u\n", dev_name(&info->adev->dev), params->crs_entry_index, params->line_index, params->active_low); } else { dev_dbg(&adev->dev, "GPIO: looking up %u in _CRS\n", params->crs_entry_index); info->adev = adev; } return acpi_gpio_resource_lookup(lookup); } /** * acpi_get_gpiod_from_data() - get a GPIO descriptor from ACPI data node * @fwnode: pointer to an ACPI firmware node to get the GPIO information from * @propname: Property name of the GPIO * @lookup: pointer to struct acpi_gpio_lookup to fill in * * This function uses the property-based GPIO lookup to get to the GPIO * resource with the relevant information from a data-only ACPI firmware node * and uses that to obtain the GPIO descriptor to return. * * Returns: * 0 on success, negative errno on failure. * * The @lookup is filled with GPIO descriptor to use with Linux generic GPIO API. * If the GPIO cannot be translated an error will be returned. */ static int acpi_get_gpiod_from_data(struct fwnode_handle *fwnode, const char *propname, struct acpi_gpio_lookup *lookup) { int ret; if (!is_acpi_data_node(fwnode)) return -ENODEV; if (!propname) return -EINVAL; ret = acpi_gpio_property_lookup(fwnode, propname, lookup); if (ret) return ret; return acpi_gpio_resource_lookup(lookup); } static bool acpi_can_fallback_to_crs(struct acpi_device *adev, const char *con_id) { /* If there is no ACPI device, there is no _CRS to fall back to */ if (!adev) return false; /* Never allow fallback if the device has properties */ if (acpi_dev_has_props(adev) || adev->driver_gpios) return false; return con_id == NULL; } static struct gpio_desc * __acpi_find_gpio(struct fwnode_handle *fwnode, const char *con_id, unsigned int idx, bool can_fallback, struct acpi_gpio_info *info) { struct acpi_device *adev = to_acpi_device_node(fwnode); struct acpi_gpio_lookup lookup; struct gpio_desc *desc; char propname[32]; int ret; memset(&lookup, 0, sizeof(lookup)); lookup.params.crs_entry_index = idx; lookup.info = info; /* Try first from _DSD */ for_each_gpio_property_name(propname, con_id) { if (adev) ret = acpi_get_gpiod_by_index(adev, propname, &lookup); else ret = acpi_get_gpiod_from_data(fwnode, propname, &lookup); if (ret) continue; desc = lookup.desc; if (PTR_ERR(desc) == -EPROBE_DEFER) return desc; if (!IS_ERR(desc)) return desc; } /* Then from plain _CRS GPIOs */ if (can_fallback) { ret = acpi_get_gpiod_by_index(adev, NULL, &lookup); if (ret) return ERR_PTR(ret); return lookup.desc; } return ERR_PTR(-ENOENT); } struct gpio_desc *acpi_find_gpio(struct fwnode_handle *fwnode, const char *con_id, unsigned int idx, enum gpiod_flags *dflags, unsigned long *lookupflags) { struct acpi_device *adev = to_acpi_device_node(fwnode); bool can_fallback = acpi_can_fallback_to_crs(adev, con_id); struct acpi_gpio_info info = {}; struct gpio_desc *desc; int ret; desc = __acpi_find_gpio(fwnode, con_id, idx, can_fallback, &info); if (IS_ERR(desc)) return desc; if (info.gpioint && (*dflags == GPIOD_OUT_LOW || *dflags == GPIOD_OUT_HIGH)) { dev_dbg(&adev->dev, "refusing GpioInt() entry when doing GPIOD_OUT_* lookup\n"); return ERR_PTR(-ENOENT); } acpi_gpio_update_gpiod_flags(dflags, &info); acpi_gpio_update_gpiod_lookup_flags(lookupflags, &info); /* ACPI uses hundredths of milliseconds units */ ret = gpio_set_debounce_timeout(desc, info.debounce * 10); if (ret) return ERR_PTR(ret); return desc; } /** * acpi_dev_gpio_irq_wake_get_by() - Find GpioInt and translate it to Linux IRQ number * @adev: pointer to a ACPI device to get IRQ from * @con_id: optional name of GpioInt resource * @index: index of GpioInt resource (starting from %0) * @wake_capable: Set to true if the IRQ is wake capable * * If the device has one or more GpioInt resources, this function can be * used to translate from the GPIO offset in the resource to the Linux IRQ * number. * * The function is idempotent, though each time it runs it will configure GPIO * pin direction according to the flags in GpioInt resource. * * The function takes optional @con_id parameter. If the resource has * a @con_id in a property, then only those will be taken into account. * * The GPIO is considered wake capable if the GpioInt resource specifies * SharedAndWake or ExclusiveAndWake. * * Returns: * Linux IRQ number (> 0) on success, negative errno on failure. */ int acpi_dev_gpio_irq_wake_get_by(struct acpi_device *adev, const char *con_id, int index, bool *wake_capable) { struct fwnode_handle *fwnode = acpi_fwnode_handle(adev); int idx, i; unsigned int irq_flags; int ret; for (i = 0, idx = 0; idx <= index; i++) { struct acpi_gpio_info info = {}; struct gpio_desc *desc; /* Ignore -EPROBE_DEFER, it only matters if idx matches */ desc = __acpi_find_gpio(fwnode, con_id, i, true, &info); if (IS_ERR(desc) && PTR_ERR(desc) != -EPROBE_DEFER) return PTR_ERR(desc); if (info.gpioint && idx++ == index) { unsigned long lflags = GPIO_LOOKUP_FLAGS_DEFAULT; enum gpiod_flags dflags = GPIOD_ASIS; char label[32]; int irq; if (IS_ERR(desc)) return PTR_ERR(desc); irq = gpiod_to_irq(desc); if (irq < 0) return irq; acpi_gpio_update_gpiod_flags(&dflags, &info); acpi_gpio_update_gpiod_lookup_flags(&lflags, &info); snprintf(label, sizeof(label), "%pfwP GpioInt(%d)", fwnode, index); ret = gpiod_set_consumer_name(desc, con_id ?: label); if (ret) return ret; ret = gpiod_configure_flags(desc, label, lflags, dflags); if (ret < 0) return ret; /* ACPI uses hundredths of milliseconds units */ ret = gpio_set_debounce_timeout(desc, info.debounce * 10); if (ret) return ret; irq_flags = acpi_dev_get_irq_type(info.triggering, info.polarity); /* * If the IRQ is not already in use then set type * if specified and different than the current one. */ if (can_request_irq(irq, irq_flags)) { if (irq_flags != IRQ_TYPE_NONE && irq_flags != irq_get_trigger_type(irq)) irq_set_irq_type(irq, irq_flags); } else { dev_dbg(&adev->dev, "IRQ %d already in use\n", irq); } /* avoid suspend issues with GPIOs when systems are using S3 */ if (wake_capable && acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0) *wake_capable = info.wake_capable; return irq; } } return -ENOENT; } EXPORT_SYMBOL_GPL(acpi_dev_gpio_irq_wake_get_by); static acpi_status acpi_gpio_adr_space_handler(u32 function, acpi_physical_address address, u32 bits, u64 *value, void *handler_context, void *region_context) { struct acpi_gpio_chip *achip = region_context; struct gpio_chip *chip = achip->chip; struct acpi_resource_gpio *agpio; struct acpi_resource *ares; u16 pin_index = address; acpi_status status; int length; int i; status = acpi_buffer_to_resource(achip->conn_info.connection, achip->conn_info.length, &ares); if (ACPI_FAILURE(status)) return status; if (WARN_ON(ares->type != ACPI_RESOURCE_TYPE_GPIO)) { ACPI_FREE(ares); return AE_BAD_PARAMETER; } agpio = &ares->data.gpio; if (WARN_ON(agpio->io_restriction == ACPI_IO_RESTRICT_INPUT && function == ACPI_WRITE)) { ACPI_FREE(ares); return AE_BAD_PARAMETER; } length = min_t(u16, agpio->pin_table_length, pin_index + bits); for (i = pin_index; i < length; ++i) { unsigned int pin = agpio->pin_table[i]; struct acpi_gpio_connection *conn; struct gpio_desc *desc; bool found; mutex_lock(&achip->conn_lock); found = false; list_for_each_entry(conn, &achip->conns, node) { if (conn->pin == pin) { found = true; desc = conn->desc; break; } } /* * The same GPIO can be shared between operation region and * event but only if the access here is ACPI_READ. In that * case we "borrow" the event GPIO instead. */ if (!found && agpio->shareable == ACPI_SHARED && function == ACPI_READ) { struct acpi_gpio_event *event; list_for_each_entry(event, &achip->events, node) { if (event->pin == pin) { desc = event->desc; found = true; break; } } } if (!found) { desc = acpi_request_own_gpiod(chip, agpio, i, "ACPI:OpRegion"); if (IS_ERR(desc)) { mutex_unlock(&achip->conn_lock); status = AE_ERROR; goto out; } conn = kzalloc(sizeof(*conn), GFP_KERNEL); if (!conn) { gpiochip_free_own_desc(desc); mutex_unlock(&achip->conn_lock); status = AE_NO_MEMORY; goto out; } conn->pin = pin; conn->desc = desc; list_add_tail(&conn->node, &achip->conns); } mutex_unlock(&achip->conn_lock); if (function == ACPI_WRITE) gpiod_set_raw_value_cansleep(desc, !!(*value & BIT(i))); else *value |= (u64)gpiod_get_raw_value_cansleep(desc) << i; } out: ACPI_FREE(ares); return status; } static void acpi_gpiochip_request_regions(struct acpi_gpio_chip *achip) { struct gpio_chip *chip = achip->chip; acpi_handle handle = ACPI_HANDLE(chip->parent); acpi_status status; INIT_LIST_HEAD(&achip->conns); mutex_init(&achip->conn_lock); status = acpi_install_address_space_handler(handle, ACPI_ADR_SPACE_GPIO, acpi_gpio_adr_space_handler, NULL, achip); if (ACPI_FAILURE(status)) dev_err(chip->parent, "Failed to install GPIO OpRegion handler\n"); } static void acpi_gpiochip_free_regions(struct acpi_gpio_chip *achip) { struct gpio_chip *chip = achip->chip; acpi_handle handle = ACPI_HANDLE(chip->parent); struct acpi_gpio_connection *conn, *tmp; acpi_status status; status = acpi_remove_address_space_handler(handle, ACPI_ADR_SPACE_GPIO, acpi_gpio_adr_space_handler); if (ACPI_FAILURE(status)) { dev_err(chip->parent, "Failed to remove GPIO OpRegion handler\n"); return; } list_for_each_entry_safe_reverse(conn, tmp, &achip->conns, node) { gpiochip_free_own_desc(conn->desc); list_del(&conn->node); kfree(conn); } } static struct gpio_desc * acpi_gpiochip_parse_own_gpio(struct acpi_gpio_chip *achip, struct fwnode_handle *fwnode, const char **name, unsigned long *lflags, enum gpiod_flags *dflags) { struct gpio_chip *chip = achip->chip; struct gpio_desc *desc; u32 gpios[2]; int ret; *lflags = GPIO_LOOKUP_FLAGS_DEFAULT; *dflags = GPIOD_ASIS; *name = NULL; ret = fwnode_property_read_u32_array(fwnode, "gpios", gpios, ARRAY_SIZE(gpios)); if (ret < 0) return ERR_PTR(ret); desc = gpiochip_get_desc(chip, gpios[0]); if (IS_ERR(desc)) return desc; if (gpios[1]) *lflags |= GPIO_ACTIVE_LOW; if (fwnode_property_present(fwnode, "input")) *dflags |= GPIOD_IN; else if (fwnode_property_present(fwnode, "output-low")) *dflags |= GPIOD_OUT_LOW; else if (fwnode_property_present(fwnode, "output-high")) *dflags |= GPIOD_OUT_HIGH; else return ERR_PTR(-EINVAL); fwnode_property_read_string(fwnode, "line-name", name); return desc; } static void acpi_gpiochip_scan_gpios(struct acpi_gpio_chip *achip) { struct gpio_chip *chip = achip->chip; device_for_each_child_node_scoped(chip->parent, fwnode) { unsigned long lflags; enum gpiod_flags dflags; struct gpio_desc *desc; const char *name; int ret; if (!fwnode_property_present(fwnode, "gpio-hog")) continue; desc = acpi_gpiochip_parse_own_gpio(achip, fwnode, &name, &lflags, &dflags); if (IS_ERR(desc)) continue; ret = gpiod_hog(desc, name, lflags, dflags); if (ret) { dev_err(chip->parent, "Failed to hog GPIO\n"); return; } } } void acpi_gpiochip_add(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; struct acpi_device *adev; acpi_status status; if (!chip || !chip->parent) return; adev = ACPI_COMPANION(chip->parent); if (!adev) return; acpi_gpio = kzalloc(sizeof(*acpi_gpio), GFP_KERNEL); if (!acpi_gpio) { dev_err(chip->parent, "Failed to allocate memory for ACPI GPIO chip\n"); return; } acpi_gpio->chip = chip; INIT_LIST_HEAD(&acpi_gpio->events); INIT_LIST_HEAD(&acpi_gpio->deferred_req_irqs_list_entry); status = acpi_attach_data(adev->handle, acpi_gpio_chip_dh, acpi_gpio); if (ACPI_FAILURE(status)) { dev_err(chip->parent, "Failed to attach ACPI GPIO chip\n"); kfree(acpi_gpio); return; } acpi_gpiochip_request_regions(acpi_gpio); acpi_gpiochip_scan_gpios(acpi_gpio); acpi_dev_clear_dependencies(adev); } void acpi_gpiochip_remove(struct gpio_chip *chip) { struct acpi_gpio_chip *acpi_gpio; acpi_handle handle; acpi_status status; if (!chip || !chip->parent) return; handle = ACPI_HANDLE(chip->parent); if (!handle) return; status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio); if (ACPI_FAILURE(status)) { dev_warn(chip->parent, "Failed to retrieve ACPI GPIO chip\n"); return; } acpi_gpiochip_free_regions(acpi_gpio); acpi_detach_data(handle, acpi_gpio_chip_dh); kfree(acpi_gpio); } static int acpi_gpio_package_count(const union acpi_object *obj) { const union acpi_object *element = obj->package.elements; const union acpi_object *end = element + obj->package.count; unsigned int count = 0; while (element < end) { switch (element->type) { case ACPI_TYPE_LOCAL_REFERENCE: element += 3; fallthrough; case ACPI_TYPE_INTEGER: element++; count++; break; default: return -EPROTO; } } return count; } static int acpi_find_gpio_count(struct acpi_resource *ares, void *data) { unsigned int *count = data; if (ares->type == ACPI_RESOURCE_TYPE_GPIO) *count += ares->data.gpio.pin_table_length; return 1; } /** * acpi_gpio_count - count the GPIOs associated with a firmware node / function * @fwnode: firmware node of the GPIO consumer * @con_id: function within the GPIO consumer * * Returns: * The number of GPIOs associated with a firmware node / function or %-ENOENT, * if no GPIO has been assigned to the requested function. */ int acpi_gpio_count(const struct fwnode_handle *fwnode, const char *con_id) { struct acpi_device *adev = to_acpi_device_node(fwnode); const union acpi_object *obj; const struct acpi_gpio_mapping *gm; int count = -ENOENT; int ret; char propname[32]; /* Try first from _DSD */ for_each_gpio_property_name(propname, con_id) { ret = acpi_dev_get_property(adev, propname, ACPI_TYPE_ANY, &obj); if (ret == 0) { if (obj->type == ACPI_TYPE_LOCAL_REFERENCE) count = 1; else if (obj->type == ACPI_TYPE_PACKAGE) count = acpi_gpio_package_count(obj); } else if (adev->driver_gpios) { for (gm = adev->driver_gpios; gm->name; gm++) if (strcmp(propname, gm->name) == 0) { count = gm->size; break; } } if (count > 0) break; } /* Then from plain _CRS GPIOs */ if (count < 0) { struct list_head resource_list; unsigned int crs_count = 0; if (!acpi_can_fallback_to_crs(adev, con_id)) return count; INIT_LIST_HEAD(&resource_list); acpi_dev_get_resources(adev, &resource_list, acpi_find_gpio_count, &crs_count); acpi_dev_free_resource_list(&resource_list); if (crs_count > 0) count = crs_count; } return count ? count : -ENOENT; } |
| 948 747 12990 4086 689 10073 379 3 2 1 1 2 2 2 615 319 1552 66 1601 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_DCACHE_H #define __LINUX_DCACHE_H #include <linux/atomic.h> #include <linux/list.h> #include <linux/math.h> #include <linux/rculist.h> #include <linux/rculist_bl.h> #include <linux/spinlock.h> #include <linux/seqlock.h> #include <linux/cache.h> #include <linux/rcupdate.h> #include <linux/lockref.h> #include <linux/stringhash.h> #include <linux/wait.h> struct path; struct file; struct vfsmount; /* * linux/include/linux/dcache.h * * Dirent cache data structures * * (C) Copyright 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ #define IS_ROOT(x) ((x) == (x)->d_parent) /* The hash is always the low bits of hash_len */ #ifdef __LITTLE_ENDIAN #define HASH_LEN_DECLARE u32 hash; u32 len #define bytemask_from_count(cnt) (~(~0ul << (cnt)*8)) #else #define HASH_LEN_DECLARE u32 len; u32 hash #define bytemask_from_count(cnt) (~(~0ul >> (cnt)*8)) #endif /* * "quick string" -- eases parameter passing, but more importantly * saves "metadata" about the string (ie length and the hash). * * hash comes first so it snuggles against d_parent in the * dentry. */ struct qstr { union { struct { HASH_LEN_DECLARE; }; u64 hash_len; }; const unsigned char *name; }; #define QSTR_INIT(n,l) { { { .len = l } }, .name = n } #define QSTR_LEN(n,l) (struct qstr)QSTR_INIT(n,l) #define QSTR(n) QSTR_LEN(n, strlen(n)) extern const struct qstr empty_name; extern const struct qstr slash_name; extern const struct qstr dotdot_name; /* * Try to keep struct dentry aligned on 64 byte cachelines (this will * give reasonable cacheline footprint with larger lines without the * large memory footprint increase). */ #ifdef CONFIG_64BIT # define DNAME_INLINE_WORDS 5 /* 192 bytes */ #else # ifdef CONFIG_SMP # define DNAME_INLINE_WORDS 9 /* 128 bytes */ # else # define DNAME_INLINE_WORDS 11 /* 128 bytes */ # endif #endif #define DNAME_INLINE_LEN (DNAME_INLINE_WORDS*sizeof(unsigned long)) union shortname_store { unsigned char string[DNAME_INLINE_LEN]; unsigned long words[DNAME_INLINE_WORDS]; }; #define d_lock d_lockref.lock #define d_iname d_shortname.string struct dentry { /* RCU lookup touched fields */ unsigned int d_flags; /* protected by d_lock */ seqcount_spinlock_t d_seq; /* per dentry seqlock */ struct hlist_bl_node d_hash; /* lookup hash list */ struct dentry *d_parent; /* parent directory */ union { struct qstr __d_name; /* for use ONLY in fs/dcache.c */ const struct qstr d_name; }; struct inode *d_inode; /* Where the name belongs to - NULL is * negative */ union shortname_store d_shortname; /* --- cacheline 1 boundary (64 bytes) was 32 bytes ago --- */ /* Ref lookup also touches following */ const struct dentry_operations *d_op; struct super_block *d_sb; /* The root of the dentry tree */ unsigned long d_time; /* used by d_revalidate */ void *d_fsdata; /* fs-specific data */ /* --- cacheline 2 boundary (128 bytes) --- */ struct lockref d_lockref; /* per-dentry lock and refcount * keep separate from RCU lookup area if * possible! */ union { struct list_head d_lru; /* LRU list */ wait_queue_head_t *d_wait; /* in-lookup ones only */ }; struct hlist_node d_sib; /* child of parent list */ struct hlist_head d_children; /* our children */ /* * d_alias and d_rcu can share memory */ union { struct hlist_node d_alias; /* inode alias list */ struct hlist_bl_node d_in_lookup_hash; /* only for in-lookup ones */ struct rcu_head d_rcu; } d_u; }; /* * dentry->d_lock spinlock nesting subclasses: * * 0: normal * 1: nested */ enum dentry_d_lock_class { DENTRY_D_LOCK_NORMAL, /* implicitly used by plain spin_lock() APIs. */ DENTRY_D_LOCK_NESTED }; enum d_real_type { D_REAL_DATA, D_REAL_METADATA, }; struct dentry_operations { int (*d_revalidate)(struct inode *, const struct qstr *, struct dentry *, unsigned int); int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, struct qstr *); int (*d_compare)(const struct dentry *, unsigned int, const char *, const struct qstr *); int (*d_delete)(const struct dentry *); int (*d_init)(struct dentry *); void (*d_release)(struct dentry *); void (*d_prune)(struct dentry *); void (*d_iput)(struct dentry *, struct inode *); char *(*d_dname)(struct dentry *, char *, int); struct vfsmount *(*d_automount)(struct path *); int (*d_manage)(const struct path *, bool); struct dentry *(*d_real)(struct dentry *, enum d_real_type type); bool (*d_unalias_trylock)(const struct dentry *); void (*d_unalias_unlock)(const struct dentry *); } ____cacheline_aligned; /* * Locking rules for dentry_operations callbacks are to be found in * Documentation/filesystems/locking.rst. Keep it updated! * * FUrther descriptions are found in Documentation/filesystems/vfs.rst. * Keep it updated too! */ /* d_flags entries */ enum dentry_flags { DCACHE_OP_HASH = BIT(0), DCACHE_OP_COMPARE = BIT(1), DCACHE_OP_REVALIDATE = BIT(2), DCACHE_OP_DELETE = BIT(3), DCACHE_OP_PRUNE = BIT(4), /* * This dentry is possibly not currently connected to the dcache tree, * in which case its parent will either be itself, or will have this * flag as well. nfsd will not use a dentry with this bit set, but will * first endeavour to clear the bit either by discovering that it is * connected, or by performing lookup operations. Any filesystem which * supports nfsd_operations MUST have a lookup function which, if it * finds a directory inode with a DCACHE_DISCONNECTED dentry, will * d_move that dentry into place and return that dentry rather than the * passed one, typically using d_splice_alias. */ DCACHE_DISCONNECTED = BIT(5), DCACHE_REFERENCED = BIT(6), /* Recently used, don't discard. */ DCACHE_DONTCACHE = BIT(7), /* Purge from memory on final dput() */ DCACHE_CANT_MOUNT = BIT(8), DCACHE_GENOCIDE = BIT(9), DCACHE_SHRINK_LIST = BIT(10), DCACHE_OP_WEAK_REVALIDATE = BIT(11), /* * this dentry has been "silly renamed" and has to be deleted on the * last dput() */ DCACHE_NFSFS_RENAMED = BIT(12), DCACHE_FSNOTIFY_PARENT_WATCHED = BIT(13), /* Parent inode is watched by some fsnotify listener */ DCACHE_DENTRY_KILLED = BIT(14), DCACHE_MOUNTED = BIT(15), /* is a mountpoint */ DCACHE_NEED_AUTOMOUNT = BIT(16), /* handle automount on this dir */ DCACHE_MANAGE_TRANSIT = BIT(17), /* manage transit from this dirent */ DCACHE_LRU_LIST = BIT(18), DCACHE_ENTRY_TYPE = (7 << 19), /* bits 19..21 are for storing type: */ DCACHE_MISS_TYPE = (0 << 19), /* Negative dentry */ DCACHE_WHITEOUT_TYPE = (1 << 19), /* Whiteout dentry (stop pathwalk) */ DCACHE_DIRECTORY_TYPE = (2 << 19), /* Normal directory */ DCACHE_AUTODIR_TYPE = (3 << 19), /* Lookupless directory (presumed automount) */ DCACHE_REGULAR_TYPE = (4 << 19), /* Regular file type */ DCACHE_SPECIAL_TYPE = (5 << 19), /* Other file type */ DCACHE_SYMLINK_TYPE = (6 << 19), /* Symlink */ DCACHE_NOKEY_NAME = BIT(22), /* Encrypted name encoded without key */ DCACHE_OP_REAL = BIT(23), DCACHE_PAR_LOOKUP = BIT(24), /* being looked up (with parent locked shared) */ DCACHE_DENTRY_CURSOR = BIT(25), DCACHE_NORCU = BIT(26), /* No RCU delay for freeing */ }; #define DCACHE_MANAGED_DENTRY \ (DCACHE_MOUNTED|DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT) extern seqlock_t rename_lock; /* * These are the low-level FS interfaces to the dcache.. */ extern void d_instantiate(struct dentry *, struct inode *); extern void d_instantiate_new(struct dentry *, struct inode *); extern void __d_drop(struct dentry *dentry); extern void d_drop(struct dentry *dentry); extern void d_delete(struct dentry *); /* allocate/de-allocate */ extern struct dentry * d_alloc(struct dentry *, const struct qstr *); extern struct dentry * d_alloc_anon(struct super_block *); extern struct dentry * d_alloc_parallel(struct dentry *, const struct qstr *, wait_queue_head_t *); extern struct dentry * d_splice_alias(struct inode *, struct dentry *); /* weird procfs mess; *NOT* exported */ extern struct dentry * d_splice_alias_ops(struct inode *, struct dentry *, const struct dentry_operations *); extern struct dentry * d_add_ci(struct dentry *, struct inode *, struct qstr *); extern bool d_same_name(const struct dentry *dentry, const struct dentry *parent, const struct qstr *name); extern struct dentry *d_find_any_alias(struct inode *inode); extern struct dentry * d_obtain_alias(struct inode *); extern struct dentry * d_obtain_root(struct inode *); extern void shrink_dcache_sb(struct super_block *); extern void shrink_dcache_parent(struct dentry *); extern void d_invalidate(struct dentry *); /* only used at mount-time */ extern struct dentry * d_make_root(struct inode *); extern void d_mark_tmpfile(struct file *, struct inode *); extern void d_tmpfile(struct file *, struct inode *); extern struct dentry *d_find_alias(struct inode *); extern void d_prune_aliases(struct inode *); extern struct dentry *d_find_alias_rcu(struct inode *); /* test whether we have any submounts in a subdir tree */ extern int path_has_submounts(const struct path *); /* * This adds the entry to the hash queues. */ extern void d_rehash(struct dentry *); extern void d_add(struct dentry *, struct inode *); /* used for rename() and baskets */ extern void d_move(struct dentry *, struct dentry *); extern void d_exchange(struct dentry *, struct dentry *); extern struct dentry *d_ancestor(struct dentry *, struct dentry *); extern struct dentry *d_lookup(const struct dentry *, const struct qstr *); static inline unsigned d_count(const struct dentry *dentry) { return dentry->d_lockref.count; } ino_t d_parent_ino(struct dentry *dentry); /* * helper function for dentry_operations.d_dname() members */ extern __printf(3, 4) char *dynamic_dname(char *, int, const char *, ...); extern char *__d_path(const struct path *, const struct path *, char *, int); extern char *d_absolute_path(const struct path *, char *, int); extern char *d_path(const struct path *, char *, int); extern char *dentry_path_raw(const struct dentry *, char *, int); extern char *dentry_path(const struct dentry *, char *, int); /* Allocation counts.. */ /** * dget_dlock - get a reference to a dentry * @dentry: dentry to get a reference to * * Given a live dentry, increment the reference count and return the dentry. * Caller must hold @dentry->d_lock. Making sure that dentry is alive is * caller's resonsibility. There are many conditions sufficient to guarantee * that; e.g. anything with non-negative refcount is alive, so's anything * hashed, anything positive, anyone's parent, etc. */ static inline struct dentry *dget_dlock(struct dentry *dentry) { dentry->d_lockref.count++; return dentry; } /** * dget - get a reference to a dentry * @dentry: dentry to get a reference to * * Given a dentry or %NULL pointer increment the reference count * if appropriate and return the dentry. A dentry will not be * destroyed when it has references. Conversely, a dentry with * no references can disappear for any number of reasons, starting * with memory pressure. In other words, that primitive is * used to clone an existing reference; using it on something with * zero refcount is a bug. * * NOTE: it will spin if @dentry->d_lock is held. From the deadlock * avoidance point of view it is equivalent to spin_lock()/increment * refcount/spin_unlock(), so calling it under @dentry->d_lock is * always a bug; so's calling it under ->d_lock on any of its descendents. * */ static inline struct dentry *dget(struct dentry *dentry) { if (dentry) lockref_get(&dentry->d_lockref); return dentry; } extern struct dentry *dget_parent(struct dentry *dentry); /** * d_unhashed - is dentry hashed * @dentry: entry to check * * Returns true if the dentry passed is not currently hashed. */ static inline int d_unhashed(const struct dentry *dentry) { return hlist_bl_unhashed(&dentry->d_hash); } static inline int d_unlinked(const struct dentry *dentry) { return d_unhashed(dentry) && !IS_ROOT(dentry); } static inline int cant_mount(const struct dentry *dentry) { return (dentry->d_flags & DCACHE_CANT_MOUNT); } static inline void dont_mount(struct dentry *dentry) { spin_lock(&dentry->d_lock); dentry->d_flags |= DCACHE_CANT_MOUNT; spin_unlock(&dentry->d_lock); } extern void __d_lookup_unhash_wake(struct dentry *dentry); static inline int d_in_lookup(const struct dentry *dentry) { return dentry->d_flags & DCACHE_PAR_LOOKUP; } static inline void d_lookup_done(struct dentry *dentry) { if (unlikely(d_in_lookup(dentry))) __d_lookup_unhash_wake(dentry); } extern void dput(struct dentry *); static inline bool d_managed(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MANAGED_DENTRY; } static inline bool d_mountpoint(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MOUNTED; } /* * Directory cache entry type accessor functions. */ static inline unsigned __d_entry_type(const struct dentry *dentry) { return dentry->d_flags & DCACHE_ENTRY_TYPE; } static inline bool d_is_miss(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_MISS_TYPE; } static inline bool d_is_whiteout(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_WHITEOUT_TYPE; } static inline bool d_can_lookup(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_DIRECTORY_TYPE; } static inline bool d_is_autodir(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_AUTODIR_TYPE; } static inline bool d_is_dir(const struct dentry *dentry) { return d_can_lookup(dentry) || d_is_autodir(dentry); } static inline bool d_is_symlink(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SYMLINK_TYPE; } static inline bool d_is_reg(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_REGULAR_TYPE; } static inline bool d_is_special(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SPECIAL_TYPE; } static inline bool d_is_file(const struct dentry *dentry) { return d_is_reg(dentry) || d_is_special(dentry); } static inline bool d_is_negative(const struct dentry *dentry) { // TODO: check d_is_whiteout(dentry) also. return d_is_miss(dentry); } static inline bool d_flags_negative(unsigned flags) { return (flags & DCACHE_ENTRY_TYPE) == DCACHE_MISS_TYPE; } static inline bool d_is_positive(const struct dentry *dentry) { return !d_is_negative(dentry); } /** * d_really_is_negative - Determine if a dentry is really negative (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents either an absent name or a name that * doesn't map to an inode (ie. ->d_inode is NULL). The dentry could represent * a true miss, a whiteout that isn't represented by a 0,0 chardev or a * fallthrough marker in an opaque directory. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. (3) The dentry may have something attached to ->d_lower and the * type field of the flags may be set to something other than miss or whiteout. */ static inline bool d_really_is_negative(const struct dentry *dentry) { return dentry->d_inode == NULL; } /** * d_really_is_positive - Determine if a dentry is really positive (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents a name that maps to an inode * (ie. ->d_inode is not NULL). The dentry might still represent a whiteout if * that is represented on medium as a 0,0 chardev. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. */ static inline bool d_really_is_positive(const struct dentry *dentry) { return dentry->d_inode != NULL; } static inline int simple_positive(const struct dentry *dentry) { return d_really_is_positive(dentry) && !d_unhashed(dentry); } unsigned long vfs_pressure_ratio(unsigned long val); /** * d_inode - Get the actual inode of this dentry * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode(const struct dentry *dentry) { return dentry->d_inode; } /** * d_inode_rcu - Get the actual inode of this dentry with READ_ONCE() * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode_rcu(const struct dentry *dentry) { return READ_ONCE(dentry->d_inode); } /** * d_backing_inode - Get upper or lower inode we should be using * @upper: The upper layer * * This is the helper that should be used to get at the inode that will be used * if this dentry were to be opened as a file. The inode may be on the upper * dentry or it may be on a lower dentry pinned by the upper. * * Normal filesystems should not use this to access their own inodes. */ static inline struct inode *d_backing_inode(const struct dentry *upper) { struct inode *inode = upper->d_inode; return inode; } /** * d_real - Return the real dentry * @dentry: the dentry to query * @type: the type of real dentry (data or metadata) * * If dentry is on a union/overlay, then return the underlying, real dentry. * Otherwise return the dentry itself. * * See also: Documentation/filesystems/vfs.rst */ static inline struct dentry *d_real(struct dentry *dentry, enum d_real_type type) { if (unlikely(dentry->d_flags & DCACHE_OP_REAL)) return dentry->d_op->d_real(dentry, type); else return dentry; } /** * d_real_inode - Return the real inode hosting the data * @dentry: The dentry to query * * If dentry is on a union/overlay, then return the underlying, real inode. * Otherwise return d_inode(). */ static inline struct inode *d_real_inode(const struct dentry *dentry) { /* This usage of d_real() results in const dentry */ return d_inode(d_real((struct dentry *) dentry, D_REAL_DATA)); } struct name_snapshot { struct qstr name; union shortname_store inline_name; }; void take_dentry_name_snapshot(struct name_snapshot *, struct dentry *); void release_dentry_name_snapshot(struct name_snapshot *); static inline struct dentry *d_first_child(const struct dentry *dentry) { return hlist_entry_safe(dentry->d_children.first, struct dentry, d_sib); } static inline struct dentry *d_next_sibling(const struct dentry *dentry) { return hlist_entry_safe(dentry->d_sib.next, struct dentry, d_sib); } void set_default_d_op(struct super_block *, const struct dentry_operations *); #endif /* __LINUX_DCACHE_H */ |
| 54 1 1 17 33 50 32 72 1 1 25 54 2 126 12 80 67 56 11 11 10 1 202 148 59 187 1 1 1 1 3 2 1 211 189 190 17 204 187 18 195 10 206 217 219 152 1 57 14 42 218 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | // SPDX-License-Identifier: GPL-2.0 #include <linux/syscalls.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/exportfs.h> #include <linux/fs_struct.h> #include <linux/fsnotify.h> #include <linux/personality.h> #include <linux/uaccess.h> #include <linux/compat.h> #include <linux/nsfs.h> #include "internal.h" #include "mount.h" static long do_sys_name_to_handle(const struct path *path, struct file_handle __user *ufh, void __user *mnt_id, bool unique_mntid, int fh_flags) { long retval; struct file_handle f_handle; int handle_dwords, handle_bytes; struct file_handle *handle = NULL; /* * We need to make sure whether the file system support decoding of * the file handle if decodeable file handle was requested. */ if (!exportfs_can_encode_fh(path->dentry->d_sb->s_export_op, fh_flags)) return -EOPNOTSUPP; /* * A request to encode a connectable handle for a disconnected dentry * is unexpected since AT_EMPTY_PATH is not allowed. */ if (fh_flags & EXPORT_FH_CONNECTABLE && WARN_ON(path->dentry->d_flags & DCACHE_DISCONNECTED)) return -EINVAL; if (copy_from_user(&f_handle, ufh, sizeof(struct file_handle))) return -EFAULT; if (f_handle.handle_bytes > MAX_HANDLE_SZ) return -EINVAL; handle = kzalloc(struct_size(handle, f_handle, f_handle.handle_bytes), GFP_KERNEL); if (!handle) return -ENOMEM; /* convert handle size to multiple of sizeof(u32) */ handle_dwords = f_handle.handle_bytes >> 2; /* Encode a possibly decodeable/connectable file handle */ retval = exportfs_encode_fh(path->dentry, (struct fid *)handle->f_handle, &handle_dwords, fh_flags); handle->handle_type = retval; /* convert handle size to bytes */ handle_bytes = handle_dwords * sizeof(u32); handle->handle_bytes = handle_bytes; if ((handle->handle_bytes > f_handle.handle_bytes) || (retval == FILEID_INVALID) || (retval < 0)) { /* As per old exportfs_encode_fh documentation * we could return ENOSPC to indicate overflow * But file system returned 255 always. So handle * both the values */ if (retval == FILEID_INVALID || retval == -ENOSPC) retval = -EOVERFLOW; /* * set the handle size to zero so we copy only * non variable part of the file_handle */ handle_bytes = 0; } else { /* * When asked to encode a connectable file handle, encode this * property in the file handle itself, so that we later know * how to decode it. * For sanity, also encode in the file handle if the encoded * object is a directory and verify this during decode, because * decoding directory file handles is quite different than * decoding connectable non-directory file handles. */ if (fh_flags & EXPORT_FH_CONNECTABLE) { handle->handle_type |= FILEID_IS_CONNECTABLE; if (d_is_dir(path->dentry)) handle->handle_type |= FILEID_IS_DIR; } retval = 0; } /* copy the mount id */ if (unique_mntid) { if (put_user(real_mount(path->mnt)->mnt_id_unique, (u64 __user *) mnt_id)) retval = -EFAULT; } else { if (put_user(real_mount(path->mnt)->mnt_id, (int __user *) mnt_id)) retval = -EFAULT; } /* copy the handle */ if (retval != -EFAULT && copy_to_user(ufh, handle, struct_size(handle, f_handle, handle_bytes))) retval = -EFAULT; kfree(handle); return retval; } /** * sys_name_to_handle_at: convert name to handle * @dfd: directory relative to which name is interpreted if not absolute * @name: name that should be converted to handle. * @handle: resulting file handle * @mnt_id: mount id of the file system containing the file * (u64 if AT_HANDLE_MNT_ID_UNIQUE, otherwise int) * @flag: flag value to indicate whether to follow symlink or not * and whether a decodable file handle is required. * * @handle->handle_size indicate the space available to store the * variable part of the file handle in bytes. If there is not * enough space, the field is updated to return the minimum * value required. */ SYSCALL_DEFINE5(name_to_handle_at, int, dfd, const char __user *, name, struct file_handle __user *, handle, void __user *, mnt_id, int, flag) { struct path path; int lookup_flags; int fh_flags = 0; int err; if (flag & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH | AT_HANDLE_FID | AT_HANDLE_MNT_ID_UNIQUE | AT_HANDLE_CONNECTABLE)) return -EINVAL; /* * AT_HANDLE_FID means there is no intention to decode file handle * AT_HANDLE_CONNECTABLE means there is an intention to decode a * connected fd (with known path), so these flags are conflicting. * AT_EMPTY_PATH could be used along with a dfd that refers to a * disconnected non-directory, which cannot be used to encode a * connectable file handle, because its parent is unknown. */ if (flag & AT_HANDLE_CONNECTABLE && flag & (AT_HANDLE_FID | AT_EMPTY_PATH)) return -EINVAL; else if (flag & AT_HANDLE_FID) fh_flags |= EXPORT_FH_FID; else if (flag & AT_HANDLE_CONNECTABLE) fh_flags |= EXPORT_FH_CONNECTABLE; lookup_flags = (flag & AT_SYMLINK_FOLLOW) ? LOOKUP_FOLLOW : 0; if (flag & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; err = user_path_at(dfd, name, lookup_flags, &path); if (!err) { err = do_sys_name_to_handle(&path, handle, mnt_id, flag & AT_HANDLE_MNT_ID_UNIQUE, fh_flags); path_put(&path); } return err; } static int get_path_anchor(int fd, struct path *root) { if (fd >= 0) { CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; *root = fd_file(f)->f_path; path_get(root); return 0; } if (fd == AT_FDCWD) { get_fs_pwd(current->fs, root); return 0; } if (fd == FD_PIDFS_ROOT) { pidfs_get_root(root); return 0; } if (fd == FD_NSFS_ROOT) { nsfs_get_root(root); return 0; } return -EBADF; } static int vfs_dentry_acceptable(void *context, struct dentry *dentry) { struct handle_to_path_ctx *ctx = context; struct user_namespace *user_ns = current_user_ns(); struct dentry *d, *root = ctx->root.dentry; struct mnt_idmap *idmap = mnt_idmap(ctx->root.mnt); int retval = 0; if (!root) return 1; /* Old permission model with global CAP_DAC_READ_SEARCH. */ if (!ctx->flags) return 1; /* * Verify that the decoded dentry itself has a valid id mapping. * In case the decoded dentry is the mountfd root itself, this * verifies that the mountfd inode itself has a valid id mapping. */ if (!privileged_wrt_inode_uidgid(user_ns, idmap, d_inode(dentry))) return 0; /* * It's racy as we're not taking rename_lock but we're able to ignore * permissions and we just need an approximation whether we were able * to follow a path to the file. * * It's also potentially expensive on some filesystems especially if * there is a deep path. */ d = dget(dentry); while (d != root && !IS_ROOT(d)) { struct dentry *parent = dget_parent(d); /* * We know that we have the ability to override DAC permissions * as we've verified this earlier via CAP_DAC_READ_SEARCH. But * we also need to make sure that there aren't any unmapped * inodes in the path that would prevent us from reaching the * file. */ if (!privileged_wrt_inode_uidgid(user_ns, idmap, d_inode(parent))) { dput(d); dput(parent); return retval; } dput(d); d = parent; } if (!(ctx->flags & HANDLE_CHECK_SUBTREE) || d == root) retval = 1; /* * exportfs_decode_fh_raw() does not call acceptable() callback with * a disconnected directory dentry, so we should have reached either * mount fd directory or sb root. */ if (ctx->fh_flags & EXPORT_FH_DIR_ONLY) WARN_ON_ONCE(d != root && d != root->d_sb->s_root); dput(d); return retval; } static int do_handle_to_path(struct file_handle *handle, struct path *path, struct handle_to_path_ctx *ctx) { int handle_dwords; struct vfsmount *mnt = ctx->root.mnt; struct dentry *dentry; /* change the handle size to multiple of sizeof(u32) */ handle_dwords = handle->handle_bytes >> 2; dentry = exportfs_decode_fh_raw(mnt, (struct fid *)handle->f_handle, handle_dwords, handle->handle_type, ctx->fh_flags, vfs_dentry_acceptable, ctx); if (IS_ERR_OR_NULL(dentry)) { if (dentry == ERR_PTR(-ENOMEM)) return -ENOMEM; return -ESTALE; } path->dentry = dentry; path->mnt = mntget(mnt); return 0; } static inline int may_decode_fh(struct handle_to_path_ctx *ctx, unsigned int o_flags) { struct path *root = &ctx->root; if (capable(CAP_DAC_READ_SEARCH)) return 0; /* * Allow relaxed permissions of file handles if the caller has * the ability to mount the filesystem or create a bind-mount of * the provided @mountdirfd. * * In both cases the caller may be able to get an unobstructed * way to the encoded file handle. If the caller is only able to * create a bind-mount we need to verify that there are no * locked mounts on top of it that could prevent us from getting * to the encoded file. * * In principle, locked mounts can prevent the caller from * mounting the filesystem but that only applies to procfs and * sysfs neither of which support decoding file handles. * * Restrict to O_DIRECTORY to provide a deterministic API that * avoids a confusing api in the face of disconnected non-dir * dentries. * * There's only one dentry for each directory inode (VFS rule)... */ if (!(o_flags & O_DIRECTORY)) return -EPERM; if (ns_capable(root->mnt->mnt_sb->s_user_ns, CAP_SYS_ADMIN)) ctx->flags = HANDLE_CHECK_PERMS; else if (is_mounted(root->mnt) && ns_capable(real_mount(root->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN) && !has_locked_children(real_mount(root->mnt), root->dentry)) ctx->flags = HANDLE_CHECK_PERMS | HANDLE_CHECK_SUBTREE; else return -EPERM; /* Are we able to override DAC permissions? */ if (!ns_capable(current_user_ns(), CAP_DAC_READ_SEARCH)) return -EPERM; ctx->fh_flags = EXPORT_FH_DIR_ONLY; return 0; } static int handle_to_path(int mountdirfd, struct file_handle __user *ufh, struct path *path, unsigned int o_flags) { int retval = 0; struct file_handle f_handle; struct file_handle *handle __free(kfree) = NULL; struct handle_to_path_ctx ctx = {}; const struct export_operations *eops; if (copy_from_user(&f_handle, ufh, sizeof(struct file_handle))) return -EFAULT; if ((f_handle.handle_bytes > MAX_HANDLE_SZ) || (f_handle.handle_bytes == 0)) return -EINVAL; if (f_handle.handle_type < 0 || FILEID_USER_FLAGS(f_handle.handle_type) & ~FILEID_VALID_USER_FLAGS) return -EINVAL; retval = get_path_anchor(mountdirfd, &ctx.root); if (retval) return retval; eops = ctx.root.mnt->mnt_sb->s_export_op; if (eops && eops->permission) retval = eops->permission(&ctx, o_flags); else retval = may_decode_fh(&ctx, o_flags); if (retval) goto out_path; handle = kmalloc(struct_size(handle, f_handle, f_handle.handle_bytes), GFP_KERNEL); if (!handle) { retval = -ENOMEM; goto out_path; } /* copy the full handle */ *handle = f_handle; if (copy_from_user(&handle->f_handle, &ufh->f_handle, f_handle.handle_bytes)) { retval = -EFAULT; goto out_path; } /* * If handle was encoded with AT_HANDLE_CONNECTABLE, verify that we * are decoding an fd with connected path, which is accessible from * the mount fd path. */ if (f_handle.handle_type & FILEID_IS_CONNECTABLE) { ctx.fh_flags |= EXPORT_FH_CONNECTABLE; ctx.flags |= HANDLE_CHECK_SUBTREE; } if (f_handle.handle_type & FILEID_IS_DIR) ctx.fh_flags |= EXPORT_FH_DIR_ONLY; /* Filesystem code should not be exposed to user flags */ handle->handle_type &= ~FILEID_USER_FLAGS_MASK; retval = do_handle_to_path(handle, path, &ctx); out_path: path_put(&ctx.root); return retval; } static long do_handle_open(int mountdirfd, struct file_handle __user *ufh, int open_flag) { long retval = 0; struct path path __free(path_put) = {}; struct file *file; const struct export_operations *eops; retval = handle_to_path(mountdirfd, ufh, &path, open_flag); if (retval) return retval; CLASS(get_unused_fd, fd)(open_flag); if (fd < 0) return fd; eops = path.mnt->mnt_sb->s_export_op; if (eops->open) file = eops->open(&path, open_flag); else file = file_open_root(&path, "", open_flag, 0); if (IS_ERR(file)) return PTR_ERR(file); fd_install(fd, file); return take_fd(fd); } /** * sys_open_by_handle_at: Open the file handle * @mountdirfd: directory file descriptor * @handle: file handle to be opened * @flags: open flags. * * @mountdirfd indicate the directory file descriptor * of the mount point. file handle is decoded relative * to the vfsmount pointed by the @mountdirfd. @flags * value is same as the open(2) flags. */ SYSCALL_DEFINE3(open_by_handle_at, int, mountdirfd, struct file_handle __user *, handle, int, flags) { long ret; if (force_o_largefile()) flags |= O_LARGEFILE; ret = do_handle_open(mountdirfd, handle, flags); return ret; } #ifdef CONFIG_COMPAT /* * Exactly like fs/open.c:sys_open_by_handle_at(), except that it * doesn't set the O_LARGEFILE flag. */ COMPAT_SYSCALL_DEFINE3(open_by_handle_at, int, mountdirfd, struct file_handle __user *, handle, int, flags) { return do_handle_open(mountdirfd, handle, flags); } #endif |
| 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | // SPDX-License-Identifier: GPL-2.0-only /* * Common interrupt code for 32 and 64 bit */ #include <linux/cpu.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/of.h> #include <linux/seq_file.h> #include <linux/smp.h> #include <linux/ftrace.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/irq.h> #include <asm/irq_stack.h> #include <asm/apic.h> #include <asm/io_apic.h> #include <asm/irq.h> #include <asm/mce.h> #include <asm/hw_irq.h> #include <asm/desc.h> #include <asm/traps.h> #include <asm/thermal.h> #include <asm/posted_intr.h> #include <asm/irq_remapping.h> #if defined(CONFIG_X86_LOCAL_APIC) || defined(CONFIG_X86_THERMAL_VECTOR) #define CREATE_TRACE_POINTS #include <asm/trace/irq_vectors.h> #endif DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); EXPORT_PER_CPU_SYMBOL(irq_stat); DEFINE_PER_CPU_CACHE_HOT(u16, __softirq_pending); EXPORT_PER_CPU_SYMBOL(__softirq_pending); DEFINE_PER_CPU_CACHE_HOT(struct irq_stack *, hardirq_stack_ptr); atomic_t irq_err_count; /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves. */ void ack_bad_irq(unsigned int irq) { if (printk_ratelimit()) pr_err("unexpected IRQ trap at vector %02x\n", irq); /* * Currently unexpected vectors happen only on SMP and APIC. * We _must_ ack these because every local APIC has only N * irq slots per priority level, and a 'hanging, unacked' IRQ * holds up an irq slot - in excessive cases (when multiple * unexpected vectors occur) that might lock up the APIC * completely. * But only ack when the APIC is enabled -AK */ apic_eoi(); } #define irq_stats(x) (&per_cpu(irq_stat, x)) /* * /proc/interrupts printing for arch specific interrupts */ int arch_show_interrupts(struct seq_file *p, int prec) { int j; seq_printf(p, "%*s: ", prec, "NMI"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); seq_puts(p, " Non-maskable interrupts\n"); #ifdef CONFIG_X86_LOCAL_APIC seq_printf(p, "%*s: ", prec, "LOC"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); seq_puts(p, " Local timer interrupts\n"); seq_printf(p, "%*s: ", prec, "SPU"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); seq_puts(p, " Spurious interrupts\n"); seq_printf(p, "%*s: ", prec, "PMI"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); seq_puts(p, " Performance monitoring interrupts\n"); seq_printf(p, "%*s: ", prec, "IWI"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); seq_puts(p, " IRQ work interrupts\n"); seq_printf(p, "%*s: ", prec, "RTR"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); seq_puts(p, " APIC ICR read retries\n"); if (x86_platform_ipi_callback) { seq_printf(p, "%*s: ", prec, "PLT"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); seq_puts(p, " Platform interrupts\n"); } #endif #ifdef CONFIG_SMP seq_printf(p, "%*s: ", prec, "RES"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); seq_puts(p, " Rescheduling interrupts\n"); seq_printf(p, "%*s: ", prec, "CAL"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); seq_puts(p, " Function call interrupts\n"); seq_printf(p, "%*s: ", prec, "TLB"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); seq_puts(p, " TLB shootdowns\n"); #endif #ifdef CONFIG_X86_THERMAL_VECTOR seq_printf(p, "%*s: ", prec, "TRM"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); seq_puts(p, " Thermal event interrupts\n"); #endif #ifdef CONFIG_X86_MCE_THRESHOLD seq_printf(p, "%*s: ", prec, "THR"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); seq_puts(p, " Threshold APIC interrupts\n"); #endif #ifdef CONFIG_X86_MCE_AMD seq_printf(p, "%*s: ", prec, "DFR"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); seq_puts(p, " Deferred Error APIC interrupts\n"); #endif #ifdef CONFIG_X86_MCE seq_printf(p, "%*s: ", prec, "MCE"); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); seq_puts(p, " Machine check exceptions\n"); seq_printf(p, "%*s: ", prec, "MCP"); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); seq_puts(p, " Machine check polls\n"); #endif #ifdef CONFIG_X86_HV_CALLBACK_VECTOR if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) { seq_printf(p, "%*s: ", prec, "HYP"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count); seq_puts(p, " Hypervisor callback interrupts\n"); } #endif #if IS_ENABLED(CONFIG_HYPERV) if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) { seq_printf(p, "%*s: ", prec, "HRE"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_hv_reenlightenment_count); seq_puts(p, " Hyper-V reenlightenment interrupts\n"); } if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) { seq_printf(p, "%*s: ", prec, "HVS"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->hyperv_stimer0_count); seq_puts(p, " Hyper-V stimer0 interrupts\n"); } #endif seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); #if defined(CONFIG_X86_IO_APIC) seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); #endif #if IS_ENABLED(CONFIG_KVM) seq_printf(p, "%*s: ", prec, "PIN"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); seq_puts(p, " Posted-interrupt notification event\n"); seq_printf(p, "%*s: ", prec, "NPI"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_nested_ipis); seq_puts(p, " Nested posted-interrupt event\n"); seq_printf(p, "%*s: ", prec, "PIW"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_wakeup_ipis); seq_puts(p, " Posted-interrupt wakeup event\n"); #endif #ifdef CONFIG_X86_POSTED_MSI seq_printf(p, "%*s: ", prec, "PMN"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->posted_msi_notification_count); seq_puts(p, " Posted MSI notification event\n"); #endif return 0; } /* * /proc/stat helpers */ u64 arch_irq_stat_cpu(unsigned int cpu) { u64 sum = irq_stats(cpu)->__nmi_count; #ifdef CONFIG_X86_LOCAL_APIC sum += irq_stats(cpu)->apic_timer_irqs; sum += irq_stats(cpu)->irq_spurious_count; sum += irq_stats(cpu)->apic_perf_irqs; sum += irq_stats(cpu)->apic_irq_work_irqs; sum += irq_stats(cpu)->icr_read_retry_count; if (x86_platform_ipi_callback) sum += irq_stats(cpu)->x86_platform_ipis; #endif #ifdef CONFIG_SMP sum += irq_stats(cpu)->irq_resched_count; sum += irq_stats(cpu)->irq_call_count; #endif #ifdef CONFIG_X86_THERMAL_VECTOR sum += irq_stats(cpu)->irq_thermal_count; #endif #ifdef CONFIG_X86_MCE_THRESHOLD sum += irq_stats(cpu)->irq_threshold_count; #endif #ifdef CONFIG_X86_HV_CALLBACK_VECTOR sum += irq_stats(cpu)->irq_hv_callback_count; #endif #if IS_ENABLED(CONFIG_HYPERV) sum += irq_stats(cpu)->irq_hv_reenlightenment_count; sum += irq_stats(cpu)->hyperv_stimer0_count; #endif #ifdef CONFIG_X86_MCE sum += per_cpu(mce_exception_count, cpu); sum += per_cpu(mce_poll_count, cpu); #endif return sum; } u64 arch_irq_stat(void) { u64 sum = atomic_read(&irq_err_count); return sum; } static __always_inline void handle_irq(struct irq_desc *desc, struct pt_regs *regs) { if (IS_ENABLED(CONFIG_X86_64)) generic_handle_irq_desc(desc); else __handle_irq(desc, regs); } static struct irq_desc *reevaluate_vector(int vector) { struct irq_desc *desc = __this_cpu_read(vector_irq[vector]); if (!IS_ERR_OR_NULL(desc)) return desc; if (desc == VECTOR_UNUSED) pr_emerg_ratelimited("No irq handler for %d.%u\n", smp_processor_id(), vector); else __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); return NULL; } static __always_inline bool call_irq_handler(int vector, struct pt_regs *regs) { struct irq_desc *desc = __this_cpu_read(vector_irq[vector]); if (likely(!IS_ERR_OR_NULL(desc))) { handle_irq(desc, regs); return true; } /* * Reevaluate with vector_lock held to prevent a race against * request_irq() setting up the vector: * * CPU0 CPU1 * interrupt is raised in APIC IRR * but not handled * free_irq() * per_cpu(vector_irq, CPU1)[vector] = VECTOR_SHUTDOWN; * * request_irq() common_interrupt() * d = this_cpu_read(vector_irq[vector]); * * per_cpu(vector_irq, CPU1)[vector] = desc; * * if (d == VECTOR_SHUTDOWN) * this_cpu_write(vector_irq[vector], VECTOR_UNUSED); * * This requires that the same vector on the same target CPU is * handed out or that a spurious interrupt hits that CPU/vector. */ lock_vector_lock(); desc = reevaluate_vector(vector); unlock_vector_lock(); if (!desc) return false; handle_irq(desc, regs); return true; } /* * common_interrupt() handles all normal device IRQ's (the special SMP * cross-CPU interrupts have their own entry points). */ DEFINE_IDTENTRY_IRQ(common_interrupt) { struct pt_regs *old_regs = set_irq_regs(regs); /* entry code tells RCU that we're not quiescent. Check it. */ RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU"); if (unlikely(!call_irq_handler(vector, regs))) apic_eoi(); set_irq_regs(old_regs); } #ifdef CONFIG_X86_LOCAL_APIC /* Function pointer for generic interrupt vector handling */ void (*x86_platform_ipi_callback)(void) = NULL; /* * Handler for X86_PLATFORM_IPI_VECTOR. */ DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi) { struct pt_regs *old_regs = set_irq_regs(regs); apic_eoi(); trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); inc_irq_stat(x86_platform_ipis); if (x86_platform_ipi_callback) x86_platform_ipi_callback(); trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); set_irq_regs(old_regs); } #endif #if IS_ENABLED(CONFIG_KVM) static void dummy_handler(void) {} static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) { if (handler) kvm_posted_intr_wakeup_handler = handler; else { kvm_posted_intr_wakeup_handler = dummy_handler; synchronize_rcu(); } } EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); /* * Handler for POSTED_INTERRUPT_VECTOR. */ DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi) { apic_eoi(); inc_irq_stat(kvm_posted_intr_ipis); } /* * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. */ DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi) { apic_eoi(); inc_irq_stat(kvm_posted_intr_wakeup_ipis); kvm_posted_intr_wakeup_handler(); } /* * Handler for POSTED_INTERRUPT_NESTED_VECTOR. */ DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi) { apic_eoi(); inc_irq_stat(kvm_posted_intr_nested_ipis); } #endif #ifdef CONFIG_X86_POSTED_MSI /* Posted Interrupt Descriptors for coalesced MSIs to be posted */ DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc); void intel_posted_msi_init(void) { u32 destination; u32 apic_id; this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR); /* * APIC destination ID is stored in bit 8:15 while in XAPIC mode. * VT-d spec. CH 9.11 */ apic_id = this_cpu_read(x86_cpu_to_apicid); destination = x2apic_enabled() ? apic_id : apic_id << 8; this_cpu_write(posted_msi_pi_desc.ndst, destination); } static __always_inline bool handle_pending_pir(unsigned long *pir, struct pt_regs *regs) { unsigned long pir_copy[NR_PIR_WORDS]; int vec = FIRST_EXTERNAL_VECTOR; if (!pi_harvest_pir(pir, pir_copy)) return false; for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR) call_irq_handler(vec, regs); return true; } /* * Performance data shows that 3 is good enough to harvest 90+% of the benefit * on high IRQ rate workload. */ #define MAX_POSTED_MSI_COALESCING_LOOP 3 /* * For MSIs that are delivered as posted interrupts, the CPU notifications * can be coalesced if the MSIs arrive in high frequency bursts. */ DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification) { struct pt_regs *old_regs = set_irq_regs(regs); struct pi_desc *pid; int i = 0; pid = this_cpu_ptr(&posted_msi_pi_desc); inc_irq_stat(posted_msi_notification_count); irq_enter(); /* * Max coalescing count includes the extra round of handle_pending_pir * after clearing the outstanding notification bit. Hence, at most * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here. */ while (++i < MAX_POSTED_MSI_COALESCING_LOOP) { if (!handle_pending_pir(pid->pir, regs)) break; } /* * Clear outstanding notification bit to allow new IRQ notifications, * do this last to maximize the window of interrupt coalescing. */ pi_clear_on(pid); /* * There could be a race of PI notification and the clearing of ON bit, * process PIR bits one last time such that handling the new interrupts * are not delayed until the next IRQ. */ handle_pending_pir(pid->pir, regs); apic_eoi(); irq_exit(); set_irq_regs(old_regs); } #endif /* X86_POSTED_MSI */ #ifdef CONFIG_HOTPLUG_CPU /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ void fixup_irqs(void) { unsigned int vector; struct irq_desc *desc; struct irq_data *data; struct irq_chip *chip; irq_migrate_all_off_this_cpu(); /* * We can remove mdelay() and then send spurious interrupts to * new cpu targets for all the irqs that were handled previously by * this cpu. While it works, I have seen spurious interrupt messages * (nothing wrong but still...). * * So for now, retain mdelay(1) and check the IRR and then send those * interrupts to new targets as this cpu is already offlined... */ mdelay(1); /* * We can walk the vector array of this cpu without holding * vector_lock because the cpu is already marked !online, so * nothing else will touch it. */ for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector]))) continue; if (is_vector_pending(vector)) { desc = __this_cpu_read(vector_irq[vector]); raw_spin_lock(&desc->lock); data = irq_desc_get_irq_data(desc); chip = irq_data_get_irq_chip(data); if (chip->irq_retrigger) { chip->irq_retrigger(data); __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); } raw_spin_unlock(&desc->lock); } if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); } } #endif #ifdef CONFIG_X86_THERMAL_VECTOR static void smp_thermal_vector(void) { if (x86_thermal_enabled()) intel_thermal_interrupt(); else pr_err("CPU%d: Unexpected LVT thermal interrupt!\n", smp_processor_id()); } DEFINE_IDTENTRY_SYSVEC(sysvec_thermal) { trace_thermal_apic_entry(THERMAL_APIC_VECTOR); inc_irq_stat(irq_thermal_count); smp_thermal_vector(); trace_thermal_apic_exit(THERMAL_APIC_VECTOR); apic_eoi(); } #endif |
| 7 7 7 7 1 6 7 1 29 29 8 8 24 24 24 25 6 6 19 17 2 19 19 18 18 3 19 14 14 14 10 10 10 8 8 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #include "queueing.h" #include "socket.h" #include "timers.h" #include "device.h" #include "ratelimiter.h" #include "peer.h" #include "messages.h" #include <linux/module.h> #include <linux/rtnetlink.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/if_arp.h> #include <linux/icmp.h> #include <linux/suspend.h> #include <net/dst_metadata.h> #include <net/gso.h> #include <net/icmp.h> #include <net/rtnetlink.h> #include <net/ip_tunnels.h> #include <net/addrconf.h> static LIST_HEAD(device_list); static int wg_open(struct net_device *dev) { struct in_device *dev_v4 = __in_dev_get_rtnl(dev); struct inet6_dev *dev_v6 = __in6_dev_get(dev); struct wg_device *wg = netdev_priv(dev); struct wg_peer *peer; int ret; if (dev_v4) { /* At some point we might put this check near the ip_rt_send_ * redirect call of ip_forward in net/ipv4/ip_forward.c, similar * to the current secpath check. */ IN_DEV_CONF_SET(dev_v4, SEND_REDIRECTS, false); IPV4_DEVCONF_ALL(dev_net(dev), SEND_REDIRECTS) = false; } if (dev_v6) dev_v6->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_NONE; mutex_lock(&wg->device_update_lock); ret = wg_socket_init(wg, wg->incoming_port); if (ret < 0) goto out; list_for_each_entry(peer, &wg->peer_list, peer_list) { wg_packet_send_staged_packets(peer); if (peer->persistent_keepalive_interval) wg_packet_send_keepalive(peer); } out: mutex_unlock(&wg->device_update_lock); return ret; } static int wg_pm_notification(struct notifier_block *nb, unsigned long action, void *data) { struct wg_device *wg; struct wg_peer *peer; /* If the machine is constantly suspending and resuming, as part of * its normal operation rather than as a somewhat rare event, then we * don't actually want to clear keys. */ if (IS_ENABLED(CONFIG_PM_AUTOSLEEP) || IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)) return 0; if (action != PM_HIBERNATION_PREPARE && action != PM_SUSPEND_PREPARE) return 0; rtnl_lock(); list_for_each_entry(wg, &device_list, device_list) { mutex_lock(&wg->device_update_lock); list_for_each_entry(peer, &wg->peer_list, peer_list) { timer_delete(&peer->timer_zero_key_material); wg_noise_handshake_clear(&peer->handshake); wg_noise_keypairs_clear(&peer->keypairs); } mutex_unlock(&wg->device_update_lock); } rtnl_unlock(); rcu_barrier(); return 0; } static struct notifier_block pm_notifier = { .notifier_call = wg_pm_notification }; static int wg_vm_notification(struct notifier_block *nb, unsigned long action, void *data) { struct wg_device *wg; struct wg_peer *peer; rtnl_lock(); list_for_each_entry(wg, &device_list, device_list) { mutex_lock(&wg->device_update_lock); list_for_each_entry(peer, &wg->peer_list, peer_list) wg_noise_expire_current_peer_keypairs(peer); mutex_unlock(&wg->device_update_lock); } rtnl_unlock(); return 0; } static struct notifier_block vm_notifier = { .notifier_call = wg_vm_notification }; static int wg_stop(struct net_device *dev) { struct wg_device *wg = netdev_priv(dev); struct wg_peer *peer; struct sk_buff *skb; mutex_lock(&wg->device_update_lock); list_for_each_entry(peer, &wg->peer_list, peer_list) { wg_packet_purge_staged_packets(peer); wg_timers_stop(peer); wg_noise_handshake_clear(&peer->handshake); wg_noise_keypairs_clear(&peer->keypairs); wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake); } mutex_unlock(&wg->device_update_lock); while ((skb = ptr_ring_consume(&wg->handshake_queue.ring)) != NULL) kfree_skb(skb); atomic_set(&wg->handshake_queue_len, 0); wg_socket_reinit(wg, NULL, NULL); return 0; } static netdev_tx_t wg_xmit(struct sk_buff *skb, struct net_device *dev) { struct wg_device *wg = netdev_priv(dev); struct sk_buff_head packets; struct wg_peer *peer; struct sk_buff *next; sa_family_t family; u32 mtu; int ret; if (unlikely(!wg_check_packet_protocol(skb))) { ret = -EPROTONOSUPPORT; net_dbg_ratelimited("%s: Invalid IP packet\n", dev->name); goto err; } peer = wg_allowedips_lookup_dst(&wg->peer_allowedips, skb); if (unlikely(!peer)) { ret = -ENOKEY; if (skb->protocol == htons(ETH_P_IP)) net_dbg_ratelimited("%s: No peer has allowed IPs matching %pI4\n", dev->name, &ip_hdr(skb)->daddr); else if (skb->protocol == htons(ETH_P_IPV6)) net_dbg_ratelimited("%s: No peer has allowed IPs matching %pI6\n", dev->name, &ipv6_hdr(skb)->daddr); goto err_icmp; } family = READ_ONCE(peer->endpoint.addr.sa_family); if (unlikely(family != AF_INET && family != AF_INET6)) { ret = -EDESTADDRREQ; net_dbg_ratelimited("%s: No valid endpoint has been configured or discovered for peer %llu\n", dev->name, peer->internal_id); goto err_peer; } mtu = skb_valid_dst(skb) ? dst_mtu(skb_dst(skb)) : dev->mtu; __skb_queue_head_init(&packets); if (!skb_is_gso(skb)) { skb_mark_not_on_list(skb); } else { struct sk_buff *segs = skb_gso_segment(skb, 0); if (IS_ERR(segs)) { ret = PTR_ERR(segs); goto err_peer; } dev_kfree_skb(skb); skb = segs; } skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) continue; /* We only need to keep the original dst around for icmp, * so at this point we're in a position to drop it. */ skb_dst_drop(skb); PACKET_CB(skb)->mtu = mtu; __skb_queue_tail(&packets, skb); } spin_lock_bh(&peer->staged_packet_queue.lock); /* If the queue is getting too big, we start removing the oldest packets * until it's small again. We do this before adding the new packet, so * we don't remove GSO segments that are in excess. */ while (skb_queue_len(&peer->staged_packet_queue) > MAX_STAGED_PACKETS) { dev_kfree_skb(__skb_dequeue(&peer->staged_packet_queue)); DEV_STATS_INC(dev, tx_dropped); } skb_queue_splice_tail(&packets, &peer->staged_packet_queue); spin_unlock_bh(&peer->staged_packet_queue.lock); wg_packet_send_staged_packets(peer); wg_peer_put(peer); return NETDEV_TX_OK; err_peer: wg_peer_put(peer); err_icmp: if (skb->protocol == htons(ETH_P_IP)) icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0); else if (skb->protocol == htons(ETH_P_IPV6)) icmpv6_ndo_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); err: DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); return ret; } static const struct net_device_ops netdev_ops = { .ndo_open = wg_open, .ndo_stop = wg_stop, .ndo_start_xmit = wg_xmit, }; static void wg_destruct(struct net_device *dev) { struct wg_device *wg = netdev_priv(dev); rtnl_lock(); list_del(&wg->device_list); rtnl_unlock(); mutex_lock(&wg->device_update_lock); rcu_assign_pointer(wg->creating_net, NULL); wg->incoming_port = 0; wg_socket_reinit(wg, NULL, NULL); /* The final references are cleared in the below calls to destroy_workqueue. */ wg_peer_remove_all(wg); destroy_workqueue(wg->handshake_receive_wq); destroy_workqueue(wg->handshake_send_wq); destroy_workqueue(wg->packet_crypt_wq); wg_packet_queue_free(&wg->handshake_queue, true); wg_packet_queue_free(&wg->decrypt_queue, false); wg_packet_queue_free(&wg->encrypt_queue, false); rcu_barrier(); /* Wait for all the peers to be actually freed. */ wg_ratelimiter_uninit(); memzero_explicit(&wg->static_identity, sizeof(wg->static_identity)); kvfree(wg->index_hashtable); kvfree(wg->peer_hashtable); mutex_unlock(&wg->device_update_lock); pr_debug("%s: Interface destroyed\n", dev->name); free_netdev(dev); } static const struct device_type device_type = { .name = KBUILD_MODNAME }; static void wg_setup(struct net_device *dev) { struct wg_device *wg = netdev_priv(dev); enum { WG_NETDEV_FEATURES = NETIF_F_HW_CSUM | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GSO_SOFTWARE | NETIF_F_HIGHDMA }; const int overhead = MESSAGE_MINIMUM_LENGTH + sizeof(struct udphdr) + max(sizeof(struct ipv6hdr), sizeof(struct iphdr)); dev->netdev_ops = &netdev_ops; dev->header_ops = &ip_tunnel_header_ops; dev->hard_header_len = 0; dev->addr_len = 0; dev->needed_headroom = DATA_PACKET_HEAD_ROOM; dev->needed_tailroom = noise_encrypted_len(MESSAGE_PADDING_MULTIPLE); dev->type = ARPHRD_NONE; dev->flags = IFF_POINTOPOINT | IFF_NOARP; dev->priv_flags |= IFF_NO_QUEUE; dev->lltx = true; dev->features |= WG_NETDEV_FEATURES; dev->hw_features |= WG_NETDEV_FEATURES; dev->hw_enc_features |= WG_NETDEV_FEATURES; dev->mtu = ETH_DATA_LEN - overhead; dev->max_mtu = round_down(INT_MAX, MESSAGE_PADDING_MULTIPLE) - overhead; dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS; SET_NETDEV_DEVTYPE(dev, &device_type); /* We need to keep the dst around in case of icmp replies. */ netif_keep_dst(dev); netif_set_tso_max_size(dev, GSO_MAX_SIZE); wg->dev = dev; } static int wg_newlink(struct net_device *dev, struct rtnl_newlink_params *params, struct netlink_ext_ack *extack) { struct net *link_net = rtnl_newlink_link_net(params); struct wg_device *wg = netdev_priv(dev); int ret = -ENOMEM; rcu_assign_pointer(wg->creating_net, link_net); init_rwsem(&wg->static_identity.lock); mutex_init(&wg->socket_update_lock); mutex_init(&wg->device_update_lock); wg_allowedips_init(&wg->peer_allowedips); wg_cookie_checker_init(&wg->cookie_checker, wg); INIT_LIST_HEAD(&wg->peer_list); wg->device_update_gen = 1; wg->peer_hashtable = wg_pubkey_hashtable_alloc(); if (!wg->peer_hashtable) return ret; wg->index_hashtable = wg_index_hashtable_alloc(); if (!wg->index_hashtable) goto err_free_peer_hashtable; wg->handshake_receive_wq = alloc_workqueue("wg-kex-%s", WQ_CPU_INTENSIVE | WQ_FREEZABLE | WQ_PERCPU, 0, dev->name); if (!wg->handshake_receive_wq) goto err_free_index_hashtable; wg->handshake_send_wq = alloc_workqueue("wg-kex-%s", WQ_UNBOUND | WQ_FREEZABLE, 0, dev->name); if (!wg->handshake_send_wq) goto err_destroy_handshake_receive; wg->packet_crypt_wq = alloc_workqueue("wg-crypt-%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_PERCPU, 0, dev->name); if (!wg->packet_crypt_wq) goto err_destroy_handshake_send; ret = wg_packet_queue_init(&wg->encrypt_queue, wg_packet_encrypt_worker, MAX_QUEUED_PACKETS); if (ret < 0) goto err_destroy_packet_crypt; ret = wg_packet_queue_init(&wg->decrypt_queue, wg_packet_decrypt_worker, MAX_QUEUED_PACKETS); if (ret < 0) goto err_free_encrypt_queue; ret = wg_packet_queue_init(&wg->handshake_queue, wg_packet_handshake_receive_worker, MAX_QUEUED_INCOMING_HANDSHAKES); if (ret < 0) goto err_free_decrypt_queue; ret = wg_ratelimiter_init(); if (ret < 0) goto err_free_handshake_queue; netif_threaded_enable(dev); ret = register_netdevice(dev); if (ret < 0) goto err_uninit_ratelimiter; list_add(&wg->device_list, &device_list); /* We wait until the end to assign priv_destructor, so that * register_netdevice doesn't call it for us if it fails. */ dev->priv_destructor = wg_destruct; pr_debug("%s: Interface created\n", dev->name); return ret; err_uninit_ratelimiter: wg_ratelimiter_uninit(); err_free_handshake_queue: wg_packet_queue_free(&wg->handshake_queue, false); err_free_decrypt_queue: wg_packet_queue_free(&wg->decrypt_queue, false); err_free_encrypt_queue: wg_packet_queue_free(&wg->encrypt_queue, false); err_destroy_packet_crypt: destroy_workqueue(wg->packet_crypt_wq); err_destroy_handshake_send: destroy_workqueue(wg->handshake_send_wq); err_destroy_handshake_receive: destroy_workqueue(wg->handshake_receive_wq); err_free_index_hashtable: kvfree(wg->index_hashtable); err_free_peer_hashtable: kvfree(wg->peer_hashtable); return ret; } static struct rtnl_link_ops link_ops __read_mostly = { .kind = KBUILD_MODNAME, .priv_size = sizeof(struct wg_device), .setup = wg_setup, .newlink = wg_newlink, }; static void wg_netns_pre_exit(struct net *net) { struct wg_device *wg; struct wg_peer *peer; rtnl_lock(); list_for_each_entry(wg, &device_list, device_list) { if (rcu_access_pointer(wg->creating_net) == net) { pr_debug("%s: Creating namespace exiting\n", wg->dev->name); netif_carrier_off(wg->dev); mutex_lock(&wg->device_update_lock); rcu_assign_pointer(wg->creating_net, NULL); wg_socket_reinit(wg, NULL, NULL); list_for_each_entry(peer, &wg->peer_list, peer_list) wg_socket_clear_peer_endpoint_src(peer); mutex_unlock(&wg->device_update_lock); } } rtnl_unlock(); } static struct pernet_operations pernet_ops = { .pre_exit = wg_netns_pre_exit }; int __init wg_device_init(void) { int ret; ret = register_pm_notifier(&pm_notifier); if (ret) return ret; ret = register_random_vmfork_notifier(&vm_notifier); if (ret) goto error_pm; ret = register_pernet_device(&pernet_ops); if (ret) goto error_vm; ret = rtnl_link_register(&link_ops); if (ret) goto error_pernet; return 0; error_pernet: unregister_pernet_device(&pernet_ops); error_vm: unregister_random_vmfork_notifier(&vm_notifier); error_pm: unregister_pm_notifier(&pm_notifier); return ret; } void wg_device_uninit(void) { rtnl_link_unregister(&link_ops); unregister_pernet_device(&pernet_ops); unregister_random_vmfork_notifier(&vm_notifier); unregister_pm_notifier(&pm_notifier); rcu_barrier(); } |
