3 3 2 2 38 39 39 39 39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26 18 18 8 8 8 8 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | // SPDX-License-Identifier: GPL-2.0-or-later /* Task credentials management - see Documentation/security/credentials.rst * * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) "CRED: " fmt #include <linux/export.h> #include <linux/cred.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/sched/coredump.h> #include <linux/key.h> #include <linux/keyctl.h> #include <linux/init_task.h> #include <linux/security.h> #include <linux/binfmts.h> #include <linux/cn_proc.h> #include <linux/uidgid.h> #if 0 #define kdebug(FMT, ...) \ printk("[%-5.5s%5u] " FMT "\n", \ current->comm, current->pid, ##__VA_ARGS__) #else #define kdebug(FMT, ...) \ do { \ if (0) \ no_printk("[%-5.5s%5u] " FMT "\n", \ current->comm, current->pid, ##__VA_ARGS__); \ } while (0) #endif static struct kmem_cache *cred_jar; /* init to 2 - one for init_task, one to ensure it is never freed */ static struct group_info init_groups = { .usage = REFCOUNT_INIT(2) }; /* * The initial credentials for the initial task */ struct cred init_cred = { .usage = ATOMIC_INIT(4), .uid = GLOBAL_ROOT_UID, .gid = GLOBAL_ROOT_GID, .suid = GLOBAL_ROOT_UID, .sgid = GLOBAL_ROOT_GID, .euid = GLOBAL_ROOT_UID, .egid = GLOBAL_ROOT_GID, .fsuid = GLOBAL_ROOT_UID, .fsgid = GLOBAL_ROOT_GID, .securebits = SECUREBITS_DEFAULT, .cap_inheritable = CAP_EMPTY_SET, .cap_permitted = CAP_FULL_SET, .cap_effective = CAP_FULL_SET, .cap_bset = CAP_FULL_SET, .user = INIT_USER, .user_ns = &init_user_ns, .group_info = &init_groups, .ucounts = &init_ucounts, }; /* * The RCU callback to actually dispose of a set of credentials */ static void put_cred_rcu(struct rcu_head *rcu) { struct cred *cred = container_of(rcu, struct cred, rcu); kdebug("put_cred_rcu(%p)", cred); if (atomic_long_read(&cred->usage) != 0) panic("CRED: put_cred_rcu() sees %p with usage %ld\n", cred, atomic_long_read(&cred->usage)); security_cred_free(cred); key_put(cred->session_keyring); key_put(cred->process_keyring); key_put(cred->thread_keyring); key_put(cred->request_key_auth); if (cred->group_info) put_group_info(cred->group_info); free_uid(cred->user); if (cred->ucounts) put_ucounts(cred->ucounts); put_user_ns(cred->user_ns); kmem_cache_free(cred_jar, cred); } /** * __put_cred - Destroy a set of credentials * @cred: The record to release * * Destroy a set of credentials on which no references remain. */ void __put_cred(struct cred *cred) { kdebug("__put_cred(%p{%ld})", cred, atomic_long_read(&cred->usage)); BUG_ON(atomic_long_read(&cred->usage) != 0); BUG_ON(cred == current->cred); BUG_ON(cred == current->real_cred); if (cred->non_rcu) put_cred_rcu(&cred->rcu); else call_rcu(&cred->rcu, put_cred_rcu); } EXPORT_SYMBOL(__put_cred); /* * Clean up a task's credentials when it exits */ void exit_creds(struct task_struct *tsk) { struct cred *real_cred, *cred; kdebug("exit_creds(%u,%p,%p,{%ld})", tsk->pid, tsk->real_cred, tsk->cred, atomic_long_read(&tsk->cred->usage)); real_cred = (struct cred *) tsk->real_cred; tsk->real_cred = NULL; cred = (struct cred *) tsk->cred; tsk->cred = NULL; if (real_cred == cred) { put_cred_many(cred, 2); } else { put_cred(real_cred); put_cred(cred); } #ifdef CONFIG_KEYS_REQUEST_CACHE key_put(tsk->cached_requested_key); tsk->cached_requested_key = NULL; #endif } /** * get_task_cred - Get another task's objective credentials * @task: The task to query * * Get the objective credentials of a task, pinning them so that they can't go * away. Accessing a task's credentials directly is not permitted. * * The caller must also make sure task doesn't get deleted, either by holding a * ref on task or by holding tasklist_lock to prevent it from being unlinked. */ const struct cred *get_task_cred(struct task_struct *task) { const struct cred *cred; rcu_read_lock(); do { cred = __task_cred((task)); BUG_ON(!cred); } while (!get_cred_rcu(cred)); rcu_read_unlock(); return cred; } EXPORT_SYMBOL(get_task_cred); /* * Allocate blank credentials, such that the credentials can be filled in at a * later date without risk of ENOMEM. */ struct cred *cred_alloc_blank(void) { struct cred *new; new = kmem_cache_zalloc(cred_jar, GFP_KERNEL); if (!new) return NULL; atomic_long_set(&new->usage, 1); if (security_cred_alloc_blank(new, GFP_KERNEL_ACCOUNT) < 0) goto error; return new; error: abort_creds(new); return NULL; } /** * prepare_creds - Prepare a new set of credentials for modification * * Prepare a new set of task credentials for modification. A task's creds * shouldn't generally be modified directly, therefore this function is used to * prepare a new copy, which the caller then modifies and then commits by * calling commit_creds(). * * Preparation involves making a copy of the objective creds for modification. * * Returns a pointer to the new creds-to-be if successful, NULL otherwise. * * Call commit_creds() or abort_creds() to clean up. */ struct cred *prepare_creds(void) { struct task_struct *task = current; const struct cred *old; struct cred *new; new = kmem_cache_alloc(cred_jar, GFP_KERNEL); if (!new) return NULL; kdebug("prepare_creds() alloc %p", new); old = task->cred; memcpy(new, old, sizeof(struct cred)); new->non_rcu = 0; atomic_long_set(&new->usage, 1); get_group_info(new->group_info); get_uid(new->user); get_user_ns(new->user_ns); #ifdef CONFIG_KEYS key_get(new->session_keyring); key_get(new->process_keyring); key_get(new->thread_keyring); key_get(new->request_key_auth); #endif #ifdef CONFIG_SECURITY new->security = NULL; #endif new->ucounts = get_ucounts(new->ucounts); if (!new->ucounts) goto error; if (security_prepare_creds(new, old, GFP_KERNEL_ACCOUNT) < 0) goto error; return new; error: abort_creds(new); return NULL; } EXPORT_SYMBOL(prepare_creds); /* * Prepare credentials for current to perform an execve() * - The caller must hold ->cred_guard_mutex */ struct cred *prepare_exec_creds(void) { struct cred *new; new = prepare_creds(); if (!new) return new; #ifdef CONFIG_KEYS /* newly exec'd tasks don't get a thread keyring */ key_put(new->thread_keyring); new->thread_keyring = NULL; /* inherit the session keyring; new process keyring */ key_put(new->process_keyring); new->process_keyring = NULL; #endif new->suid = new->fsuid = new->euid; new->sgid = new->fsgid = new->egid; return new; } /* * Copy credentials for the new process created by fork() * * We share if we can, but under some circumstances we have to generate a new * set. * * The new process gets the current process's subjective credentials as its * objective and subjective credentials */ int copy_creds(struct task_struct *p, unsigned long clone_flags) { struct cred *new; int ret; #ifdef CONFIG_KEYS_REQUEST_CACHE p->cached_requested_key = NULL; #endif if ( #ifdef CONFIG_KEYS !p->cred->thread_keyring && #endif clone_flags & CLONE_THREAD ) { p->real_cred = get_cred_many(p->cred, 2); kdebug("share_creds(%p{%ld})", p->cred, atomic_long_read(&p->cred->usage)); inc_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); return 0; } new = prepare_creds(); if (!new) return -ENOMEM; if (clone_flags & CLONE_NEWUSER) { ret = create_user_ns(new); if (ret < 0) goto error_put; ret = set_cred_ucounts(new); if (ret < 0) goto error_put; } #ifdef CONFIG_KEYS /* new threads get their own thread keyrings if their parent already * had one */ if (new->thread_keyring) { key_put(new->thread_keyring); new->thread_keyring = NULL; if (clone_flags & CLONE_THREAD) install_thread_keyring_to_cred(new); } /* The process keyring is only shared between the threads in a process; * anything outside of those threads doesn't inherit. */ if (!(clone_flags & CLONE_THREAD)) { key_put(new->process_keyring); new->process_keyring = NULL; } #endif p->cred = p->real_cred = get_cred(new); inc_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); return 0; error_put: put_cred(new); return ret; } static bool cred_cap_issubset(const struct cred *set, const struct cred *subset) { const struct user_namespace *set_ns = set->user_ns; const struct user_namespace *subset_ns = subset->user_ns; /* If the two credentials are in the same user namespace see if * the capabilities of subset are a subset of set. */ if (set_ns == subset_ns) return cap_issubset(subset->cap_permitted, set->cap_permitted); /* The credentials are in a different user namespaces * therefore one is a subset of the other only if a set is an * ancestor of subset and set->euid is owner of subset or one * of subsets ancestors. */ for (;subset_ns != &init_user_ns; subset_ns = subset_ns->parent) { if ((set_ns == subset_ns->parent) && uid_eq(subset_ns->owner, set->euid)) return true; } return false; } /** * commit_creds - Install new credentials upon the current task * @new: The credentials to be assigned * * Install a new set of credentials to the current task, using RCU to replace * the old set. Both the objective and the subjective credentials pointers are * updated. This function may not be called if the subjective credentials are * in an overridden state. * * This function eats the caller's reference to the new credentials. * * Always returns 0 thus allowing this function to be tail-called at the end * of, say, sys_setgid(). */ int commit_creds(struct cred *new) { struct task_struct *task = current; const struct cred *old = task->real_cred; kdebug("commit_creds(%p{%ld})", new, atomic_long_read(&new->usage)); BUG_ON(task->cred != old); BUG_ON(atomic_long_read(&new->usage) < 1); get_cred(new); /* we will require a ref for the subj creds too */ /* dumpability changes */ if (!uid_eq(old->euid, new->euid) || !gid_eq(old->egid, new->egid) || !uid_eq(old->fsuid, new->fsuid) || !gid_eq(old->fsgid, new->fsgid) || !cred_cap_issubset(old, new)) { if (task->mm) set_dumpable(task->mm, suid_dumpable); task->pdeath_signal = 0; /* * If a task drops privileges and becomes nondumpable, * the dumpability change must become visible before * the credential change; otherwise, a __ptrace_may_access() * racing with this change may be able to attach to a task it * shouldn't be able to attach to (as if the task had dropped * privileges without becoming nondumpable). * Pairs with a read barrier in __ptrace_may_access(). */ smp_wmb(); } /* alter the thread keyring */ if (!uid_eq(new->fsuid, old->fsuid)) key_fsuid_changed(new); if (!gid_eq(new->fsgid, old->fsgid)) key_fsgid_changed(new); /* do it * RLIMIT_NPROC limits on user->processes have already been checked * in set_user(). */ if (new->user != old->user || new->user_ns != old->user_ns) inc_rlimit_ucounts(new->ucounts, UCOUNT_RLIMIT_NPROC, 1); rcu_assign_pointer(task->real_cred, new); rcu_assign_pointer(task->cred, new); if (new->user != old->user || new->user_ns != old->user_ns) dec_rlimit_ucounts(old->ucounts, UCOUNT_RLIMIT_NPROC, 1); /* send notifications */ if (!uid_eq(new->uid, old->uid) || !uid_eq(new->euid, old->euid) || !uid_eq(new->suid, old->suid) || !uid_eq(new->fsuid, old->fsuid)) proc_id_connector(task, PROC_EVENT_UID); if (!gid_eq(new->gid, old->gid) || !gid_eq(new->egid, old->egid) || !gid_eq(new->sgid, old->sgid) || !gid_eq(new->fsgid, old->fsgid)) proc_id_connector(task, PROC_EVENT_GID); /* release the old obj and subj refs both */ put_cred_many(old, 2); return 0; } EXPORT_SYMBOL(commit_creds); /** * abort_creds - Discard a set of credentials and unlock the current task * @new: The credentials that were going to be applied * * Discard a set of credentials that were under construction and unlock the * current task. */ void abort_creds(struct cred *new) { kdebug("abort_creds(%p{%ld})", new, atomic_long_read(&new->usage)); BUG_ON(atomic_long_read(&new->usage) < 1); put_cred(new); } EXPORT_SYMBOL(abort_creds); /** * override_creds - Override the current process's subjective credentials * @new: The credentials to be assigned * * Install a set of temporary override subjective credentials on the current * process, returning the old set for later reversion. */ const struct cred *override_creds(const struct cred *new) { const struct cred *old = current->cred; kdebug("override_creds(%p{%ld})", new, atomic_long_read(&new->usage)); /* * NOTE! This uses 'get_new_cred()' rather than 'get_cred()'. * * That means that we do not clear the 'non_rcu' flag, since * we are only installing the cred into the thread-synchronous * '->cred' pointer, not the '->real_cred' pointer that is * visible to other threads under RCU. */ get_new_cred((struct cred *)new); rcu_assign_pointer(current->cred, new); kdebug("override_creds() = %p{%ld}", old, atomic_long_read(&old->usage)); return old; } EXPORT_SYMBOL(override_creds); /** * revert_creds - Revert a temporary subjective credentials override * @old: The credentials to be restored * * Revert a temporary set of override subjective credentials to an old set, * discarding the override set. */ void revert_creds(const struct cred *old) { const struct cred *override = current->cred; kdebug("revert_creds(%p{%ld})", old, atomic_long_read(&old->usage)); rcu_assign_pointer(current->cred, old); put_cred(override); } EXPORT_SYMBOL(revert_creds); /** * cred_fscmp - Compare two credentials with respect to filesystem access. * @a: The first credential * @b: The second credential * * cred_cmp() will return zero if both credentials have the same * fsuid, fsgid, and supplementary groups. That is, if they will both * provide the same access to files based on mode/uid/gid. * If the credentials are different, then either -1 or 1 will * be returned depending on whether @a comes before or after @b * respectively in an arbitrary, but stable, ordering of credentials. * * Return: -1, 0, or 1 depending on comparison */ int cred_fscmp(const struct cred *a, const struct cred *b) { struct group_info *ga, *gb; int g; if (a == b) return 0; if (uid_lt(a->fsuid, b->fsuid)) return -1; if (uid_gt(a->fsuid, b->fsuid)) return 1; if (gid_lt(a->fsgid, b->fsgid)) return -1; if (gid_gt(a->fsgid, b->fsgid)) return 1; ga = a->group_info; gb = b->group_info; if (ga == gb) return 0; if (ga == NULL) return -1; if (gb == NULL) return 1; if (ga->ngroups < gb->ngroups) return -1; if (ga->ngroups > gb->ngroups) return 1; for (g = 0; g < ga->ngroups; g++) { if (gid_lt(ga->gid[g], gb->gid[g])) return -1; if (gid_gt(ga->gid[g], gb->gid[g])) return 1; } return 0; } EXPORT_SYMBOL(cred_fscmp); int set_cred_ucounts(struct cred *new) { struct ucounts *new_ucounts, *old_ucounts = new->ucounts; /* * This optimization is needed because alloc_ucounts() uses locks * for table lookups. */ if (old_ucounts->ns == new->user_ns && uid_eq(old_ucounts->uid, new->uid)) return 0; if (!(new_ucounts = alloc_ucounts(new->user_ns, new->uid))) return -EAGAIN; new->ucounts = new_ucounts; put_ucounts(old_ucounts); return 0; } /* * initialise the credentials stuff */ void __init cred_init(void) { /* allocate a slab in which we can store credentials */ cred_jar = KMEM_CACHE(cred, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); } /** * prepare_kernel_cred - Prepare a set of credentials for a kernel service * @daemon: A userspace daemon to be used as a reference * * Prepare a set of credentials for a kernel service. This can then be used to * override a task's own credentials so that work can be done on behalf of that * task that requires a different subjective context. * * @daemon is used to provide a base cred, with the security data derived from * that; if this is "&init_task", they'll be set to 0, no groups, full * capabilities, and no keys. * * The caller may change these controls afterwards if desired. * * Returns the new credentials or NULL if out of memory. */ struct cred *prepare_kernel_cred(struct task_struct *daemon) { const struct cred *old; struct cred *new; if (WARN_ON_ONCE(!daemon)) return NULL; new = kmem_cache_alloc(cred_jar, GFP_KERNEL); if (!new) return NULL; kdebug("prepare_kernel_cred() alloc %p", new); old = get_task_cred(daemon); *new = *old; new->non_rcu = 0; atomic_long_set(&new->usage, 1); get_uid(new->user); get_user_ns(new->user_ns); get_group_info(new->group_info); #ifdef CONFIG_KEYS new->session_keyring = NULL; new->process_keyring = NULL; new->thread_keyring = NULL; new->request_key_auth = NULL; new->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING; #endif #ifdef CONFIG_SECURITY new->security = NULL; #endif new->ucounts = get_ucounts(new->ucounts); if (!new->ucounts) goto error; if (security_prepare_creds(new, old, GFP_KERNEL_ACCOUNT) < 0) goto error; put_cred(old); return new; error: put_cred(new); put_cred(old); return NULL; } EXPORT_SYMBOL(prepare_kernel_cred); /** * set_security_override - Set the security ID in a set of credentials * @new: The credentials to alter * @secid: The LSM security ID to set * * Set the LSM security ID in a set of credentials so that the subjective * security is overridden when an alternative set of credentials is used. */ int set_security_override(struct cred *new, u32 secid) { return security_kernel_act_as(new, secid); } EXPORT_SYMBOL(set_security_override); /** * set_security_override_from_ctx - Set the security ID in a set of credentials * @new: The credentials to alter * @secctx: The LSM security context to generate the security ID from. * * Set the LSM security ID in a set of credentials so that the subjective * security is overridden when an alternative set of credentials is used. The * security ID is specified in string form as a security context to be * interpreted by the LSM. */ int set_security_override_from_ctx(struct cred *new, const char *secctx) { u32 secid; int ret; ret = security_secctx_to_secid(secctx, strlen(secctx), &secid); if (ret < 0) return ret; return set_security_override(new, secid); } EXPORT_SYMBOL(set_security_override_from_ctx); /** * set_create_files_as - Set the LSM file create context in a set of credentials * @new: The credentials to alter * @inode: The inode to take the context from * * Change the LSM file creation context in a set of credentials to be the same * as the object context of the specified inode, so that the new inodes have * the same MAC context as that inode. */ int set_create_files_as(struct cred *new, struct inode *inode) { if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) return -EINVAL; new->fsuid = inode->i_uid; new->fsgid = inode->i_gid; return security_kernel_create_files_as(new, inode); } EXPORT_SYMBOL(set_create_files_as); |
8 1 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Header for use in defining a given L4 protocol for connection tracking. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalized L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack_protcol.h */ #ifndef _NF_CONNTRACK_L4PROTO_H #define _NF_CONNTRACK_L4PROTO_H #include <linux/netlink.h> #include <net/netlink.h> #include <net/netfilter/nf_conntrack.h> #include <net/netns/generic.h> struct seq_file; struct nf_conntrack_l4proto { /* L4 Protocol number. */ u_int8_t l4proto; /* Resolve clashes on insertion races. */ bool allow_clash; /* protoinfo nlattr size, closes a hole */ u16 nlattr_size; /* called by gc worker if table is full */ bool (*can_early_drop)(const struct nf_conn *ct); /* convert protoinfo to nfnetink attributes */ int (*to_nlattr)(struct sk_buff *skb, struct nlattr *nla, struct nf_conn *ct, bool destroy); /* convert nfnetlink attributes to protoinfo */ int (*from_nlattr)(struct nlattr *tb[], struct nf_conn *ct); int (*tuple_to_nlattr)(struct sk_buff *skb, const struct nf_conntrack_tuple *t); /* Calculate tuple nlattr size */ unsigned int (*nlattr_tuple_size)(void); int (*nlattr_to_tuple)(struct nlattr *tb[], struct nf_conntrack_tuple *t, u_int32_t flags); const struct nla_policy *nla_policy; struct { int (*nlattr_to_obj)(struct nlattr *tb[], struct net *net, void *data); int (*obj_to_nlattr)(struct sk_buff *skb, const void *data); u16 obj_size; u16 nlattr_max; const struct nla_policy *nla_policy; } ctnl_timeout; #ifdef CONFIG_NF_CONNTRACK_PROCFS /* Print out the private part of the conntrack. */ void (*print_conntrack)(struct seq_file *s, struct nf_conn *); #endif }; bool icmp_pkt_to_tuple(const struct sk_buff *skb, unsigned int dataoff, struct net *net, struct nf_conntrack_tuple *tuple); bool icmpv6_pkt_to_tuple(const struct sk_buff *skb, unsigned int dataoff, struct net *net, struct nf_conntrack_tuple *tuple); bool nf_conntrack_invert_icmp_tuple(struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple *orig); bool nf_conntrack_invert_icmpv6_tuple(struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple *orig); int nf_conntrack_inet_error(struct nf_conn *tmpl, struct sk_buff *skb, unsigned int dataoff, const struct nf_hook_state *state, u8 l4proto, union nf_inet_addr *outer_daddr); int nf_conntrack_icmpv4_error(struct nf_conn *tmpl, struct sk_buff *skb, unsigned int dataoff, const struct nf_hook_state *state); int nf_conntrack_icmpv6_error(struct nf_conn *tmpl, struct sk_buff *skb, unsigned int dataoff, const struct nf_hook_state *state); int nf_conntrack_icmp_packet(struct nf_conn *ct, struct sk_buff *skb, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); int nf_conntrack_icmpv6_packet(struct nf_conn *ct, struct sk_buff *skb, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); int nf_conntrack_udp_packet(struct nf_conn *ct, struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); int nf_conntrack_udplite_packet(struct nf_conn *ct, struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); int nf_conntrack_tcp_packet(struct nf_conn *ct, struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); int nf_conntrack_dccp_packet(struct nf_conn *ct, struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); int nf_conntrack_sctp_packet(struct nf_conn *ct, struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); int nf_conntrack_gre_packet(struct nf_conn *ct, struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state); void nf_conntrack_generic_init_net(struct net *net); void nf_conntrack_tcp_init_net(struct net *net); void nf_conntrack_udp_init_net(struct net *net); void nf_conntrack_gre_init_net(struct net *net); void nf_conntrack_dccp_init_net(struct net *net); void nf_conntrack_sctp_init_net(struct net *net); void nf_conntrack_icmp_init_net(struct net *net); void nf_conntrack_icmpv6_init_net(struct net *net); /* Existing built-in generic protocol */ extern const struct nf_conntrack_l4proto nf_conntrack_l4proto_generic; #define MAX_NF_CT_PROTO IPPROTO_UDPLITE const struct nf_conntrack_l4proto *nf_ct_l4proto_find(u8 l4proto); /* Generic netlink helpers */ int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple); int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[], struct nf_conntrack_tuple *t, u_int32_t flags); unsigned int nf_ct_port_nlattr_tuple_size(void); extern const struct nla_policy nf_ct_port_nla_policy[]; #ifdef CONFIG_SYSCTL __printf(4, 5) __cold void nf_ct_l4proto_log_invalid(const struct sk_buff *skb, const struct nf_conn *ct, const struct nf_hook_state *state, const char *fmt, ...); __printf(4, 5) __cold void nf_l4proto_log_invalid(const struct sk_buff *skb, const struct nf_hook_state *state, u8 protonum, const char *fmt, ...); #else static inline __printf(4, 5) __cold void nf_l4proto_log_invalid(const struct sk_buff *skb, const struct nf_hook_state *state, u8 protonum, const char *fmt, ...) {} static inline __printf(4, 5) __cold void nf_ct_l4proto_log_invalid(const struct sk_buff *skb, const struct nf_conn *ct, const struct nf_hook_state *state, const char *fmt, ...) { } #endif /* CONFIG_SYSCTL */ #if IS_ENABLED(CONFIG_NF_CONNTRACK) static inline struct nf_generic_net *nf_generic_pernet(struct net *net) { return &net->ct.nf_ct_proto.generic; } static inline struct nf_tcp_net *nf_tcp_pernet(struct net *net) { return &net->ct.nf_ct_proto.tcp; } static inline struct nf_udp_net *nf_udp_pernet(struct net *net) { return &net->ct.nf_ct_proto.udp; } static inline struct nf_icmp_net *nf_icmp_pernet(struct net *net) { return &net->ct.nf_ct_proto.icmp; } static inline struct nf_icmp_net *nf_icmpv6_pernet(struct net *net) { return &net->ct.nf_ct_proto.icmpv6; } /* Caller must check nf_ct_protonum(ct) is IPPROTO_TCP before calling. */ static inline void nf_ct_set_tcp_be_liberal(struct nf_conn *ct) { ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; } /* Caller must check nf_ct_protonum(ct) is IPPROTO_TCP before calling. */ static inline bool nf_conntrack_tcp_established(const struct nf_conn *ct) { return ct->proto.tcp.state == TCP_CONNTRACK_ESTABLISHED && test_bit(IPS_ASSURED_BIT, &ct->status); } #endif #ifdef CONFIG_NF_CT_PROTO_DCCP static inline struct nf_dccp_net *nf_dccp_pernet(struct net *net) { return &net->ct.nf_ct_proto.dccp; } #endif #ifdef CONFIG_NF_CT_PROTO_SCTP static inline struct nf_sctp_net *nf_sctp_pernet(struct net *net) { return &net->ct.nf_ct_proto.sctp; } #endif #ifdef CONFIG_NF_CT_PROTO_GRE static inline struct nf_gre_net *nf_gre_pernet(struct net *net) { return &net->ct.nf_ct_proto.gre; } #endif #endif /*_NF_CONNTRACK_PROTOCOL_H*/ |
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 27 27 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 | // SPDX-License-Identifier: GPL-2.0-or-later #include <linux/cfm_bridge.h> #include <uapi/linux/cfm_bridge.h> #include "br_private_cfm.h" static struct br_cfm_mep *br_mep_find(struct net_bridge *br, u32 instance) { struct br_cfm_mep *mep; hlist_for_each_entry(mep, &br->mep_list, head) if (mep->instance == instance) return mep; return NULL; } static struct br_cfm_mep *br_mep_find_ifindex(struct net_bridge *br, u32 ifindex) { struct br_cfm_mep *mep; hlist_for_each_entry_rcu(mep, &br->mep_list, head, lockdep_rtnl_is_held()) if (mep->create.ifindex == ifindex) return mep; return NULL; } static struct br_cfm_peer_mep *br_peer_mep_find(struct br_cfm_mep *mep, u32 mepid) { struct br_cfm_peer_mep *peer_mep; hlist_for_each_entry_rcu(peer_mep, &mep->peer_mep_list, head, lockdep_rtnl_is_held()) if (peer_mep->mepid == mepid) return peer_mep; return NULL; } static struct net_bridge_port *br_mep_get_port(struct net_bridge *br, u32 ifindex) { struct net_bridge_port *port; list_for_each_entry(port, &br->port_list, list) if (port->dev->ifindex == ifindex) return port; return NULL; } /* Calculate the CCM interval in us. */ static u32 interval_to_us(enum br_cfm_ccm_interval interval) { switch (interval) { case BR_CFM_CCM_INTERVAL_NONE: return 0; case BR_CFM_CCM_INTERVAL_3_3_MS: return 3300; case BR_CFM_CCM_INTERVAL_10_MS: return 10 * 1000; case BR_CFM_CCM_INTERVAL_100_MS: return 100 * 1000; case BR_CFM_CCM_INTERVAL_1_SEC: return 1000 * 1000; case BR_CFM_CCM_INTERVAL_10_SEC: return 10 * 1000 * 1000; case BR_CFM_CCM_INTERVAL_1_MIN: return 60 * 1000 * 1000; case BR_CFM_CCM_INTERVAL_10_MIN: return 10 * 60 * 1000 * 1000; } return 0; } /* Convert the interface interval to CCM PDU value. */ static u32 interval_to_pdu(enum br_cfm_ccm_interval interval) { switch (interval) { case BR_CFM_CCM_INTERVAL_NONE: return 0; case BR_CFM_CCM_INTERVAL_3_3_MS: return 1; case BR_CFM_CCM_INTERVAL_10_MS: return 2; case BR_CFM_CCM_INTERVAL_100_MS: return 3; case BR_CFM_CCM_INTERVAL_1_SEC: return 4; case BR_CFM_CCM_INTERVAL_10_SEC: return 5; case BR_CFM_CCM_INTERVAL_1_MIN: return 6; case BR_CFM_CCM_INTERVAL_10_MIN: return 7; } return 0; } /* Convert the CCM PDU value to interval on interface. */ static u32 pdu_to_interval(u32 value) { switch (value) { case 0: return BR_CFM_CCM_INTERVAL_NONE; case 1: return BR_CFM_CCM_INTERVAL_3_3_MS; case 2: return BR_CFM_CCM_INTERVAL_10_MS; case 3: return BR_CFM_CCM_INTERVAL_100_MS; case 4: return BR_CFM_CCM_INTERVAL_1_SEC; case 5: return BR_CFM_CCM_INTERVAL_10_SEC; case 6: return BR_CFM_CCM_INTERVAL_1_MIN; case 7: return BR_CFM_CCM_INTERVAL_10_MIN; } return BR_CFM_CCM_INTERVAL_NONE; } static void ccm_rx_timer_start(struct br_cfm_peer_mep *peer_mep) { u32 interval_us; interval_us = interval_to_us(peer_mep->mep->cc_config.exp_interval); /* Function ccm_rx_dwork must be called with 1/4 * of the configured CC 'expected_interval' * in order to detect CCM defect after 3.25 interval. */ queue_delayed_work(system_wq, &peer_mep->ccm_rx_dwork, usecs_to_jiffies(interval_us / 4)); } static void br_cfm_notify(int event, const struct net_bridge_port *port) { u32 filter = RTEXT_FILTER_CFM_STATUS; br_info_notify(event, port->br, NULL, filter); } static void cc_peer_enable(struct br_cfm_peer_mep *peer_mep) { memset(&peer_mep->cc_status, 0, sizeof(peer_mep->cc_status)); peer_mep->ccm_rx_count_miss = 0; ccm_rx_timer_start(peer_mep); } static void cc_peer_disable(struct br_cfm_peer_mep *peer_mep) { cancel_delayed_work_sync(&peer_mep->ccm_rx_dwork); } static struct sk_buff *ccm_frame_build(struct br_cfm_mep *mep, const struct br_cfm_cc_ccm_tx_info *const tx_info) { struct br_cfm_common_hdr *common_hdr; struct net_bridge_port *b_port; struct br_cfm_maid *maid; u8 *itu_reserved, *e_tlv; struct ethhdr *eth_hdr; struct sk_buff *skb; __be32 *status_tlv; __be32 *snumber; __be16 *mepid; skb = dev_alloc_skb(CFM_CCM_MAX_FRAME_LENGTH); if (!skb) return NULL; rcu_read_lock(); b_port = rcu_dereference(mep->b_port); if (!b_port) { kfree_skb(skb); rcu_read_unlock(); return NULL; } skb->dev = b_port->dev; rcu_read_unlock(); /* The device cannot be deleted until the work_queue functions has * completed. This function is called from ccm_tx_work_expired() * that is a work_queue functions. */ skb->protocol = htons(ETH_P_CFM); skb->priority = CFM_FRAME_PRIO; /* Ethernet header */ eth_hdr = skb_put(skb, sizeof(*eth_hdr)); ether_addr_copy(eth_hdr->h_dest, tx_info->dmac.addr); ether_addr_copy(eth_hdr->h_source, mep->config.unicast_mac.addr); eth_hdr->h_proto = htons(ETH_P_CFM); /* Common CFM Header */ common_hdr = skb_put(skb, sizeof(*common_hdr)); common_hdr->mdlevel_version = mep->config.mdlevel << 5; common_hdr->opcode = BR_CFM_OPCODE_CCM; common_hdr->flags = (mep->rdi << 7) | interval_to_pdu(mep->cc_config.exp_interval); common_hdr->tlv_offset = CFM_CCM_TLV_OFFSET; /* Sequence number */ snumber = skb_put(skb, sizeof(*snumber)); if (tx_info->seq_no_update) { *snumber = cpu_to_be32(mep->ccm_tx_snumber); mep->ccm_tx_snumber += 1; } else { *snumber = 0; } mepid = skb_put(skb, sizeof(*mepid)); *mepid = cpu_to_be16((u16)mep->config.mepid); maid = skb_put(skb, sizeof(*maid)); memcpy(maid->data, mep->cc_config.exp_maid.data, sizeof(maid->data)); /* ITU reserved (CFM_CCM_ITU_RESERVED_SIZE octets) */ itu_reserved = skb_put(skb, CFM_CCM_ITU_RESERVED_SIZE); memset(itu_reserved, 0, CFM_CCM_ITU_RESERVED_SIZE); /* Generel CFM TLV format: * TLV type: one byte * TLV value length: two bytes * TLV value: 'TLV value length' bytes */ /* Port status TLV. The value length is 1. Total of 4 bytes. */ if (tx_info->port_tlv) { status_tlv = skb_put(skb, sizeof(*status_tlv)); *status_tlv = cpu_to_be32((CFM_PORT_STATUS_TLV_TYPE << 24) | (1 << 8) | /* Value length */ (tx_info->port_tlv_value & 0xFF)); } /* Interface status TLV. The value length is 1. Total of 4 bytes. */ if (tx_info->if_tlv) { status_tlv = skb_put(skb, sizeof(*status_tlv)); *status_tlv = cpu_to_be32((CFM_IF_STATUS_TLV_TYPE << 24) | (1 << 8) | /* Value length */ (tx_info->if_tlv_value & 0xFF)); } /* End TLV */ e_tlv = skb_put(skb, sizeof(*e_tlv)); *e_tlv = CFM_ENDE_TLV_TYPE; return skb; } static void ccm_frame_tx(struct sk_buff *skb) { skb_reset_network_header(skb); dev_queue_xmit(skb); } /* This function is called with the configured CC 'expected_interval' * in order to drive CCM transmission when enabled. */ static void ccm_tx_work_expired(struct work_struct *work) { struct delayed_work *del_work; struct br_cfm_mep *mep; struct sk_buff *skb; u32 interval_us; del_work = to_delayed_work(work); mep = container_of(del_work, struct br_cfm_mep, ccm_tx_dwork); if (time_before_eq(mep->ccm_tx_end, jiffies)) { /* Transmission period has ended */ mep->cc_ccm_tx_info.period = 0; return; } skb = ccm_frame_build(mep, &mep->cc_ccm_tx_info); if (skb) ccm_frame_tx(skb); interval_us = interval_to_us(mep->cc_config.exp_interval); queue_delayed_work(system_wq, &mep->ccm_tx_dwork, usecs_to_jiffies(interval_us)); } /* This function is called with 1/4 of the configured CC 'expected_interval' * in order to detect CCM defect after 3.25 interval. */ static void ccm_rx_work_expired(struct work_struct *work) { struct br_cfm_peer_mep *peer_mep; struct net_bridge_port *b_port; struct delayed_work *del_work; del_work = to_delayed_work(work); peer_mep = container_of(del_work, struct br_cfm_peer_mep, ccm_rx_dwork); /* After 13 counts (4 * 3,25) then 3.25 intervals are expired */ if (peer_mep->ccm_rx_count_miss < 13) { /* 3.25 intervals are NOT expired without CCM reception */ peer_mep->ccm_rx_count_miss++; /* Start timer again */ ccm_rx_timer_start(peer_mep); } else { /* 3.25 intervals are expired without CCM reception. * CCM defect detected */ peer_mep->cc_status.ccm_defect = true; /* Change in CCM defect status - notify */ rcu_read_lock(); b_port = rcu_dereference(peer_mep->mep->b_port); if (b_port) br_cfm_notify(RTM_NEWLINK, b_port); rcu_read_unlock(); } } static u32 ccm_tlv_extract(struct sk_buff *skb, u32 index, struct br_cfm_peer_mep *peer_mep) { __be32 *s_tlv; __be32 _s_tlv; u32 h_s_tlv; u8 *e_tlv; u8 _e_tlv; e_tlv = skb_header_pointer(skb, index, sizeof(_e_tlv), &_e_tlv); if (!e_tlv) return 0; /* TLV is present - get the status TLV */ s_tlv = skb_header_pointer(skb, index, sizeof(_s_tlv), &_s_tlv); if (!s_tlv) return 0; h_s_tlv = ntohl(*s_tlv); if ((h_s_tlv >> 24) == CFM_IF_STATUS_TLV_TYPE) { /* Interface status TLV */ peer_mep->cc_status.tlv_seen = true; peer_mep->cc_status.if_tlv_value = (h_s_tlv & 0xFF); } if ((h_s_tlv >> 24) == CFM_PORT_STATUS_TLV_TYPE) { /* Port status TLV */ peer_mep->cc_status.tlv_seen = true; peer_mep->cc_status.port_tlv_value = (h_s_tlv & 0xFF); } /* The Sender ID TLV is not handled */ /* The Organization-Specific TLV is not handled */ /* Return the length of this tlv. * This is the length of the value field plus 3 bytes for size of type * field and length field */ return ((h_s_tlv >> 8) & 0xFFFF) + 3; } /* note: already called with rcu_read_lock */ static int br_cfm_frame_rx(struct net_bridge_port *port, struct sk_buff *skb) { u32 mdlevel, interval, size, index, max; const struct br_cfm_common_hdr *hdr; struct br_cfm_peer_mep *peer_mep; const struct br_cfm_maid *maid; struct br_cfm_common_hdr _hdr; struct br_cfm_maid _maid; struct br_cfm_mep *mep; struct net_bridge *br; __be32 *snumber; __be32 _snumber; __be16 *mepid; __be16 _mepid; if (port->state == BR_STATE_DISABLED) return 0; hdr = skb_header_pointer(skb, 0, sizeof(_hdr), &_hdr); if (!hdr) return 1; br = port->br; mep = br_mep_find_ifindex(br, port->dev->ifindex); if (unlikely(!mep)) /* No MEP on this port - must be forwarded */ return 0; mdlevel = hdr->mdlevel_version >> 5; if (mdlevel > mep->config.mdlevel) /* The level is above this MEP level - must be forwarded */ return 0; if ((hdr->mdlevel_version & 0x1F) != 0) { /* Invalid version */ mep->status.version_unexp_seen = true; return 1; } if (mdlevel < mep->config.mdlevel) { /* The level is below this MEP level */ mep->status.rx_level_low_seen = true; return 1; } if (hdr->opcode == BR_CFM_OPCODE_CCM) { /* CCM PDU received. */ /* MA ID is after common header + sequence number + MEP ID */ maid = skb_header_pointer(skb, CFM_CCM_PDU_MAID_OFFSET, sizeof(_maid), &_maid); if (!maid) return 1; if (memcmp(maid->data, mep->cc_config.exp_maid.data, sizeof(maid->data))) /* MA ID not as expected */ return 1; /* MEP ID is after common header + sequence number */ mepid = skb_header_pointer(skb, CFM_CCM_PDU_MEPID_OFFSET, sizeof(_mepid), &_mepid); if (!mepid) return 1; peer_mep = br_peer_mep_find(mep, (u32)ntohs(*mepid)); if (!peer_mep) return 1; /* Interval is in common header flags */ interval = hdr->flags & 0x07; if (mep->cc_config.exp_interval != pdu_to_interval(interval)) /* Interval not as expected */ return 1; /* A valid CCM frame is received */ if (peer_mep->cc_status.ccm_defect) { peer_mep->cc_status.ccm_defect = false; /* Change in CCM defect status - notify */ br_cfm_notify(RTM_NEWLINK, port); /* Start CCM RX timer */ ccm_rx_timer_start(peer_mep); } peer_mep->cc_status.seen = true; peer_mep->ccm_rx_count_miss = 0; /* RDI is in common header flags */ peer_mep->cc_status.rdi = (hdr->flags & 0x80) ? true : false; /* Sequence number is after common header */ snumber = skb_header_pointer(skb, CFM_CCM_PDU_SEQNR_OFFSET, sizeof(_snumber), &_snumber); if (!snumber) return 1; if (ntohl(*snumber) != (mep->ccm_rx_snumber + 1)) /* Unexpected sequence number */ peer_mep->cc_status.seq_unexp_seen = true; mep->ccm_rx_snumber = ntohl(*snumber); /* TLV end is after common header + sequence number + MEP ID + * MA ID + ITU reserved */ index = CFM_CCM_PDU_TLV_OFFSET; max = 0; do { /* Handle all TLVs */ size = ccm_tlv_extract(skb, index, peer_mep); index += size; max += 1; } while (size != 0 && max < 4); /* Max four TLVs possible */ return 1; } mep->status.opcode_unexp_seen = true; return 1; } static struct br_frame_type cfm_frame_type __read_mostly = { .type = cpu_to_be16(ETH_P_CFM), .frame_handler = br_cfm_frame_rx, }; int br_cfm_mep_create(struct net_bridge *br, const u32 instance, struct br_cfm_mep_create *const create, struct netlink_ext_ack *extack) { struct