| 9 15 3 83 88 88 71 4 72 5 72 72 71 2 74 4 72 72 71 72 115 113 1 134 134 45 115 98 83 1 15 3 10 1 6 2 9 39 21 19 27 13 12 12 1 40 40 1 39 31 11 3 21 19 38 38 38 15 15 12 5 15 4 19 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 | // SPDX-License-Identifier: GPL-2.0-or-later /* * inet fragments management * * Authors: Pavel Emelyanov <xemul@openvz.org> * Started as consolidation of ipv4/ip_fragment.c, * ipv6/reassembly. and ipv6 nf conntrack reassembly */ #include <linux/list.h> #include <linux/spinlock.h> #include <linux/module.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/rhashtable.h> #include <net/sock.h> #include <net/inet_frag.h> #include <net/inet_ecn.h> #include <net/ip.h> #include <net/ipv6.h> #include "../core/sock_destructor.h" /* Use skb->cb to track consecutive/adjacent fragments coming at * the end of the queue. Nodes in the rb-tree queue will * contain "runs" of one or more adjacent fragments. * * Invariants: * - next_frag is NULL at the tail of a "run"; * - the head of a "run" has the sum of all fragment lengths in frag_run_len. */ struct ipfrag_skb_cb { union { struct inet_skb_parm h4; struct inet6_skb_parm h6; }; struct sk_buff *next_frag; int frag_run_len; int ip_defrag_offset; }; #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) static void fragcb_clear(struct sk_buff *skb) { RB_CLEAR_NODE(&skb->rbnode); FRAG_CB(skb)->next_frag = NULL; FRAG_CB(skb)->frag_run_len = skb->len; } /* Append skb to the last "run". */ static void fragrun_append_to_last(struct inet_frag_queue *q, struct sk_buff *skb) { fragcb_clear(skb); FRAG_CB(q->last_run_head)->frag_run_len += skb->len; FRAG_CB(q->fragments_tail)->next_frag = skb; q->fragments_tail = skb; } /* Create a new "run" with the skb. */ static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) { BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); fragcb_clear(skb); if (q->last_run_head) rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, &q->last_run_head->rbnode.rb_right); else rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); rb_insert_color(&skb->rbnode, &q->rb_fragments); q->fragments_tail = skb; q->last_run_head = skb; } /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements * Value : 0xff if frame should be dropped. * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field */ const u8 ip_frag_ecn_table[16] = { /* at least one fragment had CE, and others ECT_0 or ECT_1 */ [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE, [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE, [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE, /* invalid combinations : drop frame */ [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, }; EXPORT_SYMBOL(ip_frag_ecn_table); int inet_frags_init(struct inet_frags *f) { f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, NULL); if (!f->frags_cachep) return -ENOMEM; refcount_set(&f->refcnt, 1); init_completion(&f->completion); return 0; } EXPORT_SYMBOL(inet_frags_init); void inet_frags_fini(struct inet_frags *f) { if (refcount_dec_and_test(&f->refcnt)) complete(&f->completion); wait_for_completion(&f->completion); kmem_cache_destroy(f->frags_cachep); f->frags_cachep = NULL; } EXPORT_SYMBOL(inet_frags_fini); /* called from rhashtable_free_and_destroy() at netns_frags dismantle */ static void inet_frags_free_cb(void *ptr, void *arg) { struct inet_frag_queue *fq = ptr; int count; count = timer_delete_sync(&fq->timer) ? 1 : 0; spin_lock_bh(&fq->lock); fq->flags |= INET_FRAG_DROP; if (!(fq->flags & INET_FRAG_COMPLETE)) { fq->flags |= INET_FRAG_COMPLETE; count++; } else if (fq->flags & INET_FRAG_HASH_DEAD) { count++; } spin_unlock_bh(&fq->lock); inet_frag_putn(fq, count); } static LLIST_HEAD(fqdir_free_list); static void fqdir_free_fn(struct work_struct *work) { struct llist_node *kill_list; struct fqdir *fqdir, *tmp; struct inet_frags *f; /* Atomically snapshot the list of fqdirs to free */ kill_list = llist_del_all(&fqdir_free_list); /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu) * have completed, since they need to dereference fqdir. * Would it not be nice to have kfree_rcu_barrier() ? :) */ rcu_barrier(); llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) { f = fqdir->f; if (refcount_dec_and_test(&f->refcnt)) complete(&f->completion); kfree(fqdir); } } static DECLARE_DELAYED_WORK(fqdir_free_work, fqdir_free_fn); static void fqdir_work_fn(struct work_struct *work) { struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work); rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL); if (llist_add(&fqdir->free_list, &fqdir_free_list)) queue_delayed_work(system_percpu_wq, &fqdir_free_work, HZ); } int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net) { struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL); int res; if (!fqdir) return -ENOMEM; fqdir->f = f; fqdir->net = net; res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params); if (res < 0) { kfree(fqdir); return res; } refcount_inc(&f->refcnt); *fqdirp = fqdir; return 0; } EXPORT_SYMBOL(fqdir_init); static struct workqueue_struct *inet_frag_wq; static int __init inet_frag_wq_init(void) { inet_frag_wq = create_workqueue("inet_frag_wq"); if (!inet_frag_wq) panic("Could not create inet frag workq"); return 0; } pure_initcall(inet_frag_wq_init); void fqdir_exit(struct fqdir *fqdir) { INIT_WORK(&fqdir->destroy_work, fqdir_work_fn); queue_work(inet_frag_wq, &fqdir->destroy_work); } EXPORT_SYMBOL(fqdir_exit); void inet_frag_kill(struct inet_frag_queue *fq, int *refs) { if (timer_delete(&fq->timer)) (*refs)++; if (!(fq->flags & INET_FRAG_COMPLETE)) { struct fqdir *fqdir = fq->fqdir; fq->flags |= INET_FRAG_COMPLETE; rcu_read_lock(); /* The RCU read lock provides a memory barrier * guaranteeing that if fqdir->dead is false then * the hash table destruction will not start until * after we unlock. Paired with fqdir_pre_exit(). */ if (!READ_ONCE(fqdir->dead)) { rhashtable_remove_fast(&fqdir->rhashtable, &fq->node, fqdir->f->rhash_params); (*refs)++; } else { fq->flags |= INET_FRAG_HASH_DEAD; } rcu_read_unlock(); } } EXPORT_SYMBOL(inet_frag_kill); static void inet_frag_destroy_rcu(struct rcu_head *head) { struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, rcu); struct inet_frags *f = q->fqdir->f; if (f->destructor) f->destructor(q); kmem_cache_free(f->frags_cachep, q); } unsigned int inet_frag_rbtree_purge(struct rb_root *root, enum skb_drop_reason reason) { struct rb_node *p = rb_first(root); unsigned int sum = 0; while (p) { struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); p = rb_next(p); rb_erase(&skb->rbnode, root); while (skb) { struct sk_buff *next = FRAG_CB(skb)->next_frag; sum += skb->truesize; kfree_skb_reason(skb, reason); skb = next; } } return sum; } EXPORT_SYMBOL(inet_frag_rbtree_purge); void inet_frag_destroy(struct inet_frag_queue *q) { unsigned int sum, sum_truesize = 0; enum skb_drop_reason reason; struct inet_frags *f; struct fqdir *fqdir; WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); reason = (q->flags & INET_FRAG_DROP) ? SKB_DROP_REASON_FRAG_REASM_TIMEOUT : SKB_CONSUMED; WARN_ON(timer_delete(&q->timer) != 0); /* Release all fragment data. */ fqdir = q->fqdir; f = fqdir->f; sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason); sum = sum_truesize + f->qsize; call_rcu(&q->rcu, inet_frag_destroy_rcu); sub_frag_mem_limit(fqdir, sum); } EXPORT_SYMBOL(inet_frag_destroy); static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir, struct inet_frags *f, void *arg) { struct inet_frag_queue *q; q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); if (!q) return NULL; q->fqdir = fqdir; f->constructor(q, arg); add_frag_mem_limit(fqdir, f->qsize); timer_setup(&q->timer, f->frag_expire, 0); spin_lock_init(&q->lock); /* One reference for the timer, one for the hash table. */ refcount_set(&q->refcnt, 2); return q; } static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir, void *arg, struct inet_frag_queue **prev) { struct inet_frags *f = fqdir->f; struct inet_frag_queue *q; q = inet_frag_alloc(fqdir, f, arg); if (!q) { *prev = ERR_PTR(-ENOMEM); return NULL; } mod_timer(&q->timer, jiffies + fqdir->timeout); *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key, &q->node, f->rhash_params); if (*prev) { /* We could not insert in the hash table, * we need to cancel what inet_frag_alloc() * anticipated. */ int refs = 1; q->flags |= INET_FRAG_COMPLETE; inet_frag_kill(q, &refs); inet_frag_putn(q, refs); return NULL; } return q; } struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key) { /* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */ long high_thresh = READ_ONCE(fqdir->high_thresh); struct inet_frag_queue *fq = NULL, *prev; if (!high_thresh || frag_mem_limit(fqdir) > high_thresh) return NULL; prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params); if (!prev) fq = inet_frag_create(fqdir, key, &prev); if (!IS_ERR_OR_NULL(prev)) fq = prev; return fq; } EXPORT_SYMBOL(inet_frag_find); int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end) { struct sk_buff *last = q->fragments_tail; /* RFC5722, Section 4, amended by Errata ID : 3089 * When reassembling an IPv6 datagram, if * one or more its constituent fragments is determined to be an * overlapping fragment, the entire datagram (and any constituent * fragments) MUST be silently discarded. * * Duplicates, however, should be ignored (i.e. skb dropped, but the * queue/fragments kept for later reassembly). */ if (!last) fragrun_create(q, skb); /* First fragment. */ else if (FRAG_CB(last)->ip_defrag_offset + last->len < end) { /* This is the common case: skb goes to the end. */ /* Detect and discard overlaps. */ if (offset < FRAG_CB(last)->ip_defrag_offset + last->len) return IPFRAG_OVERLAP; if (offset == FRAG_CB(last)->ip_defrag_offset + last->len) fragrun_append_to_last(q, skb); else fragrun_create(q, skb); } else { /* Binary search. Note that skb can become the first fragment, * but not the last (covered above). */ struct rb_node **rbn, *parent; rbn = &q->rb_fragments.rb_node; do { struct sk_buff *curr; int curr_run_end; parent = *rbn; curr = rb_to_skb(parent); curr_run_end = FRAG_CB(curr)->ip_defrag_offset + FRAG_CB(curr)->frag_run_len; if (end <= FRAG_CB(curr)->ip_defrag_offset) rbn = &parent->rb_left; else if (offset >= curr_run_end) rbn = &parent->rb_right; else if (offset >= FRAG_CB(curr)->ip_defrag_offset && end <= curr_run_end) return IPFRAG_DUP; else return IPFRAG_OVERLAP; } while (*rbn); /* Here we have parent properly set, and rbn pointing to * one of its NULL left/right children. Insert skb. */ fragcb_clear(skb); rb_link_node(&skb->rbnode, parent, rbn); rb_insert_color(&skb->rbnode, &q->rb_fragments); } FRAG_CB(skb)->ip_defrag_offset = offset; return IPFRAG_OK; } EXPORT_SYMBOL(inet_frag_queue_insert); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent) { struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); void (*destructor)(struct sk_buff *); unsigned int orig_truesize = 0; struct sk_buff **nextp = NULL; struct sock *sk = skb->sk; int delta; if (sk && is_skb_wmem(skb)) { /* TX: skb->sk might have been passed as argument to * dst->output and must remain valid until tx completes. * * Move sk to reassembled skb and fix up wmem accounting. */ orig_truesize = skb->truesize; destructor = skb->destructor; } if (head != skb) { fp = skb_clone(skb, GFP_ATOMIC); if (!fp) { head = skb; goto out_restore_sk; } FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; if (RB_EMPTY_NODE(&skb->rbnode)) FRAG_CB(parent)->next_frag = fp; else rb_replace_node(&skb->rbnode, &fp->rbnode, &q->rb_fragments); if (q->fragments_tail == skb) q->fragments_tail = fp; if (orig_truesize) { /* prevent skb_morph from releasing sk */ skb->sk = NULL; skb->destructor = NULL; } skb_morph(skb, head); FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; rb_replace_node(&head->rbnode, &skb->rbnode, &q->rb_fragments); consume_skb(head); head = skb; } WARN_ON(FRAG_CB(head)->ip_defrag_offset != 0); delta = -head->truesize; /* Head of list must not be cloned. */ if (skb_unclone(head, GFP_ATOMIC)) goto out_restore_sk; delta += head->truesize; if (delta) add_frag_mem_limit(q->fqdir, delta); /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_has_frag_list(head)) { struct sk_buff *clone; int i, plen = 0; clone = alloc_skb(0, GFP_ATOMIC); if (!clone) goto out_restore_sk; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->data_len = head->data_len - plen; clone->len = clone->data_len; head->truesize += clone->truesize; clone->csum = 0; clone->ip_summed = head->ip_summed; add_frag_mem_limit(q->fqdir, clone->truesize); skb_shinfo(head)->frag_list = clone; nextp = &clone->next; } else { nextp = &skb_shinfo(head)->frag_list; } out_restore_sk: if (orig_truesize) { int ts_delta = head->truesize - orig_truesize; /* if this reassembled skb is fragmented later, * fraglist skbs will get skb->sk assigned from head->sk, * and each frag skb will be released via sock_wfree. * * Update sk_wmem_alloc. */ head->sk = sk; head->destructor = destructor; refcount_add(ts_delta, &sk->sk_wmem_alloc); } return nextp; } EXPORT_SYMBOL(inet_frag_reasm_prepare); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce) { struct sock *sk = is_skb_wmem(head) ? head->sk : NULL; const unsigned int head_truesize = head->truesize; struct sk_buff **nextp = reasm_data; struct rb_node *rbn; struct sk_buff *fp; int sum_truesize; skb_push(head, head->data - skb_network_header(head)); /* Traverse the tree in order, to build frag_list. */ fp = FRAG_CB(head)->next_frag; rbn = rb_next(&head->rbnode); rb_erase(&head->rbnode, &q->rb_fragments); sum_truesize = head->truesize; while (rbn || fp) { /* fp points to the next sk_buff in the current run; * rbn points to the next run. */ /* Go through the current run. */ while (fp) { struct sk_buff *next_frag = FRAG_CB(fp)->next_frag; bool stolen; int delta; sum_truesize += fp->truesize; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); if (try_coalesce && skb_try_coalesce(head, fp, &stolen, &delta)) { kfree_skb_partial(fp, stolen); } else { fp->prev = NULL; memset(&fp->rbnode, 0, sizeof(fp->rbnode)); fp->sk = NULL; head->data_len += fp->len; head->len += fp->len; head->truesize += fp->truesize; *nextp = fp; nextp = &fp->next; } fp = next_frag; } /* Move to the next run. */ if (rbn) { struct rb_node *rbnext = rb_next(rbn); fp = rb_to_skb(rbn); rb_erase(rbn, &q->rb_fragments); rbn = rbnext; } } sub_frag_mem_limit(q->fqdir, sum_truesize); *nextp = NULL; skb_mark_not_on_list(head); head->prev = NULL; head->tstamp = q->stamp; head->tstamp_type = q->tstamp_type; if (sk) refcount_add(sum_truesize - head_truesize, &sk->sk_wmem_alloc); } EXPORT_SYMBOL(inet_frag_reasm_finish); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) { struct sk_buff *head, *skb; head = skb_rb_first(&q->rb_fragments); if (!head) return NULL; skb = FRAG_CB(head)->next_frag; if (skb) rb_replace_node(&head->rbnode, &skb->rbnode, &q->rb_fragments); else rb_erase(&head->rbnode, &q->rb_fragments); memset(&head->rbnode, 0, sizeof(head->rbnode)); barrier(); if (head == q->fragments_tail) q->fragments_tail = NULL; sub_frag_mem_limit(q->fqdir, head->truesize); return head; } EXPORT_SYMBOL(inet_frag_pull_head); |
| 36 11 5 4 2 2 24 1 12 11 24 2 14 11 26 27 27 1 26 26 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | // SPDX-License-Identifier: GPL-2.0-or-later /* * vimc-debayer.c Virtual Media Controller Driver * * Copyright (C) 2015-2017 Helen Koike <helen.fornazier@gmail.com> */ #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/vmalloc.h> #include <linux/v4l2-mediabus.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-event.h> #include <media/v4l2-subdev.h> #include "vimc-common.h" /* TODO: Add support for more output formats, we only support RGB888 for now. */ #define VIMC_DEBAYER_SOURCE_MBUS_FMT MEDIA_BUS_FMT_RGB888_1X24 enum vimc_debayer_rgb_colors { VIMC_DEBAYER_RED = 0, VIMC_DEBAYER_GREEN = 1, VIMC_DEBAYER_BLUE = 2, }; struct vimc_debayer_pix_map { u32 code; enum vimc_debayer_rgb_colors order[2][2]; }; struct vimc_debayer_device { struct vimc_ent_device ved; struct v4l2_subdev sd; struct v4l2_ctrl_handler hdl; struct media_pad pads[2]; u8 *src_frame; void (*set_rgb_src)(struct vimc_debayer_device *vdebayer, unsigned int lin, unsigned int col, unsigned int rgb[3]); /* * Virtual "hardware" configuration, filled when the stream starts or * when controls are set. */ struct { const struct vimc_debayer_pix_map *sink_pix_map; unsigned int sink_bpp; struct v4l2_area size; unsigned int mean_win_size; u32 src_code; } hw; }; static const struct v4l2_mbus_framefmt sink_fmt_default = { .width = 640, .height = 480, .code = MEDIA_BUS_FMT_SRGGB8_1X8, .field = V4L2_FIELD_NONE, .colorspace = V4L2_COLORSPACE_SRGB, }; static const u32 vimc_debayer_src_mbus_codes[] = { MEDIA_BUS_FMT_GBR888_1X24, MEDIA_BUS_FMT_BGR888_1X24, MEDIA_BUS_FMT_BGR888_3X8, MEDIA_BUS_FMT_RGB888_1X24, MEDIA_BUS_FMT_RGB888_2X12_BE, MEDIA_BUS_FMT_RGB888_2X12_LE, MEDIA_BUS_FMT_RGB888_3X8, MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, MEDIA_BUS_FMT_RGB888_1X32_PADHI, }; static const struct vimc_debayer_pix_map vimc_debayer_pix_map_list[] = { { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .order = { { VIMC_DEBAYER_BLUE, VIMC_DEBAYER_GREEN }, { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_RED } } }, { .code = MEDIA_BUS_FMT_SGBRG8_1X8, .order = { { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_BLUE }, { VIMC_DEBAYER_RED, VIMC_DEBAYER_GREEN } } }, { .code = MEDIA_BUS_FMT_SGRBG8_1X8, .order = { { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_RED }, { VIMC_DEBAYER_BLUE, VIMC_DEBAYER_GREEN } } }, { .code = MEDIA_BUS_FMT_SRGGB8_1X8, .order = { { VIMC_DEBAYER_RED, VIMC_DEBAYER_GREEN }, { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_BLUE } } }, { .code = MEDIA_BUS_FMT_SBGGR10_1X10, .order = { { VIMC_DEBAYER_BLUE, VIMC_DEBAYER_GREEN }, { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_RED } } }, { .code = MEDIA_BUS_FMT_SGBRG10_1X10, .order = { { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_BLUE }, { VIMC_DEBAYER_RED, VIMC_DEBAYER_GREEN } } }, { .code = MEDIA_BUS_FMT_SGRBG10_1X10, .order = { { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_RED }, { VIMC_DEBAYER_BLUE, VIMC_DEBAYER_GREEN } } }, { .code = MEDIA_BUS_FMT_SRGGB10_1X10, .order = { { VIMC_DEBAYER_RED, VIMC_DEBAYER_GREEN }, { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_BLUE } } }, { .code = MEDIA_BUS_FMT_SBGGR12_1X12, .order = { { VIMC_DEBAYER_BLUE, VIMC_DEBAYER_GREEN }, { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_RED } } }, { .code = MEDIA_BUS_FMT_SGBRG12_1X12, .order = { { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_BLUE }, { VIMC_DEBAYER_RED, VIMC_DEBAYER_GREEN } } }, { .code = MEDIA_BUS_FMT_SGRBG12_1X12, .order = { { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_RED }, { VIMC_DEBAYER_BLUE, VIMC_DEBAYER_GREEN } } }, { .code = MEDIA_BUS_FMT_SRGGB12_1X12, .order = { { VIMC_DEBAYER_RED, VIMC_DEBAYER_GREEN }, { VIMC_DEBAYER_GREEN, VIMC_DEBAYER_BLUE } } }, }; static const struct vimc_debayer_pix_map *vimc_debayer_pix_map_by_code(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(vimc_debayer_pix_map_list); i++) if (vimc_debayer_pix_map_list[i].code == code) return &vimc_debayer_pix_map_list[i]; return NULL; } static bool vimc_debayer_src_code_is_valid(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(vimc_debayer_src_mbus_codes); i++) if (vimc_debayer_src_mbus_codes[i] == code) return true; return false; } static int vimc_debayer_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct v4l2_mbus_framefmt *mf; mf = v4l2_subdev_state_get_format(sd_state, 0); *mf = sink_fmt_default; mf = v4l2_subdev_state_get_format(sd_state, 1); *mf = sink_fmt_default; mf->code = VIMC_DEBAYER_SOURCE_MBUS_FMT; return 0; } static int vimc_debayer_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (VIMC_IS_SRC(code->pad)) { if (code->index >= ARRAY_SIZE(vimc_debayer_src_mbus_codes)) return -EINVAL; code->code = vimc_debayer_src_mbus_codes[code->index]; } else { if (code->index >= ARRAY_SIZE(vimc_debayer_pix_map_list)) return -EINVAL; code->code = vimc_debayer_pix_map_list[code->index].code; } return 0; } static int vimc_debayer_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index) return -EINVAL; if (VIMC_IS_SINK(fse->pad)) { const struct vimc_debayer_pix_map *vpix = vimc_debayer_pix_map_by_code(fse->code); if (!vpix) return -EINVAL; } else if (!vimc_debayer_src_code_is_valid(fse->code)) { return -EINVAL; } fse->min_width = VIMC_FRAME_MIN_WIDTH; fse->max_width = VIMC_FRAME_MAX_WIDTH; fse->min_height = VIMC_FRAME_MIN_HEIGHT; fse->max_height = VIMC_FRAME_MAX_HEIGHT; return 0; } static void vimc_debayer_adjust_sink_fmt(struct v4l2_mbus_framefmt *fmt) { const struct vimc_debayer_pix_map *vpix; /* Don't accept a code that is not on the debayer table */ vpix = vimc_debayer_pix_map_by_code(fmt->code); if (!vpix) fmt->code = sink_fmt_default.code; fmt->width = clamp_t(u32, fmt->width, VIMC_FRAME_MIN_WIDTH, VIMC_FRAME_MAX_WIDTH) & ~1; fmt->height = clamp_t(u32, fmt->height, VIMC_FRAME_MIN_HEIGHT, VIMC_FRAME_MAX_HEIGHT) & ~1; if (fmt->field == V4L2_FIELD_ANY) fmt->field = sink_fmt_default.field; vimc_colorimetry_clamp(fmt); } static int vimc_debayer_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct vimc_debayer_device *vdebayer = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *format; /* Do not change the format while stream is on. */ if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE && vdebayer->src_frame) return -EBUSY; /* * Do not change the format of the source pad, it is propagated from * the sink. */ if (VIMC_IS_SRC(fmt->pad)) return v4l2_subdev_get_fmt(sd, sd_state, fmt); /* Set the new format in the sink pad. */ vimc_debayer_adjust_sink_fmt(&fmt->format); format = v4l2_subdev_state_get_format(sd_state, 0); dev_dbg(vdebayer->ved.dev, "%s: sink format update: " "old:%dx%d (0x%x, %d, %d, %d, %d) " "new:%dx%d (0x%x, %d, %d, %d, %d)\n", vdebayer->sd.name, /* old */ format->width, format->height, format->code, format->colorspace, format->quantization, format->xfer_func, format->ycbcr_enc, /* new */ fmt->format.width, fmt->format.height, fmt->format.code, fmt->format.colorspace, fmt->format.quantization, fmt->format.xfer_func, fmt->format.ycbcr_enc); *format = fmt->format; /* Propagate the format to the source pad. */ format = v4l2_subdev_state_get_format(sd_state, 1); *format = fmt->format; format->code = VIMC_DEBAYER_SOURCE_MBUS_FMT; return 0; } static const struct v4l2_subdev_pad_ops vimc_debayer_pad_ops = { .enum_mbus_code = vimc_debayer_enum_mbus_code, .enum_frame_size = vimc_debayer_enum_frame_size, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = vimc_debayer_set_fmt, }; static void vimc_debayer_process_rgb_frame(struct vimc_debayer_device *vdebayer, unsigned int lin, unsigned int col, unsigned int rgb[3]) { const struct vimc_pix_map *vpix; unsigned int i, index; vpix = vimc_pix_map_by_code(vdebayer->hw.src_code); index = VIMC_FRAME_INDEX(lin, col, vdebayer->hw.size.width, 3); for (i = 0; i < 3; i++) { switch (vpix->pixelformat) { case V4L2_PIX_FMT_RGB24: vdebayer->src_frame[index + i] = rgb[i]; break; case V4L2_PIX_FMT_BGR24: vdebayer->src_frame[index + i] = rgb[2 - i]; break; } } } static int vimc_debayer_s_stream(struct v4l2_subdev *sd, int enable) { struct vimc_debayer_device *vdebayer = v4l2_get_subdevdata(sd); if (enable) { const struct v4l2_mbus_framefmt *sink_fmt; const struct v4l2_mbus_framefmt *src_fmt; struct v4l2_subdev_state *state; const struct vimc_pix_map *vpix; unsigned int frame_size; if (vdebayer->src_frame) return 0; state = v4l2_subdev_lock_and_get_active_state(sd); sink_fmt = v4l2_subdev_state_get_format(state, 0); src_fmt = v4l2_subdev_state_get_format(state, 1); /* Calculate the frame size of the source pad */ vpix = vimc_pix_map_by_code(src_fmt->code); frame_size = src_fmt->width * src_fmt->height * vpix->bpp; /* Save the bytes per pixel of the sink */ vpix = vimc_pix_map_by_code(sink_fmt->code); vdebayer->hw.sink_bpp = vpix->bpp; /* Get the corresponding pixel map from the table */ vdebayer->hw.sink_pix_map = vimc_debayer_pix_map_by_code(sink_fmt->code); vdebayer->hw.size.width = sink_fmt->width; vdebayer->hw.size.height = sink_fmt->height; vdebayer->hw.src_code = src_fmt->code; v4l2_subdev_unlock_state(state); /* * Allocate the frame buffer. Use vmalloc to be able to * allocate a large amount of memory */ vdebayer->src_frame = vmalloc(frame_size); if (!vdebayer->src_frame) return -ENOMEM; } else { if (!vdebayer->src_frame) return 0; vfree(vdebayer->src_frame); vdebayer->src_frame = NULL; } return 0; } static const struct v4l2_subdev_core_ops vimc_debayer_core_ops = { .log_status = v4l2_ctrl_subdev_log_status, .subscribe_event = v4l2_ctrl_subdev_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, }; static const struct v4l2_subdev_video_ops vimc_debayer_video_ops = { .s_stream = vimc_debayer_s_stream, }; static const struct v4l2_subdev_ops vimc_debayer_ops = { .core = &vimc_debayer_core_ops, .pad = &vimc_debayer_pad_ops, .video = &vimc_debayer_video_ops, }; static const struct v4l2_subdev_internal_ops vimc_debayer_internal_ops = { .init_state = vimc_debayer_init_state, }; static unsigned int vimc_debayer_get_val(const u8 *bytes, const unsigned int n_bytes) { unsigned int i; unsigned int acc = 0; for (i = 0; i < n_bytes; i++) acc = acc + (bytes[i] << (8 * i)); return acc; } static void vimc_debayer_calc_rgb_sink(struct vimc_debayer_device *vdebayer, const u8 *frame, const unsigned int lin, const unsigned int col, unsigned int rgb[3]) { unsigned int i, seek, wlin, wcol; unsigned int n_rgb[3] = {0, 0, 0}; for (i = 0; i < 3; i++) rgb[i] = 0; /* * Calculate how many we need to subtract to get to the pixel in * the top left corner of the mean window (considering the current * pixel as the center) */ seek = vdebayer->hw.mean_win_size / 2; /* Sum the values of the colors in the mean window */ dev_dbg(vdebayer->ved.dev, "deb: %s: --- Calc pixel %dx%d, window mean %d, seek %d ---\n", vdebayer->sd.name, lin, col, vdebayer->hw.size.height, seek); /* * Iterate through all the lines in the mean window, start * with zero if the pixel is outside the frame and don't pass * the height when the pixel is in the bottom border of the * frame */ for (wlin = seek > lin ? 0 : lin - seek; wlin < lin + seek + 1 && wlin < vdebayer->hw.size.height; wlin++) { /* * Iterate through all the columns in the mean window, start * with zero if the pixel is outside the frame and don't pass * the width when the pixel is in the right border of the * frame */ for (wcol = seek > col ? 0 : col - seek; wcol < col + seek + 1 && wcol < vdebayer->hw.size.width; wcol++) { enum vimc_debayer_rgb_colors color; unsigned int index; /* Check which color this pixel is */ color = vdebayer->hw.sink_pix_map->order[wlin % 2][wcol % 2]; index = VIMC_FRAME_INDEX(wlin, wcol, vdebayer->hw.size.width, vdebayer->hw.sink_bpp); dev_dbg(vdebayer->ved.dev, "deb: %s: RGB CALC: frame index %d, win pos %dx%d, color %d\n", vdebayer->sd.name, index, wlin, wcol, color); /* Get its value */ rgb[color] = rgb[color] + vimc_debayer_get_val(&frame[index], vdebayer->hw.sink_bpp); /* Save how many values we already added */ n_rgb[color]++; dev_dbg(vdebayer->ved.dev, "deb: %s: RGB CALC: val %d, n %d\n", vdebayer->sd.name, rgb[color], n_rgb[color]); } } /* Calculate the mean */ for (i = 0; i < 3; i++) { dev_dbg(vdebayer->ved.dev, "deb: %s: PRE CALC: %dx%d Color %d, val %d, n %d\n", vdebayer->sd.name, lin, col, i, rgb[i], n_rgb[i]); if (n_rgb[i]) rgb[i] = rgb[i] / n_rgb[i]; dev_dbg(vdebayer->ved.dev, "deb: %s: FINAL CALC: %dx%d Color %d, val %d\n", vdebayer->sd.name, lin, col, i, rgb[i]); } } static void *vimc_debayer_process_frame(struct vimc_ent_device *ved, const void *sink_frame) { struct vimc_debayer_device *vdebayer = container_of(ved, struct vimc_debayer_device, ved); unsigned int rgb[3]; unsigned int i, j; /* If the stream in this node is not active, just return */ if (!vdebayer->src_frame) return ERR_PTR(-EINVAL); for (i = 0; i < vdebayer->hw.size.height; i++) for (j = 0; j < vdebayer->hw.size.width; j++) { vimc_debayer_calc_rgb_sink(vdebayer, sink_frame, i, j, rgb); vdebayer->set_rgb_src(vdebayer, i, j, rgb); } return vdebayer->src_frame; } static int vimc_debayer_s_ctrl(struct v4l2_ctrl *ctrl) { struct vimc_debayer_device *vdebayer = container_of(ctrl->handler, struct vimc_debayer_device, hdl); switch (ctrl->id) { case VIMC_CID_MEAN_WIN_SIZE: vdebayer->hw.mean_win_size = ctrl->val; break; default: return -EINVAL; } return 0; } static const struct v4l2_ctrl_ops vimc_debayer_ctrl_ops = { .s_ctrl = vimc_debayer_s_ctrl, }; static void vimc_debayer_release(struct vimc_ent_device *ved) { struct vimc_debayer_device *vdebayer = container_of(ved, struct vimc_debayer_device, ved); v4l2_ctrl_handler_free(&vdebayer->hdl); v4l2_subdev_cleanup(&vdebayer->sd); media_entity_cleanup(vdebayer->ved.ent); kfree(vdebayer); } static const struct v4l2_ctrl_config vimc_debayer_ctrl_class = { .flags = V4L2_CTRL_FLAG_READ_ONLY | V4L2_CTRL_FLAG_WRITE_ONLY, .id = VIMC_CID_VIMC_CLASS, .name = "VIMC Controls", .type = V4L2_CTRL_TYPE_CTRL_CLASS, }; static const struct v4l2_ctrl_config vimc_debayer_ctrl_mean_win_size = { .ops = &vimc_debayer_ctrl_ops, .id = VIMC_CID_MEAN_WIN_SIZE, .name = "Debayer Mean Window Size", .type = V4L2_CTRL_TYPE_INTEGER, .min = 1, .max = 25, .step = 2, .def = 3, }; static struct vimc_ent_device *vimc_debayer_add(struct vimc_device *vimc, const char *vcfg_name) { struct v4l2_device *v4l2_dev = &vimc->v4l2_dev; struct vimc_debayer_device *vdebayer; int ret; /* Allocate the vdebayer struct */ vdebayer = kzalloc(sizeof(*vdebayer), GFP_KERNEL); if (!vdebayer) return ERR_PTR(-ENOMEM); /* Create controls: */ v4l2_ctrl_handler_init(&vdebayer->hdl, 2); v4l2_ctrl_new_custom(&vdebayer->hdl, &vimc_debayer_ctrl_class, NULL); v4l2_ctrl_new_custom(&vdebayer->hdl, &vimc_debayer_ctrl_mean_win_size, NULL); vdebayer->sd.ctrl_handler = &vdebayer->hdl; if (vdebayer->hdl.error) { ret = vdebayer->hdl.error; goto err_free_vdebayer; } /* Initialize ved and sd */ vdebayer->pads[0].flags = MEDIA_PAD_FL_SINK; vdebayer->pads[1].flags = MEDIA_PAD_FL_SOURCE; ret = vimc_ent_sd_register(&vdebayer->ved, &vdebayer->sd, v4l2_dev, vcfg_name, MEDIA_ENT_F_PROC_VIDEO_PIXEL_ENC_CONV, 2, vdebayer->pads, &vimc_debayer_internal_ops, &vimc_debayer_ops); if (ret) goto err_free_hdl; vdebayer->ved.process_frame = vimc_debayer_process_frame; vdebayer->ved.dev = vimc->mdev.dev; vdebayer->hw.mean_win_size = vimc_debayer_ctrl_mean_win_size.def; vdebayer->set_rgb_src = vimc_debayer_process_rgb_frame; return &vdebayer->ved; err_free_hdl: v4l2_ctrl_handler_free(&vdebayer->hdl); err_free_vdebayer: kfree(vdebayer); return ERR_PTR(ret); } const struct vimc_ent_type vimc_debayer_type = { .add = vimc_debayer_add, .release = vimc_debayer_release }; |
| 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | /* SPDX-License-Identifier: GPL-2.0 */ /* * TTY core internal functions */ #ifndef _TTY_INTERNAL_H #define _TTY_INTERNAL_H #define tty_msg(fn, tty, f, ...) \ fn("%s %s: " f, tty_driver_name(tty), tty_name(tty), ##__VA_ARGS__) #define tty_debug(tty, f, ...) tty_msg(pr_debug, tty, f, ##__VA_ARGS__) #define tty_notice(tty, f, ...) tty_msg(pr_notice, tty, f, ##__VA_ARGS__) #define tty_warn(tty, f, ...) tty_msg(pr_warn, tty, f, ##__VA_ARGS__) #define tty_err(tty, f, ...) tty_msg(pr_err, tty, f, ##__VA_ARGS__) #define tty_info_ratelimited(tty, f, ...) \ tty_msg(pr_info_ratelimited, tty, f, ##__VA_ARGS__) /* * Lock subclasses for tty locks * * TTY_LOCK_NORMAL is for normal ttys and master ptys. * TTY_LOCK_SLAVE is for slave ptys only. * * Lock subclasses are necessary for handling nested locking with pty pairs. * tty locks which use nested locking: * * legacy_mutex - Nested tty locks are necessary for releasing pty pairs. * The stable lock order is master pty first, then slave pty. * termios_rwsem - The stable lock order is tty_buffer lock->termios_rwsem. * Subclassing this lock enables the slave pty to hold its * termios_rwsem when claiming the master tty_buffer lock. * tty_buffer lock - slave ptys can claim nested buffer lock when handling * signal chars. The stable lock order is slave pty, then * master. */ enum { TTY_LOCK_NORMAL = 0, TTY_LOCK_SLAVE, }; /* Values for tty->flow_change */ enum tty_flow_change { TTY_FLOW_NO_CHANGE, TTY_THROTTLE_SAFE, TTY_UNTHROTTLE_SAFE, }; static inline void __tty_set_flow_change(struct tty_struct *tty, enum tty_flow_change val) { tty->flow_change = val; } static inline void tty_set_flow_change(struct tty_struct *tty, enum tty_flow_change val) { tty->flow_change = val; smp_mb(); } int tty_ldisc_lock(struct tty_struct *tty, unsigned long timeout); void tty_ldisc_unlock(struct tty_struct *tty); int __tty_check_change(struct tty_struct *tty, int sig); int tty_check_change(struct tty_struct *tty); void __stop_tty(struct tty_struct *tty); void __start_tty(struct tty_struct *tty); void tty_write_unlock(struct tty_struct *tty); int tty_write_lock(struct tty_struct *tty, bool ndelay); void tty_vhangup_session(struct tty_struct *tty); void tty_open_proc_set_tty(struct file *filp, struct tty_struct *tty); int tty_signal_session_leader(struct tty_struct *tty, int exit_session); void session_clear_tty(struct pid *session); void tty_buffer_free_all(struct tty_port *port); void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld); void tty_buffer_init(struct tty_port *port); void tty_buffer_set_lock_subclass(struct tty_port *port); bool tty_buffer_restart_work(struct tty_port *port); bool tty_buffer_cancel_work(struct tty_port *port); void tty_buffer_flush_work(struct tty_port *port); speed_t tty_termios_input_baud_rate(const struct ktermios *termios); void tty_ldisc_hangup(struct tty_struct *tty, bool reset); int tty_ldisc_reinit(struct tty_struct *tty, int disc); long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); long tty_jobctrl_ioctl(struct tty_struct *tty, struct tty_struct *real_tty, struct file *file, unsigned int cmd, unsigned long arg); void tty_default_fops(struct file_operations *fops); struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx); int tty_alloc_file(struct file *file); void tty_add_file(struct tty_struct *tty, struct file *file); void tty_free_file(struct file *file); int tty_release(struct inode *inode, struct file *filp); #define tty_is_writelocked(tty) (mutex_is_locked(&tty->atomic_write_lock)) int tty_ldisc_setup(struct tty_struct *tty, struct tty_struct *o_tty); void tty_ldisc_release(struct tty_struct *tty); int __must_check tty_ldisc_init(struct tty_struct *tty); void tty_ldisc_deinit(struct tty_struct *tty); extern int tty_ldisc_autoload; /* tty_audit.c */ #ifdef CONFIG_AUDIT void tty_audit_add_data(const struct tty_struct *tty, const void *data, size_t size); void tty_audit_tiocsti(const struct tty_struct *tty, u8 ch); #else static inline void tty_audit_add_data(const struct tty_struct *tty, const void *data, size_t size) { } static inline void tty_audit_tiocsti(const struct tty_struct *tty, u8 ch) { } #endif ssize_t redirected_tty_write(struct kiocb *, struct iov_iter *); int tty_insert_flip_string_and_push_buffer(struct tty_port *port, const u8 *chars, size_t cnt); #endif |
| 10 11 1 10 10 6 8 2 10 1 6 1 10 10 1 1 10 6 10 14 2 12 12 12 10 4 4 4 1 1 1 1 2 2 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_iwalk.h" #include "xfs_itable.h" #include "xfs_error.h" #include "xfs_icache.h" #include "xfs_health.h" #include "xfs_trans.h" /* * Bulk Stat * ========= * * Use the inode walking functions to fill out struct xfs_bulkstat for every * allocated inode, then pass the stat information to some externally provided * iteration function. */ struct xfs_bstat_chunk { bulkstat_one_fmt_pf formatter; struct xfs_ibulk *breq; struct xfs_bulkstat *buf; }; static inline bool want_metadir_file( struct xfs_inode *ip, struct xfs_ibulk *breq) { return xfs_is_metadir_inode(ip) && (breq->flags & XFS_IBULK_METADIR); } /* * Fill out the bulkstat info for a single inode and report it somewhere. * * bc->breq->lastino is effectively the inode cursor as we walk through the * filesystem. Therefore, we update it any time we need to move the cursor * forward, regardless of whether or not we're sending any bstat information * back to userspace. If the inode is internal metadata or, has been freed * out from under us, we just simply keep going. * * However, if any other type of error happens we want to stop right where we * are so that userspace will call back with exact number of the bad inode and * we can send back an error code. * * Note that if the formatter tells us there's no space left in the buffer we * move the cursor forward and abort the walk. */ STATIC int xfs_bulkstat_one_int( struct xfs_mount *mp, struct mnt_idmap *idmap, struct xfs_trans *tp, xfs_ino_t ino, struct xfs_bstat_chunk *bc) { struct user_namespace *sb_userns = mp->m_super->s_user_ns; struct xfs_inode *ip; /* incore inode pointer */ struct inode *inode; struct xfs_bulkstat *buf = bc->buf; xfs_extnum_t nextents; int error = -EINVAL; vfsuid_t vfsuid; vfsgid_t vfsgid; error = xfs_iget(mp, tp, ino, (XFS_IGET_DONTCACHE | XFS_IGET_UNTRUSTED), XFS_ILOCK_SHARED, &ip); if (error == -ENOENT || error == -EINVAL) goto out_advance; if (error) goto out; /* Reload the incore unlinked list to avoid failure in inodegc. */ if (xfs_inode_unlinked_incomplete(ip)) { error = xfs_inode_reload_unlinked_bucket(tp, ip); if (error) { xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); xfs_irele(ip); return error; } } ASSERT(ip != NULL); ASSERT(ip->i_imap.im_blkno != 0); inode = VFS_I(ip); vfsuid = i_uid_into_vfsuid(idmap, inode); vfsgid = i_gid_into_vfsgid(idmap, inode); /* * If caller wants files from the metadata directories, push out the * bare minimum information for enabling scrub. */ if (want_metadir_file(ip, bc->breq)) { memset(buf, 0, sizeof(*buf)); buf->bs_ino = ino; buf->bs_gen = inode->i_generation; buf->bs_mode = inode->i_mode & S_IFMT; xfs_bulkstat_health(ip, buf); buf->bs_version = XFS_BULKSTAT_VERSION_V5; xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_irele(ip); error = bc->formatter(bc->breq, buf); if (!error || error == -ECANCELED) goto out_advance; goto out; } /* If this is a private inode, don't leak its details to userspace. */ if (IS_PRIVATE(inode) || xfs_is_sb_inum(mp, ino)) { xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_irele(ip); error = -EINVAL; goto out_advance; } /* xfs_iget returns the following without needing * further change. */ buf->bs_projectid = ip->i_projid; buf->bs_ino = ino; buf->bs_uid = from_kuid(sb_userns, vfsuid_into_kuid(vfsuid)); buf->bs_gid = from_kgid(sb_userns, vfsgid_into_kgid(vfsgid)); buf->bs_size = ip->i_disk_size; buf->bs_nlink = inode->i_nlink; buf->bs_atime = inode_get_atime_sec(inode); buf->bs_atime_nsec = inode_get_atime_nsec(inode); buf->bs_mtime = inode_get_mtime_sec(inode); buf->bs_mtime_nsec = inode_get_mtime_nsec(inode); buf->bs_ctime = inode_get_ctime_sec(inode); buf->bs_ctime_nsec = inode_get_ctime_nsec(inode); buf->bs_gen = inode->i_generation; buf->bs_mode = inode->i_mode; buf->bs_xflags = xfs_ip2xflags(ip); buf->bs_extsize_blks = ip->i_extsize; nextents = xfs_ifork_nextents(&ip->i_df); if (!(bc->breq->flags & XFS_IBULK_NREXT64)) buf->bs_extents = min(nextents, XFS_MAX_EXTCNT_DATA_FORK_SMALL); else buf->bs_extents64 = nextents; xfs_bulkstat_health(ip, buf); buf->bs_aextents = xfs_ifork_nextents(&ip->i_af); buf->bs_forkoff = xfs_inode_fork_boff(ip); buf->bs_version = XFS_BULKSTAT_VERSION_V5; if (xfs_has_v3inodes(mp)) { buf->bs_btime = ip->i_crtime.tv_sec; buf->bs_btime_nsec = ip->i_crtime.tv_nsec; if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) buf->bs_cowextsize_blks = ip->i_cowextsize; } switch (ip->i_df.if_format) { case XFS_DINODE_FMT_DEV: buf->bs_rdev = sysv_encode_dev(inode->i_rdev); buf->bs_blksize = BLKDEV_IOSIZE; buf->bs_blocks = 0; break; case XFS_DINODE_FMT_LOCAL: buf->bs_rdev = 0; buf->bs_blksize = mp->m_sb.sb_blocksize; buf->bs_blocks = 0; break; case XFS_DINODE_FMT_EXTENTS: case XFS_DINODE_FMT_BTREE: buf->bs_rdev = 0; buf->bs_blksize = mp->m_sb.sb_blocksize; buf->bs_blocks = ip->i_nblocks + ip->i_delayed_blks; break; } xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_irele(ip); error = bc->formatter(bc->breq, buf); if (error == -ECANCELED) goto out_advance; if (error) goto out; out_advance: /* * Advance the cursor to the inode that comes after the one we just * looked at. We want the caller to move along if the bulkstat * information was copied successfully; if we tried to grab the inode * but it's no longer allocated; or if it's internal metadata. */ bc->breq->startino = ino + 1; out: return error; } /* Bulkstat a single inode. */ int xfs_bulkstat_one( struct xfs_ibulk *breq, bulkstat_one_fmt_pf formatter) { struct xfs_bstat_chunk bc = { .formatter = formatter, .breq = breq, }; struct xfs_trans *tp; int error; if (breq->idmap != &nop_mnt_idmap) { xfs_warn_ratelimited(breq->mp, "bulkstat not supported inside of idmapped mounts."); return -EINVAL; } ASSERT(breq->icount == 1); bc.buf = kzalloc(sizeof(struct xfs_bulkstat), GFP_KERNEL | __GFP_RETRY_MAYFAIL); if (!bc.buf) return -ENOMEM; /* * Grab an empty transaction so that we can use its recursive buffer * locking abilities to detect cycles in the inobt without deadlocking. */ tp = xfs_trans_alloc_empty(breq->mp); error = xfs_bulkstat_one_int(breq->mp, breq->idmap, tp, breq->startino, &bc); xfs_trans_cancel(tp); kfree(bc.buf); /* * If we reported one inode to userspace then we abort because we hit * the end of the buffer. Don't leak that back to userspace. */ if (error == -ECANCELED) error = 0; return error; } static int xfs_bulkstat_iwalk( struct xfs_mount *mp, struct xfs_trans *tp, xfs_ino_t ino, void *data) { struct xfs_bstat_chunk *bc = data; int error; error = xfs_bulkstat_one_int(mp, bc->breq->idmap, tp, ino, data); /* bulkstat just skips over missing inodes */ if (error == -ENOENT || error == -EINVAL) return 0; return error; } /* * Check the incoming lastino parameter. * * We allow any inode value that could map to physical space inside the * filesystem because if there are no inodes there, bulkstat moves on to the * next chunk. In other words, the magic agino value of zero takes us to the * first chunk in the AG, and an agino value past the end of the AG takes us to * the first chunk in the next AG. * * Therefore we can end early if the requested inode is beyond the end of the * filesystem or doesn't map properly. */ static inline bool xfs_bulkstat_already_done( struct xfs_mount *mp, xfs_ino_t startino) { xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, startino); xfs_agino_t agino = XFS_INO_TO_AGINO(mp, startino); return agno >= mp->m_sb.sb_agcount || startino != XFS_AGINO_TO_INO(mp, agno, agino); } /* Return stat information in bulk (by-inode) for the filesystem. */ int xfs_bulkstat( struct xfs_ibulk *breq, bulkstat_one_fmt_pf formatter) { struct xfs_bstat_chunk bc = { .formatter = formatter, .breq = breq, }; struct xfs_trans *tp; int error; if (breq->idmap != &nop_mnt_idmap) { xfs_warn_ratelimited(breq->mp, "bulkstat not supported inside of idmapped mounts."); return -EINVAL; } if (xfs_bulkstat_already_done(breq->mp, breq->startino)) return 0; bc.buf = kzalloc(sizeof(struct xfs_bulkstat), GFP_KERNEL | __GFP_RETRY_MAYFAIL); if (!bc.buf) return -ENOMEM; /* * Grab an empty transaction so that we can use its recursive buffer * locking abilities to detect cycles in the inobt without deadlocking. */ tp = xfs_trans_alloc_empty(breq->mp); error = xfs_iwalk(breq->mp, tp, breq->startino, breq->iwalk_flags, xfs_bulkstat_iwalk, breq->icount, &bc); xfs_trans_cancel(tp); kfree(bc.buf); /* * We found some inodes, so clear the error status and return them. * The lastino pointer will point directly at the inode that triggered * any error that occurred, so on the next call the error will be * triggered again and propagated to userspace as there will be no * formatted inodes in the buffer. */ if (breq->ocount > 0) error = 0; return error; } /* Convert bulkstat (v5) to bstat (v1). */ void xfs_bulkstat_to_bstat( struct xfs_mount *mp, struct xfs_bstat *bs1, const struct xfs_bulkstat *bstat) { /* memset is needed here because of padding holes in the structure. */ memset(bs1, 0, sizeof(struct xfs_bstat)); bs1->bs_ino = bstat->bs_ino; bs1->bs_mode = bstat->bs_mode; bs1->bs_nlink = bstat->bs_nlink; bs1->bs_uid = bstat->bs_uid; bs1->bs_gid = bstat->bs_gid; bs1->bs_rdev = bstat->bs_rdev; bs1->bs_blksize = bstat->bs_blksize; bs1->bs_size = bstat->bs_size; bs1->bs_atime.tv_sec = bstat->bs_atime; bs1->bs_mtime.tv_sec = bstat->bs_mtime; bs1->bs_ctime.tv_sec = bstat->bs_ctime; bs1->bs_atime.tv_nsec = bstat->bs_atime_nsec; bs1->bs_mtime.tv_nsec = bstat->bs_mtime_nsec; bs1->bs_ctime.tv_nsec = bstat->bs_ctime_nsec; bs1->bs_blocks = bstat->bs_blocks; bs1->bs_xflags = bstat->bs_xflags; bs1->bs_extsize = XFS_FSB_TO_B(mp, bstat->bs_extsize_blks); bs1->bs_extents = bstat->bs_extents; bs1->bs_gen = bstat->bs_gen; bs1->bs_projid_lo = bstat->bs_projectid & 0xFFFF; bs1->bs_forkoff = bstat->bs_forkoff; bs1->bs_projid_hi = bstat->bs_projectid >> 16; bs1->bs_sick = bstat->bs_sick; bs1->bs_checked = bstat->bs_checked; bs1->bs_cowextsize = XFS_FSB_TO_B(mp, bstat->bs_cowextsize_blks); bs1->bs_dmevmask = 0; bs1->bs_dmstate = 0; bs1->bs_aextents = bstat->bs_aextents; } struct xfs_inumbers_chunk { inumbers_fmt_pf formatter; struct xfs_ibulk *breq; }; /* * INUMBERS * ======== * This is how we export inode btree records to userspace, so that XFS tools * can figure out where inodes are allocated. */ /* * Format the inode group structure and report it somewhere. * * Similar to xfs_bulkstat_one_int, lastino is the inode cursor as we walk * through the filesystem so we move it forward unless there was a runtime * error. If the formatter tells us the buffer is now full we also move the * cursor forward and abort the walk. */ STATIC int xfs_inumbers_walk( struct xfs_mount *mp, struct xfs_trans *tp, xfs_agnumber_t agno, const struct xfs_inobt_rec_incore *irec, void *data) { struct xfs_inumbers inogrp = { .xi_startino = XFS_AGINO_TO_INO(mp, agno, irec->ir_startino), .xi_alloccount = irec->ir_count - irec->ir_freecount, .xi_allocmask = ~irec->ir_free, .xi_version = XFS_INUMBERS_VERSION_V5, }; struct xfs_inumbers_chunk *ic = data; int error; error = ic->formatter(ic->breq, &inogrp); if (error && error != -ECANCELED) return error; ic->breq->startino = XFS_AGINO_TO_INO(mp, agno, irec->ir_startino) + XFS_INODES_PER_CHUNK; return error; } /* * Return inode number table for the filesystem. */ int xfs_inumbers( struct xfs_ibulk *breq, inumbers_fmt_pf formatter) { struct xfs_inumbers_chunk ic = { .formatter = formatter, .breq = breq, }; struct xfs_trans *tp; int error = 0; if (xfs_bulkstat_already_done(breq->mp, breq->startino)) return 0; /* * Grab an empty transaction so that we can use its recursive buffer * locking abilities to detect cycles in the inobt without deadlocking. */ tp = xfs_trans_alloc_empty(breq->mp); error = xfs_inobt_walk(breq->mp, tp, breq->startino, breq->iwalk_flags, xfs_inumbers_walk, breq->icount, &ic); xfs_trans_cancel(tp); /* * We found some inode groups, so clear the error status and return * them. The lastino pointer will point directly at the inode that * triggered any error that occurred, so on the next call the error * will be triggered again and propagated to userspace as there will be * no formatted inode groups in the buffer. */ if (breq->ocount > 0) error = 0; return error; } /* Convert an inumbers (v5) struct to a inogrp (v1) struct. */ void xfs_inumbers_to_inogrp( struct xfs_inogrp *ig1, const struct xfs_inumbers *ig) { /* memset is needed here because of padding holes in the structure. */ memset(ig1, 0, sizeof(struct xfs_inogrp)); ig1->xi_startino = ig->xi_startino; ig1->xi_alloccount = ig->xi_alloccount; ig1->xi_allocmask = ig->xi_allocmask; } |
| 67 1 1 4 61 2 1 59 1 1 25 2 7 25 3 49 2 39 10 1 3 3 2 1 21 14 10 7 24 18 27 27 18 43 1 43 2 27 17 45 45 45 14 5 5 5 5 5 5 5 5 3 2 5 5 5 5 27 15 13 1 27 27 27 9 18 12 15 25 2 27 27 27 27 36 22 3 2 3 10 1 2 2 2 37 36 36 36 36 36 35 36 36 36 11 21 4 36 88 87 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_police.c Input police filter * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * J Hadi Salim (action changes) */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <linux/slab.h> #include <net/act_api.h> #include <net/gso.h> #include <net/netlink.h> #include <net/pkt_cls.h> #include <net/tc_act/tc_police.h> #include <net/tc_wrapper.h> /* Each policer is serialized by its individual spinlock */ static struct tc_action_ops act_police_ops; static const struct nla_policy police_policy[TCA_POLICE_MAX + 1] = { [TCA_POLICE_RATE] = { .len = TC_RTAB_SIZE }, [TCA_POLICE_PEAKRATE] = { .len = TC_RTAB_SIZE }, [TCA_POLICE_AVRATE] = { .type = NLA_U32 }, [TCA_POLICE_RESULT] = { .type = NLA_U32 }, [TCA_POLICE_RATE64] = { .type = NLA_U64 }, [TCA_POLICE_PEAKRATE64] = { .type = NLA_U64 }, [TCA_POLICE_PKTRATE64] = { .type = NLA_U64, .min = 1 }, [TCA_POLICE_PKTBURST64] = { .type = NLA_U64, .min = 1 }, }; static int tcf_police_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { int ret = 0, tcfp_result = TC_ACT_OK, err, size; bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_POLICE_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_police *parm; struct tcf_police *police; struct qdisc_rate_table *R_tab = NULL, *P_tab = NULL; struct tc_action_net *tn = net_generic(net, act_police_ops.net_id); struct tcf_police_params *new; bool exists = false; u32 index; u64 rate64, prate64; u64 pps, ppsburst; if (nla == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_POLICE_MAX, nla, police_policy, NULL); if (err < 0) return err; if (tb[TCA_POLICE_TBF] == NULL) return -EINVAL; size = nla_len(tb[TCA_POLICE_TBF]); if (size != sizeof(*parm) && size != sizeof(struct tc_police_compat)) return -EINVAL; parm = nla_data(tb[TCA_POLICE_TBF]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; exists = err; if (exists && bind) return ACT_P_BOUND; if (!exists) { ret = tcf_idr_create(tn, index, NULL, a, &act_police_ops, bind, true, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; spin_lock_init(&(to_police(*a)->tcfp_lock)); } else if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; police = to_police(*a); if (parm->rate.rate) { err = -ENOMEM; R_tab = qdisc_get_rtab(&parm->rate, tb[TCA_POLICE_RATE], NULL); if (R_tab == NULL) goto failure; if (parm->peakrate.rate) { P_tab = qdisc_get_rtab(&parm->peakrate, tb[TCA_POLICE_PEAKRATE], NULL); if (P_tab == NULL) goto failure; } } if (est) { err = gen_replace_estimator(&police->tcf_bstats, police->common.cpu_bstats, &police->tcf_rate_est, &police->tcf_lock, false, est); if (err) goto failure; } else if (tb[TCA_POLICE_AVRATE] && (ret == ACT_P_CREATED || !gen_estimator_active(&police->tcf_rate_est))) { err = -EINVAL; goto failure; } if (tb[TCA_POLICE_RESULT]) { tcfp_result = nla_get_u32(tb[TCA_POLICE_RESULT]); if (TC_ACT_EXT_CMP(tcfp_result, TC_ACT_GOTO_CHAIN)) { NL_SET_ERR_MSG(extack, "goto chain not allowed on fallback"); err = -EINVAL; goto failure; } } if ((tb[TCA_POLICE_PKTRATE64] && !tb[TCA_POLICE_PKTBURST64]) || (!tb[TCA_POLICE_PKTRATE64] && tb[TCA_POLICE_PKTBURST64])) { NL_SET_ERR_MSG(extack, "Both or neither packet-per-second burst and rate must be provided"); err = -EINVAL; goto failure; } if (tb[TCA_POLICE_PKTRATE64] && R_tab) { NL_SET_ERR_MSG(extack, "packet-per-second and byte-per-second rate limits not allowed in same action"); err = -EINVAL; goto failure; } new = kzalloc(sizeof(*new), GFP_KERNEL); if (unlikely(!new)) { err = -ENOMEM; goto failure; } /* No failure allowed after this point */ new->tcfp_result = tcfp_result; new->tcfp_mtu = parm->mtu; if (!new->tcfp_mtu) { new->tcfp_mtu = ~0; if (R_tab) new->tcfp_mtu = 255 << R_tab->rate.cell_log; } if (R_tab) { new->rate_present = true; rate64 = nla_get_u64_default(tb[TCA_POLICE_RATE64], 0); psched_ratecfg_precompute(&new->rate, &R_tab->rate, rate64); qdisc_put_rtab(R_tab); } else { new->rate_present = false; } if (P_tab) { new->peak_present = true; prate64 = nla_get_u64_default(tb[TCA_POLICE_PEAKRATE64], 0); psched_ratecfg_precompute(&new->peak, &P_tab->rate, prate64); qdisc_put_rtab(P_tab); } else { new->peak_present = false; } new->tcfp_burst = PSCHED_TICKS2NS(parm->burst); if (new->peak_present) new->tcfp_mtu_ptoks = (s64)psched_l2t_ns(&new->peak, new->tcfp_mtu); if (tb[TCA_POLICE_AVRATE]) new->tcfp_ewma_rate = nla_get_u32(tb[TCA_POLICE_AVRATE]); if (tb[TCA_POLICE_PKTRATE64]) { pps = nla_get_u64(tb[TCA_POLICE_PKTRATE64]); ppsburst = nla_get_u64(tb[TCA_POLICE_PKTBURST64]); new->pps_present = true; new->tcfp_pkt_burst = PSCHED_TICKS2NS(ppsburst); psched_ppscfg_precompute(&new->ppsrate, pps); } new->action = parm->action; spin_lock_bh(&police->tcf_lock); spin_lock_bh(&police->tcfp_lock); police->tcfp_t_c = ktime_get_ns(); police->tcfp_toks = new->tcfp_burst; if (new->peak_present) police->tcfp_ptoks = new->tcfp_mtu_ptoks; spin_unlock_bh(&police->tcfp_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); new = rcu_replace_pointer(police->params, new, lockdep_is_held(&police->tcf_lock)); spin_unlock_bh(&police->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (new) kfree_rcu(new, rcu); return ret; failure: qdisc_put_rtab(P_tab); qdisc_put_rtab(R_tab); if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } static bool tcf_police_mtu_check(struct sk_buff *skb, u32 limit) { u32 len; if (skb_is_gso(skb)) return skb_gso_validate_mac_len(skb, limit); len = qdisc_pkt_len(skb); if (skb_at_tc_ingress(skb)) len += skb->mac_len; return len <= limit; } TC_INDIRECT_SCOPE int tcf_police_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_police *police = to_police(a); s64 now, toks, ppstoks = 0, ptoks = 0; struct tcf_police_params *p; int ret; tcf_lastuse_update(&police->tcf_tm); bstats_update(this_cpu_ptr(police->common.cpu_bstats), skb); p = rcu_dereference_bh(police->params); ret = p->action; if (p->tcfp_ewma_rate) { struct gnet_stats_rate_est64 sample; if (!gen_estimator_read(&police->tcf_rate_est, &sample) || sample.bps >= p->tcfp_ewma_rate) goto inc_overlimits; } if (tcf_police_mtu_check(skb, p->tcfp_mtu)) { if (!p->rate_present && !p->pps_present) { ret = p->tcfp_result; goto end; } now = ktime_get_ns(); spin_lock_bh(&police->tcfp_lock); toks = min_t(s64, now - police->tcfp_t_c, p->tcfp_burst); if (p->peak_present) { ptoks = toks + police->tcfp_ptoks; if (ptoks > p->tcfp_mtu_ptoks) ptoks = p->tcfp_mtu_ptoks; ptoks -= (s64)psched_l2t_ns(&p->peak, qdisc_pkt_len(skb)); } if (p->rate_present) { toks += police->tcfp_toks; if (toks > p->tcfp_burst) toks = p->tcfp_burst; toks -= (s64)psched_l2t_ns(&p->rate, qdisc_pkt_len(skb)); } else if (p->pps_present) { ppstoks = min_t(s64, now - police->tcfp_t_c, p->tcfp_pkt_burst); ppstoks += police->tcfp_pkttoks; if (ppstoks > p->tcfp_pkt_burst) ppstoks = p->tcfp_pkt_burst; ppstoks -= (s64)psched_pkt2t_ns(&p->ppsrate, 1); } if ((toks | ptoks | ppstoks) >= 0) { police->tcfp_t_c = now; police->tcfp_toks = toks; police->tcfp_ptoks = ptoks; police->tcfp_pkttoks = ppstoks; spin_unlock_bh(&police->tcfp_lock); ret = p->tcfp_result; goto inc_drops; } spin_unlock_bh(&police->tcfp_lock); } inc_overlimits: qstats_overlimit_inc(this_cpu_ptr(police->common.cpu_qstats)); inc_drops: if (ret == TC_ACT_SHOT) qstats_drop_inc(this_cpu_ptr(police->common.cpu_qstats)); end: return ret; } static void tcf_police_cleanup(struct tc_action *a) { struct tcf_police *police = to_police(a); struct tcf_police_params *p; p = rcu_dereference_protected(police->params, 1); if (p) kfree_rcu(p, rcu); } static void tcf_police_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_police *police = to_police(a); struct tcf_t *tm = &police->tcf_tm; tcf_action_update_stats(a, bytes, packets, drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static int tcf_police_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { const struct tcf_police *police = to_police(a); unsigned char *b = skb_tail_pointer(skb); const struct tcf_police_params *p; struct tc_police opt = { .index = police->tcf_index, .refcnt = refcount_read(&police->tcf_refcnt) - ref, .bindcnt = atomic_read(&police->tcf_bindcnt) - bind, }; struct tcf_t t; rcu_read_lock(); p = rcu_dereference(police->params); opt.action = p->action; opt.mtu = p->tcfp_mtu; opt.burst = PSCHED_NS2TICKS(p->tcfp_burst); if (p->rate_present) { psched_ratecfg_getrate(&opt.rate, &p->rate); if ((p->rate.rate_bytes_ps >= (1ULL << 32)) && nla_put_u64_64bit(skb, TCA_POLICE_RATE64, p->rate.rate_bytes_ps, TCA_POLICE_PAD)) goto nla_put_failure; } if (p->peak_present) { psched_ratecfg_getrate(&opt.peakrate, &p->peak); if ((p->peak.rate_bytes_ps >= (1ULL << 32)) && nla_put_u64_64bit(skb, TCA_POLICE_PEAKRATE64, p->peak.rate_bytes_ps, TCA_POLICE_PAD)) goto nla_put_failure; } if (p->pps_present) { if (nla_put_u64_64bit(skb, TCA_POLICE_PKTRATE64, p->ppsrate.rate_pkts_ps, TCA_POLICE_PAD)) goto nla_put_failure; if (nla_put_u64_64bit(skb, TCA_POLICE_PKTBURST64, PSCHED_NS2TICKS(p->tcfp_pkt_burst), TCA_POLICE_PAD)) goto nla_put_failure; } if (nla_put(skb, TCA_POLICE_TBF, sizeof(opt), &opt)) goto nla_put_failure; if (p->tcfp_result && nla_put_u32(skb, TCA_POLICE_RESULT, p->tcfp_result)) goto nla_put_failure; if (p->tcfp_ewma_rate && nla_put_u32(skb, TCA_POLICE_AVRATE, p->tcfp_ewma_rate)) goto nla_put_failure; tcf_tm_dump(&t, &police->tcf_tm); if (nla_put_64bit(skb, TCA_POLICE_TM, sizeof(t), &t, TCA_POLICE_PAD)) goto nla_put_failure; rcu_read_unlock(); return skb->len; nla_put_failure: rcu_read_unlock(); nlmsg_trim(skb, b); return -1; } static int tcf_police_act_to_flow_act(int tc_act, u32 *extval, struct netlink_ext_ack *extack) { int act_id = -EOPNOTSUPP; if (!TC_ACT_EXT_OPCODE(tc_act)) { if (tc_act == TC_ACT_OK) act_id = FLOW_ACTION_ACCEPT; else if (tc_act == TC_ACT_SHOT) act_id = FLOW_ACTION_DROP; else if (tc_act == TC_ACT_PIPE) act_id = FLOW_ACTION_PIPE; else if (tc_act == TC_ACT_RECLASSIFY) NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform/exceed action is \"reclassify\""); else NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload"); } else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_GOTO_CHAIN)) { act_id = FLOW_ACTION_GOTO; *extval = tc_act & TC_ACT_EXT_VAL_MASK; } else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_JUMP)) { act_id = FLOW_ACTION_JUMP; *extval = tc_act & TC_ACT_EXT_VAL_MASK; } else if (tc_act == TC_ACT_UNSPEC) { act_id = FLOW_ACTION_CONTINUE; } else { NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload"); } return act_id; } static int tcf_police_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; struct tcf_police *police = to_police(act); struct tcf_police_params *p; int act_id; p = rcu_dereference_protected(police->params, lockdep_is_held(&police->tcf_lock)); entry->id = FLOW_ACTION_POLICE; entry->police.burst = tcf_police_burst(act); entry->police.rate_bytes_ps = tcf_police_rate_bytes_ps(act); entry->police.peakrate_bytes_ps = tcf_police_peakrate_bytes_ps(act); entry->police.avrate = tcf_police_tcfp_ewma_rate(act); entry->police.overhead = tcf_police_rate_overhead(act); entry->police.burst_pkt = tcf_police_burst_pkt(act); entry->police.rate_pkt_ps = tcf_police_rate_pkt_ps(act); entry->police.mtu = tcf_police_tcfp_mtu(act); act_id = tcf_police_act_to_flow_act(police->tcf_action, &entry->police.exceed.extval, extack); if (act_id < 0) return act_id; entry->police.exceed.act_id = act_id; act_id = tcf_police_act_to_flow_act(p->tcfp_result, &entry->police.notexceed.extval, extack); if (act_id < 0) return act_id; entry->police.notexceed.act_id = act_id; *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; fl_action->id = FLOW_ACTION_POLICE; } return 0; } MODULE_AUTHOR("Alexey Kuznetsov"); MODULE_DESCRIPTION("Policing actions"); MODULE_LICENSE("GPL"); static struct tc_action_ops act_police_ops = { .kind = "police", .id = TCA_ID_POLICE, .owner = THIS_MODULE, .stats_update = tcf_police_stats_update, .act = tcf_police_act, .dump = tcf_police_dump, .init = tcf_police_init, .cleanup = tcf_police_cleanup, .offload_act_setup = tcf_police_offload_act_setup, .size = sizeof(struct tcf_police), }; MODULE_ALIAS_NET_ACT("police"); static __net_init int police_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_police_ops.net_id); return tc_action_net_init(net, tn, &act_police_ops); } static void __net_exit police_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_police_ops.net_id); } static struct pernet_operations police_net_ops = { .init = police_init_net, .exit_batch = police_exit_net, .id = &act_police_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init police_init_module(void) { return tcf_register_action(&act_police_ops, &police_net_ops); } static void __exit police_cleanup_module(void) { tcf_unregister_action(&act_police_ops, &police_net_ops); } module_init(police_init_module); module_exit(police_cleanup_module); |
| 2 2 2 3 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | // SPDX-License-Identifier: GPL-2.0 /* Driver for ETAS GmbH ES58X USB CAN(-FD) Bus Interfaces. * * File es58x_devlink.c: report the product information using devlink. * * Copyright (c) 2022 Vincent Mailhol <mailhol.vincent@wanadoo.fr> */ #include <linux/ctype.h> #include <linux/device.h> #include <linux/usb.h> #include <net/devlink.h> #include "es58x_core.h" /* USB descriptor index containing the product information string. */ #define ES58X_PROD_INFO_IDX 6 /** * es58x_parse_sw_version() - Extract boot loader or firmware version. * @es58x_dev: ES58X device. * @prod_info: USB custom string returned by the device. * @prefix: Select which information should be parsed. Set it to "FW" * to parse the firmware version or to "BL" to parse the * bootloader version. * * The @prod_info string contains the firmware and the bootloader * version number all prefixed by a magic string and concatenated with * other numbers. Depending on the device, the firmware (bootloader) * format is either "FW_Vxx.xx.xx" ("BL_Vxx.xx.xx") or "FW:xx.xx.xx" * ("BL:xx.xx.xx") where 'x' represents a digit. @prod_info must * contains the common part of those prefixes: "FW" or "BL". * * Parse @prod_info and store the version number in * &es58x_dev.firmware_version or &es58x_dev.bootloader_version * according to @prefix value. * * Return: zero on success, -EINVAL if @prefix contains an invalid * value and -EBADMSG if @prod_info could not be parsed. */ static int es58x_parse_sw_version(struct es58x_device *es58x_dev, const char *prod_info, const char *prefix) { struct es58x_sw_version *version; int major, minor, revision; if (!strcmp(prefix, "FW")) version = &es58x_dev->firmware_version; else if (!strcmp(prefix, "BL")) version = &es58x_dev->bootloader_version; else return -EINVAL; /* Go to prefix */ prod_info = strstr(prod_info, prefix); if (!prod_info) return -EBADMSG; /* Go to beginning of the version number */ while (!isdigit(*prod_info)) { prod_info++; if (!*prod_info) return -EBADMSG; } if (sscanf(prod_info, "%2u.%2u.%2u", &major, &minor, &revision) != 3) return -EBADMSG; version->major = major; version->minor = minor; version->revision = revision; return 0; } /** * es58x_parse_hw_rev() - Extract hardware revision number. * @es58x_dev: ES58X device. * @prod_info: USB custom string returned by the device. * * @prod_info contains the hardware revision prefixed by a magic * string and conquenated together with other numbers. Depending on * the device, the hardware revision format is either * "HW_VER:axxx/xxx" or "HR:axxx/xxx" where 'a' represents a letter * and 'x' a digit. * * Parse @prod_info and store the hardware revision number in * &es58x_dev.hardware_revision. * * Return: zero on success, -EBADMSG if @prod_info could not be * parsed. */ static int es58x_parse_hw_rev(struct es58x_device *es58x_dev, const char *prod_info) { char letter; int major, minor; /* The only occurrence of 'H' is in the hardware revision prefix. */ prod_info = strchr(prod_info, 'H'); if (!prod_info) return -EBADMSG; /* Go to beginning of the hardware revision */ prod_info = strchr(prod_info, ':'); if (!prod_info) return -EBADMSG; prod_info++; if (sscanf(prod_info, "%c%3u/%3u", &letter, &major, &minor) != 3) return -EBADMSG; es58x_dev->hardware_revision.letter = letter; es58x_dev->hardware_revision.major = major; es58x_dev->hardware_revision.minor = minor; return 0; } /** * es58x_parse_product_info() - Parse the ES58x product information * string. * @es58x_dev: ES58X device. * * Retrieve the product information string and parse it to extract the * firmware version, the bootloader version and the hardware * revision. * * If the function fails, set the version or revision to an invalid * value and emit an informal message. Continue probing because the * product information is not critical for the driver to operate. */ void es58x_parse_product_info(struct es58x_device *es58x_dev) { static const struct es58x_sw_version sw_version_not_set = { .major = -1, .minor = -1, .revision = -1, }; static const struct es58x_hw_revision hw_revision_not_set = { .letter = '\0', .major = -1, .minor = -1, }; char *prod_info; es58x_dev->firmware_version = sw_version_not_set; es58x_dev->bootloader_version = sw_version_not_set; es58x_dev->hardware_revision = hw_revision_not_set; prod_info = usb_cache_string(es58x_dev->udev, ES58X_PROD_INFO_IDX); if (!prod_info) { dev_warn(es58x_dev->dev, "could not retrieve the product info string\n"); return; } if (es58x_parse_sw_version(es58x_dev, prod_info, "FW") || es58x_parse_sw_version(es58x_dev, prod_info, "BL") || es58x_parse_hw_rev(es58x_dev, prod_info)) dev_info(es58x_dev->dev, "could not parse product info: '%s'\n", prod_info); kfree(prod_info); } /** * es58x_sw_version_is_valid() - Check if the version is a valid number. * @sw_ver: Version number of either the firmware or the bootloader. * * If any of the software version sub-numbers do not fit on two * digits, the version is invalid, most probably because the product * string could not be parsed. * * Return: @true if the software version is valid, @false otherwise. */ static inline bool es58x_sw_version_is_valid(struct es58x_sw_version *sw_ver) { return sw_ver->major < 100 && sw_ver->minor < 100 && sw_ver->revision < 100; } /** * es58x_hw_revision_is_valid() - Check if the revision is a valid number. * @hw_rev: Revision number of the hardware. * * If &es58x_hw_revision.letter is not a alphanumeric character or if * any of the hardware revision sub-numbers do not fit on three * digits, the revision is invalid, most probably because the product * string could not be parsed. * * Return: @true if the hardware revision is valid, @false otherwise. */ static inline bool es58x_hw_revision_is_valid(struct es58x_hw_revision *hw_rev) { return isalnum(hw_rev->letter) && hw_rev->major < 1000 && hw_rev->minor < 1000; } /** * es58x_devlink_info_get() - Report the product information. * @devlink: Devlink. * @req: skb wrapper where to put requested information. * @extack: Unused. * * Report the firmware version, the bootloader version, the hardware * revision and the serial number through netlink. * * Return: zero on success, errno when any error occurs. */ static int es58x_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, struct netlink_ext_ack *extack) { struct es58x_device *es58x_dev = devlink_priv(devlink); struct es58x_sw_version *fw_ver = &es58x_dev->firmware_version; struct es58x_sw_version *bl_ver = &es58x_dev->bootloader_version; struct es58x_hw_revision *hw_rev = &es58x_dev->hardware_revision; char buf[MAX(sizeof("xx.xx.xx"), sizeof("axxx/xxx"))]; int ret = 0; if (es58x_sw_version_is_valid(fw_ver)) { snprintf(buf, sizeof(buf), "%02u.%02u.%02u", fw_ver->major, fw_ver->minor, fw_ver->revision); ret = devlink_info_version_running_put(req, DEVLINK_INFO_VERSION_GENERIC_FW, buf); if (ret) return ret; } if (es58x_sw_version_is_valid(bl_ver)) { snprintf(buf, sizeof(buf), "%02u.%02u.%02u", bl_ver->major, bl_ver->minor, bl_ver->revision); ret = devlink_info_version_running_put(req, DEVLINK_INFO_VERSION_GENERIC_FW_BOOTLOADER, buf); if (ret) return ret; } if (es58x_hw_revision_is_valid(hw_rev)) { snprintf(buf, sizeof(buf), "%c%03u/%03u", hw_rev->letter, hw_rev->major, hw_rev->minor); ret = devlink_info_version_fixed_put(req, DEVLINK_INFO_VERSION_GENERIC_BOARD_REV, buf); if (ret) return ret; } if (es58x_dev->udev->serial) ret = devlink_info_serial_number_put(req, es58x_dev->udev->serial); return ret; } const struct devlink_ops es58x_dl_ops = { .info_get = es58x_devlink_info_get, }; |
| 23 1 1 179 1 8 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct skb_array' datastructure. * * Author: * Michael S. Tsirkin <mst@redhat.com> * * Copyright (C) 2016 Red Hat, Inc. * * Limited-size FIFO of skbs. Can be used more or less whenever * sk_buff_head can be used, except you need to know the queue size in * advance. * Implemented as a type-safe wrapper around ptr_ring. */ #ifndef _LINUX_SKB_ARRAY_H #define _LINUX_SKB_ARRAY_H 1 #ifdef __KERNEL__ #include <linux/ptr_ring.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #endif struct skb_array { struct ptr_ring ring; }; /* Might be slightly faster than skb_array_full below, but callers invoking * this in a loop must use a compiler barrier, for example cpu_relax(). */ static inline bool __skb_array_full(struct skb_array *a) { return __ptr_ring_full(&a->ring); } static inline bool skb_array_full(struct skb_array *a) { return ptr_ring_full(&a->ring); } static inline int skb_array_produce(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce(&a->ring, skb); } static inline int skb_array_produce_irq(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce_irq(&a->ring, skb); } static inline int skb_array_produce_bh(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce_bh(&a->ring, skb); } static inline int skb_array_produce_any(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce_any(&a->ring, skb); } /* Might be slightly faster than skb_array_empty below, but only safe if the * array is never resized. Also, callers invoking this in a loop must take care * to use a compiler barrier, for example cpu_relax(). */ static inline bool __skb_array_empty(struct skb_array *a) { return __ptr_ring_empty(&a->ring); } static inline struct sk_buff *__skb_array_peek(struct skb_array *a) { return __ptr_ring_peek(&a->ring); } static inline bool skb_array_empty(struct skb_array *a) { return ptr_ring_empty(&a->ring); } static inline bool skb_array_empty_bh(struct skb_array *a) { return ptr_ring_empty_bh(&a->ring); } static inline bool skb_array_empty_irq(struct skb_array *a) { return ptr_ring_empty_irq(&a->ring); } static inline bool skb_array_empty_any(struct skb_array *a) { return ptr_ring_empty_any(&a->ring); } static inline struct sk_buff *__skb_array_consume(struct skb_array *a) { return __ptr_ring_consume(&a->ring); } static inline struct sk_buff *skb_array_consume(struct skb_array *a) { return ptr_ring_consume(&a->ring); } static inline int skb_array_consume_batched(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched(&a->ring, (void **)array, n); } static inline struct sk_buff *skb_array_consume_irq(struct skb_array *a) { return ptr_ring_consume_irq(&a->ring); } static inline int skb_array_consume_batched_irq(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched_irq(&a->ring, (void **)array, n); } static inline struct sk_buff *skb_array_consume_any(struct skb_array *a) { return ptr_ring_consume_any(&a->ring); } static inline int skb_array_consume_batched_any(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched_any(&a->ring, (void **)array, n); } static inline struct sk_buff *skb_array_consume_bh(struct skb_array *a) { return ptr_ring_consume_bh(&a->ring); } static inline int skb_array_consume_batched_bh(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched_bh(&a->ring, (void **)array, n); } static inline int __skb_array_len_with_tag(struct sk_buff *skb) { if (likely(skb)) { int len = skb->len; if (skb_vlan_tag_present(skb)) len += VLAN_HLEN; return len; } else { return 0; } } static inline int skb_array_peek_len(struct skb_array *a) { return PTR_RING_PEEK_CALL(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_peek_len_irq(struct skb_array *a) { return PTR_RING_PEEK_CALL_IRQ(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_peek_len_bh(struct skb_array *a) { return PTR_RING_PEEK_CALL_BH(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_peek_len_any(struct skb_array *a) { return PTR_RING_PEEK_CALL_ANY(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_init_noprof(struct skb_array *a, int size, gfp_t gfp) { return ptr_ring_init_noprof(&a->ring, size, gfp); } #define skb_array_init(...) alloc_hooks(skb_array_init_noprof(__VA_ARGS__)) static void __skb_array_destroy_skb(void *ptr) { kfree_skb(ptr); } static inline void skb_array_unconsume(struct skb_array *a, struct sk_buff **skbs, int n) { ptr_ring_unconsume(&a->ring, (void **)skbs, n, __skb_array_destroy_skb); } static inline int skb_array_resize(struct skb_array *a, int size, gfp_t gfp) { return ptr_ring_resize(&a->ring, size, gfp, __skb_array_destroy_skb); } static inline int skb_array_resize_multiple_bh_noprof(struct skb_array **rings, int nrings, unsigned int size, gfp_t gfp) { BUILD_BUG_ON(offsetof(struct skb_array, ring)); return ptr_ring_resize_multiple_bh_noprof((struct ptr_ring **)rings, nrings, size, gfp, __skb_array_destroy_skb); } #define skb_array_resize_multiple_bh(...) \ alloc_hooks(skb_array_resize_multiple_bh_noprof(__VA_ARGS__)) static inline void skb_array_cleanup(struct skb_array *a) { ptr_ring_cleanup(&a->ring, __skb_array_destroy_skb); } #endif /* _LINUX_SKB_ARRAY_H */ |
| 216 249 337 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM page_pool #if !defined(_TRACE_PAGE_POOL_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGE_POOL_H #include <linux/types.h> #include <linux/tracepoint.h> #include <trace/events/mmflags.h> #include <net/page_pool/types.h> TRACE_EVENT(page_pool_release, TP_PROTO(const struct page_pool *pool, s32 inflight, u32 hold, u32 release), TP_ARGS(pool, inflight, hold, release), TP_STRUCT__entry( __field(const struct page_pool *, pool) __field(s32, inflight) __field(u32, hold) __field(u32, release) __field(u64, cnt) ), TP_fast_assign( __entry->pool = pool; __entry->inflight = inflight; __entry->hold = hold; __entry->release = release; __entry->cnt = pool->destroy_cnt; ), TP_printk("page_pool=%p inflight=%d hold=%u release=%u cnt=%llu", __entry->pool, __entry->inflight, __entry->hold, __entry->release, __entry->cnt) ); TRACE_EVENT(page_pool_state_release, TP_PROTO(const struct page_pool *pool, netmem_ref netmem, u32 release), TP_ARGS(pool, netmem, release), TP_STRUCT__entry( __field(const struct page_pool *, pool) __field(unsigned long, netmem) __field(u32, release) __field(unsigned long, pfn) ), TP_fast_assign( __entry->pool = pool; __entry->netmem = (__force unsigned long)netmem; __entry->release = release; __entry->pfn = netmem_pfn_trace(netmem); ), TP_printk("page_pool=%p netmem=%p is_net_iov=%lu pfn=0x%lx release=%u", __entry->pool, (void *)__entry->netmem, __entry->netmem & NET_IOV, __entry->pfn, __entry->release) ); TRACE_EVENT(page_pool_state_hold, TP_PROTO(const struct page_pool *pool, netmem_ref netmem, u32 hold), TP_ARGS(pool, netmem, hold), TP_STRUCT__entry( __field(const struct page_pool *, pool) __field(unsigned long, netmem) __field(u32, hold) __field(unsigned long, pfn) ), TP_fast_assign( __entry->pool = pool; __entry->netmem = (__force unsigned long)netmem; __entry->hold = hold; __entry->pfn = netmem_pfn_trace(netmem); ), TP_printk("page_pool=%p netmem=%p is_net_iov=%lu, pfn=0x%lx hold=%u", __entry->pool, (void *)__entry->netmem, __entry->netmem & NET_IOV, __entry->pfn, __entry->hold) ); TRACE_EVENT(page_pool_update_nid, TP_PROTO(const struct page_pool *pool, int new_nid), TP_ARGS(pool, new_nid), TP_STRUCT__entry( __field(const struct page_pool *, pool) __field(int, pool_nid) __field(int, new_nid) ), TP_fast_assign( __entry->pool = pool; __entry->pool_nid = pool->p.nid; __entry->new_nid = new_nid; ), TP_printk("page_pool=%p pool_nid=%d new_nid=%d", __entry->pool, __entry->pool_nid, __entry->new_nid) ); #endif /* _TRACE_PAGE_POOL_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
| 1 1 2 36 73 19 43 9 50 11 11 10 19 17 16 1 12 4 19 157 24 156 65 66 67 5 62 66 105 104 133 135 50 24 58 39 39 39 39 38 24 24 22 22 22 71 1 14 39 9 29 27 36 36 27 155 2 26 1 37 2 35 2 2 39 37 2 37 37 37 1 40 1 39 39 37 2 2 7 7 7 36 36 36 6 36 43 43 3 43 3 36 36 36 5 36 6 36 3 36 35 1 36 36 4 24 2 64 2 4 16 11 29 26 29 23 7 7 32 11 11 11 11 11 7 7 83 7 31 31 58 59 50 50 34 9 2 35 1 25 32 13 13 2 1 1 16 15 31 2 1 16 14 1 13 2 17 31 53 7 15 33 6 32 31 20 20 25 5 1 19 20 3 3 6 14 1 12 12 12 14 2 3 33 1 1 1 60 59 1 6 4 44 26 64 64 56 60 11 50 2 2 2 27 25 2 3 21 1 1 1 1 8 6 4 1 17 58 5 18 18 1 1 1 1 3 2 11 1 2 3 2 4 1 2 2 1 1 2 10 3 1 10 9 9 2 13 13 132 27 2 2 3 4 7 4 59 33 2 6 6 2 3 5 3 8 7 2 47 2 49 48 2 49 49 82 83 57 13 35 37 1 36 12 25 28 39 21 20 11 2 4 1 2 4 4 46 35 40 1 9 35 2 5 32 3 1 2 32 4 4 13 6 9 3 1 24 24 3 7 7 7 7 1 7 7 7 7 7 7 1 1 7 7 50 49 4 60 38 60 4 17 10 13 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2009 Red Hat, Inc. * Copyright (C) 2006 Rusty Russell IBM Corporation * * Author: Michael S. Tsirkin <mst@redhat.com> * * Inspiration, some code, and most witty comments come from * Documentation/virtual/lguest/lguest.c, by Rusty Russell * * Generic code for virtio server in host kernel. */ #include <linux/eventfd.h> #include <linux/vhost.h> #include <linux/uio.h> #include <linux/mm.h> #include <linux/miscdevice.h> #include <linux/mutex.h> #include <linux/poll.h> #include <linux/file.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/kthread.h> #include <linux/cgroup.h> #include <linux/module.h> #include <linux/sort.h> #include <linux/sched/mm.h> #include <linux/sched/signal.h> #include <linux/sched/vhost_task.h> #include <linux/interval_tree_generic.h> #include <linux/nospec.h> #include <linux/kcov.h> #include "vhost.h" static ushort max_mem_regions = 64; module_param(max_mem_regions, ushort, 0444); MODULE_PARM_DESC(max_mem_regions, "Maximum number of memory regions in memory map. (default: 64)"); static int max_iotlb_entries = 2048; module_param(max_iotlb_entries, int, 0444); MODULE_PARM_DESC(max_iotlb_entries, "Maximum number of iotlb entries. (default: 2048)"); static bool fork_from_owner_default = VHOST_FORK_OWNER_TASK; #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL module_param(fork_from_owner_default, bool, 0444); MODULE_PARM_DESC(fork_from_owner_default, "Set task mode as the default(default: Y)"); #endif enum { VHOST_MEMORY_F_LOG = 0x1, }; #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) { vq->user_be = !virtio_legacy_is_little_endian(); } static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) { vq->user_be = true; } static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) { vq->user_be = false; } static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) { struct vhost_vring_state s; if (vq->private_data) return -EBUSY; if (copy_from_user(&s, argp, sizeof(s))) return -EFAULT; if (s.num != VHOST_VRING_LITTLE_ENDIAN && s.num != VHOST_VRING_BIG_ENDIAN) return -EINVAL; if (s.num == VHOST_VRING_BIG_ENDIAN) vhost_enable_cross_endian_big(vq); else vhost_enable_cross_endian_little(vq); return 0; } static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, int __user *argp) { struct vhost_vring_state s = { .index = idx, .num = vq->user_be }; if (copy_to_user(argp, &s, sizeof(s))) return -EFAULT; return 0; } static void vhost_init_is_le(struct vhost_virtqueue *vq) { /* Note for legacy virtio: user_be is initialized at reset time * according to the host endianness. If userspace does not set an * explicit endianness, the default behavior is native endian, as * expected by legacy virtio. */ vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; } #else static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) { } static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) { return -ENOIOCTLCMD; } static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, int __user *argp) { return -ENOIOCTLCMD; } static void vhost_init_is_le(struct vhost_virtqueue *vq) { vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || virtio_legacy_is_little_endian(); } #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ static void vhost_reset_is_le(struct vhost_virtqueue *vq) { vhost_init_is_le(vq); } struct vhost_flush_struct { struct vhost_work work; struct completion wait_event; }; static void vhost_flush_work(struct vhost_work *work) { struct vhost_flush_struct *s; s = container_of(work, struct vhost_flush_struct, work); complete(&s->wait_event); } static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, poll_table *pt) { struct vhost_poll *poll; poll = container_of(pt, struct vhost_poll, table); poll->wqh = wqh; add_wait_queue(wqh, &poll->wait); } static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); struct vhost_work *work = &poll->work; if (!(key_to_poll(key) & poll->mask)) return 0; if (!poll->dev->use_worker) work->fn(work); else vhost_poll_queue(poll); return 0; } void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) { clear_bit(VHOST_WORK_QUEUED, &work->flags); work->fn = fn; } EXPORT_SYMBOL_GPL(vhost_work_init); /* Init poll structure */ void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, __poll_t mask, struct vhost_dev *dev, struct vhost_virtqueue *vq) { init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); init_poll_funcptr(&poll->table, vhost_poll_func); poll->mask = mask; poll->dev = dev; poll->wqh = NULL; poll->vq = vq; vhost_work_init(&poll->work, fn); } EXPORT_SYMBOL_GPL(vhost_poll_init); /* Start polling a file. We add ourselves to file's wait queue. The caller must * keep a reference to a file until after vhost_poll_stop is called. */ int vhost_poll_start(struct vhost_poll *poll, struct file *file) { __poll_t mask; if (poll->wqh) return 0; mask = vfs_poll(file, &poll->table); if (mask) vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); if (mask & EPOLLERR) { vhost_poll_stop(poll); return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(vhost_poll_start); /* Stop polling a file. After this function returns, it becomes safe to drop the * file reference. You must also flush afterwards. */ void vhost_poll_stop(struct vhost_poll *poll) { if (poll->wqh) { remove_wait_queue(poll->wqh, &poll->wait); poll->wqh = NULL; } } EXPORT_SYMBOL_GPL(vhost_poll_stop); static void vhost_worker_queue(struct vhost_worker *worker, struct vhost_work *work) { if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { /* We can only add the work to the list after we're * sure it was not in the list. * test_and_set_bit() implies a memory barrier. */ llist_add(&work->node, &worker->work_list); worker->ops->wakeup(worker); } } bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work) { struct vhost_worker *worker; bool queued = false; rcu_read_lock(); worker = rcu_dereference(vq->worker); if (worker) { queued = true; vhost_worker_queue(worker, work); } rcu_read_unlock(); return queued; } EXPORT_SYMBOL_GPL(vhost_vq_work_queue); /** * __vhost_worker_flush - flush a worker * @worker: worker to flush * * The worker's flush_mutex must be held. */ static void __vhost_worker_flush(struct vhost_worker *worker) { struct vhost_flush_struct flush; if (!worker->attachment_cnt || worker->killed) return; init_completion(&flush.wait_event); vhost_work_init(&flush.work, vhost_flush_work); vhost_worker_queue(worker, &flush.work); /* * Drop mutex in case our worker is killed and it needs to take the * mutex to force cleanup. */ mutex_unlock(&worker->mutex); wait_for_completion(&flush.wait_event); mutex_lock(&worker->mutex); } static void vhost_worker_flush(struct vhost_worker *worker) { mutex_lock(&worker->mutex); __vhost_worker_flush(worker); mutex_unlock(&worker->mutex); } void vhost_dev_flush(struct vhost_dev *dev) { struct vhost_worker *worker; unsigned long i; xa_for_each(&dev->worker_xa, i, worker) vhost_worker_flush(worker); } EXPORT_SYMBOL_GPL(vhost_dev_flush); /* A lockless hint for busy polling code to exit the loop */ bool vhost_vq_has_work(struct vhost_virtqueue *vq) { struct vhost_worker *worker; bool has_work = false; rcu_read_lock(); worker = rcu_dereference(vq->worker); if (worker && !llist_empty(&worker->work_list)) has_work = true; rcu_read_unlock(); return has_work; } EXPORT_SYMBOL_GPL(vhost_vq_has_work); void vhost_poll_queue(struct vhost_poll *poll) { vhost_vq_work_queue(poll->vq, &poll->work); } EXPORT_SYMBOL_GPL(vhost_poll_queue); static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) { int j; for (j = 0; j < VHOST_NUM_ADDRS; j++) vq->meta_iotlb[j] = NULL; } static void vhost_vq_meta_reset(struct vhost_dev *d) { int i; for (i = 0; i < d->nvqs; ++i) __vhost_vq_meta_reset(d->vqs[i]); } static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx) { call_ctx->ctx = NULL; memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer)); } bool vhost_vq_is_setup(struct vhost_virtqueue *vq) { return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq); } EXPORT_SYMBOL_GPL(vhost_vq_is_setup); static void vhost_vq_reset(struct vhost_dev *dev, struct vhost_virtqueue *vq) { vq->num = 1; vq->desc = NULL; vq->avail = NULL; vq->used = NULL; vq->last_avail_idx = 0; vq->next_avail_head = 0; vq->avail_idx = 0; vq->last_used_idx = 0; vq->signalled_used = 0; vq->signalled_used_valid = false; vq->used_flags = 0; vq->log_used = false; vq->log_addr = -1ull; vq->private_data = NULL; virtio_features_zero(vq->acked_features_array); vq->acked_backend_features = 0; vq->log_base = NULL; vq->error_ctx = NULL; vq->kick = NULL; vq->log_ctx = NULL; vhost_disable_cross_endian(vq); vhost_reset_is_le(vq); vq->busyloop_timeout = 0; vq->umem = NULL; vq->iotlb = NULL; rcu_assign_pointer(vq->worker, NULL); vhost_vring_call_reset(&vq->call_ctx); __vhost_vq_meta_reset(vq); } static int vhost_run_work_kthread_list(void *data) { struct vhost_worker *worker = data; struct vhost_work *work, *work_next; struct vhost_dev *dev = worker->dev; struct llist_node *node; kthread_use_mm(dev->mm); for (;;) { /* mb paired w/ kthread_stop */ set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); break; } node = llist_del_all(&worker->work_list); if (!node) schedule(); node = llist_reverse_order(node); /* make sure flag is seen after deletion */ smp_wmb(); llist_for_each_entry_safe(work, work_next, node, node) { clear_bit(VHOST_WORK_QUEUED, &work->flags); __set_current_state(TASK_RUNNING); kcov_remote_start_common(worker->kcov_handle); work->fn(work); kcov_remote_stop(); cond_resched(); } } kthread_unuse_mm(dev->mm); return 0; } static bool vhost_run_work_list(void *data) { struct vhost_worker *worker = data; struct vhost_work *work, *work_next; struct llist_node *node; node = llist_del_all(&worker->work_list); if (node) { __set_current_state(TASK_RUNNING); node = llist_reverse_order(node); /* make sure flag is seen after deletion */ smp_wmb(); llist_for_each_entry_safe(work, work_next, node, node) { clear_bit(VHOST_WORK_QUEUED, &work->flags); kcov_remote_start_common(worker->kcov_handle); work->fn(work); kcov_remote_stop(); cond_resched(); } } return !!node; } static void vhost_worker_killed(void *data) { struct vhost_worker *worker = data; struct vhost_dev *dev = worker->dev; struct vhost_virtqueue *vq; int i, attach_cnt = 0; mutex_lock(&worker->mutex); worker->killed = true; for (i = 0; i < dev->nvqs; i++) { vq = dev->vqs[i]; mutex_lock(&vq->mutex); if (worker == rcu_dereference_check(vq->worker, lockdep_is_held(&vq->mutex))) { rcu_assign_pointer(vq->worker, NULL); attach_cnt++; } mutex_unlock(&vq->mutex); } worker->attachment_cnt -= attach_cnt; if (attach_cnt) synchronize_rcu(); /* * Finish vhost_worker_flush calls and any other works that snuck in * before the synchronize_rcu. */ vhost_run_work_list(worker); mutex_unlock(&worker->mutex); } static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) { kfree(vq->indirect); vq->indirect = NULL; kfree(vq->log); vq->log = NULL; kfree(vq->heads); vq->heads = NULL; kfree(vq->nheads); vq->nheads = NULL; } /* Helper to allocate iovec buffers for all vqs. */ static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) { struct vhost_virtqueue *vq; int i; for (i = 0; i < dev->nvqs; ++i) { vq = dev->vqs[i]; vq->indirect = kmalloc_array(UIO_MAXIOV, sizeof(*vq->indirect), GFP_KERNEL); vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), GFP_KERNEL); vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), GFP_KERNEL); vq->nheads = kmalloc_array(dev->iov_limit, sizeof(*vq->nheads), GFP_KERNEL); if (!vq->indirect || !vq->log || !vq->heads || !vq->nheads) goto err_nomem; } return 0; err_nomem: for (; i >= 0; --i) vhost_vq_free_iovecs(dev->vqs[i]); return -ENOMEM; } static void vhost_dev_free_iovecs(struct vhost_dev *dev) { int i; for (i = 0; i < dev->nvqs; ++i) vhost_vq_free_iovecs(dev->vqs[i]); } bool vhost_exceeds_weight(struct vhost_virtqueue *vq, int pkts, int total_len) { struct vhost_dev *dev = vq->dev; if ((dev->byte_weight && total_len >= dev->byte_weight) || pkts >= dev->weight) { vhost_poll_queue(&vq->poll); return true; } return false; } EXPORT_SYMBOL_GPL(vhost_exceeds_weight); static size_t vhost_get_avail_size(struct vhost_virtqueue *vq, unsigned int num) { size_t event __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; return size_add(struct_size(vq->avail, ring, num), event); } static size_t vhost_get_used_size(struct vhost_virtqueue *vq, unsigned int num) { size_t event __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; return size_add(struct_size(vq->used, ring, num), event); } static size_t vhost_get_desc_size(struct vhost_virtqueue *vq, unsigned int num) { return sizeof(*vq->desc) * num; } void vhost_dev_init(struct vhost_dev *dev, struct vhost_virtqueue **vqs, int nvqs, int iov_limit, int weight, int byte_weight, bool use_worker, int (*msg_handler)(struct vhost_dev *dev, u32 asid, struct vhost_iotlb_msg *msg)) { struct vhost_virtqueue *vq; int i; dev->vqs = vqs; dev->nvqs = nvqs; mutex_init(&dev->mutex); dev->log_ctx = NULL; dev->umem = NULL; dev->iotlb = NULL; dev->mm = NULL; dev->iov_limit = iov_limit; dev->weight = weight; dev->byte_weight = byte_weight; dev->use_worker = use_worker; dev->msg_handler = msg_handler; dev->fork_owner = fork_from_owner_default; init_waitqueue_head(&dev->wait); INIT_LIST_HEAD(&dev->read_list); INIT_LIST_HEAD(&dev->pending_list); spin_lock_init(&dev->iotlb_lock); xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC); for (i = 0; i < dev->nvqs; ++i) { vq = dev->vqs[i]; vq->log = NULL; vq->indirect = NULL; vq->heads = NULL; vq->nheads = NULL; vq->dev = dev; mutex_init(&vq->mutex); vhost_vq_reset(dev, vq); if (vq->handle_kick) vhost_poll_init(&vq->poll, vq->handle_kick, EPOLLIN, dev, vq); } } EXPORT_SYMBOL_GPL(vhost_dev_init); /* Caller should have device mutex */ long vhost_dev_check_owner(struct vhost_dev *dev) { /* Are you the owner? If not, I don't think you mean to do that */ return dev->mm == current->mm ? 0 : -EPERM; } EXPORT_SYMBOL_GPL(vhost_dev_check_owner); struct vhost_attach_cgroups_struct { struct vhost_work work; struct task_struct *owner; int ret; }; static void vhost_attach_cgroups_work(struct vhost_work *work) { struct vhost_attach_cgroups_struct *s; s = container_of(work, struct vhost_attach_cgroups_struct, work); s->ret = cgroup_attach_task_all(s->owner, current); } static int vhost_attach_task_to_cgroups(struct vhost_worker *worker) { struct vhost_attach_cgroups_struct attach; int saved_cnt; attach.owner = current; vhost_work_init(&attach.work, vhost_attach_cgroups_work); vhost_worker_queue(worker, &attach.work); mutex_lock(&worker->mutex); /* * Bypass attachment_cnt check in __vhost_worker_flush: * Temporarily change it to INT_MAX to bypass the check */ saved_cnt = worker->attachment_cnt; worker->attachment_cnt = INT_MAX; __vhost_worker_flush(worker); worker->attachment_cnt = saved_cnt; mutex_unlock(&worker->mutex); return attach.ret; } /* Caller should have device mutex */ bool vhost_dev_has_owner(struct vhost_dev *dev) { return dev->mm; } EXPORT_SYMBOL_GPL(vhost_dev_has_owner); static void vhost_attach_mm(struct vhost_dev *dev) { /* No owner, become one */ if (dev->use_worker) { dev->mm = get_task_mm(current); } else { /* vDPA device does not use worker thread, so there's * no need to hold the address space for mm. This helps * to avoid deadlock in the case of mmap() which may * hold the refcnt of the file and depends on release * method to remove vma. */ dev->mm = current->mm; mmgrab(dev->mm); } } static void vhost_detach_mm(struct vhost_dev *dev) { if (!dev->mm) return; if (dev->use_worker) mmput(dev->mm); else mmdrop(dev->mm); dev->mm = NULL; } static void vhost_worker_destroy(struct vhost_dev *dev, struct vhost_worker *worker) { if (!worker) return; WARN_ON(!llist_empty(&worker->work_list)); xa_erase(&dev->worker_xa, worker->id); worker->ops->stop(worker); kfree(worker); } static void vhost_workers_free(struct vhost_dev *dev) { struct vhost_worker *worker; unsigned long i; if (!dev->use_worker) return; for (i = 0; i < dev->nvqs; i++) rcu_assign_pointer(dev->vqs[i]->worker, NULL); /* * Free the default worker we created and cleanup workers userspace * created but couldn't clean up (it forgot or crashed). */ xa_for_each(&dev->worker_xa, i, worker) vhost_worker_destroy(dev, worker); xa_destroy(&dev->worker_xa); } static void vhost_task_wakeup(struct vhost_worker *worker) { return vhost_task_wake(worker->vtsk); } static void vhost_kthread_wakeup(struct vhost_worker *worker) { wake_up_process(worker->kthread_task); } static void vhost_task_do_stop(struct vhost_worker *worker) { return vhost_task_stop(worker->vtsk); } static void vhost_kthread_do_stop(struct vhost_worker *worker) { kthread_stop(worker->kthread_task); } static int vhost_task_worker_create(struct vhost_worker *worker, struct vhost_dev *dev, const char *name) { struct vhost_task *vtsk; u32 id; int ret; vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed, worker, name); if (IS_ERR(vtsk)) return PTR_ERR(vtsk); worker->vtsk = vtsk; vhost_task_start(vtsk); ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); if (ret < 0) { vhost_task_do_stop(worker); return ret; } worker->id = id; return 0; } static int vhost_kthread_worker_create(struct vhost_worker *worker, struct vhost_dev *dev, const char *name) { struct task_struct *task; u32 id; int ret; task = kthread_create(vhost_run_work_kthread_list, worker, "%s", name); if (IS_ERR(task)) return PTR_ERR(task); worker->kthread_task = task; wake_up_process(task); ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); if (ret < 0) goto stop_worker; ret = vhost_attach_task_to_cgroups(worker); if (ret) goto stop_worker; worker->id = id; return 0; stop_worker: vhost_kthread_do_stop(worker); return ret; } static const struct vhost_worker_ops kthread_ops = { .create = vhost_kthread_worker_create, .stop = vhost_kthread_do_stop, .wakeup = vhost_kthread_wakeup, }; static const struct vhost_worker_ops vhost_task_ops = { .create = vhost_task_worker_create, .stop = vhost_task_do_stop, .wakeup = vhost_task_wakeup, }; static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev) { struct vhost_worker *worker; char name[TASK_COMM_LEN]; int ret; const struct vhost_worker_ops *ops = dev->fork_owner ? &vhost_task_ops : &kthread_ops; worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT); if (!worker) return NULL; worker->dev = dev; worker->ops = ops; snprintf(name, sizeof(name), "vhost-%d", current->pid); mutex_init(&worker->mutex); init_llist_head(&worker->work_list); worker->kcov_handle = kcov_common_handle(); ret = ops->create(worker, dev, name); if (ret < 0) goto free_worker; return worker; free_worker: kfree(worker); return NULL; } /* Caller must have device mutex */ static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq, struct vhost_worker *worker) { struct vhost_worker *old_worker; mutex_lock(&worker->mutex); if (worker->killed) { mutex_unlock(&worker->mutex); return; } mutex_lock(&vq->mutex); old_worker = rcu_dereference_check(vq->worker, lockdep_is_held(&vq->mutex)); rcu_assign_pointer(vq->worker, worker); worker->attachment_cnt++; if (!old_worker) { mutex_unlock(&vq->mutex); mutex_unlock(&worker->mutex); return; } mutex_unlock(&vq->mutex); mutex_unlock(&worker->mutex); /* * Take the worker mutex to make sure we see the work queued from * device wide flushes which doesn't use RCU for execution. */ mutex_lock(&old_worker->mutex); if (old_worker->killed) { mutex_unlock(&old_worker->mutex); return; } /* * We don't want to call synchronize_rcu for every vq during setup * because it will slow down VM startup. If we haven't done * VHOST_SET_VRING_KICK and not done the driver specific * SET_ENDPOINT/RUNNING then we can skip the sync since there will * not be any works queued for scsi and net. */ mutex_lock(&vq->mutex); if (!vhost_vq_get_backend(vq) && !vq->kick) { mutex_unlock(&vq->mutex); old_worker->attachment_cnt--; mutex_unlock(&old_worker->mutex); /* * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID. * Warn if it adds support for multiple workers but forgets to * handle the early queueing case. */ WARN_ON(!old_worker->attachment_cnt && !llist_empty(&old_worker->work_list)); return; } mutex_unlock(&vq->mutex); /* Make sure new vq queue/flush/poll calls see the new worker */ synchronize_rcu(); /* Make sure whatever was queued gets run */ __vhost_worker_flush(old_worker); old_worker->attachment_cnt--; mutex_unlock(&old_worker->mutex); } /* Caller must have device mutex */ static int vhost_vq_attach_worker(struct vhost_virtqueue *vq, struct vhost_vring_worker *info) { unsigned long index = info->worker_id; struct vhost_dev *dev = vq->dev; struct vhost_worker *worker; if (!dev->use_worker) return -EINVAL; worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); if (!worker || worker->id != info->worker_id) return -ENODEV; __vhost_vq_attach_worker(vq, worker); return 0; } /* Caller must have device mutex */ static int vhost_new_worker(struct vhost_dev *dev, struct vhost_worker_state *info) { struct vhost_worker *worker; worker = vhost_worker_create(dev); if (!worker) return -ENOMEM; info->worker_id = worker->id; return 0; } /* Caller must have device mutex */ static int vhost_free_worker(struct vhost_dev *dev, struct vhost_worker_state *info) { unsigned long index = info->worker_id; struct vhost_worker *worker; worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); if (!worker || worker->id != info->worker_id) return -ENODEV; mutex_lock(&worker->mutex); if (worker->attachment_cnt || worker->killed) { mutex_unlock(&worker->mutex); return -EBUSY; } /* * A flush might have raced and snuck in before attachment_cnt was set * to zero. Make sure flushes are flushed from the queue before * freeing. */ __vhost_worker_flush(worker); mutex_unlock(&worker->mutex); vhost_worker_destroy(dev, worker); return 0; } static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp, struct vhost_virtqueue **vq, u32 *id) { u32 __user *idxp = argp; u32 idx; long r; r = get_user(idx, idxp); if (r < 0) return r; if (idx >= dev->nvqs) return -ENOBUFS; idx = array_index_nospec(idx, dev->nvqs); *vq = dev->vqs[idx]; *id = idx; return 0; } /* Caller must have device mutex */ long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl, void __user *argp) { struct vhost_vring_worker ring_worker; struct vhost_worker_state state; struct vhost_worker *worker; struct vhost_virtqueue *vq; long ret; u32 idx; if (!dev->use_worker) return -EINVAL; if (!vhost_dev_has_owner(dev)) return -EINVAL; ret = vhost_dev_check_owner(dev); if (ret) return ret; switch (ioctl) { /* dev worker ioctls */ case VHOST_NEW_WORKER: /* * vhost_tasks will account for worker threads under the parent's * NPROC value but kthreads do not. To avoid userspace overflowing * the system with worker threads fork_owner must be true. */ if (!dev->fork_owner) return -EFAULT; ret = vhost_new_worker(dev, &state); if (!ret && copy_to_user(argp, &state, sizeof(state))) ret = -EFAULT; return ret; case VHOST_FREE_WORKER: if (copy_from_user(&state, argp, sizeof(state))) return -EFAULT; return vhost_free_worker(dev, &state); /* vring worker ioctls */ case VHOST_ATTACH_VRING_WORKER: case VHOST_GET_VRING_WORKER: break; default: return -ENOIOCTLCMD; } ret = vhost_get_vq_from_user(dev, argp, &vq, &idx); if (ret) return ret; switch (ioctl) { case VHOST_ATTACH_VRING_WORKER: if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) { ret = -EFAULT; break; } ret = vhost_vq_attach_worker(vq, &ring_worker); break; case VHOST_GET_VRING_WORKER: worker = rcu_dereference_check(vq->worker, lockdep_is_held(&dev->mutex)); if (!worker) { ret = -EINVAL; break; } ring_worker.index = idx; ring_worker.worker_id = worker->id; if (copy_to_user(argp, &ring_worker, sizeof(ring_worker))) ret = -EFAULT; break; default: ret = -ENOIOCTLCMD; break; } return ret; } EXPORT_SYMBOL_GPL(vhost_worker_ioctl); /* Caller should have device mutex */ long vhost_dev_set_owner(struct vhost_dev *dev) { struct vhost_worker *worker; int err, i; /* Is there an owner already? */ if (vhost_dev_has_owner(dev)) { err = -EBUSY; goto err_mm; } vhost_attach_mm(dev); err = vhost_dev_alloc_iovecs(dev); if (err) goto err_iovecs; if (dev->use_worker) { /* * This should be done last, because vsock can queue work * before VHOST_SET_OWNER so it simplifies the failure path * below since we don't have to worry about vsock queueing * while we free the worker. */ worker = vhost_worker_create(dev); if (!worker) { err = -ENOMEM; goto err_worker; } for (i = 0; i < dev->nvqs; i++) __vhost_vq_attach_worker(dev->vqs[i], worker); } return 0; err_worker: vhost_dev_free_iovecs(dev); err_iovecs: vhost_detach_mm(dev); err_mm: return err; } EXPORT_SYMBOL_GPL(vhost_dev_set_owner); static struct vhost_iotlb *iotlb_alloc(void) { return vhost_iotlb_alloc(max_iotlb_entries, VHOST_IOTLB_FLAG_RETIRE); } struct vhost_iotlb *vhost_dev_reset_owner_prepare(void) { return iotlb_alloc(); } EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); /* Caller should have device mutex */ void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem) { int i; vhost_dev_cleanup(dev); dev->fork_owner = fork_from_owner_default; dev->umem = umem; /* We don't need VQ locks below since vhost_dev_cleanup makes sure * VQs aren't running. */ for (i = 0; i < dev->nvqs; ++i) dev->vqs[i]->umem = umem; } EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); void vhost_dev_stop(struct vhost_dev *dev) { int i; for (i = 0; i < dev->nvqs; ++i) { if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) vhost_poll_stop(&dev->vqs[i]->poll); } vhost_dev_flush(dev); } EXPORT_SYMBOL_GPL(vhost_dev_stop); void vhost_clear_msg(struct vhost_dev *dev) { struct vhost_msg_node *node, *n; spin_lock(&dev->iotlb_lock); list_for_each_entry_safe(node, n, &dev->read_list, node) { list_del(&node->node); kfree(node); } list_for_each_entry_safe(node, n, &dev->pending_list, node) { list_del(&node->node); kfree(node); } spin_unlock(&dev->iotlb_lock); } EXPORT_SYMBOL_GPL(vhost_clear_msg); void vhost_dev_cleanup(struct vhost_dev *dev) { int i; for (i = 0; i < dev->nvqs; ++i) { if (dev->vqs[i]->error_ctx) eventfd_ctx_put(dev->vqs[i]->error_ctx); if (dev->vqs[i]->kick) fput(dev->vqs[i]->kick); if (dev->vqs[i]->call_ctx.ctx) eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx); vhost_vq_reset(dev, dev->vqs[i]); } vhost_dev_free_iovecs(dev); if (dev->log_ctx) eventfd_ctx_put(dev->log_ctx); dev->log_ctx = NULL; /* No one will access memory at this point */ vhost_iotlb_free(dev->umem); dev->umem = NULL; vhost_iotlb_free(dev->iotlb); dev->iotlb = NULL; vhost_clear_msg(dev); wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); vhost_workers_free(dev); vhost_detach_mm(dev); } EXPORT_SYMBOL_GPL(vhost_dev_cleanup); static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) { u64 a = addr / VHOST_PAGE_SIZE / 8; /* Make sure 64 bit math will not overflow. */ if (a > ULONG_MAX - (unsigned long)log_base || a + (unsigned long)log_base > ULONG_MAX) return false; return access_ok(log_base + a, (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); } /* Make sure 64 bit math will not overflow. */ static bool vhost_overflow(u64 uaddr, u64 size) { if (uaddr > ULONG_MAX || size > ULONG_MAX) return true; if (!size) return false; return uaddr > ULONG_MAX - size + 1; } /* Caller should have vq mutex and device mutex. */ static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem, int log_all) { struct vhost_iotlb_map *map; if (!umem) return false; list_for_each_entry(map, &umem->list, link) { unsigned long a = map->addr; if (vhost_overflow(map->addr, map->size)) return false; if (!access_ok((void __user *)a, map->size)) return false; else if (log_all && !log_access_ok(log_base, map->start, map->size)) return false; } return true; } static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, u64 addr, unsigned int size, int type) { const struct vhost_iotlb_map *map = vq->meta_iotlb[type]; if (!map) return NULL; return (void __user *)(uintptr_t)(map->addr + addr - map->start); } /* Can we switch to this memory table? */ /* Caller should have device mutex but not vq mutex */ static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem, int log_all) { int i; for (i = 0; i < d->nvqs; ++i) { bool ok; bool log; mutex_lock(&d->vqs[i]->mutex); log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); /* If ring is inactive, will check when it's enabled. */ if (d->vqs[i]->private_data) ok = vq_memory_access_ok(d->vqs[i]->log_base, umem, log); else ok = true; mutex_unlock(&d->vqs[i]->mutex); if (!ok) return false; } return true; } static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, struct iovec iov[], int iov_size, int access); static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, const void *from, unsigned size) { int ret; if (!vq->iotlb) return __copy_to_user(to, from, size); else { /* This function should be called after iotlb * prefetch, which means we're sure that all vq * could be access through iotlb. So -EAGAIN should * not happen in this case. */ struct iov_iter t; void __user *uaddr = vhost_vq_meta_fetch(vq, (u64)(uintptr_t)to, size, VHOST_ADDR_USED); if (uaddr) return __copy_to_user(uaddr, from, size); ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, ARRAY_SIZE(vq->iotlb_iov), VHOST_ACCESS_WO); if (ret < 0) goto out; iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size); ret = copy_to_iter(from, size, &t); if (ret == size) ret = 0; } out: return ret; } static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, void __user *from, unsigned size) { int ret; if (!vq->iotlb) return __copy_from_user(to, from, size); else { /* This function should be called after iotlb * prefetch, which means we're sure that vq * could be access through iotlb. So -EAGAIN should * not happen in this case. */ void __user *uaddr = vhost_vq_meta_fetch(vq, (u64)(uintptr_t)from, size, VHOST_ADDR_DESC); struct iov_iter f; if (uaddr) return __copy_from_user(to, uaddr, size); ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, ARRAY_SIZE(vq->iotlb_iov), VHOST_ACCESS_RO); if (ret < 0) { vq_err(vq, "IOTLB translation failure: uaddr " "%p size 0x%llx\n", from, (unsigned long long) size); goto out; } iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size); ret = copy_from_iter(to, size, &f); if (ret == size) ret = 0; } out: return ret; } static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, void __user *addr, unsigned int size, int type) { int ret; ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, ARRAY_SIZE(vq->iotlb_iov), VHOST_ACCESS_RO); if (ret < 0) { vq_err(vq, "IOTLB translation failure: uaddr " "%p size 0x%llx\n", addr, (unsigned long long) size); return NULL; } if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { vq_err(vq, "Non atomic userspace memory access: uaddr " "%p size 0x%llx\n", addr, (unsigned long long) size); return NULL; } return vq->iotlb_iov[0].iov_base; } /* This function should be called after iotlb * prefetch, which means we're sure that vq * could be access through iotlb. So -EAGAIN should * not happen in this case. */ static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, void __user *addr, unsigned int size, int type) { void __user *uaddr = vhost_vq_meta_fetch(vq, (u64)(uintptr_t)addr, size, type); if (uaddr) return uaddr; return __vhost_get_user_slow(vq, addr, size, type); } #define vhost_put_user(vq, x, ptr) \ ({ \ int ret; \ if (!vq->iotlb) { \ ret = __put_user(x, ptr); \ } else { \ __typeof__(ptr) to = \ (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ sizeof(*ptr), VHOST_ADDR_USED); \ if (to != NULL) \ ret = __put_user(x, to); \ else \ ret = -EFAULT; \ } \ ret; \ }) static inline int vhost_put_avail_event(struct vhost_virtqueue *vq) { return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), vhost_avail_event(vq)); } static inline int vhost_put_used(struct vhost_virtqueue *vq, struct vring_used_elem *head, int idx, int count) { return vhost_copy_to_user(vq, vq->used->ring + idx, head, count * sizeof(*head)); } static inline int vhost_put_used_flags(struct vhost_virtqueue *vq) { return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), &vq->used->flags); } static inline int vhost_put_used_idx(struct vhost_virtqueue *vq) { return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), &vq->used->idx); } #define vhost_get_user(vq, x, ptr, type) \ ({ \ int ret; \ if (!vq->iotlb) { \ ret = __get_user(x, ptr); \ } else { \ __typeof__(ptr) from = \ (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ sizeof(*ptr), \ type); \ if (from != NULL) \ ret = __get_user(x, from); \ else \ ret = -EFAULT; \ } \ ret; \ }) #define vhost_get_avail(vq, x, ptr) \ vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) #define vhost_get_used(vq, x, ptr) \ vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) static void vhost_dev_lock_vqs(struct vhost_dev *d) { int i = 0; for (i = 0; i < d->nvqs; ++i) mutex_lock_nested(&d->vqs[i]->mutex, i); } static void vhost_dev_unlock_vqs(struct vhost_dev *d) { int i = 0; for (i = 0; i < d->nvqs; ++i) mutex_unlock(&d->vqs[i]->mutex); } static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq) { __virtio16 idx; int r; r = vhost_get_avail(vq, idx, &vq->avail->idx); if (unlikely(r < 0)) { vq_err(vq, "Failed to access available index at %p (%d)\n", &vq->avail->idx, r); return r; } /* Check it isn't doing very strange thing with available indexes */ vq->avail_idx = vhost16_to_cpu(vq, idx); if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) { vq_err(vq, "Invalid available index change from %u to %u", vq->last_avail_idx, vq->avail_idx); return -EINVAL; } /* We're done if there is nothing new */ if (vq->avail_idx == vq->last_avail_idx) return 0; /* * We updated vq->avail_idx so we need a memory barrier between * the index read above and the caller reading avail ring entries. */ smp_rmb(); return 1; } static inline int vhost_get_avail_head(struct vhost_virtqueue *vq, __virtio16 *head, int idx) { return vhost_get_avail(vq, *head, &vq->avail->ring[idx & (vq->num - 1)]); } static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq, __virtio16 *flags) { return vhost_get_avail(vq, *flags, &vq->avail->flags); } static inline int vhost_get_used_event(struct vhost_virtqueue *vq, __virtio16 *event) { return vhost_get_avail(vq, *event, vhost_used_event(vq)); } static inline int vhost_get_used_idx(struct vhost_virtqueue *vq, __virtio16 *idx) { return vhost_get_used(vq, *idx, &vq->used->idx); } static inline int vhost_get_desc(struct vhost_virtqueue *vq, struct vring_desc *desc, int idx) { return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc)); } static void vhost_iotlb_notify_vq(struct vhost_dev *d, struct vhost_iotlb_msg *msg) { struct vhost_msg_node *node, *n; spin_lock(&d->iotlb_lock); list_for_each_entry_safe(node, n, &d->pending_list, node) { struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; if (msg->iova <= vq_msg->iova && msg->iova + msg->size - 1 >= vq_msg->iova && vq_msg->type == VHOST_IOTLB_MISS) { vhost_poll_queue(&node->vq->poll); list_del(&node->node); kfree(node); } } spin_unlock(&d->iotlb_lock); } static bool umem_access_ok(u64 uaddr, u64 size, int access) { unsigned long a = uaddr; /* Make sure 64 bit math will not overflow. */ if (vhost_overflow(uaddr, size)) return false; if ((access & VHOST_ACCESS_RO) && !access_ok((void __user *)a, size)) return false; if ((access & VHOST_ACCESS_WO) && !access_ok((void __user *)a, size)) return false; return true; } static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid, struct vhost_iotlb_msg *msg) { int ret = 0; if (asid != 0) return -EINVAL; mutex_lock(&dev->mutex); vhost_dev_lock_vqs(dev); switch (msg->type) { case VHOST_IOTLB_UPDATE: if (!dev->iotlb) { ret = -EFAULT; break; } if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { ret = -EFAULT; break; } vhost_vq_meta_reset(dev); if (vhost_iotlb_add_range(dev->iotlb, msg->iova, msg->iova + msg->size - 1, msg->uaddr, msg->perm)) { ret = -ENOMEM; break; } vhost_iotlb_notify_vq(dev, msg); break; case VHOST_IOTLB_INVALIDATE: if (!dev->iotlb) { ret = -EFAULT; break; } vhost_vq_meta_reset(dev); vhost_iotlb_del_range(dev->iotlb, msg->iova, msg->iova + msg->size - 1); break; default: ret = -EINVAL; break; } vhost_dev_unlock_vqs(dev); mutex_unlock(&dev->mutex); return ret; } ssize_t vhost_chr_write_iter(struct vhost_dev *dev, struct iov_iter *from) { struct vhost_iotlb_msg msg; size_t offset; int type, ret; u32 asid = 0; ret = copy_from_iter(&type, sizeof(type), from); if (ret != sizeof(type)) { ret = -EINVAL; goto done; } switch (type) { case VHOST_IOTLB_MSG: /* There maybe a hole after type for V1 message type, * so skip it here. */ offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); break; case VHOST_IOTLB_MSG_V2: if (vhost_backend_has_feature(dev->vqs[0], VHOST_BACKEND_F_IOTLB_ASID)) { ret = copy_from_iter(&asid, sizeof(asid), from); if (ret != sizeof(asid)) { ret = -EINVAL; goto done; } offset = 0; } else offset = sizeof(__u32); break; default: ret = -EINVAL; goto done; } iov_iter_advance(from, offset); ret = copy_from_iter(&msg, sizeof(msg), from); if (ret != sizeof(msg)) { ret = -EINVAL; goto done; } if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) { ret = -EINVAL; goto done; } if (dev->msg_handler) ret = dev->msg_handler(dev, asid, &msg); else ret = vhost_process_iotlb_msg(dev, asid, &msg); if (ret) { ret = -EFAULT; goto done; } ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : sizeof(struct vhost_msg_v2); done: return ret; } EXPORT_SYMBOL(vhost_chr_write_iter); __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, poll_table *wait) { __poll_t mask = 0; poll_wait(file, &dev->wait, wait); if (!list_empty(&dev->read_list)) mask |= EPOLLIN | EPOLLRDNORM; return mask; } EXPORT_SYMBOL(vhost_chr_poll); ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, int noblock) { DEFINE_WAIT(wait); struct vhost_msg_node *node; ssize_t ret = 0; unsigned size = sizeof(struct vhost_msg); if (iov_iter_count(to) < size) return 0; while (1) { if (!noblock) prepare_to_wait(&dev->wait, &wait, TASK_INTERRUPTIBLE); node = vhost_dequeue_msg(dev, &dev->read_list); if (node) break; if (noblock) { ret = -EAGAIN; break; } if (signal_pending(current)) { ret = -ERESTARTSYS; break; } if (!dev->iotlb) { ret = -EBADFD; break; } schedule(); } if (!noblock) finish_wait(&dev->wait, &wait); if (node) { struct vhost_iotlb_msg *msg; void *start = &node->msg; switch (node->msg.type) { case VHOST_IOTLB_MSG: size = sizeof(node->msg); msg = &node->msg.iotlb; break; case VHOST_IOTLB_MSG_V2: size = sizeof(node->msg_v2); msg = &node->msg_v2.iotlb; break; default: BUG(); break; } ret = copy_to_iter(start, size, to); if (ret != size || msg->type != VHOST_IOTLB_MISS) { kfree(node); return ret; } vhost_enqueue_msg(dev, &dev->pending_list, node); } return ret; } EXPORT_SYMBOL_GPL(vhost_chr_read_iter); static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) { struct vhost_dev *dev = vq->dev; struct vhost_msg_node *node; struct vhost_iotlb_msg *msg; bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); if (!node) return -ENOMEM; if (v2) { node->msg_v2.type = VHOST_IOTLB_MSG_V2; msg = &node->msg_v2.iotlb; } else { msg = &node->msg.iotlb; } msg->type = VHOST_IOTLB_MISS; msg->iova = iova; msg->perm = access; vhost_enqueue_msg(dev, &dev->read_list, node); return 0; } static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, vring_desc_t __user *desc, vring_avail_t __user *avail, vring_used_t __user *used) { /* If an IOTLB device is present, the vring addresses are * GIOVAs. Access validation occurs at prefetch time. */ if (vq->iotlb) return true; return access_ok(desc, vhost_get_desc_size(vq, num)) && access_ok(avail, vhost_get_avail_size(vq, num)) && access_ok(used, vhost_get_used_size(vq, num)); } static void vhost_vq_meta_update(struct vhost_virtqueue *vq, const struct vhost_iotlb_map *map, int type) { int access = (type == VHOST_ADDR_USED) ? VHOST_ACCESS_WO : VHOST_ACCESS_RO; if (likely(map->perm & access)) vq->meta_iotlb[type] = map; } static bool iotlb_access_ok(struct vhost_virtqueue *vq, int access, u64 addr, u64 len, int type) { const struct vhost_iotlb_map *map; struct vhost_iotlb *umem = vq->iotlb; u64 s = 0, size, orig_addr = addr, last = addr + len - 1; if (vhost_vq_meta_fetch(vq, addr, len, type)) return true; while (len > s) { map = vhost_iotlb_itree_first(umem, addr, last); if (map == NULL || map->start > addr) { vhost_iotlb_miss(vq, addr, access); return false; } else if (!(map->perm & access)) { /* Report the possible access violation by * request another translation from userspace. */ return false; } size = map->size - addr + map->start; if (orig_addr == addr && size >= len) vhost_vq_meta_update(vq, map, type); s += size; addr += size; } return true; } int vq_meta_prefetch(struct vhost_virtqueue *vq) { unsigned int num = vq->num; if (!vq->iotlb) return 1; return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc, vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) && iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail, vhost_get_avail_size(vq, num), VHOST_ADDR_AVAIL) && iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used, vhost_get_used_size(vq, num), VHOST_ADDR_USED); } EXPORT_SYMBOL_GPL(vq_meta_prefetch); /* Can we log writes? */ /* Caller should have device mutex but not vq mutex */ bool vhost_log_access_ok(struct vhost_dev *dev) { return memory_access_ok(dev, dev->umem, 1); } EXPORT_SYMBOL_GPL(vhost_log_access_ok); static bool vq_log_used_access_ok(struct vhost_virtqueue *vq, void __user *log_base, bool log_used, u64 log_addr) { /* If an IOTLB device is present, log_addr is a GIOVA that * will never be logged by log_used(). */ if (vq->iotlb) return true; return !log_used || log_access_ok(log_base, log_addr, vhost_get_used_size(vq, vq->num)); } /* Verify access for write logging. */ /* Caller should have vq mutex and device mutex */ static bool vq_log_access_ok(struct vhost_virtqueue *vq, void __user *log_base) { return vq_memory_access_ok(log_base, vq->umem, vhost_has_feature(vq, VHOST_F_LOG_ALL)) && vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr); } /* Can we start vq? */ /* Caller should have vq mutex and device mutex */ bool vhost_vq_access_ok(struct vhost_virtqueue *vq) { if (!vq_log_access_ok(vq, vq->log_base)) return false; return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); } EXPORT_SYMBOL_GPL(vhost_vq_access_ok); static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) { struct vhost_memory mem, *newmem; struct vhost_memory_region *region; struct vhost_iotlb *newumem, *oldumem; unsigned long size = offsetof(struct vhost_memory, regions); int i; if (copy_from_user(&mem, m, size)) return -EFAULT; if (mem.padding) return -EOPNOTSUPP; if (mem.nregions > max_mem_regions) return -E2BIG; newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), GFP_KERNEL); if (!newmem) return -ENOMEM; memcpy(newmem, &mem, size); if (copy_from_user(newmem->regions, m->regions, flex_array_size(newmem, regions, mem.nregions))) { kvfree(newmem); return -EFAULT; } newumem = iotlb_alloc(); if (!newumem) { kvfree(newmem); return -ENOMEM; } for (region = newmem->regions; region < newmem->regions + mem.nregions; region++) { if (vhost_iotlb_add_range(newumem, region->guest_phys_addr, region->guest_phys_addr + region->memory_size - 1, region->userspace_addr, VHOST_MAP_RW)) goto err; } if (!memory_access_ok(d, newumem, 0)) goto err; oldumem = d->umem; d->umem = newumem; /* All memory accesses are done under some VQ mutex. */ for (i = 0; i < d->nvqs; ++i) { mutex_lock(&d->vqs[i]->mutex); d->vqs[i]->umem = newumem; mutex_unlock(&d->vqs[i]->mutex); } kvfree(newmem); vhost_iotlb_free(oldumem); return 0; err: vhost_iotlb_free(newumem); kvfree(newmem); return -EFAULT; } static long vhost_vring_set_num(struct vhost_dev *d, struct vhost_virtqueue *vq, void __user *argp) { struct vhost_vring_state s; /* Resizing ring with an active backend? * You don't want to do that. */ if (vq->private_data) return -EBUSY; if (copy_from_user(&s, argp, sizeof s)) return -EFAULT; if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) return -EINVAL; vq->num = s.num; return 0; } static long vhost_vring_set_addr(struct vhost_dev *d, struct vhost_virtqueue *vq, void __user *argp) { struct vhost_vring_addr a; if (copy_from_user(&a, argp, sizeof a)) return -EFAULT; if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) return -EOPNOTSUPP; /* For 32bit, verify that the top 32bits of the user data are set to zero. */ if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || (u64)(unsigned long)a.used_user_addr != a.used_user_addr || (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) return -EFAULT; /* Make sure it's safe to cast pointers to vring types. */ BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) return -EINVAL; /* We only verify access here if backend is configured. * If it is not, we don't as size might not have been setup. * We will verify when backend is configured. */ if (vq->private_data) { if (!vq_access_ok(vq, vq->num, (void __user *)(unsigned long)a.desc_user_addr, (void __user *)(unsigned long)a.avail_user_addr, (void __user *)(unsigned long)a.used_user_addr)) return -EINVAL; /* Also validate log access for used ring if enabled. */ if (!vq_log_used_access_ok(vq, vq->log_base, a.flags & (0x1 << VHOST_VRING_F_LOG), a.log_guest_addr)) return -EINVAL; } vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); vq->desc = (void __user *)(unsigned long)a.desc_user_addr; vq->avail = (void __user *)(unsigned long)a.avail_user_addr; vq->log_addr = a.log_guest_addr; vq->used = (void __user *)(unsigned long)a.used_user_addr; return 0; } static long vhost_vring_set_num_addr(struct vhost_dev *d, struct vhost_virtqueue *vq, unsigned int ioctl, void __user *argp) { long r; mutex_lock(&vq->mutex); switch (ioctl) { case VHOST_SET_VRING_NUM: r = vhost_vring_set_num(d, vq, argp); break; case VHOST_SET_VRING_ADDR: r = vhost_vring_set_addr(d, vq, argp); break; default: BUG(); } mutex_unlock(&vq->mutex); return r; } long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) { struct file *eventfp, *filep = NULL; bool pollstart = false, pollstop = false; struct eventfd_ctx *ctx = NULL; struct vhost_virtqueue *vq; struct vhost_vring_state s; struct vhost_vring_file f; u32 idx; long r; r = vhost_get_vq_from_user(d, argp, &vq, &idx); if (r < 0) return r; if (ioctl == VHOST_SET_VRING_NUM || ioctl == VHOST_SET_VRING_ADDR) { return vhost_vring_set_num_addr(d, vq, ioctl, argp); } mutex_lock(&vq->mutex); switch (ioctl) { case VHOST_SET_VRING_BASE: /* Moving base with an active backend? * You don't want to do that. */ if (vq->private_data) { r = -EBUSY; break; } if (copy_from_user(&s, argp, sizeof s)) { r = -EFAULT; break; } if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) { vq->next_avail_head = vq->last_avail_idx = s.num & 0xffff; vq->last_used_idx = (s.num >> 16) & 0xffff; } else { if (s.num > 0xffff) { r = -EINVAL; break; } vq->next_avail_head = vq->last_avail_idx = s.num; } /* Forget the cached index value. */ vq->avail_idx = vq->last_avail_idx; break; case VHOST_GET_VRING_BASE: s.index = idx; if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16); else s.num = vq->last_avail_idx; if (copy_to_user(argp, &s, sizeof s)) r = -EFAULT; break; case VHOST_SET_VRING_KICK: if (copy_from_user(&f, argp, sizeof f)) { r = -EFAULT; break; } eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd); if (IS_ERR(eventfp)) { r = PTR_ERR(eventfp); break; } if (eventfp != vq->kick) { pollstop = (filep = vq->kick) != NULL; pollstart = (vq->kick = eventfp) != NULL; } else filep = eventfp; break; case VHOST_SET_VRING_CALL: if (copy_from_user(&f, argp, sizeof f)) { r = -EFAULT; break; } ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); if (IS_ERR(ctx)) { r = PTR_ERR(ctx); break; } swap(ctx, vq->call_ctx.ctx); break; case VHOST_SET_VRING_ERR: if (copy_from_user(&f, argp, sizeof f)) { r = -EFAULT; break; } ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); if (IS_ERR(ctx)) { r = PTR_ERR(ctx); break; } swap(ctx, vq->error_ctx); break; case VHOST_SET_VRING_ENDIAN: r = vhost_set_vring_endian(vq, argp); break; case VHOST_GET_VRING_ENDIAN: r = vhost_get_vring_endian(vq, idx, argp); break; case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: if (copy_from_user(&s, argp, sizeof(s))) { r = -EFAULT; break; } vq->busyloop_timeout = s.num; break; case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: s.index = idx; s.num = vq->busyloop_timeout; if (copy_to_user(argp, &s, sizeof(s))) r = -EFAULT; break; default: r = -ENOIOCTLCMD; } if (pollstop && vq->handle_kick) vhost_poll_stop(&vq->poll); if (!IS_ERR_OR_NULL(ctx)) eventfd_ctx_put(ctx); if (filep) fput(filep); if (pollstart && vq->handle_kick) r = vhost_poll_start(&vq->poll, vq->kick); mutex_unlock(&vq->mutex); if (pollstop && vq->handle_kick) vhost_dev_flush(vq->poll.dev); return r; } EXPORT_SYMBOL_GPL(vhost_vring_ioctl); int vhost_init_device_iotlb(struct vhost_dev *d) { struct vhost_iotlb *niotlb, *oiotlb; int i; niotlb = iotlb_alloc(); if (!niotlb) return -ENOMEM; oiotlb = d->iotlb; d->iotlb = niotlb; for (i = 0; i < d->nvqs; ++i) { struct vhost_virtqueue *vq = d->vqs[i]; mutex_lock(&vq->mutex); vq->iotlb = niotlb; __vhost_vq_meta_reset(vq); mutex_unlock(&vq->mutex); } vhost_iotlb_free(oiotlb); return 0; } EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); /* Caller must have device mutex */ long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) { struct eventfd_ctx *ctx; u64 p; long r; int i, fd; /* If you are not the owner, you can become one */ if (ioctl == VHOST_SET_OWNER) { r = vhost_dev_set_owner(d); goto done; } #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL if (ioctl == VHOST_SET_FORK_FROM_OWNER) { /* Only allow modification before owner is set */ if (vhost_dev_has_owner(d)) { r = -EBUSY; goto done; } u8 fork_owner_val; if (get_user(fork_owner_val, (u8 __user *)argp)) { r = -EFAULT; goto done; } if (fork_owner_val != VHOST_FORK_OWNER_TASK && fork_owner_val != VHOST_FORK_OWNER_KTHREAD) { r = -EINVAL; goto done; } d->fork_owner = !!fork_owner_val; r = 0; goto done; } if (ioctl == VHOST_GET_FORK_FROM_OWNER) { u8 fork_owner_val = d->fork_owner; if (fork_owner_val != VHOST_FORK_OWNER_TASK && fork_owner_val != VHOST_FORK_OWNER_KTHREAD) { r = -EINVAL; goto done; } if (put_user(fork_owner_val, (u8 __user *)argp)) { r = -EFAULT; goto done; } r = 0; goto done; } #endif /* You must be the owner to do anything else */ r = vhost_dev_check_owner(d); if (r) goto done; switch (ioctl) { case VHOST_SET_MEM_TABLE: r = vhost_set_memory(d, argp); break; case VHOST_SET_LOG_BASE: if (copy_from_user(&p, argp, sizeof p)) { r = -EFAULT; break; } if ((u64)(unsigned long)p != p) { r = -EFAULT; break; } for (i = 0; i < d->nvqs; ++i) { struct vhost_virtqueue *vq; void __user *base = (void __user *)(unsigned long)p; vq = d->vqs[i]; mutex_lock(&vq->mutex); /* If ring is inactive, will check when it's enabled. */ if (vq->private_data && !vq_log_access_ok(vq, base)) r = -EFAULT; else vq->log_base = base; mutex_unlock(&vq->mutex); } break; case VHOST_SET_LOG_FD: r = get_user(fd, (int __user *)argp); if (r < 0) break; ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd); if (IS_ERR(ctx)) { r = PTR_ERR(ctx); break; } swap(ctx, d->log_ctx); for (i = 0; i < d->nvqs; ++i) { mutex_lock(&d->vqs[i]->mutex); d->vqs[i]->log_ctx = d->log_ctx; mutex_unlock(&d->vqs[i]->mutex); } if (ctx) eventfd_ctx_put(ctx); break; default: r = -ENOIOCTLCMD; break; } done: return r; } EXPORT_SYMBOL_GPL(vhost_dev_ioctl); /* TODO: This is really inefficient. We need something like get_user() * (instruction directly accesses the data, with an exception table entry * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst. */ static int set_bit_to_user(int nr, void __user *addr) { unsigned long log = (unsigned long)addr; struct page *page; void *base; int bit = nr + (log % PAGE_SIZE) * 8; int r; r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page); if (r < 0) return r; BUG_ON(r != 1); base = kmap_atomic(page); set_bit(bit, base); kunmap_atomic(base); unpin_user_pages_dirty_lock(&page, 1, true); return 0; } static int log_write(void __user *log_base, u64 write_address, u64 write_length) { u64 write_page = write_address / VHOST_PAGE_SIZE; int r; if (!write_length) return 0; write_length += write_address % VHOST_PAGE_SIZE; for (;;) { u64 base = (u64)(unsigned long)log_base; u64 log = base + write_page / 8; int bit = write_page % 8; if ((u64)(unsigned long)log != log) return -EFAULT; r = set_bit_to_user(bit, (void __user *)(unsigned long)log); if (r < 0) return r; if (write_length <= VHOST_PAGE_SIZE) break; write_length -= VHOST_PAGE_SIZE; write_page += 1; } return r; } static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) { struct vhost_iotlb *umem = vq->umem; struct vhost_iotlb_map *u; u64 start, end, l, min; int r; bool hit = false; while (len) { min = len; /* More than one GPAs can be mapped into a single HVA. So * iterate all possible umems here to be safe. */ list_for_each_entry(u, &umem->list, link) { if (u->addr > hva - 1 + len || u->addr - 1 + u->size < hva) continue; start = max(u->addr, hva); end = min(u->addr - 1 + u->size, hva - 1 + len); l = end - start + 1; r = log_write(vq->log_base, u->start + start - u->addr, l); if (r < 0) return r; hit = true; min = min(l, min); } if (!hit) return -EFAULT; len -= min; hva += min; } return 0; } static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) { struct iovec *iov = vq->log_iov; int i, ret; if (!vq->iotlb) return log_write(vq->log_base, vq->log_addr + used_offset, len); ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, len, iov, 64, VHOST_ACCESS_WO); if (ret < 0) return ret; for (i = 0; i < ret; i++) { ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, iov[i].iov_len); if (ret) return ret; } return 0; } /* * vhost_log_write() - Log in dirty page bitmap * @vq: vhost virtqueue. * @log: Array of dirty memory in GPA. * @log_num: Size of vhost_log arrary. * @len: The total length of memory buffer to log in the dirty bitmap. * Some drivers may only partially use pages shared via the last * vring descriptor (i.e. vhost-net RX buffer). * Use (len == U64_MAX) to indicate the driver would log all * pages of vring descriptors. * @iov: Array of dirty memory in HVA. * @count: Size of iovec array. */ int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, unsigned int log_num, u64 len, struct iovec *iov, int count) { int i, r; /* Make sure data written is seen before log. */ smp_wmb(); if (vq->iotlb) { for (i = 0; i < count; i++) { r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, iov[i].iov_len); if (r < 0) return r; } return 0; } for (i = 0; i < log_num; ++i) { u64 l = min(log[i].len, len); r = log_write(vq->log_base, log[i].addr, l); if (r < 0) return r; if (len != U64_MAX) len -= l; } if (vq->log_ctx) eventfd_signal(vq->log_ctx); return 0; } EXPORT_SYMBOL_GPL(vhost_log_write); static int vhost_update_used_flags(struct vhost_virtqueue *vq) { void __user *used; if (vhost_put_used_flags(vq)) return -EFAULT; if (unlikely(vq->log_used)) { /* Make sure the flag is seen before log. */ smp_wmb(); /* Log used flag write. */ used = &vq->used->flags; log_used(vq, (used - (void __user *)vq->used), sizeof vq->used->flags); if (vq->log_ctx) eventfd_signal(vq->log_ctx); } return 0; } static int vhost_update_avail_event(struct vhost_virtqueue *vq) { if (vhost_put_avail_event(vq)) return -EFAULT; if (unlikely(vq->log_used)) { void __user *used; /* Make sure the event is seen before log. */ smp_wmb(); /* Log avail event write */ used = vhost_avail_event(vq); log_used(vq, (used - (void __user *)vq->used), sizeof *vhost_avail_event(vq)); if (vq->log_ctx) eventfd_signal(vq->log_ctx); } return 0; } int vhost_vq_init_access(struct vhost_virtqueue *vq) { __virtio16 last_used_idx; int r; bool is_le = vq->is_le; if (!vq->private_data) return 0; vhost_init_is_le(vq); r = vhost_update_used_flags(vq); if (r) goto err; vq->signalled_used_valid = false; if (!vq->iotlb && !access_ok(&vq->used->idx, sizeof vq->used->idx)) { r = -EFAULT; goto err; } r = vhost_get_used_idx(vq, &last_used_idx); if (r) { vq_err(vq, "Can't access used idx at %p\n", &vq->used->idx); goto err; } vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); return 0; err: vq->is_le = is_le; return r; } EXPORT_SYMBOL_GPL(vhost_vq_init_access); static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, struct iovec iov[], int iov_size, int access) { const struct vhost_iotlb_map *map; struct vhost_dev *dev = vq->dev; struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem; struct iovec *_iov; u64 s = 0, last = addr + len - 1; int ret = 0; while ((u64)len > s) { u64 size; if (unlikely(ret >= iov_size)) { ret = -ENOBUFS; break; } map = vhost_iotlb_itree_first(umem, addr, last); if (map == NULL || map->start > addr) { if (umem != dev->iotlb) { ret = -EFAULT; break; } ret = -EAGAIN; break; } else if (!