net_bridge_port *p; struct br_cfm_mep *mep; ASSERT_RTNL(); if (create->domain == BR_CFM_VLAN) { NL_SET_ERR_MSG_MOD(extack, "VLAN domain not supported"); return -EINVAL; } if (create->domain != BR_CFM_PORT) { NL_SET_ERR_MSG_MOD(extack, "Invalid domain value"); return -EINVAL; } if (create->direction == BR_CFM_MEP_DIRECTION_UP) { NL_SET_ERR_MSG_MOD(extack, "Up-MEP not supported"); return -EINVAL; } if (create->direction != BR_CFM_MEP_DIRECTION_DOWN) { NL_SET_ERR_MSG_MOD(extack, "Invalid direction value"); return -EINVAL; } p = br_mep_get_port(br, create->ifindex); if (!p) { NL_SET_ERR_MSG_MOD(extack, "Port is not related to bridge"); return -EINVAL; } mep = br_mep_find(br, instance); if (mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance already exists"); return -EEXIST; } /* In PORT domain only one instance can be created per port */ if (create->domain == BR_CFM_PORT) { mep = br_mep_find_ifindex(br, create->ifindex); if (mep) { NL_SET_ERR_MSG_MOD(extack, "Only one Port MEP on a port allowed"); return -EINVAL; } } mep = kzalloc(sizeof(*mep), GFP_KERNEL); if (!mep) return -ENOMEM; mep->create = *create; mep->instance = instance; rcu_assign_pointer(mep->b_port, p); INIT_HLIST_HEAD(&mep->peer_mep_list); INIT_DELAYED_WORK(&mep->ccm_tx_dwork, ccm_tx_work_expired); if (hlist_empty(&br->mep_list)) br_add_frame(br, &cfm_frame_type); hlist_add_tail_rcu(&mep->head, &br->mep_list); return 0; } static void mep_delete_implementation(struct net_bridge *br, struct br_cfm_mep *mep) { struct br_cfm_peer_mep *peer_mep; struct hlist_node *n_store; ASSERT_RTNL(); /* Empty and free peer MEP list */ hlist_for_each_entry_safe(peer_mep, n_store, &mep->peer_mep_list, head) { cancel_delayed_work_sync(&peer_mep->ccm_rx_dwork); hlist_del_rcu(&peer_mep->head); kfree_rcu(peer_mep, rcu); } cancel_delayed_work_sync(&mep->ccm_tx_dwork); RCU_INIT_POINTER(mep->b_port, NULL); hlist_del_rcu(&mep->head); kfree_rcu(mep, rcu); if (hlist_empty(&br->mep_list)) br_del_frame(br, &cfm_frame_type); } int br_cfm_mep_delete(struct net_bridge *br, const u32 instance, struct netlink_ext_ack *extack) { struct br_cfm_mep *mep; ASSERT_RTNL(); mep = br_mep_find(br, instance); if (!mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance does not exists"); return -ENOENT; } mep_delete_implementation(br, mep); return 0; } int br_cfm_mep_config_set(struct net_bridge *br, const u32 instance, const struct br_cfm_mep_config *const config, struct netlink_ext_ack *extack) { struct br_cfm_mep *mep; ASSERT_RTNL(); mep = br_mep_find(br, instance); if (!mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance does not exists"); return -ENOENT; } mep->config = *config; return 0; } int br_cfm_cc_config_set(struct net_bridge *br, const u32 instance, const struct br_cfm_cc_config *const config, struct netlink_ext_ack *extack) { struct br_cfm_peer_mep *peer_mep; struct br_cfm_mep *mep; ASSERT_RTNL(); mep = br_mep_find(br, instance); if (!mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance does not exists"); return -ENOENT; } /* Check for no change in configuration */ if (memcmp(config, &mep->cc_config, sizeof(*config)) == 0) return 0; if (config->enable && !mep->cc_config.enable) /* CC is enabled */ hlist_for_each_entry(peer_mep, &mep->peer_mep_list, head) cc_peer_enable(peer_mep); if (!config->enable && mep->cc_config.enable) /* CC is disabled */ hlist_for_each_entry(peer_mep, &mep->peer_mep_list, head) cc_peer_disable(peer_mep); mep->cc_config = *config; mep->ccm_rx_snumber = 0; mep->ccm_tx_snumber = 1; return 0; } int br_cfm_cc_peer_mep_add(struct net_bridge *br, const u32 instance, u32 mepid, struct netlink_ext_ack *extack) { struct br_cfm_peer_mep *peer_mep; struct br_cfm_mep *mep; ASSERT_RTNL(); mep = br_mep_find(br, instance); if (!mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance does not exists"); return -ENOENT; } peer_mep = br_peer_mep_find(mep, mepid); if (peer_mep) { NL_SET_ERR_MSG_MOD(extack, "Peer MEP-ID already exists"); return -EEXIST; } peer_mep = kzalloc(sizeof(*peer_mep), GFP_KERNEL); if (!peer_mep) return -ENOMEM; peer_mep->mepid = mepid; peer_mep->mep = mep; INIT_DELAYED_WORK(&peer_mep->ccm_rx_dwork, ccm_rx_work_expired); if (mep->cc_config.enable) cc_peer_enable(peer_mep); hlist_add_tail_rcu(&peer_mep->head, &mep->peer_mep_list); return 0; } int br_cfm_cc_peer_mep_remove(struct net_bridge *br, const u32 instance, u32 mepid, struct netlink_ext_ack *extack) { struct br_cfm_peer_mep *peer_mep; struct br_cfm_mep *mep; ASSERT_RTNL(); mep = br_mep_find(br, instance); if (!mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance does not exists"); return -ENOENT; } peer_mep = br_peer_mep_find(mep, mepid); if (!peer_mep) { NL_SET_ERR_MSG_MOD(extack, "Peer MEP-ID does not exists"); return -ENOENT; } cc_peer_disable(peer_mep); hlist_del_rcu(&peer_mep->head); kfree_rcu(peer_mep, rcu); return 0; } int br_cfm_cc_rdi_set(struct net_bridge *br, const u32 instance, const bool rdi, struct netlink_ext_ack *extack) { struct br_cfm_mep *mep; ASSERT_RTNL(); mep = br_mep_find(br, instance); if (!mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance does not exists"); return -ENOENT; } mep->rdi = rdi; return 0; } int br_cfm_cc_ccm_tx(struct net_bridge *br, const u32 instance, const struct br_cfm_cc_ccm_tx_info *const tx_info, struct netlink_ext_ack *extack) { struct br_cfm_mep *mep; ASSERT_RTNL(); mep = br_mep_find(br, instance); if (!mep) { NL_SET_ERR_MSG_MOD(extack, "MEP instance does not exists"); return -ENOENT; } if (memcmp(tx_info, &mep->cc_ccm_tx_info, sizeof(*tx_info)) == 0) { /* No change in tx_info. */ if (mep->cc_ccm_tx_info.period == 0) /* Transmission is not enabled - just return */ return 0; /* Transmission is ongoing, the end time is recalculated */ mep->ccm_tx_end = jiffies + usecs_to_jiffies(tx_info->period * 1000000); return 0; } if (tx_info->period == 0 && mep->cc_ccm_tx_info.period == 0) /* Some change in info and transmission is not ongoing */ goto save; if (tx_info->period != 0 && mep->cc_ccm_tx_info.period != 0) { /* Some change in info and transmission is ongoing * The end time is recalculated */ mep->ccm_tx_end = jiffies + usecs_to_jiffies(tx_info->period * 1000000); goto save; } if (tx_info->period == 0 && mep->cc_ccm_tx_info.period != 0) { cancel_delayed_work_sync(&mep->ccm_tx_dwork); goto save; } /* Start delayed work to transmit CCM frames. It is done with zero delay * to send first frame immediately */ mep->ccm_tx_end = jiffies + usecs_to_jiffies(tx_info->period * 1000000); queue_delayed_work(system_wq, &mep->ccm_tx_dwork, 0); save: mep->cc_ccm_tx_info = *tx_info; return 0; } int br_cfm_mep_count(struct net_bridge *br, u32 *count) { struct br_cfm_mep *mep; *count = 0; rcu_read_lock(); hlist_for_each_entry_rcu(mep, &br->mep_list, head) *count += 1; rcu_read_unlock(); return 0; } int br_cfm_peer_mep_count(struct net_bridge *br, u32 *count) { struct br_cfm_peer_mep *peer_mep; struct br_cfm_mep *mep; *count = 0; rcu_read_lock(); hlist_for_each_entry_rcu(mep, &br->mep_list, head) hlist_for_each_entry_rcu(peer_mep, &mep->peer_mep_list, head) *count += 1; rcu_read_unlock(); return 0; } bool br_cfm_created(struct net_bridge *br) { return !hlist_empty(&br->mep_list); } /* Deletes the CFM instances on a specific bridge port */ void br_cfm_port_del(struct net_bridge *br, struct net_bridge_port *port) { struct hlist_node *n_store; struct br_cfm_mep *mep; ASSERT_RTNL(); hlist_for_each_entry_safe(mep, n_store, &br->mep_list, head) if (mep->create.ifindex == port->dev->ifindex) mep_delete_implementation(br, mep); } |
6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 Thomas Gleixner. * Copyright (C) 2016-2017 Christoph Hellwig. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/cpu.h> #include <linux/sort.h> #include <linux/group_cpus.h> #ifdef CONFIG_SMP static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, unsigned int cpus_per_grp) { const struct cpumask *siblmsk; int cpu, sibl; for ( ; cpus_per_grp > 0; ) { cpu = cpumask_first(nmsk); /* Should not happen, but I'm too lazy to think about it */ if (cpu >= nr_cpu_ids) return; cpumask_clear_cpu(cpu, nmsk); cpumask_set_cpu(cpu, irqmsk); cpus_per_grp--; /* If the cpu has siblings, use them first */ siblmsk = topology_sibling_cpumask(cpu); for (sibl = -1; cpus_per_grp > 0; ) { sibl = cpumask_next(sibl, siblmsk); if (sibl >= nr_cpu_ids) break; if (!cpumask_test_and_clear_cpu(sibl, nmsk)) continue; cpumask_set_cpu(sibl, irqmsk); cpus_per_grp--; } } } static cpumask_var_t *alloc_node_to_cpumask(void) { cpumask_var_t *masks; int node; masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); if (!masks) return NULL; for (node = 0; node < nr_node_ids; node++) { if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) goto out_unwind; } return masks; out_unwind: while (--node >= 0) free_cpumask_var(masks[node]); kfree(masks); return NULL; } static void free_node_to_cpumask(cpumask_var_t *masks) { int node; for (node = 0; node < nr_node_ids; node++) free_cpumask_var(masks[node]); kfree(masks); } static void build_node_to_cpumask(cpumask_var_t *masks) { int cpu; for_each_possible_cpu(cpu) cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); } static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, const struct cpumask *mask, nodemask_t *nodemsk) { int n, nodes = 0; /* Calculate the number of nodes in the supplied affinity mask */ for_each_node(n) { if (cpumask_intersects(mask, node_to_cpumask[n])) { node_set(n, *nodemsk); nodes++; } } return nodes; } struct node_groups { unsigned id; union { unsigned ngroups; unsigned ncpus; }; }; static int ncpus_cmp_func(const void *l, const void *r) { const struct node_groups *ln = l; const struct node_groups *rn = r; return ln->ncpus - rn->ncpus; } /* * Allocate group number for each node, so that for each node: * * 1) the allocated number is >= 1 * * 2) the allocated number is <= active CPU number of this node * * The actual allocated total groups may be less than @numgrps when * active total CPU number is less than @numgrps. * * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' * for each node. */ static void alloc_nodes_groups(unsigned int numgrps, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, const nodemask_t nodemsk, struct cpumask *nmsk, struct node_groups *node_groups) { unsigned n, remaining_ncpus = 0; for (n = 0; n < nr_node_ids; n++) { node_groups[n].id = n; node_groups[n].ncpus = UINT_MAX; } for_each_node_mask(n, nodemsk) { unsigned ncpus; cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); ncpus = cpumask_weight(nmsk); if (!ncpus) continue; remaining_ncpus += ncpus; node_groups[n].ncpus = ncpus; } numgrps = min_t(unsigned, remaining_ncpus, numgrps); sort(node_groups, nr_node_ids, sizeof(node_groups[0]), ncpus_cmp_func, NULL); /* * Allocate groups for each node according to the ratio of this * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is * bigger than number of active numa nodes. Always start the * allocation from the node with minimized nr_cpus. * * This way guarantees that each active node gets allocated at * least one group, and the theory is simple: over-allocation * is only done when this node is assigned by one group, so * other nodes will be allocated >= 1 groups, since 'numgrps' is * bigger than number of numa nodes. * * One perfect invariant is that number of allocated groups for * each node is <= CPU count of this node: * * 1) suppose there are two nodes: A and B * ncpu(X) is CPU count of node X * grps(X) is the group count allocated to node X via this * algorithm * * ncpu(A) <= ncpu(B) * ncpu(A) + ncpu(B) = N * grps(A) + grps(B) = G * * grps(A) = max(1, round_down(G * ncpu(A) / N)) * grps(B) = G - grps(A) * * both N and G are integer, and 2 <= G <= N, suppose * G = N - delta, and 0 <= delta <= N - 2 * * 2) obviously grps(A) <= ncpu(A) because: * * if grps(A) is 1, then grps(A) <= ncpu(A) given * ncpu(A) >= 1 * * otherwise, * grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N * * 3) prove how grps(B) <= ncpu(B): * * if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be * over-allocated, so grps(B) <= ncpu(B), * * otherwise: * * grps(A) = * round_down(G * ncpu(A) / N) = * round_down((N - delta) * ncpu(A) / N) = * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= * round_down((N * ncpu(A) - delta * N) / N) = * cpu(A) - delta * * then: * * grps(A) - G >= ncpu(A) - delta - G * => * G - grps(A) <= G + delta - ncpu(A) * => * grps(B) <= N - ncpu(A) * => * grps(B) <= cpu(B) * * For nodes >= 3, it can be thought as one node and another big * node given that is exactly what this algorithm is implemented, * and we always re-calculate 'remaining_ncpus' & 'numgrps', and * finally for each node X: grps(X) <= ncpu(X). * */ for (n = 0; n < nr_node_ids; n++) { unsigned ngroups, ncpus; if (node_groups[n].ncpus == UINT_MAX) continue; WARN_ON_ONCE(numgrps == 0); ncpus = node_groups[n].ncpus; ngroups = max_t(unsigned, 1, numgrps * ncpus / remaining_ncpus); WARN_ON_ONCE(ngroups > ncpus); node_groups[n].ngroups = ngroups; remaining_ncpus -= ncpus; numgrps -= ngroups; } } static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, struct cpumask *nmsk, struct cpumask *masks) { unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0; unsigned int last_grp = numgrps; unsigned int curgrp = startgrp; nodemask_t nodemsk = NODE_MASK_NONE; struct node_groups *node_groups; if (cpumask_empty(cpu_mask)) return 0; nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); /* * If the number of nodes in the mask is greater than or equal the * number of groups we just spread the groups across the nodes. */ if (numgrps <= nodes) { for_each_node_mask(n, nodemsk) { /* Ensure that only CPUs which are in both masks are set */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); cpumask_or(&masks[curgrp], &masks[curgrp], nmsk); if (++curgrp == last_grp) curgrp = 0; } return numgrps; } node_groups = kcalloc(nr_node_ids, sizeof(struct node_groups), GFP_KERNEL); if (!node_groups) return -ENOMEM; /* allocate group number for each node */ alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask, nodemsk, nmsk, node_groups); for (i = 0; i < nr_node_ids; i++) { unsigned int ncpus, v; struct node_groups *nv = &node_groups[i]; if (nv->ngroups == UINT_MAX) continue; /* Get the cpus on this node which are in the mask */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); ncpus = cpumask_weight(nmsk); if (!ncpus) continue; WARN_ON_ONCE(nv->ngroups > ncpus); /* Account for rounding errors */ extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups); /* Spread allocated groups on CPUs of the current node */ for (v = 0; v < nv->ngroups; v++, curgrp++) { cpus_per_grp = ncpus / nv->ngroups; /* Account for extra groups to compensate rounding errors */ if (extra_grps) { cpus_per_grp++; --extra_grps; } /* * wrapping has to be considered given 'startgrp' * may start anywhere */ if (curgrp >= last_grp) curgrp = 0; grp_spread_init_one(&masks[curgrp], nmsk, cpus_per_grp); } done += nv->ngroups; } kfree(node_groups); return done; } /** * group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality * @numgrps: number of groups * * Return: cpumask array if successful, NULL otherwise. And each element * includes CPUs assigned to this group * * Try to put close CPUs from viewpoint of CPU and NUMA locality into * same group, and run two-stage grouping: * 1) allocate present CPUs on these groups evenly first * 2) allocate other possible CPUs on these groups evenly * * We guarantee in the resulted grouping that all CPUs are covered, and * no same CPU is assigned to multiple groups */ struct cpumask *group_cpus_evenly(unsigned int numgrps) { unsigned int curgrp = 0, nr_present = 0, nr_others = 0; cpumask_var_t *node_to_cpumask; cpumask_var_t nmsk, npresmsk; int ret = -ENOMEM; struct cpumask *masks = NULL; if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) return NULL; if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) goto fail_nmsk; node_to_cpumask = alloc_node_to_cpumask(); if (!node_to_cpumask) goto fail_npresmsk; masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); if (!masks) goto fail_node_to_cpumask; build_node_to_cpumask(node_to_cpumask); /* * Make a local cache of 'cpu_present_mask', so the two stages * spread can observe consistent 'cpu_present_mask' without holding * cpu hotplug lock, then we can reduce deadlock risk with cpu * hotplug code. * * Here CPU hotplug may happen when reading `cpu_present_mask`, and * we can live with the case because it only affects that hotplug * CPU is handled in the 1st or 2nd stage, and either way is correct * from API user viewpoint since 2-stage spread is sort of * optimization. */ cpumask_copy(npresmsk, data_race(cpu_present_mask)); /* grouping present CPUs first */ ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, npresmsk, nmsk, masks); if (ret < 0) goto fail_build_affinity; nr_present = ret; /* * Allocate non present CPUs starting from the next group to be * handled. If the grouping of present CPUs already exhausted the * group space, assign the non present CPUs to the already * allocated out groups. */ if (nr_present >= numgrps) curgrp = 0; else curgrp = nr_present; cpumask_andnot(npresmsk, cpu_possible_mask, npresmsk); ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, npresmsk, nmsk, masks); if (ret >= 0) nr_others = ret; fail_build_affinity: if (ret >= 0) WARN_ON(nr_present + nr_others < numgrps); fail_node_to_cpumask: free_node_to_cpumask(node_to_cpumask); fail_npresmsk: free_cpumask_var(npresmsk); fail_nmsk: free_cpumask_var(nmsk); if (ret < 0) { kfree(masks); return NULL; } return masks; } #else /* CONFIG_SMP */ struct cpumask *group_cpus_evenly(unsigned int numgrps) { struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); if (!masks) return NULL; /* assign all CPUs(cpu 0) to the 1st group only */ cpumask_copy(&masks[0], cpu_possible_mask); return masks; } #endif /* CONFIG_SMP */ EXPORT_SYMBOL_GPL(group_cpus_evenly); |
57 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM filemap #if !defined(_TRACE_FILEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FILEMAP_H #include <linux/types.h> #include <linux/tracepoint.h> #include <linux/mm.h> #include <linux/memcontrol.h> #include <linux/device.h> #include <linux/kdev_t.h> #include <linux/errseq.h> DECLARE_EVENT_CLASS(mm_filemap_op_page_cache, TP_PROTO(struct folio *folio), TP_ARGS(folio), TP_STRUCT__entry( __field(unsigned long, pfn) __field(unsigned long, i_ino) __field(unsigned long, index) __field(dev_t, s_dev) __field(unsigned char, order) ), TP_fast_assign( __entry->pfn = folio_pfn(folio); __entry->i_ino = folio->mapping->host->i_ino; __entry->index = folio->index; if (folio->mapping->host->i_sb) __entry->s_dev = folio->mapping->host->i_sb->s_dev; else __entry->s_dev = folio->mapping->host->i_rdev; __entry->order = folio_order(folio); ), TP_printk("dev %d:%d ino %lx pfn=0x%lx ofs=%lu order=%u", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->pfn, __entry->index << PAGE_SHIFT, __entry->order) ); DEFINE_EVENT(mm_filemap_op_page_cache, mm_filemap_delete_from_page_cache, TP_PROTO(struct folio *folio), TP_ARGS(folio) ); DEFINE_EVENT(mm_filemap_op_page_cache, mm_filemap_add_to_page_cache, TP_PROTO(struct folio *folio), TP_ARGS(folio) ); TRACE_EVENT(filemap_set_wb_err, TP_PROTO(struct address_space *mapping, errseq_t eseq), TP_ARGS(mapping, eseq), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(errseq_t, errseq) ), TP_fast_assign( __entry->i_ino = mapping->host->i_ino; __entry->errseq = eseq; if (mapping->host->i_sb) __entry->s_dev = mapping->host->i_sb->s_dev; else __entry->s_dev = mapping->host->i_rdev; ), TP_printk("dev=%d:%d ino=0x%lx errseq=0x%x", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->errseq) ); TRACE_EVENT(file_check_and_advance_wb_err, TP_PROTO(struct file *file, errseq_t old), TP_ARGS(file, old), TP_STRUCT__entry( __field(struct file *, file) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(errseq_t, old) __field(errseq_t, new) ), TP_fast_assign( __entry->file = file; __entry->i_ino = file->f_mapping->host->i_ino; if (file->f_mapping->host->i_sb) __entry->s_dev = file->f_mapping->host->i_sb->s_dev; else __entry->s_dev = file->f_mapping->host->i_rdev; __entry->old = old; __entry->new = file->f_wb_err; ), TP_printk("file=%p dev=%d:%d ino=0x%lx old=0x%x new=0x%x", __entry->file, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->old, __entry->new) ); #endif /* _TRACE_FILEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
59 58 59 59 80 3 78 23 16 34 7 33 33 33 6 6 5 1 1 1 1 3 23 32 33 33 14 14 14 9 9 9 9 9 9 5 5 33 5 3 2 1 33 33 33 3 33 228 1 228 1 1 1 1 33 33 33 33 33 8 25 31 31 31 61 10 18 7 18 5 5 5 5 5 3 4 13 3 1 12 2 2 2 2 10 10 10 2 1 45 2 46 44 23 23 23 5 5 42 38 40 40 40 32 31 32 32 84 86 86 10 81 82 82 2 81 1 85 44 44 2 31 44 44 44 43 1 8 8 8 8 8 8 8 8 8 4 8 8 5 3 1 2 23 23 218 280 12 274 1 272 273 12 5 273 12 8 23 266 4 4 5 2 5 5 5 8 8 5 5 2 3 3 2 2 5 5 5 3 2 1 1 1 2 3 1 6 6 6 3 3 3 3 3 3 3 1 2 2 6 6 4 2 2 2 1 1 26 26 3 1 2 1 3 1 38 3 5 2 3 3 14 11 11 3 3 1 5 2 62 34 3 31 34 12 16 1 8 6 1 107 2 104 7 38 62 116 43 104 27 27 27 26 26 26 4 4 2 28 28 28 28 2 2 1 1 26 179 73 5 114 43 43 1 2 2 1 1 2 5 1 3 1 3 3 3 1 3 24 24 2 2 1 23 32 32 9 32 32 7 6 1 45 1 1 8 8 3 1 2 2 3 2 6 6 6 6 4 4 4 4 6 6 3 4 4 10 5 1 6 1 6 3 2 1 5 2 3 5 2 3 8 5 3 122 122 103 103 31 12 12 12 103 103 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Bridge multicast support. * * Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au> */ #include <linux/err.h> #include <linux/export.h> #include <linux/if_ether.h> #include <linux/igmp.h> #include <linux/in.h> #include <linux/jhash.h> #include <linux/kernel.h> #include <linux/log2.h> #include <linux/netdevice.h> #include <linux/netfilter_bridge.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/inetdevice.h> #include <linux/mroute.h> #include <net/ip.h> #include <net/switchdev.h> #if IS_ENABLED(CONFIG_IPV6) #include <linux/icmpv6.h> #include <net/ipv6.h> #include <net/mld.h> #include <net/ip6_checksum.h> #include <net/addrconf.h> #endif #include <trace/events/bridge.h> #include "br_private.h" #include "br_private_mcast_eht.h" static const struct rhashtable_params br_mdb_rht_params = { .head_offset = offsetof(struct net_bridge_mdb_entry, rhnode), .key_offset = offsetof(struct net_bridge_mdb_entry, addr), .key_len = sizeof(struct br_ip), .automatic_shrinking = true, }; static const struct rhashtable_params br_sg_port_rht_params = { .head_offset = offsetof(struct net_bridge_port_group, rhnode), .key_offset = offsetof(struct net_bridge_port_group, key), .key_len = sizeof(struct net_bridge_port_group_sg_key), .automatic_shrinking = true, }; static void br_multicast_start_querier(struct net_bridge_mcast *brmctx, struct bridge_mcast_own_query *query); static void br_ip4_multicast_add_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx); static void br_ip4_multicast_leave_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, __be32 group, __u16 vid, const unsigned char *src); static void br_multicast_port_group_rexmit(struct timer_list *t); static void br_multicast_rport_del_notify(struct net_bridge_mcast_port *pmctx, bool deleted); static void br_ip6_multicast_add_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx); #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_leave_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, const struct in6_addr *group, __u16 vid, const unsigned char *src); #endif static struct net_bridge_port_group * __br_multicast_add_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct br_ip *group, const unsigned char *src, u8 filter_mode, bool igmpv2_mldv1, bool blocked); static void br_multicast_find_del_pg(struct net_bridge *br, struct net_bridge_port_group *pg); static void __br_multicast_stop(struct net_bridge_mcast *brmctx); static int br_mc_disabled_update(struct net_device *dev, bool value, struct netlink_ext_ack *extack); static struct net_bridge_port_group * br_sg_port_find(struct net_bridge *br, struct net_bridge_port_group_sg_key *sg_p) { lockdep_assert_held_once(&br->multicast_lock); return rhashtable_lookup_fast(&br->sg_port_tbl, sg_p, br_sg_port_rht_params); } static struct net_bridge_mdb_entry *br_mdb_ip_get_rcu(struct net_bridge *br, struct br_ip *dst) { return rhashtable_lookup(&br->mdb_hash_tbl, dst, br_mdb_rht_params); } struct net_bridge_mdb_entry *br_mdb_ip_get(struct net_bridge *br, struct br_ip *dst) { struct net_bridge_mdb_entry *ent; lockdep_assert_held_once(&br->multicast_lock); rcu_read_lock(); ent = rhashtable_lookup(&br->mdb_hash_tbl, dst, br_mdb_rht_params); rcu_read_unlock(); return ent; } static struct net_bridge_mdb_entry *br_mdb_ip4_get(struct net_bridge *br, __be32 dst, __u16 vid) { struct br_ip br_dst; memset(&br_dst, 0, sizeof(br_dst)); br_dst.dst.ip4 = dst; br_dst.proto = htons(ETH_P_IP); br_dst.vid = vid; return br_mdb_ip_get(br, &br_dst); } #if IS_ENABLED(CONFIG_IPV6) static struct net_bridge_mdb_entry *br_mdb_ip6_get(struct net_bridge *br, const struct in6_addr *dst, __u16 vid) { struct br_ip br_dst; memset(&br_dst, 0, sizeof(br_dst)); br_dst.dst.ip6 = *dst; br_dst.proto = htons(ETH_P_IPV6); br_dst.vid = vid; return br_mdb_ip_get(br, &br_dst); } #endif struct net_bridge_mdb_entry * br_mdb_entry_skb_get(struct net_bridge_mcast *brmctx, struct sk_buff *skb, u16 vid) { struct net_bridge *br = brmctx->br; struct br_ip ip; if (!br_opt_get(br, BROPT_MULTICAST_ENABLED) || br_multicast_ctx_vlan_global_disabled(brmctx)) return NULL; if (BR_INPUT_SKB_CB(skb)->igmp) return NULL; memset(&ip, 0, sizeof(ip)); ip.proto = skb->protocol; ip.vid = vid; switch (skb->protocol) { case htons(ETH_P_IP): ip.dst.ip4 = ip_hdr(skb)->daddr; if (brmctx->multicast_igmp_version == 3) { struct net_bridge_mdb_entry *mdb; ip.src.ip4 = ip_hdr(skb)->saddr; mdb = br_mdb_ip_get_rcu(br, &ip); if (mdb) return mdb; ip.src.ip4 = 0; } break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): ip.dst.ip6 = ipv6_hdr(skb)->daddr; if (brmctx->multicast_mld_version == 2) { struct net_bridge_mdb_entry *mdb; ip.src.ip6 = ipv6_hdr(skb)->saddr; mdb = br_mdb_ip_get_rcu(br, &ip); if (mdb) return mdb; memset(&ip.src.ip6, 0, sizeof(ip.src.ip6)); } break; #endif default: ip.proto = 0; ether_addr_copy(ip.dst.mac_addr, eth_hdr(skb)->h_dest); } return br_mdb_ip_get_rcu(br, &ip); } /* IMPORTANT: this function must be used only when the contexts cannot be * passed down (e.g. timer) and must be used for read-only purposes because * the vlan snooping option can change, so it can return any context * (non-vlan or vlan). Its initial intended purpose is to read timer values * from the *current* context based on the option. At worst that could lead * to inconsistent timers when the contexts are changed, i.e. src timer * which needs to re-arm with a specific delay taken from the old context */ static struct net_bridge_mcast_port * br_multicast_pg_to_port_ctx(const struct net_bridge_port_group *pg) { struct net_bridge_mcast_port *pmctx = &pg->key.port->multicast_ctx; struct net_bridge_vlan *vlan; lockdep_assert_held_once(&pg->key.port->br->multicast_lock); /* if vlan snooping is disabled use the port's multicast context */ if (!pg->key.addr.vid || !br_opt_get(pg->key.port->br, BROPT_MCAST_VLAN_SNOOPING_ENABLED)) goto out; /* locking is tricky here, due to different rules for multicast and * vlans we need to take rcu to find the vlan and make sure it has * the BR_VLFLAG_MCAST_ENABLED flag set, it can only change under * multicast_lock which must be already held here, so the vlan's pmctx * can safely be used on return */ rcu_read_lock(); vlan = br_vlan_find(nbp_vlan_group_rcu(pg->key.port), pg->key.addr.vid); if (vlan && !br_multicast_port_ctx_vlan_disabled(&vlan->port_mcast_ctx)) pmctx = &vlan->port_mcast_ctx; else pmctx = NULL; rcu_read_unlock(); out: return pmctx; } static struct net_bridge_mcast_port * br_multicast_port_vid_to_port_ctx(struct net_bridge_port *port, u16 vid) { struct net_bridge_mcast_port *pmctx = NULL; struct net_bridge_vlan *vlan; lockdep_assert_held_once(&port->br->multicast_lock); if (!br_opt_get(port->br, BROPT_MCAST_VLAN_SNOOPING_ENABLED)) return NULL; /* Take RCU to access the vlan. */ rcu_read_lock(); vlan = br_vlan_find(nbp_vlan_group_rcu(port), vid); if (vlan && !br_multicast_port_ctx_vlan_disabled(&vlan->port_mcast_ctx)) pmctx = &vlan->port_mcast_ctx; rcu_read_unlock(); return pmctx; } /* when snooping we need to check if the contexts should be used * in the following order: * - if pmctx is non-NULL (port), check if it should be used * - if pmctx is NULL (bridge), check if brmctx should be used */ static bool br_multicast_ctx_should_use(const struct net_bridge_mcast *brmctx, const struct net_bridge_mcast_port *pmctx) { if (!netif_running(brmctx->br->dev)) return false; if (pmctx) return !br_multicast_port_ctx_state_disabled(pmctx); else return !br_multicast_ctx_vlan_disabled(brmctx); } static bool br_port_group_equal(struct net_bridge_port_group *p, struct net_bridge_port *port, const unsigned char *src) { if (p->key.port != port) return false; if (!(port->flags & BR_MULTICAST_TO_UNICAST)) return true; return ether_addr_equal(src, p->eth_addr); } static void __fwd_add_star_excl(struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, struct br_ip *sg_ip) { struct net_bridge_port_group_sg_key sg_key; struct net_bridge_port_group *src_pg; struct net_bridge_mcast *brmctx; memset(&sg_key, 0, sizeof(sg_key)); brmctx = br_multicast_port_ctx_get_global(pmctx); sg_key.port = pg->key.port; sg_key.addr = *sg_ip; if (br_sg_port_find(brmctx->br, &sg_key)) return; src_pg = __br_multicast_add_group(brmctx, pmctx, sg_ip, pg->eth_addr, MCAST_INCLUDE, false, false); if (IS_ERR_OR_NULL(src_pg) || src_pg->rt_protocol != RTPROT_KERNEL) return; src_pg->flags |= MDB_PG_FLAGS_STAR_EXCL; } static void __fwd_del_star_excl(struct net_bridge_port_group *pg, struct br_ip *sg_ip) { struct net_bridge_port_group_sg_key sg_key; struct net_bridge *br = pg->key.port->br; struct net_bridge_port_group *src_pg; memset(&sg_key, 0, sizeof(sg_key)); sg_key.port = pg->key.port; sg_key.addr = *sg_ip; src_pg = br_sg_port_find(br, &sg_key); if (!src_pg || !(src_pg->flags & MDB_PG_FLAGS_STAR_EXCL) || src_pg->rt_protocol != RTPROT_KERNEL) return; br_multicast_find_del_pg(br, src_pg); } /* When a port group transitions to (or is added as) EXCLUDE we need to add it * to all other ports' S,G entries which are not blocked by the current group * for proper replication, the assumption is that any S,G blocked entries * are already added so the S,G,port lookup should skip them. * When a port group transitions from EXCLUDE -> INCLUDE mode or is being * deleted we need to remove it from all ports' S,G entries where it was * automatically installed before (i.e. where it's MDB_PG_FLAGS_STAR_EXCL). */ void br_multicast_star_g_handle_mode(struct net_bridge_port_group *pg, u8 filter_mode) { struct net_bridge *br = pg->key.port->br; struct net_bridge_port_group *pg_lst; struct net_bridge_mcast_port *pmctx; struct net_bridge_mdb_entry *mp; struct br_ip sg_ip; if (WARN_ON(!br_multicast_is_star_g(&pg->key.addr))) return; mp = br_mdb_ip_get(br, &pg->key.addr); if (!mp) return; pmctx = br_multicast_pg_to_port_ctx(pg); if (!pmctx) return; memset(&sg_ip, 0, sizeof(sg_ip)); sg_ip = pg->key.addr; for (pg_lst = mlock_dereference(mp->ports, br); pg_lst; pg_lst = mlock_dereference(pg_lst->next, br)) { struct net_bridge_group_src *src_ent; if (pg_lst == pg) continue; hlist_for_each_entry(src_ent, &pg_lst->src_list, node) { if (!(src_ent->flags & BR_SGRP_F_INSTALLED)) continue; sg_ip.src = src_ent->addr.src; switch (filter_mode) { case MCAST_INCLUDE: __fwd_del_star_excl(pg, &sg_ip); break; case MCAST_EXCLUDE: __fwd_add_star_excl(pmctx, pg, &sg_ip); break; } } } } /* called when adding a new S,G with host_joined == false by default */ static void br_multicast_sg_host_state(struct net_bridge_mdb_entry *star_mp, struct net_bridge_port_group *sg) { struct net_bridge_mdb_entry *sg_mp; if (WARN_ON(!br_multicast_is_star_g(&star_mp->addr))) return; if (!star_mp->host_joined) return; sg_mp = br_mdb_ip_get(star_mp->br, &sg->key.addr); if (!sg_mp) return; sg_mp->host_joined = true; } /* set the host_joined state of all of *,G's S,G entries */ static void br_multicast_star_g_host_state(struct net_bridge_mdb_entry *star_mp) { struct net_bridge *br = star_mp->br; struct net_bridge_mdb_entry *sg_mp; struct net_bridge_port_group *pg; struct br_ip sg_ip; if (WARN_ON(!br_multicast_is_star_g(&star_mp->addr))) return; memset(&sg_ip, 0, sizeof(sg_ip)); sg_ip = star_mp->addr; for (pg = mlock_dereference(star_mp->ports, br); pg; pg = mlock_dereference(pg->next, br)) { struct net_bridge_group_src *src_ent; hlist_for_each_entry(src_ent, &pg->src_list, node) { if (!(src_ent->flags & BR_SGRP_F_INSTALLED)) continue; sg_ip.src = src_ent->addr.src; sg_mp = br_mdb_ip_get(br, &sg_ip); if (!sg_mp) continue; sg_mp->host_joined = star_mp->host_joined; } } } static void br_multicast_sg_del_exclude_ports(struct net_bridge_mdb_entry *sgmp) { struct net_bridge_port_group __rcu **pp; struct net_bridge_port_group *p; /* *,G exclude ports are only added to S,G entries */ if (WARN_ON(br_multicast_is_star_g(&sgmp->addr))) return; /* we need the STAR_EXCLUDE ports if there are non-STAR_EXCLUDE ports * we should ignore perm entries since they're managed by user-space */ for (pp = &sgmp->ports; (p = mlock_dereference(*pp, sgmp->br)) != NULL; pp = &p->next) if (!(p->flags & (MDB_PG_FLAGS_STAR_EXCL | MDB_PG_FLAGS_PERMANENT))) return; /* currently the host can only have joined the *,G which means * we treat it as EXCLUDE {}, so for an S,G it's considered a * STAR_EXCLUDE entry and we can safely leave it */ sgmp->host_joined = false; for (pp = &sgmp->ports; (p = mlock_dereference(*pp, sgmp->br)) != NULL;) { if (!(p->flags & MDB_PG_FLAGS_PERMANENT)) br_multicast_del_pg(sgmp, p, pp); else pp = &p->next; } } void br_multicast_sg_add_exclude_ports(struct net_bridge_mdb_entry *star_mp, struct net_bridge_port_group *sg) { struct net_bridge_port_group_sg_key sg_key; struct net_bridge *br = star_mp->br; struct net_bridge_mcast_port *pmctx; struct net_bridge_port_group *pg; struct net_bridge_mcast *brmctx; if (WARN_ON(br_multicast_is_star_g(&sg->key.addr))) return; if (WARN_ON(!br_multicast_is_star_g(&star_mp->addr))) return; br_multicast_sg_host_state(star_mp, sg); memset(&sg_key, 0, sizeof(sg_key)); sg_key.addr = sg->key.addr; /* we need to add all exclude ports to the S,G */ for (pg = mlock_dereference(star_mp->ports, br); pg; pg = mlock_dereference(pg->next, br)) { struct net_bridge_port_group *src_pg; if (pg == sg || pg->filter_mode == MCAST_INCLUDE) continue; sg_key.port = pg->key.port; if (br_sg_port_find(br, &sg_key)) continue; pmctx = br_multicast_pg_to_port_ctx(pg); if (!pmctx) continue; brmctx = br_multicast_port_ctx_get_global(pmctx); src_pg = __br_multicast_add_group(brmctx, pmctx, &sg->key.addr, sg->eth_addr, MCAST_INCLUDE, false, false); if (IS_ERR_OR_NULL(src_pg) || src_pg->rt_protocol != RTPROT_KERNEL) continue; src_pg->flags |= MDB_PG_FLAGS_STAR_EXCL; } } static void br_multicast_fwd_src_add(struct net_bridge_group_src *src) { struct net_bridge_mdb_entry *star_mp; struct net_bridge_mcast_port *pmctx; struct net_bridge_port_group *sg; struct net_bridge_mcast *brmctx; struct br_ip sg_ip; if (src->flags & BR_SGRP_F_INSTALLED) return; memset(&sg_ip, 0, sizeof(sg_ip)); pmctx = br_multicast_pg_to_port_ctx(src->pg); if (!pmctx) return; brmctx = br_multicast_port_ctx_get_global(pmctx); sg_ip = src->pg->key.addr; sg_ip.src = src->addr.src; sg = __br_multicast_add_group(brmctx, pmctx, &sg_ip, src->pg->eth_addr, MCAST_INCLUDE, false, !timer_pending(&src->timer)); if (IS_ERR_OR_NULL(sg)) return; src->flags |= BR_SGRP_F_INSTALLED; sg->flags &= ~MDB_PG_FLAGS_STAR_EXCL; /* if it was added by user-space as perm we can skip next steps */ if (sg->rt_protocol != RTPROT_KERNEL && (sg->flags & MDB_PG_FLAGS_PERMANENT)) return; /* the kernel is now responsible for removing this S,G */ del_timer(&sg->timer); star_mp = br_mdb_ip_get(src->br, &src->pg->key.addr); if (!star_mp) return; br_multicast_sg_add_exclude_ports(star_mp, sg); } static void br_multicast_fwd_src_remove(struct net_bridge_group_src *src, bool fastleave) { struct net_bridge_port_group *p, *pg = src->pg; struct net_bridge_port_group __rcu **pp; struct net_bridge_mdb_entry *mp; struct br_ip sg_ip; memset(&sg_ip, 0, sizeof(sg_ip)); sg_ip = pg->key.addr; sg_ip.src = src->addr.src; mp = br_mdb_ip_get(src->br, &sg_ip); if (!mp) return; for (pp = &mp->ports; (p = mlock_dereference(*pp, src->br)) != NULL; pp = &p->next) { if (!br_port_group_equal(p, pg->key.port, pg->eth_addr)) continue; if (p->rt_protocol != RTPROT_KERNEL && (p->flags & MDB_PG_FLAGS_PERMANENT) && !