(map->perm & access)) { ret = -EPERM; break; } _iov = iov + ret; size = map->size - addr + map->start; _iov->iov_len = min((u64)len - s, size); _iov->iov_base = (void __user *)(unsigned long) (map->addr + addr - map->start); s += size; addr += size; ++ret; } if (ret == -EAGAIN) vhost_iotlb_miss(vq, addr, access); return ret; } /* Each buffer in the virtqueues is actually a chain of descriptors. This * function returns the next descriptor in the chain, * or -1U if we're at the end. */ static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) { unsigned int next; /* If this descriptor says it doesn't chain, we're done. */ if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) return -1U; /* Check they're not leading us off end of descriptors. */ next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); return next; } static int get_indirect(struct vhost_virtqueue *vq, struct iovec iov[], unsigned int iov_size, unsigned int *out_num, unsigned int *in_num, struct vhost_log *log, unsigned int *log_num, struct vring_desc *indirect) { struct vring_desc desc; unsigned int i = 0, count, found = 0; u32 len = vhost32_to_cpu(vq, indirect->len); struct iov_iter from; int ret, access; /* Sanity check */ if (unlikely(len % sizeof desc)) { vq_err(vq, "Invalid length in indirect descriptor: " "len 0x%llx not multiple of 0x%zx\n", (unsigned long long)len, sizeof desc); return -EINVAL; } ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, UIO_MAXIOV, VHOST_ACCESS_RO); if (unlikely(ret < 0)) { if (ret != -EAGAIN) vq_err(vq, "Translation failure %d in indirect.\n", ret); return ret; } iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len); count = len / sizeof desc; /* Buffers are chained via a 16 bit next field, so * we can have at most 2^16 of these. */ if (unlikely(count > USHRT_MAX + 1)) { vq_err(vq, "Indirect buffer length too big: %d\n", indirect->len); return -E2BIG; } do { unsigned iov_count = *in_num + *out_num; if (unlikely(++found > count)) { vq_err(vq, "Loop detected: last one at %u " "indirect size %u\n", i, count); return -EINVAL; } if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); return -EINVAL; } if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); return -EINVAL; } if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) access = VHOST_ACCESS_WO; else access = VHOST_ACCESS_RO; ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), vhost32_to_cpu(vq, desc.len), iov + iov_count, iov_size - iov_count, access); if (unlikely(ret < 0)) { if (ret != -EAGAIN) vq_err(vq, "Translation failure %d indirect idx %d\n", ret, i); return ret; } /* If this is an input descriptor, increment that count. */ if (access == VHOST_ACCESS_WO) { *in_num += ret; if (unlikely(log && ret)) { log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); log[*log_num].len = vhost32_to_cpu(vq, desc.len); ++*log_num; } } else { /* If it's an output descriptor, they're all supposed * to come before any input descriptors. */ if (unlikely(*in_num)) { vq_err(vq, "Indirect descriptor " "has out after in: idx %d\n", i); return -EINVAL; } *out_num += ret; } } while ((i = next_desc(vq, &desc)) != -1); return 0; } /* This looks in the virtqueue and for the first available buffer, and converts * it to an iovec for convenient access. Since descriptors consist of some * number of output then some number of input descriptors, it's actually two * iovecs, but we pack them into one and note how many of each there were. * * This function returns the descriptor number found, or vq->num (which is * never a valid descriptor number) if none was found. A negative code is * returned on error. */ int vhost_get_vq_desc(struct vhost_virtqueue *vq, struct iovec iov[], unsigned int iov_size, unsigned int *out_num, unsigned int *in_num, struct vhost_log *log, unsigned int *log_num) { bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER); struct vring_desc desc; unsigned int i, head, found = 0; u16 last_avail_idx = vq->last_avail_idx; __virtio16 ring_head; int ret, access, c = 0; if (vq->avail_idx == vq->last_avail_idx) { ret = vhost_get_avail_idx(vq); if (unlikely(ret < 0)) return ret; if (!ret) return vq->num; } if (in_order) head = vq->next_avail_head & (vq->num - 1); else { /* Grab the next descriptor number they're * advertising, and increment the index we've seen. */ if (unlikely(vhost_get_avail_head(vq, &ring_head, last_avail_idx))) { vq_err(vq, "Failed to read head: idx %d address %p\n", last_avail_idx, &vq->avail->ring[last_avail_idx % vq->num]); return -EFAULT; } head = vhost16_to_cpu(vq, ring_head); } /* If their number is silly, that's an error. */ if (unlikely(head >= vq->num)) { vq_err(vq, "Guest says index %u > %u is available", head, vq->num); return -EINVAL; } /* When we start there are none of either input nor output. */ *out_num = *in_num = 0; if (unlikely(log)) *log_num = 0; i = head; do { unsigned iov_count = *in_num + *out_num; if (unlikely(i >= vq->num)) { vq_err(vq, "Desc index is %u > %u, head = %u", i, vq->num, head); return -EINVAL; } if (unlikely(++found > vq->num)) { vq_err(vq, "Loop detected: last one at %u " "vq size %u head %u\n", i, vq->num, head); return -EINVAL; } ret = vhost_get_desc(vq, &desc, i); if (unlikely(ret)) { vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", i, vq->desc + i); return -EFAULT; } if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { ret = get_indirect(vq, iov, iov_size, out_num, in_num, log, log_num, &desc); if (unlikely(ret < 0)) { if (ret != -EAGAIN) vq_err(vq, "Failure detected " "in indirect descriptor at idx %d\n", i); return ret; } ++c; continue; } if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) access = VHOST_ACCESS_WO; else access = VHOST_ACCESS_RO; ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), vhost32_to_cpu(vq, desc.len), iov + iov_count, iov_size - iov_count, access); if (unlikely(ret < 0)) { if (ret != -EAGAIN) vq_err(vq, "Translation failure %d descriptor idx %d\n", ret, i); return ret; } if (access == VHOST_ACCESS_WO) { /* If this is an input descriptor, * increment that count. */ *in_num += ret; if (unlikely(log && ret)) { log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); log[*log_num].len = vhost32_to_cpu(vq, desc.len); ++*log_num; } } else { /* If it's an output descriptor, they're all supposed * to come before any input descriptors. */ if (unlikely(*in_num)) { vq_err(vq, "Descriptor has out after in: " "idx %d\n", i); return -EINVAL; } *out_num += ret; } ++c; } while ((i = next_desc(vq, &desc)) != -1); /* On success, increment avail index. */ vq->last_avail_idx++; vq->next_avail_head += c; /* Assume notifications from guest are disabled at this point, * if they aren't we would need to update avail_event index. */ BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); return head; } EXPORT_SYMBOL_GPL(vhost_get_vq_desc); /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) { vq->last_avail_idx -= n; } EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); /* After we've used one of their buffers, we tell them about it. We'll then * want to notify the guest, using eventfd. */ int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) { struct vring_used_elem heads = { cpu_to_vhost32(vq, head), cpu_to_vhost32(vq, len) }; u16 nheads = 1; return vhost_add_used_n(vq, &heads, &nheads, 1); } EXPORT_SYMBOL_GPL(vhost_add_used); static int __vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, unsigned count) { vring_used_elem_t __user *used; u16 old, new; int start; start = vq->last_used_idx & (vq->num - 1); used = vq->used->ring + start; if (vhost_put_used(vq, heads, start, count)) { vq_err(vq, "Failed to write used"); return -EFAULT; } if (unlikely(vq->log_used)) { /* Make sure data is seen before log. */ smp_wmb(); /* Log used ring entry write. */ log_used(vq, ((void __user *)used - (void __user *)vq->used), count * sizeof *used); } old = vq->last_used_idx; new = (vq->last_used_idx += count); /* If the driver never bothers to signal in a very long while, * used index might wrap around. If that happens, invalidate * signalled_used index we stored. TODO: make sure driver * signals at least once in 2^16 and remove this. */ if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) vq->signalled_used_valid = false; return 0; } static int vhost_add_used_n_ooo(struct vhost_virtqueue *vq, struct vring_used_elem *heads, unsigned count) { int start, n, r; start = vq->last_used_idx & (vq->num - 1); n = vq->num - start; if (n < count) { r = __vhost_add_used_n(vq, heads, n); if (r < 0) return r; heads += n; count -= n; } return __vhost_add_used_n(vq, heads, count); } static int vhost_add_used_n_in_order(struct vhost_virtqueue *vq, struct vring_used_elem *heads, const u16 *nheads, unsigned count) { vring_used_elem_t __user *used; u16 old, new = vq->last_used_idx; int start, i; if (!nheads) return -EINVAL; start = vq->last_used_idx & (vq->num - 1); used = vq->used->ring + start; for (i = 0; i < count; i++) { if (vhost_put_used(vq, &heads[i], start, 1)) { vq_err(vq, "Failed to write used"); return -EFAULT; } start += nheads[i]; new += nheads[i]; if (start >= vq->num) start -= vq->num; } if (unlikely(vq->log_used)) { /* Make sure data is seen before log. */ smp_wmb(); /* Log used ring entry write. */ log_used(vq, ((void __user *)used - (void __user *)vq->used), (vq->num - start) * sizeof *used); if (start + count > vq->num) log_used(vq, 0, (start + count - vq->num) * sizeof *used); } old = vq->last_used_idx; vq->last_used_idx = new; /* If the driver never bothers to signal in a very long while, * used index might wrap around. If that happens, invalidate * signalled_used index we stored. TODO: make sure driver * signals at least once in 2^16 and remove this. */ if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) vq->signalled_used_valid = false; return 0; } /* After we've used one of their buffers, we tell them about it. We'll then * want to notify the guest, using eventfd. */ int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, u16 *nheads, unsigned count) { bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER); int r; if (!in_order || !nheads) r = vhost_add_used_n_ooo(vq, heads, count); else r = vhost_add_used_n_in_order(vq, heads, nheads, count); if (r < 0) return r; /* Make sure buffer is written before we update index. */ smp_wmb(); if (vhost_put_used_idx(vq)) { vq_err(vq, "Failed to increment used idx"); return -EFAULT; } if (unlikely(vq->log_used)) { /* Make sure used idx is seen before log. */ smp_wmb(); /* Log used index update. */ log_used(vq, offsetof(struct vring_used, idx), sizeof vq->used->idx); if (vq->log_ctx) eventfd_signal(vq->log_ctx); } return r; } EXPORT_SYMBOL_GPL(vhost_add_used_n); static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) { __u16 old, new; __virtio16 event; bool v; /* Flush out used index updates. This is paired * with the barrier that the Guest executes when enabling * interrupts. */ smp_mb(); if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && unlikely(vq->avail_idx == vq->last_avail_idx)) return true; if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { __virtio16 flags; if (vhost_get_avail_flags(vq, &flags)) { vq_err(vq, "Failed to get flags"); return true; } return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); } old = vq->signalled_used; v = vq->signalled_used_valid; new = vq->signalled_used = vq->last_used_idx; vq->signalled_used_valid = true; if (unlikely(!v)) return true; if (vhost_get_used_event(vq, &event)) { vq_err(vq, "Failed to get used event idx"); return true; } return vring_need_event(vhost16_to_cpu(vq, event), new, old); } /* This actually signals the guest, using eventfd. */ void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) { /* Signal the Guest tell them we used something up. */ if (vq->call_ctx.ctx && vhost_notify(dev, vq)) eventfd_signal(vq->call_ctx.ctx); } EXPORT_SYMBOL_GPL(vhost_signal); /* And here's the combo meal deal. Supersize me! */ void vhost_add_used_and_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq, unsigned int head, int len) { vhost_add_used(vq, head, len); vhost_signal(dev, vq); } EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); /* multi-buffer version of vhost_add_used_and_signal */ void vhost_add_used_and_signal_n(struct vhost_dev *dev, struct vhost_virtqueue *vq, struct vring_used_elem *heads, u16 *nheads, unsigned count) { vhost_add_used_n(vq, heads, nheads, count); vhost_signal(dev, vq); } EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); /* return true if we're sure that available ring is empty */ bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) { int r; if (vq->avail_idx != vq->last_avail_idx) return false; r = vhost_get_avail_idx(vq); /* Note: we treat error as non-empty here */ return r == 0; } EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); /* OK, now we need to know about added descriptors. */ bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) { int r; if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) return false; vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { r = vhost_update_used_flags(vq); if (r) { vq_err(vq, "Failed to enable notification at %p: %d\n", &vq->used->flags, r); return false; } } else { r = vhost_update_avail_event(vq); if (r) { vq_err(vq, "Failed to update avail event index at %p: %d\n", vhost_avail_event(vq), r); return false; } } /* They could have slipped one in as we were doing that: make * sure it's written, then check again. */ smp_mb(); r = vhost_get_avail_idx(vq); /* Note: we treat error as empty here */ if (unlikely(r < 0)) return false; return r; } EXPORT_SYMBOL_GPL(vhost_enable_notify); /* We don't need to be notified again. */ void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) { int r; if (vq->used_flags & VRING_USED_F_NO_NOTIFY) return; vq->used_flags |= VRING_USED_F_NO_NOTIFY; if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { r = vhost_update_used_flags(vq); if (r) vq_err(vq, "Failed to disable notification at %p: %d\n", &vq->used->flags, r); } } EXPORT_SYMBOL_GPL(vhost_disable_notify); /* Create a new message. */ struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) { /* Make sure all padding within the structure is initialized. */ struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return NULL; node->vq = vq; node->msg.type = type; return node; } EXPORT_SYMBOL_GPL(vhost_new_msg); void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, struct vhost_msg_node *node) { spin_lock(&dev->iotlb_lock); list_add_tail(&node->node, head); spin_unlock(&dev->iotlb_lock); wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); } EXPORT_SYMBOL_GPL(vhost_enqueue_msg); struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, struct list_head *head) { struct vhost_msg_node *node = NULL; spin_lock(&dev->iotlb_lock); if (!list_empty(head)) { node = list_first_entry(head, struct vhost_msg_node, node); list_del(&node->node); } spin_unlock(&dev->iotlb_lock); return node; } EXPORT_SYMBOL_GPL(vhost_dequeue_msg); void vhost_set_backend_features(struct vhost_dev *dev, u64 features) { struct vhost_virtqueue *vq; int i; mutex_lock(&dev->mutex); for (i = 0; i < dev->nvqs; ++i) { vq = dev->vqs[i]; mutex_lock(&vq->mutex); vq->acked_backend_features = features; mutex_unlock(&vq->mutex); } mutex_unlock(&dev->mutex); } EXPORT_SYMBOL_GPL(vhost_set_backend_features); static int __init vhost_init(void) { return 0; } static void __exit vhost_exit(void) { } module_init(vhost_init); module_exit(vhost_exit); MODULE_VERSION("0.0.1"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Michael S. Tsirkin"); MODULE_DESCRIPTION("Host kernel accelerator for virtio"); |
| 13 8 9 2 13 13 8 13 13 13 9 13 13 8 7 1 7 1 1 7 1 1 1 1 1 8 8 8 1 13 13 8 88 88 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | // SPDX-License-Identifier: GPL-2.0 #include <linux/in.h> #include <linux/inet.h> #include <linux/list.h> #include <linux/module.h> #include <linux/net.h> #include <linux/proc_fs.h> #include <linux/rculist.h> #include <linux/seq_file.h> #include <linux/socket.h> #include <net/inet_sock.h> #include <net/kcm.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/tcp.h> #ifdef CONFIG_PROC_FS static struct kcm_mux *kcm_get_first(struct seq_file *seq) { struct net *net = seq_file_net(seq); struct kcm_net *knet = net_generic(net, kcm_net_id); return list_first_or_null_rcu(&knet->mux_list, struct kcm_mux, kcm_mux_list); } static struct kcm_mux *kcm_get_next(struct kcm_mux *mux) { struct kcm_net *knet = mux->knet; return list_next_or_null_rcu(&knet->mux_list, &mux->kcm_mux_list, struct kcm_mux, kcm_mux_list); } static struct kcm_mux *kcm_get_idx(struct seq_file *seq, loff_t pos) { struct net *net = seq_file_net(seq); struct kcm_net *knet = net_generic(net, kcm_net_id); struct kcm_mux *m; list_for_each_entry_rcu(m, &knet->mux_list, kcm_mux_list) { if (!pos) return m; --pos; } return NULL; } static void *kcm_seq_next(struct seq_file *seq, void *v, loff_t *pos) { void *p; if (v == SEQ_START_TOKEN) p = kcm_get_first(seq); else p = kcm_get_next(v); ++*pos; return p; } static void *kcm_seq_start(struct seq_file *seq, loff_t *pos) __acquires(rcu) { rcu_read_lock(); if (!*pos) return SEQ_START_TOKEN; else return kcm_get_idx(seq, *pos - 1); } static void kcm_seq_stop(struct seq_file *seq, void *v) __releases(rcu) { rcu_read_unlock(); } struct kcm_proc_mux_state { struct seq_net_private p; int idx; }; static void kcm_format_mux_header(struct seq_file *seq) { struct net *net = seq_file_net(seq); struct kcm_net *knet = net_generic(net, kcm_net_id); seq_printf(seq, "*** KCM statistics (%d MUX) ****\n", knet->count); seq_printf(seq, "%-14s %-10s %-16s %-10s %-16s %-8s %-8s %-8s %-8s %s", "Object", "RX-Msgs", "RX-Bytes", "TX-Msgs", "TX-Bytes", "Recv-Q", "Rmem", "Send-Q", "Smem", "Status"); /* XXX: pdsts header stuff here */ seq_puts(seq, "\n"); } static void kcm_format_sock(struct kcm_sock *kcm, struct seq_file *seq, int i, int *len) { seq_printf(seq, " kcm-%-7u %-10llu %-16llu %-10llu %-16llu %-8d %-8d %-8d %-8s ", kcm->index, kcm->stats.rx_msgs, kcm->stats.rx_bytes, kcm->stats.tx_msgs, kcm->stats.tx_bytes, kcm->sk.sk_receive_queue.qlen, sk_rmem_alloc_get(&kcm->sk), kcm->sk.sk_write_queue.qlen, "-"); if (kcm->tx_psock) seq_printf(seq, "Psck-%u ", kcm->tx_psock->index); if (kcm->tx_wait) seq_puts(seq, "TxWait "); if (kcm->tx_wait_more) seq_puts(seq, "WMore "); if (kcm->rx_wait) seq_puts(seq, "RxWait "); seq_puts(seq, "\n"); } static void kcm_format_psock(struct kcm_psock *psock, struct seq_file *seq, int i, int *len) { seq_printf(seq, " psock-%-5u %-10llu %-16llu %-10llu %-16llu %-8d %-8d %-8d %-8d ", psock->index, psock->strp.stats.msgs, psock->strp.stats.bytes, psock->stats.tx_msgs, psock->stats.tx_bytes, psock->sk->sk_receive_queue.qlen, atomic_read(&psock->sk->sk_rmem_alloc), psock->sk->sk_write_queue.qlen, refcount_read(&psock->sk->sk_wmem_alloc)); if (psock->done) seq_puts(seq, "Done "); if (psock->tx_stopped) seq_puts(seq, "TxStop "); if (psock->strp.stopped) seq_puts(seq, "RxStop "); if (psock->tx_kcm) seq_printf(seq, "Rsvd-%d ", psock->tx_kcm->index); if (!psock->strp.paused && !psock->ready_rx_msg) { if (psock->sk->sk_receive_queue.qlen) { if (psock->strp.need_bytes) seq_printf(seq, "RxWait=%u ", psock->strp.need_bytes); else seq_printf(seq, "RxWait "); } } else { if (psock->strp.paused) seq_puts(seq, "RxPause "); if (psock->ready_rx_msg) seq_puts(seq, "RdyRx "); } seq_puts(seq, "\n"); } static void kcm_format_mux(struct kcm_mux *mux, loff_t idx, struct seq_file *seq) { int i, len; struct kcm_sock *kcm; struct kcm_psock *psock; /* mux information */ seq_printf(seq, "%-6s%-8s %-10llu %-16llu %-10llu %-16llu %-8s %-8s %-8s %-8s ", "mux", "", mux->stats.rx_msgs, mux->stats.rx_bytes, mux->stats.tx_msgs, mux->stats.tx_bytes, "-", "-", "-", "-"); seq_printf(seq, "KCMs: %d, Psocks %d\n", mux->kcm_socks_cnt, mux->psocks_cnt); /* kcm sock information */ i = 0; spin_lock_bh(&mux->lock); list_for_each_entry(kcm, &mux->kcm_socks, kcm_sock_list) { kcm_format_sock(kcm, seq, i, &len); i++; } i = 0; list_for_each_entry(psock, &mux->psocks, psock_list) { kcm_format_psock(psock, seq, i, &len); i++; } spin_unlock_bh(&mux->lock); } static int kcm_seq_show(struct seq_file *seq, void *v) { struct kcm_proc_mux_state *mux_state; mux_state = seq->private; if (v == SEQ_START_TOKEN) { mux_state->idx = 0; kcm_format_mux_header(seq); } else { kcm_format_mux(v, mux_state->idx, seq); mux_state->idx++; } return 0; } static const struct seq_operations kcm_seq_ops = { .show = kcm_seq_show, .start = kcm_seq_start, .next = kcm_seq_next, .stop = kcm_seq_stop, }; static int kcm_stats_seq_show(struct seq_file *seq, void *v) { struct kcm_psock_stats psock_stats; struct kcm_mux_stats mux_stats; struct strp_aggr_stats strp_stats; struct kcm_mux *mux; struct kcm_psock *psock; struct net *net = seq->private; struct kcm_net *knet = net_generic(net, kcm_net_id); memset(&mux_stats, 0, sizeof(mux_stats)); memset(&psock_stats, 0, sizeof(psock_stats)); memset(&strp_stats, 0, sizeof(strp_stats)); mutex_lock(&knet->mutex); aggregate_mux_stats(&knet->aggregate_mux_stats, &mux_stats); aggregate_psock_stats(&knet->aggregate_psock_stats, &psock_stats); aggregate_strp_stats(&knet->aggregate_strp_stats, &strp_stats); list_for_each_entry(mux, &knet->mux_list, kcm_mux_list) { spin_lock_bh(&mux->lock); aggregate_mux_stats(&mux->stats, &mux_stats); aggregate_psock_stats(&mux->aggregate_psock_stats, &psock_stats); aggregate_strp_stats(&mux->aggregate_strp_stats, &strp_stats); list_for_each_entry(psock, &mux->psocks, psock_list) { aggregate_psock_stats(&psock->stats, &psock_stats); save_strp_stats(&psock->strp, &strp_stats); } spin_unlock_bh(&mux->lock); } mutex_unlock(&knet->mutex); seq_printf(seq, "%-8s %-10s %-16s %-10s %-16s %-10s %-10s %-10s %-10s %-10s\n", "MUX", "RX-Msgs", "RX-Bytes", "TX-Msgs", "TX-Bytes", "TX-Retries", "Attach", "Unattach", "UnattchRsvd", "RX-RdyDrops"); seq_printf(seq, "%-8s %-10llu %-16llu %-10llu %-16llu %-10u %-10u %-10u %-10u %-10u\n", "", mux_stats.rx_msgs, mux_stats.rx_bytes, mux_stats.tx_msgs, mux_stats.tx_bytes, mux_stats.tx_retries, mux_stats.psock_attach, mux_stats.psock_unattach_rsvd, mux_stats.psock_unattach, mux_stats.rx_ready_drops); seq_printf(seq, "%-8s %-10s %-16s %-10s %-16s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s %-10s\n", "Psock", "RX-Msgs", "RX-Bytes", "TX-Msgs", "TX-Bytes", "Reserved", "Unreserved", "RX-Aborts", "RX-Intr", "RX-Unrecov", "RX-MemFail", "RX-NeedMor", "RX-BadLen", "RX-TooBig", "RX-Timeout", "TX-Aborts"); seq_printf(seq, "%-8s %-10llu %-16llu %-10llu %-16llu %-10llu %-10llu %-10u %-10u %-10u %-10u %-10u %-10u %-10u %-10u %-10u\n", "", strp_stats.msgs, strp_stats.bytes, psock_stats.tx_msgs, psock_stats.tx_bytes, psock_stats.reserved, psock_stats.unreserved, strp_stats.aborts, strp_stats.interrupted, strp_stats.unrecov_intr, strp_stats.mem_fail, strp_stats.need_more_hdr, strp_stats.bad_hdr_len, strp_stats.msg_too_big, strp_stats.msg_timeouts, psock_stats.tx_aborts); return 0; } static int kcm_proc_init_net(struct net *net) { if (!proc_create_net_single("kcm_stats", 0444, net->proc_net, kcm_stats_seq_show, NULL)) goto out_kcm_stats; if (!proc_create_net("kcm", 0444, net->proc_net, &kcm_seq_ops, sizeof(struct kcm_proc_mux_state))) goto out_kcm; return 0; out_kcm: remove_proc_entry("kcm_stats", net->proc_net); out_kcm_stats: return -ENOMEM; } static void kcm_proc_exit_net(struct net *net) { remove_proc_entry("kcm", net->proc_net); remove_proc_entry("kcm_stats", net->proc_net); } static struct pernet_operations kcm_net_ops = { .init = kcm_proc_init_net, .exit = kcm_proc_exit_net, }; int __init kcm_proc_init(void) { return register_pernet_subsys(&kcm_net_ops); } void __exit kcm_proc_exit(void) { unregister_pernet_subsys(&kcm_net_ops); } #endif /* CONFIG_PROC_FS */ |
| 8 8 8 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | // SPDX-License-Identifier: GPL-2.0-only /* * ebtable_broute * * Authors: * Bart De Schuymer <bdschuym@pandora.be> * * April, 2002 * * This table lets you choose between routing and bridging for frames * entering on a bridge enslaved nic. This table is traversed before any * other ebtables table. See net/bridge/br_input.c. */ #include <linux/netfilter_bridge/ebtables.h> #include <linux/module.h> #include <linux/if_bridge.h> #include "../br_private.h" /* EBT_ACCEPT means the frame will be bridged * EBT_DROP means the frame will be routed */ static struct ebt_entries initial_chain = { .name = "BROUTING", .policy = EBT_ACCEPT, }; static struct ebt_replace_kernel initial_table = { .name = "broute", .valid_hooks = 1 << NF_BR_BROUTING, .entries_size = sizeof(struct ebt_entries), .hook_entry = { [NF_BR_BROUTING] = &initial_chain, }, .entries = (char *)&initial_chain, }; static const struct ebt_table broute_table = { .name = "broute", .table = &initial_table, .valid_hooks = 1 << NF_BR_BROUTING, .me = THIS_MODULE, }; static unsigned int ebt_broute(void *priv, struct sk_buff *skb, const struct nf_hook_state *s) { struct net_bridge_port *p = br_port_get_rcu(skb->dev); struct nf_hook_state state; unsigned char *dest; int ret; if (!p || p->state != BR_STATE_FORWARDING) return NF_ACCEPT; nf_hook_state_init(&state, NF_BR_BROUTING, NFPROTO_BRIDGE, s->in, NULL, NULL, s->net, NULL); ret = ebt_do_table(priv, skb, &state); if (ret != NF_DROP) return ret; /* DROP in ebtables -t broute means that the * skb should be routed, not bridged. * This is awkward, but can't be changed for compatibility * reasons. * * We map DROP to ACCEPT and set the ->br_netfilter_broute flag. */ BR_INPUT_SKB_CB(skb)->br_netfilter_broute = 1; /* undo PACKET_HOST mangling done in br_input in case the dst * address matches the logical bridge but not the port. */ dest = eth_hdr(skb)->h_dest; if (skb->pkt_type == PACKET_HOST && !ether_addr_equal(skb->dev->dev_addr, dest) && ether_addr_equal(p->br->dev->dev_addr, dest)) skb->pkt_type = PACKET_OTHERHOST; return NF_ACCEPT; } static const struct nf_hook_ops ebt_ops_broute = { .hook = ebt_broute, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_PRE_ROUTING, .priority = NF_BR_PRI_FIRST, }; static int broute_table_init(struct net *net) { return ebt_register_table(net, &broute_table, &ebt_ops_broute); } static void __net_exit broute_net_pre_exit(struct net *net) { ebt_unregister_table_pre_exit(net, "broute"); } static void __net_exit broute_net_exit(struct net *net) { ebt_unregister_table(net, "broute"); } static struct pernet_operations broute_net_ops = { .exit = broute_net_exit, .pre_exit = broute_net_pre_exit, }; static int __init ebtable_broute_init(void) { int ret = ebt_register_template(&broute_table, broute_table_init); if (ret) return ret; ret = register_pernet_subsys(&broute_net_ops); if (ret) { ebt_unregister_template(&broute_table); return ret; } return 0; } static void __exit ebtable_broute_fini(void) { unregister_pernet_subsys(&broute_net_ops); ebt_unregister_template(&broute_table); } module_init(ebtable_broute_init); module_exit(ebtable_broute_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Force packets to be routed instead of bridged"); |
| 19 71 30 73 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM vb2 #if !defined(_TRACE_VB2_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_VB2_H #include <linux/tracepoint.h> #include <media/videobuf2-core.h> DECLARE_EVENT_CLASS(vb2_event_class, TP_PROTO(struct vb2_queue *q, struct vb2_buffer *vb), TP_ARGS(q, vb), TP_STRUCT__entry( __field(void *, owner) __field(u32, queued_count) __field(int, owned_by_drv_count) __field(u32, index) __field(u32, type) __field(u32, bytesused) __field(u64, timestamp) ), TP_fast_assign( __entry->owner = q->owner; __entry->queued_count = q->queued_count; __entry->owned_by_drv_count = atomic_read(&q->owned_by_drv_count); __entry->index = vb->index; __entry->type = vb->type; __entry->bytesused = vb->planes[0].bytesused; __entry->timestamp = vb->timestamp; ), TP_printk("owner = %p, queued = %u, owned_by_drv = %d, index = %u, " "type = %u, bytesused = %u, timestamp = %llu", __entry->owner, __entry->queued_count, __entry->owned_by_drv_count, __entry->index, __entry->type, __entry->bytesused, __entry->timestamp ) ) DEFINE_EVENT(vb2_event_class, vb2_buf_done, TP_PROTO(struct vb2_queue *q, struct vb2_buffer *vb), TP_ARGS(q, vb) ); DEFINE_EVENT(vb2_event_class, vb2_buf_queue, TP_PROTO(struct vb2_queue *q, struct vb2_buffer *vb), TP_ARGS(q, vb) ); DEFINE_EVENT(vb2_event_class, vb2_dqbuf, TP_PROTO(struct vb2_queue *q, struct vb2_buffer *vb), TP_ARGS(q, vb) ); DEFINE_EVENT(vb2_event_class, vb2_qbuf, TP_PROTO(struct vb2_queue *q, struct vb2_buffer *vb), TP_ARGS(q, vb) ); #endif /* if !defined(_TRACE_VB2_H) || defined(TRACE_HEADER_MULTI_READ) */ /* This part must be outside protection */ #include <trace/define_trace.h> |
| 357 320 292 293 3 2 1 3 3 4 4 3 1 4 78 78 1 71 71 70 70 69 70 68 2 17 8 8 7 1 2 1 1 8 50 9 9 9 2 4 9 84 68 24 84 59 56 1 58 2 46 38 40 9 50 59 9 314 266 264 12 39 309 309 182 176 13 176 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | /* * Created: Tue Feb 2 08:37:54 1999 by faith@valinux.com * * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Author Rickard E. (Rik) Faith <faith@valinux.com> * Author Gareth Hughes <gareth@valinux.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/export.h> #include <linux/slab.h> #include <drm/drm_auth.h> #include <drm/drm_drv.h> #include <drm/drm_file.h> #include <drm/drm_lease.h> #include <drm/drm_print.h> #include "drm_internal.h" /** * DOC: master and authentication * * &struct drm_master is used to track groups of clients with open * primary device nodes. For every &struct drm_file which has had at * least once successfully became the device master (either through the * SET_MASTER IOCTL, or implicitly through opening the primary device node when * no one else is the current master that time) there exists one &drm_master. * This is noted in &drm_file.is_master. All other clients have just a pointer * to the &drm_master they are associated with. * * In addition only one &drm_master can be the current master for a &drm_device. * It can be switched through the DROP_MASTER and SET_MASTER IOCTL, or * implicitly through closing/opening the primary device node. See also * drm_is_current_master(). * * Clients can authenticate against the current master (if it matches their own) * using the GETMAGIC and AUTHMAGIC IOCTLs. Together with exchanging masters, * this allows controlled access to the device for an entire group of mutually * trusted clients. */ static bool drm_is_current_master_locked(struct drm_file *fpriv) { lockdep_assert_once(lockdep_is_held(&fpriv->master_lookup_lock) || lockdep_is_held(&fpriv->minor->dev->master_mutex)); return fpriv->is_master && drm_lease_owner(fpriv->master) == fpriv->minor->dev->master; } /** * drm_is_current_master - checks whether @priv is the current master * @fpriv: DRM file private * * Checks whether @fpriv is current master on its device. This decides whether a * client is allowed to run DRM_MASTER IOCTLs. * * Most of the modern IOCTL which require DRM_MASTER are for kernel modesetting * - the current master is assumed to own the non-shareable display hardware. */ bool drm_is_current_master(struct drm_file *fpriv) { bool ret; spin_lock(&fpriv->master_lookup_lock); ret = drm_is_current_master_locked(fpriv); spin_unlock(&fpriv->master_lookup_lock); return ret; } EXPORT_SYMBOL(drm_is_current_master); int drm_getmagic(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_auth *auth = data; int ret = 0; guard(mutex)(&dev->master_mutex); if (!file_priv->magic) { ret = idr_alloc(&file_priv->master->magic_map, file_priv, 1, 0, GFP_KERNEL); if (ret >= 0) file_priv->magic = ret; } auth->magic = file_priv->magic; drm_dbg_core(dev, "%u\n", auth->magic); return ret < 0 ? ret : 0; } int drm_authmagic(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_auth *auth = data; struct drm_file *file; drm_dbg_core(dev, "%u\n", auth->magic); guard(mutex)(&dev->master_mutex); file = idr_find(&file_priv->master->magic_map, auth->magic); if (file) { file->authenticated = 1; idr_replace(&file_priv->master->magic_map, NULL, auth->magic); } return file ? 0 : -EINVAL; } struct drm_master *drm_master_create(struct drm_device *dev) { struct drm_master *master; master = kzalloc(sizeof(*master), GFP_KERNEL); if (!master) return NULL; kref_init(&master->refcount); idr_init_base(&master->magic_map, 1); master->dev = dev; /* initialize the tree of output resource lessees */ INIT_LIST_HEAD(&master->lessees); INIT_LIST_HEAD(&master->lessee_list); idr_init(&master->leases); idr_init_base(&master->lessee_idr, 1); return master; } static void drm_set_master(struct drm_device *dev, struct drm_file *fpriv, bool new_master) { dev->master = drm_master_get(fpriv->master); if (dev->driver->master_set) dev->driver->master_set(dev, fpriv, new_master); fpriv->was_master = true; } static int drm_new_set_master(struct drm_device *dev, struct drm_file *fpriv) { struct drm_master *old_master; struct drm_master *new_master; lockdep_assert_held_once(&dev->master_mutex); WARN_ON(fpriv->is_master); old_master = fpriv->master; new_master = drm_master_create(dev); if (!new_master) return -ENOMEM; spin_lock(&fpriv->master_lookup_lock); fpriv->master = new_master; spin_unlock(&fpriv->master_lookup_lock); fpriv->is_master = 1; fpriv->authenticated = 1; drm_set_master(dev, fpriv, true); if (old_master) drm_master_put(&old_master); return 0; } /* * In the olden days the SET/DROP_MASTER ioctls used to return EACCES when * CAP_SYS_ADMIN was not set. This was used to prevent rogue applications * from becoming master and/or failing to release it. * * At the same time, the first client (for a given VT) is _always_ master. * Thus in order for the ioctls to succeed, one had to _explicitly_ run the * application as root or flip the setuid bit. * * If the CAP_SYS_ADMIN was missing, no other client could become master... * EVER :-( Leading to a) the graphics session dying badly or b) a completely * locked session. * * * As some point systemd-logind was introduced to orchestrate and delegate * master as applicable. It does so by opening the fd and passing it to users * while in itself logind a) does the set/drop master per users' request and * b) * implicitly drops master on VT switch. * * Even though logind looks like the future, there are a few issues: * - some platforms don't have equivalent (Android, CrOS, some BSDs) so * root is required _solely_ for SET/DROP MASTER. * - applications may not be updated to use it, * - any client which fails to drop master* can DoS the application using * logind, to a varying degree. * * * Either due missing CAP_SYS_ADMIN or simply not calling DROP_MASTER. * * * Here we implement the next best thing: * - ensure the logind style of fd passing works unchanged, and * - allow a client to drop/set master, iff it is/was master at a given point * in time. * * Note: DROP_MASTER cannot be free for all, as an arbitrator user could: * - DoS/crash the arbitrator - details would be implementation specific * - open the node, become master implicitly and cause issues * * As a result this fixes the following when using root-less build w/o logind * - startx * - weston * - various compositors based on wlroots */ static int drm_master_check_perm(struct drm_device *dev, struct drm_file *file_priv) { if (file_priv->was_master && rcu_access_pointer(file_priv->pid) == task_tgid(current)) return 0; if (!capable(CAP_SYS_ADMIN)) return -EACCES; return 0; } int drm_setmaster_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret; guard(mutex)(&dev->master_mutex); ret = drm_master_check_perm(dev, file_priv); if (ret) return ret; if (drm_is_current_master_locked(file_priv)) return ret; if (dev->master) return -EBUSY; if (!file_priv->master) return -EINVAL; if (!file_priv->is_master) return drm_new_set_master(dev, file_priv); if (file_priv->master->lessor != NULL) { drm_dbg_lease(dev, "Attempt to set lessee %d as master\n", file_priv->master->lessee_id); return -EINVAL; } drm_set_master(dev, file_priv, false); return ret; } static void drm_drop_master(struct drm_device *dev, struct drm_file *fpriv) { if (dev->driver->master_drop) dev->driver->master_drop(dev, fpriv); drm_master_put(&dev->master); } int drm_dropmaster_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret; guard(mutex)(&dev->master_mutex); ret = drm_master_check_perm(dev, file_priv); if (ret) return ret; if (!drm_is_current_master_locked(file_priv)) return -EINVAL; if (!dev->master) return -EINVAL; if (file_priv->master->lessor != NULL) { drm_dbg_lease(dev, "Attempt to drop lessee %d as master\n", file_priv->master->lessee_id); return -EINVAL; } drm_drop_master(dev, file_priv); return ret; } int drm_master_open(struct drm_file *file_priv) { struct drm_device *dev = file_priv->minor->dev; int ret = 0; /* if there is no current master make this fd it, but do not create * any master object for render clients */ guard(mutex)(&dev->master_mutex); if (!dev->master) { ret = drm_new_set_master(dev, file_priv); } else { spin_lock(&file_priv->master_lookup_lock); file_priv->master = drm_master_get(dev->master); spin_unlock(&file_priv->master_lookup_lock); } return ret; } void drm_master_release(struct drm_file *file_priv) { struct drm_device *dev = file_priv->minor->dev; struct drm_master *master; guard(mutex)(&dev->master_mutex); master = file_priv->master; if (file_priv->magic) idr_remove(&file_priv->master->magic_map, file_priv->magic); if (!drm_is_current_master_locked(file_priv)) goto out; if (dev->master == file_priv->master) drm_drop_master(dev, file_priv); out: if (drm_core_check_feature(dev, DRIVER_MODESET) && file_priv->is_master) { /* Revoke any leases held by this or lessees, but only if * this is the "real" master */ drm_lease_revoke(master); } /* drop the master reference held by the file priv */ if (file_priv->master) drm_master_put(&file_priv->master); } /** * drm_master_get - reference a master pointer * @master: &struct drm_master * * Increments the reference count of @master and returns a pointer to @master. */ struct drm_master *drm_master_get(struct drm_master *master) { kref_get(&master->refcount); return master; } EXPORT_SYMBOL(drm_master_get); /** * drm_file_get_master - reference &drm_file.master of @file_priv * @file_priv: DRM file private * * Increments the reference count of @file_priv's &drm_file.master and returns * the &drm_file.master. If @file_priv has no &drm_file.master, returns NULL. * * Master pointers returned from this function should be unreferenced using * drm_master_put(). */ struct drm_master *drm_file_get_master(struct drm_file *file_priv) { struct drm_master *master = NULL; spin_lock(&file_priv->master_lookup_lock); if (!file_priv->master) goto unlock; master = drm_master_get(file_priv->master); unlock: spin_unlock(&file_priv->master_lookup_lock); return master; } EXPORT_SYMBOL(drm_file_get_master); static void drm_master_destroy(struct kref *kref) { struct drm_master *master = container_of(kref, struct drm_master, refcount); struct drm_device *dev = master->dev; if (drm_core_check_feature(dev, DRIVER_MODESET)) drm_lease_destroy(master); idr_destroy(&master->magic_map); idr_destroy(&master->leases); idr_destroy(&master->lessee_idr); kfree(master->unique); kfree(master); } /** * drm_master_put - unreference and clear a master pointer * @master: pointer to a pointer of &struct drm_master * * This decrements the &drm_master behind @master and sets it to NULL. */ void drm_master_put(struct drm_master **master) { kref_put(&(*master)->refcount, drm_master_destroy); *master = NULL; } EXPORT_SYMBOL(drm_master_put); /* Used by drm_client and drm_fb_helper */ bool drm_master_internal_acquire(struct drm_device *dev) { mutex_lock(&dev->master_mutex); if (dev->master) { mutex_unlock(&dev->master_mutex); return false; } return true; } EXPORT_SYMBOL(drm_master_internal_acquire); /* Used by drm_client and drm_fb_helper */ void drm_master_internal_release(struct drm_device *dev) { mutex_unlock(&dev->master_mutex); } EXPORT_SYMBOL(drm_master_internal_release); |
| 288 32 259 288 40 26 26 34 28 19 19 101 1 5 6 66 63 6 36 28 28 15 29 34 21 33 53 37 88 2328 1722 1 2 67 681 80 770 19 766 1 763 764 5 408 324 173 221 318 2 762 759 3 2 1 1 1 25 25 25 1 292 291 294 291 292 291 293 292 292 291 294 292 292 293 291 2 292 293 290 292 291 293 8 285 292 5 5 2 3 2 3 3 3 3 278 281 279 280 230 55 279 10 3 7 7 3 7 281 56 232 283 10 54 14 14 1 2 10 1 3 4 1 2 5 1 4 4 2 2 2 2 4 1 4 4 4 11 11 11 1 1 8 1 8 2 2 3 1 1 1 4 2 1 2 1 1 1 1 26 28 28 62 60 62 6 55 3 53 53 46 6 46 44 24 46 16 17 2 15 36 2 37 8 13 38 41 9 1 50 32 46 2 2 47 41 6 17 26 26 26 26 13 25 24 25 42 1 7 3 3 1 3 21 19 28 28 49 5 50 51 51 38 38 9 4 19 6 6 3 128 127 1 127 129 128 127 128 2 2 14 11 1 62 38 2384 2247 180 39 635 635 49 567 566 462 160 534 132 545 3 88 88 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Neighbour Discovery for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Mike Shaver <shaver@ingenia.com> */ /* * Changes: * * Alexey I. Froloff : RFC6106 (DNSSL) support * Pierre Ynard : export userland ND options * through netlink (RDNSS support) * Lars Fenneberg : fixed MTU setting on receipt * of an RA. * Janos Farkas : kmalloc failure checks * Alexey Kuznetsov : state machine reworked * and moved to net/core. * Pekka Savola : RFC2461 validation * YOSHIFUJI Hideaki @USAGI : Verify ND options properly */ #define pr_fmt(fmt) "ICMPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/sched.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/route.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/jhash.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <net/flow.h> #include <net/ip6_checksum.h> #include <net/inet_common.h> #include <linux/proc_fs.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool ndisc_key_eq(const struct neighbour *neigh, const void *pkey); static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack); static int ndisc_constructor(struct neighbour *neigh); static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb); static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb); static int pndisc_constructor(struct pneigh_entry *n); static void pndisc_destructor(struct pneigh_entry *n); static void pndisc_redo(struct sk_buff *skb); static int ndisc_is_multicast(const void *pkey); static const struct neigh_ops ndisc_generic_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops ndisc_hh_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops ndisc_direct_ops = { .family = AF_INET6, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table nd_tbl = { .family = AF_INET6, .key_len = sizeof(struct in6_addr), .protocol = cpu_to_be16(ETH_P_IPV6), .hash = ndisc_hash, .key_eq = ndisc_key_eq, .constructor = ndisc_constructor, .pconstructor = pndisc_constructor, .pdestructor = pndisc_destructor, .proxy_redo = pndisc_redo, .is_multicast = ndisc_is_multicast, .allow_add = ndisc_allow_add, .id = "ndisc_cache", .parms = { .tbl = &nd_tbl, .reachable_time = ND_REACHABLE_TIME, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = ND_RETRANS_TIMER, [NEIGH_VAR_BASE_REACHABLE_TIME] = ND_REACHABLE_TIME, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_DEFAULT, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL_GPL(nd_tbl); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, int data_len, int pad) { int space = __ndisc_opt_addr_space(data_len, pad); u8 *opt = skb_put(skb, space); opt[0] = type; opt[1] = space>>3; memset(opt + 2, 0, pad); opt += pad; space -= pad; memcpy(opt+2, data, data_len); data_len += 2; opt += data_len; space -= data_len; if (space > 0) memset(opt, 0, space); } EXPORT_SYMBOL_GPL(__ndisc_fill_addr_option); static inline void ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, u8 icmp6_type) { __ndisc_fill_addr_option(skb, type, data, skb->dev->addr_len, ndisc_addr_option_pad(skb->dev->type)); ndisc_ops_fill_addr_option(skb->dev, skb, icmp6_type); } static inline void ndisc_fill_redirect_addr_option(struct sk_buff *skb, void *ha, const u8 *ops_data) { ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, ha, NDISC_REDIRECT); ndisc_ops_fill_redirect_addr_option(skb->dev, skb, ops_data); } static struct nd_opt_hdr *ndisc_next_option(struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { int type; if (!cur || !end || cur >= end) return NULL; type = cur->nd_opt_type; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && cur->nd_opt_type != type); return cur <= end && cur->nd_opt_type == type ? cur : NULL; } static inline int ndisc_is_useropt(const struct net_device *dev, struct nd_opt_hdr *opt) { return opt->nd_opt_type == ND_OPT_PREFIX_INFO || opt->nd_opt_type == ND_OPT_RDNSS || opt->nd_opt_type == ND_OPT_DNSSL || opt->nd_opt_type == ND_OPT_6CO || opt->nd_opt_type == ND_OPT_CAPTIVE_PORTAL || opt->nd_opt_type == ND_OPT_PREF64; } static struct nd_opt_hdr *ndisc_next_useropt(const struct net_device *dev, struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { if (!cur || !end || cur >= end) return NULL; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && !ndisc_is_useropt(dev, cur)); return cur <= end && ndisc_is_useropt(dev, cur) ? cur : NULL; } struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)opt; if (!nd_opt || opt_len < 0 || !ndopts) return NULL; memset(ndopts, 0, sizeof(*ndopts)); while (opt_len) { bool unknown = false; int l; if (opt_len < sizeof(struct nd_opt_hdr)) return NULL; l = nd_opt->nd_opt_len << 3; if (opt_len < l || l == 0) return NULL; if (ndisc_ops_parse_options(dev, nd_opt, ndopts)) goto next_opt; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LL_ADDR: case ND_OPT_TARGET_LL_ADDR: case ND_OPT_MTU: case ND_OPT_NONCE: case ND_OPT_REDIRECT_HDR: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { net_dbg_ratelimited("%s: duplicated ND6 option found: type=%d\n", __func__, nd_opt->nd_opt_type); } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFO: ndopts->nd_opts_pi_end = nd_opt; if (!ndopts->nd_opt_array[nd_opt->nd_opt_type]) ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; break; #ifdef CONFIG_IPV6_ROUTE_INFO case ND_OPT_ROUTE_INFO: ndopts->nd_opts_ri_end = nd_opt; if (!ndopts->nd_opts_ri) ndopts->nd_opts_ri = nd_opt; break; #endif default: unknown = true; } if (ndisc_is_useropt(dev, nd_opt)) { ndopts->nd_useropts_end = nd_opt; if (!ndopts->nd_useropts) ndopts->nd_useropts = nd_opt; } else if (unknown) { /* * Unknown options must be silently ignored, * to accommodate future extension to the * protocol. */ net_dbg_ratelimited("%s: ignored unsupported option; type=%d, len=%d\n", __func__, nd_opt->nd_opt_type, nd_opt->nd_opt_len); } next_opt: opt_len -= l; nd_opt = ((void *)nd_opt) + l; } return ndopts; } int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_IEEE802: /* Not sure. Check it later. --ANK */ case ARPHRD_FDDI: ipv6_eth_mc_map(addr, buf); return 0; case ARPHRD_ARCNET: ipv6_arcnet_mc_map(addr, buf); return 0; case ARPHRD_INFINIBAND: ipv6_ib_mc_map(addr, dev->broadcast, buf); return 0; case ARPHRD_IPGRE: return ipv6_ipgre_mc_map(addr, dev->broadcast, buf); default: if (dir) { memcpy(buf, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } EXPORT_SYMBOL(ndisc_mc_map); static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return ndisc_hashfn(pkey, dev, hash_rnd); } static bool ndisc_key_eq(const struct neighbour *n, const void *pkey) { return neigh_key_eq128(n, pkey); } static int ndisc_constructor(struct neighbour *neigh) { struct in6_addr *addr = (struct in6_addr *)&neigh->primary_key; struct net_device *dev = neigh->dev; struct inet6_dev *in6_dev; struct neigh_parms *parms; bool is_multicast = ipv6_addr_is_multicast(addr); in6_dev = in6_dev_get(dev); if (!in6_dev) { return -EINVAL; } parms = in6_dev->nd_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); neigh->type = is_multicast ? RTN_MULTICAST : RTN_UNICAST; if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &ndisc_direct_ops; neigh->output = neigh_direct_output; } else { if (is_multicast) { neigh->nud_state = NUD_NOARP; ndisc_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); if (dev->flags&IFF_LOOPBACK) neigh->type = RTN_LOCAL; } else if (dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &ndisc_hh_ops; else neigh->ops = &ndisc_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } in6_dev_put(in6_dev); return 0; } static int pndisc_constructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct net_device *dev = n->dev; struct in6_addr maddr; if (!dev) return -EINVAL; addrconf_addr_solict_mult(addr, &maddr); return ipv6_dev_mc_inc(dev, &maddr); } static void pndisc_destructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct net_device *dev = n->dev; struct in6_addr maddr; if (!dev) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } /* called with rtnl held */ static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev || idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on this device"); return false; } return true; } static struct sk_buff *ndisc_alloc_skb(struct net_device *dev, int len) { int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct sk_buff *skb; skb = alloc_skb(hlen + sizeof(struct ipv6hdr) + len + tlen, GFP_ATOMIC); if (!skb) return NULL; skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reserve(skb, hlen + sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); /* Manually assign socket ownership as we avoid calling * sock_alloc_send_pskb() to bypass wmem buffer limits */ rcu_read_lock(); skb_set_owner_w(skb, dev_net_rcu(dev)->ipv6.ndisc_sk); rcu_read_unlock(); return skb; } static void ip6_nd_hdr(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int hop_limit, int len) { struct ipv6hdr *hdr; struct inet6_dev *idev; unsigned tclass; rcu_read_lock(); idev = __in6_dev_get(skb->dev); tclass = idev ? READ_ONCE(idev->cnf.ndisc_tclass) : 0; rcu_read_unlock(); skb_push(skb, sizeof(*hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, tclass, 0); hdr->payload_len = htons(len); hdr->nexthdr = IPPROTO_ICMPV6; hdr->hop_limit = hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } void ndisc_send_skb(struct sk_buff *skb, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct icmp6hdr *icmp6h = icmp6_hdr(skb); struct dst_entry *dst = skb_dst(skb); struct net_device *dev; struct inet6_dev *idev; struct net *net; struct sock *sk; int err; u8 type; type = icmp6h->icmp6_type; rcu_read_lock(); net = dev_net_rcu(skb->dev); sk = net->ipv6.ndisc_sk; if (!dst) { struct flowi6 fl6; int oif = skb->dev->ifindex; icmpv6_flow_init(sk, &fl6, type, saddr, daddr, oif); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { rcu_read_unlock(); kfree_skb(skb); return; } skb_dst_set(skb, dst); } icmp6h->icmp6_cksum = csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_ICMPV6, csum_partial(icmp6h, skb->len, 0)); ip6_nd_hdr(skb, saddr, daddr, READ_ONCE(inet6_sk(sk)->hop_limit), skb->len); dev = dst_dev_rcu(dst); idev = __in6_dev_get(dev); IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTREQUESTS); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, dev, dst_output); if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } rcu_read_unlock(); } EXPORT_SYMBOL(ndisc_send_skb); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt) { struct sk_buff *skb; struct in6_addr tmpaddr; struct inet6_ifaddr *ifp; const struct in6_addr *src_addr; struct nd_msg *msg; int optlen = 0; /* for anycast or proxy, solicited_addr != src_addr */ ifp = ipv6_get_ifaddr(dev_net(dev), solicited_addr, dev, 1); if (ifp) { src_addr = solicited_addr; if (ifp->flags & IFA_F_OPTIMISTIC) override = false; inc_opt |= READ_ONCE(ifp->idev->cnf.force_tllao); in6_ifa_put(ifp); } else { if (ipv6_dev_get_saddr(dev_net(dev), dev, daddr, inet6_sk(dev_net(dev)->ipv6.ndisc_sk)->srcprefs, &tmpaddr)) return; src_addr = &tmpaddr; } if (!dev->addr_len) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_ADVERTISEMENT); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT, .icmp6_router = router, .icmp6_solicited = solicited, .icmp6_override = override, }, .target = *solicited_addr, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_ADVERTISEMENT); ndisc_send_skb(skb, daddr, src_addr); } static void ndisc_send_unsol_na(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; idev = in6_dev_get(dev); if (!idev) return; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { /* skip tentative addresses until dad completes */ if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_OPTIMISTIC)) continue; ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifa->addr, /*router=*/ !!idev->cnf.forwarding, /*solicited=*/ false, /*override=*/ true, /*inc_opt=*/ true); } read_unlock_bh(&idev->lock); in6_dev_put(idev); } struct sk_buff *ndisc_ns_create(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *saddr, u64 nonce) { int inc_opt = dev->addr_len; struct sk_buff *skb; struct nd_msg *msg; int optlen = 0; if (!saddr) return NULL; if (ipv6_addr_any(saddr)) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) optlen += 8; skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return NULL; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION, }, .target = *solicit, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) { u8 *opt = skb_put(skb, 8); opt[0] = ND_OPT_NONCE; opt[1] = 8 >> 3; memcpy(opt + 2, &nonce, 6); } return skb; } EXPORT_SYMBOL(ndisc_ns_create); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce) { struct in6_addr addr_buf; struct sk_buff *skb; if (!saddr) { if (ipv6_get_lladdr(dev, &addr_buf, (IFA_F_TENTATIVE | IFA_F_OPTIMISTIC))) return; saddr = &addr_buf; } skb = ndisc_ns_create(dev, solicit, saddr, nonce); if (skb) ndisc_send_skb(skb, daddr, saddr); } void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct sk_buff *skb; struct rs_msg *msg; int send_sllao = dev->addr_len; int optlen = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * According to section 2.2 of RFC 4429, we must not * send router solicitations with a sllao from * optimistic addresses, but we may send the solicitation * if we don't include the sllao. So here we check * if our address is optimistic, and if so, we * suppress the inclusion of the sllao. */ if (send_sllao) { struct inet6_ifaddr *ifp = ipv6_get_ifaddr(dev_net(dev), saddr, dev, 1); if (ifp) { if (ifp->flags & IFA_F_OPTIMISTIC) { send_sllao = 0; } in6_ifa_put(ifp); } else { send_sllao = 0; } } #endif if (send_sllao) optlen += ndisc_opt_addr_space(dev, NDISC_ROUTER_SOLICITATION); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct rs_msg) { .icmph = { .icmp6_type = NDISC_ROUTER_SOLICITATION, }, }; if (send_sllao) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_ROUTER_SOLICITATION); ndisc_send_skb(skb, daddr, saddr); } static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb) { /* * "The sender MUST return an ICMP * destination unreachable" */ dst_link_failure(skb); kfree_skb(skb); } /* Called with locked neigh: either read or both */ static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb) { struct in6_addr *saddr = NULL; struct in6_addr mcaddr; struct net_device *dev = neigh->dev; struct in6_addr *target = (struct in6_addr *)&neigh->primary_key; int probes = atomic_read(&neigh->probes); if (skb && ipv6_chk_addr_and_flags(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, false, 1, IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) saddr = &ipv6_hdr(skb)->saddr; probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(READ_ONCE(neigh->nud_state) & NUD_VALID)) { net_dbg_ratelimited("%s: trying to ucast probe in NUD_INVALID: %pI6\n", __func__, target); } ndisc_send_ns(dev, target, target, saddr, 0); } else if ((probes -= NEIGH_VAR(neigh->parms, APP_PROBES)) < 0) { neigh_app_ns(neigh); } else { addrconf_addr_solict_mult(target, &mcaddr); ndisc_send_ns(dev, target, &mcaddr, saddr, 0); } } static int pndisc_is_router(const void *pkey, struct net_device *dev) { struct pneigh_entry *n; int ret = -1; n = pneigh_lookup(&nd_tbl, dev_net(dev), pkey, dev); if (n) ret = !!(READ_ONCE(n->flags) & NTF_ROUTER); return ret; } void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts) { neigh_update(neigh, lladdr, new, flags, 0); /* report ndisc ops about neighbour update */ ndisc_ops_update(dev, neigh, flags, icmp6_type, ndopts); } static enum skb_drop_reason ndisc_recv_ns(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_ifaddr *ifp; struct inet6_dev *idev = NULL; struct neighbour *neigh; int dad = ipv6_addr_any(saddr); int is_router = -1; SKB_DR(reason); u64 nonce = 0; bool inc; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { net_dbg_ratelimited("NS: multicast target address\n"); return reason; } /* * RFC2461 7.1.1: * DAD has to be destined for solicited node multicast address. */ if (dad && !ipv6_addr_is_solict_mult(daddr)) { net_dbg_ratelimited("NS: bad DAD packet (wrong destination)\n"); return reason; } if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev); if (!lladdr) { net_dbg_ratelimited("NS: invalid link-layer address length\n"); return reason; } /* RFC2461 7.1.1: * If the IP source address is the unspecified address, * there MUST NOT be source link-layer address option * in the message. */ if (dad) { net_dbg_ratelimited("NS: bad DAD packet (link-layer address option)\n"); return reason; } } if (ndopts.nd_opts_nonce && ndopts.nd_opts_nonce->nd_opt_len == 1) memcpy(&nonce, (u8 *)(ndopts.nd_opts_nonce + 1), 6); inc = ipv6_addr_is_multicast(daddr); ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { have_ifp: if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) { if (dad) { if (nonce != 0 && ifp->dad_nonce == nonce) { u8 *np = (u8 *)&nonce; /* Matching nonce if looped back */ net_dbg_ratelimited("%s: IPv6 DAD loopback for address %pI6c nonce %pM ignored\n", ifp->idev->dev->name, &ifp->addr, np); goto out; } /* * We are colliding with another node * who is doing DAD * so fail our DAD process */ addrconf_dad_failure(skb, ifp); return reason; } else { /* * This is not a dad solicitation. * If we are an optimistic node, * we should respond. * Otherwise, we should ignore it. */ if (!(ifp->flags & IFA_F_OPTIMISTIC)) goto out; } } idev = ifp->idev; } else { struct net *net = dev_net(dev); /* perhaps an address on the master device */ if (netif_is_l3_slave(dev)) { struct net_device *mdev; mdev = netdev_master_upper_dev_get_rcu(dev); if (mdev) { ifp = ipv6_get_ifaddr(net, &msg->target, mdev, 1); if (ifp) goto have_ifp; } } idev = in6_dev_get(dev); if (!idev) { /* XXX: count this drop? */ return reason; } if (ipv6_chk_acast_addr(net, dev, &msg->target) || (READ_ONCE(idev->cnf.forwarding) && (READ_ONCE(net->ipv6.devconf_all->proxy_ndp) || READ_ONCE(idev->cnf.proxy_ndp)) && (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) { if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) && skb->pkt_type != PACKET_HOST && inc && NEIGH_VAR(idev->nd_parms, PROXY_DELAY) != 0) { /* * for anycast or proxy, * sender should delay its response * by a random time between 0 and * MAX_ANYCAST_DELAY_TIME seconds. * (RFC2461) -- yoshfuji */ struct sk_buff *n = skb_clone(skb, GFP_ATOMIC); if (n) pneigh_enqueue(&nd_tbl, idev->nd_parms, n); goto out; } } else { SKB_DR_SET(reason, IPV6_NDISC_NS_OTHERHOST); goto out; } } if (is_router < 0) is_router = READ_ONCE(idev->cnf.forwarding); if (dad) { ndisc_send_na(dev, &in6addr_linklocal_allnodes, &msg->target, !!is_router, false, (ifp != NULL), true); goto out; } if (inc) NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast); else NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast); /* * update / create cache entry * for the source address */ neigh = __neigh_lookup(&nd_tbl, saddr, dev, !inc || lladdr || !dev->addr_len); if (neigh) ndisc_update(dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE, NDISC_NEIGHBOUR_SOLICITATION, &ndopts); if (neigh || !dev->header_ops) { ndisc_send_na(dev, saddr, &msg->target, !!is_router, true, (ifp != NULL && inc), inc); if (neigh) neigh_release(neigh); reason = SKB_CONSUMED; } out: if (ifp) in6_ifa_put(ifp); else in6_dev_put(idev); return reason; } static int accept_untracked_na(struct net_device *dev, struct in6_addr *saddr) { struct inet6_dev *idev = __in6_dev_get(dev); switch (READ_ONCE(idev->cnf.accept_untracked_na)) { case 0: /* Don't accept untracked na (absent in neighbor cache) */ return 0; case 1: /* Create new entries from na if currently untracked */ return 1; case 2: /* Create new entries from untracked na only if saddr is in the * same subnet as an address configured on the interface that * received the na */ return !!ipv6_chk_prefix(saddr, dev); default: return 0; } } static enum skb_drop_reason ndisc_recv_na(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_dev *idev = __in6_dev_get(dev); struct inet6_ifaddr *ifp; struct neighbour *neigh; SKB_DR(reason); u8 new_state; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { net_dbg_ratelimited("NA: target address is multicast\n"); return reason; } if (ipv6_addr_is_multicast(daddr) && msg->icmph.icmp6_solicited) { net_dbg_ratelimited("NA: solicited NA is multicasted\n"); return reason; } /* For some 802.11 wireless deployments (and possibly other networks), * there will be a NA proxy and unsolicitd packets are attacks * and thus should not be accepted. * drop_unsolicited_na takes precedence over accept_untracked_na */ if (!msg->icmph.icmp6_solicited && idev && READ_ONCE(idev->cnf.drop_unsolicited_na)) return reason; if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev); if (!lladdr) { net_dbg_ratelimited("NA: invalid link-layer address length\n"); return reason; } } ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { if (skb->pkt_type != PACKET_LOOPBACK && (ifp->flags & IFA_F_TENTATIVE)) { addrconf_dad_failure(skb, ifp); return reason; } /* What should we make now? The advertisement is invalid, but ndisc specs say nothing about it. It could be misconfiguration, or an smart proxy agent tries to help us :-) We should not print the error if NA has been received from loopback - it is just our own unsolicited advertisement. */ if (skb->pkt_type != PACKET_LOOPBACK) net_warn_ratelimited("NA: %pM advertised our address %pI6c on %s!\n", eth_hdr(skb)->h_source, &ifp->addr, ifp->idev->dev->name); in6_ifa_put(ifp); return reason; } neigh = neigh_lookup(&nd_tbl, &msg->target, dev); /* RFC 9131 updates original Neighbour Discovery RFC 4861. * NAs with Target LL Address option without a corresponding * entry in the neighbour cache can now create a STALE neighbour * cache entry on routers. * * entry accept fwding solicited behaviour * ------- ------ ------ --------- ---------------------- * present X X 0 Set state to STALE * present X X 1 Set state to REACHABLE * absent 0 X X Do nothing * absent 1 0 X Do nothing * absent 1 1 X Add a new STALE entry * * Note that we don't do a (daddr == all-routers-mcast) check. */ new_state = msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE; if (!neigh && lladdr && idev && READ_ONCE(idev->cnf.forwarding)) { if (accept_untracked_na(dev, saddr)) { neigh = neigh_create(&nd_tbl, &msg->target, dev); new_state = NUD_STALE; } } if (neigh && !IS_ERR(neigh)) { u8 old_flags = neigh->flags; struct net *net = dev_net(dev); if (READ_ONCE(neigh->nud_state) & NUD_FAILED) goto out; /* * Don't update the neighbor cache entry on a proxy NA from * ourselves because either the proxied node is off link or it * has already sent a NA to us. */ if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) && READ_ONCE(net->ipv6.devconf_all->forwarding) && READ_ONCE(net->ipv6.devconf_all->proxy_ndp) && pneigh_lookup(&nd_tbl, net, &msg->target, dev)) { /* XXX: idev->cnf.proxy_ndp */ goto out; } ndisc_update(dev, neigh, lladdr, new_state, NEIGH_UPDATE_F_WEAK_OVERRIDE| (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0), NDISC_NEIGHBOUR_ADVERTISEMENT, &ndopts); if ((old_flags & ~neigh->flags) & NTF_ROUTER) { /* * Change: router to host */ rt6_clean_tohost(dev_net(dev), saddr); } reason = SKB_CONSUMED; out: neigh_release(neigh); } return reason; } static enum skb_drop_reason ndisc_recv_rs(struct sk_buff *skb) { struct rs_msg *rs_msg = (struct rs_msg *)skb_transport_header(skb); unsigned long ndoptlen = skb->len - sizeof(*rs_msg); struct neighbour *neigh; struct inet6_dev *idev; const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; struct ndisc_options ndopts; u8 *lladdr = NULL; SKB_DR(reason); if (skb->len < sizeof(*rs_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; idev = __in6_dev_get(skb->dev); if (!idev) { net_err_ratelimited("RS: can't find in6 device\n"); return reason; } /* Don't accept RS if we're not in router mode */ if (!READ_ONCE(idev->cnf.forwarding)) goto out; /* * Don't update NCE if src = ::; * this implies that the source node has no ip address assigned yet. */ if (ipv6_addr_any(saddr)) goto out; /* Parse ND options */ if (!ndisc_parse_options(skb->dev, rs_msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) goto out; } neigh = __neigh_lookup(&nd_tbl, saddr, skb->dev, 1); if (neigh) { ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER, NDISC_ROUTER_SOLICITATION, &ndopts); neigh_release(neigh); reason = SKB_CONSUMED; } out: return reason; } static void ndisc_ra_useropt(struct sk_buff *ra, struct nd_opt_hdr *opt) { struct icmp6hdr *icmp6h = (struct icmp6hdr *)skb_transport_header(ra); struct sk_buff *skb; struct nlmsghdr *nlh; struct nduseroptmsg *ndmsg; struct net *net = dev_net(ra->dev); int err; int base_size = NLMSG_ALIGN(sizeof(struct nduseroptmsg) + (opt->nd_opt_len << 3)); size_t msg_size = base_size + nla_total_size(sizeof(struct in6_addr)); skb = nlmsg_new(msg_size, GFP_ATOMIC); if (!skb) { err = -ENOBUFS; goto errout; } nlh = nlmsg_put(skb, 0, 0, RTM_NEWNDUSEROPT, base_size, 0); if (!nlh) { goto nla_put_failure; } ndmsg = nlmsg_data(nlh); ndmsg->nduseropt_family = AF_INET6; ndmsg->nduseropt_ifindex = ra->dev->ifindex; ndmsg->nduseropt_icmp_type = icmp6h->icmp6_type; ndmsg->nduseropt_icmp_code = icmp6h->icmp6_code; ndmsg->nduseropt_opts_len = opt->nd_opt_len << 3; memcpy(ndmsg + 1, opt, opt->nd_opt_len << 3); if (nla_put_in6_addr(skb, NDUSEROPT_SRCADDR, &ipv6_hdr(ra)->saddr)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_ND_USEROPT, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_free(skb); err = -EMSGSIZE; errout: rtnl_set_sk_err(net, RTNLGRP_ND_USEROPT, err); } static enum skb_drop_reason ndisc_router_discovery(struct sk_buff *skb) { struct ra_msg *ra_msg = (struct ra_msg *)skb_transport_header(skb); bool send_ifinfo_notify = false; struct neighbour *neigh = NULL; struct ndisc_options ndopts; struct fib6_info *rt = NULL; struct inet6_dev *in6_dev; struct fib6_table *table; u32 defrtr_usr_metric; unsigned int pref = 0; __u32 old_if_flags; struct net *net; SKB_DR(reason); int lifetime; int optlen; __u8 *opt = (__u8 *)(ra_msg + 1); optlen = (skb_tail_pointer(skb) - skb_transport_header(skb)) - sizeof(struct ra_msg); net_dbg_ratelimited("RA: %s, dev: %s\n", __func__, skb->dev->name); if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { net_dbg_ratelimited("RA: source address is not link-local\n"); return reason; } if (optlen < 0) return SKB_DROP_REASON_PKT_TOO_SMALL; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_HOST) { net_dbg_ratelimited("RA: from host or unauthorized router\n"); return reason; } #endif in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) { net_err_ratelimited("RA: can't find inet6 device for %s\n", skb->dev->name); return reason; } if (!ndisc_parse_options(skb->dev, opt, optlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ipv6_accept_ra(in6_dev)) { net_dbg_ratelimited("RA: %s, did not accept ra for dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific parameters from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { net_dbg_ratelimited("RA: %s, nodetype is NODEFAULT, dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #endif if (in6_dev->if_flags & IF_RS_SENT) { /* * flag that an RA was received after an RS was sent * out on this interface. */ in6_dev->if_flags |= IF_RA_RCVD; } /* * Remember the managed/otherconf flags from most recently * received RA message (RFC 2462) -- yoshfuji */ old_if_flags = in6_dev->if_flags; in6_dev->if_flags = (in6_dev->if_flags & ~(IF_RA_MANAGED | IF_RA_OTHERCONF)) | (ra_msg->icmph.icmp6_addrconf_managed ? IF_RA_MANAGED : 0) | (ra_msg->icmph.icmp6_addrconf_other ? IF_RA_OTHERCONF : 0); if (old_if_flags != in6_dev->if_flags) send_ifinfo_notify = true; if (!READ_ONCE(in6_dev->cnf.accept_ra_defrtr)) { net_dbg_ratelimited("RA: %s, defrtr is false for dev: %s\n", __func__, skb->dev->name); goto skip_defrtr; } lifetime = ntohs(ra_msg->icmph.icmp6_rt_lifetime); if (lifetime != 0 && lifetime < READ_ONCE(in6_dev->cnf.accept_ra_min_lft)) { net_dbg_ratelimited("RA: router lifetime (%ds) is too short: %s\n", lifetime, skb->dev->name); goto skip_defrtr; } /* Do not accept RA with source-addr found on local machine unless * accept_ra_from_local is set to true. */ net = dev_net(in6_dev->dev); if (!READ_ONCE(in6_dev->cnf.accept_ra_from_local) && ipv6_chk_addr(net, &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { net_dbg_ratelimited("RA from local address detected on dev: %s: default router ignored\n", skb->dev->name); goto skip_defrtr; } #ifdef CONFIG_IPV6_ROUTER_PREF pref = ra_msg->icmph.icmp6_router_pref; /* 10b is handled as if it were 00b (medium) */ if (pref == ICMPV6_ROUTER_PREF_INVALID || !READ_ONCE(in6_dev->cnf.accept_ra_rtr_pref)) pref = ICMPV6_ROUTER_PREF_MEDIUM; #endif /* routes added from RAs do not use nexthop objects */ rt = rt6_get_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev); if (rt) { neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { net_err_ratelimited("RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } } /* Set default route metric as specified by user */ defrtr_usr_metric = in6_dev->cnf.ra_defrtr_metric; /* delete the route if lifetime is 0 or if metric needs change */ if (rt && (lifetime == 0 || rt->fib6_metric != defrtr_usr_metric)) { ip6_del_rt(net, rt, false); rt = NULL; } net_dbg_ratelimited("RA: rt: %p lifetime: %d, metric: %d, for dev: %s\n", rt, lifetime, defrtr_usr_metric, skb->dev->name); if (!rt && lifetime) { net_dbg_ratelimited("RA: adding default router\n"); if (neigh) neigh_release(neigh); rt = rt6_add_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev, pref, defrtr_usr_metric, lifetime); if (!rt) { net_err_ratelimited("RA: %s failed to add default route\n", __func__); return reason; } neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { net_err_ratelimited("RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } neigh->flags |= NTF_ROUTER; } else if (rt && IPV6_EXTRACT_PREF(rt->fib6_flags) != pref) { struct nl_info nlinfo = { .nl_net = net, }; rt->fib6_flags = (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); inet6_rt_notify(RTM_NEWROUTE, rt, &nlinfo, NLM_F_REPLACE); } if (rt) { table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); fib6_set_expires(rt, jiffies + (HZ * lifetime)); fib6_add_gc_list(rt); spin_unlock_bh(&table->tb6_lock); } if (READ_ONCE(in6_dev->cnf.accept_ra_min_hop_limit) < 256 && ra_msg->icmph.icmp6_hop_limit) { if (READ_ONCE(in6_dev->cnf.accept_ra_min_hop_limit) <= ra_msg->icmph.icmp6_hop_limit) { WRITE_ONCE(in6_dev->cnf.hop_limit, ra_msg->icmph.icmp6_hop_limit); fib6_metric_set(rt, RTAX_HOPLIMIT, ra_msg->icmph.icmp6_hop_limit); } else { net_dbg_ratelimited("RA: Got route advertisement with lower hop_limit than minimum\n"); } } skip_defrtr: /* * Update Reachable Time and Retrans Timer */ if (in6_dev->nd_parms) { unsigned long rtime = ntohl(ra_msg->retrans_timer); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/HZ) { rtime = (rtime*HZ)/1000; if (rtime < HZ/100) rtime = HZ/100; NEIGH_VAR_SET(in6_dev->nd_parms, RETRANS_TIME, rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } rtime = ntohl(ra_msg->reachable_time); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/(3*HZ)) { rtime = (rtime*HZ)/1000; if (rtime < HZ/10) rtime = HZ/10; if (rtime != NEIGH_VAR(in6_dev->nd_parms, BASE_REACHABLE_TIME)) { NEIGH_VAR_SET(in6_dev->nd_parms, BASE_REACHABLE_TIME, rtime); NEIGH_VAR_SET(in6_dev->nd_parms, GC_STALETIME, 3 * rtime); in6_dev->nd_parms->reachable_time = neigh_rand_reach_time(rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } } } skip_linkparms: /* * Process options. */ if (!neigh) neigh = __neigh_lookup(&nd_tbl, &ipv6_hdr(skb)->saddr, skb->dev, 1); if (neigh) { u8 *lladdr = NULL; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) { net_dbg_ratelimited("RA: invalid link-layer address length\n"); goto out; } } ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER, NDISC_ROUTER_ADVERTISEMENT, &ndopts); reason = SKB_CONSUMED; } if (!ipv6_accept_ra(in6_dev)) { net_dbg_ratelimited("RA: %s, accept_ra is false for dev: %s\n", __func__, skb->dev->name); goto out; } #ifdef CONFIG_IPV6_ROUTE_INFO if (!READ_ONCE(in6_dev->cnf.accept_ra_from_local) && ipv6_chk_addr(dev_net(in6_dev->dev), &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { net_dbg_ratelimited("RA from local address detected on dev: %s: router info ignored.\n", skb->dev->name); goto skip_routeinfo; } if (READ_ONCE(in6_dev->cnf.accept_ra_rtr_pref) && ndopts.nd_opts_ri) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_ri; p; p = ndisc_next_option(p, ndopts.nd_opts_ri_end)) { struct route_info *ri = (struct route_info *)p; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT && ri->prefix_len == 0) continue; #endif if (ri->prefix_len == 0 && !READ_ONCE(in6_dev->cnf.accept_ra_defrtr)) continue; if (ri->lifetime != 0 && ntohl(ri->lifetime) < READ_ONCE(in6_dev->cnf.accept_ra_min_lft)) continue; if (ri->prefix_len < READ_ONCE(in6_dev->cnf.accept_ra_rt_info_min_plen)) continue; if (ri->prefix_len > READ_ONCE(in6_dev->cnf.accept_ra_rt_info_max_plen)) continue; rt6_route_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, &ipv6_hdr(skb)->saddr); } } skip_routeinfo: #endif #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific ndopts from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { net_dbg_ratelimited("RA: %s, nodetype is NODEFAULT (interior routes), dev: %s\n", __func__, skb->dev->name); goto out; } #endif if (READ_ONCE(in6_dev->cnf.accept_ra_pinfo) && ndopts.nd_opts_pi) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_pi; p; p = ndisc_next_option(p, ndopts.nd_opts_pi_end)) { addrconf_prefix_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, ndopts.nd_opts_src_lladdr != NULL); } } if (ndopts.nd_opts_mtu && READ_ONCE(in6_dev->cnf.accept_ra_mtu)) { __be32 n; u32 mtu; memcpy(&n, ((u8 *)(ndopts.nd_opts_mtu+1))+2, sizeof(mtu)); mtu = ntohl(n); if (in6_dev->ra_mtu != mtu) { in6_dev->ra_mtu = mtu; send_ifinfo_notify = true; } if (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) { net_dbg_ratelimited("RA: invalid mtu: %d\n", mtu); } else if (READ_ONCE(in6_dev->cnf.mtu6) != mtu) { WRITE_ONCE(in6_dev->cnf.mtu6, mtu); fib6_metric_set(rt, RTAX_MTU, mtu); rt6_mtu_change(skb->dev, mtu); } } if (ndopts.nd_useropts) { struct nd_opt_hdr *p; for (p = ndopts.nd_useropts; p; p = ndisc_next_useropt(skb->dev, p, ndopts.nd_useropts_end)) { ndisc_ra_useropt(skb, p); } } if (ndopts.nd_opts_tgt_lladdr || ndopts.nd_opts_rh) { net_dbg_ratelimited("RA: invalid RA options\n"); } out: /* Send a notify if RA changed managed/otherconf flags or * timer settings or ra_mtu value */ if (send_ifinfo_notify) inet6_ifinfo_notify(RTM_NEWLINK, in6_dev); fib6_info_release(rt); if (neigh) neigh_release(neigh); return reason; } static enum skb_drop_reason ndisc_redirect_rcv(struct sk_buff *skb) { struct rd_msg *msg = (struct rd_msg *)skb_transport_header(skb); u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct rd_msg, opt)); struct ndisc_options ndopts; SKB_DR(reason); u8 *hdr; #ifdef CONFIG_IPV6_NDISC_NODETYPE switch (skb->ndisc_nodetype) { case NDISC_NODETYPE_HOST: case NDISC_NODETYPE_NODEFAULT: net_dbg_ratelimited("Redirect: from host or unauthorized router\n"); return reason; } #endif if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { net_dbg_ratelimited("Redirect: source address is not link-local\n"); return reason; } if (!ndisc_parse_options(skb->dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ndopts.nd_opts_rh) { ip6_redirect_no_header(skb, dev_net(skb->dev), skb->dev->ifindex); return reason; } hdr = (u8 *)ndopts.nd_opts_rh; hdr += 8; if (!pskb_pull(skb, hdr - skb_transport_header(skb))) return SKB_DROP_REASON_PKT_TOO_SMALL; return icmpv6_notify(skb, NDISC_REDIRECT, 0, 0); } static void ndisc_fill_redirect_hdr_option(struct sk_buff *skb, struct sk_buff *orig_skb, int rd_len) { u8 *opt = skb_put(skb, rd_len); memset(opt, 0, 8); *(opt++) = ND_OPT_REDIRECT_HDR; *(opt++) = (rd_len >> 3); opt += 6; skb_copy_bits(orig_skb, skb_network_offset(orig_skb), opt, rd_len - 8); } void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target) { struct net_device *dev = skb->dev; struct net *net = dev_net_rcu(dev); struct sock *sk = net->ipv6.ndisc_sk; int optlen = 0; struct inet_peer *peer; struct sk_buff *buff; struct rd_msg *msg; struct in6_addr saddr_buf; struct rt6_info *rt; struct dst_entry *dst; struct flowi6 fl6; int rd_len; u8 ha_buf[MAX_ADDR_LEN], *ha = NULL, ops_data_buf[NDISC_OPS_REDIRECT_DATA_SPACE], *ops_data = NULL; bool ret; if (netif_is_l3_master(dev)) { dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); if (!dev) return; } if (ipv6_get_lladdr(dev, &saddr_buf, IFA_F_TENTATIVE)) { net_dbg_ratelimited("Redirect: no link-local address on %s\n", dev->name); return; } if (!ipv6_addr_equal(&ipv6_hdr(skb)->daddr, target) && ipv6_addr_type(target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { net_dbg_ratelimited("Redirect: target address is not link-local unicast\n"); return; } icmpv6_flow_init(sk, &fl6, NDISC_REDIRECT, &saddr_buf, &ipv6_hdr(skb)->saddr, dev->ifindex); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; rt = dst_rt6_info(dst); if (rt->rt6i_flags & RTF_GATEWAY) { net_dbg_ratelimited("Redirect: destination is not a neighbour\n"); goto release; } peer = inet_getpeer_v6(net->ipv6.peers, &ipv6_hdr(skb)->saddr); ret = inet_peer_xrlim_allow(peer, 1*HZ); if (!ret) goto release; if (dev->addr_len) { struct neighbour *neigh = dst_neigh_lookup(skb_dst(skb), target); if (!neigh) { net_dbg_ratelimited("Redirect: no neigh for target address\n"); goto release; } read_lock_bh(&neigh->lock); if (neigh->nud_state & NUD_VALID) { memcpy(ha_buf, neigh->ha, dev->addr_len); read_unlock_bh(&neigh->lock); ha = ha_buf; optlen += ndisc_redirect_opt_addr_space(dev, neigh, ops_data_buf, &ops_data); } else read_unlock_bh(&neigh->lock); neigh_release(neigh); } rd_len = min_t(unsigned int, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(*msg) - optlen, skb->len + 8); rd_len &= ~0x7; optlen += rd_len; buff = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!buff) goto release; msg = skb_put(buff, sizeof(*msg)); *msg = (struct rd_msg) { .icmph = { .icmp6_type = NDISC_REDIRECT, }, .target = *target, .dest = ipv6_hdr(skb)->daddr, }; /* * include target_address option */ if (ha) ndisc_fill_redirect_addr_option(buff, ha, ops_data); /* * build redirect option and copy skb over to the new packet. */ if (rd_len) ndisc_fill_redirect_hdr_option(buff, skb, rd_len); skb_dst_set(buff, dst); ndisc_send_skb(buff, &ipv6_hdr(skb)->saddr, &saddr_buf); return; release: dst_release(dst); } static void pndisc_redo(struct sk_buff *skb) { enum skb_drop_reason reason = ndisc_recv_ns(skb); kfree_skb_reason(skb, reason); } static int ndisc_is_multicast(const void *pkey) { return ipv6_addr_is_multicast((struct in6_addr *)pkey); } static bool ndisc_suppress_frag_ndisc(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev) return true; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED && READ_ONCE(idev->cnf.suppress_frag_ndisc)) { net_warn_ratelimited("Received fragmented ndisc packet. Carefully consider disabling suppress_frag_ndisc.\n"); return true; } return false; } enum skb_drop_reason ndisc_rcv(struct sk_buff *skb) { struct nd_msg *msg; SKB_DR(reason); if (ndisc_suppress_frag_ndisc(skb)) return SKB_DROP_REASON_IPV6_NDISC_FRAG; if (skb_linearize(skb)) return SKB_DROP_REASON_NOMEM; msg = (struct nd_msg *)skb_transport_header(skb); __skb_push(skb, skb->data - skb_transport_header(skb)); if (ipv6_hdr(skb)->hop_limit != 255) { net_dbg_ratelimited("NDISC: invalid hop-limit: %d\n", ipv6_hdr(skb)->hop_limit); return SKB_DROP_REASON_IPV6_NDISC_HOP_LIMIT; } if (msg->icmph.icmp6_code != 0) { net_dbg_ratelimited("NDISC: invalid ICMPv6 code: %d\n", msg->icmph.icmp6_code); return SKB_DROP_REASON_IPV6_NDISC_BAD_CODE; } switch (msg->icmph.icmp6_type) { case NDISC_NEIGHBOUR_SOLICITATION: memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); reason = ndisc_recv_ns(skb); break; case NDISC_NEIGHBOUR_ADVERTISEMENT: reason = ndisc_recv_na(skb); break; case NDISC_ROUTER_SOLICITATION: reason = ndisc_recv_rs(skb); break; case NDISC_ROUTER_ADVERTISEMENT: reason = ndisc_router_discovery(skb); break; case NDISC_REDIRECT: reason = ndisc_redirect_rcv(skb); break; } return reason; } static int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct net *net = dev_net(dev); struct inet6_dev *idev; bool evict_nocarrier; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&nd_tbl, dev); fib6_run_gc(0, net, false); fallthrough; case NETDEV_UP: idev = in6_dev_get(dev); if (!idev) break; if (READ_ONCE(idev->cnf.ndisc_notify) || READ_ONCE(net->ipv6.devconf_all->ndisc_notify)) ndisc_send_unsol_na(dev); in6_dev_put(idev); break; case NETDEV_CHANGE: idev = in6_dev_get(dev); if (!idev) evict_nocarrier = true; else { evict_nocarrier = READ_ONCE(idev->cnf.ndisc_evict_nocarrier) && READ_ONCE(net->ipv6.devconf_all->ndisc_evict_nocarrier); in6_dev_put(idev); } change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&nd_tbl, dev); if (evict_nocarrier && !netif_carrier_ok(dev)) neigh_carrier_down(&nd_tbl, dev); break; case NETDEV_DOWN: neigh_ifdown(&nd_tbl, dev); fib6_run_gc(0, net, false); break; case NETDEV_NOTIFY_PEERS: ndisc_send_unsol_na(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ndisc_netdev_notifier = { .notifier_call = ndisc_netdev_event, .priority = ADDRCONF_NOTIFY_PRIORITY - 5, }; #ifdef CONFIG_SYSCTL static void ndisc_warn_deprecated_sysctl(const struct ctl_table *ctl, const char *func, const char *dev_name) { static char warncomm[TASK_COMM_LEN]; static int warned; if (strcmp(warncomm, current->comm) && warned < 5) { strscpy(warncomm, current->comm); pr_warn("process `%s' is using deprecated sysctl (%s) net.ipv6.neigh.%s.%s - use net.ipv6.neigh.%s.%s_ms instead\n", warncomm, func, dev_name, ctl->procname, dev_name, ctl->procname); warned++; } } int ndisc_ifinfo_sysctl_change(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net_device *dev = ctl->extra1; struct inet6_dev *idev; int ret; if ((strcmp(ctl->procname, "retrans_time") == 0) || (strcmp(ctl->procname, "base_reachable_time") == 0)) ndisc_warn_deprecated_sysctl(ctl, "syscall", dev ? dev->name : "default"); if (strcmp(ctl->procname, "retrans_time") == 0) ret = neigh_proc_dointvec(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if ((strcmp(ctl->procname, "retrans_time_ms") == 0) || (strcmp(ctl->procname, "base_reachable_time_ms") == 0)) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0 && dev && (idev = in6_dev_get(dev)) != NULL) { if (ctl->data == &NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)) idev->nd_parms->reachable_time = neigh_rand_reach_time(NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)); WRITE_ONCE(idev->tstamp, jiffies); inet6_ifinfo_notify(RTM_NEWLINK, idev); in6_dev_put(idev); } return ret; } #endif static int __net_init ndisc_net_init(struct net *net) { struct ipv6_pinfo *np; struct sock *sk; int err; err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { net_err_ratelimited("NDISC: Failed to initialize the control socket (err %d)\n", err); return err; } net->ipv6.ndisc_sk = sk; np = inet6_sk(sk); np->hop_limit = 255; /* Do not loopback ndisc messages */ inet6_clear_bit(MC6_LOOP, sk); return 0; } static void __net_exit ndisc_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.ndisc_sk); } static struct pernet_operations ndisc_net_ops = { .init = ndisc_net_init, .exit = ndisc_net_exit, }; int __init ndisc_init(void) { int err; err = register_pernet_subsys(&ndisc_net_ops); if (err) return err; /* * Initialize the neighbour table */ neigh_table_init(NEIGH_ND_TABLE, &nd_tbl); #ifdef CONFIG_SYSCTL err = neigh_sysctl_register(NULL, &nd_tbl.parms, ndisc_ifinfo_sysctl_change); if (err) goto out_unregister_pernet; out: #endif return err; #ifdef CONFIG_SYSCTL out_unregister_pernet: unregister_pernet_subsys(&ndisc_net_ops); goto out; #endif } int __init ndisc_late_init(void) { return register_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_late_cleanup(void) { unregister_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_cleanup(void) { #ifdef CONFIG_SYSCTL neigh_sysctl_unregister(&nd_tbl.parms); #endif neigh_table_clear(NEIGH_ND_TABLE, &nd_tbl); unregister_pernet_subsys(&ndisc_net_ops); } |
| 30 13 16 16 16 16 16 16 16 16 16 16 1 5 5 39 1 31 31 1 1 1 1 1 1 7 7 7 4 5 7 77 8 1 31 1 1 1 1 1 16 1 5 4 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 2 2 1 2 1 4 5 5 1 2 4 4 5 2 4 5 4 3 3 3 1 2 2 3 1 2 3 1 1 5 2 1 2 22 1 1 1 2 2 1 11 11 11 11 11 1 1 1 3 3 3 1 3 1 1 7 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 | // SPDX-License-Identifier: GPL-2.0-only /* * vivid-ctrls.c - control support functions. * * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/videodev2.h> #include <media/v4l2-event.h> #include <media/v4l2-common.h> #include "vivid-core.h" #include "vivid-vid-cap.h" #include "vivid-vid-out.h" #include "vivid-vid-common.h" #include "vivid-radio-common.h" #include "vivid-osd.h" #include "vivid-ctrls.h" #define VIVID_CID_CUSTOM_BASE (V4L2_CID_USER_BASE | 0xf000) #define VIVID_CID_BUTTON (VIVID_CID_CUSTOM_BASE + 0) #define VIVID_CID_BOOLEAN (VIVID_CID_CUSTOM_BASE + 1) #define VIVID_CID_INTEGER (VIVID_CID_CUSTOM_BASE + 2) #define VIVID_CID_INTEGER64 (VIVID_CID_CUSTOM_BASE + 3) #define VIVID_CID_MENU (VIVID_CID_CUSTOM_BASE + 4) #define VIVID_CID_STRING (VIVID_CID_CUSTOM_BASE + 5) #define VIVID_CID_BITMASK (VIVID_CID_CUSTOM_BASE + 6) #define VIVID_CID_INTMENU (VIVID_CID_CUSTOM_BASE + 7) #define VIVID_CID_U32_ARRAY (VIVID_CID_CUSTOM_BASE + 8) #define VIVID_CID_U16_MATRIX (VIVID_CID_CUSTOM_BASE + 9) #define VIVID_CID_U8_4D_ARRAY (VIVID_CID_CUSTOM_BASE + 10) #define VIVID_CID_AREA (VIVID_CID_CUSTOM_BASE + 11) #define VIVID_CID_RO_INTEGER (VIVID_CID_CUSTOM_BASE + 12) #define VIVID_CID_U32_DYN_ARRAY (VIVID_CID_CUSTOM_BASE + 13) #define VIVID_CID_U8_PIXEL_ARRAY (VIVID_CID_CUSTOM_BASE + 14) #define VIVID_CID_S32_ARRAY (VIVID_CID_CUSTOM_BASE + 15) #define VIVID_CID_S64_ARRAY (VIVID_CID_CUSTOM_BASE + 16) #define VIVID_CID_RECT (VIVID_CID_CUSTOM_BASE + 17) #define VIVID_CID_VIVID_BASE (0x00f00000 | 0xf000) #define VIVID_CID_VIVID_CLASS (0x00f00000 | 1) #define VIVID_CID_TEST_PATTERN (VIVID_CID_VIVID_BASE + 0) #define VIVID_CID_OSD_TEXT_MODE (VIVID_CID_VIVID_BASE + 1) #define VIVID_CID_HOR_MOVEMENT (VIVID_CID_VIVID_BASE + 2) #define VIVID_CID_VERT_MOVEMENT (VIVID_CID_VIVID_BASE + 3) #define VIVID_CID_SHOW_BORDER (VIVID_CID_VIVID_BASE + 4) #define VIVID_CID_SHOW_SQUARE (VIVID_CID_VIVID_BASE + 5) #define VIVID_CID_INSERT_SAV (VIVID_CID_VIVID_BASE + 6) #define VIVID_CID_INSERT_EAV (VIVID_CID_VIVID_BASE + 7) #define VIVID_CID_VBI_CAP_INTERLACED (VIVID_CID_VIVID_BASE + 8) #define VIVID_CID_INSERT_HDMI_VIDEO_GUARD_BAND (VIVID_CID_VIVID_BASE + 9) #define VIVID_CID_HFLIP (VIVID_CID_VIVID_BASE + 20) #define VIVID_CID_VFLIP (VIVID_CID_VIVID_BASE + 21) #define VIVID_CID_STD_ASPECT_RATIO (VIVID_CID_VIVID_BASE + 22) #define VIVID_CID_DV_TIMINGS_ASPECT_RATIO (VIVID_CID_VIVID_BASE + 23) #define VIVID_CID_TSTAMP_SRC (VIVID_CID_VIVID_BASE + 24) #define VIVID_CID_COLORSPACE (VIVID_CID_VIVID_BASE + 25) #define VIVID_CID_XFER_FUNC (VIVID_CID_VIVID_BASE + 26) #define VIVID_CID_YCBCR_ENC (VIVID_CID_VIVID_BASE + 27) #define VIVID_CID_QUANTIZATION (VIVID_CID_VIVID_BASE + 28) #define VIVID_CID_LIMITED_RGB_RANGE (VIVID_CID_VIVID_BASE + 29) #define VIVID_CID_ALPHA_MODE (VIVID_CID_VIVID_BASE + 30) #define VIVID_CID_HAS_CROP_CAP (VIVID_CID_VIVID_BASE + 31) #define VIVID_CID_HAS_COMPOSE_CAP (VIVID_CID_VIVID_BASE + 32) #define VIVID_CID_HAS_SCALER_CAP (VIVID_CID_VIVID_BASE + 33) #define VIVID_CID_HAS_CROP_OUT (VIVID_CID_VIVID_BASE + 34) #define VIVID_CID_HAS_COMPOSE_OUT (VIVID_CID_VIVID_BASE + 35) #define VIVID_CID_HAS_SCALER_OUT (VIVID_CID_VIVID_BASE + 36) #define VIVID_CID_SEQ_WRAP (VIVID_CID_VIVID_BASE + 38) #define VIVID_CID_TIME_WRAP (VIVID_CID_VIVID_BASE + 39) #define VIVID_CID_MAX_EDID_BLOCKS (VIVID_CID_VIVID_BASE + 40) #define VIVID_CID_PERCENTAGE_FILL (VIVID_CID_VIVID_BASE + 41) #define VIVID_CID_REDUCED_FPS (VIVID_CID_VIVID_BASE + 42) #define VIVID_CID_HSV_ENC (VIVID_CID_VIVID_BASE + 43) #define VIVID_CID_STD_SIGNAL_MODE (VIVID_CID_VIVID_BASE + 60) #define VIVID_CID_STANDARD (VIVID_CID_VIVID_BASE + 61) #define VIVID_CID_DV_TIMINGS_SIGNAL_MODE (VIVID_CID_VIVID_BASE + 62) #define VIVID_CID_DV_TIMINGS (VIVID_CID_VIVID_BASE + 63) #define VIVID_CID_PERC_DROPPED (VIVID_CID_VIVID_BASE + 64) #define VIVID_CID_DISCONNECT (VIVID_CID_VIVID_BASE + 65) #define VIVID_CID_DQBUF_ERROR (VIVID_CID_VIVID_BASE + 66) #define VIVID_CID_QUEUE_SETUP_ERROR (VIVID_CID_VIVID_BASE + 67) #define VIVID_CID_BUF_PREPARE_ERROR (VIVID_CID_VIVID_BASE + 68) #define VIVID_CID_START_STR_ERROR (VIVID_CID_VIVID_BASE + 69) #define VIVID_CID_QUEUE_ERROR (VIVID_CID_VIVID_BASE + 70) #define VIVID_CID_CLEAR_FB (VIVID_CID_VIVID_BASE + 71) #define VIVID_CID_REQ_VALIDATE_ERROR (VIVID_CID_VIVID_BASE + 72) #define VIVID_CID_RADIO_SEEK_MODE (VIVID_CID_VIVID_BASE + 90) #define VIVID_CID_RADIO_SEEK_PROG_LIM (VIVID_CID_VIVID_BASE + 91) #define VIVID_CID_RADIO_RX_RDS_RBDS (VIVID_CID_VIVID_BASE + 92) #define VIVID_CID_RADIO_RX_RDS_BLOCKIO (VIVID_CID_VIVID_BASE + 93) #define VIVID_CID_RADIO_TX_RDS_BLOCKIO (VIVID_CID_VIVID_BASE + 94) #define VIVID_CID_SDR_CAP_FM_DEVIATION (VIVID_CID_VIVID_BASE + 110) #define VIVID_CID_META_CAP_GENERATE_PTS (VIVID_CID_VIVID_BASE + 111) #define VIVID_CID_META_CAP_GENERATE_SCR (VIVID_CID_VIVID_BASE + 112) /* HDMI inputs are in the range 0-14. The next available CID is VIVID_CID_VIVID_BASE + 128 */ #define VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(input) (VIVID_CID_VIVID_BASE + 113 + (input)) /* S-Video inputs are in the range 0-15. The next available CID is VIVID_CID_VIVID_BASE + 144 */ #define VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(input) (VIVID_CID_VIVID_BASE + 128 + (input)) /* General User Controls */ static void vivid_unregister_dev(bool valid, struct video_device *vdev) { if (!valid) return; clear_bit(V4L2_FL_REGISTERED, &vdev->flags); v4l2_event_wake_all(vdev); } static int vivid_user_gen_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_user_gen); switch (ctrl->id) { case VIVID_CID_DISCONNECT: v4l2_info(&dev->v4l2_dev, "disconnect\n"); dev->disconnect_error = true; vivid_unregister_dev(dev->has_vid_cap, &dev->vid_cap_dev); vivid_unregister_dev(dev->has_vid_out, &dev->vid_out_dev); vivid_unregister_dev(dev->has_vbi_cap, &dev->vbi_cap_dev); vivid_unregister_dev(dev->has_vbi_out, &dev->vbi_out_dev); vivid_unregister_dev(dev->has_radio_rx, &dev->radio_rx_dev); vivid_unregister_dev(dev->has_radio_tx, &dev->radio_tx_dev); vivid_unregister_dev(dev->has_sdr_cap, &dev->sdr_cap_dev); vivid_unregister_dev(dev->has_meta_cap, &dev->meta_cap_dev); vivid_unregister_dev(dev->has_meta_out, &dev->meta_out_dev); vivid_unregister_dev(dev->has_touch_cap, &dev->touch_cap_dev); break; case VIVID_CID_BUTTON: dev->button_pressed = 30; break; } return 0; } static const struct v4l2_ctrl_ops vivid_user_gen_ctrl_ops = { .s_ctrl = vivid_user_gen_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_button = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_BUTTON, .name = "Button", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_boolean = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_BOOLEAN, .name = "Boolean", .type = V4L2_CTRL_TYPE_BOOLEAN, .min = 0, .max = 1, .step = 1, .def = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_int32 = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_INTEGER, .name = "Integer 32 Bits", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0xffffffff80000000ULL, .max = 0x7fffffff, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_int64 = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_INTEGER64, .name = "Integer 64 Bits", .type = V4L2_CTRL_TYPE_INTEGER64, .min = 0x8000000000000000ULL, .max = 0x7fffffffffffffffLL, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_u32_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U32_ARRAY, .name = "U32 1 Element Array", .type = V4L2_CTRL_TYPE_U32, .def = 0x18, .min = 0x10, .max = 0x20000, .step = 1, .dims = { 1 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u32_dyn_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U32_DYN_ARRAY, .name = "U32 Dynamic Array", .type = V4L2_CTRL_TYPE_U32, .flags = V4L2_CTRL_FLAG_DYNAMIC_ARRAY, .def = 50, .min = 10, .max = 90, .step = 1, .dims = { 100 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u16_matrix = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U16_MATRIX, .name = "U16 8x16 Matrix", .type = V4L2_CTRL_TYPE_U16, .def = 0x18, .min = 0x10, .max = 0x2000, .step = 1, .dims = { 8, 16 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u8_4d_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U8_4D_ARRAY, .name = "U8 2x3x4x5 Array", .type = V4L2_CTRL_TYPE_U8, .def = 0x18, .min = 0x10, .max = 0x20, .step = 1, .dims = { 2, 3, 4, 5 }, }; static const struct v4l2_ctrl_config vivid_ctrl_u8_pixel_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_U8_PIXEL_ARRAY, .name = "U8 Pixel Array", .type = V4L2_CTRL_TYPE_U8, .def = 0x80, .min = 0x00, .max = 0xff, .step = 1, .dims = { DIV_ROUND_UP(360, PIXEL_ARRAY_DIV), DIV_ROUND_UP(640, PIXEL_ARRAY_DIV) }, }; static const struct v4l2_ctrl_config vivid_ctrl_s32_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_S32_ARRAY, .name = "S32 2 Element Array", .type = V4L2_CTRL_TYPE_INTEGER, .def = 2, .min = -10, .max = 10, .step = 1, .dims = { 2 }, }; static const struct v4l2_ctrl_config vivid_ctrl_s64_array = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_S64_ARRAY, .name = "S64 5 Element Array", .type = V4L2_CTRL_TYPE_INTEGER64, .def = 4, .min = -10, .max = 10, .step = 1, .dims = { 5 }, }; static const char * const vivid_ctrl_menu_strings[] = { "Menu Item 0 (Skipped)", "Menu Item 1", "Menu Item 2 (Skipped)", "Menu Item 3", "Menu Item 4", "Menu Item 5 (Skipped)", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_menu = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_MENU, .name = "Menu", .type = V4L2_CTRL_TYPE_MENU, .min = 1, .max = 4, .def = 3, .menu_skip_mask = 0x04, .qmenu = vivid_ctrl_menu_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_string = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_STRING, .name = "String", .type = V4L2_CTRL_TYPE_STRING, .min = 2, .max = 4, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_bitmask = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_BITMASK, .name = "Bitmask", .type = V4L2_CTRL_TYPE_BITMASK, .def = 0x80002000, .min = 0, .max = 0x80402010, .step = 0, }; static const s64 vivid_ctrl_int_menu_values[] = { 1, 1, 2, 3, 5, 8, 13, 21, 42, }; static const struct v4l2_ctrl_config vivid_ctrl_int_menu = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_INTMENU, .name = "Integer Menu", .type = V4L2_CTRL_TYPE_INTEGER_MENU, .min = 1, .max = 8, .def = 4, .menu_skip_mask = 0x02, .qmenu_int = vivid_ctrl_int_menu_values, }; static const struct v4l2_ctrl_config vivid_ctrl_disconnect = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_DISCONNECT, .name = "Disconnect", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_area area = { .width = 1000, .height = 2000, }; static const struct v4l2_ctrl_config vivid_ctrl_area = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_AREA, .name = "Area", .type = V4L2_CTRL_TYPE_AREA, .p_def.p_const = &area, }; static const struct v4l2_ctrl_config vivid_ctrl_ro_int32 = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_RO_INTEGER, .name = "Read-Only Integer 32 Bits", .type = V4L2_CTRL_TYPE_INTEGER, .flags = V4L2_CTRL_FLAG_READ_ONLY, .min = 0, .max = 255, .step = 1, }; static const struct v4l2_rect rect_def = { .top = 100, .left = 200, .width = 300, .height = 400, }; static const struct v4l2_rect rect_min = { .top = 0, .left = 0, .width = 1, .height = 1, }; static const struct v4l2_rect rect_max = { .top = 0, .left = 0, .width = 1000, .height = 2000, }; static const struct v4l2_ctrl_config vivid_ctrl_rect = { .ops = &vivid_user_gen_ctrl_ops, .id = VIVID_CID_RECT, .name = "Rect", .type = V4L2_CTRL_TYPE_RECT, .flags = V4L2_CTRL_FLAG_HAS_WHICH_MIN_MAX, .p_def.p_const = &rect_def, .p_min.p_const = &rect_min, .p_max.p_const = &rect_max, }; /* Framebuffer Controls */ static int vivid_fb_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_fb); switch (ctrl->id) { case VIVID_CID_CLEAR_FB: vivid_fb_clear(dev); break; } return 0; } static const struct v4l2_ctrl_ops vivid_fb_ctrl_ops = { .s_ctrl = vivid_fb_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_clear_fb = { .ops = &vivid_fb_ctrl_ops, .id = VIVID_CID_CLEAR_FB, .name = "Clear Framebuffer", .type = V4L2_CTRL_TYPE_BUTTON, }; /* Video User Controls */ static int vivid_user_vid_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_user_vid); switch (ctrl->id) { case V4L2_CID_AUTOGAIN: dev->gain->val = (jiffies_to_msecs(jiffies) / 1000) & 0xff; break; } return 0; } static int vivid_user_vid_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_user_vid); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: dev->input_brightness[dev->input] = ctrl->val - dev->input * 128; tpg_s_brightness(&dev->tpg, dev->input_brightness[dev->input]); break; case V4L2_CID_CONTRAST: tpg_s_contrast(&dev->tpg, ctrl->val); break; case V4L2_CID_SATURATION: tpg_s_saturation(&dev->tpg, ctrl->val); break; case V4L2_CID_HUE: tpg_s_hue(&dev->tpg, ctrl->val); break; case V4L2_CID_HFLIP: dev->hflip = ctrl->val; tpg_s_hflip(&dev->tpg, dev->sensor_hflip ^ dev->hflip); break; case V4L2_CID_VFLIP: dev->vflip = ctrl->val; tpg_s_vflip(&dev->tpg, dev->sensor_vflip ^ dev->vflip); break; case V4L2_CID_ALPHA_COMPONENT: tpg_s_alpha_component(&dev->tpg, ctrl->val); break; } return 0; } static const struct v4l2_ctrl_ops vivid_user_vid_ctrl_ops = { .g_volatile_ctrl = vivid_user_vid_g_volatile_ctrl, .s_ctrl = vivid_user_vid_s_ctrl, }; /* Video Capture Controls */ static void vivid_update_power_present(struct vivid_dev *dev) { unsigned int i, j; dev->power_present = 0; for (i = 0, j = 0; i < ARRAY_SIZE(dev->dv_timings_signal_mode); i++) { if (dev->input_type[i] != HDMI) continue; /* * If connected to TPG or HDMI output, and the signal * mode is not NO_SIGNAL, then there is power present. */ if (dev->input_is_connected_to_output[i] != 1 && dev->dv_timings_signal_mode[i] != NO_SIGNAL) dev->power_present |= (1 << j); j++; } __v4l2_ctrl_s_ctrl(dev->ctrl_rx_power_present, dev->power_present); v4l2_ctrl_activate(dev->ctrl_dv_timings, dev->dv_timings_signal_mode[dev->input] == SELECTED_DV_TIMINGS); } static int vivid_vid_cap_s_ctrl(struct v4l2_ctrl *ctrl) { static const u32 colorspaces[] = { V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_REC709, V4L2_COLORSPACE_SRGB, V4L2_COLORSPACE_OPRGB, V4L2_COLORSPACE_BT2020, V4L2_COLORSPACE_DCI_P3, V4L2_COLORSPACE_SMPTE240M, V4L2_COLORSPACE_470_SYSTEM_M, V4L2_COLORSPACE_470_SYSTEM_BG, }; struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_vid_cap); unsigned int i; struct vivid_dev *output_inst = NULL; int index = 0; int hdmi_index, svid_index; s32 input_index = 0; switch (ctrl->id) { case VIVID_CID_TEST_PATTERN: vivid_update_quality(dev); tpg_s_pattern(&dev->tpg, ctrl->val); break; case VIVID_CID_COLORSPACE: tpg_s_colorspace(&dev->tpg, colorspaces[ctrl->val]); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_XFER_FUNC: tpg_s_xfer_func(&dev->tpg, ctrl->val); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_YCBCR_ENC: tpg_s_ycbcr_enc(&dev->tpg, ctrl->val); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_HSV_ENC: tpg_s_hsv_enc(&dev->tpg, ctrl->val ? V4L2_HSV_ENC_256 : V4L2_HSV_ENC_180); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case VIVID_CID_QUANTIZATION: tpg_s_quantization(&dev->tpg, ctrl->val); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); vivid_send_source_change(dev, HDMI); vivid_send_source_change(dev, WEBCAM); break; case V4L2_CID_DV_RX_RGB_RANGE: if (!vivid_is_hdmi_cap(dev)) break; tpg_s_rgb_range(&dev->tpg, ctrl->val); break; case VIVID_CID_LIMITED_RGB_RANGE: tpg_s_real_rgb_range(&dev->tpg, ctrl->val ? V4L2_DV_RGB_RANGE_LIMITED : V4L2_DV_RGB_RANGE_FULL); break; case VIVID_CID_ALPHA_MODE: tpg_s_alpha_mode(&dev->tpg, ctrl->val); break; case VIVID_CID_HOR_MOVEMENT: tpg_s_mv_hor_mode(&dev->tpg, ctrl->val); break; case VIVID_CID_VERT_MOVEMENT: tpg_s_mv_vert_mode(&dev->tpg, ctrl->val); break; case VIVID_CID_OSD_TEXT_MODE: dev->osd_mode = ctrl->val; break; case VIVID_CID_PERCENTAGE_FILL: tpg_s_perc_fill(&dev->tpg, ctrl->val); for (i = 0; i < MAX_VID_CAP_BUFFERS; i++) dev->must_blank[i] = ctrl->val < 100; break; case VIVID_CID_INSERT_SAV: tpg_s_insert_sav(&dev->tpg, ctrl->val); break; case VIVID_CID_INSERT_EAV: tpg_s_insert_eav(&dev->tpg, ctrl->val); break; case VIVID_CID_INSERT_HDMI_VIDEO_GUARD_BAND: tpg_s_insert_hdmi_video_guard_band(&dev->tpg, ctrl->val); break; case VIVID_CID_HFLIP: dev->sensor_hflip = ctrl->val; tpg_s_hflip(&dev->tpg, dev->sensor_hflip ^ dev->hflip); break; case VIVID_CID_VFLIP: dev->sensor_vflip = ctrl->val; tpg_s_vflip(&dev->tpg, dev->sensor_vflip ^ dev->vflip); break; case VIVID_CID_REDUCED_FPS: dev->reduced_fps = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_HAS_CROP_CAP: dev->has_crop_cap = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_HAS_COMPOSE_CAP: dev->has_compose_cap = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_HAS_SCALER_CAP: dev->has_scaler_cap = ctrl->val; vivid_update_format_cap(dev, true); break; case VIVID_CID_SHOW_BORDER: tpg_s_show_border(&dev->tpg, ctrl->val); break; case VIVID_CID_SHOW_SQUARE: tpg_s_show_square(&dev->tpg, ctrl->val); break; case VIVID_CID_STD_ASPECT_RATIO: dev->std_aspect_ratio[dev->input] = ctrl->val; tpg_s_video_aspect(&dev->tpg, vivid_get_video_aspect(dev)); break; case VIVID_CID_DV_TIMINGS_SIGNAL_MODE: dev->dv_timings_signal_mode[dev->input] = dev->ctrl_dv_timings_signal_mode->val; dev->query_dv_timings[dev->input] = dev->ctrl_dv_timings->val; vivid_update_power_present(dev); vivid_update_quality(dev); vivid_send_input_source_change(dev, dev->input); break; case VIVID_CID_DV_TIMINGS_ASPECT_RATIO: dev->dv_timings_aspect_ratio[dev->input] = ctrl->val; tpg_s_video_aspect(&dev->tpg, vivid_get_video_aspect(dev)); break; case VIVID_CID_TSTAMP_SRC: dev->tstamp_src_is_soe = ctrl->val; dev->vb_vid_cap_q.timestamp_flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK; if (dev->tstamp_src_is_soe) dev->vb_vid_cap_q.timestamp_flags |= V4L2_BUF_FLAG_TSTAMP_SRC_SOE; break; case VIVID_CID_MAX_EDID_BLOCKS: dev->edid_max_blocks = ctrl->val; if (dev->edid_blocks > dev->edid_max_blocks) dev->edid_blocks = dev->edid_max_blocks; break; case VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(0) ... VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(14): hdmi_index = ctrl->id - VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(0); output_inst = vivid_ctrl_hdmi_to_output_instance[ctrl->cur.val]; index = vivid_ctrl_hdmi_to_output_index[ctrl->cur.val]; input_index = dev->hdmi_index_to_input_index[hdmi_index]; dev->input_is_connected_to_output[input_index] = ctrl->val; if (output_inst) { output_inst->output_to_input_instance[index] = NULL; vivid_update_outputs(output_inst); cec_phys_addr_invalidate(output_inst->cec_tx_adap[index]); } if (ctrl->val >= FIXED_MENU_ITEMS) { output_inst = vivid_ctrl_hdmi_to_output_instance[ctrl->val]; index = vivid_ctrl_hdmi_to_output_index[ctrl->val]; output_inst->output_to_input_instance[index] = dev; output_inst->output_to_input_index[index] = dev->hdmi_index_to_input_index[hdmi_index]; } spin_lock(&hdmi_output_skip_mask_lock); hdmi_to_output_menu_skip_mask &= ~(1ULL << ctrl->cur.val); if (ctrl->val >= FIXED_MENU_ITEMS) hdmi_to_output_menu_skip_mask |= 1ULL << ctrl->val; spin_unlock(&hdmi_output_skip_mask_lock); vivid_update_power_present(dev); vivid_update_quality(dev); vivid_send_input_source_change(dev, dev->hdmi_index_to_input_index[hdmi_index]); if (ctrl->val < FIXED_MENU_ITEMS && ctrl->cur.val < FIXED_MENU_ITEMS) break; spin_lock(&hdmi_output_skip_mask_lock); hdmi_input_update_outputs_mask |= 1 << dev->inst; spin_unlock(&hdmi_output_skip_mask_lock); queue_work(update_hdmi_ctrls_workqueue, &dev->update_hdmi_ctrl_work); break; case VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(0) ... VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(15): svid_index = ctrl->id - VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(0); output_inst = vivid_ctrl_svid_to_output_instance[ctrl->cur.val]; index = vivid_ctrl_svid_to_output_index[ctrl->cur.val]; input_index = dev->svid_index_to_input_index[svid_index]; dev->input_is_connected_to_output[input_index] = ctrl->val; if (output_inst) output_inst->output_to_input_instance[index] = NULL; if (ctrl->val >= FIXED_MENU_ITEMS) { output_inst = vivid_ctrl_svid_to_output_instance[ctrl->val]; index = vivid_ctrl_svid_to_output_index[ctrl->val]; output_inst->output_to_input_instance[index] = dev; output_inst->output_to_input_index[index] = dev->svid_index_to_input_index[svid_index]; } spin_lock(&svid_output_skip_mask_lock); svid_to_output_menu_skip_mask &= ~(1ULL << ctrl->cur.val); if (ctrl->val >= FIXED_MENU_ITEMS) svid_to_output_menu_skip_mask |= 1ULL << ctrl->val; spin_unlock(&svid_output_skip_mask_lock); vivid_update_quality(dev); vivid_send_input_source_change(dev, dev->svid_index_to_input_index[svid_index]); if (ctrl->val < FIXED_MENU_ITEMS && ctrl->cur.val < FIXED_MENU_ITEMS) break; queue_work(update_svid_ctrls_workqueue, &dev->update_svid_ctrl_work); break; } return 0; } static const struct v4l2_ctrl_ops vivid_vid_cap_ctrl_ops = { .s_ctrl = vivid_vid_cap_s_ctrl, }; static const char * const vivid_ctrl_hor_movement_strings[] = { "Move Left Fast", "Move Left", "Move Left Slow", "No Movement", "Move Right Slow", "Move Right", "Move Right Fast", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_hor_movement = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HOR_MOVEMENT, .name = "Horizontal Movement", .type = V4L2_CTRL_TYPE_MENU, .max = TPG_MOVE_POS_FAST, .def = TPG_MOVE_NONE, .qmenu = vivid_ctrl_hor_movement_strings, }; static const char * const vivid_ctrl_vert_movement_strings[] = { "Move Up Fast", "Move Up", "Move Up Slow", "No Movement", "Move Down Slow", "Move Down", "Move Down Fast", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_vert_movement = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_VERT_MOVEMENT, .name = "Vertical Movement", .type = V4L2_CTRL_TYPE_MENU, .max = TPG_MOVE_POS_FAST, .def = TPG_MOVE_NONE, .qmenu = vivid_ctrl_vert_movement_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_show_border = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_SHOW_BORDER, .name = "Show Border", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_show_square = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_SHOW_SQUARE, .name = "Show Square", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const char * const vivid_ctrl_osd_mode_strings[] = { "All", "Counters Only", "None", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_osd_mode = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_OSD_TEXT_MODE, .name = "OSD Text Mode", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_osd_mode_strings) - 2, .qmenu = vivid_ctrl_osd_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_perc_fill = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_PERCENTAGE_FILL, .name = "Fill Percentage of Frame", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0, .max = 100, .def = 100, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_insert_sav = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_INSERT_SAV, .name = "Insert SAV Code in Image", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_insert_eav = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_INSERT_EAV, .name = "Insert EAV Code in Image", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_insert_hdmi_video_guard_band = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_INSERT_HDMI_VIDEO_GUARD_BAND, .name = "Insert Video Guard Band", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_hflip = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HFLIP, .name = "Sensor Flipped Horizontally", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_vflip = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_VFLIP, .name = "Sensor Flipped Vertically", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_reduced_fps = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_REDUCED_FPS, .name = "Reduced Framerate", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_crop_cap = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HAS_CROP_CAP, .name = "Enable Capture Cropping", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_compose_cap = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HAS_COMPOSE_CAP, .name = "Enable Capture Composing", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_scaler_cap = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HAS_SCALER_CAP, .name = "Enable Capture Scaler", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const char * const vivid_ctrl_tstamp_src_strings[] = { "End of Frame", "Start of Exposure", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_tstamp_src = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_TSTAMP_SRC, .name = "Timestamp Source", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_tstamp_src_strings) - 2, .qmenu = vivid_ctrl_tstamp_src_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_std_aspect_ratio = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_STD_ASPECT_RATIO, .name = "Standard Aspect Ratio", .type = V4L2_CTRL_TYPE_MENU, .min = 1, .max = 4, .def = 1, .qmenu = tpg_aspect_strings, }; static const char * const vivid_ctrl_dv_timings_signal_mode_strings[] = { "Current DV Timings", "No Signal", "No Lock", "Out of Range", "Selected DV Timings", "Cycle Through All DV Timings", "Custom DV Timings", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_dv_timings_signal_mode = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_DV_TIMINGS_SIGNAL_MODE, .name = "DV Timings Signal Mode", .type = V4L2_CTRL_TYPE_MENU, .max = 5, .qmenu = vivid_ctrl_dv_timings_signal_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_dv_timings_aspect_ratio = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_DV_TIMINGS_ASPECT_RATIO, .name = "DV Timings Aspect Ratio", .type = V4L2_CTRL_TYPE_MENU, .max = 3, .qmenu = tpg_aspect_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_max_edid_blocks = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_MAX_EDID_BLOCKS, .name = "Maximum EDID Blocks", .type = V4L2_CTRL_TYPE_INTEGER, .min = 1, .max = 256, .def = 2, .step = 1, }; static const char * const vivid_ctrl_colorspace_strings[] = { "SMPTE 170M", "Rec. 709", "sRGB", "opRGB", "BT.2020", "DCI-P3", "SMPTE 240M", "470 System M", "470 System BG", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_colorspace = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_COLORSPACE, .name = "Colorspace", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_colorspace_strings) - 2, .def = 2, .qmenu = vivid_ctrl_colorspace_strings, }; static const char * const vivid_ctrl_xfer_func_strings[] = { "Default", "Rec. 709", "sRGB", "opRGB", "SMPTE 240M", "None", "DCI-P3", "SMPTE 2084", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_xfer_func = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_XFER_FUNC, .name = "Transfer Function", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_xfer_func_strings) - 2, .qmenu = vivid_ctrl_xfer_func_strings, }; static const char * const vivid_ctrl_ycbcr_enc_strings[] = { "Default", "ITU-R 601", "Rec. 709", "xvYCC 601", "xvYCC 709", "", "BT.2020", "BT.2020 Constant Luminance", "SMPTE 240M", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_ycbcr_enc = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_YCBCR_ENC, .name = "Y'CbCr Encoding", .type = V4L2_CTRL_TYPE_MENU, .menu_skip_mask = 1 << 5, .max = ARRAY_SIZE(vivid_ctrl_ycbcr_enc_strings) - 2, .qmenu = vivid_ctrl_ycbcr_enc_strings, }; static const char * const vivid_ctrl_hsv_enc_strings[] = { "Hue 0-179", "Hue 0-256", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_hsv_enc = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HSV_ENC, .name = "HSV Encoding", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_hsv_enc_strings) - 2, .qmenu = vivid_ctrl_hsv_enc_strings, }; static const char * const vivid_ctrl_quantization_strings[] = { "Default", "Full Range", "Limited Range", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_quantization = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_QUANTIZATION, .name = "Quantization", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_quantization_strings) - 2, .qmenu = vivid_ctrl_quantization_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_alpha_mode = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_ALPHA_MODE, .name = "Apply Alpha To Red Only", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_limited_rgb_range = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_LIMITED_RGB_RANGE, .name = "Limited RGB Range (16-235)", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; /* VBI Capture Control */ static int vivid_vbi_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_vbi_cap); switch (ctrl->id) { case VIVID_CID_VBI_CAP_INTERLACED: dev->vbi_cap_interlaced = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_vbi_cap_ctrl_ops = { .s_ctrl = vivid_vbi_cap_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_vbi_cap_interlaced = { .ops = &vivid_vbi_cap_ctrl_ops, .id = VIVID_CID_VBI_CAP_INTERLACED, .name = "Interlaced VBI Format", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; /* Video Output Controls */ static int vivid_vid_out_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_vid_out); struct v4l2_bt_timings *bt = &dev->dv_timings_out.bt; switch (ctrl->id) { case VIVID_CID_HAS_CROP_OUT: dev->has_crop_out = ctrl->val; vivid_update_format_out(dev); break; case VIVID_CID_HAS_COMPOSE_OUT: dev->has_compose_out = ctrl->val; vivid_update_format_out(dev); break; case VIVID_CID_HAS_SCALER_OUT: dev->has_scaler_out = ctrl->val; vivid_update_format_out(dev); break; case V4L2_CID_DV_TX_MODE: dev->dvi_d_out = ctrl->val == V4L2_DV_TX_MODE_DVI_D; if (!vivid_is_hdmi_out(dev)) break; if (!dev->dvi_d_out && (bt->flags & V4L2_DV_FL_IS_CE_VIDEO)) { if (bt->width == 720 && bt->height <= 576) dev->colorspace_out = V4L2_COLORSPACE_SMPTE170M; else dev->colorspace_out = V4L2_COLORSPACE_REC709; dev->quantization_out = V4L2_QUANTIZATION_DEFAULT; } else { dev->colorspace_out = V4L2_COLORSPACE_SRGB; dev->quantization_out = dev->dvi_d_out ? V4L2_QUANTIZATION_LIM_RANGE : V4L2_QUANTIZATION_DEFAULT; } if (vivid_output_is_connected_to(dev)) { struct vivid_dev *dev_rx = vivid_output_is_connected_to(dev); vivid_send_source_change(dev_rx, HDMI); } break; } return 0; } static const struct v4l2_ctrl_ops vivid_vid_out_ctrl_ops = { .s_ctrl = vivid_vid_out_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_has_crop_out = { .ops = &vivid_vid_out_ctrl_ops, .id = VIVID_CID_HAS_CROP_OUT, .name = "Enable Output Cropping", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_compose_out = { .ops = &vivid_vid_out_ctrl_ops, .id = VIVID_CID_HAS_COMPOSE_OUT, .name = "Enable Output Composing", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_has_scaler_out = { .ops = &vivid_vid_out_ctrl_ops, .id = VIVID_CID_HAS_SCALER_OUT, .name = "Enable Output Scaler", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; /* Streaming Controls */ static int vivid_streaming_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_streaming); switch (ctrl->id) { case VIVID_CID_DQBUF_ERROR: dev->dqbuf_error = true; break; case VIVID_CID_PERC_DROPPED: dev->perc_dropped_buffers = ctrl->val; break; case VIVID_CID_QUEUE_SETUP_ERROR: dev->queue_setup_error = true; break; case VIVID_CID_BUF_PREPARE_ERROR: dev->buf_prepare_error = true; break; case VIVID_CID_START_STR_ERROR: dev->start_streaming_error = true; break; case VIVID_CID_REQ_VALIDATE_ERROR: dev->req_validate_error = true; break; case VIVID_CID_QUEUE_ERROR: if (vb2_start_streaming_called(&dev->vb_vid_cap_q)) vb2_queue_error(&dev->vb_vid_cap_q); if (vb2_start_streaming_called(&dev->vb_vbi_cap_q)) vb2_queue_error(&dev->vb_vbi_cap_q); if (vb2_start_streaming_called(&dev->vb_vid_out_q)) vb2_queue_error(&dev->vb_vid_out_q); if (vb2_start_streaming_called(&dev->vb_vbi_out_q)) vb2_queue_error(&dev->vb_vbi_out_q); if (vb2_start_streaming_called(&dev->vb_sdr_cap_q)) vb2_queue_error(&dev->vb_sdr_cap_q); break; case VIVID_CID_SEQ_WRAP: dev->seq_wrap = ctrl->val; break; case VIVID_CID_TIME_WRAP: dev->time_wrap = ctrl->val; if (dev->time_wrap == 1) dev->time_wrap = (1ULL << 63) - NSEC_PER_SEC * 16ULL; else if (dev->time_wrap == 2) dev->time_wrap = ((1ULL << 31) - 16) * NSEC_PER_SEC; break; } return 0; } static const struct v4l2_ctrl_ops vivid_streaming_ctrl_ops = { .s_ctrl = vivid_streaming_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_dqbuf_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_DQBUF_ERROR, .name = "Inject V4L2_BUF_FLAG_ERROR", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_perc_dropped = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_PERC_DROPPED, .name = "Percentage of Dropped Buffers", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0, .max = 100, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_queue_setup_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_QUEUE_SETUP_ERROR, .name = "Inject VIDIOC_REQBUFS Error", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_buf_prepare_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_BUF_PREPARE_ERROR, .name = "Inject VIDIOC_QBUF Error", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_start_streaming_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_START_STR_ERROR, .name = "Inject VIDIOC_STREAMON Error", .type = V4L2_CTRL_TYPE_BUTTON, }; static const struct v4l2_ctrl_config vivid_ctrl_queue_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_QUEUE_ERROR, .name = "Inject Fatal Streaming Error", .type = V4L2_CTRL_TYPE_BUTTON, }; #ifdef CONFIG_MEDIA_CONTROLLER static const struct v4l2_ctrl_config vivid_ctrl_req_validate_error = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_REQ_VALIDATE_ERROR, .name = "Inject req_validate() Error", .type = V4L2_CTRL_TYPE_BUTTON, }; #endif static const struct v4l2_ctrl_config vivid_ctrl_seq_wrap = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_SEQ_WRAP, .name = "Wrap Sequence Number", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const char * const vivid_ctrl_time_wrap_strings[] = { "None", "64 Bit", "32 Bit", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_time_wrap = { .ops = &vivid_streaming_ctrl_ops, .id = VIVID_CID_TIME_WRAP, .name = "Wrap Timestamp", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_time_wrap_strings) - 2, .qmenu = vivid_ctrl_time_wrap_strings, }; /* SDTV Capture Controls */ static int vivid_sdtv_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_sdtv_cap); switch (ctrl->id) { case VIVID_CID_STD_SIGNAL_MODE: dev->std_signal_mode[dev->input] = dev->ctrl_std_signal_mode->val; if (dev->std_signal_mode[dev->input] == SELECTED_STD) dev->query_std[dev->input] = vivid_standard[dev->ctrl_standard->val]; v4l2_ctrl_activate(dev->ctrl_standard, dev->std_signal_mode[dev->input] == SELECTED_STD); vivid_update_quality(dev); vivid_send_source_change(dev, TV); vivid_send_source_change(dev, SVID); break; } return 0; } static const struct v4l2_ctrl_ops vivid_sdtv_cap_ctrl_ops = { .s_ctrl = vivid_sdtv_cap_s_ctrl, }; static const char * const vivid_ctrl_std_signal_mode_strings[] = { "Current Standard", "No Signal", "No Lock", "", "Selected Standard", "Cycle Through All Standards", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_std_signal_mode = { .ops = &vivid_sdtv_cap_ctrl_ops, .id = VIVID_CID_STD_SIGNAL_MODE, .name = "Standard Signal Mode", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(vivid_ctrl_std_signal_mode_strings) - 2, .menu_skip_mask = 1 << 3, .qmenu = vivid_ctrl_std_signal_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_standard = { .ops = &vivid_sdtv_cap_ctrl_ops, .id = VIVID_CID_STANDARD, .name = "Standard", .type = V4L2_CTRL_TYPE_MENU, .max = 14, .qmenu = vivid_ctrl_standard_strings, }; /* Radio Receiver Controls */ static int vivid_radio_rx_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_radio_rx); switch (ctrl->id) { case VIVID_CID_RADIO_SEEK_MODE: dev->radio_rx_hw_seek_mode = ctrl->val; break; case VIVID_CID_RADIO_SEEK_PROG_LIM: dev->radio_rx_hw_seek_prog_lim = ctrl->val; break; case VIVID_CID_RADIO_RX_RDS_RBDS: dev->rds_gen.use_rbds = ctrl->val; break; case VIVID_CID_RADIO_RX_RDS_BLOCKIO: dev->radio_rx_rds_controls = ctrl->val; dev->radio_rx_caps &= ~V4L2_CAP_READWRITE; dev->radio_rx_rds_use_alternates = false; if (!dev->radio_rx_rds_controls) { dev->radio_rx_caps |= V4L2_CAP_READWRITE; __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_pty, 0); __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ta, 0); __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_tp, 0); __v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ms, 0); __v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_psname, ""); __v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_radiotext, ""); } v4l2_ctrl_activate(dev->radio_rx_rds_pty, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_psname, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_radiotext, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_ta, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_tp, dev->radio_rx_rds_controls); v4l2_ctrl_activate(dev->radio_rx_rds_ms, dev->radio_rx_rds_controls); dev->radio_rx_dev.device_caps = dev->radio_rx_caps; break; case V4L2_CID_RDS_RECEPTION: dev->radio_rx_rds_enabled = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_radio_rx_ctrl_ops = { .s_ctrl = vivid_radio_rx_s_ctrl, }; static const char * const vivid_ctrl_radio_rds_mode_strings[] = { "Block I/O", "Controls", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_rx_rds_blockio = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_RX_RDS_BLOCKIO, .name = "RDS Rx I/O Mode", .type = V4L2_CTRL_TYPE_MENU, .qmenu = vivid_ctrl_radio_rds_mode_strings, .max = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_rx_rds_rbds = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_RX_RDS_RBDS, .name = "Generate RBDS Instead of RDS", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; static const char * const vivid_ctrl_radio_hw_seek_mode_strings[] = { "Bounded", "Wrap Around", "Both", NULL, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_hw_seek_mode = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_SEEK_MODE, .name = "Radio HW Seek Mode", .type = V4L2_CTRL_TYPE_MENU, .max = 2, .qmenu = vivid_ctrl_radio_hw_seek_mode_strings, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_hw_seek_prog_lim = { .ops = &vivid_radio_rx_ctrl_ops, .id = VIVID_CID_RADIO_SEEK_PROG_LIM, .name = "Radio Programmable HW Seek", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .step = 1, }; /* Radio Transmitter Controls */ static int vivid_radio_tx_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_radio_tx); switch (ctrl->id) { case VIVID_CID_RADIO_TX_RDS_BLOCKIO: dev->radio_tx_rds_controls = ctrl->val; dev->radio_tx_caps &= ~V4L2_CAP_READWRITE; if (!dev->radio_tx_rds_controls) dev->radio_tx_caps |= V4L2_CAP_READWRITE; dev->radio_tx_dev.device_caps = dev->radio_tx_caps; break; case V4L2_CID_RDS_TX_PTY: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_pty, ctrl->val); break; case V4L2_CID_RDS_TX_PS_NAME: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_psname, ctrl->p_new.p_char); break; case V4L2_CID_RDS_TX_RADIO_TEXT: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl_string(dev->radio_rx_rds_radiotext, ctrl->p_new.p_char); break; case V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ta, ctrl->val); break; case V4L2_CID_RDS_TX_TRAFFIC_PROGRAM: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_tp, ctrl->val); break; case V4L2_CID_RDS_TX_MUSIC_SPEECH: if (dev->radio_rx_rds_controls) v4l2_ctrl_s_ctrl(dev->radio_rx_rds_ms, ctrl->val); break; } return 0; } static const struct v4l2_ctrl_ops vivid_radio_tx_ctrl_ops = { .s_ctrl = vivid_radio_tx_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_radio_tx_rds_blockio = { .ops = &vivid_radio_tx_ctrl_ops, .id = VIVID_CID_RADIO_TX_RDS_BLOCKIO, .name = "RDS Tx I/O Mode", .type = V4L2_CTRL_TYPE_MENU, .qmenu = vivid_ctrl_radio_rds_mode_strings, .max = 1, .def = 1, }; /* SDR Capture Controls */ static int vivid_sdr_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_sdr_cap); switch (ctrl->id) { case VIVID_CID_SDR_CAP_FM_DEVIATION: dev->sdr_fm_deviation = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_sdr_cap_ctrl_ops = { .s_ctrl = vivid_sdr_cap_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_sdr_cap_fm_deviation = { .ops = &vivid_sdr_cap_ctrl_ops, .id = VIVID_CID_SDR_CAP_FM_DEVIATION, .name = "FM Deviation", .type = V4L2_CTRL_TYPE_INTEGER, .min = 100, .max = 200000, .def = 75000, .step = 1, }; /* Metadata Capture Control */ static int vivid_meta_cap_s_ctrl(struct v4l2_ctrl *ctrl) { struct vivid_dev *dev = container_of(ctrl->handler, struct vivid_dev, ctrl_hdl_meta_cap); switch (ctrl->id) { case VIVID_CID_META_CAP_GENERATE_PTS: dev->meta_pts = ctrl->val; break; case VIVID_CID_META_CAP_GENERATE_SCR: dev->meta_scr = ctrl->val; break; } return 0; } static const struct v4l2_ctrl_ops vivid_meta_cap_ctrl_ops = { .s_ctrl = vivid_meta_cap_s_ctrl, }; static const struct v4l2_ctrl_config vivid_ctrl_meta_has_pts = { .ops = &vivid_meta_cap_ctrl_ops, .id = VIVID_CID_META_CAP_GENERATE_PTS, .name = "Generate PTS", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_meta_has_src_clk = { .ops = &vivid_meta_cap_ctrl_ops, .id = VIVID_CID_META_CAP_GENERATE_SCR, .name = "Generate SCR", .type = V4L2_CTRL_TYPE_BOOLEAN, .max = 1, .def = 1, .step = 1, }; static const struct v4l2_ctrl_config vivid_ctrl_class = { .ops = &vivid_user_gen_ctrl_ops, .flags = V4L2_CTRL_FLAG_READ_ONLY | V4L2_CTRL_FLAG_WRITE_ONLY, .id = VIVID_CID_VIVID_CLASS, .name = "Vivid Controls", .type = V4L2_CTRL_TYPE_CTRL_CLASS, }; int vivid_create_controls(struct vivid_dev *dev, bool show_ccs_cap, bool show_ccs_out, bool no_error_inj, bool has_sdtv, bool has_hdmi) { struct v4l2_ctrl_handler *hdl_user_gen = &dev->ctrl_hdl_user_gen; struct v4l2_ctrl_handler *hdl_user_vid = &dev->ctrl_hdl_user_vid; struct v4l2_ctrl_handler *hdl_user_aud = &dev->ctrl_hdl_user_aud; struct v4l2_ctrl_handler *hdl_streaming = &dev->ctrl_hdl_streaming; struct v4l2_ctrl_handler *hdl_sdtv_cap = &dev->ctrl_hdl_sdtv_cap; struct v4l2_ctrl_handler *hdl_loop_cap = &dev->ctrl_hdl_loop_cap; struct v4l2_ctrl_handler *hdl_fb = &dev->ctrl_hdl_fb; struct v4l2_ctrl_handler *hdl_vid_cap = &dev->ctrl_hdl_vid_cap; struct v4l2_ctrl_handler *hdl_vid_out = &dev->ctrl_hdl_vid_out; struct v4l2_ctrl_handler *hdl_vbi_cap = &dev->ctrl_hdl_vbi_cap; struct v4l2_ctrl_handler *hdl_vbi_out = &dev->ctrl_hdl_vbi_out; struct v4l2_ctrl_handler *hdl_radio_rx = &dev->ctrl_hdl_radio_rx; struct v4l2_ctrl_handler *hdl_radio_tx = &dev->ctrl_hdl_radio_tx; struct v4l2_ctrl_handler *hdl_sdr_cap = &dev->ctrl_hdl_sdr_cap; struct v4l2_ctrl_handler *hdl_meta_cap = &dev->ctrl_hdl_meta_cap; struct v4l2_ctrl_handler *hdl_meta_out = &dev->ctrl_hdl_meta_out; struct v4l2_ctrl_handler *hdl_tch_cap = &dev->ctrl_hdl_touch_cap; struct v4l2_ctrl_config vivid_ctrl_dv_timings = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_DV_TIMINGS, .name = "DV Timings", .type = V4L2_CTRL_TYPE_MENU, }; int i; v4l2_ctrl_handler_init(hdl_user_gen, 10); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_user_vid, 9); v4l2_ctrl_new_custom(hdl_user_vid, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_user_aud, 2); v4l2_ctrl_new_custom(hdl_user_aud, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_streaming, 8); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_sdtv_cap, 2); v4l2_ctrl_new_custom(hdl_sdtv_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_loop_cap, 1); v4l2_ctrl_new_custom(hdl_loop_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_fb, 1); v4l2_ctrl_new_custom(hdl_fb, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vid_cap, 55); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vid_out, 26); if (!no_error_inj || dev->has_fb || dev->num_hdmi_outputs) v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vbi_cap, 21); v4l2_ctrl_new_custom(hdl_vbi_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_vbi_out, 19); if (!no_error_inj) v4l2_ctrl_new_custom(hdl_vbi_out, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_radio_rx, 17); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_radio_tx, 17); v4l2_ctrl_new_custom(hdl_radio_tx, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_sdr_cap, 19); v4l2_ctrl_new_custom(hdl_sdr_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_meta_cap, 2); v4l2_ctrl_new_custom(hdl_meta_cap, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_meta_out, 2); v4l2_ctrl_new_custom(hdl_meta_out, &vivid_ctrl_class, NULL); v4l2_ctrl_handler_init(hdl_tch_cap, 2); v4l2_ctrl_new_custom(hdl_tch_cap, &vivid_ctrl_class, NULL); /* User Controls */ dev->volume = v4l2_ctrl_new_std(hdl_user_aud, NULL, V4L2_CID_AUDIO_VOLUME, 0, 255, 1, 200); dev->mute = v4l2_ctrl_new_std(hdl_user_aud, NULL, V4L2_CID_AUDIO_MUTE, 0, 1, 1, 0); if (dev->has_vid_cap) { dev->brightness = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); for (i = 0; i < MAX_INPUTS; i++) dev->input_brightness[i] = 128; dev->contrast = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_CONTRAST, 0, 255, 1, 128); dev->saturation = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_SATURATION, 0, 255, 1, 128); dev->hue = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_HUE, -128, 128, 1, 0); v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); dev->autogain = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); dev->gain = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_GAIN, 