(src->flags & BR_SGRP_F_USER_ADDED)) break; if (fastleave) p->flags |= MDB_PG_FLAGS_FAST_LEAVE; br_multicast_del_pg(mp, p, pp); break; } src->flags &= ~BR_SGRP_F_INSTALLED; } /* install S,G and based on src's timer enable or disable forwarding */ static void br_multicast_fwd_src_handle(struct net_bridge_group_src *src) { struct net_bridge_port_group_sg_key sg_key; struct net_bridge_port_group *sg; u8 old_flags; br_multicast_fwd_src_add(src); memset(&sg_key, 0, sizeof(sg_key)); sg_key.addr = src->pg->key.addr; sg_key.addr.src = src->addr.src; sg_key.port = src->pg->key.port; sg = br_sg_port_find(src->br, &sg_key); if (!sg || (sg->flags & MDB_PG_FLAGS_PERMANENT)) return; old_flags = sg->flags; if (timer_pending(&src->timer)) sg->flags &= ~MDB_PG_FLAGS_BLOCKED; else sg->flags |= MDB_PG_FLAGS_BLOCKED; if (old_flags != sg->flags) { struct net_bridge_mdb_entry *sg_mp; sg_mp = br_mdb_ip_get(src->br, &sg_key.addr); if (!sg_mp) return; br_mdb_notify(src->br->dev, sg_mp, sg, RTM_NEWMDB); } } static void br_multicast_destroy_mdb_entry(struct net_bridge_mcast_gc *gc) { struct net_bridge_mdb_entry *mp; mp = container_of(gc, struct net_bridge_mdb_entry, mcast_gc); WARN_ON(!hlist_unhashed(&mp->mdb_node)); WARN_ON(mp->ports); timer_shutdown_sync(&mp->timer); kfree_rcu(mp, rcu); } static void br_multicast_del_mdb_entry(struct net_bridge_mdb_entry *mp) { struct net_bridge *br = mp->br; rhashtable_remove_fast(&br->mdb_hash_tbl, &mp->rhnode, br_mdb_rht_params); hlist_del_init_rcu(&mp->mdb_node); hlist_add_head(&mp->mcast_gc.gc_node, &br->mcast_gc_list); queue_work(system_long_wq, &br->mcast_gc_work); } static void br_multicast_group_expired(struct timer_list *t) { struct net_bridge_mdb_entry *mp = from_timer(mp, t, timer); struct net_bridge *br = mp->br; spin_lock(&br->multicast_lock); if (hlist_unhashed(&mp->mdb_node) || !netif_running(br->dev) || timer_pending(&mp->timer)) goto out; br_multicast_host_leave(mp, true); if (mp->ports) goto out; br_multicast_del_mdb_entry(mp); out: spin_unlock(&br->multicast_lock); } static void br_multicast_destroy_group_src(struct net_bridge_mcast_gc *gc) { struct net_bridge_group_src *src; src = container_of(gc, struct net_bridge_group_src, mcast_gc); WARN_ON(!hlist_unhashed(&src->node)); timer_shutdown_sync(&src->timer); kfree_rcu(src, rcu); } void __br_multicast_del_group_src(struct net_bridge_group_src *src) { struct net_bridge *br = src->pg->key.port->br; hlist_del_init_rcu(&src->node); src->pg->src_ents--; hlist_add_head(&src->mcast_gc.gc_node, &br->mcast_gc_list); queue_work(system_long_wq, &br->mcast_gc_work); } void br_multicast_del_group_src(struct net_bridge_group_src *src, bool fastleave) { br_multicast_fwd_src_remove(src, fastleave); __br_multicast_del_group_src(src); } static int br_multicast_port_ngroups_inc_one(struct net_bridge_mcast_port *pmctx, struct netlink_ext_ack *extack, const char *what) { u32 max = READ_ONCE(pmctx->mdb_max_entries); u32 n = READ_ONCE(pmctx->mdb_n_entries); if (max && n >= max) { NL_SET_ERR_MSG_FMT_MOD(extack, "%s is already in %u groups, and mcast_max_groups=%u", what, n, max); return -E2BIG; } WRITE_ONCE(pmctx->mdb_n_entries, n + 1); return 0; } static void br_multicast_port_ngroups_dec_one(struct net_bridge_mcast_port *pmctx) { u32 n = READ_ONCE(pmctx->mdb_n_entries); WARN_ON_ONCE(n == 0); WRITE_ONCE(pmctx->mdb_n_entries, n - 1); } static int br_multicast_port_ngroups_inc(struct net_bridge_port *port, const struct br_ip *group, struct netlink_ext_ack *extack) { struct net_bridge_mcast_port *pmctx; int err; lockdep_assert_held_once(&port->br->multicast_lock); /* Always count on the port context. */ err = br_multicast_port_ngroups_inc_one(&port->multicast_ctx, extack, "Port"); if (err) { trace_br_mdb_full(port->dev, group); return err; } /* Only count on the VLAN context if VID is given, and if snooping on * that VLAN is enabled. */ if (!group->vid) return 0; pmctx = br_multicast_port_vid_to_port_ctx(port, group->vid); if (!pmctx) return 0; err = br_multicast_port_ngroups_inc_one(pmctx, extack, "Port-VLAN"); if (err) { trace_br_mdb_full(port->dev, group); goto dec_one_out; } return 0; dec_one_out: br_multicast_port_ngroups_dec_one(&port->multicast_ctx); return err; } static void br_multicast_port_ngroups_dec(struct net_bridge_port *port, u16 vid) { struct net_bridge_mcast_port *pmctx; lockdep_assert_held_once(&port->br->multicast_lock); if (vid) { pmctx = br_multicast_port_vid_to_port_ctx(port, vid); if (pmctx) br_multicast_port_ngroups_dec_one(pmctx); } br_multicast_port_ngroups_dec_one(&port->multicast_ctx); } u32 br_multicast_ngroups_get(const struct net_bridge_mcast_port *pmctx) { return READ_ONCE(pmctx->mdb_n_entries); } void br_multicast_ngroups_set_max(struct net_bridge_mcast_port *pmctx, u32 max) { WRITE_ONCE(pmctx->mdb_max_entries, max); } u32 br_multicast_ngroups_get_max(const struct net_bridge_mcast_port *pmctx) { return READ_ONCE(pmctx->mdb_max_entries); } static void br_multicast_destroy_port_group(struct net_bridge_mcast_gc *gc) { struct net_bridge_port_group *pg; pg = container_of(gc, struct net_bridge_port_group, mcast_gc); WARN_ON(!hlist_unhashed(&pg->mglist)); WARN_ON(!hlist_empty(&pg->src_list)); timer_shutdown_sync(&pg->rexmit_timer); timer_shutdown_sync(&pg->timer); kfree_rcu(pg, rcu); } void br_multicast_del_pg(struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *pg, struct net_bridge_port_group __rcu **pp) { struct net_bridge *br = pg->key.port->br; struct net_bridge_group_src *ent; struct hlist_node *tmp; rcu_assign_pointer(*pp, pg->next); hlist_del_init(&pg->mglist); br_multicast_eht_clean_sets(pg); hlist_for_each_entry_safe(ent, tmp, &pg->src_list, node) br_multicast_del_group_src(ent, false); br_mdb_notify(br->dev, mp, pg, RTM_DELMDB); if (!br_multicast_is_star_g(&mp->addr)) { rhashtable_remove_fast(&br->sg_port_tbl, &pg->rhnode, br_sg_port_rht_params); br_multicast_sg_del_exclude_ports(mp); } else { br_multicast_star_g_handle_mode(pg, MCAST_INCLUDE); } br_multicast_port_ngroups_dec(pg->key.port, pg->key.addr.vid); hlist_add_head(&pg->mcast_gc.gc_node, &br->mcast_gc_list); queue_work(system_long_wq, &br->mcast_gc_work); if (!mp->ports && !mp->host_joined && netif_running(br->dev)) mod_timer(&mp->timer, jiffies); } static void br_multicast_find_del_pg(struct net_bridge *br, struct net_bridge_port_group *pg) { struct net_bridge_port_group __rcu **pp; struct net_bridge_mdb_entry *mp; struct net_bridge_port_group *p; mp = br_mdb_ip_get(br, &pg->key.addr); if (WARN_ON(!mp)) return; for (pp = &mp->ports; (p = mlock_dereference(*pp, br)) != NULL; pp = &p->next) { if (p != pg) continue; br_multicast_del_pg(mp, pg, pp); return; } WARN_ON(1); } static void br_multicast_port_group_expired(struct timer_list *t) { struct net_bridge_port_group *pg = from_timer(pg, t, timer); struct net_bridge_group_src *src_ent; struct net_bridge *br = pg->key.port->br; struct hlist_node *tmp; bool changed; spin_lock(&br->multicast_lock); if (!netif_running(br->dev) || timer_pending(&pg->timer) || hlist_unhashed(&pg->mglist) || pg->flags & MDB_PG_FLAGS_PERMANENT) goto out; changed = !!(pg->filter_mode == MCAST_EXCLUDE); pg->filter_mode = MCAST_INCLUDE; hlist_for_each_entry_safe(src_ent, tmp, &pg->src_list, node) { if (!timer_pending(&src_ent->timer)) { br_multicast_del_group_src(src_ent, false); changed = true; } } if (hlist_empty(&pg->src_list)) { br_multicast_find_del_pg(br, pg); } else if (changed) { struct net_bridge_mdb_entry *mp = br_mdb_ip_get(br, &pg->key.addr); if (changed && br_multicast_is_star_g(&pg->key.addr)) br_multicast_star_g_handle_mode(pg, MCAST_INCLUDE); if (WARN_ON(!mp)) goto out; br_mdb_notify(br->dev, mp, pg, RTM_NEWMDB); } out: spin_unlock(&br->multicast_lock); } static void br_multicast_gc(struct hlist_head *head) { struct net_bridge_mcast_gc *gcent; struct hlist_node *tmp; hlist_for_each_entry_safe(gcent, tmp, head, gc_node) { hlist_del_init(&gcent->gc_node); gcent->destroy(gcent); } } static void __br_multicast_query_handle_vlan(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb) { struct net_bridge_vlan *vlan = NULL; if (pmctx && br_multicast_port_ctx_is_vlan(pmctx)) vlan = pmctx->vlan; else if (br_multicast_ctx_is_vlan(brmctx)) vlan = brmctx->vlan; if (vlan && !(vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED)) { u16 vlan_proto; if (br_vlan_get_proto(brmctx->br->dev, &vlan_proto) != 0) return; __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vlan->vid); } } static struct sk_buff *br_ip4_multicast_alloc_query(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, __be32 ip_dst, __be32 group, bool with_srcs, bool over_lmqt, u8 sflag, u8 *igmp_type, bool *need_rexmit) { struct net_bridge_port *p = pg ? pg->key.port : NULL; struct net_bridge_group_src *ent; size_t pkt_size, igmp_hdr_size; unsigned long now = jiffies; struct igmpv3_query *ihv3; void *csum_start = NULL; __sum16 *csum = NULL; struct sk_buff *skb; struct igmphdr *ih; struct ethhdr *eth; unsigned long lmqt; struct iphdr *iph; u16 lmqt_srcs = 0; igmp_hdr_size = sizeof(*ih); if (brmctx->multicast_igmp_version == 3) { igmp_hdr_size = sizeof(*ihv3); if (pg && with_srcs) { lmqt = now + (brmctx->multicast_last_member_interval * brmctx->multicast_last_member_count); hlist_for_each_entry(ent, &pg->src_list, node) { if (over_lmqt == time_after(ent->timer.expires, lmqt) && ent->src_query_rexmit_cnt > 0) lmqt_srcs++; } if (!lmqt_srcs) return NULL; igmp_hdr_size += lmqt_srcs * sizeof(__be32); } } pkt_size = sizeof(*eth) + sizeof(*iph) + 4 + igmp_hdr_size; if ((p && pkt_size > p->dev->mtu) || pkt_size > brmctx->br->dev->mtu) return NULL; skb = netdev_alloc_skb_ip_align(brmctx->br->dev, pkt_size); if (!skb) goto out; __br_multicast_query_handle_vlan(brmctx, pmctx, skb); skb->protocol = htons(ETH_P_IP); skb_reset_mac_header(skb); eth = eth_hdr(skb); ether_addr_copy(eth->h_source, brmctx->br->dev->dev_addr); ip_eth_mc_map(ip_dst, eth->h_dest); eth->h_proto = htons(ETH_P_IP); skb_put(skb, sizeof(*eth)); skb_set_network_header(skb, skb->len); iph = ip_hdr(skb); iph->tot_len = htons(pkt_size - sizeof(*eth)); iph->version = 4; iph->ihl = 6; iph->tos = 0xc0; iph->id = 0; iph->frag_off = htons(IP_DF); iph->ttl = 1; iph->protocol = IPPROTO_IGMP; iph->saddr = br_opt_get(brmctx->br, BROPT_MULTICAST_QUERY_USE_IFADDR) ? inet_select_addr(brmctx->br->dev, 0, RT_SCOPE_LINK) : 0; iph->daddr = ip_dst; ((u8 *)&iph[1])[0] = IPOPT_RA; ((u8 *)&iph[1])[1] = 4; ((u8 *)&iph[1])[2] = 0; ((u8 *)&iph[1])[3] = 0; ip_send_check(iph); skb_put(skb, 24); skb_set_transport_header(skb, skb->len); *igmp_type = IGMP_HOST_MEMBERSHIP_QUERY; switch (brmctx->multicast_igmp_version) { case 2: ih = igmp_hdr(skb); ih->type = IGMP_HOST_MEMBERSHIP_QUERY; ih->code = (group ? brmctx->multicast_last_member_interval : brmctx->multicast_query_response_interval) / (HZ / IGMP_TIMER_SCALE); ih->group = group; ih->csum = 0; csum = &ih->csum; csum_start = (void *)ih; break; case 3: ihv3 = igmpv3_query_hdr(skb); ihv3->type = IGMP_HOST_MEMBERSHIP_QUERY; ihv3->code = (group ? brmctx->multicast_last_member_interval : brmctx->multicast_query_response_interval) / (HZ / IGMP_TIMER_SCALE); ihv3->group = group; ihv3->qqic = brmctx->multicast_query_interval / HZ; ihv3->nsrcs = htons(lmqt_srcs); ihv3->resv = 0; ihv3->suppress = sflag; ihv3->qrv = 2; ihv3->csum = 0; csum = &ihv3->csum; csum_start = (void *)ihv3; if (!pg || !with_srcs) break; lmqt_srcs = 0; hlist_for_each_entry(ent, &pg->src_list, node) { if (over_lmqt == time_after(ent->timer.expires, lmqt) && ent->src_query_rexmit_cnt > 0) { ihv3->srcs[lmqt_srcs++] = ent->addr.src.ip4; ent->src_query_rexmit_cnt--; if (need_rexmit && ent->src_query_rexmit_cnt) *need_rexmit = true; } } if (WARN_ON(lmqt_srcs != ntohs(ihv3->nsrcs))) { kfree_skb(skb); return NULL; } break; } if (WARN_ON(!csum || !csum_start)) { kfree_skb(skb); return NULL; } *csum = ip_compute_csum(csum_start, igmp_hdr_size); skb_put(skb, igmp_hdr_size); __skb_pull(skb, sizeof(*eth)); out: return skb; } #if IS_ENABLED(CONFIG_IPV6) static struct sk_buff *br_ip6_multicast_alloc_query(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, const struct in6_addr *ip6_dst, const struct in6_addr *group, bool with_srcs, bool over_llqt, u8 sflag, u8 *igmp_type, bool *need_rexmit) { struct net_bridge_port *p = pg ? pg->key.port : NULL; struct net_bridge_group_src *ent; size_t pkt_size, mld_hdr_size; unsigned long now = jiffies; struct mld2_query *mld2q; void *csum_start = NULL; unsigned long interval; __sum16 *csum = NULL; struct ipv6hdr *ip6h; struct mld_msg *mldq; struct sk_buff *skb; unsigned long llqt; struct ethhdr *eth; u16 llqt_srcs = 0; u8 *hopopt; mld_hdr_size = sizeof(*mldq); if (brmctx->multicast_mld_version == 2) { mld_hdr_size = sizeof(*mld2q); if (pg && with_srcs) { llqt = now + (brmctx->multicast_last_member_interval * brmctx->multicast_last_member_count); hlist_for_each_entry(ent, &pg->src_list, node) { if (over_llqt == time_after(ent->timer.expires, llqt) && ent->src_query_rexmit_cnt > 0) llqt_srcs++; } if (!llqt_srcs) return NULL; mld_hdr_size += llqt_srcs * sizeof(struct in6_addr); } } pkt_size = sizeof(*eth) + sizeof(*ip6h) + 8 + mld_hdr_size; if ((p && pkt_size > p->dev->mtu) || pkt_size > brmctx->br->dev->mtu) return NULL; skb = netdev_alloc_skb_ip_align(brmctx->br->dev, pkt_size); if (!skb) goto out; __br_multicast_query_handle_vlan(brmctx, pmctx, skb); skb->protocol = htons(ETH_P_IPV6); /* Ethernet header */ skb_reset_mac_header(skb); eth = eth_hdr(skb); ether_addr_copy(eth->h_source, brmctx->br->dev->dev_addr); eth->h_proto = htons(ETH_P_IPV6); skb_put(skb, sizeof(*eth)); /* IPv6 header + HbH option */ skb_set_network_header(skb, skb->len); ip6h = ipv6_hdr(skb); *(__force __be32 *)ip6h = htonl(0x60000000); ip6h->payload_len = htons(8 + mld_hdr_size); ip6h->nexthdr = IPPROTO_HOPOPTS; ip6h->hop_limit = 1; ip6h->daddr = *ip6_dst; if (ipv6_dev_get_saddr(dev_net(brmctx->br->dev), brmctx->br->dev, &ip6h->daddr, 0, &ip6h->saddr)) { kfree_skb(skb); br_opt_toggle(brmctx->br, BROPT_HAS_IPV6_ADDR, false); return NULL; } br_opt_toggle(brmctx->br, BROPT_HAS_IPV6_ADDR, true); ipv6_eth_mc_map(&ip6h->daddr, eth->h_dest); hopopt = (u8 *)(ip6h + 1); hopopt[0] = IPPROTO_ICMPV6; /* next hdr */ hopopt[1] = 0; /* length of HbH */ hopopt[2] = IPV6_TLV_ROUTERALERT; /* Router Alert */ hopopt[3] = 2; /* Length of RA Option */ hopopt[4] = 0; /* Type = 0x0000 (MLD) */ hopopt[5] = 0; hopopt[6] = IPV6_TLV_PAD1; /* Pad1 */ hopopt[7] = IPV6_TLV_PAD1; /* Pad1 */ skb_put(skb, sizeof(*ip6h) + 8); /* ICMPv6 */ skb_set_transport_header(skb, skb->len); interval = ipv6_addr_any(group) ? brmctx->multicast_query_response_interval : brmctx->multicast_last_member_interval; *igmp_type = ICMPV6_MGM_QUERY; switch (brmctx->multicast_mld_version) { case 1: mldq = (struct mld_msg *)icmp6_hdr(skb); mldq->mld_type = ICMPV6_MGM_QUERY; mldq->mld_code = 0; mldq->mld_cksum = 0; mldq->mld_maxdelay = htons((u16)jiffies_to_msecs(interval)); mldq->mld_reserved = 0; mldq->mld_mca = *group; csum = &mldq->mld_cksum; csum_start = (void *)mldq; break; case 2: mld2q = (struct mld2_query *)icmp6_hdr(skb); mld2q->mld2q_mrc = htons((u16)jiffies_to_msecs(interval)); mld2q->mld2q_type = ICMPV6_MGM_QUERY; mld2q->mld2q_code = 0; mld2q->mld2q_cksum = 0; mld2q->mld2q_resv1 = 0; mld2q->mld2q_resv2 = 0; mld2q->mld2q_suppress = sflag; mld2q->mld2q_qrv = 2; mld2q->mld2q_nsrcs = htons(llqt_srcs); mld2q->mld2q_qqic = brmctx->multicast_query_interval / HZ; mld2q->mld2q_mca = *group; csum = &mld2q->mld2q_cksum; csum_start = (void *)mld2q; if (!pg || !with_srcs) break; llqt_srcs = 0; hlist_for_each_entry(ent, &pg->src_list, node) { if (over_llqt == time_after(ent->timer.expires, llqt) && ent->src_query_rexmit_cnt > 0) { mld2q->mld2q_srcs[llqt_srcs++] = ent->addr.src.ip6; ent->src_query_rexmit_cnt--; if (need_rexmit && ent->src_query_rexmit_cnt) *need_rexmit = true; } } if (WARN_ON(llqt_srcs != ntohs(mld2q->mld2q_nsrcs))) { kfree_skb(skb); return NULL; } break; } if (WARN_ON(!csum || !csum_start)) { kfree_skb(skb); return NULL; } *csum = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, mld_hdr_size, IPPROTO_ICMPV6, csum_partial(csum_start, mld_hdr_size, 0)); skb_put(skb, mld_hdr_size); __skb_pull(skb, sizeof(*eth)); out: return skb; } #endif static struct sk_buff *br_multicast_alloc_query(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, struct br_ip *ip_dst, struct br_ip *group, bool with_srcs, bool over_lmqt, u8 sflag, u8 *igmp_type, bool *need_rexmit) { __be32 ip4_dst; switch (group->proto) { case htons(ETH_P_IP): ip4_dst = ip_dst ? ip_dst->dst.ip4 : htonl(INADDR_ALLHOSTS_GROUP); return br_ip4_multicast_alloc_query(brmctx, pmctx, pg, ip4_dst, group->dst.ip4, with_srcs, over_lmqt, sflag, igmp_type, need_rexmit); #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): { struct in6_addr ip6_dst; if (ip_dst) ip6_dst = ip_dst->dst.ip6; else ipv6_addr_set(&ip6_dst, htonl(0xff020000), 0, 0, htonl(1)); return br_ip6_multicast_alloc_query(brmctx, pmctx, pg, &ip6_dst, &group->dst.ip6, with_srcs, over_lmqt, sflag, igmp_type, need_rexmit); } #endif } return NULL; } struct net_bridge_mdb_entry *br_multicast_new_group(struct net_bridge *br, struct br_ip *group) { struct net_bridge_mdb_entry *mp; int err; mp = br_mdb_ip_get(br, group); if (mp) return mp; if (atomic_read(&br->mdb_hash_tbl.nelems) >= br->hash_max) { trace_br_mdb_full(br->dev, group); br_mc_disabled_update(br->dev, false, NULL); br_opt_toggle(br, BROPT_MULTICAST_ENABLED, false); return ERR_PTR(-E2BIG); } mp = kzalloc(sizeof(*mp), GFP_ATOMIC); if (unlikely(!mp)) return ERR_PTR(-ENOMEM); mp->br = br; mp->addr = *group; mp->mcast_gc.destroy = br_multicast_destroy_mdb_entry; timer_setup(&mp->timer, br_multicast_group_expired, 0); err = rhashtable_lookup_insert_fast(&br->mdb_hash_tbl, &mp->rhnode, br_mdb_rht_params); if (err) { kfree(mp); mp = ERR_PTR(err); } else { hlist_add_head_rcu(&mp->mdb_node, &br->mdb_list); } return mp; } static void br_multicast_group_src_expired(struct timer_list *t) { struct net_bridge_group_src *src = from_timer(src, t, timer); struct net_bridge_port_group *pg; struct net_bridge *br = src->br; spin_lock(&br->multicast_lock); if (hlist_unhashed(&src->node) || !netif_running(br->dev) || timer_pending(&src->timer)) goto out; pg = src->pg; if (pg->filter_mode == MCAST_INCLUDE) { br_multicast_del_group_src(src, false); if (!hlist_empty(&pg->src_list)) goto out; br_multicast_find_del_pg(br, pg); } else { br_multicast_fwd_src_handle(src); } out: spin_unlock(&br->multicast_lock); } struct net_bridge_group_src * br_multicast_find_group_src(struct net_bridge_port_group *pg, struct br_ip *ip) { struct net_bridge_group_src *ent; switch (ip->proto) { case htons(ETH_P_IP): hlist_for_each_entry(ent, &pg->src_list, node) if (ip->src.ip4 == ent->addr.src.ip4) return ent; break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): hlist_for_each_entry(ent, &pg->src_list, node) if (!ipv6_addr_cmp(&ent->addr.src.ip6, &ip->src.ip6)) return ent; break; #endif } return NULL; } struct net_bridge_group_src * br_multicast_new_group_src(struct net_bridge_port_group *pg, struct br_ip *src_ip) { struct net_bridge_group_src *grp_src; if (unlikely(pg->src_ents >= PG_SRC_ENT_LIMIT)) return NULL; switch (src_ip->proto) { case htons(ETH_P_IP): if (ipv4_is_zeronet(src_ip->src.ip4) || ipv4_is_multicast(src_ip->src.ip4)) return NULL; break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): if (ipv6_addr_any(&src_ip->src.ip6) || ipv6_addr_is_multicast(&src_ip->src.ip6)) return NULL; break; #endif } grp_src = kzalloc(sizeof(*grp_src), GFP_ATOMIC); if (unlikely(!grp_src)) return NULL; grp_src->pg = pg; grp_src->br = pg->key.port->br; grp_src->addr = *src_ip; grp_src->mcast_gc.destroy = br_multicast_destroy_group_src; timer_setup(&grp_src->timer, br_multicast_group_src_expired, 0); hlist_add_head_rcu(&grp_src->node, &pg->src_list); pg->src_ents++; return grp_src; } struct net_bridge_port_group *br_multicast_new_port_group( struct net_bridge_port *port, const struct br_ip *group, struct net_bridge_port_group __rcu *next, unsigned char flags, const unsigned char *src, u8 filter_mode, u8 rt_protocol, struct netlink_ext_ack *extack) { struct net_bridge_port_group *p; int err; err = br_multicast_port_ngroups_inc(port, group, extack); if (err) return NULL; p = kzalloc(sizeof(*p), GFP_ATOMIC); if (unlikely(!p)) { NL_SET_ERR_MSG_MOD(extack, "Couldn't allocate new port group"); goto dec_out; } p->key.addr = *group; p->key.port = port; p->flags = flags; p->filter_mode = filter_mode; p->rt_protocol = rt_protocol; p->eht_host_tree = RB_ROOT; p->eht_set_tree = RB_ROOT; p->mcast_gc.destroy = br_multicast_destroy_port_group; INIT_HLIST_HEAD(&p->src_list); if (!br_multicast_is_star_g(group) && rhashtable_lookup_insert_fast(&port->br->sg_port_tbl, &p->rhnode, br_sg_port_rht_params)) { NL_SET_ERR_MSG_MOD(extack, "Couldn't insert new port group"); goto free_out; } rcu_assign_pointer(p->next, next); timer_setup(&p->timer, br_multicast_port_group_expired, 0); timer_setup(&p->rexmit_timer, br_multicast_port_group_rexmit, 0); hlist_add_head(&p->mglist, &port->mglist); if (src) memcpy(p->eth_addr, src, ETH_ALEN); else eth_broadcast_addr(p->eth_addr); return p; free_out: kfree(p); dec_out: br_multicast_port_ngroups_dec(port, group->vid); return NULL; } void br_multicast_del_port_group(struct net_bridge_port_group *p) { struct net_bridge_port *port = p->key.port; __u16 vid = p->key.addr.vid; hlist_del_init(&p->mglist); if (!br_multicast_is_star_g(&p->key.addr)) rhashtable_remove_fast(&port->br->sg_port_tbl, &p->rhnode, br_sg_port_rht_params); kfree(p); br_multicast_port_ngroups_dec(port, vid); } void br_multicast_host_join(const struct net_bridge_mcast *brmctx, struct net_bridge_mdb_entry *mp, bool notify) { if (!mp->host_joined) { mp->host_joined = true; if (br_multicast_is_star_g(&mp->addr)) br_multicast_star_g_host_state(mp); if (notify) br_mdb_notify(mp->br->dev, mp, NULL, RTM_NEWMDB); } if (br_group_is_l2(&mp->addr)) return; mod_timer(&mp->timer, jiffies + brmctx->multicast_membership_interval); } void br_multicast_host_leave(struct net_bridge_mdb_entry *mp, bool notify) { if (!mp->host_joined) return; mp->host_joined = false; if (br_multicast_is_star_g(&mp->addr)) br_multicast_star_g_host_state(mp); if (notify) br_mdb_notify(mp->br->dev, mp, NULL, RTM_DELMDB); } static struct net_bridge_port_group * __br_multicast_add_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct br_ip *group, const unsigned char *src, u8 filter_mode, bool igmpv2_mldv1, bool blocked) { struct net_bridge_port_group __rcu **pp; struct net_bridge_port_group *p = NULL; struct net_bridge_mdb_entry *mp; unsigned long now = jiffies; if (!br_multicast_ctx_should_use(brmctx, pmctx)) goto out; mp = br_multicast_new_group(brmctx->br, group); if (IS_ERR(mp)) return ERR_CAST(mp); if (!pmctx) { br_multicast_host_join(brmctx, mp, true); goto out; } for (pp = &mp->ports; (p = mlock_dereference(*pp, brmctx->br)) != NULL; pp = &p->next) { if (br_port_group_equal(p, pmctx->port, src)) goto found; if ((unsigned long)p->key.port < (unsigned long)pmctx->port) break; } p = br_multicast_new_port_group(pmctx->port, group, *pp, 0, src, filter_mode, RTPROT_KERNEL, NULL); if (unlikely(!p)) { p = ERR_PTR(-ENOMEM); goto out; } rcu_assign_pointer(*pp, p); if (blocked) p->flags |= MDB_PG_FLAGS_BLOCKED; br_mdb_notify(brmctx->br->dev, mp, p, RTM_NEWMDB); found: if (igmpv2_mldv1) mod_timer(&p->timer, now + brmctx->multicast_membership_interval); out: return p; } static int br_multicast_add_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct br_ip *group, const unsigned char *src, u8 filter_mode, bool igmpv2_mldv1) { struct net_bridge_port_group *pg; int err; spin_lock(&brmctx->br->multicast_lock); pg = __br_multicast_add_group(brmctx, pmctx, group, src, filter_mode, igmpv2_mldv1, false); /* NULL is considered valid for host joined groups */ err = PTR_ERR_OR_ZERO(pg); spin_unlock(&brmctx->br->multicast_lock); return err; } static int br_ip4_multicast_add_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, __be32 group, __u16 vid, const unsigned char *src, bool igmpv2) { struct br_ip br_group; u8 filter_mode; if (ipv4_is_local_multicast(group)) return 0; memset(&br_group, 0, sizeof(br_group)); br_group.dst.ip4 = group; br_group.proto = htons(ETH_P_IP); br_group.vid = vid; filter_mode = igmpv2 ? MCAST_EXCLUDE : MCAST_INCLUDE; return br_multicast_add_group(brmctx, pmctx, &br_group, src, filter_mode, igmpv2); } #if IS_ENABLED(CONFIG_IPV6) static int br_ip6_multicast_add_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, const struct in6_addr *group, __u16 vid, const unsigned char *src, bool mldv1) { struct br_ip br_group; u8 filter_mode; if (ipv6_addr_is_ll_all_nodes(group)) return 0; memset(&br_group, 0, sizeof(br_group)); br_group.dst.ip6 = *group; br_group.proto = htons(ETH_P_IPV6); br_group.vid = vid; filter_mode = mldv1 ? MCAST_EXCLUDE : MCAST_INCLUDE; return br_multicast_add_group(brmctx, pmctx, &br_group, src, filter_mode, mldv1); } #endif static bool br_multicast_rport_del(struct hlist_node *rlist) { if (hlist_unhashed(rlist)) return false; hlist_del_init_rcu(rlist); return true; } static bool br_ip4_multicast_rport_del(struct net_bridge_mcast_port *pmctx) { return br_multicast_rport_del(&pmctx->ip4_rlist); } static bool br_ip6_multicast_rport_del(struct net_bridge_mcast_port *pmctx) { #if IS_ENABLED(CONFIG_IPV6) return br_multicast_rport_del(&pmctx->ip6_rlist); #else return false; #endif } static void br_multicast_router_expired(struct net_bridge_mcast_port *pmctx, struct timer_list *t, struct hlist_node *rlist) { struct net_bridge *br = pmctx->port->br; bool del; spin_lock(&br->multicast_lock); if (pmctx->multicast_router == MDB_RTR_TYPE_DISABLED || pmctx->multicast_router == MDB_RTR_TYPE_PERM || timer_pending(t)) goto out; del = br_multicast_rport_del(rlist); br_multicast_rport_del_notify(pmctx, del); out: spin_unlock(&br->multicast_lock); } static void br_ip4_multicast_router_expired(struct timer_list *t) { struct net_bridge_mcast_port *pmctx = from_timer(pmctx, t, ip4_mc_router_timer); br_multicast_router_expired(pmctx, t, &pmctx->ip4_rlist); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_router_expired(struct timer_list *t) { struct net_bridge_mcast_port *pmctx = from_timer(pmctx, t, ip6_mc_router_timer); br_multicast_router_expired(pmctx, t, &pmctx->ip6_rlist); } #endif static void br_mc_router_state_change(struct net_bridge *p, bool is_mc_router) { struct switchdev_attr attr = { .orig_dev = p->dev, .id = SWITCHDEV_ATTR_ID_BRIDGE_MROUTER, .flags = SWITCHDEV_F_DEFER, .u.mrouter = is_mc_router, }; switchdev_port_attr_set(p->dev, &attr, NULL); } static void br_multicast_local_router_expired(struct net_bridge_mcast *brmctx, struct timer_list *timer) { spin_lock(&brmctx->br->multicast_lock); if (brmctx->multicast_router == MDB_RTR_TYPE_DISABLED || brmctx->multicast_router == MDB_RTR_TYPE_PERM || br_ip4_multicast_is_router(brmctx) || br_ip6_multicast_is_router(brmctx)) goto out; br_mc_router_state_change(brmctx->br, false); out: spin_unlock(&brmctx->br->multicast_lock); } static void br_ip4_multicast_local_router_expired(struct timer_list *t) { struct net_bridge_mcast *brmctx = from_timer(brmctx, t, ip4_mc_router_timer); br_multicast_local_router_expired(brmctx, t); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_local_router_expired(struct timer_list *t) { struct net_bridge_mcast *brmctx = from_timer(brmctx, t, ip6_mc_router_timer); br_multicast_local_router_expired(brmctx, t); } #endif static void br_multicast_querier_expired(struct net_bridge_mcast *brmctx, struct bridge_mcast_own_query *query) { spin_lock(&brmctx->br->multicast_lock); if (!netif_running(brmctx->br->dev) || br_multicast_ctx_vlan_global_disabled(brmctx) || !br_opt_get(brmctx->br, BROPT_MULTICAST_ENABLED)) goto out; br_multicast_start_querier(brmctx, query); out: spin_unlock(&brmctx->br->multicast_lock); } static void br_ip4_multicast_querier_expired(struct timer_list *t) { struct net_bridge_mcast *brmctx = from_timer(brmctx, t, ip4_other_query.timer); br_multicast_querier_expired(brmctx, &brmctx->ip4_own_query); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_querier_expired(struct timer_list *t) { struct net_bridge_mcast *brmctx = from_timer(brmctx, t, ip6_other_query.timer); br_multicast_querier_expired(brmctx, &brmctx->ip6_own_query); } #endif static void br_multicast_query_delay_expired(struct timer_list *t) { } static void br_multicast_select_own_querier(struct net_bridge_mcast *brmctx, struct br_ip *ip, struct sk_buff *skb) { if (ip->proto == htons(ETH_P_IP)) brmctx->ip4_querier.addr.src.ip4 = ip_hdr(skb)->saddr; #if IS_ENABLED(CONFIG_IPV6) else brmctx->ip6_querier.addr.src.ip6 = ipv6_hdr(skb)->saddr; #endif } static void __br_multicast_send_query(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, struct br_ip *ip_dst, struct br_ip *group, bool with_srcs, u8 sflag, bool *need_rexmit) { bool over_lmqt = !!sflag; struct sk_buff *skb; u8 igmp_type; if (!br_multicast_ctx_should_use(brmctx, pmctx) || !br_multicast_ctx_matches_vlan_snooping(brmctx)) return; again_under_lmqt: skb = br_multicast_alloc_query(brmctx, pmctx, pg, ip_dst, group, with_srcs, over_lmqt, sflag, &igmp_type, need_rexmit); if (!skb) return; if (pmctx) { skb->dev = pmctx->port->dev; br_multicast_count(brmctx->br, pmctx->port, skb, igmp_type, BR_MCAST_DIR_TX); NF_HOOK(NFPROTO_BRIDGE, NF_BR_LOCAL_OUT, dev_net(pmctx->port->dev), NULL, skb, NULL, skb->dev, br_dev_queue_push_xmit); if (over_lmqt && with_srcs && sflag) { over_lmqt = false; goto again_under_lmqt; } } else { br_multicast_select_own_querier(brmctx, group, skb); br_multicast_count(brmctx->br, NULL, skb, igmp_type, BR_MCAST_DIR_RX); netif_rx(skb); } } static void br_multicast_read_querier(const struct bridge_mcast_querier *querier, struct bridge_mcast_querier *dest) { unsigned int seq; memset(dest, 0, sizeof(*dest)); do { seq = read_seqcount_begin(&querier->seq); dest->port_ifidx = querier->port_ifidx; memcpy(&dest->addr, &querier->addr, sizeof(struct br_ip)); } while (read_seqcount_retry(&querier->seq, seq)); } static void br_multicast_update_querier(struct net_bridge_mcast *brmctx, struct bridge_mcast_querier *querier, int ifindex, struct br_ip *saddr) { write_seqcount_begin(&querier->seq); querier->port_ifidx = ifindex; memcpy(&querier->addr, saddr, sizeof(*saddr)); write_seqcount_end(&querier->seq); } static void br_multicast_send_query(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct bridge_mcast_own_query *own_query) { struct bridge_mcast_other_query *other_query = NULL; struct bridge_mcast_querier *querier; struct br_ip br_group; unsigned long time; if (!br_multicast_ctx_should_use(brmctx, pmctx) || !br_opt_get(brmctx->br, BROPT_MULTICAST_ENABLED) || !brmctx->multicast_querier) return; memset(&br_group.dst, 0, sizeof(br_group.dst)); if (pmctx ? (own_query == &pmctx->ip4_own_query) : (own_query == &brmctx->ip4_own_query)) { querier = &brmctx->ip4_querier; other_query = &brmctx->ip4_other_query; br_group.proto = htons(ETH_P_IP); #if IS_ENABLED(CONFIG_IPV6) } else { querier = &brmctx->ip6_querier; other_query = &brmctx->ip6_other_query; br_group.proto = htons(ETH_P_IPV6); #endif } if (!other_query || timer_pending(&other_query->timer)) return; /* we're about to select ourselves as querier */ if (!pmctx && querier->port_ifidx) { struct br_ip zeroip = {}; br_multicast_update_querier(brmctx, querier, 0, &zeroip); } __br_multicast_send_query(brmctx, pmctx, NULL, NULL, &br_group, false, 0, NULL); time = jiffies; time += own_query->startup_sent < brmctx->multicast_startup_query_count ? brmctx->multicast_startup_query_interval : brmctx->multicast_query_interval; mod_timer(&own_query->timer, time); } static void br_multicast_port_query_expired(struct net_bridge_mcast_port *pmctx, struct bridge_mcast_own_query *query) { struct net_bridge *br = pmctx->port->br; struct net_bridge_mcast *brmctx; spin_lock(&br->multicast_lock); if (br_multicast_port_ctx_state_stopped(pmctx)) goto out; brmctx = br_multicast_port_ctx_get_global(pmctx); if (query->startup_sent < brmctx->multicast_startup_query_count) query->startup_sent++; br_multicast_send_query(brmctx, pmctx, query); out: spin_unlock(&br->multicast_lock); } static void br_ip4_multicast_port_query_expired(struct timer_list *t) { struct net_bridge_mcast_port *pmctx = from_timer(pmctx, t, ip4_own_query.timer); br_multicast_port_query_expired(pmctx, &pmctx->ip4_own_query); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_port_query_expired(struct timer_list *t) { struct net_bridge_mcast_port *pmctx = from_timer(pmctx, t, ip6_own_query.timer); br_multicast_port_query_expired(pmctx, &pmctx->ip6_own_query); } #endif static void br_multicast_port_group_rexmit(struct timer_list *t) { struct net_bridge_port_group *pg = from_timer(pg, t, rexmit_timer); struct bridge_mcast_other_query *other_query = NULL; struct net_bridge *br = pg->key.port->br; struct net_bridge_mcast_port *pmctx; struct net_bridge_mcast *brmctx; bool need_rexmit = false; spin_lock(&br->multicast_lock); if (!netif_running(br->dev) || hlist_unhashed(&pg->mglist) || !br_opt_get(br, BROPT_MULTICAST_ENABLED)) goto out; pmctx = br_multicast_pg_to_port_ctx(pg); if (!pmctx) goto out; brmctx = br_multicast_port_ctx_get_global(pmctx); if (!brmctx->multicast_querier) goto out; if (pg->key.addr.proto == htons(ETH_P_IP)) other_query = &brmctx->ip4_other_query; #if IS_ENABLED(CONFIG_IPV6) else other_query = &brmctx->ip6_other_query; #endif if (!other_query || timer_pending(&other_query->timer)) goto out; if (pg->grp_query_rexmit_cnt) { pg->grp_query_rexmit_cnt--; __br_multicast_send_query(brmctx, pmctx, pg, &pg->key.addr, &pg->key.addr, false, 1, NULL); } __br_multicast_send_query(brmctx, pmctx, pg, &pg->key.addr, &pg->key.addr, true, 0, &need_rexmit); if (pg->grp_query_rexmit_cnt || need_rexmit) mod_timer(&pg->rexmit_timer, jiffies + brmctx->multicast_last_member_interval); out: spin_unlock(&br->multicast_lock); } static int br_mc_disabled_update(struct net_device *dev, bool value, struct netlink_ext_ack *extack) { struct switchdev_attr attr = { .orig_dev = dev, .id = SWITCHDEV_ATTR_ID_BRIDGE_MC_DISABLED, .flags = SWITCHDEV_F_DEFER, .u.mc_disabled = !value, }; return switchdev_port_attr_set(dev, &attr, extack); } void br_multicast_port_ctx_init(struct net_bridge_port *port, struct net_bridge_vlan *vlan, struct net_bridge_mcast_port *pmctx) { pmctx->port = port; pmctx->vlan = vlan; pmctx->multicast_router = MDB_RTR_TYPE_TEMP_QUERY; timer_setup(&pmctx->ip4_mc_router_timer, br_ip4_multicast_router_expired, 0); timer_setup(&pmctx->ip4_own_query.timer, br_ip4_multicast_port_query_expired, 0); #if IS_ENABLED(CONFIG_IPV6) timer_setup(&pmctx->ip6_mc_router_timer, br_ip6_multicast_router_expired, 0); timer_setup(&pmctx->ip6_own_query.timer, br_ip6_multicast_port_query_expired, 0); #endif } void br_multicast_port_ctx_deinit(struct net_bridge_mcast_port *pmctx) { #if IS_ENABLED(CONFIG_IPV6) del_timer_sync(&pmctx->ip6_mc_router_timer); #endif del_timer_sync(&pmctx->ip4_mc_router_timer); } int br_multicast_add_port(struct net_bridge_port *port) { int err; port->multicast_eht_hosts_limit = BR_MCAST_DEFAULT_EHT_HOSTS_LIMIT; br_multicast_port_ctx_init(port, NULL, &port->multicast_ctx); err = br_mc_disabled_update(port->dev, br_opt_get(port->br, BROPT_MULTICAST_ENABLED), NULL); if (err && err != -EOPNOTSUPP) return err; port->mcast_stats = netdev_alloc_pcpu_stats(struct bridge_mcast_stats); if (!port->mcast_stats) return -ENOMEM; return 0; } void br_multicast_del_port(struct net_bridge_port *port) { struct net_bridge *br = port->br; struct net_bridge_port_group *pg; HLIST_HEAD(deleted_head); struct hlist_node *n; /* Take care of the remaining groups, only perm ones should be left */ spin_lock_bh(&br->multicast_lock); hlist_for_each_entry_safe(pg, n, &port->mglist, mglist) br_multicast_find_del_pg(br, pg); hlist_move_list(&br->mcast_gc_list, &deleted_head); spin_unlock_bh(&br->multicast_lock); br_multicast_gc(&deleted_head); br_multicast_port_ctx_deinit(&port->multicast_ctx); free_percpu(port->mcast_stats); } static void br_multicast_enable(struct bridge_mcast_own_query *query) { query->startup_sent = 0; if (try_to_del_timer_sync(&query->timer) >= 0 || del_timer(&query->timer)) mod_timer(&query->timer, jiffies); } static void __br_multicast_enable_port_ctx(struct net_bridge_mcast_port *pmctx) { struct net_bridge *br = pmctx->port->br; struct net_bridge_mcast *brmctx; brmctx = br_multicast_port_ctx_get_global(pmctx); if (!br_opt_get(br, BROPT_MULTICAST_ENABLED) || !netif_running(br->dev)) return; br_multicast_enable(&pmctx->ip4_own_query); #if IS_ENABLED(CONFIG_IPV6) br_multicast_enable(&pmctx->ip6_own_query); #endif if (pmctx->multicast_router == MDB_RTR_TYPE_PERM) { br_ip4_multicast_add_router(brmctx, pmctx); br_ip6_multicast_add_router(brmctx, pmctx); } if (br_multicast_port_ctx_is_vlan(pmctx)) { struct net_bridge_port_group *pg; u32 n = 0; /* The mcast_n_groups counter might be wrong. First, * BR_VLFLAG_MCAST_ENABLED is toggled before temporary entries * are flushed, thus mcast_n_groups after the toggle does not * reflect the true values. And second, permanent entries added * while BR_VLFLAG_MCAST_ENABLED was disabled, are not reflected * either. Thus we have to refresh the counter. */ hlist_for_each_entry(pg, &pmctx->port->mglist, mglist) { if (pg->key.addr.vid == pmctx->vlan->vid) n++; } WRITE_ONCE(pmctx->mdb_n_entries, n); } } void br_multicast_enable_port(struct net_bridge_port *port) { struct net_bridge *br = port->br; spin_lock_bh(&br->multicast_lock); __br_multicast_enable_port_ctx(&port->multicast_ctx); spin_unlock_bh(&br->multicast_lock); } static void __br_multicast_disable_port_ctx(struct net_bridge_mcast_port *pmctx) { struct net_bridge_port_group *pg; struct hlist_node *n; bool del = false; hlist_for_each_entry_safe(pg, n, &pmctx->port->mglist, mglist) if (!