0, 255, 1, 100); dev->alpha = v4l2_ctrl_new_std(hdl_user_vid, &vivid_user_vid_ctrl_ops, V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 0); } dev->button = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_button, NULL); dev->int32 = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_int32, NULL); dev->int64 = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_int64, NULL); dev->boolean = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_boolean, NULL); dev->menu = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_menu, NULL); dev->string = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_string, NULL); dev->bitmask = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_bitmask, NULL); dev->int_menu = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_int_menu, NULL); dev->ro_int32 = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_ro_int32, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_area, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_rect, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u32_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u32_dyn_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u16_matrix, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u8_4d_array, NULL); dev->pixel_array = v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_u8_pixel_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_s32_array, NULL); v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_s64_array, NULL); if (dev->has_vid_cap) { /* Image Processing Controls */ struct v4l2_ctrl_config vivid_ctrl_test_pattern = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_TEST_PATTERN, .name = "Test Pattern", .type = V4L2_CTRL_TYPE_MENU, .max = TPG_PAT_NOISE, .qmenu = tpg_pattern_strings, }; dev->test_pattern = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_test_pattern, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_perc_fill, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_hor_movement, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_vert_movement, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_osd_mode, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_show_border, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_show_square, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_hflip, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_vflip, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_insert_sav, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_insert_eav, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_insert_hdmi_video_guard_band, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_reduced_fps, NULL); WARN_ON(dev->num_hdmi_inputs > MAX_HDMI_INPUTS); WARN_ON(dev->num_svid_inputs > MAX_SVID_INPUTS); for (u8 i = 0; i < dev->num_hdmi_inputs; i++) { snprintf(dev->ctrl_hdmi_to_output_names[i], sizeof(dev->ctrl_hdmi_to_output_names[i]), "HDMI %03u-%u Is Connected To", dev->inst, i); } for (u8 i = 0; i < dev->num_hdmi_inputs; i++) { struct v4l2_ctrl_config ctrl_config = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_HDMI_IS_CONNECTED_TO_OUTPUT(i), .name = dev->ctrl_hdmi_to_output_names[i], .type = V4L2_CTRL_TYPE_MENU, .max = 1, .qmenu = (const char * const *)vivid_ctrl_hdmi_to_output_strings, }; dev->ctrl_hdmi_to_output[i] = v4l2_ctrl_new_custom(hdl_vid_cap, &ctrl_config, NULL); } for (u8 i = 0; i < dev->num_svid_inputs; i++) { snprintf(dev->ctrl_svid_to_output_names[i], sizeof(dev->ctrl_svid_to_output_names[i]), "S-Video %03u-%u Is Connected To", dev->inst, i); } for (u8 i = 0; i < dev->num_svid_inputs; i++) { struct v4l2_ctrl_config ctrl_config = { .ops = &vivid_vid_cap_ctrl_ops, .id = VIVID_CID_SVID_IS_CONNECTED_TO_OUTPUT(i), .name = dev->ctrl_svid_to_output_names[i], .type = V4L2_CTRL_TYPE_MENU, .max = 1, .qmenu = (const char * const *)vivid_ctrl_svid_to_output_strings, }; dev->ctrl_svid_to_output[i] = v4l2_ctrl_new_custom(hdl_vid_cap, &ctrl_config, NULL); } if (show_ccs_cap) { dev->ctrl_has_crop_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_has_crop_cap, NULL); dev->ctrl_has_compose_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_has_compose_cap, NULL); dev->ctrl_has_scaler_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_has_scaler_cap, NULL); } v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_tstamp_src, NULL); dev->colorspace = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_colorspace, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_xfer_func, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_ycbcr_enc, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_hsv_enc, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_quantization, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_alpha_mode, NULL); } if (dev->has_vid_out && show_ccs_out) { dev->ctrl_has_crop_out = v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_has_crop_out, NULL); dev->ctrl_has_compose_out = v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_has_compose_out, NULL); dev->ctrl_has_scaler_out = v4l2_ctrl_new_custom(hdl_vid_out, &vivid_ctrl_has_scaler_out, NULL); } /* * Testing this driver with v4l2-compliance will trigger the error * injection controls, and after that nothing will work as expected. * So we have a module option to drop these error injecting controls * allowing us to run v4l2_compliance again. */ if (!no_error_inj) { v4l2_ctrl_new_custom(hdl_user_gen, &vivid_ctrl_disconnect, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_dqbuf_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_perc_dropped, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_queue_setup_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_buf_prepare_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_start_streaming_error, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_queue_error, NULL); #ifdef CONFIG_MEDIA_CONTROLLER v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_req_validate_error, NULL); #endif v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_seq_wrap, NULL); v4l2_ctrl_new_custom(hdl_streaming, &vivid_ctrl_time_wrap, NULL); } if (has_sdtv && (dev->has_vid_cap || dev->has_vbi_cap)) { if (dev->has_vid_cap) v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_std_aspect_ratio, NULL); dev->ctrl_std_signal_mode = v4l2_ctrl_new_custom(hdl_sdtv_cap, &vivid_ctrl_std_signal_mode, NULL); dev->ctrl_standard = v4l2_ctrl_new_custom(hdl_sdtv_cap, &vivid_ctrl_standard, NULL); if (dev->ctrl_std_signal_mode) v4l2_ctrl_cluster(2, &dev->ctrl_std_signal_mode); if (dev->has_raw_vbi_cap) v4l2_ctrl_new_custom(hdl_vbi_cap, &vivid_ctrl_vbi_cap_interlaced, NULL); } if (dev->num_hdmi_inputs) { s64 hdmi_input_mask = GENMASK(dev->num_hdmi_inputs - 1, 0); dev->ctrl_dv_timings_signal_mode = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_dv_timings_signal_mode, NULL); vivid_ctrl_dv_timings.max = dev->query_dv_timings_size - 1; vivid_ctrl_dv_timings.qmenu = (const char * const *)dev->query_dv_timings_qmenu; dev->ctrl_dv_timings = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_dv_timings, NULL); if (dev->ctrl_dv_timings_signal_mode) v4l2_ctrl_cluster(2, &dev->ctrl_dv_timings_signal_mode); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_dv_timings_aspect_ratio, NULL); v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_max_edid_blocks, NULL); dev->real_rgb_range_cap = v4l2_ctrl_new_custom(hdl_vid_cap, &vivid_ctrl_limited_rgb_range, NULL); dev->rgb_range_cap = v4l2_ctrl_new_std_menu(hdl_vid_cap, &vivid_vid_cap_ctrl_ops, V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); dev->ctrl_rx_power_present = v4l2_ctrl_new_std(hdl_vid_cap, NULL, V4L2_CID_DV_RX_POWER_PRESENT, 0, hdmi_input_mask, 0, hdmi_input_mask); } if (dev->num_hdmi_outputs) { s64 hdmi_output_mask = GENMASK(dev->num_hdmi_outputs - 1, 0); /* * We aren't doing anything with this at the moment, but * HDMI outputs typically have this controls. */ dev->ctrl_tx_rgb_range = v4l2_ctrl_new_std_menu(hdl_vid_out, NULL, V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); dev->ctrl_tx_mode = v4l2_ctrl_new_std_menu(hdl_vid_out, NULL, V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI, 0, V4L2_DV_TX_MODE_HDMI); dev->ctrl_tx_hotplug = v4l2_ctrl_new_std(hdl_vid_out, NULL, V4L2_CID_DV_TX_HOTPLUG, 0, hdmi_output_mask, 0, 0); dev->ctrl_tx_rxsense = v4l2_ctrl_new_std(hdl_vid_out, NULL, V4L2_CID_DV_TX_RXSENSE, 0, hdmi_output_mask, 0, 0); dev->ctrl_tx_edid_present = v4l2_ctrl_new_std(hdl_vid_out, NULL, V4L2_CID_DV_TX_EDID_PRESENT, 0, hdmi_output_mask, 0, 0); } if (dev->has_fb) v4l2_ctrl_new_custom(hdl_fb, &vivid_ctrl_clear_fb, NULL); if (dev->has_radio_rx) { v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_hw_seek_mode, NULL); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_hw_seek_prog_lim, NULL); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_rx_rds_blockio, NULL); v4l2_ctrl_new_custom(hdl_radio_rx, &vivid_ctrl_radio_rx_rds_rbds, NULL); v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RECEPTION, 0, 1, 1, 1); dev->radio_rx_rds_pty = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_PTY, 0, 31, 1, 0); dev->radio_rx_rds_psname = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_PS_NAME, 0, 8, 8, 0); dev->radio_rx_rds_radiotext = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_RADIO_TEXT, 0, 64, 64, 0); dev->radio_rx_rds_ta = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_TRAFFIC_ANNOUNCEMENT, 0, 1, 1, 0); dev->radio_rx_rds_tp = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_TRAFFIC_PROGRAM, 0, 1, 1, 0); dev->radio_rx_rds_ms = v4l2_ctrl_new_std(hdl_radio_rx, &vivid_radio_rx_ctrl_ops, V4L2_CID_RDS_RX_MUSIC_SPEECH, 0, 1, 1, 1); } if (dev->has_radio_tx) { v4l2_ctrl_new_custom(hdl_radio_tx, &vivid_ctrl_radio_tx_rds_blockio, NULL); dev->radio_tx_rds_pi = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_PI, 0, 0xffff, 1, 0x8088); dev->radio_tx_rds_pty = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_PTY, 0, 31, 1, 3); dev->radio_tx_rds_psname = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_PS_NAME, 0, 8, 8, 0); if (dev->radio_tx_rds_psname) v4l2_ctrl_s_ctrl_string(dev->radio_tx_rds_psname, "VIVID-TX"); dev->radio_tx_rds_radiotext = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_RADIO_TEXT, 0, 64 * 2, 64, 0); if (dev->radio_tx_rds_radiotext) v4l2_ctrl_s_ctrl_string(dev->radio_tx_rds_radiotext, "This is a VIVID default Radio Text template text, change at will"); dev->radio_tx_rds_mono_stereo = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_MONO_STEREO, 0, 1, 1, 1); dev->radio_tx_rds_art_head = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_ARTIFICIAL_HEAD, 0, 1, 1, 0); dev->radio_tx_rds_compressed = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_COMPRESSED, 0, 1, 1, 0); dev->radio_tx_rds_dyn_pty = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_DYNAMIC_PTY, 0, 1, 1, 0); dev->radio_tx_rds_ta = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT, 0, 1, 1, 0); dev->radio_tx_rds_tp = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_TRAFFIC_PROGRAM, 0, 1, 1, 1); dev->radio_tx_rds_ms = v4l2_ctrl_new_std(hdl_radio_tx, &vivid_radio_tx_ctrl_ops, V4L2_CID_RDS_TX_MUSIC_SPEECH, 0, 1, 1, 1); } if (dev->has_sdr_cap) { v4l2_ctrl_new_custom(hdl_sdr_cap, &vivid_ctrl_sdr_cap_fm_deviation, NULL); } if (dev->has_meta_cap) { v4l2_ctrl_new_custom(hdl_meta_cap, &vivid_ctrl_meta_has_pts, NULL); v4l2_ctrl_new_custom(hdl_meta_cap, &vivid_ctrl_meta_has_src_clk, NULL); } if (hdl_user_gen->error) return hdl_user_gen->error; if (hdl_user_vid->error) return hdl_user_vid->error; if (hdl_user_aud->error) return hdl_user_aud->error; if (hdl_streaming->error) return hdl_streaming->error; if (hdl_sdr_cap->error) return hdl_sdr_cap->error; if (hdl_loop_cap->error) return hdl_loop_cap->error; if (dev->autogain) v4l2_ctrl_auto_cluster(2, &dev->autogain, 0, true); if (dev->has_vid_cap) { v4l2_ctrl_add_handler(hdl_vid_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_user_vid, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_user_aud, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_streaming, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_sdtv_cap, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_loop_cap, NULL, false); v4l2_ctrl_add_handler(hdl_vid_cap, hdl_fb, NULL, false); if (hdl_vid_cap->error) return hdl_vid_cap->error; dev->vid_cap_dev.ctrl_handler = hdl_vid_cap; } if (dev->has_vid_out) { v4l2_ctrl_add_handler(hdl_vid_out, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vid_out, hdl_user_aud, NULL, false); v4l2_ctrl_add_handler(hdl_vid_out, hdl_streaming, NULL, false); v4l2_ctrl_add_handler(hdl_vid_out, hdl_fb, NULL, false); if (hdl_vid_out->error) return hdl_vid_out->error; dev->vid_out_dev.ctrl_handler = hdl_vid_out; } if (dev->has_vbi_cap) { v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_streaming, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_sdtv_cap, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_cap, hdl_loop_cap, NULL, false); if (hdl_vbi_cap->error) return hdl_vbi_cap->error; dev->vbi_cap_dev.ctrl_handler = hdl_vbi_cap; } if (dev->has_vbi_out) { v4l2_ctrl_add_handler(hdl_vbi_out, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_vbi_out, hdl_streaming, NULL, false); if (hdl_vbi_out->error) return hdl_vbi_out->error; dev->vbi_out_dev.ctrl_handler = hdl_vbi_out; } if (dev->has_radio_rx) { v4l2_ctrl_add_handler(hdl_radio_rx, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_radio_rx, hdl_user_aud, NULL, false); if (hdl_radio_rx->error) return hdl_radio_rx->error; dev->radio_rx_dev.ctrl_handler = hdl_radio_rx; } if (dev->has_radio_tx) { v4l2_ctrl_add_handler(hdl_radio_tx, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_radio_tx, hdl_user_aud, NULL, false); if (hdl_radio_tx->error) return hdl_radio_tx->error; dev->radio_tx_dev.ctrl_handler = hdl_radio_tx; } if (dev->has_sdr_cap) { v4l2_ctrl_add_handler(hdl_sdr_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_sdr_cap, hdl_streaming, NULL, false); if (hdl_sdr_cap->error) return hdl_sdr_cap->error; dev->sdr_cap_dev.ctrl_handler = hdl_sdr_cap; } if (dev->has_meta_cap) { v4l2_ctrl_add_handler(hdl_meta_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_meta_cap, hdl_streaming, NULL, false); if (hdl_meta_cap->error) return hdl_meta_cap->error; dev->meta_cap_dev.ctrl_handler = hdl_meta_cap; } if (dev->has_meta_out) { v4l2_ctrl_add_handler(hdl_meta_out, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_meta_out, hdl_streaming, NULL, false); if (hdl_meta_out->error) return hdl_meta_out->error; dev->meta_out_dev.ctrl_handler = hdl_meta_out; } if (dev->has_touch_cap) { v4l2_ctrl_add_handler(hdl_tch_cap, hdl_user_gen, NULL, false); v4l2_ctrl_add_handler(hdl_tch_cap, hdl_streaming, NULL, false); if (hdl_tch_cap->error) return hdl_tch_cap->error; dev->touch_cap_dev.ctrl_handler = hdl_tch_cap; } return 0; } void vivid_free_controls(struct vivid_dev *dev) { v4l2_ctrl_handler_free(&dev->ctrl_hdl_vid_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_vid_out); v4l2_ctrl_handler_free(&dev->ctrl_hdl_vbi_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_vbi_out); v4l2_ctrl_handler_free(&dev->ctrl_hdl_radio_rx); v4l2_ctrl_handler_free(&dev->ctrl_hdl_radio_tx); v4l2_ctrl_handler_free(&dev->ctrl_hdl_sdr_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_user_gen); v4l2_ctrl_handler_free(&dev->ctrl_hdl_user_vid); v4l2_ctrl_handler_free(&dev->ctrl_hdl_user_aud); v4l2_ctrl_handler_free(&dev->ctrl_hdl_streaming); v4l2_ctrl_handler_free(&dev->ctrl_hdl_sdtv_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_loop_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_fb); v4l2_ctrl_handler_free(&dev->ctrl_hdl_meta_cap); v4l2_ctrl_handler_free(&dev->ctrl_hdl_meta_out); v4l2_ctrl_handler_free(&dev->ctrl_hdl_touch_cap); } |
| 144 144 89 101 167 34 148 26 151 16 8 1 1 3 4 9 5 5 4 1 5 11 3 140 6 156 3 11 11 148 146 10 10 130 137 9 58 114 146 145 147 13 96 2 2 2 96 99 5 96 99 94 6 99 5 96 96 1 31 83 93 3 90 96 96 3 186 94 59 2 75 77 105 105 106 81 82 24 2 14 89 80 80 1 11 66 2 1 79 1 2 3 73 79 3 1 2 2 3 141 141 140 118 51 46 5 2 48 2 1 1 140 13 9 4 4 3 1 4 13 60 1 3 77 10 120 3 44 4 46 1 1 1 1 27 27 27 27 27 28 28 28 28 28 28 27 27 27 27 27 27 27 28 28 28 28 233 232 233 158 233 3 232 13 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 6 10 27 24 19 8 8 28 10 22 28 20 20 11 11 7 4 4 3 14 2 11 1 2 3 2 2 2 2 3 10 4 11 1 4 1 2 1 3 1 3 1 20 20 1 8 8 6 4 2 6 6 6 6 8 8 8 1 2 8 1 8 1 6 6 2 2 2 13 5 5 2 8 7 13 2 1 1 6 4 2 6 6 6 4 1 1 6 1 12 1 1 15 14 6 9 3 12 5 10 10 5 15 5 6 4 5 1 4 4 5 1 4 4 22 1 21 21 1 3 3 12 3 2 5 1 1 10 132 43 1 21 12 9 9 7 17 8 21 5 5 4 17 7 134 135 6 21 6 15 10 11 6 14 3 4 7 13 13 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Timers abstract layer * Copyright (c) by Jaroslav Kysela <perex@perex.cz> */ #include <linux/delay.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/mutex.h> #include <linux/device.h> #include <linux/module.h> #include <linux/string.h> #include <linux/sched/signal.h> #include <linux/anon_inodes.h> #include <linux/idr.h> #include <sound/core.h> #include <sound/timer.h> #include <sound/control.h> #include <sound/info.h> #include <sound/minors.h> #include <sound/initval.h> #include <linux/kmod.h> /* internal flags */ #define SNDRV_TIMER_IFLG_PAUSED 0x00010000 #define SNDRV_TIMER_IFLG_DEAD 0x00020000 #if IS_ENABLED(CONFIG_SND_HRTIMER) #define DEFAULT_TIMER_LIMIT 4 #else #define DEFAULT_TIMER_LIMIT 1 #endif static int timer_limit = DEFAULT_TIMER_LIMIT; static int timer_tstamp_monotonic = 1; MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Takashi Iwai <tiwai@suse.de>"); MODULE_DESCRIPTION("ALSA timer interface"); MODULE_LICENSE("GPL"); module_param(timer_limit, int, 0444); MODULE_PARM_DESC(timer_limit, "Maximum global timers in system."); module_param(timer_tstamp_monotonic, int, 0444); MODULE_PARM_DESC(timer_tstamp_monotonic, "Use posix monotonic clock source for timestamps (default)."); MODULE_ALIAS_CHARDEV(CONFIG_SND_MAJOR, SNDRV_MINOR_TIMER); MODULE_ALIAS("devname:snd/timer"); enum timer_tread_format { TREAD_FORMAT_NONE = 0, TREAD_FORMAT_TIME64, TREAD_FORMAT_TIME32, }; struct snd_timer_tread32 { int event; s32 tstamp_sec; s32 tstamp_nsec; unsigned int val; }; struct snd_timer_tread64 { int event; u8 pad1[4]; s64 tstamp_sec; s64 tstamp_nsec; unsigned int val; u8 pad2[4]; }; struct snd_timer_user { struct snd_timer_instance *timeri; int tread; /* enhanced read with timestamps and events */ unsigned long ticks; unsigned long overrun; int qhead; int qtail; int qused; int queue_size; bool disconnected; struct snd_timer_read *queue; struct snd_timer_tread64 *tqueue; spinlock_t qlock; unsigned long last_resolution; unsigned int filter; struct timespec64 tstamp; /* trigger tstamp */ wait_queue_head_t qchange_sleep; struct snd_fasync *fasync; struct mutex ioctl_lock; }; struct snd_timer_status32 { s32 tstamp_sec; /* Timestamp - last update */ s32 tstamp_nsec; unsigned int resolution; /* current period resolution in ns */ unsigned int lost; /* counter of master tick lost */ unsigned int overrun; /* count of read queue overruns */ unsigned int queue; /* used queue size */ unsigned char reserved[64]; /* reserved */ }; #define SNDRV_TIMER_IOCTL_STATUS32 _IOR('T', 0x14, struct snd_timer_status32) struct snd_timer_status64 { s64 tstamp_sec; /* Timestamp - last update */ s64 tstamp_nsec; unsigned int resolution; /* current period resolution in ns */ unsigned int lost; /* counter of master tick lost */ unsigned int overrun; /* count of read queue overruns */ unsigned int queue; /* used queue size */ unsigned char reserved[64]; /* reserved */ }; #ifdef CONFIG_SND_UTIMER #define SNDRV_UTIMERS_MAX_COUNT 128 /* Internal data structure for keeping the state of the userspace-driven timer */ struct snd_utimer { char *name; struct snd_timer *timer; unsigned int id; }; #endif #define SNDRV_TIMER_IOCTL_STATUS64 _IOR('T', 0x14, struct snd_timer_status64) /* list of timers */ static LIST_HEAD(snd_timer_list); /* list of slave instances */ static LIST_HEAD(snd_timer_slave_list); /* lock for slave active lists */ static DEFINE_SPINLOCK(slave_active_lock); #define MAX_SLAVE_INSTANCES 1000 static int num_slaves; static DEFINE_MUTEX(register_mutex); static int snd_timer_free(struct snd_timer *timer); static int snd_timer_dev_free(struct snd_device *device); static int snd_timer_dev_register(struct snd_device *device); static int snd_timer_dev_disconnect(struct snd_device *device); static void snd_timer_reschedule(struct snd_timer * timer, unsigned long ticks_left); /* * create a timer instance with the given owner string. */ struct snd_timer_instance *snd_timer_instance_new(const char *owner) { struct snd_timer_instance *timeri; timeri = kzalloc(sizeof(*timeri), GFP_KERNEL); if (timeri == NULL) return NULL; timeri->owner = kstrdup(owner, GFP_KERNEL); if (! timeri->owner) { kfree(timeri); return NULL; } INIT_LIST_HEAD(&timeri->open_list); INIT_LIST_HEAD(&timeri->active_list); INIT_LIST_HEAD(&timeri->ack_list); INIT_LIST_HEAD(&timeri->slave_list_head); INIT_LIST_HEAD(&timeri->slave_active_head); return timeri; } EXPORT_SYMBOL(snd_timer_instance_new); void snd_timer_instance_free(struct snd_timer_instance *timeri) { if (timeri) { if (timeri->private_free) timeri->private_free(timeri); kfree(timeri->owner); kfree(timeri); } } EXPORT_SYMBOL(snd_timer_instance_free); /* * find a timer instance from the given timer id */ static struct snd_timer *snd_timer_find(struct snd_timer_id *tid) { struct snd_timer *timer; list_for_each_entry(timer, &snd_timer_list, device_list) { if (timer->tmr_class != tid->dev_class) continue; if ((timer->tmr_class == SNDRV_TIMER_CLASS_CARD || timer->tmr_class == SNDRV_TIMER_CLASS_PCM) && (timer->card == NULL || timer->card->number != tid->card)) continue; if (timer->tmr_device != tid->device) continue; if (timer->tmr_subdevice != tid->subdevice) continue; return timer; } return NULL; } #ifdef CONFIG_MODULES static void snd_timer_request(struct snd_timer_id *tid) { switch (tid->dev_class) { case SNDRV_TIMER_CLASS_GLOBAL: if (tid->device < timer_limit) request_module("snd-timer-%i", tid->device); break; case SNDRV_TIMER_CLASS_CARD: case SNDRV_TIMER_CLASS_PCM: if (tid->card < snd_ecards_limit) request_module("snd-card-%i", tid->card); break; default: break; } } #endif /* move the slave if it belongs to the master; return 1 if match */ static int check_matching_master_slave(struct snd_timer_instance *master, struct snd_timer_instance *slave) { if (slave->slave_class != master->slave_class || slave->slave_id != master->slave_id) return 0; if (master->timer->num_instances >= master->timer->max_instances) return -EBUSY; list_move_tail(&slave->open_list, &master->slave_list_head); master->timer->num_instances++; guard(spinlock_irq)(&slave_active_lock); guard(spinlock)(&master->timer->lock); slave->master = master; slave->timer = master->timer; if (slave->flags & SNDRV_TIMER_IFLG_RUNNING) list_add_tail(&slave->active_list, &master->slave_active_head); return 1; } /* * look for a master instance matching with the slave id of the given slave. * when found, relink the open_link of the slave. * * call this with register_mutex down. */ static int snd_timer_check_slave(struct snd_timer_instance *slave) { struct snd_timer *timer; struct snd_timer_instance *master; int err = 0; /* FIXME: it's really dumb to look up all entries.. */ list_for_each_entry(timer, &snd_timer_list, device_list) { list_for_each_entry(master, &timer->open_list_head, open_list) { err = check_matching_master_slave(master, slave); if (err != 0) /* match found or error */ goto out; } } out: return err < 0 ? err : 0; } /* * look for slave instances matching with the slave id of the given master. * when found, relink the open_link of slaves. * * call this with register_mutex down. */ static int snd_timer_check_master(struct snd_timer_instance *master) { struct snd_timer_instance *slave, *tmp; int err = 0; /* check all pending slaves */ list_for_each_entry_safe(slave, tmp, &snd_timer_slave_list, open_list) { err = check_matching_master_slave(master, slave); if (err < 0) break; } return err < 0 ? err : 0; } static void snd_timer_close_locked(struct snd_timer_instance *timeri, struct device **card_devp_to_put); /* * open a timer instance * when opening a master, the slave id must be here given. */ int snd_timer_open(struct snd_timer_instance *timeri, struct snd_timer_id *tid, unsigned int slave_id) { struct snd_timer *timer; struct device *card_dev_to_put = NULL; int err; mutex_lock(®ister_mutex); if (tid->dev_class == SNDRV_TIMER_CLASS_SLAVE) { /* open a slave instance */ if (tid->dev_sclass <= SNDRV_TIMER_SCLASS_NONE || tid->dev_sclass > SNDRV_TIMER_SCLASS_OSS_SEQUENCER) { pr_debug("ALSA: timer: invalid slave class %i\n", tid->dev_sclass); err = -EINVAL; goto unlock; } if (num_slaves >= MAX_SLAVE_INSTANCES) { err = -EBUSY; goto unlock; } timeri->slave_class = tid->dev_sclass; timeri->slave_id = tid->device; timeri->flags |= SNDRV_TIMER_IFLG_SLAVE; list_add_tail(&timeri->open_list, &snd_timer_slave_list); num_slaves++; err = snd_timer_check_slave(timeri); goto list_added; } /* open a master instance */ timer = snd_timer_find(tid); #ifdef CONFIG_MODULES if (!timer) { mutex_unlock(®ister_mutex); snd_timer_request(tid); mutex_lock(®ister_mutex); timer = snd_timer_find(tid); } #endif if (!timer) { err = -ENODEV; goto unlock; } if (!list_empty(&timer->open_list_head)) { struct snd_timer_instance *t = list_entry(timer->open_list_head.next, struct snd_timer_instance, open_list); if (t->flags & SNDRV_TIMER_IFLG_EXCLUSIVE) { err = -EBUSY; goto unlock; } } if (timer->num_instances >= timer->max_instances) { err = -EBUSY; goto unlock; } if (!try_module_get(timer->module)) { err = -EBUSY; goto unlock; } /* take a card refcount for safe disconnection */ if (timer->card) { get_device(&timer->card->card_dev); card_dev_to_put = &timer->card->card_dev; } if (list_empty(&timer->open_list_head) && timer->hw.open) { err = timer->hw.open(timer); if (err) { module_put(timer->module); goto unlock; } } timeri->timer = timer; timeri->slave_class = tid->dev_sclass; timeri->slave_id = slave_id; list_add_tail(&timeri->open_list, &timer->open_list_head); timer->num_instances++; err = snd_timer_check_master(timeri); list_added: if (err < 0) snd_timer_close_locked(timeri, &card_dev_to_put); unlock: mutex_unlock(®ister_mutex); /* put_device() is called after unlock for avoiding deadlock */ if (err < 0 && card_dev_to_put) put_device(card_dev_to_put); return err; } EXPORT_SYMBOL(snd_timer_open); /* remove slave links, called from snd_timer_close_locked() below */ static void remove_slave_links(struct snd_timer_instance *timeri, struct snd_timer *timer) { struct snd_timer_instance *slave, *tmp; guard(spinlock_irq)(&slave_active_lock); guard(spinlock)(&timer->lock); timeri->timer = NULL; list_for_each_entry_safe(slave, tmp, &timeri->slave_list_head, open_list) { list_move_tail(&slave->open_list, &snd_timer_slave_list); timer->num_instances--; slave->master = NULL; slave->timer = NULL; list_del_init(&slave->ack_list); list_del_init(&slave->active_list); } } /* * close a timer instance * call this with register_mutex down. */ static void snd_timer_close_locked(struct snd_timer_instance *timeri, struct device **card_devp_to_put) { struct snd_timer *timer = timeri->timer; if (timer) { guard(spinlock_irq)(&timer->lock); timeri->flags |= SNDRV_TIMER_IFLG_DEAD; } if (!list_empty(&timeri->open_list)) { list_del_init(&timeri->open_list); if (timeri->flags & SNDRV_TIMER_IFLG_SLAVE) num_slaves--; } /* force to stop the timer */ snd_timer_stop(timeri); if (timer) { timer->num_instances--; /* wait, until the active callback is finished */ spin_lock_irq(&timer->lock); while (timeri->flags & SNDRV_TIMER_IFLG_CALLBACK) { spin_unlock_irq(&timer->lock); udelay(10); spin_lock_irq(&timer->lock); } spin_unlock_irq(&timer->lock); remove_slave_links(timeri, timer); /* slave doesn't need to release timer resources below */ if (timeri->flags & SNDRV_TIMER_IFLG_SLAVE) timer = NULL; } if (timer) { if (list_empty(&timer->open_list_head) && timer->hw.close) timer->hw.close(timer); /* release a card refcount for safe disconnection */ if (timer->card) *card_devp_to_put = &timer->card->card_dev; module_put(timer->module); } } /* * close a timer instance */ void snd_timer_close(struct snd_timer_instance *timeri) { struct device *card_dev_to_put = NULL; if (snd_BUG_ON(!timeri)) return; scoped_guard(mutex, ®ister_mutex) snd_timer_close_locked(timeri, &card_dev_to_put); /* put_device() is called after unlock for avoiding deadlock */ if (card_dev_to_put) put_device(card_dev_to_put); } EXPORT_SYMBOL(snd_timer_close); static unsigned long snd_timer_hw_resolution(struct snd_timer *timer) { if (timer->hw.c_resolution) return timer->hw.c_resolution(timer); else return timer->hw.resolution; } unsigned long snd_timer_resolution(struct snd_timer_instance *timeri) { struct snd_timer * timer; unsigned long ret = 0; if (timeri == NULL) return 0; timer = timeri->timer; if (timer) { guard(spinlock_irqsave)(&timer->lock); ret = snd_timer_hw_resolution(timer); } return ret; } EXPORT_SYMBOL(snd_timer_resolution); static void snd_timer_notify1(struct snd_timer_instance *ti, int event) { struct snd_timer *timer = ti->timer; unsigned long resolution = 0; struct snd_timer_instance *ts; struct timespec64 tstamp; if (timer_tstamp_monotonic) ktime_get_ts64(&tstamp); else ktime_get_real_ts64(&tstamp); if (snd_BUG_ON(event < SNDRV_TIMER_EVENT_START || event > SNDRV_TIMER_EVENT_PAUSE)) return; if (timer && (event == SNDRV_TIMER_EVENT_START || event == SNDRV_TIMER_EVENT_CONTINUE)) resolution = snd_timer_hw_resolution(timer); if (ti->ccallback) ti->ccallback(ti, event, &tstamp, resolution); if (ti->flags & SNDRV_TIMER_IFLG_SLAVE) return; if (timer == NULL) return; if (timer->hw.flags & SNDRV_TIMER_HW_SLAVE) return; event += 10; /* convert to SNDRV_TIMER_EVENT_MXXX */ list_for_each_entry(ts, &ti->slave_active_head, active_list) if (ts->ccallback) ts->ccallback(ts, event, &tstamp, resolution); } /* start/continue a master timer */ static int snd_timer_start1(struct snd_timer_instance *timeri, bool start, unsigned long ticks) { struct snd_timer *timer; int result; timer = timeri->timer; if (!timer) return -EINVAL; guard(spinlock_irqsave)(&timer->lock); if (timeri->flags & SNDRV_TIMER_IFLG_DEAD) return -EINVAL; if (timer->card && timer->card->shutdown) return -ENODEV; if (timeri->flags & (SNDRV_TIMER_IFLG_RUNNING | SNDRV_TIMER_IFLG_START)) return -EBUSY; /* check the actual time for the start tick; * bail out as error if it's way too low (< 100us) */ if (start && !(timer->hw.flags & SNDRV_TIMER_HW_SLAVE)) { if ((u64)snd_timer_hw_resolution(timer) * ticks < 100000) return -EINVAL; } if (start) timeri->ticks = timeri->cticks = ticks; else if (!timeri->cticks) timeri->cticks = 1; timeri->pticks = 0; list_move_tail(&timeri->active_list, &timer->active_list_head); if (timer->running) { if (timer->hw.flags & SNDRV_TIMER_HW_SLAVE) goto __start_now; timer->flags |= SNDRV_TIMER_FLG_RESCHED; timeri->flags |= SNDRV_TIMER_IFLG_START; result = 1; /* delayed start */ } else { if (start) timer->sticks = ticks; timer->hw.start(timer); __start_now: timer->running++; timeri->flags |= SNDRV_TIMER_IFLG_RUNNING; result = 0; } snd_timer_notify1(timeri, start ? SNDRV_TIMER_EVENT_START : SNDRV_TIMER_EVENT_CONTINUE); return result; } /* start/continue a slave timer */ static int snd_timer_start_slave(struct snd_timer_instance *timeri, bool start) { guard(spinlock_irqsave)(&slave_active_lock); if (timeri->flags & SNDRV_TIMER_IFLG_DEAD) return -EINVAL; if (timeri->flags & SNDRV_TIMER_IFLG_RUNNING) return -EBUSY; timeri->flags |= SNDRV_TIMER_IFLG_RUNNING; if (timeri->master && timeri->timer) { guard(spinlock)(&timeri->timer->lock); list_add_tail(&timeri->active_list, &timeri->master->slave_active_head); snd_timer_notify1(timeri, start ? SNDRV_TIMER_EVENT_START : SNDRV_TIMER_EVENT_CONTINUE); } return 1; /* delayed start */ } /* stop/pause a master timer */ static int snd_timer_stop1(struct snd_timer_instance *timeri, bool stop) { struct snd_timer *timer; timer = timeri->timer; if (!timer) return -EINVAL; guard(spinlock_irqsave)(&timer->lock); list_del_init(&timeri->ack_list); list_del_init(&timeri->active_list); if (!(timeri->flags & (SNDRV_TIMER_IFLG_RUNNING | SNDRV_TIMER_IFLG_START))) return -EBUSY; if (timer->card && timer->card->shutdown) return 0; if (stop) { timeri->cticks = timeri->ticks; timeri->pticks = 0; } if ((timeri->flags & SNDRV_TIMER_IFLG_RUNNING) && !(--timer->running)) { timer->hw.stop(timer); if (timer->flags & SNDRV_TIMER_FLG_RESCHED) { timer->flags &= ~SNDRV_TIMER_FLG_RESCHED; snd_timer_reschedule(timer, 0); if (timer->flags & SNDRV_TIMER_FLG_CHANGE) { timer->flags &= ~SNDRV_TIMER_FLG_CHANGE; timer->hw.start(timer); } } } timeri->flags &= ~(SNDRV_TIMER_IFLG_RUNNING | SNDRV_TIMER_IFLG_START); if (stop) timeri->flags &= ~SNDRV_TIMER_IFLG_PAUSED; else timeri->flags |= SNDRV_TIMER_IFLG_PAUSED; snd_timer_notify1(timeri, stop ? SNDRV_TIMER_EVENT_STOP : SNDRV_TIMER_EVENT_PAUSE); return 0; } /* stop/pause a slave timer */ static int snd_timer_stop_slave(struct snd_timer_instance *timeri, bool stop) { bool running; guard(spinlock_irqsave)(&slave_active_lock); running = timeri->flags & SNDRV_TIMER_IFLG_RUNNING; timeri->flags &= ~SNDRV_TIMER_IFLG_RUNNING; if (timeri->timer) { guard(spinlock)(&timeri->timer->lock); list_del_init(&timeri->ack_list); list_del_init(&timeri->active_list); if (running) snd_timer_notify1(timeri, stop ? SNDRV_TIMER_EVENT_STOP : SNDRV_TIMER_EVENT_PAUSE); } return running ? 0 : -EBUSY; } /* * start the timer instance */ int snd_timer_start(struct snd_timer_instance *timeri, unsigned int ticks) { if (timeri == NULL || ticks < 1) return -EINVAL; if (timeri->flags & SNDRV_TIMER_IFLG_SLAVE) return snd_timer_start_slave(timeri, true); else return snd_timer_start1(timeri, true, ticks); } EXPORT_SYMBOL(snd_timer_start); /* * stop the timer instance. * * do not call this from the timer callback! */ int snd_timer_stop(struct snd_timer_instance *timeri) { if (timeri->flags & SNDRV_TIMER_IFLG_SLAVE) return snd_timer_stop_slave(timeri, true); else return snd_timer_stop1(timeri, true); } EXPORT_SYMBOL(snd_timer_stop); /* * start again.. the tick is kept. */ int snd_timer_continue(struct snd_timer_instance *timeri) { /* timer can continue only after pause */ if (!(timeri->flags & SNDRV_TIMER_IFLG_PAUSED)) return -EINVAL; if (timeri->flags & SNDRV_TIMER_IFLG_SLAVE) return snd_timer_start_slave(timeri, false); else return snd_timer_start1(timeri, false, 0); } EXPORT_SYMBOL(snd_timer_continue); /* * pause.. remember the ticks left */ int snd_timer_pause(struct snd_timer_instance * timeri) { if (timeri->flags & SNDRV_TIMER_IFLG_SLAVE) return snd_timer_stop_slave(timeri, false); else return snd_timer_stop1(timeri, false); } EXPORT_SYMBOL(snd_timer_pause); /* * reschedule the timer * * start pending instances and check the scheduling ticks. * when the scheduling ticks is changed set CHANGE flag to reprogram the timer. */ static void snd_timer_reschedule(struct snd_timer * timer, unsigned long ticks_left) { struct snd_timer_instance *ti; unsigned long ticks = ~0UL; list_for_each_entry(ti, &timer->active_list_head, active_list) { if (ti->flags & SNDRV_TIMER_IFLG_START) { ti->flags &= ~SNDRV_TIMER_IFLG_START; ti->flags |= SNDRV_TIMER_IFLG_RUNNING; timer->running++; } if (ti->flags & SNDRV_TIMER_IFLG_RUNNING) { if (ticks > ti->cticks) ticks = ti->cticks; } } if (ticks == ~0UL) { timer->flags &= ~SNDRV_TIMER_FLG_RESCHED; return; } if (ticks > timer->hw.ticks) ticks = timer->hw.ticks; if (ticks_left != ticks) timer->flags |= SNDRV_TIMER_FLG_CHANGE; timer->sticks = ticks; } /* call callbacks in timer ack list */ static void snd_timer_process_callbacks(struct snd_timer *timer, struct list_head *head) { struct snd_timer_instance *ti; unsigned long resolution, ticks; while (!list_empty(head)) { ti = list_first_entry(head, struct snd_timer_instance, ack_list); /* remove from ack_list and make empty */ list_del_init(&ti->ack_list); if (!(ti->flags & SNDRV_TIMER_IFLG_DEAD)) { ticks = ti->pticks; ti->pticks = 0; resolution = ti->resolution; ti->flags |= SNDRV_TIMER_IFLG_CALLBACK; spin_unlock(&timer->lock); if (ti->callback) ti->callback(ti, resolution, ticks); spin_lock(&timer->lock); ti->flags &= ~SNDRV_TIMER_IFLG_CALLBACK; } } } /* clear pending instances from ack list */ static void snd_timer_clear_callbacks(struct snd_timer *timer, struct list_head *head) { guard(spinlock_irqsave)(&timer->lock); while (!list_empty(head)) list_del_init(head->next); } /* * timer work * */ static void snd_timer_work(struct work_struct *work) { struct snd_timer *timer = container_of(work, struct snd_timer, task_work); if (timer->card && timer->card->shutdown) { snd_timer_clear_callbacks(timer, &timer->sack_list_head); return; } guard(spinlock_irqsave)(&timer->lock); snd_timer_process_callbacks(timer, &timer->sack_list_head); } /* * timer interrupt * * ticks_left is usually equal to timer->sticks. * */ void snd_timer_interrupt(struct snd_timer * timer, unsigned long ticks_left) { struct snd_timer_instance *ti, *ts, *tmp; unsigned long resolution; struct list_head *ack_list_head; if (timer == NULL) return; if (timer->card && timer->card->shutdown) { snd_timer_clear_callbacks(timer, &timer->ack_list_head); return; } guard(spinlock_irqsave)(&timer->lock); /* remember the current resolution */ resolution = snd_timer_hw_resolution(timer); /* loop for all active instances * Here we cannot use list_for_each_entry because the active_list of a * processed instance is relinked to done_list_head before the callback * is called. */ list_for_each_entry_safe(ti, tmp, &timer->active_list_head, active_list) { if (ti->flags & SNDRV_TIMER_IFLG_DEAD) continue; if (!(ti->flags & SNDRV_TIMER_IFLG_RUNNING)) continue; ti->pticks += ticks_left; ti->resolution = resolution; if (ti->cticks < ticks_left) ti->cticks = 0; else ti->cticks -= ticks_left; if (ti->cticks) /* not expired */ continue; if (ti->flags & SNDRV_TIMER_IFLG_AUTO) { ti->cticks = ti->ticks; } else { ti->flags &= ~SNDRV_TIMER_IFLG_RUNNING; --timer->running; list_del_init(&ti->active_list); } if ((timer->hw.flags & SNDRV_TIMER_HW_WORK) || (ti->flags & SNDRV_TIMER_IFLG_FAST)) ack_list_head = &timer->ack_list_head; else ack_list_head = &timer->sack_list_head; if (list_empty(&ti->ack_list)) list_add_tail(&ti->ack_list, ack_list_head); list_for_each_entry(ts, &ti->slave_active_head, active_list) { ts->pticks = ti->pticks; ts->resolution = resolution; if (list_empty(&ts->ack_list)) list_add_tail(&ts->ack_list, ack_list_head); } } if (timer->flags & SNDRV_TIMER_FLG_RESCHED) snd_timer_reschedule(timer, timer->sticks); if (timer->running) { if (timer->hw.flags & SNDRV_TIMER_HW_STOP) { timer->hw.stop(timer); timer->flags |= SNDRV_TIMER_FLG_CHANGE; } if (!(timer->hw.flags & SNDRV_TIMER_HW_AUTO) || (timer->flags & SNDRV_TIMER_FLG_CHANGE)) { /* restart timer */ timer->flags &= ~SNDRV_TIMER_FLG_CHANGE; timer->hw.start(timer); } } else { timer->hw.stop(timer); } /* now process all fast callbacks */ snd_timer_process_callbacks(timer, &timer->ack_list_head); /* do we have any slow callbacks? */ if (!list_empty(&timer->sack_list_head)) queue_work(system_highpri_wq, &timer->task_work); } EXPORT_SYMBOL(snd_timer_interrupt); /* */ int snd_timer_new(struct snd_card *card, char *id, struct snd_timer_id *tid, struct snd_timer **rtimer) { struct snd_timer *timer; int err; static const struct snd_device_ops ops = { .dev_free = snd_timer_dev_free, .dev_register = snd_timer_dev_register, .dev_disconnect = snd_timer_dev_disconnect, }; if (snd_BUG_ON(!tid)) return -EINVAL; if (tid->dev_class == SNDRV_TIMER_CLASS_CARD || tid->dev_class == SNDRV_TIMER_CLASS_PCM) { if (WARN_ON(!card)) return -EINVAL; } if (rtimer) *rtimer = NULL; timer = kzalloc(sizeof(*timer), GFP_KERNEL); if (!timer) return -ENOMEM; timer->tmr_class = tid->dev_class; timer->card = card; timer->tmr_device = tid->device; timer->tmr_subdevice = tid->subdevice; if (id) strscpy(timer->id, id, sizeof(timer->id)); timer->sticks = 1; INIT_LIST_HEAD(&timer->device_list); INIT_LIST_HEAD(&timer->open_list_head); INIT_LIST_HEAD(&timer->active_list_head); INIT_LIST_HEAD(&timer->ack_list_head); INIT_LIST_HEAD(&timer->sack_list_head); spin_lock_init(&timer->lock); INIT_WORK(&timer->task_work, snd_timer_work); timer->max_instances = 1000; /* default limit per timer */ if (card != NULL) { timer->module = card->module; err = snd_device_new(card, SNDRV_DEV_TIMER, timer, &ops); if (err < 0) { snd_timer_free(timer); return err; } } if (rtimer) *rtimer = timer; return 0; } EXPORT_SYMBOL(snd_timer_new); static int snd_timer_free(struct snd_timer *timer) { if (!timer) return 0; guard(mutex)(®ister_mutex); if (! list_empty(&timer->open_list_head)) { struct list_head *p, *n; struct snd_timer_instance *ti; pr_warn("ALSA: timer %p is busy?\n", timer); list_for_each_safe(p, n, &timer->open_list_head) { list_del_init(p); ti = list_entry(p, struct snd_timer_instance, open_list); ti->timer = NULL; } } list_del(&timer->device_list); if (timer->private_free) timer->private_free(timer); kfree(timer); return 0; } static int snd_timer_dev_free(struct snd_device *device) { struct snd_timer *timer = device->device_data; return snd_timer_free(timer); } static int snd_timer_dev_register(struct snd_device *dev) { struct snd_timer *timer = dev->device_data; struct snd_timer *timer1; if (snd_BUG_ON(!timer || !timer->hw.start || !timer->hw.stop)) return -ENXIO; if (!(timer->hw.flags & SNDRV_TIMER_HW_SLAVE) && !timer->hw.resolution && timer->hw.c_resolution == NULL) return -EINVAL; guard(mutex)(®ister_mutex); list_for_each_entry(timer1, &snd_timer_list, device_list) { if (timer1->tmr_class > timer->tmr_class) break; if (timer1->tmr_class < timer->tmr_class) continue; if (timer1->card && timer->card) { if (timer1->card->number > timer->card->number) break; if (timer1->card->number < timer->card->number) continue; } if (timer1->tmr_device > timer->tmr_device) break; if (timer1->tmr_device < timer->tmr_device) continue; if (timer1->tmr_subdevice > timer->tmr_subdevice) break; if (timer1->tmr_subdevice < timer->tmr_subdevice) continue; /* conflicts.. */ return -EBUSY; } list_add_tail(&timer->device_list, &timer1->device_list); return 0; } static int snd_timer_dev_disconnect(struct snd_device *device) { struct snd_timer *timer = device->device_data; struct snd_timer_instance *ti; guard(mutex)(®ister_mutex); list_del_init(&timer->device_list); /* wake up pending sleepers */ list_for_each_entry(ti, &timer->open_list_head, open_list) { if (ti->disconnect) ti->disconnect(ti); } return 0; } void snd_timer_notify(struct snd_timer *timer, int event, struct timespec64 *tstamp) { unsigned long resolution = 0; struct snd_timer_instance *ti, *ts; if (timer->card && timer->card->shutdown) return; if (! (timer->hw.flags & SNDRV_TIMER_HW_SLAVE)) return; if (snd_BUG_ON(event < SNDRV_TIMER_EVENT_MSTART || event > SNDRV_TIMER_EVENT_MRESUME)) return; guard(spinlock_irqsave)(&timer->lock); if (event == SNDRV_TIMER_EVENT_MSTART || event == SNDRV_TIMER_EVENT_MCONTINUE || event == SNDRV_TIMER_EVENT_MRESUME) resolution = snd_timer_hw_resolution(timer); list_for_each_entry(ti, &timer->active_list_head, active_list) { if (ti->ccallback) ti->ccallback(ti, event, tstamp, resolution); list_for_each_entry(ts, &ti->slave_active_head, active_list) if (ts->ccallback) ts->ccallback(ts, event, tstamp, resolution); } } EXPORT_SYMBOL(snd_timer_notify); /* * exported functions for global timers */ int snd_timer_global_new(char *id, int device, struct snd_timer **rtimer) { struct snd_timer_id tid; tid.dev_class = SNDRV_TIMER_CLASS_GLOBAL; tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; tid.card = -1; tid.device = device; tid.subdevice = 0; return snd_timer_new(NULL, id, &tid, rtimer); } EXPORT_SYMBOL(snd_timer_global_new); int snd_timer_global_free(struct snd_timer *timer) { return snd_timer_free(timer); } EXPORT_SYMBOL(snd_timer_global_free); int snd_timer_global_register(struct snd_timer *timer) { struct snd_device dev; memset(&dev, 0, sizeof(dev)); dev.device_data = timer; return snd_timer_dev_register(&dev); } EXPORT_SYMBOL(snd_timer_global_register); /* * System timer */ struct snd_timer_system_private { struct timer_list tlist; struct snd_timer *snd_timer; unsigned long last_expires; unsigned long last_jiffies; unsigned long correction; }; static void snd_timer_s_function(struct timer_list *t) { struct snd_timer_system_private *priv = timer_container_of(priv, t, tlist); struct snd_timer *timer = priv->snd_timer; unsigned long jiff = jiffies; if (time_after(jiff, priv->last_expires)) priv->correction += (long)jiff - (long)priv->last_expires; snd_timer_interrupt(timer, (long)jiff - (long)priv->last_jiffies); } static int snd_timer_s_start(struct snd_timer * timer) { struct snd_timer_system_private *priv; unsigned long njiff; priv = (struct snd_timer_system_private *) timer->private_data; njiff = (priv->last_jiffies = jiffies); if (priv->correction > timer->sticks - 1) { priv->correction -= timer->sticks - 1; njiff++; } else { njiff += timer->sticks - priv->correction; priv->correction = 0; } priv->last_expires = njiff; mod_timer(&priv->tlist, njiff); return 0; } static int snd_timer_s_stop(struct snd_timer * timer) { struct snd_timer_system_private *priv; unsigned long jiff; priv = (struct snd_timer_system_private *) timer->private_data; timer_delete(&priv->tlist); jiff = jiffies; if (time_before(jiff, priv->last_expires)) timer->sticks = priv->last_expires - jiff; else timer->sticks = 1; priv->correction = 0; return 0; } static int snd_timer_s_close(struct snd_timer *timer) { struct snd_timer_system_private *priv; priv = (struct snd_timer_system_private *)timer->private_data; timer_delete_sync(&priv->tlist); return 0; } static const struct snd_timer_hardware snd_timer_system = { .flags = SNDRV_TIMER_HW_FIRST | SNDRV_TIMER_HW_WORK, .resolution = NSEC_PER_SEC / HZ, .ticks = 10000000L, .close = snd_timer_s_close, .start = snd_timer_s_start, .stop = snd_timer_s_stop }; static void snd_timer_free_system(struct snd_timer *timer) { kfree(timer->private_data); } static int snd_timer_register_system(void) { struct snd_timer *timer; struct snd_timer_system_private *priv; int err; err = snd_timer_global_new("system", SNDRV_TIMER_GLOBAL_SYSTEM, &timer); if (err < 0) return err; strscpy(timer->name, "system timer"); timer->hw = snd_timer_system; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (priv == NULL) { snd_timer_free(timer); return -ENOMEM; } priv->snd_timer = timer; timer_setup(&priv->tlist, snd_timer_s_function, 0); timer->private_data = priv; timer->private_free = snd_timer_free_system; return snd_timer_global_register(timer); } #ifdef CONFIG_SND_PROC_FS /* * Info interface */ static void snd_timer_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_timer *timer; struct snd_timer_instance *ti; unsigned long resolution; guard(mutex)(®ister_mutex); list_for_each_entry(timer, &snd_timer_list, device_list) { if (timer->card && timer->card->shutdown) continue; switch (timer->tmr_class) { case SNDRV_TIMER_CLASS_GLOBAL: snd_iprintf(buffer, "G%i: ", timer->tmr_device); break; case SNDRV_TIMER_CLASS_CARD: snd_iprintf(buffer, "C%i-%i: ", timer->card->number, timer->tmr_device); break; case SNDRV_TIMER_CLASS_PCM: snd_iprintf(buffer, "P%i-%i-%i: ", timer->card->number, timer->tmr_device, timer->tmr_subdevice); break; default: snd_iprintf(buffer, "?%i-%i-%i-%i: ", timer->tmr_class, timer->card ? timer->card->number : -1, timer->tmr_device, timer->tmr_subdevice); } snd_iprintf(buffer, "%s :", timer->name); scoped_guard(spinlock_irq, &timer->lock) resolution = snd_timer_hw_resolution(timer); if (resolution) snd_iprintf(buffer, " %lu.%03luus (%lu ticks)", resolution / 1000, resolution % 1000, timer->hw.ticks); if (timer->hw.flags & SNDRV_TIMER_HW_SLAVE) snd_iprintf(buffer, " SLAVE"); snd_iprintf(buffer, "\n"); list_for_each_entry(ti, &timer->open_list_head, open_list) snd_iprintf(buffer, " Client %s : %s\n", ti->owner ? ti->owner : "unknown", (ti->flags & (SNDRV_TIMER_IFLG_START | SNDRV_TIMER_IFLG_RUNNING)) ? "running" : "stopped"); } } static struct snd_info_entry *snd_timer_proc_entry; static void __init snd_timer_proc_init(void) { struct snd_info_entry *entry; entry = snd_info_create_module_entry(THIS_MODULE, "timers", NULL); if (entry != NULL) { entry->c.text.read = snd_timer_proc_read; if (snd_info_register(entry) < 0) { snd_info_free_entry(entry); entry = NULL; } } snd_timer_proc_entry = entry; } static void __exit snd_timer_proc_done(void) { snd_info_free_entry(snd_timer_proc_entry); } #else /* !CONFIG_SND_PROC_FS */ #define snd_timer_proc_init() #define snd_timer_proc_done() #endif /* * USER SPACE interface */ static void snd_timer_user_interrupt(struct snd_timer_instance *timeri, unsigned long resolution, unsigned long ticks) { struct snd_timer_user *tu = timeri->callback_data; struct snd_timer_read *r; int prev; guard(spinlock)(&tu->qlock); if (tu->qused > 0) { prev = tu->qtail == 0 ? tu->queue_size - 1 : tu->qtail - 1; r = &tu->queue[prev]; if (r->resolution == resolution) { r->ticks += ticks; goto __wake; } } if (tu->qused >= tu->queue_size) { tu->overrun++; } else { r = &tu->queue[tu->qtail++]; tu->qtail %= tu->queue_size; r->resolution = resolution; r->ticks = ticks; tu->qused++; } __wake: snd_kill_fasync(tu->fasync, SIGIO, POLL_IN); wake_up(&tu->qchange_sleep); } static void snd_timer_user_append_to_tqueue(struct snd_timer_user *tu, struct snd_timer_tread64 *tread) { if (tu->qused >= tu->queue_size) { tu->overrun++; } else { memcpy(&tu->tqueue[tu->qtail++], tread, sizeof(*tread)); tu->qtail %= tu->queue_size; tu->qused++; } } static void snd_timer_user_ccallback(struct snd_timer_instance *timeri, int event, struct timespec64 *tstamp, unsigned long resolution) { struct snd_timer_user *tu = timeri->callback_data; struct snd_timer_tread64 r1; if (event >= SNDRV_TIMER_EVENT_START && event <= SNDRV_TIMER_EVENT_PAUSE) tu->tstamp = *tstamp; if ((tu->filter & (1 << event)) == 0 || !tu->tread) return; memset(&r1, 0, sizeof(r1)); r1.event = event; r1.tstamp_sec = tstamp->tv_sec; r1.tstamp_nsec = tstamp->tv_nsec; r1.val = resolution; scoped_guard(spinlock_irqsave, &tu->qlock) snd_timer_user_append_to_tqueue(tu, &r1); snd_kill_fasync(tu->fasync, SIGIO, POLL_IN); wake_up(&tu->qchange_sleep); } static void snd_timer_user_disconnect(struct snd_timer_instance *timeri) { struct snd_timer_user *tu = timeri->callback_data; tu->disconnected = true; wake_up(&tu->qchange_sleep); } static void snd_timer_user_tinterrupt(struct snd_timer_instance *timeri, unsigned long resolution, unsigned long ticks) { struct snd_timer_user *tu = timeri->callback_data; struct snd_timer_tread64 *r, r1; struct timespec64 tstamp; int prev, append = 0; memset(&r1, 0, sizeof(r1)); memset(&tstamp, 0, sizeof(tstamp)); scoped_guard(spinlock, &tu->qlock) { if ((tu->filter & ((1 << SNDRV_TIMER_EVENT_RESOLUTION) | (1 << SNDRV_TIMER_EVENT_TICK))) == 0) return; if (tu->last_resolution != resolution || ticks > 0) { if (timer_tstamp_monotonic) ktime_get_ts64(&tstamp); else ktime_get_real_ts64(&tstamp); } if ((tu->filter & (1 << SNDRV_TIMER_EVENT_RESOLUTION)) && tu->last_resolution != resolution) { r1.event = SNDRV_TIMER_EVENT_RESOLUTION; r1.tstamp_sec = tstamp.tv_sec; r1.tstamp_nsec = tstamp.tv_nsec; r1.val = resolution; snd_timer_user_append_to_tqueue(tu, &r1); tu->last_resolution = resolution; append++; } if ((tu->filter & (1 << SNDRV_TIMER_EVENT_TICK)) == 0) break; if (ticks == 0) break; if (tu->qused > 0) { prev = tu->qtail == 0 ? tu->queue_size - 1 : tu->qtail - 1; r = &tu->tqueue[prev]; if (r->event == SNDRV_TIMER_EVENT_TICK) { r->tstamp_sec = tstamp.tv_sec; r->tstamp_nsec = tstamp.tv_nsec; r->val += ticks; append++; break; } } r1.event = SNDRV_TIMER_EVENT_TICK; r1.tstamp_sec = tstamp.tv_sec; r1.tstamp_nsec = tstamp.tv_nsec; r1.val = ticks; snd_timer_user_append_to_tqueue(tu, &r1); append++; } if (append == 0) return; snd_kill_fasync(tu->fasync, SIGIO, POLL_IN); wake_up(&tu->qchange_sleep); } static int realloc_user_queue(struct snd_timer_user *tu, int size) { struct snd_timer_read *queue = NULL; struct snd_timer_tread64 *tqueue = NULL; if (tu->tread) { tqueue = kcalloc(size, sizeof(*tqueue), GFP_KERNEL); if (!tqueue) return -ENOMEM; } else { queue = kcalloc(size, sizeof(*queue), GFP_KERNEL); if (!queue) return -ENOMEM; } guard(spinlock_irq)(&tu->qlock); kfree(tu->queue); kfree(tu->tqueue); tu->queue_size = size; tu->queue = queue; tu->tqueue = tqueue; tu->qhead = tu->qtail = tu->qused = 0; return 0; } static int snd_timer_user_open(struct inode *inode, struct file *file) { struct snd_timer_user *tu; int err; err = stream_open(inode, file); if (err < 0) return err; tu = kzalloc(sizeof(*tu), GFP_KERNEL); if (tu == NULL) return -ENOMEM; spin_lock_init(&tu->qlock); init_waitqueue_head(&tu->qchange_sleep); mutex_init(&tu->ioctl_lock); tu->ticks = 1; if (realloc_user_queue(tu, 128) < 0) { kfree(tu); return -ENOMEM; } file->private_data = tu; return 0; } static int snd_timer_user_release(struct inode *inode, struct file *file) { struct snd_timer_user *tu; if (file->private_data) { tu = file->private_data; file->private_data = NULL; scoped_guard(mutex, &tu->ioctl_lock) { if (tu->timeri) { snd_timer_close(tu->timeri); snd_timer_instance_free(tu->timeri); } } snd_fasync_free(tu->fasync); kfree(tu->queue); kfree(tu->tqueue); kfree(tu); } return 0; } static void snd_timer_user_zero_id(struct snd_timer_id *id) { id->dev_class = SNDRV_TIMER_CLASS_NONE; id->dev_sclass = SNDRV_TIMER_SCLASS_NONE; id->card = -1; id->device = -1; id->subdevice = -1; } static void snd_timer_user_copy_id(struct snd_timer_id *id, struct snd_timer *timer) { id->dev_class = timer->tmr_class; id->dev_sclass = SNDRV_TIMER_SCLASS_NONE; id->card = timer->card ? timer->card->number : -1; id->device = timer->tmr_device; id->subdevice = timer->tmr_subdevice; } static void get_next_device(struct snd_timer_id *id) { struct snd_timer *timer; struct list_head *p; if (id->dev_class < 0) { /* first item */ if (list_empty(&snd_timer_list)) snd_timer_user_zero_id(id); else { timer = list_entry(snd_timer_list.next, struct snd_timer, device_list); snd_timer_user_copy_id(id, timer); } } else { switch (id->dev_class) { case SNDRV_TIMER_CLASS_GLOBAL: id->device = id->device < 0 ? 0 : id->device + 1; list_for_each(p, &snd_timer_list) { timer = list_entry(p, struct snd_timer, device_list); if (timer->tmr_class > SNDRV_TIMER_CLASS_GLOBAL) { snd_timer_user_copy_id(id, timer); break; } if (timer->tmr_device >= id->device) { snd_timer_user_copy_id(id, timer); break; } } if (p == &snd_timer_list) snd_timer_user_zero_id(id); break; case SNDRV_TIMER_CLASS_CARD: case SNDRV_TIMER_CLASS_PCM: if (id->card < 0) { id->card = 0; } else { if (id->device < 0) { id->device = 0; } else { if (id->subdevice < 0) id->subdevice = 0; else if (id->subdevice < INT_MAX) id->subdevice++; } } list_for_each(p, &snd_timer_list) { timer = list_entry(p, struct snd_timer, device_list); if (timer->tmr_class > id->dev_class) { snd_timer_user_copy_id(id, timer); break; } if (timer->tmr_class < id->dev_class) continue; if (timer->card->number > id->card) { snd_timer_user_copy_id(id, timer); break; } if (timer->card->number < id->card) continue; if (timer->tmr_device > id->device) { snd_timer_user_copy_id(id, timer); break; } if (timer->tmr_device < id->device) continue; if (timer->tmr_subdevice > id->subdevice) { snd_timer_user_copy_id(id, timer); break; } if (timer->tmr_subdevice < id->subdevice) continue; snd_timer_user_copy_id(id, timer); break; } if (p == &snd_timer_list) snd_timer_user_zero_id(id); break; default: snd_timer_user_zero_id(id); } } } static int snd_timer_user_next_device(struct snd_timer_id __user *_tid) { struct snd_timer_id id; if (copy_from_user(&id, _tid, sizeof(id))) return -EFAULT; scoped_guard(mutex, ®ister_mutex) get_next_device(&id); if (copy_to_user(_tid, &id, sizeof(*_tid))) return -EFAULT; return 0; } static int snd_timer_user_ginfo(struct file *file, struct snd_timer_ginfo __user *_ginfo) { struct snd_timer_ginfo *ginfo __free(kfree) = NULL; struct snd_timer_id tid; struct snd_timer *t; struct list_head *p; ginfo = memdup_user(_ginfo, sizeof(*ginfo)); if (IS_ERR(ginfo)) return PTR_ERR(ginfo); tid = ginfo->tid; memset(ginfo, 0, sizeof(*ginfo)); ginfo->tid = tid; scoped_guard(mutex, ®ister_mutex) { t = snd_timer_find(&tid); if (!t) return -ENODEV; ginfo->card = t->card ? t->card->number : -1; if (t->hw.flags & SNDRV_TIMER_HW_SLAVE) ginfo->flags |= SNDRV_TIMER_FLG_SLAVE; strscpy(ginfo->id, t->id, sizeof(ginfo->id)); strscpy(ginfo->name, t->name, sizeof(ginfo->name)); scoped_guard(spinlock_irq, &t->lock) ginfo->resolution = snd_timer_hw_resolution(t); if (t->hw.resolution_min > 0) { ginfo->resolution_min = t->hw.resolution_min; ginfo->resolution_max = t->hw.resolution_max; } list_for_each(p, &t->open_list_head) { ginfo->clients++; } } if (copy_to_user(_ginfo, ginfo, sizeof(*ginfo))) return -EFAULT; return 0; } static int timer_set_gparams(struct snd_timer_gparams *gparams) { struct snd_timer *t; guard(mutex)(®ister_mutex); t = snd_timer_find(&gparams->tid); if (!t) return -ENODEV; if (!list_empty(&t->open_list_head)) return -EBUSY; if (!t->hw.set_period) return -ENOSYS; return t->hw.set_period(t, gparams->period_num, gparams->period_den); } static int snd_timer_user_gparams(struct file *file, struct snd_timer_gparams __user *_gparams) { struct snd_timer_gparams gparams; if (copy_from_user(&gparams, _gparams, sizeof(gparams))) return -EFAULT; return timer_set_gparams(&gparams); } static int snd_timer_user_gstatus(struct file *file, struct snd_timer_gstatus __user *_gstatus) { struct snd_timer_gstatus gstatus; struct snd_timer_id tid; struct snd_timer *t; if (copy_from_user(&gstatus, _gstatus, sizeof(gstatus))) return -EFAULT; tid = gstatus.tid; memset(&gstatus, 0, sizeof(gstatus)); gstatus.tid = tid; scoped_guard(mutex, ®ister_mutex) { t = snd_timer_find(&tid); if (t != NULL) { guard(spinlock_irq)(&t->lock); gstatus.resolution = snd_timer_hw_resolution(t); if (t->hw.precise_resolution) { t->hw.precise_resolution(t, &gstatus.resolution_num, &gstatus.resolution_den); } else { gstatus.resolution_num = gstatus.resolution; gstatus.resolution_den = 1000000000uL; } } else { return -ENODEV; } } if (copy_to_user(_gstatus, &gstatus, sizeof(gstatus))) return -EFAULT; return 0; } static int snd_timer_user_tselect(struct file *file, struct snd_timer_select __user *_tselect) { struct snd_timer_user *tu; struct snd_timer_select tselect; char str[32]; int err = 0; tu = file->private_data; if (tu->timeri) { snd_timer_close(tu->timeri); snd_timer_instance_free(tu->timeri); tu->timeri = NULL; } if (copy_from_user(&tselect, _tselect, sizeof(tselect))) { err = -EFAULT; goto __err; } sprintf(str, "application %i", current->pid); if (tselect.id.dev_class != SNDRV_TIMER_CLASS_SLAVE) tselect.id.dev_sclass = SNDRV_TIMER_SCLASS_APPLICATION; tu->timeri = snd_timer_instance_new(str); if (!tu->timeri) { err = -ENOMEM; goto __err; } tu->timeri->flags |= SNDRV_TIMER_IFLG_FAST; tu->timeri->callback = tu->tread ? snd_timer_user_tinterrupt : snd_timer_user_interrupt; tu->timeri->ccallback = snd_timer_user_ccallback; tu->timeri->callback_data = (void *)tu; tu->timeri->disconnect = snd_timer_user_disconnect; err = snd_timer_open(tu->timeri, &tselect.id, current->pid); if (err < 0) { snd_timer_instance_free(tu->timeri); tu->timeri = NULL; } __err: return err; } static int snd_timer_user_info(struct file *file, struct snd_timer_info __user *_info) { struct snd_timer_user *tu; struct snd_timer_info *info __free(kfree) = NULL; struct snd_timer *t; tu = file->private_data; if (!tu->timeri) return -EBADFD; t = tu->timeri->timer; if (!t) return -EBADFD; info = kzalloc(sizeof(*info), GFP_KERNEL); if (! info) return -ENOMEM; info->card = t->card ? t->card->number : -1; if (t->hw.flags & SNDRV_TIMER_HW_SLAVE) info->flags |= SNDRV_TIMER_FLG_SLAVE; strscpy(info->id, t->id, sizeof(info->id)); strscpy(info->name, t->name, sizeof(info->name)); scoped_guard(spinlock_irq, &t->lock) info->resolution = snd_timer_hw_resolution(t); if (copy_to_user(_info, info, sizeof(*_info))) return -EFAULT; return 0; } static int snd_timer_user_params(struct file *file, struct snd_timer_params __user *_params) { struct snd_timer_user *tu; struct snd_timer_params params; struct snd_timer *t; int err; tu = file->private_data; if (!tu->timeri) return -EBADFD; t = tu->timeri->timer; if (!t) return -EBADFD; if (copy_from_user(¶ms, _params, sizeof(params))) return -EFAULT; if (!(t->hw.flags & SNDRV_TIMER_HW_SLAVE)) { u64 resolution; if (params.ticks < 1) { err = -EINVAL; goto _end; } /* Don't allow resolution less than 1ms */ resolution = snd_timer_resolution(tu->timeri); resolution *= params.ticks; if (resolution < 1000000) { err = -EINVAL; goto _end; } } if (params.queue_size > 0 && (params.queue_size < 32 || params.queue_size > 1024)) { err = -EINVAL; goto _end; } if (params.filter & ~((1<<SNDRV_TIMER_EVENT_RESOLUTION)| (1<<SNDRV_TIMER_EVENT_TICK)| (1<<SNDRV_TIMER_EVENT_START)| (1<<SNDRV_TIMER_EVENT_STOP)| (1<<SNDRV_TIMER_EVENT_CONTINUE)| (1<<SNDRV_TIMER_EVENT_PAUSE)| (1<<SNDRV_TIMER_EVENT_SUSPEND)| (1<<SNDRV_TIMER_EVENT_RESUME)| (1<<SNDRV_TIMER_EVENT_MSTART)| (1<<SNDRV_TIMER_EVENT_MSTOP)| (1<<SNDRV_TIMER_EVENT_MCONTINUE)| (1<<SNDRV_TIMER_EVENT_MPAUSE)| (1<<SNDRV_TIMER_EVENT_MSUSPEND)| (1<<SNDRV_TIMER_EVENT_MRESUME))) { err = -EINVAL; goto _end; } snd_timer_stop(tu->timeri); scoped_guard(spinlock_irq, &t->lock) { tu->timeri->flags &= ~(SNDRV_TIMER_IFLG_AUTO| SNDRV_TIMER_IFLG_EXCLUSIVE| SNDRV_TIMER_IFLG_EARLY_EVENT); if (params.flags & SNDRV_TIMER_PSFLG_AUTO) tu->timeri->flags |= SNDRV_TIMER_IFLG_AUTO; if (params.flags & SNDRV_TIMER_PSFLG_EXCLUSIVE) tu->timeri->flags |= SNDRV_TIMER_IFLG_EXCLUSIVE; if (params.flags & SNDRV_TIMER_PSFLG_EARLY_EVENT) tu->timeri->flags |= SNDRV_TIMER_IFLG_EARLY_EVENT; } if (params.queue_size > 0 && (unsigned int)tu->queue_size != params.queue_size) { err = realloc_user_queue(tu, params.queue_size); if (err < 0) goto _end; } scoped_guard(spinlock_irq, &tu->qlock) { tu->qhead = tu->qtail = tu->qused = 0; if (tu->timeri->flags & SNDRV_TIMER_IFLG_EARLY_EVENT) { if (tu->tread) { struct snd_timer_tread64 tread; memset(&tread, 0, sizeof(tread)); tread.event = SNDRV_TIMER_EVENT_EARLY; tread.tstamp_sec = 0; tread.tstamp_nsec = 0; tread.val = 0; snd_timer_user_append_to_tqueue(tu, &tread); } else { struct snd_timer_read *r = &tu->queue[0]; r->resolution = 0; r->ticks = 0; tu->qused++; tu->qtail++; } } tu->filter = params.filter; tu->ticks = params.ticks; } err = 0; _end: if (copy_to_user(_params, ¶ms, sizeof(params))) return -EFAULT; return err; } static int snd_timer_user_status32(struct file *file, struct snd_timer_status32 __user *_status) { struct snd_timer_user *tu; struct snd_timer_status32 status; tu = file->private_data; if (!tu->timeri) return -EBADFD; memset(&status, 0, sizeof(status)); status.tstamp_sec = tu->tstamp.tv_sec; status.tstamp_nsec = tu->tstamp.tv_nsec; status.resolution = snd_timer_resolution(tu->timeri); status.lost = tu->timeri->lost; status.overrun = tu->overrun; scoped_guard(spinlock_irq, &tu->qlock) status.queue = tu->qused; if (copy_to_user(_status, &status, sizeof(status))) return -EFAULT; return 0; } static int snd_timer_user_status64(struct file *file, struct snd_timer_status64 __user *_status) { struct snd_timer_user *tu; struct snd_timer_status64 status; tu = file->private_data; if (!tu->timeri) return -EBADFD; memset(&status, 0, sizeof(status)); status.tstamp_sec = tu->tstamp.tv_sec; status.tstamp_nsec = tu->tstamp.tv_nsec; status.resolution = snd_timer_resolution(tu->timeri); status.lost = tu->timeri->lost; status.overrun = tu->overrun; scoped_guard(spinlock_irq, &tu->qlock) status.queue = tu->qused; if (copy_to_user(_status, &status, sizeof(status))) return -EFAULT; return 0; } static int snd_timer_user_start(struct file *file) { int err; struct snd_timer_user *tu; tu = file->private_data; if (!tu->timeri) return -EBADFD; snd_timer_stop(tu->timeri); tu->timeri->lost = 0; tu->last_resolution = 0; err = snd_timer_start(tu->timeri, tu->ticks); if (err < 0) return err; return 0; } static int snd_timer_user_stop(struct file *file) { int err; struct snd_timer_user *tu; tu = file->private_data; if (!tu->timeri) return -EBADFD; err = snd_timer_stop(tu->timeri); if (err < 0) return err; return 0; } static int snd_timer_user_continue(struct file *file) { int err; struct snd_timer_user *tu; tu = file->private_data; if (!tu->timeri) return -EBADFD; /* start timer instead of continue if it's not used before */ if (!(tu->timeri->flags & SNDRV_TIMER_IFLG_PAUSED)) return snd_timer_user_start(file); tu->timeri->lost = 0; err = snd_timer_continue(tu->timeri); if (err < 0) return err; return 0; } static int snd_timer_user_pause(struct file *file) { int err; struct snd_timer_user *tu; tu = file->private_data; if (!tu->timeri) return -EBADFD; err = snd_timer_pause(tu->timeri); if (err < 0) return err; return 0; } static int snd_timer_user_tread(void __user *argp, struct snd_timer_user *tu, unsigned int cmd, bool compat) { int __user *p = argp; int xarg, old_tread; if (tu->timeri) /* too late */ return -EBUSY; if (get_user(xarg, p)) return -EFAULT; old_tread = tu->tread; if (!xarg) tu->tread = TREAD_FORMAT_NONE; else if (cmd == SNDRV_TIMER_IOCTL_TREAD64 || (IS_ENABLED(CONFIG_64BIT) && !compat)) tu->tread = TREAD_FORMAT_TIME64; else tu->tread = TREAD_FORMAT_TIME32; if (tu->tread != old_tread && realloc_user_queue(tu, tu->queue_size) < 0) { tu->tread = old_tread; return -ENOMEM; } return 0; } enum { SNDRV_TIMER_IOCTL_START_OLD = _IO('T', 0x20), SNDRV_TIMER_IOCTL_STOP_OLD = _IO('T', 0x21), SNDRV_TIMER_IOCTL_CONTINUE_OLD = _IO('T', 0x22), SNDRV_TIMER_IOCTL_PAUSE_OLD = _IO('T', 0x23), }; #ifdef CONFIG_SND_UTIMER /* * Since userspace-driven timers are passed to userspace, we need to have an identifier * which will allow us to use them (basically, the subdevice number of udriven timer). */ static DEFINE_IDA(snd_utimer_ids); static void snd_utimer_put_id(struct snd_utimer *utimer) { int timer_id = utimer->id; snd_BUG_ON(timer_id < 0 || timer_id >= SNDRV_UTIMERS_MAX_COUNT); ida_free(&snd_utimer_ids, timer_id); } static int snd_utimer_take_id(void) { return ida_alloc_max(&snd_utimer_ids, SNDRV_UTIMERS_MAX_COUNT - 1, GFP_KERNEL); } static void snd_utimer_free(struct snd_utimer *utimer) { snd_timer_free(utimer->timer); snd_utimer_put_id(utimer); kfree(utimer->name); kfree(utimer); } static int snd_utimer_release(struct inode *inode, struct file *file) { struct snd_utimer *utimer = (struct snd_utimer *)file->private_data; snd_utimer_free(utimer); return 0; } static int snd_utimer_trigger(struct file *file) { struct snd_utimer *utimer = (struct snd_utimer *)file->private_data; snd_timer_interrupt(utimer->timer, utimer->timer->sticks); return 0; } static long snd_utimer_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) { switch (ioctl) { case SNDRV_TIMER_IOCTL_TRIGGER: return snd_utimer_trigger(file); } return -ENOTTY; } static const struct file_operations snd_utimer_fops = { .llseek = noop_llseek, .release = snd_utimer_release, .unlocked_ioctl = snd_utimer_ioctl, }; static int snd_utimer_start(struct snd_timer *t) { return 0; } static int snd_utimer_stop(struct snd_timer *t) { return 0; } static int snd_utimer_open(struct snd_timer *t) { return 0; } static int snd_utimer_close(struct snd_timer *t) { return 0; } static const struct snd_timer_hardware timer_hw = { .flags = SNDRV_TIMER_HW_AUTO | SNDRV_TIMER_HW_WORK, .open = snd_utimer_open, .close = snd_utimer_close, .start = snd_utimer_start, .stop = snd_utimer_stop, }; static int snd_utimer_create(struct snd_timer_uinfo *utimer_info, struct snd_utimer **r_utimer) { struct snd_utimer *utimer; struct snd_timer *timer; struct snd_timer_id tid; int utimer_id; int err = 0; if (!utimer_info || utimer_info->resolution == 0) return -EINVAL; utimer = kzalloc(sizeof(*utimer), GFP_KERNEL); if (!utimer) return -ENOMEM; /* We hold the ioctl lock here so we won't get a race condition when allocating id */ utimer_id = snd_utimer_take_id(); if (utimer_id < 0) { err = utimer_id; goto err_take_id; } utimer->id = utimer_id; utimer->name = kasprintf(GFP_KERNEL, "snd-utimer%d", utimer_id); if (!utimer->name) { err = -ENOMEM; goto err_get_name; } tid.dev_sclass = SNDRV_TIMER_SCLASS_APPLICATION; tid.dev_class = SNDRV_TIMER_CLASS_GLOBAL; tid.card = -1; tid.device = SNDRV_TIMER_GLOBAL_UDRIVEN; tid.subdevice = utimer_id; err = snd_timer_new(NULL, utimer->name, &tid, &timer); if (err < 0) { pr_err("Can't create userspace-driven timer\n"); goto err_timer_new; } timer->module = THIS_MODULE; timer->hw = timer_hw; timer->hw.resolution = utimer_info->resolution; timer->hw.ticks = 1; timer->max_instances = MAX_SLAVE_INSTANCES; utimer->timer = timer; err = snd_timer_global_register(timer); if (err < 0) { pr_err("Can't register a userspace-driven timer\n"); goto err_timer_reg; } *r_utimer = utimer; return 0; err_timer_reg: snd_timer_free(timer); err_timer_new: kfree(utimer->name); err_get_name: snd_utimer_put_id(utimer); err_take_id: kfree(utimer); return err; } static int snd_utimer_ioctl_create(struct file *file, struct snd_timer_uinfo __user *_utimer_info) { struct snd_utimer *utimer; struct snd_timer_uinfo *utimer_info __free(kfree) = NULL; int err, timer_fd; utimer_info = memdup_user(_utimer_info, sizeof(*utimer_info)); if (IS_ERR(utimer_info)) return PTR_ERR(utimer_info); err = snd_utimer_create(utimer_info, &utimer); if (err < 0) return err; utimer_info->id = utimer->id; timer_fd = anon_inode_getfd(utimer->name, &snd_utimer_fops, utimer, O_RDWR | O_CLOEXEC); if (timer_fd < 0) { snd_utimer_free(utimer); return timer_fd; } utimer_info->fd = timer_fd; err = copy_to_user(_utimer_info, utimer_info, sizeof(*utimer_info)); if (err) { /* * "Leak" the fd, as there is nothing we can do about it. * It might have been closed already since anon_inode_getfd * makes it available for userspace. * * We have to rely on the process exit path to do any * necessary cleanup (e.g. releasing the file). */ return -EFAULT; } return 0; } #else static int snd_utimer_ioctl_create(struct file *file, struct snd_timer_uinfo __user *_utimer_info) { return -ENOTTY; } #endif static long __snd_timer_user_ioctl(struct file *file, unsigned int cmd, unsigned long arg, bool compat) { struct snd_timer_user *tu; void __user *argp = (void __user *)arg; int __user *p = argp; tu = file->private_data; switch (cmd) { case SNDRV_TIMER_IOCTL_PVERSION: return put_user(SNDRV_TIMER_VERSION, p) ? -EFAULT : 0; case SNDRV_TIMER_IOCTL_NEXT_DEVICE: return snd_timer_user_next_device(argp); case SNDRV_TIMER_IOCTL_TREAD_OLD: case SNDRV_TIMER_IOCTL_TREAD64: return snd_timer_user_tread(argp, tu, cmd, compat); case SNDRV_TIMER_IOCTL_GINFO: return snd_timer_user_ginfo(file, argp); case SNDRV_TIMER_IOCTL_GPARAMS: return snd_timer_user_gparams(file, argp); case SNDRV_TIMER_IOCTL_GSTATUS: return snd_timer_user_gstatus(file, argp); case SNDRV_TIMER_IOCTL_SELECT: return snd_timer_user_tselect(file, argp); case SNDRV_TIMER_IOCTL_INFO: return snd_timer_user_info(file, argp); case SNDRV_TIMER_IOCTL_PARAMS: return snd_timer_user_params(file, argp); case SNDRV_TIMER_IOCTL_STATUS32: return snd_timer_user_status32(file, argp); case SNDRV_TIMER_IOCTL_STATUS64: return snd_timer_user_status64(file, argp); case SNDRV_TIMER_IOCTL_START: case SNDRV_TIMER_IOCTL_START_OLD: return snd_timer_user_start(file); case SNDRV_TIMER_IOCTL_STOP: case SNDRV_TIMER_IOCTL_STOP_OLD: return snd_timer_user_stop(file); case SNDRV_TIMER_IOCTL_CONTINUE: case SNDRV_TIMER_IOCTL_CONTINUE_OLD: return snd_timer_user_continue(file); case SNDRV_TIMER_IOCTL_PAUSE: case SNDRV_TIMER_IOCTL_PAUSE_OLD: return snd_timer_user_pause(file); case SNDRV_TIMER_IOCTL_CREATE: return snd_utimer_ioctl_create(file, argp); } return -ENOTTY; } static long snd_timer_user_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct snd_timer_user *tu = file->private_data; guard(mutex)(&tu->ioctl_lock); return __snd_timer_user_ioctl(file, cmd, arg, false); } static int snd_timer_user_fasync(int fd, struct file * file, int on) { struct snd_timer_user *tu; tu = file->private_data; return snd_fasync_helper(fd, file, on, &tu->fasync); } static ssize_t snd_timer_user_read(struct file *file, char __user *buffer, size_t count, loff_t *offset) { struct snd_timer_tread64 *tread; struct snd_timer_tread32 tread32; struct snd_timer_user *tu; long result = 0, unit; int qhead; int err = 0; tu = file->private_data; switch (tu->tread) { case TREAD_FORMAT_TIME64: unit = sizeof(struct snd_timer_tread64); break; case TREAD_FORMAT_TIME32: unit = sizeof(struct snd_timer_tread32); break; case TREAD_FORMAT_NONE: unit = sizeof(struct snd_timer_read); break; default: WARN_ONCE(1, "Corrupt snd_timer_user\n"); return -ENOTSUPP; } mutex_lock(&tu->ioctl_lock); spin_lock_irq(&tu->qlock); while ((long)count - result >= unit) { while (!tu->qused) { wait_queue_entry_t wait; if ((file->f_flags & O_NONBLOCK) != 0 || result > 0) { err = -EAGAIN; goto _error; } set_current_state(TASK_INTERRUPTIBLE); init_waitqueue_entry(&wait, current); add_wait_queue(&tu->qchange_sleep, &wait); spin_unlock_irq(&tu->qlock); mutex_unlock(&tu->ioctl_lock); schedule(); mutex_lock(&tu->ioctl_lock); spin_lock_irq(&tu->qlock); remove_wait_queue(&tu->qchange_sleep, &wait); if (tu->disconnected) { err = -ENODEV; goto _error; } if (signal_pending(current)) { err = -ERESTARTSYS; goto _error; } } qhead = tu->qhead++; tu->qhead %= tu->queue_size; tu->qused--; spin_unlock_irq(&tu->qlock); tread = &tu->tqueue[qhead]; switch (tu->tread) { case TREAD_FORMAT_TIME64: if (copy_to_user(buffer, tread, sizeof(struct snd_timer_tread64))) err = -EFAULT; break; case TREAD_FORMAT_TIME32: memset(&tread32, 0, sizeof(tread32)); tread32 = (struct snd_timer_tread32) { .event = tread->event, .tstamp_sec = tread->tstamp_sec, .tstamp_nsec = tread->tstamp_nsec, .val = tread->val, }; if (copy_to_user(buffer, &tread32, sizeof(tread32))) err = -EFAULT; break; case TREAD_FORMAT_NONE: if (copy_to_user(buffer, &tu->queue[qhead], sizeof(struct snd_timer_read))) err = -EFAULT; break; default: err = -ENOTSUPP; break; } spin_lock_irq(&tu->qlock); if (err < 0) goto _error; result += unit; buffer += unit; } _error: spin_unlock_irq(&tu->qlock); mutex_unlock(&tu->ioctl_lock); return result > 0 ? result : err; } static __poll_t snd_timer_user_poll(struct file *file, poll_table * wait) { __poll_t mask; struct snd_timer_user *tu; tu = file->private_data; poll_wait(file, &tu->qchange_sleep, wait); mask = 0; guard(spinlock_irq)(&tu->qlock); if (tu->qused) mask |= EPOLLIN | EPOLLRDNORM; if (tu->disconnected) mask |= EPOLLERR; return mask; } #ifdef CONFIG_COMPAT #include "timer_compat.c" #else #define snd_timer_user_ioctl_compat NULL #endif static const struct file_operations snd_timer_f_ops = { .owner = THIS_MODULE, .read = snd_timer_user_read, .open = snd_timer_user_open, .release = snd_timer_user_release, .poll = snd_timer_user_poll, .unlocked_ioctl = snd_timer_user_ioctl, .compat_ioctl = snd_timer_user_ioctl_compat, .fasync = snd_timer_user_fasync, }; /* unregister the system timer */ static void snd_timer_free_all(void) { struct snd_timer *timer, *n; list_for_each_entry_safe(timer, n, &snd_timer_list, device_list) snd_timer_free(timer); } static struct device *timer_dev; /* * ENTRY functions */ static int __init alsa_timer_init(void) { int err; err = snd_device_alloc(&timer_dev, NULL); if (err < 0) return err; dev_set_name(timer_dev, "timer"); #ifdef SNDRV_OSS_INFO_DEV_TIMERS snd_oss_info_register(SNDRV_OSS_INFO_DEV_TIMERS, SNDRV_CARDS - 1, "system timer"); #endif err = snd_timer_register_system(); if (err < 0) { pr_err("ALSA: unable to register system timer (%i)\n", err); goto put_timer; } err = snd_register_device(SNDRV_DEVICE_TYPE_TIMER, NULL, 0, &snd_timer_f_ops, NULL, timer_dev); if (err < 0) { pr_err("ALSA: unable to register timer device (%i)\n", err); snd_timer_free_all(); goto put_timer; } snd_timer_proc_init(); return 0; put_timer: put_device(timer_dev); return err; } static void __exit alsa_timer_exit(void) { snd_unregister_device(timer_dev); snd_timer_free_all(); put_device(timer_dev); snd_timer_proc_done(); #ifdef SNDRV_OSS_INFO_DEV_TIMERS snd_oss_info_unregister(SNDRV_OSS_INFO_DEV_TIMERS, SNDRV_CARDS - 1); #endif } module_init(alsa_timer_init) module_exit(alsa_timer_exit) |