(pg->flags & MDB_PG_FLAGS_PERMANENT) && (!br_multicast_port_ctx_is_vlan(pmctx) || pg->key.addr.vid == pmctx->vlan->vid)) br_multicast_find_del_pg(pmctx->port->br, pg); del |= br_ip4_multicast_rport_del(pmctx); del_timer(&pmctx->ip4_mc_router_timer); del_timer(&pmctx->ip4_own_query.timer); del |= br_ip6_multicast_rport_del(pmctx); #if IS_ENABLED(CONFIG_IPV6) del_timer(&pmctx->ip6_mc_router_timer); del_timer(&pmctx->ip6_own_query.timer); #endif br_multicast_rport_del_notify(pmctx, del); } void br_multicast_disable_port(struct net_bridge_port *port) { spin_lock_bh(&port->br->multicast_lock); __br_multicast_disable_port_ctx(&port->multicast_ctx); spin_unlock_bh(&port->br->multicast_lock); } static int __grp_src_delete_marked(struct net_bridge_port_group *pg) { struct net_bridge_group_src *ent; struct hlist_node *tmp; int deleted = 0; hlist_for_each_entry_safe(ent, tmp, &pg->src_list, node) if (ent->flags & BR_SGRP_F_DELETE) { br_multicast_del_group_src(ent, false); deleted++; } return deleted; } static void __grp_src_mod_timer(struct net_bridge_group_src *src, unsigned long expires) { mod_timer(&src->timer, expires); br_multicast_fwd_src_handle(src); } static void __grp_src_query_marked_and_rexmit(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg) { struct bridge_mcast_other_query *other_query = NULL; u32 lmqc = brmctx->multicast_last_member_count; unsigned long lmqt, lmi, now = jiffies; struct net_bridge_group_src *ent; if (!netif_running(brmctx->br->dev) || !br_opt_get(brmctx->br, BROPT_MULTICAST_ENABLED)) return; if (pg->key.addr.proto == htons(ETH_P_IP)) other_query = &brmctx->ip4_other_query; #if IS_ENABLED(CONFIG_IPV6) else other_query = &brmctx->ip6_other_query; #endif lmqt = now + br_multicast_lmqt(brmctx); hlist_for_each_entry(ent, &pg->src_list, node) { if (ent->flags & BR_SGRP_F_SEND) { ent->flags &= ~BR_SGRP_F_SEND; if (ent->timer.expires > lmqt) { if (brmctx->multicast_querier && other_query && !timer_pending(&other_query->timer)) ent->src_query_rexmit_cnt = lmqc; __grp_src_mod_timer(ent, lmqt); } } } if (!brmctx->multicast_querier || !other_query || timer_pending(&other_query->timer)) return; __br_multicast_send_query(brmctx, pmctx, pg, &pg->key.addr, &pg->key.addr, true, 1, NULL); lmi = now + brmctx->multicast_last_member_interval; if (!timer_pending(&pg->rexmit_timer) || time_after(pg->rexmit_timer.expires, lmi)) mod_timer(&pg->rexmit_timer, lmi); } static void __grp_send_query_and_rexmit(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg) { struct bridge_mcast_other_query *other_query = NULL; unsigned long now = jiffies, lmi; if (!netif_running(brmctx->br->dev) || !br_opt_get(brmctx->br, BROPT_MULTICAST_ENABLED)) return; if (pg->key.addr.proto == htons(ETH_P_IP)) other_query = &brmctx->ip4_other_query; #if IS_ENABLED(CONFIG_IPV6) else other_query = &brmctx->ip6_other_query; #endif if (brmctx->multicast_querier && other_query && !timer_pending(&other_query->timer)) { lmi = now + brmctx->multicast_last_member_interval; pg->grp_query_rexmit_cnt = brmctx->multicast_last_member_count - 1; __br_multicast_send_query(brmctx, pmctx, pg, &pg->key.addr, &pg->key.addr, false, 0, NULL); if (!timer_pending(&pg->rexmit_timer) || time_after(pg->rexmit_timer.expires, lmi)) mod_timer(&pg->rexmit_timer, lmi); } if (pg->filter_mode == MCAST_EXCLUDE && (!timer_pending(&pg->timer) || time_after(pg->timer.expires, now + br_multicast_lmqt(brmctx)))) mod_timer(&pg->timer, now + br_multicast_lmqt(brmctx)); } /* State Msg type New state Actions * INCLUDE (A) IS_IN (B) INCLUDE (A+B) (B)=GMI * INCLUDE (A) ALLOW (B) INCLUDE (A+B) (B)=GMI * EXCLUDE (X,Y) ALLOW (A) EXCLUDE (X+A,Y-A) (A)=GMI */ static bool br_multicast_isinc_allow(const struct net_bridge_mcast *brmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { struct net_bridge_group_src *ent; unsigned long now = jiffies; bool changed = false; struct br_ip src_ip; u32 src_idx; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (!ent) { ent = br_multicast_new_group_src(pg, &src_ip); if (ent) changed = true; } if (ent) __grp_src_mod_timer(ent, now + br_multicast_gmi(brmctx)); } if (br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type)) changed = true; return changed; } /* State Msg type New state Actions * INCLUDE (A) IS_EX (B) EXCLUDE (A*B,B-A) (B-A)=0 * Delete (A-B) * Group Timer=GMI */ static void __grp_src_isexc_incl(const struct net_bridge_mcast *brmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { struct net_bridge_group_src *ent; struct br_ip src_ip; u32 src_idx; hlist_for_each_entry(ent, &pg->src_list, node) ent->flags |= BR_SGRP_F_DELETE; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (ent) ent->flags &= ~BR_SGRP_F_DELETE; else ent = br_multicast_new_group_src(pg, &src_ip); if (ent) br_multicast_fwd_src_handle(ent); } br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); __grp_src_delete_marked(pg); } /* State Msg type New state Actions * EXCLUDE (X,Y) IS_EX (A) EXCLUDE (A-Y,Y*A) (A-X-Y)=GMI * Delete (X-A) * Delete (Y-A) * Group Timer=GMI */ static bool __grp_src_isexc_excl(const struct net_bridge_mcast *brmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { struct net_bridge_group_src *ent; unsigned long now = jiffies; bool changed = false; struct br_ip src_ip; u32 src_idx; hlist_for_each_entry(ent, &pg->src_list, node) ent->flags |= BR_SGRP_F_DELETE; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (ent) { ent->flags &= ~BR_SGRP_F_DELETE; } else { ent = br_multicast_new_group_src(pg, &src_ip); if (ent) { __grp_src_mod_timer(ent, now + br_multicast_gmi(brmctx)); changed = true; } } } if (br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type)) changed = true; if (__grp_src_delete_marked(pg)) changed = true; return changed; } static bool br_multicast_isexc(const struct net_bridge_mcast *brmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { bool changed = false; switch (pg->filter_mode) { case MCAST_INCLUDE: __grp_src_isexc_incl(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); br_multicast_star_g_handle_mode(pg, MCAST_EXCLUDE); changed = true; break; case MCAST_EXCLUDE: changed = __grp_src_isexc_excl(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); break; } pg->filter_mode = MCAST_EXCLUDE; mod_timer(&pg->timer, jiffies + br_multicast_gmi(brmctx)); return changed; } /* State Msg type New state Actions * INCLUDE (A) TO_IN (B) INCLUDE (A+B) (B)=GMI * Send Q(G,A-B) */ static bool __grp_src_toin_incl(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { u32 src_idx, to_send = pg->src_ents; struct net_bridge_group_src *ent; unsigned long now = jiffies; bool changed = false; struct br_ip src_ip; hlist_for_each_entry(ent, &pg->src_list, node) ent->flags |= BR_SGRP_F_SEND; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (ent) { ent->flags &= ~BR_SGRP_F_SEND; to_send--; } else { ent = br_multicast_new_group_src(pg, &src_ip); if (ent) changed = true; } if (ent) __grp_src_mod_timer(ent, now + br_multicast_gmi(brmctx)); } if (br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type)) changed = true; if (to_send) __grp_src_query_marked_and_rexmit(brmctx, pmctx, pg); return changed; } /* State Msg type New state Actions * EXCLUDE (X,Y) TO_IN (A) EXCLUDE (X+A,Y-A) (A)=GMI * Send Q(G,X-A) * Send Q(G) */ static bool __grp_src_toin_excl(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { u32 src_idx, to_send = pg->src_ents; struct net_bridge_group_src *ent; unsigned long now = jiffies; bool changed = false; struct br_ip src_ip; hlist_for_each_entry(ent, &pg->src_list, node) if (timer_pending(&ent->timer)) ent->flags |= BR_SGRP_F_SEND; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (ent) { if (timer_pending(&ent->timer)) { ent->flags &= ~BR_SGRP_F_SEND; to_send--; } } else { ent = br_multicast_new_group_src(pg, &src_ip); if (ent) changed = true; } if (ent) __grp_src_mod_timer(ent, now + br_multicast_gmi(brmctx)); } if (br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type)) changed = true; if (to_send) __grp_src_query_marked_and_rexmit(brmctx, pmctx, pg); __grp_send_query_and_rexmit(brmctx, pmctx, pg); return changed; } static bool br_multicast_toin(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { bool changed = false; switch (pg->filter_mode) { case MCAST_INCLUDE: changed = __grp_src_toin_incl(brmctx, pmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); break; case MCAST_EXCLUDE: changed = __grp_src_toin_excl(brmctx, pmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); break; } if (br_multicast_eht_should_del_pg(pg)) { pg->flags |= MDB_PG_FLAGS_FAST_LEAVE; br_multicast_find_del_pg(pg->key.port->br, pg); /* a notification has already been sent and we shouldn't * access pg after the delete so we have to return false */ changed = false; } return changed; } /* State Msg type New state Actions * INCLUDE (A) TO_EX (B) EXCLUDE (A*B,B-A) (B-A)=0 * Delete (A-B) * Send Q(G,A*B) * Group Timer=GMI */ static void __grp_src_toex_incl(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { struct net_bridge_group_src *ent; u32 src_idx, to_send = 0; struct br_ip src_ip; hlist_for_each_entry(ent, &pg->src_list, node) ent->flags = (ent->flags & ~BR_SGRP_F_SEND) | BR_SGRP_F_DELETE; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (ent) { ent->flags = (ent->flags & ~BR_SGRP_F_DELETE) | BR_SGRP_F_SEND; to_send++; } else { ent = br_multicast_new_group_src(pg, &src_ip); } if (ent) br_multicast_fwd_src_handle(ent); } br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); __grp_src_delete_marked(pg); if (to_send) __grp_src_query_marked_and_rexmit(brmctx, pmctx, pg); } /* State Msg type New state Actions * EXCLUDE (X,Y) TO_EX (A) EXCLUDE (A-Y,Y*A) (A-X-Y)=Group Timer * Delete (X-A) * Delete (Y-A) * Send Q(G,A-Y) * Group Timer=GMI */ static bool __grp_src_toex_excl(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { struct net_bridge_group_src *ent; u32 src_idx, to_send = 0; bool changed = false; struct br_ip src_ip; hlist_for_each_entry(ent, &pg->src_list, node) ent->flags = (ent->flags & ~BR_SGRP_F_SEND) | BR_SGRP_F_DELETE; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (ent) { ent->flags &= ~BR_SGRP_F_DELETE; } else { ent = br_multicast_new_group_src(pg, &src_ip); if (ent) { __grp_src_mod_timer(ent, pg->timer.expires); changed = true; } } if (ent && timer_pending(&ent->timer)) { ent->flags |= BR_SGRP_F_SEND; to_send++; } } if (br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type)) changed = true; if (__grp_src_delete_marked(pg)) changed = true; if (to_send) __grp_src_query_marked_and_rexmit(brmctx, pmctx, pg); return changed; } static bool br_multicast_toex(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { bool changed = false; switch (pg->filter_mode) { case MCAST_INCLUDE: __grp_src_toex_incl(brmctx, pmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); br_multicast_star_g_handle_mode(pg, MCAST_EXCLUDE); changed = true; break; case MCAST_EXCLUDE: changed = __grp_src_toex_excl(brmctx, pmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); break; } pg->filter_mode = MCAST_EXCLUDE; mod_timer(&pg->timer, jiffies + br_multicast_gmi(brmctx)); return changed; } /* State Msg type New state Actions * INCLUDE (A) BLOCK (B) INCLUDE (A) Send Q(G,A*B) */ static bool __grp_src_block_incl(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { struct net_bridge_group_src *ent; u32 src_idx, to_send = 0; bool changed = false; struct br_ip src_ip; hlist_for_each_entry(ent, &pg->src_list, node) ent->flags &= ~BR_SGRP_F_SEND; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (ent) { ent->flags |= BR_SGRP_F_SEND; to_send++; } } if (br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type)) changed = true; if (to_send) __grp_src_query_marked_and_rexmit(brmctx, pmctx, pg); return changed; } /* State Msg type New state Actions * EXCLUDE (X,Y) BLOCK (A) EXCLUDE (X+(A-Y),Y) (A-X-Y)=Group Timer * Send Q(G,A-Y) */ static bool __grp_src_block_excl(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { struct net_bridge_group_src *ent; u32 src_idx, to_send = 0; bool changed = false; struct br_ip src_ip; hlist_for_each_entry(ent, &pg->src_list, node) ent->flags &= ~BR_SGRP_F_SEND; memset(&src_ip, 0, sizeof(src_ip)); src_ip.proto = pg->key.addr.proto; for (src_idx = 0; src_idx < nsrcs; src_idx++) { memcpy(&src_ip.src, srcs + (src_idx * addr_size), addr_size); ent = br_multicast_find_group_src(pg, &src_ip); if (!ent) { ent = br_multicast_new_group_src(pg, &src_ip); if (ent) { __grp_src_mod_timer(ent, pg->timer.expires); changed = true; } } if (ent && timer_pending(&ent->timer)) { ent->flags |= BR_SGRP_F_SEND; to_send++; } } if (br_multicast_eht_handle(brmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type)) changed = true; if (to_send) __grp_src_query_marked_and_rexmit(brmctx, pmctx, pg); return changed; } static bool br_multicast_block(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct net_bridge_port_group *pg, void *h_addr, void *srcs, u32 nsrcs, size_t addr_size, int grec_type) { bool changed = false; switch (pg->filter_mode) { case MCAST_INCLUDE: changed = __grp_src_block_incl(brmctx, pmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); break; case MCAST_EXCLUDE: changed = __grp_src_block_excl(brmctx, pmctx, pg, h_addr, srcs, nsrcs, addr_size, grec_type); break; } if ((pg->filter_mode == MCAST_INCLUDE && hlist_empty(&pg->src_list)) || br_multicast_eht_should_del_pg(pg)) { if (br_multicast_eht_should_del_pg(pg)) pg->flags |= MDB_PG_FLAGS_FAST_LEAVE; br_multicast_find_del_pg(pg->key.port->br, pg); /* a notification has already been sent and we shouldn't * access pg after the delete so we have to return false */ changed = false; } return changed; } static struct net_bridge_port_group * br_multicast_find_port(struct net_bridge_mdb_entry *mp, struct net_bridge_port *p, const unsigned char *src) { struct net_bridge *br __maybe_unused = mp->br; struct net_bridge_port_group *pg; for (pg = mlock_dereference(mp->ports, br); pg; pg = mlock_dereference(pg->next, br)) if (br_port_group_equal(pg, p, src)) return pg; return NULL; } static int br_ip4_multicast_igmp3_report(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb, u16 vid) { bool igmpv2 = brmctx->multicast_igmp_version == 2; struct net_bridge_mdb_entry *mdst; struct net_bridge_port_group *pg; const unsigned char *src; struct igmpv3_report *ih; struct igmpv3_grec *grec; int i, len, num, type; __be32 group, *h_addr; bool changed = false; int err = 0; u16 nsrcs; ih = igmpv3_report_hdr(skb); num = ntohs(ih->ngrec); len = skb_transport_offset(skb) + sizeof(*ih); for (i = 0; i < num; i++) { len += sizeof(*grec); if (!ip_mc_may_pull(skb, len)) return -EINVAL; grec = (void *)(skb->data + len - sizeof(*grec)); group = grec->grec_mca; type = grec->grec_type; nsrcs = ntohs(grec->grec_nsrcs); len += nsrcs * 4; if (!ip_mc_may_pull(skb, len)) return -EINVAL; switch (type) { case IGMPV3_MODE_IS_INCLUDE: case IGMPV3_MODE_IS_EXCLUDE: case IGMPV3_CHANGE_TO_INCLUDE: case IGMPV3_CHANGE_TO_EXCLUDE: case IGMPV3_ALLOW_NEW_SOURCES: case IGMPV3_BLOCK_OLD_SOURCES: break; default: continue; } src = eth_hdr(skb)->h_source; if (nsrcs == 0 && (type == IGMPV3_CHANGE_TO_INCLUDE || type == IGMPV3_MODE_IS_INCLUDE)) { if (!pmctx || igmpv2) { br_ip4_multicast_leave_group(brmctx, pmctx, group, vid, src); continue; } } else { err = br_ip4_multicast_add_group(brmctx, pmctx, group, vid, src, igmpv2); if (err) break; } if (!pmctx || igmpv2) continue; spin_lock(&brmctx->br->multicast_lock); if (!br_multicast_ctx_should_use(brmctx, pmctx)) goto unlock_continue; mdst = br_mdb_ip4_get(brmctx->br, group, vid); if (!mdst) goto unlock_continue; pg = br_multicast_find_port(mdst, pmctx->port, src); if (!pg || (pg->flags & MDB_PG_FLAGS_PERMANENT)) goto unlock_continue; /* reload grec and host addr */ grec = (void *)(skb->data + len - sizeof(*grec) - (nsrcs * 4)); h_addr = &ip_hdr(skb)->saddr; switch (type) { case IGMPV3_ALLOW_NEW_SOURCES: changed = br_multicast_isinc_allow(brmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(__be32), type); break; case IGMPV3_MODE_IS_INCLUDE: changed = br_multicast_isinc_allow(brmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(__be32), type); break; case IGMPV3_MODE_IS_EXCLUDE: changed = br_multicast_isexc(brmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(__be32), type); break; case IGMPV3_CHANGE_TO_INCLUDE: changed = br_multicast_toin(brmctx, pmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(__be32), type); break; case IGMPV3_CHANGE_TO_EXCLUDE: changed = br_multicast_toex(brmctx, pmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(__be32), type); break; case IGMPV3_BLOCK_OLD_SOURCES: changed = br_multicast_block(brmctx, pmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(__be32), type); break; } if (changed) br_mdb_notify(brmctx->br->dev, mdst, pg, RTM_NEWMDB); unlock_continue: spin_unlock(&brmctx->br->multicast_lock); } return err; } #if IS_ENABLED(CONFIG_IPV6) static int br_ip6_multicast_mld2_report(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb, u16 vid) { bool mldv1 = brmctx->multicast_mld_version == 1; struct net_bridge_mdb_entry *mdst; struct net_bridge_port_group *pg; unsigned int nsrcs_offset; struct mld2_report *mld2r; const unsigned char *src; struct in6_addr *h_addr; struct mld2_grec *grec; unsigned int grec_len; bool changed = false; int i, len, num; int err = 0; if (!ipv6_mc_may_pull(skb, sizeof(*mld2r))) return -EINVAL; mld2r = (struct mld2_report *)icmp6_hdr(skb); num = ntohs(mld2r->mld2r_ngrec); len = skb_transport_offset(skb) + sizeof(*mld2r); for (i = 0; i < num; i++) { __be16 *_nsrcs, __nsrcs; u16 nsrcs; nsrcs_offset = len + offsetof(struct mld2_grec, grec_nsrcs); if (skb_transport_offset(skb) + ipv6_transport_len(skb) < nsrcs_offset + sizeof(__nsrcs)) return -EINVAL; _nsrcs = skb_header_pointer(skb, nsrcs_offset, sizeof(__nsrcs), &__nsrcs); if (!_nsrcs) return -EINVAL; nsrcs = ntohs(*_nsrcs); grec_len = struct_size(grec, grec_src, nsrcs); if (!ipv6_mc_may_pull(skb, len + grec_len)) return -EINVAL; grec = (struct mld2_grec *)(skb->data + len); len += grec_len; switch (grec->grec_type) { case MLD2_MODE_IS_INCLUDE: case MLD2_MODE_IS_EXCLUDE: case MLD2_CHANGE_TO_INCLUDE: case MLD2_CHANGE_TO_EXCLUDE: case MLD2_ALLOW_NEW_SOURCES: case MLD2_BLOCK_OLD_SOURCES: break; default: continue; } src = eth_hdr(skb)->h_source; if ((grec->grec_type == MLD2_CHANGE_TO_INCLUDE || grec->grec_type == MLD2_MODE_IS_INCLUDE) && nsrcs == 0) { if (!pmctx || mldv1) { br_ip6_multicast_leave_group(brmctx, pmctx, &grec->grec_mca, vid, src); continue; } } else { err = br_ip6_multicast_add_group(brmctx, pmctx, &grec->grec_mca, vid, src, mldv1); if (err) break; } if (!pmctx || mldv1) continue; spin_lock(&brmctx->br->multicast_lock); if (!br_multicast_ctx_should_use(brmctx, pmctx)) goto unlock_continue; mdst = br_mdb_ip6_get(brmctx->br, &grec->grec_mca, vid); if (!mdst) goto unlock_continue; pg = br_multicast_find_port(mdst, pmctx->port, src); if (!pg || (pg->flags & MDB_PG_FLAGS_PERMANENT)) goto unlock_continue; h_addr = &ipv6_hdr(skb)->saddr; switch (grec->grec_type) { case MLD2_ALLOW_NEW_SOURCES: changed = br_multicast_isinc_allow(brmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(struct in6_addr), grec->grec_type); break; case MLD2_MODE_IS_INCLUDE: changed = br_multicast_isinc_allow(brmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(struct in6_addr), grec->grec_type); break; case MLD2_MODE_IS_EXCLUDE: changed = br_multicast_isexc(brmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(struct in6_addr), grec->grec_type); break; case MLD2_CHANGE_TO_INCLUDE: changed = br_multicast_toin(brmctx, pmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(struct in6_addr), grec->grec_type); break; case MLD2_CHANGE_TO_EXCLUDE: changed = br_multicast_toex(brmctx, pmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(struct in6_addr), grec->grec_type); break; case MLD2_BLOCK_OLD_SOURCES: changed = br_multicast_block(brmctx, pmctx, pg, h_addr, grec->grec_src, nsrcs, sizeof(struct in6_addr), grec->grec_type); break; } if (changed) br_mdb_notify(brmctx->br->dev, mdst, pg, RTM_NEWMDB); unlock_continue: spin_unlock(&brmctx->br->multicast_lock); } return err; } #endif static bool br_multicast_select_querier(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct br_ip *saddr) { int port_ifidx = pmctx ? pmctx->port->dev->ifindex : 0; struct timer_list *own_timer, *other_timer; struct bridge_mcast_querier *querier; switch (saddr->proto) { case htons(ETH_P_IP): querier = &brmctx->ip4_querier; own_timer = &brmctx->ip4_own_query.timer; other_timer = &brmctx->ip4_other_query.timer; if (!querier->addr.src.ip4 || ntohl(saddr->src.ip4) <= ntohl(querier->addr.src.ip4)) goto update; break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): querier = &brmctx->ip6_querier; own_timer = &brmctx->ip6_own_query.timer; other_timer = &brmctx->ip6_other_query.timer; if (ipv6_addr_cmp(&saddr->src.ip6, &querier->addr.src.ip6) <= 0) goto update; break; #endif default: return false; } if (!timer_pending(own_timer) && !timer_pending(other_timer)) goto update; return false; update: br_multicast_update_querier(brmctx, querier, port_ifidx, saddr); return true; } static struct net_bridge_port * __br_multicast_get_querier_port(struct net_bridge *br, const struct bridge_mcast_querier *querier) { int port_ifidx = READ_ONCE(querier->port_ifidx); struct net_bridge_port *p; struct net_device *dev; if (port_ifidx == 0) return NULL; dev = dev_get_by_index_rcu(dev_net(br->dev), port_ifidx); if (!dev) return NULL; p = br_port_get_rtnl_rcu(dev); if (!p || p->br != br) return NULL; return p; } size_t br_multicast_querier_state_size(void) { return nla_total_size(0) + /* nest attribute */ nla_total_size(sizeof(__be32)) + /* BRIDGE_QUERIER_IP_ADDRESS */ nla_total_size(sizeof(int)) + /* BRIDGE_QUERIER_IP_PORT */ nla_total_size_64bit(sizeof(u64)) + /* BRIDGE_QUERIER_IP_OTHER_TIMER */ #if IS_ENABLED(CONFIG_IPV6) nla_total_size(sizeof(struct in6_addr)) + /* BRIDGE_QUERIER_IPV6_ADDRESS */ nla_total_size(sizeof(int)) + /* BRIDGE_QUERIER_IPV6_PORT */ nla_total_size_64bit(sizeof(u64)) + /* BRIDGE_QUERIER_IPV6_OTHER_TIMER */ #endif 0; } /* protected by rtnl or rcu */ int br_multicast_dump_querier_state(struct sk_buff *skb, const struct net_bridge_mcast *brmctx, int nest_attr) { struct bridge_mcast_querier querier = {}; struct net_bridge_port *p; struct nlattr *nest; if (!br_opt_get(brmctx->br, BROPT_MULTICAST_ENABLED) || br_multicast_ctx_vlan_global_disabled(brmctx)) return 0; nest = nla_nest_start(skb, nest_attr); if (!nest) return -EMSGSIZE; rcu_read_lock(); if (!brmctx->multicast_querier && !timer_pending(&brmctx->ip4_other_query.timer)) goto out_v6; br_multicast_read_querier(&brmctx->ip4_querier, &querier); if (nla_put_in_addr(skb, BRIDGE_QUERIER_IP_ADDRESS, querier.addr.src.ip4)) { rcu_read_unlock(); goto out_err; } p = __br_multicast_get_querier_port(brmctx->br, &querier); if (timer_pending(&brmctx->ip4_other_query.timer) && (nla_put_u64_64bit(skb, BRIDGE_QUERIER_IP_OTHER_TIMER, br_timer_value(&brmctx->ip4_other_query.timer), BRIDGE_QUERIER_PAD) || (p && nla_put_u32(skb, BRIDGE_QUERIER_IP_PORT, p->dev->ifindex)))) { rcu_read_unlock(); goto out_err; } out_v6: #if IS_ENABLED(CONFIG_IPV6) if (!brmctx->multicast_querier && !timer_pending(&brmctx->ip6_other_query.timer)) goto out; br_multicast_read_querier(&brmctx->ip6_querier, &querier); if (nla_put_in6_addr(skb, BRIDGE_QUERIER_IPV6_ADDRESS, &querier.addr.src.ip6)) { rcu_read_unlock(); goto out_err; } p = __br_multicast_get_querier_port(brmctx->br, &querier); if (timer_pending(&brmctx->ip6_other_query.timer) && (nla_put_u64_64bit(skb, BRIDGE_QUERIER_IPV6_OTHER_TIMER, br_timer_value(&brmctx->ip6_other_query.timer), BRIDGE_QUERIER_PAD) || (p && nla_put_u32(skb, BRIDGE_QUERIER_IPV6_PORT, p->dev->ifindex)))) { rcu_read_unlock(); goto out_err; } out: #endif rcu_read_unlock(); nla_nest_end(skb, nest); if (!nla_len(nest)) nla_nest_cancel(skb, nest); return 0; out_err: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static void br_multicast_update_query_timer(struct net_bridge_mcast *brmctx, struct bridge_mcast_other_query *query, unsigned long max_delay) { if (!timer_pending(&query->timer)) mod_timer(&query->delay_timer, jiffies + max_delay); mod_timer(&query->timer, jiffies + brmctx->multicast_querier_interval); } static void br_port_mc_router_state_change(struct net_bridge_port *p, bool is_mc_router) { struct switchdev_attr attr = { .orig_dev = p->dev, .id = SWITCHDEV_ATTR_ID_PORT_MROUTER, .flags = SWITCHDEV_F_DEFER, .u.mrouter = is_mc_router, }; switchdev_port_attr_set(p->dev, &attr, NULL); } static struct net_bridge_port * br_multicast_rport_from_node(struct net_bridge_mcast *brmctx, struct hlist_head *mc_router_list, struct hlist_node *rlist) { struct net_bridge_mcast_port *pmctx; #if IS_ENABLED(CONFIG_IPV6) if (mc_router_list == &brmctx->ip6_mc_router_list) pmctx = hlist_entry(rlist, struct net_bridge_mcast_port, ip6_rlist); else #endif pmctx = hlist_entry(rlist, struct net_bridge_mcast_port, ip4_rlist); return pmctx->port; } static struct hlist_node * br_multicast_get_rport_slot(struct net_bridge_mcast *brmctx, struct net_bridge_port *port, struct hlist_head *mc_router_list) { struct hlist_node *slot = NULL; struct net_bridge_port *p; struct hlist_node *rlist; hlist_for_each(rlist, mc_router_list) { p = br_multicast_rport_from_node(brmctx, mc_router_list, rlist); if ((unsigned long)port >= (unsigned long)p) break; slot = rlist; } return slot; } static bool br_multicast_no_router_otherpf(struct net_bridge_mcast_port *pmctx, struct hlist_node *rnode) { #if IS_ENABLED(CONFIG_IPV6) if (rnode != &pmctx->ip6_rlist) return hlist_unhashed(&pmctx->ip6_rlist); else return hlist_unhashed(&pmctx->ip4_rlist); #else return true; #endif } /* Add port to router_list * list is maintained ordered by pointer value * and locked by br->multicast_lock and RCU */ static void br_multicast_add_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct hlist_node *rlist, struct hlist_head *mc_router_list) { struct hlist_node *slot; if (!hlist_unhashed(rlist)) return; slot = br_multicast_get_rport_slot(brmctx, pmctx->port, mc_router_list); if (slot) hlist_add_behind_rcu(rlist, slot); else hlist_add_head_rcu(rlist, mc_router_list); /* For backwards compatibility for now, only notify if we * switched from no IPv4/IPv6 multicast router to a new * IPv4 or IPv6 multicast router. */ if (br_multicast_no_router_otherpf(pmctx, rlist)) { br_rtr_notify(pmctx->port->br->dev, pmctx, RTM_NEWMDB); br_port_mc_router_state_change(pmctx->port, true); } } /* Add port to router_list * list is maintained ordered by pointer value * and locked by br->multicast_lock and RCU */ static void br_ip4_multicast_add_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx) { br_multicast_add_router(brmctx, pmctx, &pmctx->ip4_rlist, &brmctx->ip4_mc_router_list); } /* Add port to router_list * list is maintained ordered by pointer value * and locked by br->multicast_lock and RCU */ static void br_ip6_multicast_add_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx) { #if IS_ENABLED(CONFIG_IPV6) br_multicast_add_router(brmctx, pmctx, &pmctx->ip6_rlist, &brmctx->ip6_mc_router_list); #endif } static void br_multicast_mark_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct timer_list *timer, struct hlist_node *rlist, struct hlist_head *mc_router_list) { unsigned long now = jiffies; if (!br_multicast_ctx_should_use(brmctx, pmctx)) return; if (!pmctx) { if (brmctx->multicast_router == MDB_RTR_TYPE_TEMP_QUERY) { if (!br_ip4_multicast_is_router(brmctx) && !br_ip6_multicast_is_router(brmctx)) br_mc_router_state_change(brmctx->br, true); mod_timer(timer, now + brmctx->multicast_querier_interval); } return; } if (pmctx->multicast_router == MDB_RTR_TYPE_DISABLED || pmctx->multicast_router == MDB_RTR_TYPE_PERM) return; br_multicast_add_router(brmctx, pmctx, rlist, mc_router_list); mod_timer(timer, now + brmctx->multicast_querier_interval); } static void br_ip4_multicast_mark_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx) { struct timer_list *timer = &brmctx->ip4_mc_router_timer; struct hlist_node *rlist = NULL; if (pmctx) { timer = &pmctx->ip4_mc_router_timer; rlist = &pmctx->ip4_rlist; } br_multicast_mark_router(brmctx, pmctx, timer, rlist, &brmctx->ip4_mc_router_list); } static void br_ip6_multicast_mark_router(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx) { #if IS_ENABLED(CONFIG_IPV6) struct timer_list *timer = &brmctx->ip6_mc_router_timer; struct hlist_node *rlist = NULL; if (pmctx) { timer = &pmctx->ip6_mc_router_timer; rlist = &pmctx->ip6_rlist; } br_multicast_mark_router(brmctx, pmctx, timer, rlist, &brmctx->ip6_mc_router_list); #endif } static void br_ip4_multicast_query_received(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct bridge_mcast_other_query *query, struct br_ip *saddr, unsigned long max_delay) { if (!br_multicast_select_querier(brmctx, pmctx, saddr)) return; br_multicast_update_query_timer(brmctx, query, max_delay); br_ip4_multicast_mark_router(brmctx, pmctx); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_query_received(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct bridge_mcast_other_query *query, struct br_ip *saddr, unsigned long max_delay) { if (!br_multicast_select_querier(brmctx, pmctx, saddr)) return; br_multicast_update_query_timer(brmctx, query, max_delay); br_ip6_multicast_mark_router(brmctx, pmctx); } #endif static void br_ip4_multicast_query(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb, u16 vid) { unsigned int transport_len = ip_transport_len(skb); const struct iphdr *iph = ip_hdr(skb); struct igmphdr *ih = igmp_hdr(skb); struct net_bridge_mdb_entry *mp; struct igmpv3_query *ih3; struct net_bridge_port_group *p; struct net_bridge_port_group __rcu **pp; struct br_ip saddr = {}; unsigned long max_delay; unsigned long now = jiffies; __be32 group; spin_lock(&brmctx->br->multicast_lock); if (!br_multicast_ctx_should_use(brmctx, pmctx)) goto out; group = ih->group; if (transport_len == sizeof(*ih)) { max_delay = ih->code * (HZ / IGMP_TIMER_SCALE); if (!max_delay) { max_delay = 10 * HZ; group = 0; } } else if (transport_len >= sizeof(*ih3)) { ih3 = igmpv3_query_hdr(skb); if (ih3->nsrcs || (brmctx->multicast_igmp_version == 3 && group && ih3->suppress)) goto out; max_delay = ih3->code ? IGMPV3_MRC(ih3->code) * (HZ / IGMP_TIMER_SCALE) : 1; } else { goto out; } if (!group) { saddr.proto = htons(ETH_P_IP); saddr.src.ip4 = iph->saddr; br_ip4_multicast_query_received(brmctx, pmctx, &brmctx->ip4_other_query, &saddr, max_delay); goto out; } mp = br_mdb_ip4_get(brmctx->br, group, vid); if (!mp) goto out; max_delay *= brmctx->multicast_last_member_count; if (mp->host_joined && (timer_pending(&mp->timer) ? time_after(mp->timer.expires, now + max_delay) : try_to_del_timer_sync(&mp->timer) >= 0)) mod_timer(&mp->timer, now + max_delay); for (pp = &mp->ports; (p = mlock_dereference(*pp, brmctx->br)) != NULL; pp = &p->next) { if (timer_pending(&p->timer) ? time_after(p->timer.expires, now + max_delay) : try_to_del_timer_sync(&p->timer) >= 0 && (brmctx->multicast_igmp_version == 2 || p->filter_mode == MCAST_EXCLUDE)) mod_timer(&p->timer, now + max_delay); } out: spin_unlock(&brmctx->br->multicast_lock); } #if IS_ENABLED(CONFIG_IPV6) static int br_ip6_multicast_query(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb, u16 vid) { unsigned int transport_len = ipv6_transport_len(skb); struct mld_msg *mld; struct net_bridge_mdb_entry *mp; struct mld2_query *mld2q; struct net_bridge_port_group *p; struct net_bridge_port_group __rcu **pp; struct br_ip saddr = {}; unsigned long max_delay; unsigned long now = jiffies; unsigned int offset = skb_transport_offset(skb); const struct in6_addr *group = NULL; bool is_general_query; int err = 0; spin_lock(&brmctx->br->multicast_lock); if (!br_multicast_ctx_should_use(brmctx, pmctx)) goto out; if (transport_len == sizeof(*mld)) { if (!pskb_may_pull(skb, offset + sizeof(*mld))) { err = -EINVAL; goto out; } mld = (struct mld_msg *) icmp6_hdr(skb); max_delay = msecs_to_jiffies(ntohs(mld->mld_maxdelay)); if (max_delay) group = &mld->mld_mca; } else { if (!pskb_may_pull(skb, offset + sizeof(*mld2q))) { err = -EINVAL; goto out; } mld2q = (struct mld2_query *)icmp6_hdr(skb); if (!mld2q->mld2q_nsrcs) group = &mld2q->mld2q_mca; if (brmctx->multicast_mld_version == 2 && !ipv6_addr_any(&mld2q->mld2q_mca) && mld2q->mld2q_suppress) goto out; max_delay = max(msecs_to_jiffies(mldv2_mrc(mld2q)), 1UL); } is_general_query = group && ipv6_addr_any(group); if (is_general_query) { saddr.proto = htons(ETH_P_IPV6); saddr.src.ip6 = ipv6_hdr(skb)->saddr; br_ip6_multicast_query_received(brmctx, pmctx, &brmctx->ip6_other_query, &saddr, max_delay); goto out; } else if (!group) { goto out; } mp = br_mdb_ip6_get(brmctx->br, group, vid); if (!mp) goto out; max_delay *= brmctx->multicast_last_member_count; if (mp->host_joined && (timer_pending(&mp->timer) ? time_after(mp->timer.expires, now + max_delay) : try_to_del_timer_sync(&mp->timer) >= 0)) mod_timer(&mp->timer, now + max_delay); for (pp = &mp->ports; (p = mlock_dereference(*pp, brmctx->br)) != NULL; pp = &p->next) { if (timer_pending(&p->timer) ? time_after(p->timer.expires, now + max_delay) : try_to_del_timer_sync(&p->timer) >= 0 && (brmctx->multicast_mld_version == 1 || p->filter_mode == MCAST_EXCLUDE)) mod_timer(&p->timer, now + max_delay); } out: spin_unlock(&brmctx->br->multicast_lock); return err; } #endif static void br_multicast_leave_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct br_ip *group, struct bridge_mcast_other_query *other_query, struct bridge_mcast_own_query *own_query, const unsigned char *src) { struct net_bridge_mdb_entry *mp; struct net_bridge_port_group *p; unsigned long now; unsigned long time; spin_lock(&brmctx->br->multicast_lock); if (!br_multicast_ctx_should_use(brmctx, pmctx)) goto out; mp = br_mdb_ip_get(brmctx->br, group); if (!mp) goto out; if (pmctx && (pmctx->port->flags & BR_MULTICAST_FAST_LEAVE)) { struct net_bridge_port_group __rcu **pp; for (pp = &mp->ports; (p = mlock_dereference(*pp, brmctx->br)) != NULL; pp = &p->next) { if (!br_port_group_equal(p, pmctx->port, src)) continue; if (p->flags & MDB_PG_FLAGS_PERMANENT) break; p->flags |= MDB_PG_FLAGS_FAST_LEAVE; br_multicast_del_pg(mp, p, pp); } goto out; } if (timer_pending(&other_query->timer)) goto out; if (brmctx->multicast_querier) { __br_multicast_send_query(brmctx, pmctx, NULL, NULL, &mp->addr, false, 0, NULL); time = jiffies + brmctx->multicast_last_member_count * brmctx->multicast_last_member_interval; mod_timer(&own_query->timer, time); for (p = mlock_dereference(mp->ports, brmctx->br); p != NULL && pmctx != NULL; p = mlock_dereference(p->next, brmctx->br)) { if (!br_port_group_equal(p, pmctx->port, src)) continue; if (!hlist_unhashed(&p->mglist) && (timer_pending(&p->timer) ? time_after(p->timer.expires, time) : try_to_del_timer_sync(&p->timer) >= 0)) { mod_timer(&p->timer, time); } break; } } now = jiffies; time = now + brmctx->multicast_last_member_count * brmctx->multicast_last_member_interval; if (!pmctx) { if (mp->host_joined && (timer_pending(&mp->timer) ? time_after(mp->timer.expires, time) : try_to_del_timer_sync(&mp->timer) >= 0)) { mod_timer(&mp->timer, time); } goto out; } for (p = mlock_dereference(mp->ports, brmctx->br); p != NULL; p = mlock_dereference(p->next, brmctx->br)) { if (p->key.port != pmctx->port) continue; if (!hlist_unhashed(&p->mglist) && (timer_pending(&p->timer) ? time_after(p->timer.expires, time) : try_to_del_timer_sync(&p->timer) >= 0)) { mod_timer(&p->timer, time); } break; } out: spin_unlock(&brmctx->br->multicast_lock); } static void br_ip4_multicast_leave_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, __be32 group, __u16 vid, const unsigned char *src) { struct br_ip br_group; struct bridge_mcast_own_query *own_query; if (ipv4_is_local_multicast(group)) return; own_query = pmctx ? &pmctx->ip4_own_query : &brmctx->ip4_own_query; memset(&br_group, 0, sizeof(br_group)); br_group.dst.ip4 = group; br_group.proto = htons(ETH_P_IP); br_group.vid = vid; br_multicast_leave_group(brmctx, pmctx, &br_group, &brmctx->ip4_other_query, own_query, src); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_leave_group(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, const struct in6_addr *group, __u16 vid, const unsigned char *src) { struct br_ip br_group; struct bridge_mcast_own_query *own_query; if (ipv6_addr_is_ll_all_nodes(group)) return; own_query = pmctx ? &pmctx->ip6_own_query : &brmctx->ip6_own_query; memset(&br_group, 0, sizeof(br_group)); br_group.dst.ip6 = *group; br_group.proto = htons(ETH_P_IPV6); br_group.vid = vid; br_multicast_leave_group(brmctx, pmctx, &br_group, &brmctx->ip6_other_query, own_query, src); } #endif static void br_multicast_err_count(const struct net_bridge *br, const struct net_bridge_port *p, __be16 proto) { struct bridge_mcast_stats __percpu *stats; struct bridge_mcast_stats *pstats; if (!br_opt_get(br, BROPT_MULTICAST_STATS_ENABLED)) return; if (p) stats = p->mcast_stats; else stats = br->mcast_stats; if (WARN_ON(!stats)) return; pstats = this_cpu_ptr(stats); u64_stats_update_begin(&pstats->syncp); switch (proto) { case htons(ETH_P_IP): pstats->mstats.igmp_parse_errors++; break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): pstats->mstats.mld_parse_errors++; break; #endif } u64_stats_update_end(&pstats->syncp); } static void br_multicast_pim(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, const struct sk_buff *skb) { unsigned int offset = skb_transport_offset(skb); struct pimhdr *pimhdr, _pimhdr; pimhdr = skb_header_pointer(skb, offset, sizeof(_pimhdr), &_pimhdr); if (!pimhdr || pim_hdr_version(pimhdr) != PIM_VERSION || pim_hdr_type(pimhdr) != PIM_TYPE_HELLO) return; spin_lock(&brmctx->br->multicast_lock); br_ip4_multicast_mark_router(brmctx, pmctx); spin_unlock(&brmctx->br->multicast_lock); } static int br_ip4_multicast_mrd_rcv(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb) { if (ip_hdr(skb)->protocol != IPPROTO_IGMP || igmp_hdr(skb)->type != IGMP_MRDISC_ADV) return -ENOMSG; spin_lock(&brmctx->br->multicast_lock); br_ip4_multicast_mark_router(brmctx, pmctx); spin_unlock(&brmctx->br->multicast_lock); return 0; } static int br_multicast_ipv4_rcv(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb, u16 vid) { struct net_bridge_port *p = pmctx ? pmctx->port : NULL; const unsigned char *src; struct igmphdr *ih; int err; err = ip_mc_check_igmp(skb); if (err == -ENOMSG) { if (!ipv4_is_local_multicast(ip_hdr(skb)->daddr)) { BR_INPUT_SKB_CB(skb)->mrouters_only = 1; } else if (pim_ipv4_all_pim_routers(ip_hdr(skb)->daddr)) { if (ip_hdr(skb)->protocol == IPPROTO_PIM) br_multicast_pim(brmctx, pmctx, skb); } else if (ipv4_is_all_snoopers(ip_hdr(skb)->daddr)) { br_ip4_multicast_mrd_rcv(brmctx, pmctx, skb); } return 0; } else if (err < 0) { br_multicast_err_count(brmctx->br, p, skb->protocol); return err; } ih = igmp_hdr(skb); src = eth_hdr(skb)->h_source; BR_INPUT_SKB_CB(skb)->igmp = ih->type; switch (ih->type) { case IGMP_HOST_MEMBERSHIP_REPORT: case IGMPV2_HOST_MEMBERSHIP_REPORT: BR_INPUT_SKB_CB(skb)->mrouters_only = 1; err = br_ip4_multicast_add_group(brmctx, pmctx, ih->group, vid, src, true); break; case IGMPV3_HOST_MEMBERSHIP_REPORT: err = br_ip4_multicast_igmp3_report(brmctx, pmctx, skb, vid); break; case IGMP_HOST_MEMBERSHIP_QUERY: br_ip4_multicast_query(brmctx, pmctx, skb, vid); break; case IGMP_HOST_LEAVE_MESSAGE: br_ip4_multicast_leave_group(brmctx, pmctx, ih->group, vid, src); break; } br_multicast_count(brmctx->br, p, skb, BR_INPUT_SKB_CB(skb)->igmp, BR_MCAST_DIR_RX); return err; } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_mrd_rcv(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb) { if (icmp6_hdr(skb)->icmp6_type != ICMPV6_MRDISC_ADV) return; spin_lock(&brmctx->br->multicast_lock); br_ip6_multicast_mark_router(brmctx, pmctx); spin_unlock(&brmctx->br->multicast_lock); } static int br_multicast_ipv6_rcv(struct net_bridge_mcast *brmctx, struct net_bridge_mcast_port *pmctx, struct sk_buff *skb, u16 vid) { struct net_bridge_port *p = pmctx ? pmctx->port : NULL; const unsigned char *src; struct mld_msg *mld; int err; err = ipv6_mc_check_mld(skb); if (err == -ENOMSG || err == -ENODATA) { if (!ipv6_addr_is_ll_all_nodes(&ipv6_hdr(skb)->daddr)) BR_INPUT_SKB_CB(skb)->mrouters_only = 1; if (err == -ENODATA && ipv6_addr_is_all_snoopers(&ipv6_hdr(skb)->daddr)) br_ip6_multicast_mrd_rcv(brmctx, pmctx, skb); return 0; } else if (err < 0) { br_multicast_err_count(brmctx->br, p, skb->protocol); return err; } mld = (struct mld_msg *)skb_transport_header(skb); BR_INPUT_SKB_CB(skb)->igmp = mld->mld_type; switch (mld->mld_type) { case ICMPV6_MGM_REPORT: src = eth_hdr(skb)->h_source; BR_INPUT_SKB_CB(skb)->mrouters_only = 1; err = br_ip6_multicast_add_group(brmctx, pmctx, &mld->mld_mca, vid, src, true); break; case ICMPV6_MLD2_REPORT: err = br_ip6_multicast_mld2_report(brmctx, pmctx, skb, vid); break; case ICMPV6_MGM_QUERY: err = br_ip6_multicast_query(brmctx, pmctx, skb, vid); break; case ICMPV6_MGM_REDUCTION: src = eth_hdr(skb)->h_source; br_ip6_multicast_leave_group(brmctx, pmctx, &mld->mld_mca, vid, src); break; } br_multicast_count(brmctx->br, p, skb, BR_INPUT_SKB_CB(skb)->igmp, BR_MCAST_DIR_RX); return err; } #endif int br_multicast_rcv(struct net_bridge_mcast **brmctx, struct net_bridge_mcast_port **pmctx, struct net_bridge_vlan *vlan, struct sk_buff *skb, u16 vid) { int ret = 0; BR_INPUT_SKB_CB(skb)->igmp = 0; BR_INPUT_SKB_CB(skb)->mrouters_only = 0; if (!br_opt_get((*brmctx)->br, BROPT_MULTICAST_ENABLED)) return 0; if (br_opt_get((*brmctx)->br, BROPT_MCAST_VLAN_SNOOPING_ENABLED) && vlan) { const struct net_bridge_vlan *masterv; /* the vlan has the master flag set only when transmitting * through the bridge device */ if (br_vlan_is_master(vlan)) { masterv = vlan; *brmctx = &vlan->br_mcast_ctx; *pmctx = NULL; } else { masterv = vlan->brvlan; *brmctx = &vlan->brvlan->br_mcast_ctx; *pmctx = &vlan->port_mcast_ctx; } if (!