| 2 92 4 4 4 4 3 91 91 47 7 2 1 1 1 2 13 13 13 13 232 230 2 4 233 233 1 13 13 13 24 22 22 5 5 90 90 90 46 90 90 90 90 19 19 61 61 61 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | // SPDX-License-Identifier: GPL-2.0-or-later /* -*- linux-c -*- --------------------------------------------------------- * * * linux/fs/devpts/inode.c * * Copyright 1998-2004 H. Peter Anvin -- All Rights Reserved * * ------------------------------------------------------------------------- */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/sched.h> #include <linux/namei.h> #include <linux/slab.h> #include <linux/mount.h> #include <linux/tty.h> #include <linux/mutex.h> #include <linux/magic.h> #include <linux/idr.h> #include <linux/devpts_fs.h> #include <linux/fsnotify.h> #include <linux/seq_file.h> #define DEVPTS_DEFAULT_MODE 0600 /* * ptmx is a new node in /dev/pts and will be unused in legacy (single- * instance) mode. To prevent surprises in user space, set permissions of * ptmx to 0. Use 'chmod' or remount with '-o ptmxmode' to set meaningful * permissions. */ #define DEVPTS_DEFAULT_PTMX_MODE 0000 #define PTMX_MINOR 2 /* * sysctl support for setting limits on the number of Unix98 ptys allocated. * Otherwise one can eat up all kernel memory by opening /dev/ptmx repeatedly. */ static int pty_limit = NR_UNIX98_PTY_DEFAULT; static int pty_reserve = NR_UNIX98_PTY_RESERVE; static int pty_limit_min; static int pty_limit_max = INT_MAX; static atomic_t pty_count = ATOMIC_INIT(0); static const struct ctl_table pty_table[] = { { .procname = "max", .maxlen = sizeof(int), .mode = 0644, .data = &pty_limit, .proc_handler = proc_dointvec_minmax, .extra1 = &pty_limit_min, .extra2 = &pty_limit_max, }, { .procname = "reserve", .maxlen = sizeof(int), .mode = 0644, .data = &pty_reserve, .proc_handler = proc_dointvec_minmax, .extra1 = &pty_limit_min, .extra2 = &pty_limit_max, }, { .procname = "nr", .maxlen = sizeof(int), .mode = 0444, .data = &pty_count, .proc_handler = proc_dointvec, }, }; struct pts_mount_opts { int setuid; int setgid; kuid_t uid; kgid_t gid; umode_t mode; umode_t ptmxmode; int reserve; int max; }; enum { Opt_uid, Opt_gid, Opt_mode, Opt_ptmxmode, Opt_newinstance, Opt_max, Opt_err }; static const struct fs_parameter_spec devpts_param_specs[] = { fsparam_gid ("gid", Opt_gid), fsparam_s32 ("max", Opt_max), fsparam_u32oct ("mode", Opt_mode), fsparam_flag ("newinstance", Opt_newinstance), fsparam_u32oct ("ptmxmode", Opt_ptmxmode), fsparam_uid ("uid", Opt_uid), {} }; struct pts_fs_info { struct ida allocated_ptys; struct pts_mount_opts mount_opts; struct super_block *sb; struct dentry *ptmx_dentry; }; static inline struct pts_fs_info *DEVPTS_SB(struct super_block *sb) { return sb->s_fs_info; } static int devpts_ptmx_path(struct path *path) { struct super_block *sb; int err; /* Is a devpts filesystem at "pts" in the same directory? */ err = path_pts(path); if (err) return err; /* Is the path the root of a devpts filesystem? */ sb = path->mnt->mnt_sb; if ((sb->s_magic != DEVPTS_SUPER_MAGIC) || (path->mnt->mnt_root != sb->s_root)) return -ENODEV; return 0; } /* * Try to find a suitable devpts filesystem. We support the following * scenarios: * - The ptmx device node is located in the same directory as the devpts * mount where the pts device nodes are located. * This is e.g. the case when calling open on the /dev/pts/ptmx device * node when the devpts filesystem is mounted at /dev/pts. * - The ptmx device node is located outside the devpts filesystem mount * where the pts device nodes are located. For example, the ptmx device * is a symlink, separate device node, or bind-mount. * A supported scenario is bind-mounting /dev/pts/ptmx to /dev/ptmx and * then calling open on /dev/ptmx. In this case a suitable pts * subdirectory can be found in the common parent directory /dev of the * devpts mount and the ptmx bind-mount, after resolving the /dev/ptmx * bind-mount. * If no suitable pts subdirectory can be found this function will fail. * This is e.g. the case when bind-mounting /dev/pts/ptmx to /ptmx. */ struct vfsmount *devpts_mntget(struct file *filp, struct pts_fs_info *fsi) { struct path path; int err = 0; path = filp->f_path; path_get(&path); /* Walk upward while the start point is a bind mount of * a single file. */ while (path.mnt->mnt_root == path.dentry) if (follow_up(&path) == 0) break; /* devpts_ptmx_path() finds a devpts fs or returns an error. */ if ((path.mnt->mnt_sb->s_magic != DEVPTS_SUPER_MAGIC) || (DEVPTS_SB(path.mnt->mnt_sb) != fsi)) err = devpts_ptmx_path(&path); dput(path.dentry); if (!err) { if (DEVPTS_SB(path.mnt->mnt_sb) == fsi) return path.mnt; err = -ENODEV; } mntput(path.mnt); return ERR_PTR(err); } struct pts_fs_info *devpts_acquire(struct file *filp) { struct pts_fs_info *result; struct path path; struct super_block *sb; path = filp->f_path; path_get(&path); /* Has the devpts filesystem already been found? */ if (path.mnt->mnt_sb->s_magic != DEVPTS_SUPER_MAGIC) { int err; err = devpts_ptmx_path(&path); if (err) { result = ERR_PTR(err); goto out; } } /* * pty code needs to hold extra references in case of last /dev/tty close */ sb = path.mnt->mnt_sb; atomic_inc(&sb->s_active); result = DEVPTS_SB(sb); out: path_put(&path); return result; } void devpts_release(struct pts_fs_info *fsi) { deactivate_super(fsi->sb); } /* * devpts_parse_param - Parse mount parameters */ static int devpts_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct pts_fs_info *fsi = fc->s_fs_info; struct pts_mount_opts *opts = &fsi->mount_opts; struct fs_parse_result result; int opt; opt = fs_parse(fc, devpts_param_specs, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_uid: opts->uid = result.uid; opts->setuid = 1; break; case Opt_gid: opts->gid = result.gid; opts->setgid = 1; break; case Opt_mode: opts->mode = result.uint_32 & S_IALLUGO; break; case Opt_ptmxmode: opts->ptmxmode = result.uint_32 & S_IALLUGO; break; case Opt_newinstance: break; case Opt_max: if (result.uint_32 > NR_UNIX98_PTY_MAX) return invalf(fc, "max out of range"); opts->max = result.uint_32; break; } return 0; } static int mknod_ptmx(struct super_block *sb, struct fs_context *fc) { int mode; int rc = -ENOMEM; struct dentry *dentry; struct inode *inode; struct dentry *root = sb->s_root; struct pts_fs_info *fsi = DEVPTS_SB(sb); struct pts_mount_opts *opts = &fsi->mount_opts; kuid_t ptmx_uid = current_fsuid(); kgid_t ptmx_gid = current_fsgid(); inode_lock(d_inode(root)); /* If we have already created ptmx node, return */ if (fsi->ptmx_dentry) { rc = 0; goto out; } dentry = d_alloc_name(root, "ptmx"); if (!dentry) { pr_err("Unable to alloc dentry for ptmx node\n"); goto out; } /* * Create a new 'ptmx' node in this mount of devpts. */ inode = new_inode(sb); if (!inode) { pr_err("Unable to alloc inode for ptmx node\n"); dput(dentry); goto out; } inode->i_ino = 2; simple_inode_init_ts(inode); mode = S_IFCHR|opts->ptmxmode; init_special_inode(inode, mode, MKDEV(TTYAUX_MAJOR, 2)); inode->i_uid = ptmx_uid; inode->i_gid = ptmx_gid; d_add(dentry, inode); fsi->ptmx_dentry = dentry; rc = 0; out: inode_unlock(d_inode(root)); return rc; } static void update_ptmx_mode(struct pts_fs_info *fsi) { struct inode *inode; if (fsi->ptmx_dentry) { inode = d_inode(fsi->ptmx_dentry); inode->i_mode = S_IFCHR|fsi->mount_opts.ptmxmode; } } static int devpts_reconfigure(struct fs_context *fc) { struct pts_fs_info *fsi = DEVPTS_SB(fc->root->d_sb); struct pts_fs_info *new = fc->s_fs_info; /* Apply the revised options. We don't want to change ->reserve. * Ideally, we'd update each option conditionally on it having been * explicitly changed, but the default is to reset everything so that * would break UAPI... */ fsi->mount_opts.setuid = new->mount_opts.setuid; fsi->mount_opts.setgid = new->mount_opts.setgid; fsi->mount_opts.uid = new->mount_opts.uid; fsi->mount_opts.gid = new->mount_opts.gid; fsi->mount_opts.mode = new->mount_opts.mode; fsi->mount_opts.ptmxmode = new->mount_opts.ptmxmode; fsi->mount_opts.max = new->mount_opts.max; /* * parse_mount_options() restores options to default values * before parsing and may have changed ptmxmode. So, update the * mode in the inode too. Bogus options don't fail the remount, * so do this even on error return. */ update_ptmx_mode(fsi); return 0; } static int devpts_show_options(struct seq_file *seq, struct dentry *root) { struct pts_fs_info *fsi = DEVPTS_SB(root->d_sb); struct pts_mount_opts *opts = &fsi->mount_opts; if (opts->setuid) seq_printf(seq, ",uid=%u", from_kuid_munged(&init_user_ns, opts->uid)); if (opts->setgid) seq_printf(seq, ",gid=%u", from_kgid_munged(&init_user_ns, opts->gid)); seq_printf(seq, ",mode=%03o", opts->mode); seq_printf(seq, ",ptmxmode=%03o", opts->ptmxmode); if (opts->max < NR_UNIX98_PTY_MAX) seq_printf(seq, ",max=%d", opts->max); return 0; } static const struct super_operations devpts_sops = { .statfs = simple_statfs, .show_options = devpts_show_options, }; static int devpts_fill_super(struct super_block *s, struct fs_context *fc) { struct pts_fs_info *fsi = DEVPTS_SB(s); struct inode *inode; s->s_iflags &= ~SB_I_NODEV; s->s_blocksize = 1024; s->s_blocksize_bits = 10; s->s_magic = DEVPTS_SUPER_MAGIC; s->s_op = &devpts_sops; s->s_d_flags = DCACHE_DONTCACHE; s->s_time_gran = 1; fsi->sb = s; inode = new_inode(s); if (!inode) return -ENOMEM; inode->i_ino = 1; simple_inode_init_ts(inode); inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR; inode->i_op = &simple_dir_inode_operations; inode->i_fop = &simple_dir_operations; set_nlink(inode, 2); s->s_root = d_make_root(inode); if (!s->s_root) { pr_err("get root dentry failed\n"); return -ENOMEM; } return mknod_ptmx(s, fc); } /* * devpts_get_tree() * * Mount a new (private) instance of devpts. PTYs created in this * instance are independent of the PTYs in other devpts instances. */ static int devpts_get_tree(struct fs_context *fc) { return get_tree_nodev(fc, devpts_fill_super); } static void devpts_free_fc(struct fs_context *fc) { kfree(fc->s_fs_info); } static const struct fs_context_operations devpts_context_ops = { .free = devpts_free_fc, .parse_param = devpts_parse_param, .get_tree = devpts_get_tree, .reconfigure = devpts_reconfigure, }; /* * Set up the filesystem mount context. */ static int devpts_init_fs_context(struct fs_context *fc) { struct pts_fs_info *fsi; fsi = kzalloc(sizeof(struct pts_fs_info), GFP_KERNEL); if (!fsi) return -ENOMEM; ida_init(&fsi->allocated_ptys); fsi->mount_opts.uid = GLOBAL_ROOT_UID; fsi->mount_opts.gid = GLOBAL_ROOT_GID; fsi->mount_opts.mode = DEVPTS_DEFAULT_MODE; fsi->mount_opts.ptmxmode = DEVPTS_DEFAULT_PTMX_MODE; fsi->mount_opts.max = NR_UNIX98_PTY_MAX; if (fc->purpose == FS_CONTEXT_FOR_MOUNT && current->nsproxy->mnt_ns == init_task.nsproxy->mnt_ns) fsi->mount_opts.reserve = true; fc->s_fs_info = fsi; fc->ops = &devpts_context_ops; return 0; } static void devpts_kill_sb(struct super_block *sb) { struct pts_fs_info *fsi = DEVPTS_SB(sb); if (fsi) ida_destroy(&fsi->allocated_ptys); kfree(fsi); kill_litter_super(sb); } static struct file_system_type devpts_fs_type = { .name = "devpts", .init_fs_context = devpts_init_fs_context, .parameters = devpts_param_specs, .kill_sb = devpts_kill_sb, .fs_flags = FS_USERNS_MOUNT, }; /* * The normal naming convention is simply /dev/pts/<number>; this conforms * to the System V naming convention */ int devpts_new_index(struct pts_fs_info *fsi) { int index = -ENOSPC; if (atomic_inc_return(&pty_count) >= (pty_limit - (fsi->mount_opts.reserve ? 0 : pty_reserve))) goto out; index = ida_alloc_max(&fsi->allocated_ptys, fsi->mount_opts.max - 1, GFP_KERNEL); out: if (index < 0) atomic_dec(&pty_count); return index; } void devpts_kill_index(struct pts_fs_info *fsi, int idx) { ida_free(&fsi->allocated_ptys, idx); atomic_dec(&pty_count); } /** * devpts_pty_new -- create a new inode in /dev/pts/ * @fsi: Filesystem info for this instance. * @index: used as a name of the node * @priv: what's given back by devpts_get_priv * * The dentry for the created inode is returned. * Remove it from /dev/pts/ with devpts_pty_kill(). */ struct dentry *devpts_pty_new(struct pts_fs_info *fsi, int index, void *priv) { struct dentry *dentry; struct super_block *sb = fsi->sb; struct inode *inode; struct dentry *root; struct pts_mount_opts *opts; char s[12]; root = sb->s_root; opts = &fsi->mount_opts; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); inode->i_ino = index + 3; inode->i_uid = opts->setuid ? opts->uid : current_fsuid(); inode->i_gid = opts->setgid ? opts->gid : current_fsgid(); simple_inode_init_ts(inode); init_special_inode(inode, S_IFCHR|opts->mode, MKDEV(UNIX98_PTY_SLAVE_MAJOR, index)); sprintf(s, "%d", index); dentry = d_alloc_name(root, s); if (dentry) { dentry->d_fsdata = priv; d_add(dentry, inode); fsnotify_create(d_inode(root), dentry); } else { iput(inode); dentry = ERR_PTR(-ENOMEM); } return dentry; } /** * devpts_get_priv -- get private data for a slave * @dentry: dentry of the slave * * Returns whatever was passed as priv in devpts_pty_new for a given inode. */ void *devpts_get_priv(struct dentry *dentry) { if (dentry->d_sb->s_magic != DEVPTS_SUPER_MAGIC) return NULL; return dentry->d_fsdata; } /** * devpts_pty_kill -- remove inode form /dev/pts/ * @dentry: dentry of the slave to be removed * * This is an inverse operation of devpts_pty_new. */ void devpts_pty_kill(struct dentry *dentry) { WARN_ON_ONCE(dentry->d_sb->s_magic != DEVPTS_SUPER_MAGIC); dentry->d_fsdata = NULL; drop_nlink(dentry->d_inode); d_drop(dentry); fsnotify_unlink(d_inode(dentry->d_parent), dentry); dput(dentry); /* d_alloc_name() in devpts_pty_new() */ } static int __init init_devpts_fs(void) { int err = register_filesystem(&devpts_fs_type); if (!err) { register_sysctl("kernel/pty", pty_table); } return err; } module_init(init_devpts_fs) |
| 6 4 2 1 1 2 6 4 2 2 2 3 3 23 1 1 1 4 16 6 2 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2009 Patrick McHardy <kaber@trash.net> * * Development of this code funded by Astaro AG (http://www.astaro.com/) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/if_arp.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_core.h> #include <net/netfilter/nf_tables_offload.h> #include <net/netfilter/nf_tables.h> struct nft_cmp_expr { struct nft_data data; u8 sreg; u8 len; enum nft_cmp_ops op:8; }; void nft_cmp_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_cmp_expr *priv = nft_expr_priv(expr); int d; d = memcmp(®s->data[priv->sreg], &priv->data, priv->len); switch (priv->op) { case NFT_CMP_EQ: if (d != 0) goto mismatch; break; case NFT_CMP_NEQ: if (d == 0) goto mismatch; break; case NFT_CMP_LT: if (d == 0) goto mismatch; fallthrough; case NFT_CMP_LTE: if (d > 0) goto mismatch; break; case NFT_CMP_GT: if (d == 0) goto mismatch; fallthrough; case NFT_CMP_GTE: if (d < 0) goto mismatch; break; } return; mismatch: regs->verdict.code = NFT_BREAK; } static const struct nla_policy nft_cmp_policy[NFTA_CMP_MAX + 1] = { [NFTA_CMP_SREG] = { .type = NLA_U32 }, [NFTA_CMP_OP] = { .type = NLA_U32 }, [NFTA_CMP_DATA] = { .type = NLA_NESTED }, }; static int nft_cmp_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_cmp_expr *priv = nft_expr_priv(expr); struct nft_data_desc desc = { .type = NFT_DATA_VALUE, .size = sizeof(priv->data), }; int err; err = nft_data_init(NULL, &priv->data, &desc, tb[NFTA_CMP_DATA]); if (err < 0) return err; err = nft_parse_register_load(ctx, tb[NFTA_CMP_SREG], &priv->sreg, desc.len); if (err < 0) return err; priv->op = ntohl(nla_get_be32(tb[NFTA_CMP_OP])); priv->len = desc.len; return 0; } static int nft_cmp_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_cmp_expr *priv = nft_expr_priv(expr); if (nft_dump_register(skb, NFTA_CMP_SREG, priv->sreg)) goto nla_put_failure; if (nla_put_be32(skb, NFTA_CMP_OP, htonl(priv->op))) goto nla_put_failure; if (nft_data_dump(skb, NFTA_CMP_DATA, &priv->data, NFT_DATA_VALUE, priv->len) < 0) goto nla_put_failure; return 0; nla_put_failure: return -1; } union nft_cmp_offload_data { u16 val16; u32 val32; u64 val64; }; static void nft_payload_n2h(union nft_cmp_offload_data *data, const u8 *val, u32 len) { switch (len) { case 2: data->val16 = ntohs(*((__be16 *)val)); break; case 4: data->val32 = ntohl(*((__be32 *)val)); break; case 8: data->val64 = be64_to_cpu(*((__be64 *)val)); break; default: WARN_ON_ONCE(1); break; } } static int __nft_cmp_offload(struct nft_offload_ctx *ctx, struct nft_flow_rule *flow, const struct nft_cmp_expr *priv) { struct nft_offload_reg *reg = &ctx->regs[priv->sreg]; union nft_cmp_offload_data _data, _datamask; u8 *mask = (u8 *)&flow->match.mask; u8 *key = (u8 *)&flow->match.key; u8 *data, *datamask; if (priv->op != NFT_CMP_EQ || priv->len > reg->len) return -EOPNOTSUPP; if (reg->flags & NFT_OFFLOAD_F_NETWORK2HOST) { nft_payload_n2h(&_data, (u8 *)&priv->data, reg->len); nft_payload_n2h(&_datamask, (u8 *)®->mask, reg->len); data = (u8 *)&_data; datamask = (u8 *)&_datamask; } else { data = (u8 *)&priv->data; datamask = (u8 *)®->mask; } memcpy(key + reg->offset, data, reg->len); memcpy(mask + reg->offset, datamask, reg->len); flow->match.dissector.used_keys |= BIT_ULL(reg->key); flow->match.dissector.offset[reg->key] = reg->base_offset; if (reg->key == FLOW_DISSECTOR_KEY_META && reg->offset == offsetof(struct nft_flow_key, meta.ingress_iftype) && nft_reg_load16(priv->data.data) != ARPHRD_ETHER) return -EOPNOTSUPP; nft_offload_update_dependency(ctx, &priv->data, reg->len); return 0; } static int nft_cmp_offload(struct nft_offload_ctx *ctx, struct nft_flow_rule *flow, const struct nft_expr *expr) { const struct nft_cmp_expr *priv = nft_expr_priv(expr); return __nft_cmp_offload(ctx, flow, priv); } static const struct nft_expr_ops nft_cmp_ops = { .type = &nft_cmp_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_cmp_expr)), .eval = nft_cmp_eval, .init = nft_cmp_init, .dump = nft_cmp_dump, .reduce = NFT_REDUCE_READONLY, .offload = nft_cmp_offload, }; /* Calculate the mask for the nft_cmp_fast expression. On big endian the * mask needs to include the *upper* bytes when interpreting that data as * something smaller than the full u32, therefore a cpu_to_le32 is done. */ static u32 nft_cmp_fast_mask(unsigned int len) { __le32 mask = cpu_to_le32(~0U >> (sizeof_field(struct nft_cmp_fast_expr, data) * BITS_PER_BYTE - len)); return (__force u32)mask; } static int nft_cmp_fast_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_cmp_fast_expr *priv = nft_expr_priv(expr); struct nft_data data; struct nft_data_desc desc = { .type = NFT_DATA_VALUE, .size = sizeof(data), }; int err; err = nft_data_init(NULL, &data, &desc, tb[NFTA_CMP_DATA]); if (err < 0) return err; err = nft_parse_register_load(ctx, tb[NFTA_CMP_SREG], &priv->sreg, desc.len); if (err < 0) return err; desc.len *= BITS_PER_BYTE; priv->mask = nft_cmp_fast_mask(desc.len); priv->data = data.data[0] & priv->mask; priv->len = desc.len; priv->inv = ntohl(nla_get_be32(tb[NFTA_CMP_OP])) != NFT_CMP_EQ; return 0; } static int nft_cmp_fast_offload(struct nft_offload_ctx *ctx, struct nft_flow_rule *flow, const struct nft_expr *expr) { const struct nft_cmp_fast_expr *priv = nft_expr_priv(expr); struct nft_cmp_expr cmp = { .data = { .data = { [0] = priv->data, }, }, .sreg = priv->sreg, .len = priv->len / BITS_PER_BYTE, .op = priv->inv ? NFT_CMP_NEQ : NFT_CMP_EQ, }; return __nft_cmp_offload(ctx, flow, &cmp); } static int nft_cmp_fast_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_cmp_fast_expr *priv = nft_expr_priv(expr); enum nft_cmp_ops op = priv->inv ? NFT_CMP_NEQ : NFT_CMP_EQ; struct nft_data data; if (nft_dump_register(skb, NFTA_CMP_SREG, priv->sreg)) goto nla_put_failure; if (nla_put_be32(skb, NFTA_CMP_OP, htonl(op))) goto nla_put_failure; data.data[0] = priv->data; if (nft_data_dump(skb, NFTA_CMP_DATA, &data, NFT_DATA_VALUE, priv->len / BITS_PER_BYTE) < 0) goto nla_put_failure; return 0; nla_put_failure: return -1; } const struct nft_expr_ops nft_cmp_fast_ops = { .type = &nft_cmp_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_cmp_fast_expr)), .eval = NULL, /* inlined */ .init = nft_cmp_fast_init, .dump = nft_cmp_fast_dump, .reduce = NFT_REDUCE_READONLY, .offload = nft_cmp_fast_offload, }; static u32 nft_cmp_mask(u32 bitlen) { return (__force u32)cpu_to_le32(~0U >> (sizeof(u32) * BITS_PER_BYTE - bitlen)); } static void nft_cmp16_fast_mask(struct nft_data *data, unsigned int bitlen) { int len = bitlen / BITS_PER_BYTE; int i, words = len / sizeof(u32); for (i = 0; i < words; i++) { data->data[i] = 0xffffffff; bitlen -= sizeof(u32) * BITS_PER_BYTE; } if (len % sizeof(u32)) data->data[i++] = nft_cmp_mask(bitlen); for (; i < 4; i++) data->data[i] = 0; } static int nft_cmp16_fast_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_cmp16_fast_expr *priv = nft_expr_priv(expr); struct nft_data_desc desc = { .type = NFT_DATA_VALUE, .size = sizeof(priv->data), }; int err; err = nft_data_init(NULL, &priv->data, &desc, tb[NFTA_CMP_DATA]); if (err < 0) return err; err = nft_parse_register_load(ctx, tb[NFTA_CMP_SREG], &priv->sreg, desc.len); if (err < 0) return err; nft_cmp16_fast_mask(&priv->mask, desc.len * BITS_PER_BYTE); priv->inv = ntohl(nla_get_be32(tb[NFTA_CMP_OP])) != NFT_CMP_EQ; priv->len = desc.len; return 0; } static int nft_cmp16_fast_offload(struct nft_offload_ctx *ctx, struct nft_flow_rule *flow, const struct nft_expr *expr) { const struct nft_cmp16_fast_expr *priv = nft_expr_priv(expr); struct nft_cmp_expr cmp = { .data = priv->data, .sreg = priv->sreg, .len = priv->len, .op = priv->inv ? NFT_CMP_NEQ : NFT_CMP_EQ, }; return __nft_cmp_offload(ctx, flow, &cmp); } static int nft_cmp16_fast_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_cmp16_fast_expr *priv = nft_expr_priv(expr); enum nft_cmp_ops op = priv->inv ? NFT_CMP_NEQ : NFT_CMP_EQ; if (nft_dump_register(skb, NFTA_CMP_SREG, priv->sreg)) goto nla_put_failure; if (nla_put_be32(skb, NFTA_CMP_OP, htonl(op))) goto nla_put_failure; if (nft_data_dump(skb, NFTA_CMP_DATA, &priv->data, NFT_DATA_VALUE, priv->len) < 0) goto nla_put_failure; return 0; nla_put_failure: return -1; } const struct nft_expr_ops nft_cmp16_fast_ops = { .type = &nft_cmp_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_cmp16_fast_expr)), .eval = NULL, /* inlined */ .init = nft_cmp16_fast_init, .dump = nft_cmp16_fast_dump, .reduce = NFT_REDUCE_READONLY, .offload = nft_cmp16_fast_offload, }; static const struct nft_expr_ops * nft_cmp_select_ops(const struct nft_ctx *ctx, const struct nlattr * const tb[]) { struct nft_data data; struct nft_data_desc desc = { .type = NFT_DATA_VALUE, .size = sizeof(data), }; enum nft_cmp_ops op; u8 sreg; int err; if (tb[NFTA_CMP_SREG] == NULL || tb[NFTA_CMP_OP] == NULL || tb[NFTA_CMP_DATA] == NULL) return ERR_PTR(-EINVAL); op = ntohl(nla_get_be32(tb[NFTA_CMP_OP])); switch (op) { case NFT_CMP_EQ: case NFT_CMP_NEQ: case NFT_CMP_LT: case NFT_CMP_LTE: case NFT_CMP_GT: case NFT_CMP_GTE: break; default: return ERR_PTR(-EINVAL); } err = nft_data_init(NULL, &data, &desc, tb[NFTA_CMP_DATA]); if (err < 0) return ERR_PTR(err); sreg = ntohl(nla_get_be32(tb[NFTA_CMP_SREG])); if (op == NFT_CMP_EQ || op == NFT_CMP_NEQ) { if (desc.len <= sizeof(u32)) return &nft_cmp_fast_ops; else if (desc.len <= sizeof(data) && ((sreg >= NFT_REG_1 && sreg <= NFT_REG_4) || (sreg >= NFT_REG32_00 && sreg <= NFT_REG32_12 && sreg % 2 == 0))) return &nft_cmp16_fast_ops; } return &nft_cmp_ops; } struct nft_expr_type nft_cmp_type __read_mostly = { .name = "cmp", .select_ops = nft_cmp_select_ops, .policy = nft_cmp_policy, .maxattr = NFTA_CMP_MAX, .owner = THIS_MODULE, }; |
| 2 1 1 1 1 1 1 1 2 6 8 1 1 1 1 15 8 8 15 2 9 15 13 15 1 1 1 1 16 16 15 15 15 15 16 10 3 13 13 1 1 1 12 2 12 12 13 18 16 2 18 11 1 1 1 4 6 10 4 10 10 2 4 2 10 3 1 1 1 1 12 1 11 10 1 10 3 6 6 2 4 4 12 6 6 6 6 6 6 6 3 3 6 6 6 6 5 6 6 24 1 20 23 23 23 23 23 3 20 20 20 20 23 19 4 18 4 18 18 15 2 2 10 6 16 6 10 16 16 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Xbox gamepad driver * * Copyright (c) 2002 Marko Friedemann <mfr@bmx-chemnitz.de> * 2004 Oliver Schwartz <Oliver.Schwartz@gmx.de>, * Steven Toth <steve@toth.demon.co.uk>, * Franz Lehner <franz@caos.at>, * Ivan Hawkes <blackhawk@ivanhawkes.com> * 2005 Dominic Cerquetti <binary1230@yahoo.com> * 2006 Adam Buchbinder <adam.buchbinder@gmail.com> * 2007 Jan Kratochvil <honza@jikos.cz> * 2010 Christoph Fritz <chf.fritz@googlemail.com> * * This driver is based on: * - information from http://euc.jp/periphs/xbox-controller.ja.html * - the iForce driver drivers/char/joystick/iforce.c * - the skeleton-driver drivers/usb/usb-skeleton.c * - Xbox 360 information http://www.free60.org/wiki/Gamepad * - Xbox One information https://github.com/quantus/xbox-one-controller-protocol * * Thanks to: * - ITO Takayuki for providing essential xpad information on his website * - Vojtech Pavlik - iforce driver / input subsystem * - Greg Kroah-Hartman - usb-skeleton driver * - Xbox Linux project - extra USB IDs * - Pekka Pöyry (quantus) - Xbox One controller reverse-engineering * * TODO: * - fine tune axes (especially trigger axes) * - fix "analog" buttons (reported as digital now) * - get rumble working * - need USB IDs for other dance pads * * History: * * 2002-06-27 - 0.0.1 : first version, just said "XBOX HID controller" * * 2002-07-02 - 0.0.2 : basic working version * - all axes and 9 of the 10 buttons work (german InterAct device) * - the black button does not work * * 2002-07-14 - 0.0.3 : rework by Vojtech Pavlik * - indentation fixes * - usb + input init sequence fixes * * 2002-07-16 - 0.0.4 : minor changes, merge with Vojtech's v0.0.3 * - verified the lack of HID and report descriptors * - verified that ALL buttons WORK * - fixed d-pad to axes mapping * * 2002-07-17 - 0.0.5 : simplified d-pad handling * * 2004-10-02 - 0.0.6 : DDR pad support * - borrowed from the Xbox Linux kernel * - USB id's for commonly used dance pads are present * - dance pads will map D-PAD to buttons, not axes * - pass the module paramater 'dpad_to_buttons' to force * the D-PAD to map to buttons if your pad is not detected * * Later changes can be tracked in SCM. */ #include <linux/bits.h> #include <linux/kernel.h> #include <linux/input.h> #include <linux/rcupdate.h> #include <linux/slab.h> #include <linux/stat.h> #include <linux/module.h> #include <linux/usb/input.h> #include <linux/usb/quirks.h> #define XPAD_PKT_LEN 64 /* * xbox d-pads should map to buttons, as is required for DDR pads * but we map them to axes when possible to simplify things */ #define MAP_DPAD_TO_BUTTONS BIT(0) #define MAP_TRIGGERS_TO_BUTTONS BIT(1) #define MAP_STICKS_TO_NULL BIT(2) #define MAP_SHARE_BUTTON BIT(3) #define MAP_PADDLES BIT(4) #define MAP_PROFILE_BUTTON BIT(5) #define MAP_SHARE_OFFSET BIT(6) #define DANCEPAD_MAP_CONFIG (MAP_DPAD_TO_BUTTONS | \ MAP_TRIGGERS_TO_BUTTONS | MAP_STICKS_TO_NULL) #define XTYPE_XBOX 0 #define XTYPE_XBOX360 1 #define XTYPE_XBOX360W 2 #define XTYPE_XBOXONE 3 #define XTYPE_UNKNOWN 4 /* Send power-off packet to xpad360w after holding the mode button for this many * seconds */ #define XPAD360W_POWEROFF_TIMEOUT 5 #define PKT_XB 0 #define PKT_XBE1 1 #define PKT_XBE2_FW_OLD 2 #define PKT_XBE2_FW_5_EARLY 3 #define PKT_XBE2_FW_5_11 4 #define FLAG_DELAY_INIT BIT(0) static bool dpad_to_buttons; module_param(dpad_to_buttons, bool, S_IRUGO); MODULE_PARM_DESC(dpad_to_buttons, "Map D-PAD to buttons rather than axes for unknown pads"); static bool triggers_to_buttons; module_param(triggers_to_buttons, bool, S_IRUGO); MODULE_PARM_DESC(triggers_to_buttons, "Map triggers to buttons rather than axes for unknown pads"); static bool sticks_to_null; module_param(sticks_to_null, bool, S_IRUGO); MODULE_PARM_DESC(sticks_to_null, "Do not map sticks at all for unknown pads"); static bool auto_poweroff = true; module_param(auto_poweroff, bool, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(auto_poweroff, "Power off wireless controllers on suspend"); static const struct xpad_device { u16 idVendor; u16 idProduct; char *name; u8 mapping; u8 xtype; u8 flags; } xpad_device[] = { /* Please keep this list sorted by vendor and product ID. */ { 0x0079, 0x18d4, "GPD Win 2 X-Box Controller", 0, XTYPE_XBOX360 }, { 0x03eb, 0xff01, "Wooting One (Legacy)", 0, XTYPE_XBOX360 }, { 0x03eb, 0xff02, "Wooting Two (Legacy)", 0, XTYPE_XBOX360 }, { 0x03f0, 0x038D, "HyperX Clutch", 0, XTYPE_XBOX360 }, /* wired */ { 0x03f0, 0x048D, "HyperX Clutch", 0, XTYPE_XBOX360 }, /* wireless */ { 0x03f0, 0x0495, "HyperX Clutch Gladiate", 0, XTYPE_XBOXONE }, { 0x03f0, 0x07A0, "HyperX Clutch Gladiate RGB", 0, XTYPE_XBOXONE }, { 0x03f0, 0x08B6, "HyperX Clutch Gladiate", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, /* v2 */ { 0x03f0, 0x09B4, "HyperX Clutch Tanto", 0, XTYPE_XBOXONE }, { 0x044f, 0x0f00, "Thrustmaster Wheel", 0, XTYPE_XBOX }, { 0x044f, 0x0f03, "Thrustmaster Wheel", 0, XTYPE_XBOX }, { 0x044f, 0x0f07, "Thrustmaster, Inc. Controller", 0, XTYPE_XBOX }, { 0x044f, 0x0f10, "Thrustmaster Modena GT Wheel", 0, XTYPE_XBOX }, { 0x044f, 0xb326, "Thrustmaster Gamepad GP XID", 0, XTYPE_XBOX360 }, { 0x044f, 0xd01e, "ThrustMaster, Inc. ESWAP X 2 ELDEN RING EDITION", 0, XTYPE_XBOXONE }, { 0x045e, 0x0202, "Microsoft X-Box pad v1 (US)", 0, XTYPE_XBOX }, { 0x045e, 0x0285, "Microsoft X-Box pad (Japan)", 0, XTYPE_XBOX }, { 0x045e, 0x0287, "Microsoft Xbox Controller S", 0, XTYPE_XBOX }, { 0x045e, 0x0288, "Microsoft Xbox Controller S v2", 0, XTYPE_XBOX }, { 0x045e, 0x0289, "Microsoft X-Box pad v2 (US)", 0, XTYPE_XBOX }, { 0x045e, 0x028e, "Microsoft X-Box 360 pad", 0, XTYPE_XBOX360 }, { 0x045e, 0x028f, "Microsoft X-Box 360 pad v2", 0, XTYPE_XBOX360 }, { 0x045e, 0x0291, "Xbox 360 Wireless Receiver (XBOX)", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX360W }, { 0x045e, 0x02a9, "Xbox 360 Wireless Receiver (Unofficial)", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX360W }, { 0x045e, 0x02d1, "Microsoft X-Box One pad", 0, XTYPE_XBOXONE }, { 0x045e, 0x02dd, "Microsoft X-Box One pad (Firmware 2015)", 0, XTYPE_XBOXONE }, { 0x045e, 0x02e3, "Microsoft X-Box One Elite pad", MAP_PADDLES, XTYPE_XBOXONE }, { 0x045e, 0x02ea, "Microsoft X-Box One S pad", 0, XTYPE_XBOXONE }, { 0x045e, 0x0719, "Xbox 360 Wireless Receiver", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX360W }, { 0x045e, 0x0b00, "Microsoft X-Box One Elite 2 pad", MAP_PADDLES, XTYPE_XBOXONE }, { 0x045e, 0x0b0a, "Microsoft X-Box Adaptive Controller", MAP_PROFILE_BUTTON, XTYPE_XBOXONE }, { 0x045e, 0x0b12, "Microsoft Xbox Series S|X Controller", MAP_SHARE_BUTTON | MAP_SHARE_OFFSET, XTYPE_XBOXONE }, { 0x046d, 0xc21d, "Logitech Gamepad F310", 0, XTYPE_XBOX360 }, { 0x046d, 0xc21e, "Logitech Gamepad F510", 0, XTYPE_XBOX360 }, { 0x046d, 0xc21f, "Logitech Gamepad F710", 0, XTYPE_XBOX360 }, { 0x046d, 0xc242, "Logitech Chillstream Controller", 0, XTYPE_XBOX360 }, { 0x046d, 0xca84, "Logitech Xbox Cordless Controller", 0, XTYPE_XBOX }, { 0x046d, 0xca88, "Logitech Compact Controller for Xbox", 0, XTYPE_XBOX }, { 0x046d, 0xca8a, "Logitech Precision Vibration Feedback Wheel", 0, XTYPE_XBOX }, { 0x046d, 0xcaa3, "Logitech DriveFx Racing Wheel", 0, XTYPE_XBOX360 }, { 0x0502, 0x1305, "Acer NGR200", 0, XTYPE_XBOX360 }, { 0x056e, 0x2004, "Elecom JC-U3613M", 0, XTYPE_XBOX360 }, { 0x05fd, 0x1007, "Mad Catz Controller (unverified)", 0, XTYPE_XBOX }, { 0x05fd, 0x107a, "InterAct 'PowerPad Pro' X-Box pad (Germany)", 0, XTYPE_XBOX }, { 0x05fe, 0x3030, "Chic Controller", 0, XTYPE_XBOX }, { 0x05fe, 0x3031, "Chic Controller", 0, XTYPE_XBOX }, { 0x062a, 0x0020, "Logic3 Xbox GamePad", 0, XTYPE_XBOX }, { 0x062a, 0x0033, "Competition Pro Steering Wheel", 0, XTYPE_XBOX }, { 0x06a3, 0x0200, "Saitek Racing Wheel", 0, XTYPE_XBOX }, { 0x06a3, 0x0201, "Saitek Adrenalin", 0, XTYPE_XBOX }, { 0x06a3, 0xf51a, "Saitek P3600", 0, XTYPE_XBOX360 }, { 0x0738, 0x4503, "Mad Catz Racing Wheel", 0, XTYPE_XBOXONE }, { 0x0738, 0x4506, "Mad Catz 4506 Wireless Controller", 0, XTYPE_XBOX }, { 0x0738, 0x4516, "Mad Catz Control Pad", 0, XTYPE_XBOX }, { 0x0738, 0x4520, "Mad Catz Control Pad Pro", 0, XTYPE_XBOX }, { 0x0738, 0x4522, "Mad Catz LumiCON", 0, XTYPE_XBOX }, { 0x0738, 0x4526, "Mad Catz Control Pad Pro", 0, XTYPE_XBOX }, { 0x0738, 0x4530, "Mad Catz Universal MC2 Racing Wheel and Pedals", 0, XTYPE_XBOX }, { 0x0738, 0x4536, "Mad Catz MicroCON", 0, XTYPE_XBOX }, { 0x0738, 0x4540, "Mad Catz Beat Pad", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX }, { 0x0738, 0x4556, "Mad Catz Lynx Wireless Controller", 0, XTYPE_XBOX }, { 0x0738, 0x4586, "Mad Catz MicroCon Wireless Controller", 0, XTYPE_XBOX }, { 0x0738, 0x4588, "Mad Catz Blaster", 0, XTYPE_XBOX }, { 0x0738, 0x45ff, "Mad Catz Beat Pad (w/ Handle)", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX }, { 0x0738, 0x4716, "Mad Catz Wired Xbox 360 Controller", 0, XTYPE_XBOX360 }, { 0x0738, 0x4718, "Mad Catz Street Fighter IV FightStick SE", 0, XTYPE_XBOX360 }, { 0x0738, 0x4726, "Mad Catz Xbox 360 Controller", 0, XTYPE_XBOX360 }, { 0x0738, 0x4728, "Mad Catz Street Fighter IV FightPad", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0738, 0x4736, "Mad Catz MicroCon Gamepad", 0, XTYPE_XBOX360 }, { 0x0738, 0x4738, "Mad Catz Wired Xbox 360 Controller (SFIV)", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0738, 0x4740, "Mad Catz Beat Pad", 0, XTYPE_XBOX360 }, { 0x0738, 0x4743, "Mad Catz Beat Pad Pro", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX }, { 0x0738, 0x4758, "Mad Catz Arcade Game Stick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0738, 0x4a01, "Mad Catz FightStick TE 2", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOXONE }, { 0x0738, 0x6040, "Mad Catz Beat Pad Pro", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX }, { 0x0738, 0x9871, "Mad Catz Portable Drum", 0, XTYPE_XBOX360 }, { 0x0738, 0xb726, "Mad Catz Xbox controller - MW2", 0, XTYPE_XBOX360 }, { 0x0738, 0xb738, "Mad Catz MVC2TE Stick 2", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0738, 0xbeef, "Mad Catz JOYTECH NEO SE Advanced GamePad", 0, XTYPE_XBOX360 }, { 0x0738, 0xcb02, "Saitek Cyborg Rumble Pad - PC/Xbox 360", 0, XTYPE_XBOX360 }, { 0x0738, 0xcb03, "Saitek P3200 Rumble Pad - PC/Xbox 360", 0, XTYPE_XBOX360 }, { 0x0738, 0xcb29, "Saitek Aviator Stick AV8R02", 0, XTYPE_XBOX360 }, { 0x0738, 0xf738, "Super SFIV FightStick TE S", 0, XTYPE_XBOX360 }, { 0x07ff, 0xffff, "Mad Catz GamePad", 0, XTYPE_XBOX360 }, { 0x0b05, 0x1a38, "ASUS ROG RAIKIRI", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x0b05, 0x1abb, "ASUS ROG RAIKIRI PRO", 0, XTYPE_XBOXONE }, { 0x0c12, 0x0005, "Intec wireless", 0, XTYPE_XBOX }, { 0x0c12, 0x8801, "Nyko Xbox Controller", 0, XTYPE_XBOX }, { 0x0c12, 0x8802, "Zeroplus Xbox Controller", 0, XTYPE_XBOX }, { 0x0c12, 0x8809, "RedOctane Xbox Dance Pad", DANCEPAD_MAP_CONFIG, XTYPE_XBOX }, { 0x0c12, 0x880a, "Pelican Eclipse PL-2023", 0, XTYPE_XBOX }, { 0x0c12, 0x8810, "Zeroplus Xbox Controller", 0, XTYPE_XBOX }, { 0x0c12, 0x9902, "HAMA VibraX - *FAULTY HARDWARE*", 0, XTYPE_XBOX }, { 0x0d2f, 0x0002, "Andamiro Pump It Up pad", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX }, { 0x0db0, 0x1901, "Micro Star International Xbox360 Controller for Windows", 0, XTYPE_XBOX360 }, { 0x0e4c, 0x1097, "Radica Gamester Controller", 0, XTYPE_XBOX }, { 0x0e4c, 0x1103, "Radica Gamester Reflex", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX }, { 0x0e4c, 0x2390, "Radica Games Jtech Controller", 0, XTYPE_XBOX }, { 0x0e4c, 0x3510, "Radica Gamester", 0, XTYPE_XBOX }, { 0x0e6f, 0x0003, "Logic3 Freebird wireless Controller", 0, XTYPE_XBOX }, { 0x0e6f, 0x0005, "Eclipse wireless Controller", 0, XTYPE_XBOX }, { 0x0e6f, 0x0006, "Edge wireless Controller", 0, XTYPE_XBOX }, { 0x0e6f, 0x0008, "After Glow Pro Controller", 0, XTYPE_XBOX }, { 0x0e6f, 0x0105, "HSM3 Xbox360 dancepad", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0e6f, 0x0113, "Afterglow AX.1 Gamepad for Xbox 360", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x011f, "Rock Candy Gamepad Wired Controller", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0131, "PDP EA Sports Controller", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0133, "Xbox 360 Wired Controller", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0139, "Afterglow Prismatic Wired Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x013a, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0146, "Rock Candy Wired Controller for Xbox One", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0147, "PDP Marvel Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x015c, "PDP Xbox One Arcade Stick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOXONE }, { 0x0e6f, 0x015d, "PDP Mirror's Edge Official Wired Controller for Xbox One", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0161, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0162, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0163, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0164, "PDP Battlefield One", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0165, "PDP Titanfall 2", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0201, "Pelican PL-3601 'TSZ' Wired Xbox 360 Controller", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0213, "Afterglow Gamepad for Xbox 360", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x021f, "Rock Candy Gamepad for Xbox 360", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0246, "Rock Candy Gamepad for Xbox One 2015", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02a0, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02a1, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02a2, "PDP Wired Controller for Xbox One - Crimson Red", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02a4, "PDP Wired Controller for Xbox One - Stealth Series", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02a6, "PDP Wired Controller for Xbox One - Camo Series", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02a7, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02a8, "PDP Xbox One Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02ab, "PDP Controller for Xbox One", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02ad, "PDP Wired Controller for Xbox One - Stealth Series", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02b3, "Afterglow Prismatic Wired Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x02b8, "Afterglow Prismatic Wired Controller", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0301, "Logic3 Controller", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0346, "Rock Candy Gamepad for Xbox One 2016", 0, XTYPE_XBOXONE }, { 0x0e6f, 0x0401, "Logic3 Controller", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0413, "Afterglow AX.1 Gamepad for Xbox 360", 0, XTYPE_XBOX360 }, { 0x0e6f, 0x0501, "PDP Xbox 360 Controller", 0, XTYPE_XBOX360 }, { 0x0e6f, 0xf900, "PDP Afterglow AX.1", 0, XTYPE_XBOX360 }, { 0x0e8f, 0x0201, "SmartJoy Frag Xpad/PS2 adaptor", 0, XTYPE_XBOX }, { 0x0e8f, 0x3008, "Generic xbox control (dealextreme)", 0, XTYPE_XBOX }, { 0x0f0d, 0x000a, "Hori Co. DOA4 FightStick", 0, XTYPE_XBOX360 }, { 0x0f0d, 0x000c, "Hori PadEX Turbo", 0, XTYPE_XBOX360 }, { 0x0f0d, 0x000d, "Hori Fighting Stick EX2", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0f0d, 0x0016, "Hori Real Arcade Pro.EX", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0f0d, 0x001b, "Hori Real Arcade Pro VX", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0f0d, 0x0063, "Hori Real Arcade Pro Hayabusa (USA) Xbox One", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOXONE }, { 0x0f0d, 0x0067, "HORIPAD ONE", 0, XTYPE_XBOXONE }, { 0x0f0d, 0x0078, "Hori Real Arcade Pro V Kai Xbox One", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOXONE }, { 0x0f0d, 0x00c5, "Hori Fighting Commander ONE", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOXONE }, { 0x0f0d, 0x00dc, "HORIPAD FPS for Nintendo Switch", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x0f0d, 0x0151, "Hori Racing Wheel Overdrive for Xbox Series X", 0, XTYPE_XBOXONE }, { 0x0f0d, 0x0152, "Hori Racing Wheel Overdrive for Xbox Series X", 0, XTYPE_XBOXONE }, { 0x0f0d, 0x01b2, "HORI Taiko No Tatsujin Drum Controller", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x0f30, 0x010b, "Philips Recoil", 0, XTYPE_XBOX }, { 0x0f30, 0x0202, "Joytech Advanced Controller", 0, XTYPE_XBOX }, { 0x0f30, 0x8888, "BigBen XBMiniPad Controller", 0, XTYPE_XBOX }, { 0x102c, 0xff0c, "Joytech Wireless Advanced Controller", 0, XTYPE_XBOX }, { 0x1038, 0x1430, "SteelSeries Stratus Duo", 0, XTYPE_XBOX360 }, { 0x1038, 0x1431, "SteelSeries Stratus Duo", 0, XTYPE_XBOX360 }, { 0x10f5, 0x7005, "Turtle Beach Recon Controller", 0, XTYPE_XBOXONE }, { 0x10f5, 0x7008, "Turtle Beach Recon Controller", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x10f5, 0x7073, "Turtle Beach Stealth Ultra Controller", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x11c9, 0x55f0, "Nacon GC-100XF", 0, XTYPE_XBOX360 }, { 0x11ff, 0x0511, "PXN V900", 0, XTYPE_XBOX360 }, { 0x1209, 0x2882, "Ardwiino Controller", 0, XTYPE_XBOX360 }, { 0x12ab, 0x0004, "Honey Bee Xbox360 dancepad", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX360 }, { 0x12ab, 0x0301, "PDP AFTERGLOW AX.1", 0, XTYPE_XBOX360 }, { 0x12ab, 0x0303, "Mortal Kombat Klassic FightStick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x12ab, 0x8809, "Xbox DDR dancepad", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX }, { 0x1430, 0x4748, "RedOctane Guitar Hero X-plorer", 0, XTYPE_XBOX360 }, { 0x1430, 0x8888, "TX6500+ Dance Pad (first generation)", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX }, { 0x1430, 0xf801, "RedOctane Controller", 0, XTYPE_XBOX360 }, { 0x146b, 0x0601, "BigBen Interactive XBOX 360 Controller", 0, XTYPE_XBOX360 }, { 0x146b, 0x0604, "Bigben Interactive DAIJA Arcade Stick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1532, 0x0a00, "Razer Atrox Arcade Stick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOXONE }, { 0x1532, 0x0a03, "Razer Wildcat", 0, XTYPE_XBOXONE }, { 0x1532, 0x0a29, "Razer Wolverine V2", 0, XTYPE_XBOXONE }, { 0x15e4, 0x3f00, "Power A Mini Pro Elite", 0, XTYPE_XBOX360 }, { 0x15e4, 0x3f0a, "Xbox Airflo wired controller", 0, XTYPE_XBOX360 }, { 0x15e4, 0x3f10, "Batarang Xbox 360 controller", 0, XTYPE_XBOX360 }, { 0x162e, 0xbeef, "Joytech Neo-Se Take2", 0, XTYPE_XBOX360 }, { 0x1689, 0xfd00, "Razer Onza Tournament Edition", 0, XTYPE_XBOX360 }, { 0x1689, 0xfd01, "Razer Onza Classic Edition", 0, XTYPE_XBOX360 }, { 0x1689, 0xfe00, "Razer Sabertooth", 0, XTYPE_XBOX360 }, { 0x17ef, 0x6182, "Lenovo Legion Controller for Windows", 0, XTYPE_XBOX360 }, { 0x1949, 0x041a, "Amazon Game Controller", 0, XTYPE_XBOX360 }, { 0x1a86, 0xe310, "Legion Go S", 0, XTYPE_XBOX360 }, { 0x1bad, 0x0002, "Harmonix Rock Band Guitar", 0, XTYPE_XBOX360 }, { 0x1bad, 0x0003, "Harmonix Rock Band Drumkit", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0x0130, "Ion Drum Rocker", MAP_DPAD_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf016, "Mad Catz Xbox 360 Controller", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf018, "Mad Catz Street Fighter IV SE Fighting Stick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf019, "Mad Catz Brawlstick for Xbox 360", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf021, "Mad Cats Ghost Recon FS GamePad", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf023, "MLG Pro Circuit Controller (Xbox)", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf025, "Mad Catz Call Of Duty", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf027, "Mad Catz FPS Pro", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf028, "Street Fighter IV FightPad", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf02e, "Mad Catz Fightpad", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf030, "Mad Catz Xbox 360 MC2 MicroCon Racing Wheel", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf036, "Mad Catz MicroCon GamePad Pro", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf038, "Street Fighter IV FightStick TE", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf039, "Mad Catz MvC2 TE", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf03a, "Mad Catz SFxT Fightstick Pro", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf03d, "Street Fighter IV Arcade Stick TE - Chun Li", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf03e, "Mad Catz MLG FightStick TE", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf03f, "Mad Catz FightStick SoulCaliber", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf042, "Mad Catz FightStick TES+", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf080, "Mad Catz FightStick TE2", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf501, "HoriPad EX2 Turbo", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf502, "Hori Real Arcade Pro.VX SA", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf503, "Hori Fighting Stick VX", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf504, "Hori Real Arcade Pro. EX", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf505, "Hori Fighting Stick EX2B", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xf506, "Hori Real Arcade Pro.EX Premium VLX", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf900, "Harmonix Xbox 360 Controller", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf901, "Gamestop Xbox 360 Controller", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf903, "Tron Xbox 360 controller", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf904, "PDP Versus Fighting Pad", 0, XTYPE_XBOX360 }, { 0x1bad, 0xf906, "MortalKombat FightStick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x1bad, 0xfa01, "MadCatz GamePad", 0, XTYPE_XBOX360 }, { 0x1bad, 0xfd00, "Razer Onza TE", 0, XTYPE_XBOX360 }, { 0x1bad, 0xfd01, "Razer Onza", 0, XTYPE_XBOX360 }, { 0x1ee9, 0x1590, "ZOTAC Gaming Zone", 0, XTYPE_XBOX360 }, { 0x20d6, 0x2001, "BDA Xbox Series X Wired Controller", 0, XTYPE_XBOXONE }, { 0x20d6, 0x2009, "PowerA Enhanced Wired Controller for Xbox Series X|S", 0, XTYPE_XBOXONE }, { 0x20d6, 0x2064, "PowerA Wired Controller for Xbox", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x20d6, 0x281f, "PowerA Wired Controller For Xbox 360", 0, XTYPE_XBOX360 }, { 0x20d6, 0x400b, "PowerA FUSION Pro 4 Wired Controller", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x20d6, 0x890b, "PowerA MOGA XP-Ultra Controller", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x2345, 0xe00b, "Machenike G5 Pro Controller", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5000, "Razer Atrox Arcade Stick", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x24c6, 0x5300, "PowerA MINI PROEX Controller", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5303, "Xbox Airflo wired controller", 0, XTYPE_XBOX360 }, { 0x24c6, 0x530a, "Xbox 360 Pro EX Controller", 0, XTYPE_XBOX360 }, { 0x24c6, 0x531a, "PowerA Pro Ex", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5397, "FUS1ON Tournament Controller", 0, XTYPE_XBOX360 }, { 0x24c6, 0x541a, "PowerA Xbox One Mini Wired Controller", 0, XTYPE_XBOXONE }, { 0x24c6, 0x542a, "Xbox ONE spectra", 0, XTYPE_XBOXONE }, { 0x24c6, 0x543a, "PowerA Xbox One wired controller", 0, XTYPE_XBOXONE }, { 0x24c6, 0x5500, "Hori XBOX 360 EX 2 with Turbo", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5501, "Hori Real Arcade Pro VX-SA", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5502, "Hori Fighting Stick VX Alt", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x24c6, 0x5503, "Hori Fighting Edge", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x24c6, 0x5506, "Hori SOULCALIBUR V Stick", 0, XTYPE_XBOX360 }, { 0x24c6, 0x550d, "Hori GEM Xbox controller", 0, XTYPE_XBOX360 }, { 0x24c6, 0x550e, "Hori Real Arcade Pro V Kai 360", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x24c6, 0x5510, "Hori Fighting Commander ONE (Xbox 360/PC Mode)", MAP_TRIGGERS_TO_BUTTONS, XTYPE_XBOX360 }, { 0x24c6, 0x551a, "PowerA FUSION Pro Controller", 0, XTYPE_XBOXONE }, { 0x24c6, 0x561a, "PowerA FUSION Controller", 0, XTYPE_XBOXONE }, { 0x24c6, 0x581a, "ThrustMaster XB1 Classic Controller", 0, XTYPE_XBOXONE }, { 0x24c6, 0x5b00, "ThrustMaster Ferrari 458 Racing Wheel", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5b02, "Thrustmaster, Inc. GPX Controller", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5b03, "Thrustmaster Ferrari 458 Racing Wheel", 0, XTYPE_XBOX360 }, { 0x24c6, 0x5d04, "Razer Sabertooth", 0, XTYPE_XBOX360 }, { 0x24c6, 0xfafe, "Rock Candy Gamepad for Xbox 360", 0, XTYPE_XBOX360 }, { 0x2563, 0x058d, "OneXPlayer Gamepad", 0, XTYPE_XBOX360 }, { 0x294b, 0x3303, "Snakebyte GAMEPAD BASE X", 0, XTYPE_XBOXONE }, { 0x294b, 0x3404, "Snakebyte GAMEPAD RGB X", 0, XTYPE_XBOXONE }, { 0x2993, 0x2001, "TECNO Pocket Go", 0, XTYPE_XBOX360 }, { 0x2dc8, 0x2000, "8BitDo Pro 2 Wired Controller fox Xbox", 0, XTYPE_XBOXONE }, { 0x2dc8, 0x200f, "8BitDo Ultimate 3-mode Controller for Xbox", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x2dc8, 0x3106, "8BitDo Ultimate Wireless / Pro 2 Wired Controller", 0, XTYPE_XBOX360 }, { 0x2dc8, 0x3109, "8BitDo Ultimate Wireless Bluetooth", 0, XTYPE_XBOX360 }, { 0x2dc8, 0x310a, "8BitDo Ultimate 2C Wireless Controller", 0, XTYPE_XBOX360 }, { 0x2dc8, 0x310b, "8BitDo Ultimate 2 Wireless Controller", 0, XTYPE_XBOX360 }, { 0x2dc8, 0x6001, "8BitDo SN30 Pro", 0, XTYPE_XBOX360 }, { 0x2e24, 0x0423, "Hyperkin DuchesS Xbox One pad", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x2e24, 0x0652, "Hyperkin Duke X-Box One pad", 0, XTYPE_XBOXONE }, { 0x2e24, 0x1688, "Hyperkin X91 X-Box One pad", 0, XTYPE_XBOXONE }, { 0x2e95, 0x0504, "SCUF Gaming Controller", MAP_SHARE_BUTTON, XTYPE_XBOXONE }, { 0x31e3, 0x1100, "Wooting One", 0, XTYPE_XBOX360 }, { 0x31e3, 0x1200, "Wooting Two", 0, XTYPE_XBOX360 }, { 0x31e3, 0x1210, "Wooting Lekker", 0, XTYPE_XBOX360 }, { 0x31e3, 0x1220, "Wooting Two HE", 0, XTYPE_XBOX360 }, { 0x31e3, 0x1230, "Wooting Two HE (ARM)", 0, XTYPE_XBOX360 }, { 0x31e3, 0x1300, "Wooting 60HE (AVR)", 0, XTYPE_XBOX360 }, { 0x31e3, 0x1310, "Wooting 60HE (ARM)", 0, XTYPE_XBOX360 }, { 0x3285, 0x0603, "Nacon Pro Compact controller for Xbox", 0, XTYPE_XBOXONE }, { 0x3285, 0x0607, "Nacon GC-100", 0, XTYPE_XBOX360 }, { 0x3285, 0x0614, "Nacon Pro Compact", 0, XTYPE_XBOXONE }, { 0x3285, 0x0646, "Nacon Pro Compact", 0, XTYPE_XBOXONE }, { 0x3285, 0x0662, "Nacon Revolution5 Pro", 0, XTYPE_XBOX360 }, { 0x3285, 0x0663, "Nacon Evol-X", 0, XTYPE_XBOXONE }, { 0x3537, 0x1004, "GameSir T4 Kaleid", 0, XTYPE_XBOX360 }, { 0x3537, 0x1010, "GameSir G7 SE", 0, XTYPE_XBOXONE }, { 0x366c, 0x0005, "ByoWave Proteus Controller", MAP_SHARE_BUTTON, XTYPE_XBOXONE, FLAG_DELAY_INIT }, { 0x3767, 0x0101, "Fanatec Speedster 3 Forceshock Wheel", 0, XTYPE_XBOX }, { 0x37d7, 0x2501, "Flydigi Apex 5", 0, XTYPE_XBOX360 }, { 0x413d, 0x2104, "Black Shark Green Ghost Gamepad", 0, XTYPE_XBOX360 }, { 0xffff, 0xffff, "Chinese-made Xbox Controller", 0, XTYPE_XBOX }, { 0x0000, 0x0000, "Generic X-Box pad", 0, XTYPE_UNKNOWN } }; /* buttons shared with xbox and xbox360 */ static const signed short xpad_common_btn[] = { BTN_A, BTN_B, BTN_X, BTN_Y, /* "analog" buttons */ BTN_START, BTN_SELECT, BTN_THUMBL, BTN_THUMBR, /* start/back/sticks */ -1 /* terminating entry */ }; /* original xbox controllers only */ static const signed short xpad_btn[] = { BTN_C, BTN_Z, /* "analog" buttons */ -1 /* terminating entry */ }; /* used when dpad is mapped to buttons */ static const signed short xpad_btn_pad[] = { BTN_DPAD_LEFT, BTN_DPAD_RIGHT, /* d-pad left, right */ BTN_DPAD_UP, BTN_DPAD_DOWN, /* d-pad up, down */ -1 /* terminating entry */ }; /* used when triggers are mapped to buttons */ static const signed short xpad_btn_triggers[] = { BTN_TL2, BTN_TR2, /* triggers left/right */ -1 }; static const signed short xpad360_btn[] = { /* buttons for x360 controller */ BTN_TL, BTN_TR, /* Button LB/RB */ BTN_MODE, /* The big X button */ -1 }; static const signed short xpad_abs[] = { ABS_X, ABS_Y, /* left stick */ ABS_RX, ABS_RY, /* right stick */ -1 /* terminating entry */ }; /* used when dpad is mapped to axes */ static const signed short xpad_abs_pad[] = { ABS_HAT0X, ABS_HAT0Y, /* d-pad axes */ -1 /* terminating entry */ }; /* used when triggers are mapped to axes */ static const signed short xpad_abs_triggers[] = { ABS_Z, ABS_RZ, /* triggers left/right */ -1 }; /* used when the controller has extra paddle buttons */ static const signed short xpad_btn_paddles[] = { BTN_GRIPR, BTN_GRIPR2, /* paddle upper right, lower right */ BTN_GRIPL, BTN_GRIPL2, /* paddle upper left, lower left */ -1 /* terminating entry */ }; /* * Xbox 360 has a vendor-specific class, so we cannot match it with only * USB_INTERFACE_INFO (also specifically refused by USB subsystem), so we * match against vendor id as well. Wired Xbox 360 devices have protocol 1, * wireless controllers have protocol 129. */ #define XPAD_XBOX360_VENDOR_PROTOCOL(vend, pr) \ .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_INT_INFO, \ .idVendor = (vend), \ .bInterfaceClass = USB_CLASS_VENDOR_SPEC, \ .bInterfaceSubClass = 93, \ .bInterfaceProtocol = (pr) #define XPAD_XBOX360_VENDOR(vend) \ { XPAD_XBOX360_VENDOR_PROTOCOL((vend), 1) }, \ { XPAD_XBOX360_VENDOR_PROTOCOL((vend), 129) } /* The Xbox One controller uses subclass 71 and protocol 208. */ #define XPAD_XBOXONE_VENDOR_PROTOCOL(vend, pr) \ .