(masterv->priv_flags & BR_VLFLAG_GLOBAL_MCAST_ENABLED)) return 0; } switch (skb->protocol) { case htons(ETH_P_IP): ret = br_multicast_ipv4_rcv(*brmctx, *pmctx, skb, vid); break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): ret = br_multicast_ipv6_rcv(*brmctx, *pmctx, skb, vid); break; #endif } return ret; } static void br_multicast_query_expired(struct net_bridge_mcast *brmctx, struct bridge_mcast_own_query *query, struct bridge_mcast_querier *querier) { spin_lock(&brmctx->br->multicast_lock); if (br_multicast_ctx_vlan_disabled(brmctx)) goto out; if (query->startup_sent < brmctx->multicast_startup_query_count) query->startup_sent++; br_multicast_send_query(brmctx, NULL, query); out: spin_unlock(&brmctx->br->multicast_lock); } static void br_ip4_multicast_query_expired(struct timer_list *t) { struct net_bridge_mcast *brmctx = from_timer(brmctx, t, ip4_own_query.timer); br_multicast_query_expired(brmctx, &brmctx->ip4_own_query, &brmctx->ip4_querier); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_query_expired(struct timer_list *t) { struct net_bridge_mcast *brmctx = from_timer(brmctx, t, ip6_own_query.timer); br_multicast_query_expired(brmctx, &brmctx->ip6_own_query, &brmctx->ip6_querier); } #endif static void br_multicast_gc_work(struct work_struct *work) { struct net_bridge *br = container_of(work, struct net_bridge, mcast_gc_work); HLIST_HEAD(deleted_head); spin_lock_bh(&br->multicast_lock); hlist_move_list(&br->mcast_gc_list, &deleted_head); spin_unlock_bh(&br->multicast_lock); br_multicast_gc(&deleted_head); } void br_multicast_ctx_init(struct net_bridge *br, struct net_bridge_vlan *vlan, struct net_bridge_mcast *brmctx) { brmctx->br = br; brmctx->vlan = vlan; brmctx->multicast_router = MDB_RTR_TYPE_TEMP_QUERY; brmctx->multicast_last_member_count = 2; brmctx->multicast_startup_query_count = 2; brmctx->multicast_last_member_interval = HZ; brmctx->multicast_query_response_interval = 10 * HZ; brmctx->multicast_startup_query_interval = 125 * HZ / 4; brmctx->multicast_query_interval = 125 * HZ; brmctx->multicast_querier_interval = 255 * HZ; brmctx->multicast_membership_interval = 260 * HZ; brmctx->ip4_querier.port_ifidx = 0; seqcount_spinlock_init(&brmctx->ip4_querier.seq, &br->multicast_lock); brmctx->multicast_igmp_version = 2; #if IS_ENABLED(CONFIG_IPV6) brmctx->multicast_mld_version = 1; brmctx->ip6_querier.port_ifidx = 0; seqcount_spinlock_init(&brmctx->ip6_querier.seq, &br->multicast_lock); #endif timer_setup(&brmctx->ip4_mc_router_timer, br_ip4_multicast_local_router_expired, 0); timer_setup(&brmctx->ip4_other_query.timer, br_ip4_multicast_querier_expired, 0); timer_setup(&brmctx->ip4_other_query.delay_timer, br_multicast_query_delay_expired, 0); timer_setup(&brmctx->ip4_own_query.timer, br_ip4_multicast_query_expired, 0); #if IS_ENABLED(CONFIG_IPV6) timer_setup(&brmctx->ip6_mc_router_timer, br_ip6_multicast_local_router_expired, 0); timer_setup(&brmctx->ip6_other_query.timer, br_ip6_multicast_querier_expired, 0); timer_setup(&brmctx->ip6_other_query.delay_timer, br_multicast_query_delay_expired, 0); timer_setup(&brmctx->ip6_own_query.timer, br_ip6_multicast_query_expired, 0); #endif } void br_multicast_ctx_deinit(struct net_bridge_mcast *brmctx) { __br_multicast_stop(brmctx); } void br_multicast_init(struct net_bridge *br) { br->hash_max = BR_MULTICAST_DEFAULT_HASH_MAX; br_multicast_ctx_init(br, NULL, &br->multicast_ctx); br_opt_toggle(br, BROPT_MULTICAST_ENABLED, true); br_opt_toggle(br, BROPT_HAS_IPV6_ADDR, true); spin_lock_init(&br->multicast_lock); INIT_HLIST_HEAD(&br->mdb_list); INIT_HLIST_HEAD(&br->mcast_gc_list); INIT_WORK(&br->mcast_gc_work, br_multicast_gc_work); } static void br_ip4_multicast_join_snoopers(struct net_bridge *br) { struct in_device *in_dev = in_dev_get(br->dev); if (!in_dev) return; __ip_mc_inc_group(in_dev, htonl(INADDR_ALLSNOOPERS_GROUP), GFP_ATOMIC); in_dev_put(in_dev); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_join_snoopers(struct net_bridge *br) { struct in6_addr addr; ipv6_addr_set(&addr, htonl(0xff020000), 0, 0, htonl(0x6a)); ipv6_dev_mc_inc(br->dev, &addr); } #else static inline void br_ip6_multicast_join_snoopers(struct net_bridge *br) { } #endif void br_multicast_join_snoopers(struct net_bridge *br) { br_ip4_multicast_join_snoopers(br); br_ip6_multicast_join_snoopers(br); } static void br_ip4_multicast_leave_snoopers(struct net_bridge *br) { struct in_device *in_dev = in_dev_get(br->dev); if (WARN_ON(!in_dev)) return; __ip_mc_dec_group(in_dev, htonl(INADDR_ALLSNOOPERS_GROUP), GFP_ATOMIC); in_dev_put(in_dev); } #if IS_ENABLED(CONFIG_IPV6) static void br_ip6_multicast_leave_snoopers(struct net_bridge *br) { struct in6_addr addr; ipv6_addr_set(&addr, htonl(0xff020000), 0, 0, htonl(0x6a)); ipv6_dev_mc_dec(br->dev, &addr); } #else static inline void br_ip6_multicast_leave_snoopers(struct net_bridge *br) { } #endif void br_multicast_leave_snoopers(struct net_bridge *br) { br_ip4_multicast_leave_snoopers(br); br_ip6_multicast_leave_snoopers(br); } static void __br_multicast_open_query(struct net_bridge *br, struct bridge_mcast_own_query *query) { query->startup_sent = 0; if (!br_opt_get(br, BROPT_MULTICAST_ENABLED)) return; mod_timer(&query->timer, jiffies); } static void __br_multicast_open(struct net_bridge_mcast *brmctx) { __br_multicast_open_query(brmctx->br, &brmctx->ip4_own_query); #if IS_ENABLED(CONFIG_IPV6) __br_multicast_open_query(brmctx->br, &brmctx->ip6_own_query); #endif } void br_multicast_open(struct net_bridge *br) { ASSERT_RTNL(); if (br_opt_get(br, BROPT_MCAST_VLAN_SNOOPING_ENABLED)) { struct net_bridge_vlan_group *vg; struct net_bridge_vlan *vlan; vg = br_vlan_group(br); if (vg) { list_for_each_entry(vlan, &vg->vlan_list, vlist) { struct net_bridge_mcast *brmctx; brmctx = &vlan->br_mcast_ctx; if (br_vlan_is_brentry(vlan) && !br_multicast_ctx_vlan_disabled(brmctx)) __br_multicast_open(&vlan->br_mcast_ctx); } } } else { __br_multicast_open(&br->multicast_ctx); } } static void __br_multicast_stop(struct net_bridge_mcast *brmctx) { del_timer_sync(&brmctx->ip4_mc_router_timer); del_timer_sync(&brmctx->ip4_other_query.timer); del_timer_sync(&brmctx->ip4_other_query.delay_timer); del_timer_sync(&brmctx->ip4_own_query.timer); #if IS_ENABLED(CONFIG_IPV6) del_timer_sync(&brmctx->ip6_mc_router_timer); del_timer_sync(&brmctx->ip6_other_query.timer); del_timer_sync(&brmctx->ip6_other_query.delay_timer); del_timer_sync(&brmctx->ip6_own_query.timer); #endif } void br_multicast_toggle_one_vlan(struct net_bridge_vlan *vlan, bool on) { struct net_bridge *br; /* it's okay to check for the flag without the multicast lock because it * can only change under RTNL -> multicast_lock, we need the latter to * sync with timers and packets */ if (on == !!(vlan->priv_flags & BR_VLFLAG_MCAST_ENABLED)) return; if (br_vlan_is_master(vlan)) { br = vlan->br; if (!br_vlan_is_brentry(vlan) || (on && br_multicast_ctx_vlan_global_disabled(&vlan->br_mcast_ctx))) return; spin_lock_bh(&br->multicast_lock); vlan->priv_flags ^= BR_VLFLAG_MCAST_ENABLED; spin_unlock_bh(&br->multicast_lock); if (on) __br_multicast_open(&vlan->br_mcast_ctx); else __br_multicast_stop(&vlan->br_mcast_ctx); } else { struct net_bridge_mcast *brmctx; brmctx = br_multicast_port_ctx_get_global(&vlan->port_mcast_ctx); if (on && br_multicast_ctx_vlan_global_disabled(brmctx)) return; br = vlan->port->br; spin_lock_bh(&br->multicast_lock); vlan->priv_flags ^= BR_VLFLAG_MCAST_ENABLED; if (on) __br_multicast_enable_port_ctx(&vlan->port_mcast_ctx); else __br_multicast_disable_port_ctx(&vlan->port_mcast_ctx); spin_unlock_bh(&br->multicast_lock); } } static void br_multicast_toggle_vlan(struct net_bridge_vlan *vlan, bool on) { struct net_bridge_port *p; if (WARN_ON_ONCE(!br_vlan_is_master(vlan))) return; list_for_each_entry(p, &vlan->br->port_list, list) { struct net_bridge_vlan *vport; vport = br_vlan_find(nbp_vlan_group(p), vlan->vid); if (!vport) continue; br_multicast_toggle_one_vlan(vport, on); } if (br_vlan_is_brentry(vlan)) br_multicast_toggle_one_vlan(vlan, on); } int br_multicast_toggle_vlan_snooping(struct net_bridge *br, bool on, struct netlink_ext_ack *extack) { struct net_bridge_vlan_group *vg; struct net_bridge_vlan *vlan; struct net_bridge_port *p; if (br_opt_get(br, BROPT_MCAST_VLAN_SNOOPING_ENABLED) == on) return 0; if (on && !br_opt_get(br, BROPT_VLAN_ENABLED)) { NL_SET_ERR_MSG_MOD(extack, "Cannot enable multicast vlan snooping with vlan filtering disabled"); return -EINVAL; } vg = br_vlan_group(br); if (!vg) return 0; br_opt_toggle(br, BROPT_MCAST_VLAN_SNOOPING_ENABLED, on); /* disable/enable non-vlan mcast contexts based on vlan snooping */ if (on) __br_multicast_stop(&br->multicast_ctx); else __br_multicast_open(&br->multicast_ctx); list_for_each_entry(p, &br->port_list, list) { if (on) br_multicast_disable_port(p); else br_multicast_enable_port(p); } list_for_each_entry(vlan, &vg->vlan_list, vlist) br_multicast_toggle_vlan(vlan, on); return 0; } bool br_multicast_toggle_global_vlan(struct net_bridge_vlan *vlan, bool on) { ASSERT_RTNL(); /* BR_VLFLAG_GLOBAL_MCAST_ENABLED relies on eventual consistency and * requires only RTNL to change */ if (on == !!(vlan->priv_flags & BR_VLFLAG_GLOBAL_MCAST_ENABLED)) return false; vlan->priv_flags ^= BR_VLFLAG_GLOBAL_MCAST_ENABLED; br_multicast_toggle_vlan(vlan, on); return true; } void br_multicast_stop(struct net_bridge *br) { ASSERT_RTNL(); if (br_opt_get(br, BROPT_MCAST_VLAN_SNOOPING_ENABLED)) { struct net_bridge_vlan_group *vg; struct net_bridge_vlan *vlan; vg = br_vlan_group(br); if (vg) { list_for_each_entry(vlan, &vg->vlan_list, vlist) { struct net_bridge_mcast *brmctx; brmctx = &vlan->br_mcast_ctx; if (br_vlan_is_brentry(vlan) && !br_multicast_ctx_vlan_disabled(brmctx)) __br_multicast_stop(&vlan->br_mcast_ctx); } } } else { __br_multicast_stop(&br->multicast_ctx); } } void br_multicast_dev_del(struct net_bridge *br) { struct net_bridge_mdb_entry *mp; HLIST_HEAD(deleted_head); struct hlist_node *tmp; spin_lock_bh(&br->multicast_lock); hlist_for_each_entry_safe(mp, tmp, &br->mdb_list, mdb_node) br_multicast_del_mdb_entry(mp); hlist_move_list(&br->mcast_gc_list, &deleted_head); spin_unlock_bh(&br->multicast_lock); br_multicast_ctx_deinit(&br->multicast_ctx); br_multicast_gc(&deleted_head); cancel_work_sync(&br->mcast_gc_work); rcu_barrier(); } int br_multicast_set_router(struct net_bridge_mcast *brmctx, unsigned long val) { int err = -EINVAL; spin_lock_bh(&brmctx->br->multicast_lock); switch (val) { case MDB_RTR_TYPE_DISABLED: case MDB_RTR_TYPE_PERM: br_mc_router_state_change(brmctx->br, val == MDB_RTR_TYPE_PERM); del_timer(&brmctx->ip4_mc_router_timer); #if IS_ENABLED(CONFIG_IPV6) del_timer(&brmctx->ip6_mc_router_timer); #endif brmctx->multicast_router = val; err = 0; break; case MDB_RTR_TYPE_TEMP_QUERY: if (brmctx->multicast_router != MDB_RTR_TYPE_TEMP_QUERY) br_mc_router_state_change(brmctx->br, false); brmctx->multicast_router = val; err = 0; break; } spin_unlock_bh(&brmctx->br->multicast_lock); return err; } static void br_multicast_rport_del_notify(struct net_bridge_mcast_port *pmctx, bool deleted) { if (!deleted) return; /* For backwards compatibility for now, only notify if there is * no multicast router anymore for both IPv4 and IPv6. */ if (!hlist_unhashed(&pmctx->ip4_rlist)) return; #if IS_ENABLED(CONFIG_IPV6) if (!hlist_unhashed(&pmctx->ip6_rlist)) return; #endif br_rtr_notify(pmctx->port->br->dev, pmctx, RTM_DELMDB); br_port_mc_router_state_change(pmctx->port, false); /* don't allow timer refresh */ if (pmctx->multicast_router == MDB_RTR_TYPE_TEMP) pmctx->multicast_router = MDB_RTR_TYPE_TEMP_QUERY; } int br_multicast_set_port_router(struct net_bridge_mcast_port *pmctx, unsigned long val) { struct net_bridge_mcast *brmctx; unsigned long now = jiffies; int err = -EINVAL; bool del = false; brmctx = br_multicast_port_ctx_get_global(pmctx); spin_lock_bh(&brmctx->br->multicast_lock); if (pmctx->multicast_router == val) { /* Refresh the temp router port timer */ if (pmctx->multicast_router == MDB_RTR_TYPE_TEMP) { mod_timer(&pmctx->ip4_mc_router_timer, now + brmctx->multicast_querier_interval); #if IS_ENABLED(CONFIG_IPV6) mod_timer(&pmctx->ip6_mc_router_timer, now + brmctx->multicast_querier_interval); #endif } err = 0; goto unlock; } switch (val) { case MDB_RTR_TYPE_DISABLED: pmctx->multicast_router = MDB_RTR_TYPE_DISABLED; del |= br_ip4_multicast_rport_del(pmctx); del_timer(&pmctx->ip4_mc_router_timer); del |= br_ip6_multicast_rport_del(pmctx); #if IS_ENABLED(CONFIG_IPV6) del_timer(&pmctx->ip6_mc_router_timer); #endif br_multicast_rport_del_notify(pmctx, del); break; case MDB_RTR_TYPE_TEMP_QUERY: pmctx->multicast_router = MDB_RTR_TYPE_TEMP_QUERY; del |= br_ip4_multicast_rport_del(pmctx); del |= br_ip6_multicast_rport_del(pmctx); br_multicast_rport_del_notify(pmctx, del); break; case MDB_RTR_TYPE_PERM: pmctx->multicast_router = MDB_RTR_TYPE_PERM; del_timer(&pmctx->ip4_mc_router_timer); br_ip4_multicast_add_router(brmctx, pmctx); #if IS_ENABLED(CONFIG_IPV6) del_timer(&pmctx->ip6_mc_router_timer); #endif br_ip6_multicast_add_router(brmctx, pmctx); break; case MDB_RTR_TYPE_TEMP: pmctx->multicast_router = MDB_RTR_TYPE_TEMP; br_ip4_multicast_mark_router(brmctx, pmctx); br_ip6_multicast_mark_router(brmctx, pmctx); break; default: goto unlock; } err = 0; unlock: spin_unlock_bh(&brmctx->br->multicast_lock); return err; } int br_multicast_set_vlan_router(struct net_bridge_vlan *v, u8 mcast_router) { int err; if (br_vlan_is_master(v)) err = br_multicast_set_router(&v->br_mcast_ctx, mcast_router); else err = br_multicast_set_port_router(&v->port_mcast_ctx, mcast_router); return err; } static void br_multicast_start_querier(struct net_bridge_mcast *brmctx, struct bridge_mcast_own_query *query) { struct net_bridge_port *port; if (!br_multicast_ctx_matches_vlan_snooping(brmctx)) return; __br_multicast_open_query(brmctx->br, query); rcu_read_lock(); list_for_each_entry_rcu(port, &brmctx->br->port_list, list) { struct bridge_mcast_own_query *ip4_own_query; #if IS_ENABLED(CONFIG_IPV6) struct bridge_mcast_own_query *ip6_own_query; #endif if (br_multicast_port_ctx_state_stopped(&port->multicast_ctx)) continue; if (br_multicast_ctx_is_vlan(brmctx)) { struct net_bridge_vlan *vlan; vlan = br_vlan_find(nbp_vlan_group_rcu(port), brmctx->vlan->vid); if (!vlan || br_multicast_port_ctx_state_stopped(&vlan->port_mcast_ctx)) continue; ip4_own_query = &vlan->port_mcast_ctx.ip4_own_query; #if IS_ENABLED(CONFIG_IPV6) ip6_own_query = &vlan->port_mcast_ctx.ip6_own_query; #endif } else { ip4_own_query = &port->multicast_ctx.ip4_own_query; #if IS_ENABLED(CONFIG_IPV6) ip6_own_query = &port->multicast_ctx.ip6_own_query; #endif } if (query == &brmctx->ip4_own_query) br_multicast_enable(ip4_own_query); #if IS_ENABLED(CONFIG_IPV6) else br_multicast_enable(ip6_own_query); #endif } rcu_read_unlock(); } int br_multicast_toggle(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { struct net_bridge_port *port; bool change_snoopers = false; int err = 0; spin_lock_bh(&br->multicast_lock); if (!!br_opt_get(br, BROPT_MULTICAST_ENABLED) == !!val) goto unlock; err = br_mc_disabled_update(br->dev, val, extack); if (err == -EOPNOTSUPP) err = 0; if (err) goto unlock; br_opt_toggle(br, BROPT_MULTICAST_ENABLED, !!val); if (!br_opt_get(br, BROPT_MULTICAST_ENABLED)) { change_snoopers = true; goto unlock; } if (!netif_running(br->dev)) goto unlock; br_multicast_open(br); list_for_each_entry(port, &br->port_list, list) __br_multicast_enable_port_ctx(&port->multicast_ctx); change_snoopers = true; unlock: spin_unlock_bh(&br->multicast_lock); /* br_multicast_join_snoopers has the potential to cause * an MLD Report/Leave to be delivered to br_multicast_rcv, * which would in turn call br_multicast_add_group, which would * attempt to acquire multicast_lock. This function should be * called after the lock has been released to avoid deadlocks on * multicast_lock. * * br_multicast_leave_snoopers does not have the problem since * br_multicast_rcv first checks BROPT_MULTICAST_ENABLED, and * returns without calling br_multicast_ipv4/6_rcv if it's not * enabled. Moved both functions out just for symmetry. */ if (change_snoopers) { if (br_opt_get(br, BROPT_MULTICAST_ENABLED)) br_multicast_join_snoopers(br); else br_multicast_leave_snoopers(br); } return err; } bool br_multicast_enabled(const struct net_device *dev) { struct net_bridge *br = netdev_priv(dev); return !!br_opt_get(br, BROPT_MULTICAST_ENABLED); } EXPORT_SYMBOL_GPL(br_multicast_enabled); bool br_multicast_router(const struct net_device *dev) { struct net_bridge *br = netdev_priv(dev); bool is_router; spin_lock_bh(&br->multicast_lock); is_router = br_multicast_is_router(&br->multicast_ctx, NULL); spin_unlock_bh(&br->multicast_lock); return is_router; } EXPORT_SYMBOL_GPL(br_multicast_router); int br_multicast_set_querier(struct net_bridge_mcast *brmctx, unsigned long val) { unsigned long max_delay; val = !!val; spin_lock_bh(&brmctx->br->multicast_lock); if (brmctx->multicast_querier == val) goto unlock; WRITE_ONCE(brmctx->multicast_querier, val); if (!val) goto unlock; max_delay = brmctx->multicast_query_response_interval; if (!timer_pending(&brmctx->ip4_other_query.timer)) mod_timer(&brmctx->ip4_other_query.delay_timer, jiffies + max_delay); br_multicast_start_querier(brmctx, &brmctx->ip4_own_query); #if IS_ENABLED(CONFIG_IPV6) if (!timer_pending(&brmctx->ip6_other_query.timer)) mod_timer(&brmctx->ip6_other_query.delay_timer, jiffies + max_delay); br_multicast_start_querier(brmctx, &brmctx->ip6_own_query); #endif unlock: spin_unlock_bh(&brmctx->br->multicast_lock); return 0; } int br_multicast_set_igmp_version(struct net_bridge_mcast *brmctx, unsigned long val) { /* Currently we support only version 2 and 3 */ switch (val) { case 2: case 3: break; default: return -EINVAL; } spin_lock_bh(&brmctx->br->multicast_lock); brmctx->multicast_igmp_version = val; spin_unlock_bh(&brmctx->br->multicast_lock); return 0; } #if IS_ENABLED(CONFIG_IPV6) int br_multicast_set_mld_version(struct net_bridge_mcast *brmctx, unsigned long val) { /* Currently we support version 1 and 2 */ switch (val) { case 1: case 2: break; default: return -EINVAL; } spin_lock_bh(&brmctx->br->multicast_lock); brmctx->multicast_mld_version = val; spin_unlock_bh(&brmctx->br->multicast_lock); return 0; } #endif void br_multicast_set_query_intvl(struct net_bridge_mcast *brmctx, unsigned long val) { unsigned long intvl_jiffies = clock_t_to_jiffies(val); if (intvl_jiffies < BR_MULTICAST_QUERY_INTVL_MIN) { br_info(brmctx->br, "trying to set multicast query interval below minimum, setting to %lu (%ums)\n", jiffies_to_clock_t(BR_MULTICAST_QUERY_INTVL_MIN), jiffies_to_msecs(BR_MULTICAST_QUERY_INTVL_MIN)); intvl_jiffies = BR_MULTICAST_QUERY_INTVL_MIN; } brmctx->multicast_query_interval = intvl_jiffies; } void br_multicast_set_startup_query_intvl(struct net_bridge_mcast *brmctx, unsigned long val) { unsigned long intvl_jiffies = clock_t_to_jiffies(val); if (intvl_jiffies < BR_MULTICAST_STARTUP_QUERY_INTVL_MIN) { br_info(brmctx->br, "trying to set multicast startup query interval below minimum, setting to %lu (%ums)\n", jiffies_to_clock_t(BR_MULTICAST_STARTUP_QUERY_INTVL_MIN), jiffies_to_msecs(BR_MULTICAST_STARTUP_QUERY_INTVL_MIN)); intvl_jiffies = BR_MULTICAST_STARTUP_QUERY_INTVL_MIN; } brmctx->multicast_startup_query_interval = intvl_jiffies; } /** * br_multicast_list_adjacent - Returns snooped multicast addresses * @dev: The bridge port adjacent to which to retrieve addresses * @br_ip_list: The list to store found, snooped multicast IP addresses in * * Creates a list of IP addresses (struct br_ip_list) sensed by the multicast * snooping feature on all bridge ports of dev's bridge device, excluding * the addresses from dev itself. * * Returns the number of items added to br_ip_list. * * Notes: * - br_ip_list needs to be initialized by caller * - br_ip_list might contain duplicates in the end * (needs to be taken care of by caller) * - br_ip_list needs to be freed by caller */ int br_multicast_list_adjacent(struct net_device *dev, struct list_head *br_ip_list) { struct net_bridge *br; struct net_bridge_port *port; struct net_bridge_port_group *group; struct br_ip_list *entry; int count = 0; rcu_read_lock(); if (!br_ip_list || !netif_is_bridge_port(dev)) goto unlock; port = br_port_get_rcu(dev); if (!port || !port->br) goto unlock; br = port->br; list_for_each_entry_rcu(port, &br->port_list, list) { if (!port->dev || port->dev == dev) continue; hlist_for_each_entry_rcu(group, &port->mglist, mglist) { entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) goto unlock; entry->addr = group->key.addr; list_add(&entry->list, br_ip_list); count++; } } unlock: rcu_read_unlock(); return count; } EXPORT_SYMBOL_GPL(br_multicast_list_adjacent); /** * br_multicast_has_querier_anywhere - Checks for a querier on a bridge * @dev: The bridge port providing the bridge on which to check for a querier * @proto: The protocol family to check for: IGMP -> ETH_P_IP, MLD -> ETH_P_IPV6 * * Checks whether the given interface has a bridge on top and if so returns * true if a valid querier exists anywhere on the bridged link layer. * Otherwise returns false. */ bool br_multicast_has_querier_anywhere(struct net_device *dev, int proto) { struct net_bridge *br; struct net_bridge_port *port; struct ethhdr eth; bool ret = false; rcu_read_lock(); if (!netif_is_bridge_port(dev)) goto unlock; port = br_port_get_rcu(dev); if (!port || !port->br) goto unlock; br = port->br; memset(ð, 0, sizeof(eth)); eth.h_proto = htons(proto); ret = br_multicast_querier_exists(&br->multicast_ctx, ð, NULL); unlock: rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(br_multicast_has_querier_anywhere); /** * br_multicast_has_querier_adjacent - Checks for a querier behind a bridge port * @dev: The bridge port adjacent to which to check for a querier * @proto: The protocol family to check for: IGMP -> ETH_P_IP, MLD -> ETH_P_IPV6 * * Checks whether the given interface has a bridge on top and if so returns * true if a selected querier is behind one of the other ports of this * bridge. Otherwise returns false. */ bool br_multicast_has_querier_adjacent(struct net_device *dev, int proto) { struct net_bridge_mcast *brmctx; struct net_bridge *br; struct net_bridge_port *port; bool ret = false; int port_ifidx; rcu_read_lock(); if (!netif_is_bridge_port(dev)) goto unlock; port = br_port_get_rcu(dev); if (!port || !port->br) goto unlock; br = port->br; brmctx = &br->multicast_ctx; switch (proto) { case ETH_P_IP: port_ifidx = brmctx->ip4_querier.port_ifidx; if (!timer_pending(&brmctx->ip4_other_query.timer) || port_ifidx == port->dev->ifindex) goto unlock; break; #if IS_ENABLED(CONFIG_IPV6) case ETH_P_IPV6: port_ifidx = brmctx->ip6_querier.port_ifidx; if (!timer_pending(&brmctx->ip6_other_query.timer) || port_ifidx == port->dev->ifindex) goto unlock; break; #endif default: goto unlock; } ret = true; unlock: rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(br_multicast_has_querier_adjacent); /** * br_multicast_has_router_adjacent - Checks for a router behind a bridge port * @dev: The bridge port adjacent to which to check for a multicast router * @proto: The protocol family to check for: IGMP -> ETH_P_IP, MLD -> ETH_P_IPV6 * * Checks whether the given interface has a bridge on top and if so returns * true if a multicast router is behind one of the other ports of this * bridge. Otherwise returns false. */ bool br_multicast_has_router_adjacent(struct net_device *dev, int proto) { struct net_bridge_mcast_port *pmctx; struct net_bridge_mcast *brmctx; struct net_bridge_port *port; bool ret = false; rcu_read_lock(); port = br_port_get_check_rcu(dev); if (!port) goto unlock; brmctx = &port->br->multicast_ctx; switch (proto) { case ETH_P_IP: hlist_for_each_entry_rcu(pmctx, &brmctx->ip4_mc_router_list, ip4_rlist) { if (pmctx->port == port) continue; ret = true; goto unlock; } break; #if IS_ENABLED(CONFIG_IPV6) case ETH_P_IPV6: hlist_for_each_entry_rcu(pmctx, &brmctx->ip6_mc_router_list, ip6_rlist) { if (pmctx->port == port) continue; ret = true; goto unlock; } break; #endif default: /* when compiled without IPv6 support, be conservative and * always assume presence of an IPv6 multicast router */ ret = true; } unlock: rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(br_multicast_has_router_adjacent); static void br_mcast_stats_add(struct bridge_mcast_stats __percpu *stats, const struct sk_buff *skb, u8 type, u8 dir) { struct bridge_mcast_stats *pstats = this_cpu_ptr(stats); __be16 proto = skb->protocol; unsigned int t_len; u64_stats_update_begin(&pstats->syncp); switch (proto) { case htons(ETH_P_IP): t_len = ntohs(ip_hdr(skb)->tot_len) - ip_hdrlen(skb); switch (type) { case IGMP_HOST_MEMBERSHIP_REPORT: pstats->mstats.igmp_v1reports[dir]++; break; case IGMPV2_HOST_MEMBERSHIP_REPORT: pstats->mstats.igmp_v2reports[dir]++; break; case IGMPV3_HOST_MEMBERSHIP_REPORT: pstats->mstats.igmp_v3reports[dir]++; break; case IGMP_HOST_MEMBERSHIP_QUERY: if (t_len != sizeof(struct igmphdr)) { pstats->mstats.igmp_v3queries[dir]++; } else { unsigned int offset = skb_transport_offset(skb); struct igmphdr *ih, _ihdr; ih = skb_header_pointer(skb, offset, sizeof(_ihdr), &_ihdr); if (!ih) break; if (!ih->code) pstats->mstats.igmp_v1queries[dir]++; else pstats->mstats.igmp_v2queries[dir]++; } break; case IGMP_HOST_LEAVE_MESSAGE: pstats->mstats.igmp_leaves[dir]++; break; } break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): t_len = ntohs(ipv6_hdr(skb)->payload_len) + sizeof(struct ipv6hdr); t_len -= skb_network_header_len(skb); switch (type) { case ICMPV6_MGM_REPORT: pstats->mstats.mld_v1reports[dir]++; break; case ICMPV6_MLD2_REPORT: pstats->mstats.mld_v2reports[dir]++; break; case ICMPV6_MGM_QUERY: if (t_len != sizeof(struct mld_msg)) pstats->mstats.mld_v2queries[dir]++; else pstats->mstats.mld_v1queries[dir]++; break; case ICMPV6_MGM_REDUCTION: pstats->mstats.mld_leaves[dir]++; break; } break; #endif /* CONFIG_IPV6 */ } u64_stats_update_end(&pstats->syncp); } void br_multicast_count(struct net_bridge *br, const struct net_bridge_port *p, const struct sk_buff *skb, u8 type, u8 dir) { struct bridge_mcast_stats __percpu *stats; /* if multicast_disabled is true then igmp type can't be set */ if (!type || !br_opt_get(br, BROPT_MULTICAST_STATS_ENABLED)) return; if (p) stats = p->mcast_stats; else stats = br->mcast_stats; if (WARN_ON(!stats)) return; br_mcast_stats_add(stats, skb, type, dir); } int br_multicast_init_stats(struct net_bridge *br) { br->mcast_stats = netdev_alloc_pcpu_stats(struct bridge_mcast_stats); if (!br->mcast_stats) return -ENOMEM; return 0; } void br_multicast_uninit_stats(struct net_bridge *br) { free_percpu(br->mcast_stats); } /* noinline for https://llvm.org/pr45802#c9 */ static noinline_for_stack void mcast_stats_add_dir(u64 *dst, u64 *src) { dst[BR_MCAST_DIR_RX] += src[BR_MCAST_DIR_RX]; dst[BR_MCAST_DIR_TX] += src[BR_MCAST_DIR_TX]; } void br_multicast_get_stats(const struct net_bridge *br, const struct net_bridge_port *p, struct br_mcast_stats *dest) { struct bridge_mcast_stats __percpu *stats; struct br_mcast_stats tdst; int i; memset(dest, 0, sizeof(*dest)); if (p) stats = p->mcast_stats; else stats = br->mcast_stats; if (WARN_ON(!stats)) return; memset(&tdst, 0, sizeof(tdst)); for_each_possible_cpu(i) { struct bridge_mcast_stats *cpu_stats = per_cpu_ptr(stats, i); struct br_mcast_stats temp; unsigned int start; do { start = u64_stats_fetch_begin(&cpu_stats->syncp); memcpy(&temp, &cpu_stats->mstats, sizeof(temp)); } while (u64_stats_fetch_retry(&cpu_stats->syncp, start)); mcast_stats_add_dir(tdst.igmp_v1queries, temp.igmp_v1queries); mcast_stats_add_dir(tdst.igmp_v2queries, temp.igmp_v2queries); mcast_stats_add_dir(tdst.igmp_v3queries, temp.igmp_v3queries); mcast_stats_add_dir(tdst.igmp_leaves, temp.igmp_leaves); mcast_stats_add_dir(tdst.igmp_v1reports, temp.igmp_v1reports); mcast_stats_add_dir(tdst.igmp_v2reports, temp.igmp_v2reports); mcast_stats_add_dir(tdst.igmp_v3reports, temp.igmp_v3reports); tdst.igmp_parse_errors += temp.igmp_parse_errors; mcast_stats_add_dir(tdst.mld_v1queries, temp.mld_v1queries); mcast_stats_add_dir(tdst.mld_v2queries, temp.mld_v2queries); mcast_stats_add_dir(tdst.mld_leaves, temp.mld_leaves); mcast_stats_add_dir(tdst.mld_v1reports, temp.mld_v1reports); mcast_stats_add_dir(tdst.mld_v2reports, temp.mld_v2reports); tdst.mld_parse_errors += temp.mld_parse_errors; } memcpy(dest, &tdst, sizeof(*dest)); } int br_mdb_hash_init(struct net_bridge *br) { int err; err = rhashtable_init(&br->sg_port_tbl, &br_sg_port_rht_params); if (err) return err; err = rhashtable_init(&br->mdb_hash_tbl, &br_mdb_rht_params); if (err) { rhashtable_destroy(&br->sg_port_tbl); return err; } return 0; } void br_mdb_hash_fini(struct net_bridge *br) { rhashtable_destroy(&br->sg_port_tbl); rhashtable_destroy(&br->mdb_hash_tbl); } |
1525 1525 1422 1424 104 1459 37 1424 1423 1458 1583 25 105 9 906 5 589 1142 326 1459 104 6 24 104 104 104 132 5 25 104 16632 200 200 134 15 99 1167 1168 655 66 496 1059 1058 419 41 351 15388 15389 14923 29 735 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/network.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/slab.h> /* Structure for holding inet domain socket's address. */ struct tomoyo_inet_addr_info { __be16 port; /* In network byte order. */ const __be32 *address; /* In network byte order. */ bool is_ipv6; }; /* Structure for holding unix domain socket's address. */ struct tomoyo_unix_addr_info { u8 *addr; /* This may not be '\0' terminated string. */ unsigned int addr_len; }; /* Structure for holding socket address. */ struct tomoyo_addr_info { u8 protocol; u8 operation; struct tomoyo_inet_addr_info inet; struct tomoyo_unix_addr_info unix0; }; /* String table for socket's protocols. */ const char * const tomoyo_proto_keyword[TOMOYO_SOCK_MAX] = { [SOCK_STREAM] = "stream", [SOCK_DGRAM] = "dgram", [SOCK_RAW] = "raw", [SOCK_SEQPACKET] = "seqpacket", [0] = " ", /* Dummy for avoiding NULL pointer dereference. */ [4] = " ", /* Dummy for avoiding NULL pointer dereference. */ }; /** * tomoyo_parse_ipaddr_union - Parse an IP address. * * @param: Pointer to "struct tomoyo_acl_param". * @ptr: Pointer to "struct tomoyo_ipaddr_union". * * Returns true on success, false otherwise. */ bool tomoyo_parse_ipaddr_union(struct tomoyo_acl_param *param, struct tomoyo_ipaddr_union *ptr) { u8 * const min = ptr->ip[0].in6_u.u6_addr8; u8 * const max = ptr->ip[1].in6_u.u6_addr8; char *address = tomoyo_read_token(param); const char *end; if (!strchr(address, ':') && in4_pton(address, -1, min, '-', &end) > 0) { ptr->is_ipv6 = false; if (!*end) ptr->ip[1].s6_addr32[0] = ptr->ip[0].s6_addr32[0]; else if (*end++ != '-' || in4_pton(end, -1, max, '\0', &end) <= 0 || *end) return false; return true; } if (in6_pton(address, -1, min, '-', &end) > 0) { ptr->is_ipv6 = true; if (!*end) memmove(max, min, sizeof(u16) * 8); else if (*end++ != '-' || in6_pton(end, -1, max, '\0', &end) <= 0 || *end) return false; return true; } return false; } /** * tomoyo_print_ipv4 - Print an IPv4 address. * * @buffer: Buffer to write to. * @buffer_len: Size of @buffer. * @min_ip: Pointer to __be32. * @max_ip: Pointer to __be32. * * Returns nothing. */ static void tomoyo_print_ipv4(char *buffer, const unsigned int buffer_len, const __be32 *min_ip, const __be32 *max_ip) { snprintf(buffer, buffer_len, "%pI4%c%pI4", min_ip, *min_ip == *max_ip ? '\0' : '-', max_ip); } /** * tomoyo_print_ipv6 - Print an IPv6 address. * * @buffer: Buffer to write to. * @buffer_len: Size of @buffer. * @min_ip: Pointer to "struct in6_addr". * @max_ip: Pointer to "struct in6_addr". * * Returns nothing. */ static void tomoyo_print_ipv6(char *buffer, const unsigned int buffer_len, const struct in6_addr *min_ip, const struct in6_addr *max_ip) { snprintf(buffer, buffer_len, "%pI6c%c%pI6c", min_ip, !memcmp(min_ip, max_ip, 16) ? '\0' : '-', max_ip); } /** * tomoyo_print_ip - Print an IP address. * * @buf: Buffer to write to. * @size: Size of @buf. * @ptr: Pointer to "struct ipaddr_union". * * Returns nothing. */ void tomoyo_print_ip(char *buf, const unsigned int size, const struct tomoyo_ipaddr_union *ptr) { if (ptr->is_ipv6) tomoyo_print_ipv6(buf, size, &ptr->ip[0], &ptr->ip[1]); else tomoyo_print_ipv4(buf, size, &ptr->ip[0].s6_addr32[0], &ptr->ip[1].s6_addr32[0]); } /* * Mapping table from "enum tomoyo_network_acl_index" to * "enum tomoyo_mac_index" for inet domain socket. */ static const u8 tomoyo_inet2mac [TOMOYO_SOCK_MAX][TOMOYO_MAX_NETWORK_OPERATION] = { [SOCK_STREAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_STREAM_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_INET_STREAM_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_INET_STREAM_CONNECT, }, [SOCK_DGRAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_DGRAM_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_INET_DGRAM_SEND, }, [SOCK_RAW] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_RAW_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_INET_RAW_SEND, }, }; /* * Mapping table from "enum tomoyo_network_acl_index" to * "enum tomoyo_mac_index" for unix domain socket. */ static const u8 tomoyo_unix2mac [TOMOYO_SOCK_MAX][TOMOYO_MAX_NETWORK_OPERATION] = { [SOCK_STREAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_STREAM_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_UNIX_STREAM_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_UNIX_STREAM_CONNECT, }, [SOCK_DGRAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_DGRAM_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_UNIX_DGRAM_SEND, }, [SOCK_SEQPACKET] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_CONNECT, }, }; /** * tomoyo_same_inet_acl - Check for duplicated "struct tomoyo_inet_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_inet_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_inet_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_inet_acl *p2 = container_of(b, typeof(*p2), head); return p1->protocol == p2->protocol && tomoyo_same_ipaddr_union(&p1->address, &p2->address) && tomoyo_same_number_union(&p1->port, &p2->port); } /** * tomoyo_same_unix_acl - Check for duplicated "struct tomoyo_unix_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_unix_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_unix_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_unix_acl *p2 = container_of(b, typeof(*p2), head); return p1->protocol == p2->protocol && tomoyo_same_name_union(&p1->name, &p2->name); } /** * tomoyo_merge_inet_acl - Merge duplicated "struct tomoyo_inet_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_inet_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_inet_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_inet_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_merge_unix_acl - Merge duplicated "struct tomoyo_unix_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_unix_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_unix_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_unix_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_write_inet_network - Write "struct tomoyo_inet_acl" list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ int tomoyo_write_inet_network(struct tomoyo_acl_param *param) { struct tomoyo_inet_acl e = { .head.type = TOMOYO_TYPE_INET_ACL }; int error = -EINVAL; u8 type; const char *protocol = tomoyo_read_token(param); const char *operation = tomoyo_read_token(param); for (e.protocol = 0; e.protocol < TOMOYO_SOCK_MAX; e.protocol++) if (!strcmp(protocol, tomoyo_proto_keyword[e.protocol])) break; for (type = 0; type < TOMOYO_MAX_NETWORK_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_socket_keyword[type])) e.perm |= 1 << type; if (e.protocol == TOMOYO_SOCK_MAX || !e.perm) return -EINVAL; if (param->data[0] == '@') { param->data++; e.address.group = tomoyo_get_group(param, TOMOYO_ADDRESS_GROUP); if (!e.address.group) return -ENOMEM; } else { if (!tomoyo_parse_ipaddr_union(param, &e.address)) goto out; } if (!tomoyo_parse_number_union(param, &e.port) || e.port.values[1] > 65535) goto out; error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_inet_acl, tomoyo_merge_inet_acl); out: tomoyo_put_group(e.address.group); tomoyo_put_number_union(&e.port); return error; } /** * tomoyo_write_unix_network - Write "struct tomoyo_unix_acl" list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. */ int tomoyo_write_unix_network(struct tomoyo_acl_param *param) { struct tomoyo_unix_acl e = { .head.type = TOMOYO_TYPE_UNIX_ACL }; int error; u8 type; const char *protocol = tomoyo_read_token(param); const char *operation = tomoyo_read_token(param); for (e.protocol = 0; e.protocol < TOMOYO_SOCK_MAX; e.protocol++) if (!strcmp(protocol, tomoyo_proto_keyword[e.protocol])) break; for (type = 0; type < TOMOYO_MAX_NETWORK_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_socket_keyword[type])) e.perm |= 1 << type; if (e.protocol == TOMOYO_SOCK_MAX || !e.perm) return -EINVAL; if (!tomoyo_parse_name_union(param, &e.name)) return -EINVAL; error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_unix_acl, tomoyo_merge_unix_acl); tomoyo_put_name_union(&e.name); return error; } /** * tomoyo_audit_net_log - Audit network log. * * @r: Pointer to "struct tomoyo_request_info". * @family: Name of socket family ("inet" or "unix"). * @protocol: Name of protocol in @family. * @operation: Name of socket operation. * @address: Name of address. * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_net_log(struct tomoyo_request_info *r, const char *family, const u8 protocol, const u8 operation, const char *address) { return tomoyo_supervisor(r, "network %s %s %s %s\n", family, tomoyo_proto_keyword[protocol], tomoyo_socket_keyword[operation], address); } /** * tomoyo_audit_inet_log - Audit INET network log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_inet_log(struct tomoyo_request_info *r) { char buf[128]; int len; const __be32 *address = r->param.inet_network.address; if (r->param.inet_network.is_ipv6) tomoyo_print_ipv6(buf, sizeof(buf), (const struct in6_addr *) address, (const struct in6_addr *) address); else tomoyo_print_ipv4(buf, sizeof(buf), address, address); len = strlen(buf); snprintf(buf + len, sizeof(buf) - len, " %u", r->param.inet_network.port); return tomoyo_audit_net_log(r, "inet", r->param.inet_network.protocol, r->param.inet_network.operation, buf); } /** * tomoyo_audit_unix_log - Audit UNIX network log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_unix_log(struct tomoyo_request_info *r) { return tomoyo_audit_net_log(r, "unix", r->param.unix_network.protocol, r->param.unix_network.operation, r->param.unix_network.address->name); } /** * tomoyo_check_inet_acl - Check permission for inet domain socket operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_inet_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_inet_acl *acl = container_of(ptr, typeof(*acl), head); const u8 size = r->param.inet_network.is_ipv6 ? 16 : 4; if (!(acl->perm & (1 << r->param.inet_network.operation)) || !tomoyo_compare_number_union(r->param.inet_network.port, &acl->port)) return false; if (acl->address.group) return tomoyo_address_matches_group (r->param.inet_network.is_ipv6, r->param.inet_network.address, acl->address.group); return acl->address.is_ipv6 == r->param.inet_network.is_ipv6 && memcmp(&acl->address.ip[0], r->param.inet_network.address, size) <= 0 && memcmp(r->param.inet_network.address, &acl->address.ip[1], size) <= 0; } /** * tomoyo_check_unix_acl - Check permission for unix domain socket operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_unix_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_unix_acl *acl = container_of(ptr, typeof(*acl), head); return (acl->perm & (1 << r->param.unix_network.operation)) && tomoyo_compare_name_union(r->param.unix_network.address, &acl->name); } /** * tomoyo_inet_entry - Check permission for INET network operation. * * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_inet_entry(const struct tomoyo_addr_info *address) { const int idx = tomoyo_read_lock(); struct tomoyo_request_info r; int error = 0; const u8 type = tomoyo_inet2mac[address->protocol][address->operation]; if (type && tomoyo_init_request_info(&r, NULL, type) != TOMOYO_CONFIG_DISABLED) { r.param_type = TOMOYO_TYPE_INET_ACL; r.param.inet_network.protocol = address->protocol; r.param.inet_network.operation = address->operation; r.param.inet_network.is_ipv6 = address->inet.is_ipv6; r.param.inet_network.address = address->inet.address; r.param.inet_network.port = ntohs(address->inet.port); do { tomoyo_check_acl(&r, tomoyo_check_inet_acl); error = tomoyo_audit_inet_log(&r); } while (error == TOMOYO_RETRY_REQUEST); } tomoyo_read_unlock(idx); return error; } /** * tomoyo_check_inet_address - Check permission for inet domain socket's operation. * * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * @port: Port number. * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_check_inet_address(const struct sockaddr *addr, const unsigned int addr_len, const u16 port, struct tomoyo_addr_info *address) { struct tomoyo_inet_addr_info *i = &address->inet; if (addr_len < offsetofend(struct sockaddr, sa_family)) return 0; switch (addr->sa_family) { case AF_INET6: if (addr_len < SIN6_LEN_RFC2133) goto skip; i->is_ipv6 = true; i->address = (__be32 *) ((struct sockaddr_in6 *) addr)->sin6_addr.s6_addr; i->port = ((struct sockaddr_in6 *) addr)->sin6_port; break; case AF_INET: if (addr_len < sizeof(struct sockaddr_in)) goto skip; i->is_ipv6 = false; i->address = (__be32 *) &((struct sockaddr_in *) addr)->sin_addr; i->port = ((struct sockaddr_in *) addr)->sin_port; break; default: goto skip; } if (address->protocol == SOCK_RAW) i->port = htons(port); return tomoyo_inet_entry(address); skip: return 0; } /** * tomoyo_unix_entry - Check permission for UNIX network operation. * * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_unix_entry(const struct tomoyo_addr_info *address) { const int idx = tomoyo_read_lock(); struct tomoyo_request_info r; int error = 0; const u8 type = tomoyo_unix2mac[address->protocol][address->operation]; if (type && tomoyo_init_request_info(&r, NULL, type) != TOMOYO_CONFIG_DISABLED) { char *buf = address->unix0.addr; int len = address->unix0.addr_len - sizeof(sa_family_t); if (len <= 0) { buf = "anonymous"; len = 9; } else if (buf[0]) { len = strnlen(buf, len); } buf = tomoyo_encode2(buf, len); if (buf) { struct tomoyo_path_info addr; addr.name = buf; tomoyo_fill_path_info(&addr); r.param_type = TOMOYO_TYPE_UNIX_ACL; r.param.unix_network.protocol = address->protocol; r.param.unix_network.operation = address->operation; r.param.unix_network.address = &addr; do { tomoyo_check_acl(&r, tomoyo_check_unix_acl); error = tomoyo_audit_unix_log(&r); } while (error == TOMOYO_RETRY_REQUEST); kfree(buf); } else error = -ENOMEM; } tomoyo_read_unlock(idx); return error; } /** * tomoyo_check_unix_address - Check permission for unix domain socket's operation. * * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_check_unix_address(struct sockaddr *addr, const unsigned int addr_len, struct tomoyo_addr_info *address) { struct tomoyo_unix_addr_info *u = &address->unix0; if (addr_len < offsetofend(struct sockaddr, sa_family)) return 0; if (addr->sa_family != AF_UNIX) return 0; u->addr = ((struct sockaddr_un *) addr)->sun_path; u->addr_len = addr_len; return tomoyo_unix_entry(address); } /** * tomoyo_kernel_service - Check whether I'm kernel service or not. * * Returns true if I'm kernel service, false otherwise. */ static bool tomoyo_kernel_service(void) { /* Nothing to do if I am a kernel service. */ return current->flags & PF_KTHREAD; } /** * tomoyo_sock_family - Get socket's family. * * @sk: Pointer to "struct sock". * * Returns one of PF_INET, PF_INET6, PF_UNIX or 0. */ static u8 tomoyo_sock_family(struct sock *sk) { u8 family; if (tomoyo_kernel_service()) return 0; family = sk->sk_family; switch (family) { case PF_INET: case PF_INET6: case PF_UNIX: return family; default: return 0; } } /** * tomoyo_socket_listen_permission - Check permission for listening a socket. * * @sock: Pointer to "struct socket". * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_listen_permission(struct socket *sock) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; struct sockaddr_storage addr; int addr_len; if (!family || (type != SOCK_STREAM && type != SOCK_SEQPACKET)) return 0; { const int error = sock->ops->getname(sock, (struct sockaddr *) &addr, 0); if (error < 0) return error; addr_len = error; } address.protocol = type; address.operation = TOMOYO_NETWORK_LISTEN; if (family == PF_UNIX) return tomoyo_check_unix_address((struct sockaddr *) &addr, addr_len, &address); return tomoyo_check_inet_address((struct sockaddr *) &addr, addr_len, 0, &address); } /** * tomoyo_socket_connect_permission - Check permission for setting the remote address of a socket. * * @sock: Pointer to "struct socket". * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_connect_permission(struct socket *sock, struct sockaddr *addr, int addr_len) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!family) return 0; address.protocol = type; switch (type) { case SOCK_DGRAM: case SOCK_RAW: address.operation = TOMOYO_NETWORK_SEND; break; case SOCK_STREAM: case SOCK_SEQPACKET: address.operation = TOMOYO_NETWORK_CONNECT; break; default: return 0; } if (family == PF_UNIX) return tomoyo_check_unix_address(addr, addr_len, &address); return tomoyo_check_inet_address(addr, addr_len, sock->sk->sk_protocol, &address); } /** * tomoyo_socket_bind_permission - Check permission for setting the local address of a socket. * * @sock: Pointer to "struct socket". * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_bind_permission(struct socket *sock, struct sockaddr *addr, int addr_len) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!family) return 0; switch (type) { case SOCK_STREAM: case SOCK_DGRAM: case SOCK_RAW: case SOCK_SEQPACKET: address.protocol = type; address.operation = TOMOYO_NETWORK_BIND; break; default: return 0; } if (family == PF_UNIX) return tomoyo_check_unix_address(addr, addr_len, &address); return tomoyo_check_inet_address(addr, addr_len, sock->sk->sk_protocol, &address); } /** * tomoyo_socket_sendmsg_permission - Check permission for sending a datagram. * * @sock: Pointer to "struct socket". * @msg: Pointer to "struct msghdr". * @size: Unused. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_sendmsg_permission(struct socket *sock, struct msghdr *msg, int size) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!msg->msg_name || !family || (type != SOCK_DGRAM && type != SOCK_RAW)) return 0; address.protocol = type; address.operation = TOMOYO_NETWORK_SEND; if (family == PF_UNIX) return tomoyo_check_unix_address((struct sockaddr *) msg->msg_name, msg->msg_namelen, &address); return tomoyo_check_inet_address((struct sockaddr *) msg->msg_name, msg->msg_namelen, sock->sk->sk_protocol, &address); } |
8 8 8 8 8 8 8 4 4 26 3 23 8 15 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 | // SPDX-License-Identifier: GPL-2.0-only /* * AppArmor security module * * This file contains AppArmor policy manipulation functions * * Copyright (C) 1998-2008 Novell/SUSE * Copyright 2009-2010 Canonical Ltd. * * AppArmor policy is based around profiles, which contain the rules a * task is confined by. Every task in the system has a profile attached * to it determined either by matching "unconfined" tasks against the * visible set of profiles or by following a profiles attachment rules. * * Each profile exists in a profile namespace which is a container of * visible profiles. Each namespace contains a special "unconfined" profile, * which doesn't enforce any confinement on a task beyond DAC. * * Namespace and profile names can be written together in either * of two syntaxes. * :namespace:profile - used by kernel interfaces for easy detection * namespace://profile - used by policy * * Profile names can not start with : or @ or ^ and may not contain \0 * * Reserved profile names * unconfined - special automatically generated unconfined profile * inherit - special name to indicate profile inheritance * null-XXXX-YYYY - special automatically generated learning profiles * * Namespace names may not start with / or @ and may not contain \0 or : * Reserved namespace names * user-XXXX - user defined profiles * * a // in a profile or namespace name indicates a hierarchical name with the * name before the // being the parent and the name after the child. * * Profile and namespace hierarchies serve two different but similar purposes. * The namespace contains the set of visible profiles that are considered * for attachment. The hierarchy of namespaces allows for virtualizing * the namespace so that for example a chroot can have its own set of profiles * which may define some local user namespaces. * The profile hierarchy severs two distinct purposes, * - it allows for sub profiles or hats, which allows an application to run * subprograms under its own profile with different restriction than it * self, and not have it use the system profile. * eg. if a mail program starts an editor, the policy might make the * restrictions tighter on the editor tighter than the mail program, * and definitely different than general editor restrictions * - it allows for binary hierarchy of profiles, so that execution history * is preserved. This feature isn't exploited by AppArmor reference policy * but is allowed. NOTE: this is currently suboptimal because profile * aliasing is not currently implemented so that a profile for each * level must be defined. * eg. /bin/bash///bin/ls as a name would indicate /bin/ls was started * from /bin/bash * * A profile or namespace name that can contain one or more // separators * is referred to as an hname (hierarchical). * eg. /bin/bash//bin/ls * * An fqname is a name that may contain both namespace and profile hnames. * eg. :ns:/bin/bash//bin/ls * * NOTES: * - locking of profile lists is currently fairly coarse. All profile * lists within a namespace use the namespace lock. * FIXME: move profile lists to using rcu_lists */ #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/cred.h> #include <linux/rculist.h> #include <linux/user_namespace.h> #include "include/apparmor.h" #include "include/capability.h" #include "include/cred.h" #include "include/file.h" #include "include/ipc.h" #include "include/match.h" #include "include/path.h" #include "include/policy.h" #include "include/policy_ns.h" #include "include/policy_unpack.h" #include "include/resource.h" int unprivileged_userns_apparmor_policy = 1; int aa_unprivileged_unconfined_restricted; const char *const aa_profile_mode_names[] = { "enforce", "complain", "kill", "unconfined", "user", }; static void aa_free_pdb(struct aa_policydb *pdb) { if (pdb) { aa_put_dfa(pdb->dfa); if (pdb->perms) kvfree(pdb->perms); aa_free_str_table(&pdb->trans); kfree(pdb); } } /** * aa_pdb_free_kref - free aa_policydb by kref (called by aa_put_pdb) * @kref: kref callback for freeing of a dfa (NOT NULL) */ void aa_pdb_free_kref(struct kref *kref) { struct aa_policydb *pdb = container_of(kref, struct aa_policydb, count); aa_free_pdb(pdb); } struct aa_policydb *aa_alloc_pdb(gfp_t gfp) { struct aa_policydb *pdb = kzalloc(sizeof(struct aa_policydb), gfp); if (!pdb) return NULL; kref_init(&pdb->count); return pdb; } /** * __add_profile - add a profiles to list and label tree * @list: list to add it to (NOT NULL) * @profile: the profile to add (NOT NULL) * * refcount @profile, should be put by __list_remove_profile * * Requires: namespace lock be held, or list not be shared */ static void __add_profile(struct list_head *list, struct aa_profile *profile) { struct aa_label *l; AA_BUG(!list); AA_BUG(!profile); AA_BUG(!profile->ns); AA_BUG(!mutex_is_locked(&profile->ns->lock)); list_add_rcu(&profile->base.list, list); /* get list reference */ aa_get_profile(profile); l = aa_label_insert(&profile->ns->labels, &profile->label); AA_BUG(l != &profile->label); aa_put_label(l); } /** * __list_remove_profile - remove a profile from the list it is on * @profile: the profile to remove (NOT NULL) * * remove a profile from the list, warning generally removal should * be done with __replace_profile as most profile removals are * replacements to the unconfined profile. * * put @profile list refcount * * Requires: namespace lock be held, or list not have been live */ static void __list_remove_profile(struct aa_profile *profile) { AA_BUG(!profile); AA_BUG(!profile->ns); AA_BUG(!mutex_is_locked(&profile->ns->lock)); list_del_rcu(&profile->base.list); aa_put_profile(profile); } /** * __remove_profile - remove old profile, and children * @profile: profile to be replaced (NOT NULL) * * Requires: namespace list lock be held, or list not be shared */ static void __remove_profile(struct aa_profile *profile) { AA_BUG(!profile); AA_BUG(!profile->ns); AA_BUG(!mutex_is_locked(&profile->ns->lock)); /* release any children lists first */ __aa_profile_list_release(&profile->base.profiles); /* released by free_profile */ aa_label_remove(&profile->label); __aafs_profile_rmdir(profile); __list_remove_profile(profile); } /** * __aa_profile_list_release - remove all profiles on the list and put refs * @head: list of profiles (NOT NULL) * * Requires: namespace lock be held */ void __aa_profile_list_release(struct list_head *head) { struct aa_profile *profile, *tmp; list_for_each_entry_safe(profile, tmp, head, base.list) __remove_profile(profile); } /** * aa_free_data - free a data blob * @ptr: data to free * @arg: unused */ static void aa_free_data(void *ptr, void *arg) { struct aa_data *data = ptr; kvfree_sensitive(data->data, data->size); kfree_sensitive(data->key); kfree_sensitive(data); } static void free_attachment(struct aa_attachment *attach) { int i; for (i = 0; i < attach->xattr_count; i++) kfree_sensitive(attach->xattrs[i]); kfree_sensitive(attach->xattrs); aa_put_pdb(attach->xmatch); } static void free_ruleset(struct aa_ruleset *rules) { int i; aa_put_pdb(rules->file); aa_put_pdb(rules->policy); aa_free_cap_rules(&rules->caps); aa_free_rlimit_rules(&rules->rlimits); for (i = 0; i < rules->secmark_count; i++) kfree_sensitive(rules->secmark[i].label); kfree_sensitive(rules->secmark); kfree_sensitive(rules); } struct aa_ruleset *aa_alloc_ruleset(gfp_t gfp) { struct aa_ruleset *rules; rules = kzalloc(sizeof(*rules), gfp); if (rules) INIT_LIST_HEAD(&rules->list); return rules; } /** * aa_free_profile - free a profile * @profile: the profile to free (MAYBE NULL) * * Free a profile, its hats and null_profile. All references to the profile, * its hats and null_profile must have been put. * * If the profile was referenced from a task context, free_profile() will * be called from an rcu callback routine, so we must not sleep here. */ void aa_free_profile(struct aa_profile *profile) { struct aa_ruleset *rule, *tmp; struct rhashtable *rht; AA_DEBUG("%s(%p)\n", __func__, profile); if (!profile) return; /* free children profiles */ aa_policy_destroy(&profile->base); aa_put_profile(rcu_access_pointer(profile->parent)); aa_put_ns(profile->ns); kfree_sensitive(profile->rename); kfree_sensitive(profile->disconnected); free_attachment(&profile->attach); /* * at this point there are no tasks that can have a reference * to rules */ list_for_each_entry_safe(rule, tmp, &profile->rules, list) { list_del_init(&rule->list); free_ruleset(rule); } kfree_sensitive(profile->dirname); if (profile->data) { rht = profile->data; profile->data = NULL; rhashtable_free_and_destroy(rht, aa_free_data, NULL); kfree_sensitive(rht); } kfree_sensitive(profile->hash); aa_put_loaddata(profile->rawdata); aa_label_destroy(&profile->label); kfree_sensitive(profile); } /** * aa_alloc_profile - allocate, initialize and return a new profile * @hname: name of the profile (NOT NULL) * @proxy: proxy to use OR null if to allocate a new one * @gfp: allocation type * * Returns: refcount profile or NULL on failure */ struct aa_profile *aa_alloc_profile(const char *hname, struct aa_proxy *proxy, gfp_t gfp) { struct aa_profile *profile; struct aa_ruleset *rules; /* freed by free_profile - usually through aa_put_profile */ profile = kzalloc(struct_size(profile, label.vec, 2), gfp); if (!profile) return NULL; if (!aa_policy_init(&profile->base, NULL, hname, gfp)) goto fail; if (!aa_label_init(&profile->label, 1, gfp)) goto fail; INIT_LIST_HEAD(&profile->rules); /* allocate the first ruleset, but leave it empty */ rules = aa_alloc_ruleset(gfp); if (!rules) goto fail; list_add(&rules->list, &profile->rules); /* update being set needed by fs interface */ if (!proxy) { proxy = aa_alloc_proxy(&profile->label, gfp); if (!proxy) goto fail; } else aa_get_proxy(proxy); profile->label.proxy = proxy; profile->label.hname = profile->base.hname; profile->label.flags |= FLAG_PROFILE; profile->label.vec[0] = profile; /* refcount released by caller */ return profile; fail: aa_free_profile(profile); return NULL; } /* TODO: profile accounting - setup in remove */ /** * __strn_find_child - find a profile on @head list using substring of @name * @head: list to search (NOT NULL) * @name: name of profile (NOT NULL) * @len: length of @name substring to match * * Requires: rcu_read_lock be held * * Returns: unrefcounted profile ptr, or NULL if not found */ static struct aa_profile *__strn_find_child(struct list_head *head, const char *name, int len) { return (struct aa_profile *)__policy_strn_find(head, name, len); } /** * __find_child - find a profile on @head list with a name matching @name * @head: list to search (NOT NULL) * @name: name of profile (NOT NULL) * * Requires: rcu_read_lock be held * * Returns: unrefcounted profile ptr, or NULL if not found */ static struct aa_profile *__find_child(struct list_head *head, const char *name) { return __strn_find_child(head, name, strlen(name)); } /** * aa_find_child - find a profile by @name in @parent * @parent: profile to search (NOT NULL) * @name: profile name to search for (NOT NULL) * * Returns: a refcounted profile or NULL if not found */ struct aa_profile *aa_find_child(struct aa_profile *parent, const char *name) { struct aa_profile *profile; rcu_read_lock(); do { profile = __find_child(&parent->base.profiles, name); } while (profile && !aa_get_profile_not0(profile)); rcu_read_unlock(); /* refcount released by caller */ return profile; } /** * __lookup_parent - lookup the parent of a profile of name @hname * @ns: namespace to lookup profile in (NOT NULL) * @hname: hierarchical profile name to find parent of (NOT NULL) * * Lookups up the parent of a fully qualified profile name, the profile * that matches hname does not need to exist, in general this * is used to load a new profile. * * Requires: rcu_read_lock be held * * Returns: unrefcounted policy or NULL if not found */ static struct aa_policy *__lookup_parent(struct aa_ns *ns, const char *hname) { struct aa_policy *policy; struct aa_profile *profile = NULL; char *split; policy = &ns->base; for (split = strstr(hname, "//"); split;) { profile = __strn_find_child(&policy->profiles, hname, split - hname); if (!profile) return NULL; policy = &profile->base; hname = split + 2; split = strstr(hname, "//"); } if (!profile) return &ns->base; return &profile->base; } /** * __create_missing_ancestors - create place holders for missing ancestores * @ns: namespace to lookup profile in (NOT NULL) * @hname: hierarchical profile name to find parent of (NOT NULL) * @gfp: type of allocation. * * Requires: ns mutex lock held * * Return: unrefcounted parent policy on success or %NULL if error creating * place holder profiles. */ static struct aa_policy *__create_missing_ancestors(struct aa_ns *ns, const char *hname, gfp_t gfp) { struct aa_policy *policy; struct aa_profile *parent, *profile = NULL; char *split; AA_BUG(!ns); AA_BUG(!hname); policy = &ns->base; for (split = strstr(hname, "//"); split;) { parent = profile; profile = __strn_find_child(&policy->profiles, hname, split - hname); if (!profile) { const char *name = kstrndup(hname, split - hname, gfp); if (!name) return NULL; profile = aa_alloc_null(parent, name, gfp); kfree(name); if (!profile) return NULL; if (!parent) profile->ns = aa_get_ns(ns); } policy = &profile->base; hname = split + 2; split = strstr(hname, "//"); } if (!profile) return &ns->base; return &profile->base; } /** * __lookupn_profile - lookup the profile matching @hname * @base: base list to start looking up profile name from (NOT NULL) * @hname: hierarchical profile name (NOT NULL) * @n: length of @hname * * Requires: rcu_read_lock be held * * Returns: unrefcounted profile pointer or NULL if not found * * Do a relative name lookup, recursing through profile tree. */ static struct aa_profile *__lookupn_profile(struct aa_policy *base, const char *hname, size_t n) { struct aa_profile *profile = NULL; const char *split; for (split = strnstr(hname, "//", n); split; split = strnstr(hname, "//", n)) { profile = __strn_find_child(&base->profiles, hname, split - hname); if (!profile) return NULL; base = &profile->base; n -= split + 2 - hname; hname = split + 2; } if (n) return __strn_find_child(&base->profiles, hname, n); return NULL; } static struct aa_profile *__lookup_profile(struct aa_policy *base, const char *hname) { return __lookupn_profile(base, hname, strlen(hname)); } /** * aa_lookupn_profile - find a profile by its full or partial name * @ns: the namespace to start from (NOT NULL) * @hname: name to do lookup on. Does not contain namespace prefix (NOT NULL) * @n: size of @hname * * Returns: refcounted profile or NULL if not found */ struct aa_profile *aa_lookupn_profile(struct aa_ns *ns, const char *hname, size_t n) { struct aa_profile *profile; rcu_read_lock(); do { profile = __lookupn_profile(&ns->base, hname, n); } while (profile && !aa_get_profile_not0(profile)); rcu_read_unlock(); /* the unconfined profile is not in the regular profile list */ if (!profile && strncmp(hname, "unconfined", n) == 0) profile = aa_get_newest_profile(ns->unconfined); /* refcount released by caller */ return profile; } struct aa_profile *aa_lookup_profile(struct aa_ns *ns, const char *hname) { return aa_lookupn_profile(ns, hname, strlen(hname)); } struct aa_profile *aa_fqlookupn_profile(struct aa_label *base, const char *fqname, size_t n) { struct aa_profile *profile; struct aa_ns *ns; const char *name, *ns_name; size_t ns_len; name = aa_splitn_fqname(fqname, n, &ns_name, &ns_len); if (ns_name) { ns = aa_lookupn_ns(labels_ns(base), ns_name, ns_len); if (!ns) return NULL; } else ns = aa_get_ns(labels_ns(base)); if (name) profile = aa_lookupn_profile(ns, name, n - (name - fqname)); else if (ns) /* default profile for ns, currently unconfined */ profile = aa_get_newest_profile(ns->unconfined); else profile = NULL; aa_put_ns(ns); return profile; } struct aa_profile *aa_alloc_null(struct aa_profile *parent, const char *name, gfp_t gfp) { struct aa_profile *profile; struct aa_ruleset *rules; profile = aa_alloc_profile(name, NULL, gfp); if (!profile) return NULL; /* TODO: ideally we should inherit abi from parent */ profile->label.flags |= FLAG_NULL; rules = list_first_entry(&profile->rules, typeof(*rules), list); rules->file = aa_get_pdb(nullpdb); rules->policy = aa_get_pdb(nullpdb); if (parent) { profile->path_flags = parent->path_flags; /* released on free_profile */ rcu_assign_pointer(profile->parent, aa_get_profile(parent)); profile->ns = aa_get_ns(parent->ns); } return profile; } /** * aa_new_learning_profile - create or find a null-X learning profile * @parent: profile that caused this profile to be created (NOT NULL) * @hat: true if the null- learning profile is a hat * @base: name to base the null profile off of * @gfp: type of allocation * * Find/Create a null- complain mode profile used in learning mode. The * name of the profile is unique and follows the format of parent//null-XXX. * where XXX is based on the @name or if that fails or is not supplied * a unique number * * null profiles are added to the profile list but the list does not * hold a count on them so that they are automatically released when * not in use. * * Returns: new refcounted profile else NULL on failure */ struct aa_profile *aa_new_learning_profile(struct aa_profile *parent, bool hat, const char *base, gfp_t gfp) { struct aa_profile *p, *profile; const char *bname; char *name = NULL; AA_BUG(!parent); if (base) { name = kmalloc(strlen(parent->base.hname) + 8 + strlen(base), gfp); if (name) { sprintf(name, "%s//null-%s", parent->base.hname, base); goto name; } /* fall through to try shorter uniq */ } name = kmalloc(strlen(parent->base.hname) + 2 + 7 + 8, gfp); if (!name) return NULL; sprintf(name, "%s//null-%x", parent->base.hname, atomic_inc_return(&parent->ns->uniq_null)); name: /* lookup to see if this is a dup creation */ bname = basename(name); profile = aa_find_child(parent, bname); if (profile) goto out; profile = aa_alloc_null(parent, name, gfp); if (!profile) goto fail; profile->mode = APPARMOR_COMPLAIN; if (hat) profile->label.flags |= FLAG_HAT; mutex_lock_nested(&profile->ns->lock, profile->ns->level); p = __find_child(&parent->base.profiles, bname); if (p) { aa_free_profile(profile); profile = aa_get_profile(p); } else { __add_profile(&parent->base.profiles, profile); } mutex_unlock(&profile->ns->lock); /* refcount released by caller */ out: kfree(name); return profile; fail: kfree(name); aa_free_profile(profile); return NULL; } /** * replacement_allowed - test to see if replacement is allowed * @profile: profile to test if it can be replaced (MAYBE NULL) * @noreplace: true if replacement shouldn't be allowed but addition is okay * @info: Returns - info about why replacement failed (NOT NULL) * * Returns: %0 if replacement allowed else error code */ static int replacement_allowed(struct aa_profile *profile, int noreplace, const char **info) { if (profile) { if (profile->label.flags & FLAG_IMMUTIBLE) { *info = "cannot replace immutable profile"; return -EPERM; } else if (noreplace) { *info = "profile already exists"; return -EEXIST; } } return 0; } /* audit callback for net specific fields */ static void audit_cb(struct audit_buffer *ab, void *va) { struct common_audit_data *sa = va; struct apparmor_audit_data *ad = aad(sa); if (ad->iface.ns) { audit_log_format(ab, " ns="); audit_log_untrustedstring(ab, ad->iface.ns); } } /** * audit_policy - Do auditing of policy changes * @subj_label: label to check if it can manage policy * @op: policy operation being performed * @ns_name: name of namespace being manipulated * @name: name of profile being manipulated (NOT NULL) * @info: any extra information to be audited (MAYBE NULL) * @error: error code * * Returns: the error to be returned after audit is done */ static int audit_policy(struct aa_label *subj_label, const char *op, const char *ns_name, const char *name, const char *info, int error) { DEFINE_AUDIT_DATA(ad, LSM_AUDIT_DATA_NONE, AA_CLASS_NONE, op); ad.iface.ns = ns_name; ad.name = name; ad.info = info; ad.error = error; ad.subj_label = subj_label; aa_audit_msg(AUDIT_APPARMOR_STATUS, &ad, audit_cb); return error; } /* don't call out to other LSMs in the stack for apparmor policy admin * permissions */ static int policy_ns_capable(const struct cred *subj_cred, struct aa_label *label, struct user_namespace *userns, int cap) { int err; /* check for MAC_ADMIN cap in cred */ err = cap_capable(subj_cred, userns, cap, CAP_OPT_NONE); if (!err) err = aa_capable(subj_cred, label, cap, CAP_OPT_NONE); return err; } /** * aa_policy_view_capable - check if viewing policy in at @ns is allowed * @subj_cred: cred of subject * @label: label that is trying to view policy in ns * @ns: namespace being viewed by @label (may be NULL if @label's ns) * * Returns: true if viewing policy is allowed * * If @ns is NULL then the namespace being viewed is assumed to be the * tasks current namespace. */ bool aa_policy_view_capable(const struct cred *subj_cred, struct aa_label *label, struct aa_ns *ns) { struct user_namespace *user_ns = subj_cred->user_ns; struct aa_ns *view_ns = labels_view(label); bool root_in_user_ns = uid_eq(current_euid(), make_kuid(user_ns, 0)) || in_egroup_p(make_kgid(user_ns, 0)); bool response = false; if (!ns) ns = view_ns; if (root_in_user_ns && aa_ns_visible(view_ns, ns, true) && (user_ns == &init_user_ns || (unprivileged_userns_apparmor_policy != 0 && user_ns->level == view_ns->level))) response = true; return response; } bool aa_policy_admin_capable(const struct cred *subj_cred, struct aa_label *label, struct aa_ns *ns) { struct user_namespace *user_ns = subj_cred->user_ns; bool capable = policy_ns_capable(subj_cred, label, user_ns, CAP_MAC_ADMIN) == 0; AA_DEBUG("cap_mac_admin? %d\n", capable); AA_DEBUG("policy locked? %d\n", aa_g_lock_policy); return aa_policy_view_capable(subj_cred, label, ns) && capable && !aa_g_lock_policy; } bool aa_current_policy_view_capable(struct aa_ns *ns) { struct aa_label *label; bool