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_INT_INFO, \ .idVendor = (vend), \ .bInterfaceClass = USB_CLASS_VENDOR_SPEC, \ .bInterfaceSubClass = 71, \ .bInterfaceProtocol = (pr) #define XPAD_XBOXONE_VENDOR(vend) \ { XPAD_XBOXONE_VENDOR_PROTOCOL((vend), 208) } static const struct usb_device_id xpad_table[] = { /* * Please keep this list sorted by vendor ID. Note that there are 2 * macros - XPAD_XBOX360_VENDOR and XPAD_XBOXONE_VENDOR. */ { USB_INTERFACE_INFO('X', 'B', 0) }, /* Xbox USB-IF not-approved class */ XPAD_XBOX360_VENDOR(0x0079), /* GPD Win 2 controller */ XPAD_XBOX360_VENDOR(0x03eb), /* Wooting Keyboards (Legacy) */ XPAD_XBOX360_VENDOR(0x03f0), /* HP HyperX Xbox 360 controllers */ XPAD_XBOXONE_VENDOR(0x03f0), /* HP HyperX Xbox One controllers */ XPAD_XBOX360_VENDOR(0x044f), /* Thrustmaster Xbox 360 controllers */ XPAD_XBOXONE_VENDOR(0x044f), /* Thrustmaster Xbox One controllers */ XPAD_XBOX360_VENDOR(0x045e), /* Microsoft Xbox 360 controllers */ XPAD_XBOXONE_VENDOR(0x045e), /* Microsoft Xbox One controllers */ XPAD_XBOX360_VENDOR(0x046d), /* Logitech Xbox 360-style controllers */ XPAD_XBOX360_VENDOR(0x0502), /* Acer Inc. Xbox 360 style controllers */ XPAD_XBOX360_VENDOR(0x056e), /* Elecom JC-U3613M */ XPAD_XBOX360_VENDOR(0x06a3), /* Saitek P3600 */ XPAD_XBOX360_VENDOR(0x0738), /* Mad Catz Xbox 360 controllers */ { USB_DEVICE(0x0738, 0x4540) }, /* Mad Catz Beat Pad */ XPAD_XBOXONE_VENDOR(0x0738), /* Mad Catz FightStick TE 2 */ XPAD_XBOX360_VENDOR(0x07ff), /* Mad Catz Gamepad */ XPAD_XBOXONE_VENDOR(0x0b05), /* ASUS controllers */ XPAD_XBOX360_VENDOR(0x0c12), /* Zeroplus X-Box 360 controllers */ XPAD_XBOX360_VENDOR(0x0db0), /* Micro Star International X-Box 360 controllers */ XPAD_XBOX360_VENDOR(0x0e6f), /* 0x0e6f Xbox 360 controllers */ XPAD_XBOXONE_VENDOR(0x0e6f), /* 0x0e6f Xbox One controllers */ XPAD_XBOX360_VENDOR(0x0f0d), /* Hori controllers */ XPAD_XBOXONE_VENDOR(0x0f0d), /* Hori controllers */ XPAD_XBOX360_VENDOR(0x1038), /* SteelSeries controllers */ XPAD_XBOXONE_VENDOR(0x10f5), /* Turtle Beach Controllers */ XPAD_XBOX360_VENDOR(0x11c9), /* Nacon GC100XF */ XPAD_XBOX360_VENDOR(0x11ff), /* PXN V900 */ XPAD_XBOX360_VENDOR(0x1209), /* Ardwiino Controllers */ XPAD_XBOX360_VENDOR(0x12ab), /* Xbox 360 dance pads */ XPAD_XBOX360_VENDOR(0x1430), /* RedOctane Xbox 360 controllers */ XPAD_XBOX360_VENDOR(0x146b), /* Bigben Interactive controllers */ XPAD_XBOX360_VENDOR(0x1532), /* Razer Sabertooth */ XPAD_XBOXONE_VENDOR(0x1532), /* Razer Wildcat */ XPAD_XBOX360_VENDOR(0x15e4), /* Numark Xbox 360 controllers */ XPAD_XBOX360_VENDOR(0x162e), /* Joytech Xbox 360 controllers */ XPAD_XBOX360_VENDOR(0x1689), /* Razer Onza */ XPAD_XBOX360_VENDOR(0x17ef), /* Lenovo */ XPAD_XBOX360_VENDOR(0x1949), /* Amazon controllers */ XPAD_XBOX360_VENDOR(0x1a86), /* Nanjing Qinheng Microelectronics (WCH) */ XPAD_XBOX360_VENDOR(0x1bad), /* Harmonix Rock Band guitar and drums */ XPAD_XBOX360_VENDOR(0x1ee9), /* ZOTAC Technology Limited */ XPAD_XBOX360_VENDOR(0x20d6), /* PowerA controllers */ XPAD_XBOXONE_VENDOR(0x20d6), /* PowerA controllers */ XPAD_XBOX360_VENDOR(0x2345), /* Machenike Controllers */ XPAD_XBOX360_VENDOR(0x24c6), /* PowerA controllers */ XPAD_XBOXONE_VENDOR(0x24c6), /* PowerA controllers */ XPAD_XBOX360_VENDOR(0x2563), /* OneXPlayer Gamepad */ XPAD_XBOX360_VENDOR(0x260d), /* Dareu H101 */ XPAD_XBOXONE_VENDOR(0x294b), /* Snakebyte */ XPAD_XBOX360_VENDOR(0x2993), /* TECNO Mobile */ XPAD_XBOX360_VENDOR(0x2c22), /* Qanba Controllers */ XPAD_XBOX360_VENDOR(0x2dc8), /* 8BitDo Controllers */ XPAD_XBOXONE_VENDOR(0x2dc8), /* 8BitDo Controllers */ XPAD_XBOXONE_VENDOR(0x2e24), /* Hyperkin Controllers */ XPAD_XBOX360_VENDOR(0x2f24), /* GameSir Controllers */ XPAD_XBOXONE_VENDOR(0x2e95), /* SCUF Gaming Controller */ XPAD_XBOX360_VENDOR(0x31e3), /* Wooting Keyboards */ XPAD_XBOX360_VENDOR(0x3285), /* Nacon GC-100 */ XPAD_XBOXONE_VENDOR(0x3285), /* Nacon Evol-X */ XPAD_XBOX360_VENDOR(0x3537), /* GameSir Controllers */ XPAD_XBOXONE_VENDOR(0x3537), /* GameSir Controllers */ XPAD_XBOXONE_VENDOR(0x366c), /* ByoWave controllers */ XPAD_XBOX360_VENDOR(0x37d7), /* Flydigi Controllers */ XPAD_XBOX360_VENDOR(0x413d), /* Black Shark Green Ghost Controller */ { } }; MODULE_DEVICE_TABLE(usb, xpad_table); struct xboxone_init_packet { u16 idVendor; u16 idProduct; const u8 *data; u8 len; }; #define XBOXONE_INIT_PKT(_vid, _pid, _data) \ { \ .idVendor = (_vid), \ .idProduct = (_pid), \ .data = (_data), \ .len = ARRAY_SIZE(_data), \ } /* * starting with xbox one, the game input protocol is used * magic numbers are taken from * - https://github.com/xpadneo/gip-dissector/blob/main/src/gip-dissector.lua * - https://github.com/medusalix/xone/blob/master/bus/protocol.c */ #define GIP_CMD_ACK 0x01 #define GIP_CMD_ANNOUNCE 0x02 #define GIP_CMD_IDENTIFY 0x04 #define GIP_CMD_POWER 0x05 #define GIP_CMD_AUTHENTICATE 0x06 #define GIP_CMD_VIRTUAL_KEY 0x07 #define GIP_CMD_RUMBLE 0x09 #define GIP_CMD_LED 0x0a #define GIP_CMD_FIRMWARE 0x0c #define GIP_CMD_INPUT 0x20 #define GIP_SEQ0 0x00 #define GIP_OPT_ACK 0x10 #define GIP_OPT_INTERNAL 0x20 /* * length of the command payload encoded with * https://en.wikipedia.org/wiki/LEB128 * which is a no-op for N < 128 */ #define GIP_PL_LEN(N) (N) /* * payload specific defines */ #define GIP_PWR_ON 0x00 #define GIP_LED_ON 0x01 #define GIP_MOTOR_R BIT(0) #define GIP_MOTOR_L BIT(1) #define GIP_MOTOR_RT BIT(2) #define GIP_MOTOR_LT BIT(3) #define GIP_MOTOR_ALL (GIP_MOTOR_R | GIP_MOTOR_L | GIP_MOTOR_RT | GIP_MOTOR_LT) #define GIP_WIRED_INTF_DATA 0 #define GIP_WIRED_INTF_AUDIO 1 /* * This packet is required for all Xbox One pads with 2015 * or later firmware installed (or present from the factory). */ static const u8 xboxone_power_on[] = { GIP_CMD_POWER, GIP_OPT_INTERNAL, GIP_SEQ0, GIP_PL_LEN(1), GIP_PWR_ON }; /* * This packet is required for Xbox One S (0x045e:0x02ea) * and Xbox One Elite Series 2 (0x045e:0x0b00) pads to * initialize the controller that was previously used in * Bluetooth mode. */ static const u8 xboxone_s_init[] = { GIP_CMD_POWER, GIP_OPT_INTERNAL, GIP_SEQ0, 0x0f, 0x06 }; /* * This packet is required to get additional input data * from Xbox One Elite Series 2 (0x045e:0x0b00) pads. * We mostly do this right now to get paddle data */ static const u8 extra_input_packet_init[] = { 0x4d, 0x10, 0x01, 0x02, 0x07, 0x00 }; /* * This packet is required for the Titanfall 2 Xbox One pads * (0x0e6f:0x0165) to finish initialization and for Hori pads * (0x0f0d:0x0067) to make the analog sticks work. */ static const u8 xboxone_hori_ack_id[] = { GIP_CMD_ACK, GIP_OPT_INTERNAL, GIP_SEQ0, GIP_PL_LEN(9), 0x00, GIP_CMD_IDENTIFY, GIP_OPT_INTERNAL, 0x3a, 0x00, 0x00, 0x00, 0x80, 0x00 }; /* * This packet is sent by default on Windows, and is required for some pads to * start sending input reports, including most (all?) of the PDP. These pads * include: (0x0e6f:0x02ab), (0x0e6f:0x02a4), (0x0e6f:0x02a6). */ static const u8 xboxone_led_on[] = { GIP_CMD_LED, GIP_OPT_INTERNAL, GIP_SEQ0, GIP_PL_LEN(3), 0x00, GIP_LED_ON, 0x14 }; /* * This packet is required for most (all?) of the PDP pads to start * sending input reports. These pads include: (0x0e6f:0x02ab), * (0x0e6f:0x02a4), (0x0e6f:0x02a6). */ static const u8 xboxone_auth_done[] = { GIP_CMD_AUTHENTICATE, GIP_OPT_INTERNAL, GIP_SEQ0, GIP_PL_LEN(2), 0x01, 0x00 }; /* * A specific rumble packet is required for some PowerA pads to start * sending input reports. One of those pads is (0x24c6:0x543a). */ static const u8 xboxone_rumblebegin_init[] = { GIP_CMD_RUMBLE, 0x00, GIP_SEQ0, GIP_PL_LEN(9), 0x00, GIP_MOTOR_ALL, 0x00, 0x00, 0x1D, 0x1D, 0xFF, 0x00, 0x00 }; /* * A rumble packet with zero FF intensity will immediately * terminate the rumbling required to init PowerA pads. * This should happen fast enough that the motors don't * spin up to enough speed to actually vibrate the gamepad. */ static const u8 xboxone_rumbleend_init[] = { GIP_CMD_RUMBLE, 0x00, GIP_SEQ0, GIP_PL_LEN(9), 0x00, GIP_MOTOR_ALL, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* * This specifies the selection of init packets that a gamepad * will be sent on init *and* the order in which they will be * sent. The correct sequence number will be added when the * packet is going to be sent. */ static const struct xboxone_init_packet xboxone_init_packets[] = { XBOXONE_INIT_PKT(0x0e6f, 0x0165, xboxone_hori_ack_id), XBOXONE_INIT_PKT(0x0f0d, 0x0067, xboxone_hori_ack_id), XBOXONE_INIT_PKT(0x0000, 0x0000, xboxone_power_on), XBOXONE_INIT_PKT(0x045e, 0x02ea, xboxone_s_init), XBOXONE_INIT_PKT(0x045e, 0x0b00, xboxone_s_init), XBOXONE_INIT_PKT(0x045e, 0x0b00, extra_input_packet_init), XBOXONE_INIT_PKT(0x0000, 0x0000, xboxone_led_on), XBOXONE_INIT_PKT(0x0000, 0x0000, xboxone_auth_done), XBOXONE_INIT_PKT(0x24c6, 0x541a, xboxone_rumblebegin_init), XBOXONE_INIT_PKT(0x24c6, 0x542a, xboxone_rumblebegin_init), XBOXONE_INIT_PKT(0x24c6, 0x543a, xboxone_rumblebegin_init), XBOXONE_INIT_PKT(0x24c6, 0x541a, xboxone_rumbleend_init), XBOXONE_INIT_PKT(0x24c6, 0x542a, xboxone_rumbleend_init), XBOXONE_INIT_PKT(0x24c6, 0x543a, xboxone_rumbleend_init), }; struct xpad_output_packet { u8 data[XPAD_PKT_LEN]; u8 len; bool pending; }; #define XPAD_OUT_CMD_IDX 0 #define XPAD_OUT_FF_IDX 1 #define XPAD_OUT_LED_IDX (1 + IS_ENABLED(CONFIG_JOYSTICK_XPAD_FF)) #define XPAD_NUM_OUT_PACKETS (1 + \ IS_ENABLED(CONFIG_JOYSTICK_XPAD_FF) + \ IS_ENABLED(CONFIG_JOYSTICK_XPAD_LEDS)) struct usb_xpad { struct input_dev *dev; /* input device interface */ struct input_dev __rcu *x360w_dev; struct usb_device *udev; /* usb device */ struct usb_interface *intf; /* usb interface */ bool pad_present; bool input_created; struct urb *irq_in; /* urb for interrupt in report */ unsigned char *idata; /* input data */ dma_addr_t idata_dma; struct urb *irq_out; /* urb for interrupt out report */ struct usb_anchor irq_out_anchor; bool irq_out_active; /* we must not use an active URB */ u8 odata_serial; /* serial number for xbox one protocol */ unsigned char *odata; /* output data */ dma_addr_t odata_dma; spinlock_t odata_lock; struct xpad_output_packet out_packets[XPAD_NUM_OUT_PACKETS]; int last_out_packet; int init_seq; #if defined(CONFIG_JOYSTICK_XPAD_LEDS) struct xpad_led *led; #endif char phys[64]; /* physical device path */ int mapping; /* map d-pad to buttons or to axes */ int xtype; /* type of xbox device */ int packet_type; /* type of the extended packet */ int pad_nr; /* the order x360 pads were attached */ const char *name; /* name of the device */ struct work_struct work; /* init/remove device from callback */ time64_t mode_btn_down_ts; bool delay_init; /* init packets should be delayed */ bool delayed_init_done; }; static int xpad_init_input(struct usb_xpad *xpad); static void xpad_deinit_input(struct usb_xpad *xpad); static int xpad_start_input(struct usb_xpad *xpad); static void xpadone_ack_mode_report(struct usb_xpad *xpad, u8 seq_num); static void xpad360w_poweroff_controller(struct usb_xpad *xpad); /* * xpad_process_packet * * Completes a request by converting the data into events for the * input subsystem. * * The used report descriptor was taken from ITO Takayuki's website: * http://euc.jp/periphs/xbox-controller.ja.html */ static void xpad_process_packet(struct usb_xpad *xpad, u16 cmd, unsigned char *data) { struct input_dev *dev = xpad->dev; if (!(xpad->mapping & MAP_STICKS_TO_NULL)) { /* left stick */ input_report_abs(dev, ABS_X, (__s16) le16_to_cpup((__le16 *)(data + 12))); input_report_abs(dev, ABS_Y, ~(__s16) le16_to_cpup((__le16 *)(data + 14))); /* right stick */ input_report_abs(dev, ABS_RX, (__s16) le16_to_cpup((__le16 *)(data + 16))); input_report_abs(dev, ABS_RY, ~(__s16) le16_to_cpup((__le16 *)(data + 18))); } /* triggers left/right */ if (xpad->mapping & MAP_TRIGGERS_TO_BUTTONS) { input_report_key(dev, BTN_TL2, data[10]); input_report_key(dev, BTN_TR2, data[11]); } else { input_report_abs(dev, ABS_Z, data[10]); input_report_abs(dev, ABS_RZ, data[11]); } /* digital pad */ if (xpad->mapping & MAP_DPAD_TO_BUTTONS) { /* dpad as buttons (left, right, up, down) */ input_report_key(dev, BTN_DPAD_LEFT, data[2] & BIT(2)); input_report_key(dev, BTN_DPAD_RIGHT, data[2] & BIT(3)); input_report_key(dev, BTN_DPAD_UP, data[2] & BIT(0)); input_report_key(dev, BTN_DPAD_DOWN, data[2] & BIT(1)); } else { input_report_abs(dev, ABS_HAT0X, !!(data[2] & 0x08) - !!(data[2] & 0x04)); input_report_abs(dev, ABS_HAT0Y, !!(data[2] & 0x02) - !!(data[2] & 0x01)); } /* start/back buttons and stick press left/right */ input_report_key(dev, BTN_START, data[2] & BIT(4)); input_report_key(dev, BTN_SELECT, data[2] & BIT(5)); input_report_key(dev, BTN_THUMBL, data[2] & BIT(6)); input_report_key(dev, BTN_THUMBR, data[2] & BIT(7)); /* "analog" buttons A, B, X, Y */ input_report_key(dev, BTN_A, data[4]); input_report_key(dev, BTN_B, data[5]); input_report_key(dev, BTN_X, data[6]); input_report_key(dev, BTN_Y, data[7]); /* "analog" buttons black, white */ input_report_key(dev, BTN_C, data[8]); input_report_key(dev, BTN_Z, data[9]); input_sync(dev); } /* * xpad360_process_packet * * Completes a request by converting the data into events for the * input subsystem. It is version for xbox 360 controller * * The used report descriptor was taken from: * http://www.free60.org/wiki/Gamepad */ static void xpad360_process_packet(struct usb_xpad *xpad, struct input_dev *dev, u16 cmd, unsigned char *data) { /* valid pad data */ if (data[0] != 0x00) return; /* digital pad */ if (xpad->mapping & MAP_DPAD_TO_BUTTONS) { /* dpad as buttons (left, right, up, down) */ input_report_key(dev, BTN_DPAD_LEFT, data[2] & BIT(2)); input_report_key(dev, BTN_DPAD_RIGHT, data[2] & BIT(3)); input_report_key(dev, BTN_DPAD_UP, data[2] & BIT(0)); input_report_key(dev, BTN_DPAD_DOWN, data[2] & BIT(1)); } /* * This should be a simple else block. However historically * xbox360w has mapped DPAD to buttons while xbox360 did not. This * made no sense, but now we can not just switch back and have to * support both behaviors. */ if (!(xpad->mapping & MAP_DPAD_TO_BUTTONS) || xpad->xtype == XTYPE_XBOX360W) { input_report_abs(dev, ABS_HAT0X, !!(data[2] & 0x08) - !!(data[2] & 0x04)); input_report_abs(dev, ABS_HAT0Y, !!(data[2] & 0x02) - !!(data[2] & 0x01)); } /* start/back buttons */ input_report_key(dev, BTN_START, data[2] & BIT(4)); input_report_key(dev, BTN_SELECT, data[2] & BIT(5)); /* stick press left/right */ input_report_key(dev, BTN_THUMBL, data[2] & BIT(6)); input_report_key(dev, BTN_THUMBR, data[2] & BIT(7)); /* buttons A,B,X,Y,TL,TR and MODE */ input_report_key(dev, BTN_A, data[3] & BIT(4)); input_report_key(dev, BTN_B, data[3] & BIT(5)); input_report_key(dev, BTN_X, data[3] & BIT(6)); input_report_key(dev, BTN_Y, data[3] & BIT(7)); input_report_key(dev, BTN_TL, data[3] & BIT(0)); input_report_key(dev, BTN_TR, data[3] & BIT(1)); input_report_key(dev, BTN_MODE, data[3] & BIT(2)); if (!(xpad->mapping & MAP_STICKS_TO_NULL)) { /* left stick */ input_report_abs(dev, ABS_X, (__s16) le16_to_cpup((__le16 *)(data + 6))); input_report_abs(dev, ABS_Y, ~(__s16) le16_to_cpup((__le16 *)(data + 8))); /* right stick */ input_report_abs(dev, ABS_RX, (__s16) le16_to_cpup((__le16 *)(data + 10))); input_report_abs(dev, ABS_RY, ~(__s16) le16_to_cpup((__le16 *)(data + 12))); } /* triggers left/right */ if (xpad->mapping & MAP_TRIGGERS_TO_BUTTONS) { input_report_key(dev, BTN_TL2, data[4]); input_report_key(dev, BTN_TR2, data[5]); } else { input_report_abs(dev, ABS_Z, data[4]); input_report_abs(dev, ABS_RZ, data[5]); } input_sync(dev); /* XBOX360W controllers can't be turned off without driver assistance */ if (xpad->xtype == XTYPE_XBOX360W) { if (xpad->mode_btn_down_ts > 0 && xpad->pad_present && ((ktime_get_seconds() - xpad->mode_btn_down_ts) >= XPAD360W_POWEROFF_TIMEOUT)) { xpad360w_poweroff_controller(xpad); xpad->mode_btn_down_ts = 0; return; } /* mode button down/up */ if (data[3] & BIT(2)) xpad->mode_btn_down_ts = ktime_get_seconds(); else xpad->mode_btn_down_ts = 0; } } static void xpad_presence_work(struct work_struct *work) { struct usb_xpad *xpad = container_of(work, struct usb_xpad, work); int error; if (xpad->pad_present) { error = xpad_init_input(xpad); if (error) { /* complain only, not much else we can do here */ dev_err(&xpad->dev->dev, "unable to init device: %d\n", error); } else { rcu_assign_pointer(xpad->x360w_dev, xpad->dev); } } else { RCU_INIT_POINTER(xpad->x360w_dev, NULL); synchronize_rcu(); /* * Now that we are sure xpad360w_process_packet is not * using input device we can get rid of it. */ xpad_deinit_input(xpad); } } /* * xpad360w_process_packet * * Completes a request by converting the data into events for the * input subsystem. It is version for xbox 360 wireless controller. * * Byte.Bit * 00.1 - Status change: The controller or headset has connected/disconnected * Bits 01.7 and 01.6 are valid * 01.7 - Controller present * 01.6 - Headset present * 01.1 - Pad state (Bytes 4+) valid * */ static void xpad360w_process_packet(struct usb_xpad *xpad, u16 cmd, unsigned char *data) { struct input_dev *dev; bool present; /* Presence change */ if (data[0] & 0x08) { present = (data[1] & 0x80) != 0; if (xpad->pad_present != present) { xpad->pad_present = present; schedule_work(&xpad->work); } } /* Valid pad data */ if (data[1] != 0x1) return; rcu_read_lock(); dev = rcu_dereference(xpad->x360w_dev); if (dev) xpad360_process_packet(xpad, dev, cmd, &data[4]); rcu_read_unlock(); } /* * xpadone_process_packet * * Completes a request by converting the data into events for the * input subsystem. This version is for the Xbox One controller. * * The report format was gleaned from * https://github.com/kylelemons/xbox/blob/master/xbox.go */ static void xpadone_process_packet(struct usb_xpad *xpad, u16 cmd, unsigned char *data, u32 len) { struct input_dev *dev = xpad->dev; bool do_sync = false; /* the xbox button has its own special report */ if (data[0] == GIP_CMD_VIRTUAL_KEY) { /* * The Xbox One S controller requires these reports to be * acked otherwise it continues sending them forever and * won't report further mode button events. */ if (data[1] == (GIP_OPT_ACK | GIP_OPT_INTERNAL)) xpadone_ack_mode_report(xpad, data[2]); input_report_key(dev, BTN_MODE, data[4] & GENMASK(1, 0)); input_sync(dev); do_sync = true; } else if (data[0] == GIP_CMD_FIRMWARE) { /* Some packet formats force us to use this separate to poll paddle inputs */ if (xpad->packet_type == PKT_XBE2_FW_5_11) { /* Mute paddles if controller is in a custom profile slot * Checked by looking at the active profile slot to * verify it's the default slot */ if (data[19] != 0) data[18] = 0; /* Elite Series 2 split packet paddle bits */ input_report_key(dev, BTN_GRIPR, data[18] & BIT(0)); input_report_key(dev, BTN_GRIPR2, data[18] & BIT(1)); input_report_key(dev, BTN_GRIPL, data[18] & BIT(2)); input_report_key(dev, BTN_GRIPL2, data[18] & BIT(3)); do_sync = true; } } else if (data[0] == GIP_CMD_ANNOUNCE) { int error; if (xpad->delay_init && !xpad->delayed_init_done) { xpad->delayed_init_done = true; error = xpad_start_input(xpad); if (error) dev_warn(&xpad->dev->dev, "unable to start delayed input: %d\n", error); } } else if (data[0] == GIP_CMD_INPUT) { /* The main valid packet type for inputs */ /* menu/view buttons */ input_report_key(dev, BTN_START, data[4] & BIT(2)); input_report_key(dev, BTN_SELECT, data[4] & BIT(3)); if (xpad->mapping & MAP_SHARE_BUTTON) { if (xpad->mapping & MAP_SHARE_OFFSET) input_report_key(dev, KEY_RECORD, data[len - 26] & BIT(0)); else input_report_key(dev, KEY_RECORD, data[len - 18] & BIT(0)); } /* buttons A,B,X,Y */ input_report_key(dev, BTN_A, data[4] & BIT(4)); input_report_key(dev, BTN_B, data[4] & BIT(5)); input_report_key(dev, BTN_X, data[4] & BIT(6)); input_report_key(dev, BTN_Y, data[4] & BIT(7)); /* digital pad */ if (xpad->mapping & MAP_DPAD_TO_BUTTONS) { /* dpad as buttons (left, right, up, down) */ input_report_key(dev, BTN_DPAD_LEFT, data[5] & BIT(2)); input_report_key(dev, BTN_DPAD_RIGHT, data[5] & BIT(3)); input_report_key(dev, BTN_DPAD_UP, data[5] & BIT(0)); input_report_key(dev, BTN_DPAD_DOWN, data[5] & BIT(1)); } else { input_report_abs(dev, ABS_HAT0X, !!(data[5] & 0x08) - !!(data[5] & 0x04)); input_report_abs(dev, ABS_HAT0Y, !!(data[5] & 0x02) - !!(data[5] & 0x01)); } /* TL/TR */ input_report_key(dev, BTN_TL, data[5] & BIT(4)); input_report_key(dev, BTN_TR, data[5] & BIT(5)); /* stick press left/right */ input_report_key(dev, BTN_THUMBL, data[5] & BIT(6)); input_report_key(dev, BTN_THUMBR, data[5] & BIT(7)); if (!(xpad->mapping & MAP_STICKS_TO_NULL)) { /* left stick */ input_report_abs(dev, ABS_X, (__s16) le16_to_cpup((__le16 *)(data + 10))); input_report_abs(dev, ABS_Y, ~(__s16) le16_to_cpup((__le16 *)(data + 12))); /* right stick */ input_report_abs(dev, ABS_RX, (__s16) le16_to_cpup((__le16 *)(data + 14))); input_report_abs(dev, ABS_RY, ~(__s16) le16_to_cpup((__le16 *)(data + 16))); } /* triggers left/right */ if (xpad->mapping & MAP_TRIGGERS_TO_BUTTONS) { input_report_key(dev, BTN_TL2, (__u16) le16_to_cpup((__le16 *)(data + 6))); input_report_key(dev, BTN_TR2, (__u16) le16_to_cpup((__le16 *)(data + 8))); } else { input_report_abs(dev, ABS_Z, (__u16) le16_to_cpup((__le16 *)(data + 6))); input_report_abs(dev, ABS_RZ, (__u16) le16_to_cpup((__le16 *)(data + 8))); } /* Profile button has a value of 0-3, so it is reported as an axis */ if (xpad->mapping & MAP_PROFILE_BUTTON) input_report_abs(dev, ABS_PROFILE, data[34]); /* paddle handling */ /* based on SDL's SDL_hidapi_xboxone.c */ if (xpad->mapping & MAP_PADDLES) { if (xpad->packet_type == PKT_XBE1) { /* Mute paddles if controller has a custom mapping applied. * Checked by comparing the current mapping * config against the factory mapping config */ if (memcmp(&data[4], &data[18], 2) != 0) data[32] = 0; /* OG Elite Series Controller paddle bits */ input_report_key(dev, BTN_GRIPR, data[32] & BIT(1)); input_report_key(dev, BTN_GRIPR2, data[32] & BIT(3)); input_report_key(dev, BTN_GRIPL, data[32] & BIT(0)); input_report_key(dev, BTN_GRIPL2, data[32] & BIT(2)); } else if (xpad->packet_type == PKT_XBE2_FW_OLD) { /* Mute paddles if controller has a custom mapping applied. * Checked by comparing the current mapping * config against the factory mapping config */ if (data[19] != 0) data[18] = 0; /* Elite Series 2 4.x firmware paddle bits */ input_report_key(dev, BTN_GRIPR, data[18] & BIT(0)); input_report_key(dev, BTN_GRIPR2, data[18] & BIT(1)); input_report_key(dev, BTN_GRIPL, data[18] & BIT(2)); input_report_key(dev, BTN_GRIPL2, data[18] & BIT(3)); } else if (xpad->packet_type == PKT_XBE2_FW_5_EARLY) { /* Mute paddles if controller has a custom mapping applied. * Checked by comparing the current mapping * config against the factory mapping config */ if (data[23] != 0) data[22] = 0; /* Elite Series 2 5.x firmware paddle bits * (before the packet was split) */ input_report_key(dev, BTN_GRIPR, data[22] & BIT(0)); input_report_key(dev, BTN_GRIPR2, data[22] & BIT(1)); input_report_key(dev, BTN_GRIPL, data[22] & BIT(2)); input_report_key(dev, BTN_GRIPL2, data[22] & BIT(3)); } } do_sync = true; } if (do_sync) input_sync(dev); } static void xpad_irq_in(struct urb *urb) { struct usb_xpad *xpad = urb->context; struct device *dev = &xpad->intf->dev; int retval, status; status = urb->status; switch (status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(dev, "%s - urb shutting down with status: %d\n", __func__, status); return; default: dev_dbg(dev, "%s - nonzero urb status received: %d\n", __func__, status); goto exit; } switch (xpad->xtype) { case XTYPE_XBOX360: xpad360_process_packet(xpad, xpad->dev, 0, xpad->idata); break; case XTYPE_XBOX360W: xpad360w_process_packet(xpad, 0, xpad->idata); break; case XTYPE_XBOXONE: xpadone_process_packet(xpad, 0, xpad->idata, urb->actual_length); break; default: xpad_process_packet(xpad, 0, xpad->idata); } exit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) dev_err(dev, "%s - usb_submit_urb failed with result %d\n", __func__, retval); } /* Callers must hold xpad->odata_lock spinlock */ static bool xpad_prepare_next_init_packet(struct usb_xpad *xpad) { const struct xboxone_init_packet *init_packet; if (xpad->xtype != XTYPE_XBOXONE) return false; /* * Some dongles will discard init packets if they're sent before the * controller connects. In these cases, we need to wait until we get * an announce packet from them to send the init packet sequence. */ if (xpad->delay_init && !xpad->delayed_init_done) return false; /* Perform initialization sequence for Xbox One pads that require it */ while (xpad->init_seq < ARRAY_SIZE(xboxone_init_packets)) { init_packet = &xboxone_init_packets[xpad->init_seq++]; if (init_packet->idVendor != 0 && init_packet->idVendor != xpad->dev->id.vendor) continue; if (init_packet->idProduct != 0 && init_packet->idProduct != xpad->dev->id.product) continue; /* This packet applies to our device, so prepare to send it */ memcpy(xpad->odata, init_packet->data, init_packet->len); xpad->irq_out->transfer_buffer_length = init_packet->len; /* Update packet with current sequence number */ xpad->odata[2] = xpad->odata_serial++; return true; } return false; } /* Callers must hold xpad->odata_lock spinlock */ static bool xpad_prepare_next_out_packet(struct usb_xpad *xpad) { struct xpad_output_packet *pkt, *packet = NULL; int i; /* We may have init packets to send before we can send user commands */ if (xpad_prepare_next_init_packet(xpad)) return true; for (i = 0; i < XPAD_NUM_OUT_PACKETS; i++) { if (++xpad->last_out_packet >= XPAD_NUM_OUT_PACKETS) xpad->last_out_packet = 0; pkt = &xpad->out_packets[xpad->last_out_packet]; if (pkt->pending) { dev_dbg(&xpad->intf->dev, "%s - found pending output packet %d\n", __func__, xpad->last_out_packet); packet = pkt; break; } } if (packet) { memcpy(xpad->odata, packet->data, packet->len); xpad->irq_out->transfer_buffer_length = packet->len; packet->pending = false; return true; } return false; } /* Callers must hold xpad->odata_lock spinlock */ static int xpad_try_sending_next_out_packet(struct usb_xpad *xpad) { int error; if (!xpad->irq_out_active && xpad_prepare_next_out_packet(xpad)) { usb_anchor_urb(xpad->irq_out, &xpad->irq_out_anchor); error = usb_submit_urb(xpad->irq_out, GFP_ATOMIC); if (error) { if (error != -ENODEV) dev_err(&xpad->intf->dev, "%s - usb_submit_urb failed with result %d\n", __func__, error); usb_unanchor_urb(xpad->irq_out); return error; } xpad->irq_out_active = true; } return 0; } static void xpad_irq_out(struct urb *urb) { struct usb_xpad *xpad = urb->context; struct device *dev = &xpad->intf->dev; int status = urb->status; int error; guard(spinlock_irqsave)(&xpad->odata_lock); switch (status) { case 0: /* success */ xpad->irq_out_active = xpad_prepare_next_out_packet(xpad); break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(dev, "%s - urb shutting down with status: %d\n", __func__, status); xpad->irq_out_active = false; break; default: dev_dbg(dev, "%s - nonzero urb status received: %d\n", __func__, status); break; } if (xpad->irq_out_active) { usb_anchor_urb(urb, &xpad->irq_out_anchor); error = usb_submit_urb(urb, GFP_ATOMIC); if (error) { dev_err(dev, "%s - usb_submit_urb failed with result %d\n", __func__, error); usb_unanchor_urb(urb); xpad->irq_out_active = false; } } } static int xpad_init_output(struct usb_interface *intf, struct usb_xpad *xpad, struct usb_endpoint_descriptor *ep_irq_out) { int error; if (xpad->xtype == XTYPE_UNKNOWN) return 0; init_usb_anchor(&xpad->irq_out_anchor); xpad->odata = usb_alloc_coherent(xpad->udev, XPAD_PKT_LEN, GFP_KERNEL, &xpad->odata_dma); if (!xpad->odata) return -ENOMEM; spin_lock_init(&xpad->odata_lock); xpad->irq_out = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->irq_out) { error = -ENOMEM; goto err_free_coherent; } usb_fill_int_urb(xpad->irq_out, xpad->udev, usb_sndintpipe(xpad->udev, ep_irq_out->bEndpointAddress), xpad->odata, XPAD_PKT_LEN, xpad_irq_out, xpad, ep_irq_out->bInterval); xpad->irq_out->transfer_dma = xpad->odata_dma; xpad->irq_out->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; return 0; err_free_coherent: usb_free_coherent(xpad->udev, XPAD_PKT_LEN, xpad->odata, xpad->odata_dma); return error; } static void xpad_stop_output(struct usb_xpad *xpad) { if (xpad->xtype != XTYPE_UNKNOWN) { if (!usb_wait_anchor_empty_timeout(&xpad->irq_out_anchor, 5000)) { dev_warn(&xpad->intf->dev, "timed out waiting for output URB to complete, killing\n"); usb_kill_anchored_urbs(&xpad->irq_out_anchor); } } } static void xpad_deinit_output(struct usb_xpad *xpad) { if (xpad->xtype != XTYPE_UNKNOWN) { usb_free_urb(xpad->irq_out); usb_free_coherent(xpad->udev, XPAD_PKT_LEN, xpad->odata, xpad->odata_dma); } } static int xpad_inquiry_pad_presence(struct usb_xpad *xpad) { struct xpad_output_packet *packet = &xpad->out_packets[XPAD_OUT_CMD_IDX]; guard(spinlock_irqsave)(&xpad->odata_lock); packet->data[0] = 0x08; packet->data[1] = 0x00; packet->data[2] = 0x0F; packet->data[3] = 0xC0; packet->data[4] = 0x00; packet->data[5] = 0x00; packet->data[6] = 0x00; packet->data[7] = 0x00; packet->data[8] = 0x00; packet->data[9] = 0x00; packet->data[10] = 0x00; packet->data[11] = 0x00; packet->len = 12; packet->pending = true; /* Reset the sequence so we send out presence first */ xpad->last_out_packet = -1; return xpad_try_sending_next_out_packet(xpad); } static int xpad_start_xbox_one(struct usb_xpad *xpad) { int error; if (usb_ifnum_to_if(xpad->udev, GIP_WIRED_INTF_AUDIO)) { /* * Explicitly disable the audio interface. This is needed * for some controllers, such as the PowerA Enhanced Wired * Controller for Series X|S (0x20d6:0x200e) to report the * guide button. */ error = usb_set_interface(xpad->udev, GIP_WIRED_INTF_AUDIO, 0); if (error) dev_warn(&xpad->dev->dev, "unable to disable audio interface: %d\n", error); } guard(spinlock_irqsave)(&xpad->odata_lock); /* * Begin the init sequence by attempting to send a packet. * We will cycle through the init packet sequence before * sending any packets from the output ring. */ xpad->init_seq = 0; return xpad_try_sending_next_out_packet(xpad); } static void xpadone_ack_mode_report(struct usb_xpad *xpad, u8 seq_num) { struct xpad_output_packet *packet = &xpad->out_packets[XPAD_OUT_CMD_IDX]; static const u8 mode_report_ack[] = { GIP_CMD_ACK, GIP_OPT_INTERNAL, GIP_SEQ0, GIP_PL_LEN(9), 0x00, GIP_CMD_VIRTUAL_KEY, GIP_OPT_INTERNAL, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00 }; guard(spinlock_irqsave)(&xpad->odata_lock); packet->len = sizeof(mode_report_ack); memcpy(packet->data, mode_report_ack, packet->len); packet->data[2] = seq_num; packet->pending = true; /* Reset the sequence so we send out the ack now */ xpad->last_out_packet = -1; xpad_try_sending_next_out_packet(xpad); } #ifdef CONFIG_JOYSTICK_XPAD_FF static int xpad_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct usb_xpad *xpad = input_get_drvdata(dev); struct xpad_output_packet *packet = &xpad->out_packets[XPAD_OUT_FF_IDX]; __u16 strong; __u16 weak; if (effect->type != FF_RUMBLE) return 0; strong = effect->u.rumble.strong_magnitude; weak = effect->u.rumble.weak_magnitude; guard(spinlock_irqsave)(&xpad->odata_lock); switch (xpad->xtype) { case XTYPE_XBOX: packet->data[0] = 0x00; packet->data[1] = 0x06; packet->data[2] = 0x00; packet->data[3] = strong / 256; /* left actuator */ packet->data[4] = 0x00; packet->data[5] = weak / 256; /* right actuator */ packet->len = 6; packet->pending = true; break; case XTYPE_XBOX360: packet->data[0] = 0x00; packet->data[1] = 0x08; packet->data[2] = 0x00; packet->data[3] = strong / 256; /* left actuator? */ packet->data[4] = weak / 256; /* right actuator? */ packet->data[5] = 0x00; packet->data[6] = 0x00; packet->data[7] = 0x00; packet->len = 8; packet->pending = true; break; case XTYPE_XBOX360W: packet->data[0] = 0x00; packet->data[1] = 0x01; packet->data[2] = 0x0F; packet->data[3] = 0xC0; packet->data[4] = 0x00; packet->data[5] = strong / 256; packet->data[6] = weak / 256; packet->data[7] = 0x00; packet->data[8] = 0x00; packet->data[9] = 0x00; packet->data[10] = 0x00; packet->data[11] = 0x00; packet->len = 12; packet->pending = true; break; case XTYPE_XBOXONE: packet->data[0] = GIP_CMD_RUMBLE; /* activate rumble */ packet->data[1] = 0x00; packet->data[2] = xpad->odata_serial++; packet->data[3] = GIP_PL_LEN(9); packet->data[4] = 0x00; packet->data[5] = GIP_MOTOR_ALL; packet->data[6] = 0x00; /* left trigger */ packet->data[7] = 0x00; /* right trigger */ packet->data[8] = strong / 512; /* left actuator */ packet->data[9] = weak / 512; /* right actuator */ packet->data[10] = 0xFF; /* on period */ packet->data[11] = 0x00; /* off period */ packet->data[12] = 0xFF; /* repeat count */ packet->len = 13; packet->pending = true; break; default: dev_dbg(&xpad->dev->dev, "%s - rumble command sent to unsupported xpad type: %d\n", __func__, xpad->xtype); return -EINVAL; } return xpad_try_sending_next_out_packet(xpad); } static int xpad_init_ff(struct usb_xpad *xpad) { if (xpad->xtype == XTYPE_UNKNOWN) return 0; input_set_capability(xpad->dev, EV_FF, FF_RUMBLE); return input_ff_create_memless(xpad->dev, NULL, xpad_play_effect); } #else static int xpad_init_ff(struct usb_xpad *xpad) { return 0; } #endif #if defined(CONFIG_JOYSTICK_XPAD_LEDS) #include <linux/leds.h> #include <linux/idr.h> static DEFINE_IDA(xpad_pad_seq); struct xpad_led { char name[16]; struct led_classdev led_cdev; struct usb_xpad *xpad; }; /* * set the LEDs on Xbox 360 / Wireless Controllers * @param command * 0: off * 1: all blink, then previous setting * 2: 1/top-left blink, then on * 3: 2/top-right blink, then on * 4: 3/bottom-left blink, then on * 5: 4/bottom-right blink, then on * 6: 1/top-left on * 7: 2/top-right on * 8: 3/bottom-left on * 9: 4/bottom-right on * 10: rotate * 11: blink, based on previous setting * 12: slow blink, based on previous setting * 13: rotate with two lights * 14: persistent slow all blink * 15: blink once, then previous setting */ static void xpad_send_led_command(struct usb_xpad *xpad, int command) { struct xpad_output_packet *packet = &xpad->out_packets[XPAD_OUT_LED_IDX]; command %= 16; guard(spinlock_irqsave)(&xpad->odata_lock); switch (xpad->xtype) { case XTYPE_XBOX360: packet->data[0] = 0x01; packet->data[1] = 0x03; packet->data[2] = command; packet->len = 3; packet->pending = true; break; case XTYPE_XBOX360W: packet->data[0] = 0x00; packet->data[1] = 0x00; packet->data[2] = 0x08; packet->data[3] = 0x40 + command; packet->data[4] = 0x00; packet->data[5] = 0x00; packet->data[6] = 0x00; packet->data[7] = 0x00; packet->data[8] = 0x00; packet->data[9] = 0x00; packet->data[10] = 0x00; packet->data[11] = 0x00; packet->len = 12; packet->pending = true; break; } xpad_try_sending_next_out_packet(xpad); } /* * Light up the segment corresponding to the pad number on * Xbox 360 Controllers. */ static void xpad_identify_controller(struct usb_xpad *xpad) { led_set_brightness(&xpad->led->led_cdev, (xpad->pad_nr % 4) + 2); } static void xpad_led_set(struct led_classdev *led_cdev, enum led_brightness value) { struct xpad_led *xpad_led = container_of(led_cdev, struct xpad_led, led_cdev); xpad_send_led_command(xpad_led->xpad, value); } static int xpad_led_probe(struct usb_xpad *xpad) { struct xpad_led *led; struct led_classdev *led_cdev; int error; if (xpad->xtype != XTYPE_XBOX360 && xpad->xtype != XTYPE_XBOX360W) return 0; xpad->led = led = kzalloc(sizeof(*led), GFP_KERNEL); if (!led) return -ENOMEM; xpad->pad_nr = ida_alloc(&xpad_pad_seq, GFP_KERNEL); if (xpad->pad_nr < 0) { error = xpad->pad_nr; goto err_free_mem; } snprintf(led->name, sizeof(led->name), "xpad%d", xpad->pad_nr); led->xpad = xpad; led_cdev = &led->led_cdev; led_cdev->name = led->name; led_cdev->brightness_set = xpad_led_set; led_cdev->flags = LED_CORE_SUSPENDRESUME; error = led_classdev_register(&xpad->udev->dev, led_cdev); if (error) goto err_free_id; xpad_identify_controller(xpad); return 0; err_free_id: ida_free(&xpad_pad_seq, xpad->pad_nr); err_free_mem: kfree(led); xpad->led = NULL; return error; } static void xpad_led_disconnect(struct usb_xpad *xpad) { struct xpad_led *xpad_led = xpad->led; if (xpad_led) { led_classdev_unregister(&xpad_led->led_cdev); ida_free(&xpad_pad_seq, xpad->pad_nr); kfree(xpad_led); } } #else static int xpad_led_probe(struct usb_xpad *xpad) { return 0; } static void xpad_led_disconnect(struct usb_xpad *xpad) { } #endif static int xpad_start_input(struct usb_xpad *xpad) { int error; if (usb_submit_urb(xpad->irq_in, GFP_KERNEL)) return -EIO; if (xpad->xtype == XTYPE_XBOXONE) { error = xpad_start_xbox_one(xpad); if (error) { usb_kill_urb(xpad->irq_in); return error; } } if (xpad->xtype == XTYPE_XBOX360) { /* * Some third-party controllers Xbox 360-style controllers * require this message to finish initialization. */ u8 dummy[20]; error = usb_control_msg_recv(xpad->udev, 0, /* bRequest */ 0x01, /* bmRequestType */ USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_INTERFACE, /* wValue */ 0x100, /* wIndex */ 0x00, dummy, sizeof(dummy), 25, GFP_KERNEL); if (error) dev_warn(&xpad->dev->dev, "unable to receive magic message: %d\n", error); } return 0; } static void xpad_stop_input(struct usb_xpad *xpad) { usb_kill_urb(xpad->irq_in); } static void xpad360w_poweroff_controller(struct usb_xpad *xpad) { struct xpad_output_packet *packet = &xpad->out_packets[XPAD_OUT_CMD_IDX]; guard(spinlock_irqsave)(&xpad->odata_lock); packet->data[0] = 0x00; packet->data[1] = 0x00; packet->data[2] = 0x08; packet->data[3] = 0xC0; packet->data[4] = 0x00; packet->data[5] = 0x00; packet->data[6] = 0x00; packet->data[7] = 0x00; packet->data[8] = 0x00; packet->data[9] = 0x00; packet->data[10] = 0x00; packet->data[11] = 0x00; packet->len = 12; packet->pending = true; /* Reset the sequence so we send out poweroff now */ xpad->last_out_packet = -1; xpad_try_sending_next_out_packet(xpad); } static int xpad360w_start_input(struct usb_xpad *xpad) { int error; error = usb_submit_urb(xpad->irq_in, GFP_KERNEL); if (error) return -EIO; /* * Send presence packet. * This will force the controller to resend connection packets. * This is useful in the case we activate the module after the * adapter has been plugged in, as it won't automatically * send us info about the controllers. */ error = xpad_inquiry_pad_presence(xpad); if (error) { usb_kill_urb(xpad->irq_in); return error; } return 0; } static void xpad360w_stop_input(struct usb_xpad *xpad) { usb_kill_urb(xpad->irq_in); /* Make sure we are done with presence work if it was scheduled */ flush_work(&xpad->work); } static int xpad_open(struct input_dev *dev) { struct usb_xpad *xpad = input_get_drvdata(dev); return xpad_start_input(xpad); } static void xpad_close(struct input_dev *dev) { struct usb_xpad *xpad = input_get_drvdata(dev); xpad_stop_input(xpad); } static void xpad_set_up_abs(struct input_dev *input_dev, signed short abs) { struct usb_xpad *xpad = input_get_drvdata(input_dev); switch (abs) { case ABS_X: case ABS_Y: case ABS_RX: case ABS_RY: /* the two sticks */ input_set_abs_params(input_dev, abs, -32768, 32767, 16, 128); break; case ABS_Z: case ABS_RZ: /* the triggers (if mapped to axes) */ if (xpad->xtype == XTYPE_XBOXONE) input_set_abs_params(input_dev, abs, 0, 1023, 0, 0); else input_set_abs_params(input_dev, abs, 0, 255, 0, 0); break; case ABS_HAT0X: case ABS_HAT0Y: /* the d-pad (only if dpad is mapped to axes */ input_set_abs_params(input_dev, abs, -1, 1, 0, 0); break; case ABS_PROFILE: /* 4 value profile button (such as on XAC) */ input_set_abs_params(input_dev, abs, 0, 4, 0, 0); break; default: input_set_abs_params(input_dev, abs, 0, 0, 0, 0); break; } } static void xpad_deinit_input(struct usb_xpad *xpad) { if (xpad->input_created) { xpad->input_created = false; xpad_led_disconnect(xpad); input_unregister_device(xpad->dev); } } static int xpad_init_input(struct usb_xpad *xpad) { struct input_dev *input_dev; int i, error; input_dev = input_allocate_device(); if (!input_dev) return -ENOMEM; xpad->dev = input_dev; input_dev->name = xpad->name; input_dev->phys = xpad->phys; usb_to_input_id(xpad->udev, &input_dev->id); if (xpad->xtype == XTYPE_XBOX360W) { /* x360w controllers and the receiver have different ids */ input_dev->id.product = 0x02a1; } input_dev->dev.parent = &xpad->intf->dev; input_set_drvdata(input_dev, xpad); if (xpad->xtype != XTYPE_XBOX360W) { input_dev->open = xpad_open; input_dev->close = xpad_close; } if (!(xpad->mapping & MAP_STICKS_TO_NULL)) { /* set up axes */ for (i = 0; xpad_abs[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs[i]); } /* set up standard buttons */ for (i = 0; xpad_common_btn[i] >= 0; i++) input_set_capability(input_dev, EV_KEY, xpad_common_btn[i]); /* set up model-specific ones */ if (xpad->xtype == XTYPE_XBOX360 || xpad->xtype == XTYPE_XBOX360W || xpad->xtype == XTYPE_XBOXONE) { for (i = 0; xpad360_btn[i] >= 0; i++) input_set_capability(input_dev, EV_KEY, xpad360_btn[i]); if (xpad->mapping & MAP_SHARE_BUTTON) input_set_capability(input_dev, EV_KEY, KEY_RECORD); } else { for (i = 0; xpad_btn[i] >= 0; i++) input_set_capability(input_dev, EV_KEY, xpad_btn[i]); } if (xpad->mapping & MAP_DPAD_TO_BUTTONS) { for (i = 0; xpad_btn_pad[i] >= 0; i++) input_set_capability(input_dev, EV_KEY, xpad_btn_pad[i]); } /* set up paddles if the controller has them */ if (xpad->mapping & MAP_PADDLES) { for (i = 0; xpad_btn_paddles[i] >= 0; i++) input_set_capability(input_dev, EV_KEY, xpad_btn_paddles[i]); } /* * This should be a simple else block. However historically * xbox360w has mapped DPAD to buttons while xbox360 did not. This * made no sense, but now we can not just switch back and have to * support both behaviors. */ if (!(xpad->mapping & MAP_DPAD_TO_BUTTONS) || xpad->xtype == XTYPE_XBOX360W) { for (i = 0; xpad_abs_pad[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_pad[i]); } if (xpad->mapping & MAP_TRIGGERS_TO_BUTTONS) { for (i = 0; xpad_btn_triggers[i] >= 0; i++) input_set_capability(input_dev, EV_KEY, xpad_btn_triggers[i]); } else { for (i = 0; xpad_abs_triggers[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_triggers[i]); } /* setup profile button as an axis with 4 possible values */ if (xpad->mapping & MAP_PROFILE_BUTTON) xpad_set_up_abs(input_dev, ABS_PROFILE); error = xpad_init_ff(xpad); if (error) goto err_free_input; error = xpad_led_probe(xpad); if (error) goto err_destroy_ff; error = input_register_device(xpad->dev); if (error) goto err_disconnect_led; xpad->input_created = true; return 0; err_disconnect_led: xpad_led_disconnect(xpad); err_destroy_ff: input_ff_destroy(input_dev); err_free_input: input_free_device(input_dev); return error; } static int xpad_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_xpad *xpad; struct usb_endpoint_descriptor *ep_irq_in, *ep_irq_out; int i, error; if (intf->cur_altsetting->desc.bNumEndpoints != 2) return -ENODEV; for (i = 0; xpad_device[i].idVendor; i++) { if ((le16_to_cpu(udev->descriptor.idVendor) == xpad_device[i].idVendor) && (le16_to_cpu(udev->descriptor.idProduct) == xpad_device[i].idProduct)) break; } xpad = kzalloc(sizeof(*xpad), GFP_KERNEL); if (!xpad) return -ENOMEM; usb_make_path(udev, xpad->phys, sizeof(xpad->phys)); strlcat(xpad->phys, "/input0", sizeof(xpad->phys)); xpad->idata = usb_alloc_coherent(udev, XPAD_PKT_LEN, GFP_KERNEL, &xpad->idata_dma); if (!xpad->idata) { error = -ENOMEM; goto err_free_mem; } xpad->irq_in = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->irq_in) { error = -ENOMEM; goto err_free_idata; } xpad->udev = udev; xpad->intf = intf; xpad->mapping = xpad_device[i].mapping; xpad->xtype = xpad_device[i].xtype; xpad->name = xpad_device[i].name; if (xpad_device[i].flags & FLAG_DELAY_INIT) xpad->delay_init = true; xpad->packet_type = PKT_XB; INIT_WORK(&xpad->work, xpad_presence_work); if (xpad->xtype == XTYPE_UNKNOWN) { if (intf->cur_altsetting->desc.bInterfaceClass == USB_CLASS_VENDOR_SPEC) { if (intf->cur_altsetting->desc.bInterfaceProtocol == 129) xpad->xtype = XTYPE_XBOX360W; else if (intf->cur_altsetting->desc.bInterfaceProtocol == 208) xpad->xtype = XTYPE_XBOXONE; else xpad->xtype = XTYPE_XBOX360; } else { xpad->xtype = XTYPE_XBOX; } if (dpad_to_buttons) xpad->mapping |= MAP_DPAD_TO_BUTTONS; if (triggers_to_buttons) xpad->mapping |= MAP_TRIGGERS_TO_BUTTONS; if (sticks_to_null) xpad->mapping |= MAP_STICKS_TO_NULL; } if (xpad->xtype == XTYPE_XBOXONE && intf->cur_altsetting->desc.bInterfaceNumber != GIP_WIRED_INTF_DATA) { /* * The Xbox One controller lists three interfaces all with the * same interface class, subclass and protocol. Differentiate by * interface number. */ error = -ENODEV; goto err_free_in_urb; } ep_irq_in = ep_irq_out = NULL; for (i = 0; i < 2; i++) { struct usb_endpoint_descriptor *ep = &intf->cur_altsetting->endpoint[i].desc; if (usb_endpoint_xfer_int(ep)) { if (usb_endpoint_dir_in(ep)) ep_irq_in = ep; else ep_irq_out = ep; } } if (!ep_irq_in || !ep_irq_out) { error = -ENODEV; goto err_free_in_urb; } error = xpad_init_output(intf, xpad, ep_irq_out); if (error) goto err_free_in_urb; usb_fill_int_urb(xpad->irq_in, udev, usb_rcvintpipe(udev, ep_irq_in->bEndpointAddress), xpad->idata, XPAD_PKT_LEN, xpad_irq_in, xpad, ep_irq_in->bInterval); xpad->irq_in->transfer_dma = xpad->idata_dma; xpad->irq_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_set_intfdata(intf, xpad); /* Packet type detection */ if (le16_to_cpu(udev->descriptor.idVendor) == 0x045e) { /* Microsoft controllers */ if (le16_to_cpu(udev->descriptor.idProduct) == 0x02e3) { /* The original elite controller always uses the oldest * type of extended packet */ xpad->packet_type = PKT_XBE1; } else if (le16_to_cpu(udev->descriptor.idProduct) == 0x0b00) { /* The elite 2 controller has seen multiple packet * revisions. These are tied to specific firmware * versions */ if (le16_to_cpu(udev->descriptor.bcdDevice) < 0x0500) { /* This is the format that the Elite 2 used * prior to the BLE update */ xpad->packet_type = PKT_XBE2_FW_OLD; } else if (le16_to_cpu(udev->descriptor.bcdDevice) < 0x050b) { /* This is the format that the Elite 2 used * prior to the update that split the packet */ xpad->packet_type = PKT_XBE2_FW_5_EARLY; } else { /* The split packet format that was introduced * in firmware v5.11 */ xpad->packet_type = PKT_XBE2_FW_5_11; } } } if (xpad->xtype == XTYPE_XBOX360W) { /* * Submit the int URB immediately rather than waiting for open * because we get status messages from the device whether * or not any controllers are attached. In fact, it's * exactly the message that a controller has arrived that * we're waiting for. */ error = xpad360w_start_input(xpad); if (error) goto err_deinit_output; /* * Wireless controllers require RESET_RESUME to work properly * after suspend. Ideally this quirk should be in usb core * quirk list, but we have too many vendors producing these * controllers and we'd need to maintain 2 identical lists * here in this driver and in usb core. */ udev->quirks |= USB_QUIRK_RESET_RESUME; } else { error = xpad_init_input(xpad); if (error) goto err_deinit_output; } return 0; err_deinit_output: xpad_deinit_output(xpad); err_free_in_urb: usb_free_urb(xpad->irq_in); err_free_idata: usb_free_coherent(udev, XPAD_PKT_LEN, xpad->idata, xpad->idata_dma); err_free_mem: kfree(xpad); return error; } static void xpad_disconnect(struct usb_interface *intf) { struct usb_xpad *xpad = usb_get_intfdata(intf); if (xpad->xtype == XTYPE_XBOX360W) xpad360w_stop_input(xpad); xpad_deinit_input(xpad); /* * Now that both input device and LED device are gone we can * stop output URB. */ xpad_stop_output(xpad); xpad_deinit_output(xpad); usb_free_urb(xpad->irq_in); usb_free_coherent(xpad->udev, XPAD_PKT_LEN, xpad->idata, xpad->idata_dma); kfree(xpad); usb_set_intfdata(intf, NULL); } static int xpad_suspend(struct usb_interface *intf, pm_message_t message) { struct usb_xpad *xpad = usb_get_intfdata(intf); struct input_dev *input = xpad->dev; if (xpad->xtype == XTYPE_XBOX360W) { /* * Wireless controllers always listen to input so * they are notified when controller shows up * or goes away. */ xpad360w_stop_input(xpad); /* * The wireless adapter is going off now, so the * gamepads are going to become disconnected. * Unless explicitly disabled, power them down * so they don't just sit there flashing. */ if (auto_poweroff && xpad->pad_present) xpad360w_poweroff_controller(xpad); } else { guard(mutex)(&input->mutex); if (input_device_enabled(input)) xpad_stop_input(xpad); } xpad_stop_output(xpad); return 0; } static int xpad_resume(struct usb_interface *intf) { struct usb_xpad *xpad = usb_get_intfdata(intf); struct input_dev *input = xpad->dev; xpad->delayed_init_done = false; if (xpad->xtype == XTYPE_XBOX360W) return xpad360w_start_input(xpad); guard(mutex)(&input->mutex); if (input_device_enabled(input)) return xpad_start_input(xpad); if (xpad->xtype == XTYPE_XBOXONE) { /* * Even if there are no users, we'll send Xbox One pads * the startup sequence so they don't sit there and * blink until somebody opens the input device again. */ return xpad_start_xbox_one(xpad); } return 0; } static struct usb_driver xpad_driver = { .name = "xpad", .probe = xpad_probe, .disconnect = xpad_disconnect, .suspend = xpad_suspend, .resume = xpad_resume, .id_table = xpad_table, }; module_usb_driver(xpad_driver); MODULE_AUTHOR("Marko Friedemann <mfr@bmx-chemnitz.de>"); MODULE_DESCRIPTION("Xbox pad driver"); MODULE_LICENSE("GPL"); |
| 6 3 1 25 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Axis Communications AB * * Based on ttyprintk.c: * Copyright (C) 2010 Samo Pogacnik */ #include <linux/console.h> #include <linux/module.h> #include <linux/tty.h> static const struct tty_port_operations ttynull_port_ops; static struct tty_driver *ttynull_driver; static struct tty_port ttynull_port; static int ttynull_open(struct tty_struct *tty, struct file *filp) { return tty_port_open(&ttynull_port, tty, filp); } static void ttynull_close(struct tty_struct *tty, struct file *filp) { tty_port_close(&ttynull_port, tty, filp); } static void ttynull_hangup(struct tty_struct *tty) { tty_port_hangup(&ttynull_port); } static ssize_t ttynull_write(struct tty_struct *tty, const u8 *buf, size_t count) { return count; } static unsigned int ttynull_write_room(struct tty_struct *tty) { return 65536; } static const struct tty_operations ttynull_ops = { .open = ttynull_open, .close = ttynull_close, .hangup = ttynull_hangup, .write = ttynull_write, .write_room = ttynull_write_room, }; static struct tty_driver *ttynull_device(struct console *c, int *index) { *index = 0; return ttynull_driver; } static struct console ttynull_console = { .name = "ttynull", .device = ttynull_device, }; static int __init ttynull_init(void) { struct tty_driver *driver; int ret; driver = tty_alloc_driver(1, TTY_DRIVER_RESET_TERMIOS | TTY_DRIVER_REAL_RAW | TTY_DRIVER_UNNUMBERED_NODE); if (IS_ERR(driver)) return PTR_ERR(driver); tty_port_init(&ttynull_port); ttynull_port.ops = &ttynull_port_ops; driver->driver_name = "ttynull"; driver->name = "ttynull"; driver->type = TTY_DRIVER_TYPE_CONSOLE; driver->init_termios = tty_std_termios; driver->init_termios.c_oflag = OPOST | OCRNL | ONOCR | ONLRET; tty_set_operations(driver, &ttynull_ops); tty_port_link_device(&ttynull_port, driver, 0); ret = tty_register_driver(driver); if (ret < 0) { tty_driver_kref_put(driver); tty_port_destroy(&ttynull_port); return ret; } ttynull_driver = driver; register_console(&ttynull_console); return 0; } static void __exit ttynull_exit(void) { unregister_console(&ttynull_console); tty_unregister_driver(ttynull_driver); tty_driver_kref_put(ttynull_driver); tty_port_destroy(&ttynull_port); } module_init(ttynull_init); module_exit(ttynull_exit); MODULE_DESCRIPTION("NULL TTY driver"); MODULE_LICENSE("GPL v2"); |
| 2 2 2 1 1 1 1 1 1 2 1 1 2 2 2 2 2 1 1 2 2 2 2 3 5 2 3 1 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | // SPDX-License-Identifier: GPL-2.0-only /* SocketCAN driver for Microchip CAN BUS Analyzer Tool * * Copyright (C) 2017 Mobica Limited * * This driver is inspired by the 4.6.2 version of net/can/usb/usb_8dev.c */ #include <linux/unaligned.h> #include <linux/can.h> #include <linux/can/dev.h> #include <linux/can/error.h> #include <linux/ethtool.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/signal.h> #include <linux/slab.h> #include <linux/usb.h> /* vendor and product id */ #define MCBA_MODULE_NAME "mcba_usb" #define MCBA_VENDOR_ID 0x04d8 #define MCBA_PRODUCT_ID 0x0a30 /* driver constants */ #define MCBA_MAX_RX_URBS 20 #define MCBA_MAX_TX_URBS 20 #define MCBA_CTX_FREE MCBA_MAX_TX_URBS /* RX buffer must be bigger than msg size since at the * beginning USB messages are stacked. */ #define MCBA_USB_RX_BUFF_SIZE 64 #define MCBA_USB_TX_BUFF_SIZE (sizeof(struct mcba_usb_msg)) /* Microchip command id */ #define MBCA_CMD_RECEIVE_MESSAGE 0xE3 #define MBCA_CMD_I_AM_ALIVE_FROM_CAN 0xF5 #define MBCA_CMD_I_AM_ALIVE_FROM_USB 0xF7 #define MBCA_CMD_CHANGE_BIT_RATE 0xA1 #define MBCA_CMD_TRANSMIT_MESSAGE_EV 0xA3 #define MBCA_CMD_SETUP_TERMINATION_RESISTANCE 0xA8 #define MBCA_CMD_READ_FW_VERSION 0xA9 #define MBCA_CMD_NOTHING_TO_SEND 0xFF #define MBCA_CMD_TRANSMIT_MESSAGE_RSP 0xE2 #define MCBA_VER_REQ_USB 1 #define MCBA_VER_REQ_CAN 2 /* Drive the CAN_RES signal LOW "0" to activate R24 and R25 */ #define MCBA_VER_TERMINATION_ON 0 #define MCBA_VER_TERMINATION_OFF 1 #define MCBA_SIDL_EXID_MASK 0x8 #define MCBA_DLC_MASK 0xf #define MCBA_DLC_RTR_MASK 0x40 #define MCBA_CAN_STATE_WRN_TH 95 #define MCBA_CAN_STATE_ERR_PSV_TH 127 #define MCBA_TERMINATION_DISABLED CAN_TERMINATION_DISABLED #define MCBA_TERMINATION_ENABLED 120 struct mcba_usb_ctx { struct mcba_priv *priv; u32 ndx; bool can; }; /* Structure to hold all of our device specific stuff */ struct mcba_priv { struct can_priv can; /* must be the first member */ struct sk_buff *echo_skb[MCBA_MAX_TX_URBS]; struct mcba_usb_ctx tx_context[MCBA_MAX_TX_URBS]; struct usb_device *udev; struct net_device *netdev; struct usb_anchor tx_submitted; struct usb_anchor rx_submitted; struct can_berr_counter bec; bool usb_ka_first_pass; bool can_ka_first_pass; bool can_speed_check; atomic_t free_ctx_cnt; void *rxbuf[MCBA_MAX_RX_URBS]; dma_addr_t rxbuf_dma[MCBA_MAX_RX_URBS]; int rx_pipe; int tx_pipe; }; /* CAN frame */ struct __packed mcba_usb_msg_can { u8 cmd_id; __be16 eid; __be16 sid; u8 dlc; u8 data[8]; u8 timestamp[4]; u8 checksum; }; /* command frame */ struct __packed mcba_usb_msg { u8 cmd_id; u8 unused[18]; }; struct __packed mcba_usb_msg_ka_usb { u8 cmd_id; u8 termination_state; u8 soft_ver_major; u8 soft_ver_minor; u8 unused[15]; }; struct __packed mcba_usb_msg_ka_can { u8 cmd_id; u8 tx_err_cnt; u8 rx_err_cnt; u8 rx_buff_ovfl; u8 tx_bus_off; __be16 can_bitrate; __le16 rx_lost; u8 can_stat; u8 soft_ver_major; u8 soft_ver_minor; u8 debug_mode; u8 test_complete; u8 test_result; u8 unused[4]; }; struct __packed mcba_usb_msg_change_bitrate { u8 cmd_id; __be16 bitrate; u8 unused[16]; }; struct __packed mcba_usb_msg_termination { u8 cmd_id; u8 termination; u8 unused[17]; }; struct __packed mcba_usb_msg_fw_ver { u8 cmd_id; u8 pic; u8 unused[17]; }; static const struct usb_device_id mcba_usb_table[] = { { USB_DEVICE(MCBA_VENDOR_ID, MCBA_PRODUCT_ID) }, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, mcba_usb_table); static const u16 mcba_termination[] = { MCBA_TERMINATION_DISABLED, MCBA_TERMINATION_ENABLED }; static const u32 mcba_bitrate[] = { 20000, 33333, 50000, 80000, 83333, 100000, 125000, 150000, 175000, 200000, 225000, 250000, 275000, 300000, 500000, 625000, 800000, 1000000 }; static inline void mcba_init_ctx(struct mcba_priv *priv) { int i = 0; for (i = 0; i < MCBA_MAX_TX_URBS; i++) { priv->tx_context[i].ndx = MCBA_CTX_FREE; priv->tx_context[i].priv = priv; } atomic_set(&priv->free_ctx_cnt, ARRAY_SIZE(priv->tx_context)); } static inline struct mcba_usb_ctx *mcba_usb_get_free_ctx(struct mcba_priv *priv, struct can_frame *cf) { int i = 0; struct mcba_usb_ctx *ctx = NULL; for (i = 0; i < MCBA_MAX_TX_URBS; i++) { if (priv->tx_context[i].ndx == MCBA_CTX_FREE) { ctx = &priv->tx_context[i]; ctx->ndx = i; if (cf) ctx->can = true; else ctx->can = false; atomic_dec(&priv->free_ctx_cnt); break; } } if (!atomic_read(&priv->free_ctx_cnt)) /* That was the last free ctx. Slow down tx path */ netif_stop_queue(priv->netdev); return ctx; } /* mcba_usb_free_ctx and mcba_usb_get_free_ctx are executed by different * threads. The order of execution in below function is important. */ static inline void mcba_usb_free_ctx(struct mcba_usb_ctx *ctx) { /* Increase number of free ctxs before freeing ctx */ atomic_inc(&ctx->priv->free_ctx_cnt); ctx->ndx = MCBA_CTX_FREE; /* Wake up the queue once ctx is marked free */ netif_wake_queue(ctx->priv->netdev); } static void mcba_usb_write_bulk_callback(struct urb *urb) { struct mcba_usb_ctx *ctx = urb->context; struct net_device *netdev; WARN_ON(!ctx); netdev = ctx->priv->netdev; /* free up our allocated buffer */ usb_free_coherent(urb->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); if (ctx->can) { if (!netif_device_present(netdev)) return; netdev->stats.tx_packets++; netdev->stats.tx_bytes += can_get_echo_skb(netdev, ctx->ndx, NULL); } if (urb->status) netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status); /* Release the context */ mcba_usb_free_ctx(ctx); } /* Send data to device */ static netdev_tx_t mcba_usb_xmit(struct mcba_priv *priv, struct mcba_usb_msg *usb_msg, struct mcba_usb_ctx *ctx) { struct urb *urb; u8 *buf; int err; /* create a URB, and a buffer for it, and copy the data to the URB */ urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) return -ENOMEM; buf = usb_alloc_coherent(priv->udev, MCBA_USB_TX_BUFF_SIZE, GFP_ATOMIC, &urb->transfer_dma); if (!buf) { err = -ENOMEM; goto nomembuf; } memcpy(buf, usb_msg, MCBA_USB_TX_BUFF_SIZE); usb_fill_bulk_urb(urb, priv->udev, priv->tx_pipe, buf, MCBA_USB_TX_BUFF_SIZE, mcba_usb_write_bulk_callback, ctx); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &priv->tx_submitted); err = usb_submit_urb(urb, GFP_ATOMIC); if (unlikely(err)) goto failed; /* Release our reference to this URB, the USB core will eventually free * it entirely. */ usb_free_urb(urb); return 0; failed: usb_unanchor_urb(urb); usb_free_coherent(priv->udev, MCBA_USB_TX_BUFF_SIZE, buf, urb->transfer_dma); if (err == -ENODEV) netif_device_detach(priv->netdev); else netdev_warn(priv->netdev, "failed tx_urb %d\n", err); nomembuf: usb_free_urb(urb); return err; } /* Send data to device */ static netdev_tx_t mcba_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct mcba_priv *priv = netdev_priv(netdev); struct can_frame *cf = (struct can_frame *)skb->data; struct mcba_usb_ctx *ctx = NULL; struct net_device_stats *stats = &priv->netdev->stats; u16 sid; int err; struct mcba_usb_msg_can usb_msg = { .cmd_id = MBCA_CMD_TRANSMIT_MESSAGE_EV }; if (can_dev_dropped_skb(netdev, skb)) return NETDEV_TX_OK; ctx = mcba_usb_get_free_ctx(priv, cf); if (!ctx) return NETDEV_TX_BUSY; if (cf->can_id & CAN_EFF_FLAG) { /* SIDH | SIDL | EIDH | EIDL * 28 - 21 | 20 19 18 x x x 17 16 | 15 - 8 | 7 - 0 */ sid = MCBA_SIDL_EXID_MASK; /* store 28-18 bits */ sid |= (cf->can_id & 0x1ffc0000) >> 13; /* store 17-16 bits */ sid |= (cf->can_id & 0x30000) >> 16; put_unaligned_be16(sid, &usb_msg.sid); /* store 15-0 bits */ put_unaligned_be16(cf->can_id & 0xffff, &usb_msg.eid); } else { /* SIDH | SIDL * 10 - 3 | 2 1 0 x x x x x */ put_unaligned_be16((cf->can_id & CAN_SFF_MASK) << 5, &usb_msg.sid); usb_msg.eid = 0; } usb_msg.dlc = cf->len; memcpy(usb_msg.data, cf->data, usb_msg.dlc); if (cf->can_id & CAN_RTR_FLAG) usb_msg.dlc |= MCBA_DLC_RTR_MASK; can_put_echo_skb(skb, priv->netdev, ctx->ndx, 0); err = mcba_usb_xmit(priv, (struct mcba_usb_msg *)&usb_msg, ctx); if (err) goto xmit_failed; return NETDEV_TX_OK; xmit_failed: can_free_echo_skb(priv->netdev, ctx->ndx, NULL); mcba_usb_free_ctx(ctx); stats->tx_dropped++; return NETDEV_TX_OK; } /* Send cmd to device */ static void mcba_usb_xmit_cmd(struct mcba_priv *priv, struct mcba_usb_msg *usb_msg) { struct mcba_usb_ctx *ctx = NULL; int err; ctx = mcba_usb_get_free_ctx(priv, NULL); if (!ctx) { netdev_err(priv->netdev, "Lack of free ctx. Sending (%d) cmd aborted", usb_msg->cmd_id); return; } err = mcba_usb_xmit(priv, usb_msg, ctx); if (err) netdev_err(priv->netdev, "Failed to send cmd (%d)", usb_msg->cmd_id); } static void mcba_usb_xmit_change_bitrate(struct mcba_priv *priv, u16 bitrate) { struct mcba_usb_msg_change_bitrate usb_msg = { .cmd_id = MBCA_CMD_CHANGE_BIT_RATE }; put_unaligned_be16(bitrate, &usb_msg.bitrate); mcba_usb_xmit_cmd(priv, (struct mcba_usb_msg *)&usb_msg); } static void mcba_usb_xmit_read_fw_ver(struct mcba_priv *priv, u8 pic) { struct mcba_usb_msg_fw_ver usb_msg = { .cmd_id = MBCA_CMD_READ_FW_VERSION, .pic = pic }; mcba_usb_xmit_cmd(priv, (struct mcba_usb_msg *)&usb_msg); } static void mcba_usb_process_can(struct mcba_priv *priv, struct mcba_usb_msg_can *msg) { struct can_frame *cf; struct sk_buff *skb; struct net_device_stats *stats = &priv->netdev->stats; u16 sid; skb = alloc_can_skb(priv->netdev, &cf); if (!skb) return; sid = get_unaligned_be16(&msg->sid); if (sid & MCBA_SIDL_EXID_MASK) { /* SIDH | SIDL | EIDH | EIDL * 28 - 21 | 20 19 18 x x x 17 16 | 15 - 8 | 7 - 0 */ cf->can_id = CAN_EFF_FLAG; /* store 28-18 bits */ cf->can_id |= (sid & 0xffe0) << 13; /* store 17-16 bits */ cf->can_id |= (sid & 3) << 16; /* store 15-0 bits */ cf->can_id |= get_unaligned_be16(&msg->eid); } else { /* SIDH | SIDL * 10 - 3 | 2 1 0 x x x x x */ cf->can_id = (sid & 0xffe0) >> 5; } cf->len = can_cc_dlc2len(msg->dlc & MCBA_DLC_MASK); if (msg->dlc & MCBA_DLC_RTR_MASK) { cf->can_id |= CAN_RTR_FLAG; } else { memcpy(cf->data, msg->data, cf->len); stats->rx_bytes += cf->len; } stats->rx_packets++; netif_rx(skb); } static void mcba_usb_process_ka_usb(struct mcba_priv *priv, struct mcba_usb_msg_ka_usb *msg) { if (unlikely(priv->usb_ka_first_pass)) { netdev_info(priv->netdev, "PIC USB version %u.%u\n", msg->soft_ver_major, msg->soft_ver_minor); priv->usb_ka_first_pass = false; } if (msg->termination_state == MCBA_VER_TERMINATION_ON) priv->can.termination = MCBA_TERMINATION_ENABLED; else priv->can.termination = MCBA_TERMINATION_DISABLED; } static u32 convert_can2host_bitrate(struct mcba_usb_msg_ka_can *msg) { const u32 bitrate = get_unaligned_be16(&msg->can_bitrate); if ((bitrate == 33) || (bitrate == 83)) return bitrate * 1000 + 333; else return bitrate * 1000; } static void mcba_usb_process_ka_can(struct mcba_priv *priv, struct mcba_usb_msg_ka_can *msg) { if (unlikely(priv->can_ka_first_pass)) { netdev_info(priv->netdev, "PIC CAN version %u.%u\n", msg->soft_ver_major, msg->soft_ver_minor); priv->can_ka_first_pass = false; } if (unlikely(priv->can_speed_check)) { const u32 bitrate = convert_can2host_bitrate(msg); priv->can_speed_check = false; if (bitrate != priv->can.bittiming.bitrate) netdev_err( priv->netdev, "Wrong bitrate reported by the device (%u). Expected %u", bitrate, priv->can.bittiming.bitrate); } priv->bec.txerr = msg->tx_err_cnt; priv->bec.rxerr = msg->rx_err_cnt; if (msg->tx_bus_off) priv->can.state = CAN_STATE_BUS_OFF; else if ((priv->bec.txerr > MCBA_CAN_STATE_ERR_PSV_TH) || (priv->bec.rxerr > MCBA_CAN_STATE_ERR_PSV_TH)) priv->can.state = CAN_STATE_ERROR_PASSIVE; else if ((priv->bec.txerr > MCBA_CAN_STATE_WRN_TH) || (priv->bec.rxerr > MCBA_CAN_STATE_WRN_TH)) priv->can.state = CAN_STATE_ERROR_WARNING; } static void mcba_usb_process_rx(struct mcba_priv *priv, struct mcba_usb_msg *msg) { switch (msg->cmd_id) { case MBCA_CMD_I_AM_ALIVE_FROM_CAN: mcba_usb_process_ka_can(priv, (struct mcba_usb_msg_ka_can *)msg); break; case MBCA_CMD_I_AM_ALIVE_FROM_USB: mcba_usb_process_ka_usb(priv, (struct mcba_usb_msg_ka_usb *)msg); break; case MBCA_CMD_RECEIVE_MESSAGE: mcba_usb_process_can(priv, (struct mcba_usb_msg_can *)msg); break; case MBCA_CMD_NOTHING_TO_SEND: /* Side effect of communication between PIC_USB and PIC_CAN. * PIC_CAN is telling us that it has nothing to send */ break; case MBCA_CMD_TRANSMIT_MESSAGE_RSP: /* Transmission response from the device containing timestamp */ break; default: netdev_warn(priv->netdev, "Unsupported msg (0x%X)", msg->cmd_id); break; } } /* Callback for reading data from device * * Check urb status, call read function and resubmit urb read operation. */ static void mcba_usb_read_bulk_callback(struct urb *urb) { struct mcba_priv *priv = urb->context; struct net_device *netdev; int retval; int pos = 0; netdev = priv->netdev; if (!netif_device_present(netdev)) return; switch (urb->status) { case 0: /* success */ break; case -ENOENT: case -EPIPE: case -EPROTO: case -ESHUTDOWN: return; default: netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status); goto resubmit_urb; } while (pos < urb->actual_length) { struct mcba_usb_msg *msg; if (pos + sizeof(struct mcba_usb_msg) > urb->actual_length) { netdev_err(priv->netdev, "format error\n"); break; } msg = (struct mcba_usb_msg *)(urb->transfer_buffer + pos); mcba_usb_process_rx(priv, msg); pos += sizeof(struct mcba_usb_msg); } resubmit_urb: usb_fill_bulk_urb(urb, priv->udev, priv->rx_pipe, urb->transfer_buffer, MCBA_USB_RX_BUFF_SIZE, mcba_usb_read_bulk_callback, priv); retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval == -ENODEV) netif_device_detach(netdev); else if (retval) netdev_err(netdev, "failed resubmitting read bulk urb: %d\n", retval); } /* Start USB device */ static int mcba_usb_start(struct mcba_priv *priv) { struct net_device *netdev = priv->netdev; int err, i; mcba_init_ctx(priv); for (i = 0; i < MCBA_MAX_RX_URBS; i++) { struct urb *urb = NULL; u8 *buf; dma_addr_t buf_dma; /* create a URB, and a buffer for it */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { err = -ENOMEM; break; } buf = usb_alloc_coherent(priv->udev, MCBA_USB_RX_BUFF_SIZE, GFP_KERNEL, &buf_dma); if (!buf) { netdev_err(netdev, "No memory left for USB buffer\n"); usb_free_urb(urb); err = -ENOMEM; break; } urb->transfer_dma = buf_dma; usb_fill_bulk_urb(urb, priv->udev, priv->rx_pipe, buf, MCBA_USB_RX_BUFF_SIZE, mcba_usb_read_bulk_callback, priv); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &priv->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) { usb_unanchor_urb(urb); usb_free_coherent(priv->udev, MCBA_USB_RX_BUFF_SIZE, buf, buf_dma); usb_free_urb(urb); break; } priv->rxbuf[i] = buf; priv->rxbuf_dma[i] = buf_dma; /* Drop reference, USB core will take care of freeing it */ usb_free_urb(urb); } /* Did we submit any URBs */ if (i == 0) { netdev_warn(netdev, "couldn't setup read URBs\n"); return err; } /* Warn if we've couldn't transmit all the URBs */ if (i < MCBA_MAX_RX_URBS) netdev_warn(netdev, "rx performance may be slow\n"); mcba_usb_xmit_read_fw_ver(priv, MCBA_VER_REQ_USB); mcba_usb_xmit_read_fw_ver(priv, MCBA_VER_REQ_CAN); return err; } /* Open USB device */ static int mcba_usb_open(struct net_device *netdev) { struct mcba_priv *priv = netdev_priv(netdev); int err; /* common open */ err = open_candev(netdev); if (err) return err; priv->can_speed_check = true; priv->can.state = CAN_STATE_ERROR_ACTIVE; netif_start_queue(netdev); return 0; } static void mcba_urb_unlink(struct mcba_priv *priv) { int i; usb_kill_anchored_urbs(&priv->rx_submitted); for (i = 0; i < MCBA_MAX_RX_URBS; ++i) usb_free_coherent(priv->udev, MCBA_USB_RX_BUFF_SIZE, priv->rxbuf[i], priv->rxbuf_dma[i]); usb_kill_anchored_urbs(&priv->tx_submitted); } /* Close USB device */ static int mcba_usb_close(struct net_device *netdev) { struct mcba_priv *priv = netdev_priv(netdev); priv->can.state = CAN_STATE_STOPPED; netif_stop_queue(netdev); /* Stop polling */ mcba_urb_unlink(priv); close_candev(netdev); return 0; } /* Set network device mode * * Maybe we should leave this function empty, because the device * set mode variable with open command. */ static int mcba_net_set_mode(struct net_device *netdev, enum can_mode mode) { return 0; } static int mcba_net_get_berr_counter(const struct net_device *netdev, struct can_berr_counter *bec) { struct mcba_priv *priv = netdev_priv(netdev); bec->txerr = priv->bec.txerr; bec->rxerr = priv->bec.rxerr; return 0; } static const struct net_device_ops mcba_netdev_ops = { .ndo_open = mcba_usb_open, .ndo_stop = mcba_usb_close, .ndo_start_xmit = mcba_usb_start_xmit, .ndo_change_mtu = can_change_mtu, }; static const struct ethtool_ops mcba_ethtool_ops = { .get_ts_info = ethtool_op_get_ts_info, }; /* Microchip CANBUS has hardcoded bittiming values by default. * This function sends request via USB to change the speed and align bittiming * values for presentation purposes only */ static int mcba_net_set_bittiming(struct net_device *netdev) { struct mcba_priv *priv = netdev_priv(netdev); const u16 bitrate_kbps = priv->can.bittiming.bitrate / 1000; mcba_usb_xmit_change_bitrate(priv, bitrate_kbps); return 0; } static int mcba_set_termination(struct net_device *netdev, u16 term) { struct mcba_priv *priv = netdev_priv(netdev); struct mcba_usb_msg_termination usb_msg = { .cmd_id = MBCA_CMD_SETUP_TERMINATION_RESISTANCE }; if (term == MCBA_TERMINATION_ENABLED) usb_msg.termination = MCBA_VER_TERMINATION_ON; else usb_msg.termination = MCBA_VER_TERMINATION_OFF; mcba_usb_xmit_cmd(priv, (struct mcba_usb_msg *)&usb_msg); return 0; } static int mcba_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct net_device *netdev; struct mcba_priv *priv; int err; struct usb_device *usbdev = interface_to_usbdev(intf); struct usb_endpoint_descriptor *in, *out; err = usb_find_common_endpoints(intf->cur_altsetting, &in, &out, NULL, NULL); if (err) { dev_err(&intf->dev, "Can't find endpoints\n"); return err; } netdev = alloc_candev(sizeof(struct mcba_priv), MCBA_MAX_TX_URBS); if (!netdev) { dev_err(&intf->dev, "Couldn't alloc candev\n"); return -ENOMEM; } priv = netdev_priv(netdev); priv->udev = usbdev; priv->netdev = netdev; priv->usb_ka_first_pass = true; priv->can_ka_first_pass = true; priv->can_speed_check = false; init_usb_anchor(&priv->rx_submitted); init_usb_anchor(&priv->tx_submitted); usb_set_intfdata(intf, priv); /* Init CAN device */ priv->can.state = CAN_STATE_STOPPED; priv->can.termination_const = mcba_termination; priv->can.termination_const_cnt = ARRAY_SIZE(mcba_termination); priv->can.bitrate_const = mcba_bitrate; priv->can.bitrate_const_cnt = ARRAY_SIZE(mcba_bitrate); priv->can.do_set_termination = mcba_set_termination; priv->can.do_set_mode = mcba_net_set_mode; priv->can.do_get_berr_counter = mcba_net_get_berr_counter; priv->can.do_set_bittiming = mcba_net_set_bittiming; netdev->netdev_ops = &mcba_netdev_ops; netdev->ethtool_ops = &mcba_ethtool_ops; netdev->flags |= IFF_ECHO; /* we support local echo */ SET_NETDEV_DEV(netdev, &intf->dev); err = register_candev(netdev); if (err) { netdev_err(netdev, "couldn't register CAN device: %d\n", err); goto cleanup_free_candev; } priv->rx_pipe = usb_rcvbulkpipe(priv->udev, in->bEndpointAddress); priv->tx_pipe = usb_sndbulkpipe(priv->udev, out->bEndpointAddress); /* Start USB dev only if we have successfully registered CAN device */ err = mcba_usb_start(priv); if (err) { if (err == -ENODEV) netif_device_detach(priv->netdev); netdev_warn(netdev, "couldn't start device: %d\n", err); goto cleanup_unregister_candev; } dev_info(&intf->dev, "Microchip CAN BUS Analyzer connected\n"); return 0; cleanup_unregister_candev: unregister_candev(priv->netdev); cleanup_free_candev: free_candev(netdev); return err; } /* Called by the usb core when driver is unloaded or device is removed */ static void mcba_usb_disconnect(struct usb_interface *intf) { struct mcba_priv *priv = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); netdev_info(priv->netdev, "device disconnected\n"); unregister_candev(priv->netdev); mcba_urb_unlink(priv); free_candev(priv->netdev); } static struct usb_driver mcba_usb_driver = { .name = MCBA_MODULE_NAME, .probe = mcba_usb_probe, .disconnect = mcba_usb_disconnect, .id_table = mcba_usb_table, }; module_usb_driver(mcba_usb_driver); MODULE_AUTHOR("Remigiusz Kołłątaj <remigiusz.kollataj@mobica.com>"); MODULE_DESCRIPTION("SocketCAN driver for Microchip CAN BUS Analyzer Tool"); MODULE_LICENSE("GPL v2"); |
| 6 1 1 1 3 1 1 1 1 10 8 8 5 5 1 1 1 6 1 |