res; label = __begin_current_label_crit_section(); res = aa_policy_view_capable(current_cred(), label, ns); __end_current_label_crit_section(label); return res; } bool aa_current_policy_admin_capable(struct aa_ns *ns) { struct aa_label *label; bool res; label = __begin_current_label_crit_section(); res = aa_policy_admin_capable(current_cred(), label, ns); __end_current_label_crit_section(label); return res; } /** * aa_may_manage_policy - can the current task manage policy * @subj_cred: subjects cred * @label: label to check if it can manage policy * @ns: namespace being managed by @label (may be NULL if @label's ns) * @mask: contains the policy manipulation operation being done * * Returns: 0 if the task is allowed to manipulate policy else error */ int aa_may_manage_policy(const struct cred *subj_cred, struct aa_label *label, struct aa_ns *ns, u32 mask) { const char *op; if (mask & AA_MAY_REMOVE_POLICY) op = OP_PROF_RM; else if (mask & AA_MAY_REPLACE_POLICY) op = OP_PROF_REPL; else op = OP_PROF_LOAD; /* check if loading policy is locked out */ if (aa_g_lock_policy) return audit_policy(label, op, NULL, NULL, "policy_locked", -EACCES); if (!aa_policy_admin_capable(subj_cred, label, ns)) return audit_policy(label, op, NULL, NULL, "not policy admin", -EACCES); /* TODO: add fine grained mediation of policy loads */ return 0; } static struct aa_profile *__list_lookup_parent(struct list_head *lh, struct aa_profile *profile) { const char *base = basename(profile->base.hname); long len = base - profile->base.hname; struct aa_load_ent *ent; /* parent won't have trailing // so remove from len */ if (len <= 2) return NULL; len -= 2; list_for_each_entry(ent, lh, list) { if (ent->new == profile) continue; if (strncmp(ent->new->base.hname, profile->base.hname, len) == 0 && ent->new->base.hname[len] == 0) return ent->new; } return NULL; } /** * __replace_profile - replace @old with @new on a list * @old: profile to be replaced (NOT NULL) * @new: profile to replace @old with (NOT NULL) * * Will duplicate and refcount elements that @new inherits from @old * and will inherit @old children. * * refcount @new for list, put @old list refcount * * Requires: namespace list lock be held, or list not be shared */ static void __replace_profile(struct aa_profile *old, struct aa_profile *new) { struct aa_profile *child, *tmp; if (!list_empty(&old->base.profiles)) { LIST_HEAD(lh); list_splice_init_rcu(&old->base.profiles, &lh, synchronize_rcu); list_for_each_entry_safe(child, tmp, &lh, base.list) { struct aa_profile *p; list_del_init(&child->base.list); p = __find_child(&new->base.profiles, child->base.name); if (p) { /* @p replaces @child */ __replace_profile(child, p); continue; } /* inherit @child and its children */ /* TODO: update hname of inherited children */ /* list refcount transferred to @new */ p = aa_deref_parent(child); rcu_assign_pointer(child->parent, aa_get_profile(new)); list_add_rcu(&child->base.list, &new->base.profiles); aa_put_profile(p); } } if (!rcu_access_pointer(new->parent)) { struct aa_profile *parent = aa_deref_parent(old); rcu_assign_pointer(new->parent, aa_get_profile(parent)); } aa_label_replace(&old->label, &new->label); /* migrate dents must come after label replacement b/c update */ __aafs_profile_migrate_dents(old, new); if (list_empty(&new->base.list)) { /* new is not on a list already */ list_replace_rcu(&old->base.list, &new->base.list); aa_get_profile(new); aa_put_profile(old); } else __list_remove_profile(old); } /** * __lookup_replace - lookup replacement information for a profile * @ns: namespace the lookup occurs in * @hname: name of profile to lookup * @noreplace: true if not replacing an existing profile * @p: Returns - profile to be replaced * @info: Returns - info string on why lookup failed * * Returns: profile to replace (no ref) on success else ptr error */ static int __lookup_replace(struct aa_ns *ns, const char *hname, bool noreplace, struct aa_profile **p, const char **info) { *p = aa_get_profile(__lookup_profile(&ns->base, hname)); if (*p) { int error = replacement_allowed(*p, noreplace, info); if (error) { *info = "profile can not be replaced"; return error; } } return 0; } static void share_name(struct aa_profile *old, struct aa_profile *new) { aa_put_str(new->base.hname); aa_get_str(old->base.hname); new->base.hname = old->base.hname; new->base.name = old->base.name; new->label.hname = old->label.hname; } /* Update to newest version of parent after previous replacements * Returns: unrefcount newest version of parent */ static struct aa_profile *update_to_newest_parent(struct aa_profile *new) { struct aa_profile *parent, *newest; parent = rcu_dereference_protected(new->parent, mutex_is_locked(&new->ns->lock)); newest = aa_get_newest_profile(parent); /* parent replaced in this atomic set? */ if (newest != parent) { aa_put_profile(parent); rcu_assign_pointer(new->parent, newest); } else aa_put_profile(newest); return newest; } /** * aa_replace_profiles - replace profile(s) on the profile list * @policy_ns: namespace load is occurring on * @label: label that is attempting to load/replace policy * @mask: permission mask * @udata: serialized data stream (NOT NULL) * * unpack and replace a profile on the profile list and uses of that profile * by any task creds via invalidating the old version of the profile, which * tasks will notice to update their own cred. If the profile does not exist * on the profile list it is added. * * Returns: size of data consumed else error code on failure. */ ssize_t aa_replace_profiles(struct aa_ns *policy_ns, struct aa_label *label, u32 mask, struct aa_loaddata *udata) { const char *ns_name = NULL, *info = NULL; struct aa_ns *ns = NULL; struct aa_load_ent *ent, *tmp; struct aa_loaddata *rawdata_ent; const char *op; ssize_t count, error; LIST_HEAD(lh); op = mask & AA_MAY_REPLACE_POLICY ? OP_PROF_REPL : OP_PROF_LOAD; aa_get_loaddata(udata); /* released below */ error = aa_unpack(udata, &lh, &ns_name); if (error) goto out; /* ensure that profiles are all for the same ns * TODO: update locking to remove this constaint. All profiles in * the load set must succeed as a set or the load will * fail. Sort ent list and take ns locks in hierarchy order */ count = 0; list_for_each_entry(ent, &lh, list) { if (ns_name) { if (ent->ns_name && strcmp(ent->ns_name, ns_name) != 0) { info = "policy load has mixed namespaces"; error = -EACCES; goto fail; } } else if (ent->ns_name) { if (count) { info = "policy load has mixed namespaces"; error = -EACCES; goto fail; } ns_name = ent->ns_name; } else count++; } if (ns_name) { ns = aa_prepare_ns(policy_ns ? policy_ns : labels_ns(label), ns_name); if (IS_ERR(ns)) { op = OP_PROF_LOAD; info = "failed to prepare namespace"; error = PTR_ERR(ns); ns = NULL; ent = NULL; goto fail; } } else ns = aa_get_ns(policy_ns ? policy_ns : labels_ns(label)); mutex_lock_nested(&ns->lock, ns->level); /* check for duplicate rawdata blobs: space and file dedup */ if (!list_empty(&ns->rawdata_list)) { list_for_each_entry(rawdata_ent, &ns->rawdata_list, list) { if (aa_rawdata_eq(rawdata_ent, udata)) { struct aa_loaddata *tmp; tmp = __aa_get_loaddata(rawdata_ent); /* check we didn't fail the race */ if (tmp) { aa_put_loaddata(udata); udata = tmp; break; } } } } /* setup parent and ns info */ list_for_each_entry(ent, &lh, list) { struct aa_policy *policy; struct aa_profile *p; if (aa_g_export_binary) ent->new->rawdata = aa_get_loaddata(udata); error = __lookup_replace(ns, ent->new->base.hname, !(mask & AA_MAY_REPLACE_POLICY), &ent->old, &info); if (error) goto fail_lock; if (ent->new->rename) { error = __lookup_replace(ns, ent->new->rename, !(mask & AA_MAY_REPLACE_POLICY), &ent->rename, &info); if (error) goto fail_lock; } /* released when @new is freed */ ent->new->ns = aa_get_ns(ns); if (ent->old || ent->rename) continue; /* no ref on policy only use inside lock */ p = NULL; policy = __lookup_parent(ns, ent->new->base.hname); if (!policy) { /* first check for parent in the load set */ p = __list_lookup_parent(&lh, ent->new); if (!p) { /* * fill in missing parent with null * profile that doesn't have * permissions. This allows for * individual profile loading where * the child is loaded before the * parent, and outside of the current * atomic set. This unfortunately can * happen with some userspaces. The * null profile will be replaced once * the parent is loaded. */ policy = __create_missing_ancestors(ns, ent->new->base.hname, GFP_KERNEL); if (!policy) { error = -ENOENT; info = "parent does not exist"; goto fail_lock; } } } if (!p && policy != &ns->base) /* released on profile replacement or free_profile */ p = (struct aa_profile *) policy; rcu_assign_pointer(ent->new->parent, aa_get_profile(p)); } /* create new fs entries for introspection if needed */ if (!udata->dents[AAFS_LOADDATA_DIR] && aa_g_export_binary) { error = __aa_fs_create_rawdata(ns, udata); if (error) { info = "failed to create raw_data dir and files"; ent = NULL; goto fail_lock; } } list_for_each_entry(ent, &lh, list) { if (!ent->old) { struct dentry *parent; if (rcu_access_pointer(ent->new->parent)) { struct aa_profile *p; p = aa_deref_parent(ent->new); parent = prof_child_dir(p); } else parent = ns_subprofs_dir(ent->new->ns); error = __aafs_profile_mkdir(ent->new, parent); } if (error) { info = "failed to create"; goto fail_lock; } } /* Done with checks that may fail - do actual replacement */ __aa_bump_ns_revision(ns); if (aa_g_export_binary) __aa_loaddata_update(udata, ns->revision); list_for_each_entry_safe(ent, tmp, &lh, list) { list_del_init(&ent->list); op = (!ent->old && !ent->rename) ? OP_PROF_LOAD : OP_PROF_REPL; if (ent->old && ent->old->rawdata == ent->new->rawdata && ent->new->rawdata) { /* dedup actual profile replacement */ audit_policy(label, op, ns_name, ent->new->base.hname, "same as current profile, skipping", error); /* break refcount cycle with proxy. */ aa_put_proxy(ent->new->label.proxy); ent->new->label.proxy = NULL; goto skip; } /* * TODO: finer dedup based on profile range in data. Load set * can differ but profile may remain unchanged */ audit_policy(label, op, ns_name, ent->new->base.hname, NULL, error); if (ent->old) { share_name(ent->old, ent->new); __replace_profile(ent->old, ent->new); } else { struct list_head *lh; if (rcu_access_pointer(ent->new->parent)) { struct aa_profile *parent; parent = update_to_newest_parent(ent->new); lh = &parent->base.profiles; } else lh = &ns->base.profiles; __add_profile(lh, ent->new); } skip: aa_load_ent_free(ent); } __aa_labelset_update_subtree(ns); mutex_unlock(&ns->lock); out: aa_put_ns(ns); aa_put_loaddata(udata); kfree(ns_name); if (error) return error; return udata->size; fail_lock: mutex_unlock(&ns->lock); /* audit cause of failure */ op = (ent && !ent->old) ? OP_PROF_LOAD : OP_PROF_REPL; fail: audit_policy(label, op, ns_name, ent ? ent->new->base.hname : NULL, info, error); /* audit status that rest of profiles in the atomic set failed too */ info = "valid profile in failed atomic policy load"; list_for_each_entry(tmp, &lh, list) { if (tmp == ent) { info = "unchecked profile in failed atomic policy load"; /* skip entry that caused failure */ continue; } op = (!tmp->old) ? OP_PROF_LOAD : OP_PROF_REPL; audit_policy(label, op, ns_name, tmp->new->base.hname, info, error); } list_for_each_entry_safe(ent, tmp, &lh, list) { list_del_init(&ent->list); aa_load_ent_free(ent); } goto out; } /** * aa_remove_profiles - remove profile(s) from the system * @policy_ns: namespace the remove is being done from * @subj: label attempting to remove policy * @fqname: name of the profile or namespace to remove (NOT NULL) * @size: size of the name * * Remove a profile or sub namespace from the current namespace, so that * they can not be found anymore and mark them as replaced by unconfined * * NOTE: removing confinement does not restore rlimits to preconfinement values * * Returns: size of data consume else error code if fails */ ssize_t aa_remove_profiles(struct aa_ns *policy_ns, struct aa_label *subj, char *fqname, size_t size) { struct aa_ns *ns = NULL; struct aa_profile *profile = NULL; const char *name = fqname, *info = NULL; const char *ns_name = NULL; ssize_t error = 0; if (*fqname == 0) { info = "no profile specified"; error = -ENOENT; goto fail; } if (fqname[0] == ':') { size_t ns_len; name = aa_splitn_fqname(fqname, size, &ns_name, &ns_len); /* released below */ ns = aa_lookupn_ns(policy_ns ? policy_ns : labels_ns(subj), ns_name, ns_len); if (!ns) { info = "namespace does not exist"; error = -ENOENT; goto fail; } } else /* released below */ ns = aa_get_ns(policy_ns ? policy_ns : labels_ns(subj)); if (!name) { /* remove namespace - can only happen if fqname[0] == ':' */ mutex_lock_nested(&ns->parent->lock, ns->parent->level); __aa_bump_ns_revision(ns); __aa_remove_ns(ns); mutex_unlock(&ns->parent->lock); } else { /* remove profile */ mutex_lock_nested(&ns->lock, ns->level); profile = aa_get_profile(__lookup_profile(&ns->base, name)); if (!profile) { error = -ENOENT; info = "profile does not exist"; goto fail_ns_lock; } name = profile->base.hname; __aa_bump_ns_revision(ns); __remove_profile(profile); __aa_labelset_update_subtree(ns); mutex_unlock(&ns->lock); } /* don't fail removal if audit fails */ (void) audit_policy(subj, OP_PROF_RM, ns_name, name, info, error); aa_put_ns(ns); aa_put_profile(profile); return size; fail_ns_lock: mutex_unlock(&ns->lock); aa_put_ns(ns); fail: (void) audit_policy(subj, OP_PROF_RM, ns_name, name, info, error); return error; } |
16 16 16 16 110 107 19 19 19 16 16 16 16 16 16 16 16 16 16 16 2 16 16 16 16 5 16 16 16 16 16 16 16 5 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 2 2 2 2 1 2 2 2 1 16 16 16 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 6 90 42 42 42 42 42 42 42 42 42 42 3 110 110 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2019-2022 Intel Corporation */ #include <linux/netdevice.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/debugfs.h> #include <linux/random.h> #include <linux/moduleparam.h> #include <linux/ieee80211.h> #include <linux/minmax.h> #include <net/mac80211.h> #include "rate.h" #include "sta_info.h" #include "rc80211_minstrel_ht.h" #define AVG_AMPDU_SIZE 16 #define AVG_PKT_SIZE 1200 /* Number of bits for an average sized packet */ #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3) /* Number of symbols for a packet with (bps) bits per symbol */ #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps)) /* Transmission time (nanoseconds) for a packet containing (syms) symbols */ #define MCS_SYMBOL_TIME(sgi, syms) \ (sgi ? \ ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \ ((syms) * 1000) << 2 /* syms * 4 us */ \ ) /* Transmit duration for the raw data part of an average sized packet */ #define MCS_DURATION(streams, sgi, bps) \ (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE) #define BW_20 0 #define BW_40 1 #define BW_80 2 /* * Define group sort order: HT40 -> SGI -> #streams */ #define GROUP_IDX(_streams, _sgi, _ht40) \ MINSTREL_HT_GROUP_0 + \ MINSTREL_MAX_STREAMS * 2 * _ht40 + \ MINSTREL_MAX_STREAMS * _sgi + \ _streams - 1 #define _MAX(a, b) (((a)>(b))?(a):(b)) #define GROUP_SHIFT(duration) \ _MAX(0, 16 - __builtin_clz(duration)) /* MCS rate information for an MCS group */ #define __MCS_GROUP(_streams, _sgi, _ht40, _s) \ [GROUP_IDX(_streams, _sgi, _ht40)] = { \ .streams = _streams, \ .shift = _s, \ .bw = _ht40, \ .flags = \ IEEE80211_TX_RC_MCS | \ (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ .duration = { \ MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s, \ MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s \ } \ } #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \ GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26)) #define MCS_GROUP(_streams, _sgi, _ht40) \ __MCS_GROUP(_streams, _sgi, _ht40, \ MCS_GROUP_SHIFT(_streams, _sgi, _ht40)) #define VHT_GROUP_IDX(_streams, _sgi, _bw) \ (MINSTREL_VHT_GROUP_0 + \ MINSTREL_MAX_STREAMS * 2 * (_bw) + \ MINSTREL_MAX_STREAMS * (_sgi) + \ (_streams) - 1) #define BW2VBPS(_bw, r3, r2, r1) \ (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1) #define __VHT_GROUP(_streams, _sgi, _bw, _s) \ [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \ .streams = _streams, \ .shift = _s, \ .bw = _bw, \ .flags = \ IEEE80211_TX_RC_VHT_MCS | \ (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \ _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ .duration = { \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 117, 54, 26)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 234, 108, 52)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 351, 162, 78)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 468, 216, 104)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 702, 324, 156)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 936, 432, 208)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1053, 486, 234)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1170, 540, 260)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1404, 648, 312)) >> _s, \ MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 1560, 720, 346)) >> _s \ } \ } #define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \ GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \ BW2VBPS(_bw, 117, 54, 26))) #define VHT_GROUP(_streams, _sgi, _bw) \ __VHT_GROUP(_streams, _sgi, _bw, \ VHT_GROUP_SHIFT(_streams, _sgi, _bw)) #define CCK_DURATION(_bitrate, _short) \ (1000 * (10 /* SIFS */ + \ (_short ? 72 + 24 : 144 + 48) + \ (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate))) #define CCK_DURATION_LIST(_short, _s) \ CCK_DURATION(10, _short) >> _s, \ CCK_DURATION(20, _short) >> _s, \ CCK_DURATION(55, _short) >> _s, \ CCK_DURATION(110, _short) >> _s #define __CCK_GROUP(_s) \ [MINSTREL_CCK_GROUP] = { \ .streams = 1, \ .flags = 0, \ .shift = _s, \ .duration = { \ CCK_DURATION_LIST(false, _s), \ CCK_DURATION_LIST(true, _s) \ } \ } #define CCK_GROUP_SHIFT \ GROUP_SHIFT(CCK_DURATION(10, false)) #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT) #define OFDM_DURATION(_bitrate) \ (1000 * (16 /* SIFS + signal ext */ + \ 16 /* T_PREAMBLE */ + \ 4 /* T_SIGNAL */ + \ 4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) / \ ((_bitrate) * 4))))) #define OFDM_DURATION_LIST(_s) \ OFDM_DURATION(60) >> _s, \ OFDM_DURATION(90) >> _s, \ OFDM_DURATION(120) >> _s, \ OFDM_DURATION(180) >> _s, \ OFDM_DURATION(240) >> _s, \ OFDM_DURATION(360) >> _s, \ OFDM_DURATION(480) >> _s, \ OFDM_DURATION(540) >> _s #define __OFDM_GROUP(_s) \ [MINSTREL_OFDM_GROUP] = { \ .streams = 1, \ .flags = 0, \ .shift = _s, \ .duration = { \ OFDM_DURATION_LIST(_s), \ } \ } #define OFDM_GROUP_SHIFT \ GROUP_SHIFT(OFDM_DURATION(60)) #define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT) static bool minstrel_vht_only = true; module_param(minstrel_vht_only, bool, 0644); MODULE_PARM_DESC(minstrel_vht_only, "Use only VHT rates when VHT is supported by sta."); /* * To enable sufficiently targeted rate sampling, MCS rates are divided into * groups, based on the number of streams and flags (HT40, SGI) that they * use. * * Sortorder has to be fixed for GROUP_IDX macro to be applicable: * BW -> SGI -> #streams */ const struct mcs_group minstrel_mcs_groups[] = { MCS_GROUP(1, 0, BW_20), MCS_GROUP(2, 0, BW_20), MCS_GROUP(3, 0, BW_20), MCS_GROUP(4, 0, BW_20), MCS_GROUP(1, 1, BW_20), MCS_GROUP(2, 1, BW_20), MCS_GROUP(3, 1, BW_20), MCS_GROUP(4, 1, BW_20), MCS_GROUP(1, 0, BW_40), MCS_GROUP(2, 0, BW_40), MCS_GROUP(3, 0, BW_40), MCS_GROUP(4, 0, BW_40), MCS_GROUP(1, 1, BW_40), MCS_GROUP(2, 1, BW_40), MCS_GROUP(3, 1, BW_40), MCS_GROUP(4, 1, BW_40), CCK_GROUP, OFDM_GROUP, VHT_GROUP(1, 0, BW_20), VHT_GROUP(2, 0, BW_20), VHT_GROUP(3, 0, BW_20), VHT_GROUP(4, 0, BW_20), VHT_GROUP(1, 1, BW_20), VHT_GROUP(2, 1, BW_20), VHT_GROUP(3, 1, BW_20), VHT_GROUP(4, 1, BW_20), VHT_GROUP(1, 0, BW_40), VHT_GROUP(2, 0, BW_40), VHT_GROUP(3, 0, BW_40), VHT_GROUP(4, 0, BW_40), VHT_GROUP(1, 1, BW_40), VHT_GROUP(2, 1, BW_40), VHT_GROUP(3, 1, BW_40), VHT_GROUP(4, 1, BW_40), VHT_GROUP(1, 0, BW_80), VHT_GROUP(2, 0, BW_80), VHT_GROUP(3, 0, BW_80), VHT_GROUP(4, 0, BW_80), VHT_GROUP(1, 1, BW_80), VHT_GROUP(2, 1, BW_80), VHT_GROUP(3, 1, BW_80), VHT_GROUP(4, 1, BW_80), }; const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 }; const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 }; static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly; static const u8 minstrel_sample_seq[] = { MINSTREL_SAMPLE_TYPE_INC, MINSTREL_SAMPLE_TYPE_JUMP, MINSTREL_SAMPLE_TYPE_INC, MINSTREL_SAMPLE_TYPE_JUMP, MINSTREL_SAMPLE_TYPE_INC, MINSTREL_SAMPLE_TYPE_SLOW, }; static void minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi); /* * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer) * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1 * * Returns the valid mcs map for struct minstrel_mcs_group_data.supported */ static u16 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map) { u16 mask = 0; if (bw == BW_20) { if (nss != 3 && nss != 6) mask = BIT(9); } else if (bw == BW_80) { if (nss == 3 || nss == 7) mask = BIT(6); else if (nss == 6) mask = BIT(9); } else { WARN_ON(bw != BW_40); } switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) { case IEEE80211_VHT_MCS_SUPPORT_0_7: mask |= 0x300; break; case IEEE80211_VHT_MCS_SUPPORT_0_8: mask |= 0x200; break; case IEEE80211_VHT_MCS_SUPPORT_0_9: break; default: mask = 0x3ff; } return 0x3ff & ~mask; } static bool minstrel_ht_is_legacy_group(int group) { return group == MINSTREL_CCK_GROUP || group == MINSTREL_OFDM_GROUP; } /* * Look up an MCS group index based on mac80211 rate information */ static int minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate) { return GROUP_IDX((rate->idx / 8) + 1, !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)); } /* * Look up an MCS group index based on new cfg80211 rate_info. */ static int minstrel_ht_ri_get_group_idx(struct rate_info *rate) { return GROUP_IDX((rate->mcs / 8) + 1, !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI), !!(rate->bw & RATE_INFO_BW_40)); } static int minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate) { return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate), !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) + 2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)); } /* * Look up an MCS group index based on new cfg80211 rate_info. */ static int minstrel_vht_ri_get_group_idx(struct rate_info *rate) { return VHT_GROUP_IDX(rate->nss, !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI), !!(rate->bw & RATE_INFO_BW_40) + 2*!!(rate->bw & RATE_INFO_BW_80)); } static struct minstrel_rate_stats * minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_tx_rate *rate) { int group, idx; if (rate->flags & IEEE80211_TX_RC_MCS) { group = minstrel_ht_get_group_idx(rate); idx = rate->idx % 8; goto out; } if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { group = minstrel_vht_get_group_idx(rate); idx = ieee80211_rate_get_vht_mcs(rate); goto out; } group = MINSTREL_CCK_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) { if (!(mi->supported[group] & BIT(idx))) continue; if (rate->idx != mp->cck_rates[idx]) continue; /* short preamble */ if ((mi->supported[group] & BIT(idx + 4)) && (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)) idx += 4; goto out; } group = MINSTREL_OFDM_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++) if (rate->idx == mp->ofdm_rates[mi->band][idx]) goto out; idx = 0; out: return &mi->groups[group].rates[idx]; } /* * Get the minstrel rate statistics for specified STA and rate info. */ static struct minstrel_rate_stats * minstrel_ht_ri_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_rate_status *rate_status) { int group, idx; struct rate_info *rate = &rate_status->rate_idx; if (rate->flags & RATE_INFO_FLAGS_MCS) { group = minstrel_ht_ri_get_group_idx(rate); idx = rate->mcs % 8; goto out; } if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) { group = minstrel_vht_ri_get_group_idx(rate); idx = rate->mcs; goto out; } group = MINSTREL_CCK_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) { if (rate->legacy != minstrel_cck_bitrates[ mp->cck_rates[idx] ]) continue; /* short preamble */ if ((mi->supported[group] & BIT(idx + 4)) && mi->use_short_preamble) idx += 4; goto out; } group = MINSTREL_OFDM_GROUP; for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++) if (rate->legacy == minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][idx] ]) goto out; idx = 0; out: return &mi->groups[group].rates[idx]; } static inline struct minstrel_rate_stats * minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index) { return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)]; } static inline int minstrel_get_duration(int index) { const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)]; unsigned int duration = group->duration[MI_RATE_IDX(index)]; return duration << group->shift; } static unsigned int minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi) { int duration; if (mi->avg_ampdu_len) return MINSTREL_TRUNC(mi->avg_ampdu_len); if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0]))) return 1; duration = minstrel_get_duration(mi->max_tp_rate[0]); if (duration > 400 * 1000) return 2; if (duration > 250 * 1000) return 4; if (duration > 150 * 1000) return 8; return 16; } /* * Return current throughput based on the average A-MPDU length, taking into * account the expected number of retransmissions and their expected length */ int minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate, int prob_avg) { unsigned int nsecs = 0, overhead = mi->overhead; unsigned int ampdu_len = 1; /* do not account throughput if success prob is below 10% */ if (prob_avg < MINSTREL_FRAC(10, 100)) return 0; if (minstrel_ht_is_legacy_group(group)) overhead = mi->overhead_legacy; else ampdu_len = minstrel_ht_avg_ampdu_len(mi); nsecs = 1000 * overhead / ampdu_len; nsecs += minstrel_mcs_groups[group].duration[rate] << minstrel_mcs_groups[group].shift; /* * For the throughput calculation, limit the probability value to 90% to * account for collision related packet error rate fluctuation * (prob is scaled - see MINSTREL_FRAC above) */ if (prob_avg > MINSTREL_FRAC(90, 100)) prob_avg = MINSTREL_FRAC(90, 100); return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs)); } /* * Find & sort topmost throughput rates * * If multiple rates provide equal throughput the sorting is based on their * current success probability. Higher success probability is preferred among * MCS groups, CCK rates do not provide aggregation and are therefore at last. */ static void minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index, u16 *tp_list) { int cur_group, cur_idx, cur_tp_avg, cur_prob; int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; int j = MAX_THR_RATES; cur_group = MI_RATE_GROUP(index); cur_idx = MI_RATE_IDX(index); cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg; cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob); do { tmp_group = MI_RATE_GROUP(tp_list[j - 1]); tmp_idx = MI_RATE_IDX(tp_list[j - 1]); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); if (cur_tp_avg < tmp_tp_avg || (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob)) break; j--; } while (j > 0); if (j < MAX_THR_RATES - 1) { memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) * (MAX_THR_RATES - (j + 1)))); } if (j < MAX_THR_RATES) tp_list[j] = index; } /* * Find and set the topmost probability rate per sta and per group */ static void minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index) { struct minstrel_mcs_group_data *mg; struct minstrel_rate_stats *mrs; int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; int max_tp_group, max_tp_idx, max_tp_prob; int cur_tp_avg, cur_group, cur_idx; int max_gpr_group, max_gpr_idx; int max_gpr_tp_avg, max_gpr_prob; cur_group = MI_RATE_GROUP(index); cur_idx = MI_RATE_IDX(index); mg = &mi->groups[cur_group]; mrs = &mg->rates[cur_idx]; tmp_group = MI_RATE_GROUP(*dest); tmp_idx = MI_RATE_IDX(*dest); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */ max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]); max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]); max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg; if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) && !minstrel_ht_is_legacy_group(max_tp_group)) return; /* skip rates faster than max tp rate with lower prob */ if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) && mrs->prob_avg < max_tp_prob) return; max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate); max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate); max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg; if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) { cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, mrs->prob_avg); if (cur_tp_avg > tmp_tp_avg) *dest = index; max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group, max_gpr_idx, max_gpr_prob); if (cur_tp_avg > max_gpr_tp_avg) mg->max_group_prob_rate = index; } else { if (mrs->prob_avg > tmp_prob) *dest = index; if (mrs->prob_avg > max_gpr_prob) mg->max_group_prob_rate = index; } } /* * Assign new rate set per sta and use CCK rates only if the fastest * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted * rate sets where MCS and CCK rates are mixed, because CCK rates can * not use aggregation. */ static void minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi, u16 tmp_mcs_tp_rate[MAX_THR_RATES], u16 tmp_legacy_tp_rate[MAX_THR_RATES]) { unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob; int i; tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]); tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]); tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]); tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); if (tmp_cck_tp > tmp_mcs_tp) { for(i = 0; i < MAX_THR_RATES; i++) { minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i], tmp_mcs_tp_rate); } } } /* * Try to increase robustness of max_prob rate by decrease number of * streams if possible. */ static inline void minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi) { struct minstrel_mcs_group_data *mg; int tmp_max_streams, group, tmp_idx, tmp_prob; int tmp_tp = 0; if (!mi->sta->deflink.ht_cap.ht_supported) return; group = MI_RATE_GROUP(mi->max_tp_rate[0]); tmp_max_streams = minstrel_mcs_groups[group].streams; for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { mg = &mi->groups[group]; if (!mi->supported[group] || group == MINSTREL_CCK_GROUP) continue; tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate); tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg; if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) && (minstrel_mcs_groups[group].streams < tmp_max_streams)) { mi->max_prob_rate = mg->max_group_prob_rate; tmp_tp = minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob); } } } static u16 __minstrel_ht_get_sample_rate(struct minstrel_ht_sta *mi, enum minstrel_sample_type type) { u16 *rates = mi->sample[type].sample_rates; u16 cur; int i; for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) { if (!rates[i]) continue; cur = rates[i]; rates[i] = 0; return cur; } return 0; } static inline int minstrel_ewma(int old, int new, int weight) { int diff, incr; diff = new - old; incr = (EWMA_DIV - weight) * diff / EWMA_DIV; return old + incr; } static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in) { s32 out_1 = *prev_1; s32 out_2 = *prev_2; s32 val; if (!in) in += 1; if (!out_1) { val = out_1 = in; goto out; } val = MINSTREL_AVG_COEFF1 * in; val += MINSTREL_AVG_COEFF2 * out_1; val += MINSTREL_AVG_COEFF3 * out_2; val >>= MINSTREL_SCALE; if (val > 1 << MINSTREL_SCALE) val = 1 << MINSTREL_SCALE; if (val < 0) val = 1; out: *prev_2 = out_1; *prev_1 = val; return val; } /* * Recalculate statistics and counters of a given rate */ static void minstrel_ht_calc_rate_stats(struct minstrel_priv *mp, struct minstrel_rate_stats *mrs) { unsigned int cur_prob; if (unlikely(mrs->attempts > 0)) { cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts); minstrel_filter_avg_add(&mrs->prob_avg, &mrs->prob_avg_1, cur_prob); mrs->att_hist += mrs->attempts; mrs->succ_hist += mrs->success; } mrs->last_success = mrs->success; mrs->last_attempts = mrs->attempts; mrs->success = 0; mrs->attempts = 0; } static bool minstrel_ht_find_sample_rate(struct minstrel_ht_sta *mi, int type, int idx) { int i; for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) { u16 cur = mi->sample[type].sample_rates[i]; if (cur == idx) return true; if (!cur) break; } return false; } static int minstrel_ht_move_sample_rates(struct minstrel_ht_sta *mi, int type, u32 fast_rate_dur, u32 slow_rate_dur) { u16 *rates = mi->sample[type].sample_rates; int i, j; for (i = 0, j = 0; i < MINSTREL_SAMPLE_RATES; i++) { u32 duration; bool valid = false; u16 cur; cur = rates[i]; if (!cur) continue; duration = minstrel_get_duration(cur); switch (type) { case MINSTREL_SAMPLE_TYPE_SLOW: valid = duration > fast_rate_dur && duration < slow_rate_dur; break; case MINSTREL_SAMPLE_TYPE_INC: case MINSTREL_SAMPLE_TYPE_JUMP: valid = duration < fast_rate_dur; break; default: valid = false; break; } if (!valid) { rates[i] = 0; continue; } if (i == j) continue; rates[j++] = cur; rates[i] = 0; } return j; } static int minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta *mi, int group, u32 max_duration) { u16 supported = mi->supported[group]; int i; for (i = 0; i < MCS_GROUP_RATES && supported; i++, supported >>= 1) { if (!(supported & BIT(0))) continue; if (minstrel_get_duration(MI_RATE(group, i)) >= max_duration) continue; return i; } return -1; } /* * Incremental update rates: * Flip through groups and pick the first group rate that is faster than the * highest currently selected rate */ static u16 minstrel_ht_next_inc_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur) { u8 type = MINSTREL_SAMPLE_TYPE_INC; int i, index = 0; u8 group; group = mi->sample[type].sample_group; for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) { group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups); index = minstrel_ht_group_min_rate_offset(mi, group, fast_rate_dur); if (index < 0) continue; index = MI_RATE(group, index & 0xf); if (!minstrel_ht_find_sample_rate(mi, type, index)) goto out; } index = 0; out: mi->sample[type].sample_group = group; return index; } static int minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta *mi, int group, u16 supported, int offset) { struct minstrel_mcs_group_data *mg = &mi->groups[group]; u16 idx; int i; for (i = 0; i < MCS_GROUP_RATES; i++) { idx = sample_table[mg->column][mg->index]; if (++mg->index >= MCS_GROUP_RATES) { mg->index = 0; if (++mg->column >= ARRAY_SIZE(sample_table)) mg->column = 0; } if (idx < offset) continue; if (!(supported & BIT(idx))) continue; return MI_RATE(group, idx); } return -1; } /* * Jump rates: * Sample random rates, use those that are faster than the highest * currently selected rate. Rates between the fastest and the slowest * get sorted into the slow sample bucket, but only if it has room */ static u16 minstrel_ht_next_jump_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur, u32 slow_rate_dur, int *slow_rate_ofs) { struct minstrel_rate_stats *mrs; u32 max_duration = slow_rate_dur; int i, index, offset; u16 *slow_rates; u16 supported; u32 duration; u8 group; if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) max_duration = fast_rate_dur; slow_rates = mi->sample[MINSTREL_SAMPLE_TYPE_SLOW].sample_rates; group = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group; for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) { u8 type; group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups); supported = mi->supported[group]; if (!supported) continue; offset = minstrel_ht_group_min_rate_offset(mi, group, max_duration); if (offset < 0) continue; index = minstrel_ht_next_group_sample_rate(mi, group, supported, offset); if (index < 0) continue; duration = minstrel_get_duration(index); if (duration < fast_rate_dur) type = MINSTREL_SAMPLE_TYPE_JUMP; else type = MINSTREL_SAMPLE_TYPE_SLOW; if (minstrel_ht_find_sample_rate(mi, type, index)) continue; if (type == MINSTREL_SAMPLE_TYPE_JUMP) goto found; if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) continue; if (duration >= slow_rate_dur) continue; /* skip slow rates with high success probability */ mrs = minstrel_get_ratestats(mi, index); if (mrs->prob_avg > MINSTREL_FRAC(95, 100)) continue; slow_rates[(*slow_rate_ofs)++] = index; if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) max_duration = fast_rate_dur; } index = 0; found: mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group = group; return index; } static void minstrel_ht_refill_sample_rates(struct minstrel_ht_sta *mi) { u32 prob_dur = minstrel_get_duration(mi->max_prob_rate); u32 tp_dur = minstrel_get_duration(mi->max_tp_rate[0]); u32 tp2_dur = minstrel_get_duration(mi->max_tp_rate[1]); u32 fast_rate_dur = min(min(tp_dur, tp2_dur), prob_dur); u32 slow_rate_dur = max(max(tp_dur, tp2_dur), prob_dur); u16 *rates; int i, j; rates = mi->sample[MINSTREL_SAMPLE_TYPE_INC].sample_rates; i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_INC, fast_rate_dur, slow_rate_dur); while (i < MINSTREL_SAMPLE_RATES) { rates[i] = minstrel_ht_next_inc_rate(mi, tp_dur); if (!rates[i]) break; i++; } rates = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_rates; i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_JUMP, fast_rate_dur, slow_rate_dur); j = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_SLOW, fast_rate_dur, slow_rate_dur); while (i < MINSTREL_SAMPLE_RATES) { rates[i] = minstrel_ht_next_jump_rate(mi, fast_rate_dur, slow_rate_dur, &j); if (!rates[i]) break; i++; } for (i = 0; i < ARRAY_SIZE(mi->sample); i++) memcpy(mi->sample[i].cur_sample_rates, mi->sample[i].sample_rates, sizeof(mi->sample[i].cur_sample_rates)); } /* * Update rate statistics and select new primary rates * * Rules for rate selection: * - max_prob_rate must use only one stream, as a tradeoff between delivery * probability and throughput during strong fluctuations * - as long as the max prob rate has a probability of more than 75%, pick * higher throughput rates, even if the probablity is a bit lower */ static void minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) { struct minstrel_mcs_group_data *mg; struct minstrel_rate_stats *mrs; int group, i, j, cur_prob; u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES]; u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate; u16 index; bool ht_supported = mi->sta->deflink.ht_cap.ht_supported; if (mi->ampdu_packets > 0) { if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN)) mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len, MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL); else mi->avg_ampdu_len = 0; mi->ampdu_len = 0; mi->ampdu_packets = 0; } if (mi->supported[MINSTREL_CCK_GROUP]) group = MINSTREL_CCK_GROUP; else if (mi->supported[MINSTREL_OFDM_GROUP]) group = MINSTREL_OFDM_GROUP; else group = 0; index = MI_RATE(group, 0); for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++) tmp_legacy_tp_rate[j] = index; if (mi->supported[MINSTREL_VHT_GROUP_0]) group = MINSTREL_VHT_GROUP_0; else if (ht_supported) group = MINSTREL_HT_GROUP_0; else if (mi->supported[MINSTREL_CCK_GROUP]) group = MINSTREL_CCK_GROUP; else group = MINSTREL_OFDM_GROUP; index = MI_RATE(group, 0); tmp_max_prob_rate = index; for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++) tmp_mcs_tp_rate[j] = index; /* Find best rate sets within all MCS groups*/ for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { u16 *tp_rate = tmp_mcs_tp_rate; u16 last_prob = 0; mg = &mi->groups[group]; if (!mi->supported[group]) continue; /* (re)Initialize group rate indexes */ for(j = 0; j < MAX_THR_RATES; j++) tmp_group_tp_rate[j] = MI_RATE(group, 0); if (group == MINSTREL_CCK_GROUP && ht_supported) tp_rate = tmp_legacy_tp_rate; for (i = MCS_GROUP_RATES - 1; i >= 0; i--) { if (!(mi->supported[group] & BIT(i))) continue; index = MI_RATE(group, i); mrs = &mg->rates[i]; mrs->retry_updated = false; minstrel_ht_calc_rate_stats(mp, mrs); if (mrs->att_hist) last_prob = max(last_prob, mrs->prob_avg); else mrs->prob_avg = max(last_prob, mrs->prob_avg); cur_prob = mrs->prob_avg; if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0) continue; /* Find max throughput rate set */ minstrel_ht_sort_best_tp_rates(mi, index, tp_rate); /* Find max throughput rate set within a group */ minstrel_ht_sort_best_tp_rates(mi, index, tmp_group_tp_rate); } memcpy(mg->max_group_tp_rate, tmp_group_tp_rate, sizeof(mg->max_group_tp_rate)); } /* Assign new rate set per sta */ minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_legacy_tp_rate); memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate)); for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { if (!mi->supported[group]) continue; mg = &mi->groups[group]; mg->max_group_prob_rate = MI_RATE(group, 0); for (i = 0; i < MCS_GROUP_RATES; i++) { if (!(mi->supported[group] & BIT(i))) continue; index = MI_RATE(group, i); /* Find max probability rate per group and global */ minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate, index); } } mi->max_prob_rate = tmp_max_prob_rate; /* Try to increase robustness of max_prob_rate*/ minstrel_ht_prob_rate_reduce_streams(mi); minstrel_ht_refill_sample_rates(mi); #ifdef CONFIG_MAC80211_DEBUGFS /* use fixed index if set */ if (mp->fixed_rate_idx != -1) { for (i = 0; i < 4; i++) mi->max_tp_rate[i] = mp->fixed_rate_idx; mi->max_prob_rate = mp->fixed_rate_idx; } #endif /* Reset update timer */ mi->last_stats_update = jiffies; mi->sample_time = jiffies; } static bool minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_tx_rate *rate) { int i; if (rate->idx < 0) return false; if (!rate->count) return false; if (rate->flags & IEEE80211_TX_RC_MCS || rate->flags & IEEE80211_TX_RC_VHT_MCS) return true; for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) if (rate->idx == mp->cck_rates[i]) return true; for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) if (rate->idx == mp->ofdm_rates[mi->band][i]) return true; return false; } /* * Check whether rate_status contains valid information. */ static bool minstrel_ht_ri_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_rate_status *rate_status) { int i; if (!rate_status) return false; if (!rate_status->try_count) return false; if (rate_status->rate_idx.flags & RATE_INFO_FLAGS_MCS || rate_status->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS) return true; for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) { if (rate_status->rate_idx.legacy == minstrel_cck_bitrates[ mp->cck_rates[i] ]) return true; } for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates); i++) { if (rate_status->rate_idx.legacy == minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][i] ]) return true; } return false; } static void minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary) { int group, orig_group; orig_group = group = MI_RATE_GROUP(*idx); while (group > 0) { group--; if (!mi->supported[group]) continue; if (minstrel_mcs_groups[group].streams > minstrel_mcs_groups[orig_group].streams) continue; if (primary) *idx = mi->groups[group].max_group_tp_rate[0]; else *idx = mi->groups[group].max_group_tp_rate[1]; break; } } static void minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband, void *priv_sta, struct ieee80211_tx_status *st) { struct ieee80211_tx_info *info = st->info; struct minstrel_ht_sta *mi = priv_sta; struct ieee80211_tx_rate *ar = info->status.rates; struct minstrel_rate_stats *rate, *rate2; struct minstrel_priv *mp = priv; u32 update_interval = mp->update_interval; bool last, update = false; int i; /* Ignore packet that was sent with noAck flag */ if (info->flags & IEEE80211_TX_CTL_NO_ACK) return; /* This packet was aggregated but doesn't carry status info */ if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) return; if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) { info->status.ampdu_ack_len = (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0); info->status.ampdu_len = 1; } /* wraparound */ if (mi->total_packets >= ~0 - info->status.ampdu_len) { mi->total_packets = 0; mi->sample_packets = 0; } mi->total_packets += info->status.ampdu_len; if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) mi->sample_packets += info->status.ampdu_len; mi->ampdu_packets++; mi->ampdu_len += info->status.ampdu_len; if (st->rates && st->n_rates) { last = !minstrel_ht_ri_txstat_valid(mp, mi, &(st->rates[0])); for (i = 0; !last; i++) { last = (i == st->n_rates - 1) || !minstrel_ht_ri_txstat_valid(mp, mi, &(st->rates[i + 1])); rate = minstrel_ht_ri_get_stats(mp, mi, &(st->rates[i])); if (last) rate->success += info->status.ampdu_ack_len; rate->attempts += st->rates[i].try_count * info->status.ampdu_len; } } else { last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]); for (i = 0; !last; i++) { last = (i == IEEE80211_TX_MAX_RATES - 1) || !minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]); rate = minstrel_ht_get_stats(mp, mi, &ar[i]); if (last) rate->success += info->status.ampdu_ack_len; rate->attempts += ar[i].count * info->status.ampdu_len; } } if (mp->hw->max_rates > 1) { /* * check for sudden death of spatial multiplexing, * downgrade to a lower number of streams if necessary. */ rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]); if (rate->attempts > 30 && rate->success < rate->attempts / 4) { minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true); update = true; } rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]); if (rate2->attempts > 30 && rate2->success < rate2->attempts / 4) { minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false); update = true; } } if (time_after(jiffies, mi->last_stats_update + update_interval)) { update = true; minstrel_ht_update_stats(mp, mi); } if (update) minstrel_ht_update_rates(mp, mi); } static void minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, int index) { struct minstrel_rate_stats *mrs; unsigned int tx_time, tx_time_rtscts, tx_time_data; unsigned int cw = mp->cw_min; unsigned int ctime = 0; unsigned int t_slot = 9; /* FIXME */ unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi); unsigned int overhead = 0, overhead_rtscts = 0; mrs = minstrel_get_ratestats(mi, index); if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) { mrs->retry_count = 1; mrs->retry_count_rtscts = 1; return; } mrs->retry_count = 2; mrs->retry_count_rtscts = 2; mrs->retry_updated = true; tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000; /* Contention time for first 2 tries */ ctime = (t_slot * cw) >> 1; cw = min((cw << 1) | 1, mp->cw_max); ctime += (t_slot * cw) >> 1; cw = min((cw << 1) | 1, mp->cw_max); if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) { overhead = mi->overhead_legacy; overhead_rtscts = mi->overhead_legacy_rtscts; } else { overhead = mi->overhead; overhead_rtscts = mi->overhead_rtscts; } /* Total TX time for data and Contention after first 2 tries */ tx_time = ctime + 2 * (overhead + tx_time_data); tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data); /* See how many more tries we can fit inside segment size */ do { /* Contention time for this try */ ctime = (t_slot * cw) >> 1; cw = min((cw << 1) | 1, mp->cw_max); /* Total TX time after this try */ tx_time += ctime + overhead + tx_time_data; tx_time_rtscts += ctime + overhead_rtscts + tx_time_data; if (tx_time_rtscts < mp->segment_size) mrs->retry_count_rtscts++; } while ((tx_time < mp->segment_size) && (++mrs->retry_count < mp->max_retry)); } static void minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_sta_rates *ratetbl, int offset, int index) { int group_idx = MI_RATE_GROUP(index); const struct mcs_group *group = &minstrel_mcs_groups[group_idx]; struct minstrel_rate_stats *mrs; u8 idx; u16 flags = group->flags; mrs = minstrel_get_ratestats(mi, index); if (!mrs->retry_updated) minstrel_calc_retransmit(mp, mi, index); if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) { ratetbl->rate[offset].count = 2; ratetbl->rate[offset].count_rts = 2; ratetbl->rate[offset].count_cts = 2; } else { ratetbl->rate[offset].count = mrs->retry_count; ratetbl->rate[offset].count_cts = mrs->retry_count; ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts; } index = MI_RATE_IDX(index); if (group_idx == MINSTREL_CCK_GROUP) idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)]; else if (group_idx == MINSTREL_OFDM_GROUP) idx = mp->ofdm_rates[mi->band][index % ARRAY_SIZE(mp->ofdm_rates[0])]; else if (flags & IEEE80211_TX_RC_VHT_MCS) idx = ((group->streams - 1) << 4) | (index & 0xF); else idx = index + (group->streams - 1) * 8; /* enable RTS/CTS if needed: * - if station is in dynamic SMPS (and streams > 1) * - for fallback rates, to increase chances of getting through */ if (offset > 0 || (mi->sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC && group->streams > 1)) { ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts; flags |= IEEE80211_TX_RC_USE_RTS_CTS; } ratetbl->rate[offset].idx = idx; ratetbl->rate[offset].flags = flags; } static inline int minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate) { int group = MI_RATE_GROUP(rate); rate = MI_RATE_IDX(rate); return mi->groups[group].rates[rate].prob_avg; } static int minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi) { int group = MI_RATE_GROUP(mi->max_prob_rate); const struct mcs_group *g = &minstrel_mcs_groups[group]; int rate = MI_RATE_IDX(mi->max_prob_rate); unsigned int duration; /* Disable A-MSDU if max_prob_rate is bad */ if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100)) return 1; duration = g->duration[rate]; duration <<= g->shift; /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */ if (duration > MCS_DURATION(1, 0, 52)) return 500; /* * If the rate is slower than single-stream MCS4, limit A-MSDU to usual * data packet size */ if (duration > MCS_DURATION(1, 0, 104)) return 1600; /* * If the rate is slower than single-stream MCS7, or if the max throughput * rate success probability is less than 75%, limit A-MSDU to twice the usual * data packet size */ if (duration > MCS_DURATION(1, 0, 260) || (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) < MINSTREL_FRAC(75, 100))) return 3200; /* * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes. * Since aggregation sessions are started/stopped without txq flush, use * the limit here to avoid the complexity of having to de-aggregate * packets in the queue. */ if (!mi->sta->deflink.vht_cap.vht_supported) return IEEE80211_MAX_MPDU_LEN_HT_BA; /* unlimited */ return 0; } static void minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) { struct ieee80211_sta_rates *rates; int i = 0; int max_rates = min_t(int, mp->hw->max_rates, IEEE80211_TX_RATE_TABLE_SIZE); rates = kzalloc(sizeof(*rates), GFP_ATOMIC); if (!rates) return; /* Start with max_tp_rate[0] */ minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]); /* Fill up remaining, keep one entry for max_probe_rate */ for (; i < (max_rates - 1); i++) minstrel_ht_set_rate(mp, mi, rates, i, mi->max_tp_rate[i]); if (i < max_rates) minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate); if (i < IEEE80211_TX_RATE_TABLE_SIZE) rates->rate[i].idx = -1; mi->sta->deflink.agg.max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi); ieee80211_sta_recalc_aggregates(mi->sta); rate_control_set_rates(mp->hw, mi->sta, rates); } static u16 minstrel_ht_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) { u8 seq; if (mp->hw->max_rates > 1) { seq = mi->sample_seq; mi->sample_seq = (seq + 1) % ARRAY_SIZE(minstrel_sample_seq); seq = minstrel_sample_seq[seq]; } else { seq = MINSTREL_SAMPLE_TYPE_INC; } return __minstrel_ht_get_sample_rate(mi, seq); } static void minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc) { const struct mcs_group *sample_group; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb); struct ieee80211_tx_rate *rate = &info->status.rates[0]; struct minstrel_ht_sta *mi = priv_sta; struct minstrel_priv *mp = priv; u16 sample_idx; info->flags |= mi->tx_flags; #ifdef CONFIG_MAC80211_DEBUGFS if (mp->fixed_rate_idx != -1) return; #endif /* Don't use EAPOL frames for sampling on non-mrr hw */ if (mp->hw->max_rates == 1 && (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO)) return; if (time_is_after_jiffies(mi->sample_time)) return; mi->sample_time = jiffies + MINSTREL_SAMPLE_INTERVAL; sample_idx = minstrel_ht_get_sample_rate(mp, mi); if (!sample_idx) return; sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)]; sample_idx = MI_RATE_IDX(sample_idx); if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] && (sample_idx >= 4) != txrc->short_preamble) return; info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; rate->count = 1; if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) { int idx = sample_idx % ARRAY_SIZE(mp->cck_rates); rate->idx = mp->cck_rates[idx]; } else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) { int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]); rate->idx = mp->ofdm_rates[mi->band][idx]; } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) { ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx), sample_group->streams); } else { rate->idx = sample_idx + (sample_group->streams - 1) * 8; } rate->flags = sample_group->flags; } static void minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta) { int i; if (sband->band != NL80211_BAND_2GHZ) return; if (sta->deflink.ht_cap.ht_supported && !ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES)) return; for (i = 0; i < 4; i++) { if (mp->cck_rates[i] == 0xff || !rate_supported(sta, sband->band, mp->cck_rates[i])) continue; mi->supported[MINSTREL_CCK_GROUP] |= BIT(i); if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE) mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4); } } static void minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta) { const u8 *rates; int i; if (sta->deflink.ht_cap.ht_supported) return; rates = mp->ofdm_rates[sband->band]; for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) { if (rates[i] == 0xff || !rate_supported(sta, sband->band, rates[i])) continue; mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i); } } static void minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta) { struct minstrel_priv *mp = priv; struct minstrel_ht_sta *mi = priv_sta; struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs; u16 ht_cap = sta->deflink.ht_cap.cap; struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; const struct ieee80211_rate *ctl_rate; struct sta_info *sta_info; bool ldpc, erp; int use_vht; int ack_dur; int stbc; int i; BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB); if (vht_cap->vht_supported) use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0); else use_vht = 0; memset(mi, 0, sizeof(*mi)); mi->sta = sta; mi->band = sband->band; mi->last_stats_update = jiffies; ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1); mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1); mi->overhead += ack_dur; mi->overhead_rtscts = mi->overhead + 2 * ack_dur; ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)]; erp = ctl_rate->flags & IEEE80211_RATE_ERP_G; ack_dur = ieee80211_frame_duration(sband->band, 10, ctl_rate->bitrate, erp, 1); mi->overhead_legacy = ack_dur; mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur; mi->avg_ampdu_len = MINSTREL_FRAC(1, 1); if (!use_vht) { stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >> IEEE80211_HT_CAP_RX_STBC_SHIFT; ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING; } else { stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >> IEEE80211_VHT_CAP_RXSTBC_SHIFT; ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC; } mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT; if (ldpc) mi->tx_flags |= IEEE80211_TX_CTL_LDPC; for (i = 0; i < ARRAY_SIZE(mi->groups); i++) { u32 gflags = minstrel_mcs_groups[i].flags; int bw, nss; mi->supported[i] = 0; if (minstrel_ht_is_legacy_group(i)) continue; if (gflags & IEEE80211_TX_RC_SHORT_GI) { if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) { if (!(ht_cap & IEEE80211_HT_CAP_SGI_40)) continue; } else { if (!(ht_cap & IEEE80211_HT_CAP_SGI_20)) continue; } } if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH && sta->deflink.bandwidth < IEEE80211_STA_RX_BW_40) continue; nss = minstrel_mcs_groups[i].streams; /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */ if (sta->deflink.smps_mode == IEEE80211_SMPS_STATIC && nss > 1) continue; /* HT rate */ if (gflags & IEEE80211_TX_RC_MCS) { if (use_vht && minstrel_vht_only) continue; mi->supported[i] = mcs->rx_mask[nss - 1]; continue; } /* VHT rate */ if (!vht_cap->vht_supported || WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) || WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH)) continue; if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) { if (sta->deflink.bandwidth < IEEE80211_STA_RX_BW_80 || ((gflags & IEEE80211_TX_RC_SHORT_GI) && !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) { continue; } } if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) bw = BW_40; else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) bw = BW_80; else bw = BW_20; mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss, vht_cap->vht_mcs.tx_mcs_map); } sta_info = container_of(sta, struct sta_info, sta); mi->use_short_preamble = test_sta_flag(sta_info, WLAN_STA_SHORT_PREAMBLE) && sta_info->sdata->vif.bss_conf.use_short_preamble; minstrel_ht_update_cck(mp, mi, sband, sta); minstrel_ht_update_ofdm(mp, mi, sband, sta); /* create an initial rate table with the lowest supported rates */ minstrel_ht_update_stats(mp, mi); minstrel_ht_update_rates(mp, mi); } static void minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta) { minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); } static void minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta, u32 changed) { minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); } static void * minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) { struct ieee80211_supported_band *sband; struct minstrel_ht_sta *mi; struct minstrel_priv *mp = priv; struct ieee80211_hw *hw = mp->hw; int max_rates = 0; int i; for (i = 0; i < NUM_NL80211_BANDS; i++) { sband = hw->wiphy->bands[i]; if (sband && sband->n_bitrates > max_rates) max_rates = sband->n_bitrates; } return kzalloc(sizeof(*mi), gfp); } static void minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) { kfree(priv_sta); } static void minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband, const s16 *bitrates, int n_rates, u32 rate_flags) { int i, j; for (i = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *rate = &sband->bitrates[i]; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; for (j = 0; j < n_rates; j++) { if (rate->bitrate != bitrates[j]) continue; dest[j] = i; break; } } } static void minstrel_ht_init_cck_rates(struct minstrel_priv *mp) { static const s16 bitrates[4] = { 10, 20, 55, 110 }; struct ieee80211_supported_band *sband; u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef); memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates)); sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ]; if (!sband) return; BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates)); minstrel_ht_fill_rate_array(mp->cck_rates, sband, minstrel_cck_bitrates, ARRAY_SIZE(minstrel_cck_bitrates), rate_flags); } static void minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band) { static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 }; struct ieee80211_supported_band *sband; u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef); memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band])); sband = mp->hw->wiphy->bands[band]; if (!sband) return; BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates)); minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband, minstrel_ofdm_bitrates, ARRAY_SIZE(minstrel_ofdm_bitrates), rate_flags); } static void * minstrel_ht_alloc(struct ieee80211_hw *hw) { struct minstrel_priv *mp; int i; mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC); if (!mp) return NULL; /* contention window settings * Just an approximation. Using the per-queue values would complicate * the calculations and is probably unnecessary */ mp->cw_min = 15; mp->cw_max = 1023; /* maximum time that the hw is allowed to stay in one MRR segment */ mp->segment_size = 6000; if (hw->max_rate_tries > 0) mp->max_retry = hw->max_rate_tries; else /* safe default, does not necessarily have to match hw properties */ mp->max_retry = 7; mp->hw = hw; mp->update_interval = HZ / 20; minstrel_ht_init_cck_rates(mp); for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++) minstrel_ht_init_ofdm_rates(mp, i); return mp; } #ifdef CONFIG_MAC80211_DEBUGFS static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv, struct dentry *debugfsdir) { struct minstrel_priv *mp = priv; mp->fixed_rate_idx = (u32) -1; debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir, &mp->fixed_rate_idx); } #endif static void minstrel_ht_free(void *priv) { kfree(priv); } static u32 minstrel_ht_get_expected_throughput(void *priv_sta) { struct minstrel_ht_sta *mi = priv_sta; int i, j, prob, tp_avg; i = MI_RATE_GROUP(mi->max_tp_rate[0]); j = MI_RATE_IDX(mi->max_tp_rate[0]); prob = mi->groups[i].rates[j].prob_avg; /* convert tp_avg from pkt per second in kbps */ tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10; tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024; return tp_avg; } static const struct rate_control_ops mac80211_minstrel_ht = { .name = "minstrel_ht", .capa = RATE_CTRL_CAPA_AMPDU_TRIGGER, .tx_status_ext = minstrel_ht_tx_status, .get_rate = minstrel_ht_get_rate, .rate_init = minstrel_ht_rate_init, .rate_update = minstrel_ht_rate_update, .alloc_sta = minstrel_ht_alloc_sta, .free_sta = minstrel_ht_free_sta, .alloc = minstrel_ht_alloc, .free = minstrel_ht_free, #ifdef CONFIG_MAC80211_DEBUGFS .add_debugfs = minstrel_ht_add_debugfs, .add_sta_debugfs = minstrel_ht_add_sta_debugfs, #endif .get_expected_throughput = minstrel_ht_get_expected_throughput, }; static void __init init_sample_table(void) { int col, i, new_idx; u8 rnd[MCS_GROUP_RATES]; memset(sample_table, 0xff, sizeof(sample_table)); for (col = 0; col < SAMPLE_COLUMNS; col++) { get_random_bytes(rnd, sizeof(rnd)); for (i = 0; i < MCS_GROUP_RATES; i++) { new_idx = (i + rnd[i]) % MCS_GROUP_RATES; while (sample_table[col][new_idx] != 0xff) new_idx = (new_idx + 1) % MCS_GROUP_RATES; sample_table[col][new_idx] = i; } } } int __init rc80211_minstrel_init(void) { init_sample_table(); return ieee80211_rate_control_register(&mac80211_minstrel_ht); } void rc80211_minstrel_exit(void) { ieee80211_rate_control_unregister(&mac80211_minstrel_ht); } |
2 7 7 4 4 5 5 8 8 3 4 8 8 5 5 3 5 5 1 1 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Glue Code for x86_64/AVX2/AES-NI assembler optimized version of Camellia * * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@mbnet.fi> */ #include <crypto/algapi.h> #include <crypto/internal/simd.h> #include <linux/crypto.h> #include <linux/err.h> #include <linux/module.h> #include <linux/types.h> #include "camellia.h" #include "ecb_cbc_helpers.h" #define CAMELLIA_AESNI_PARALLEL_BLOCKS 16 #define CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS 32 /* 32-way AVX2/AES-NI parallel cipher functions */ asmlinkage void camellia_ecb_enc_32way(const void *ctx, u8 *dst, const u8 *src); asmlinkage void camellia_ecb_dec_32way(const void *ctx, u8 *dst, const u8 *src); asmlinkage void camellia_cbc_dec_32way(const void *ctx, u8 *dst, const u8 *src); static int camellia_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { return __camellia_setkey(crypto_skcipher_ctx(tfm), key, keylen); } static int ecb_encrypt(struct skcipher_request *req) { ECB_WALK_START(req, CAMELLIA_BLOCK_SIZE, CAMELLIA_AESNI_PARALLEL_BLOCKS); ECB_BLOCK(CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS, camellia_ecb_enc_32way); ECB_BLOCK(CAMELLIA_AESNI_PARALLEL_BLOCKS, camellia_ecb_enc_16way); ECB_BLOCK(2, camellia_enc_blk_2way); ECB_BLOCK(1, camellia_enc_blk); ECB_WALK_END(); } static int ecb_decrypt(struct skcipher_request *req) { ECB_WALK_START(req, CAMELLIA_BLOCK_SIZE, CAMELLIA_AESNI_PARALLEL_BLOCKS); ECB_BLOCK(CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS, camellia_ecb_dec_32way); ECB_BLOCK(CAMELLIA_AESNI_PARALLEL_BLOCKS, camellia_ecb_dec_16way); ECB_BLOCK(2, camellia_dec_blk_2way); ECB_BLOCK(1, camellia_dec_blk); ECB_WALK_END(); } static int cbc_encrypt(struct skcipher_request *req) { CBC_WALK_START(req, CAMELLIA_BLOCK_SIZE, -1); CBC_ENC_BLOCK(camellia_enc_blk); CBC_WALK_END(); } static int cbc_decrypt(struct skcipher_request *req) { CBC_WALK_START(req, CAMELLIA_BLOCK_SIZE, CAMELLIA_AESNI_PARALLEL_BLOCKS); CBC_DEC_BLOCK(CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS, camellia_cbc_dec_32way); CBC_DEC_BLOCK(CAMELLIA_AESNI_PARALLEL_BLOCKS, camellia_cbc_dec_16way); CBC_DEC_BLOCK(2, camellia_decrypt_cbc_2way); CBC_DEC_BLOCK(1, camellia_dec_blk); CBC_WALK_END(); } static struct skcipher_alg camellia_algs[] = { { .base.cra_name = "__ecb(camellia)", .base.cra_driver_name = "__ecb-camellia-aesni-avx2", .base.cra_priority = 500, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = CAMELLIA_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct camellia_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CAMELLIA_MIN_KEY_SIZE, .max_keysize = CAMELLIA_MAX_KEY_SIZE, .setkey = camellia_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base.cra_name = "__cbc(camellia)", .base.cra_driver_name = "__cbc-camellia-aesni-avx2", .base.cra_priority = 500, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = CAMELLIA_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct camellia_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CAMELLIA_MIN_KEY_SIZE, .max_keysize = CAMELLIA_MAX_KEY_SIZE, .ivsize = CAMELLIA_BLOCK_SIZE, .setkey = camellia_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }; static struct simd_skcipher_alg *camellia_simd_algs[ARRAY_SIZE(camellia_algs)]; static int __init camellia_aesni_init(void) { const char *feature_name; if (!boot_cpu_has(X86_FEATURE_AVX) || !boot_cpu_has(X86_FEATURE_AVX2) || !boot_cpu_has(X86_FEATURE_AES) || !boot_cpu_has(X86_FEATURE_OSXSAVE)) { pr_info("AVX2 or AES-NI instructions are not detected.\n"); return -ENODEV; } if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, &feature_name)) { pr_info("CPU feature '%s' is not supported.\n", feature_name); return -ENODEV; } return simd_register_skciphers_compat(camellia_algs, ARRAY_SIZE(camellia_algs), camellia_simd_algs); } static void __exit camellia_aesni_fini(void) { simd_unregister_skciphers(camellia_algs, ARRAY_SIZE(camellia_algs), camellia_simd_algs); } module_init(camellia_aesni_init); module_exit(camellia_aesni_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Camellia Cipher Algorithm, AES-NI/AVX2 optimized"); MODULE_ALIAS_CRYPTO("camellia"); MODULE_ALIAS_CRYPTO("camellia-asm"); |
28 28 28 28 28 3 4 37 37 33 29 29 5 5 5 5 5 5 10 5 6 1 1 1 5 1 7 3 4 4 4 1 3 1 7 7 7 6 6 7 7 1 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 | // SPDX-License-Identifier: GPL-2.0 /* Copyright 2011-2014 Autronica Fire and Security AS * * Author(s): * 2011-2014 Arvid Brodin, arvid.brodin@alten.se * * The HSR spec says never to forward the same frame twice on the same * interface. A frame is identified by its source MAC address and its HSR * sequence number. This code keeps track of senders and their sequence numbers * to allow filtering of duplicate frames, and to detect HSR ring errors. * Same code handles filtering of duplicates for PRP as well. */ #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <linux/slab.h> #include <linux/rculist.h> #include "hsr_main.h" #include "hsr_framereg.h" #include "hsr_netlink.h" /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, * false otherwise. */ static bool seq_nr_after(u16 a, u16 b) { /* Remove inconsistency where * seq_nr_after(a, b) == seq_nr_before(a, b) */ if ((int)b - a == 32768) return false; return (((s16)(b - a)) < 0); } #define seq_nr_before(a, b) seq_nr_after((b), (a)) #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) bool hsr_addr_is_redbox(struct hsr_priv *hsr, unsigned char *addr) { if (!hsr->redbox || !is_valid_ether_addr(hsr->macaddress_redbox)) return false; return ether_addr_equal(addr, hsr->macaddress_redbox); } bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) { struct hsr_self_node *sn; bool ret = false; rcu_read_lock(); sn = rcu_dereference(hsr->self_node); if (!sn) { WARN_ONCE(1, "HSR: No self node\n"); goto out; } if (ether_addr_equal(addr, sn->macaddress_A) || ether_addr_equal(addr, sn->macaddress_B)) ret = true; out: rcu_read_unlock(); return ret; } /* Search for mac entry. Caller must hold rcu read lock. */ static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, const unsigned char addr[ETH_ALEN]) { struct hsr_node *node; list_for_each_entry_rcu(node, node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, addr)) return node; } return NULL; } /* Check if node for a given MAC address is already present in data base */ bool hsr_is_node_in_db(struct list_head *node_db, const unsigned char addr[ETH_ALEN]) { return !!find_node_by_addr_A(node_db, addr); } /* Helper for device init; the self_node is used in hsr_rcv() to recognize * frames from self that's been looped over the HSR ring. */ int hsr_create_self_node(struct hsr_priv *hsr, const unsigned char addr_a[ETH_ALEN], const unsigned char addr_b[ETH_ALEN]) { struct hsr_self_node *sn, *old; sn = kmalloc(sizeof(*sn), GFP_KERNEL); if (!sn) return -ENOMEM; ether_addr_copy(sn->macaddress_A, addr_a); ether_addr_copy(sn->macaddress_B, addr_b); spin_lock_bh(&hsr->list_lock); old = rcu_replace_pointer(hsr->self_node, sn, lockdep_is_held(&hsr->list_lock)); spin_unlock_bh(&hsr->list_lock); if (old) kfree_rcu(old, rcu_head); return 0; } void hsr_del_self_node(struct hsr_priv *hsr) { struct hsr_self_node *old; spin_lock_bh(&hsr->list_lock); old = rcu_replace_pointer(hsr->self_node, NULL, lockdep_is_held(&hsr->list_lock)); spin_unlock_bh(&hsr->list_lock); if (old) kfree_rcu(old, rcu_head); } void hsr_del_nodes(struct list_head *node_db) { struct hsr_node *node; struct hsr_node *tmp; list_for_each_entry_safe(node, tmp, node_db, mac_list) kfree(node); } void prp_handle_san_frame(bool san, enum hsr_port_type port, struct hsr_node *node) { /* Mark if the SAN node is over LAN_A or LAN_B */ if (port == HSR_PT_SLAVE_A) { node->san_a = true; return; } if (port == HSR_PT_SLAVE_B) node->san_b = true; } /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; * seq_out is used to initialize filtering of outgoing duplicate frames * originating from the newly added node. */ static struct hsr_node *hsr_add_node(struct hsr_priv *hsr, struct list_head *node_db, unsigned char addr[], u16 seq_out, bool san, enum hsr_port_type rx_port) { struct hsr_node *new_node, *node; unsigned long now; int i; new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); if (!new_node) return NULL; ether_addr_copy(new_node->macaddress_A, addr); spin_lock_init(&new_node->seq_out_lock); /* We are only interested in time diffs here, so use current jiffies * as initialization. (0 could trigger an spurious ring error warning). */ now = jiffies; for (i = 0; i < HSR_PT_PORTS; i++) { new_node->time_in[i] = now; new_node->time_out[i] = now; } for (i = 0; i < HSR_PT_PORTS; i++) new_node->seq_out[i] = seq_out; if (san && hsr->proto_ops->handle_san_frame) hsr->proto_ops->handle_san_frame(san, rx_port, new_node); spin_lock_bh(&hsr->list_lock); list_for_each_entry_rcu(node, node_db, mac_list, lockdep_is_held(&hsr->list_lock)) { if (ether_addr_equal(node->macaddress_A, addr)) goto out; if (ether_addr_equal(node->macaddress_B, addr)) goto out; } list_add_tail_rcu(&new_node->mac_list, node_db); spin_unlock_bh(&hsr->list_lock); return new_node; out: spin_unlock_bh(&hsr->list_lock); kfree(new_node); return node; } void prp_update_san_info(struct hsr_node *node, bool is_sup) { if (!is_sup) return; node->san_a = false; node->san_b = false; } /* Get the hsr_node from which 'skb' was sent. */ struct hsr_node *hsr_get_node(struct hsr_port *port, struct list_head *node_db, struct sk_buff *skb, bool is_sup, enum hsr_port_type rx_port) { struct hsr_priv *hsr = port->hsr; struct hsr_node *node; struct ethhdr *ethhdr; struct prp_rct *rct; bool san = false; u16 seq_out; if (!skb_mac_header_was_set(skb)) return NULL; ethhdr = (struct ethhdr *)skb_mac_header(skb); list_for_each_entry_rcu(node, node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } } /* Check if required node is not in proxy nodes table */ list_for_each_entry_rcu(node, &hsr->proxy_node_db, mac_list) { if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { if (hsr->proto_ops->update_san_info) hsr->proto_ops->update_san_info(node, is_sup); return node; } } /* Everyone may create a node entry, connected node to a HSR/PRP * device. */ if (ethhdr->h_proto == htons(ETH_P_PRP) || ethhdr->h_proto == htons(ETH_P_HSR)) { /* Check if skb contains hsr_ethhdr */ if (skb->mac_len < sizeof(struct hsr_ethhdr)) return NULL; /* Use the existing sequence_nr from the tag as starting point * for filtering duplicate frames. */ seq_out = hsr_get_skb_sequence_nr(skb) - 1; } else { rct = skb_get_PRP_rct(skb); if (rct && prp_check_lsdu_size(skb, rct, is_sup)) { seq_out = prp_get_skb_sequence_nr(rct); } else { if (rx_port != HSR_PT_MASTER) san = true; seq_out = HSR_SEQNR_START; } } return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out, san, rx_port); } /* Use the Supervision frame's info about an eventual macaddress_B for merging * nodes that has previously had their macaddress_B registered as a separate * node. */ void hsr_handle_sup_frame(struct hsr_frame_info *frame) { struct hsr_node *node_curr = frame->node_src; struct hsr_port *port_rcv = frame->port_rcv; struct hsr_priv *hsr = port_rcv->hsr; struct hsr_sup_payload *hsr_sp; struct hsr_sup_tlv *hsr_sup_tlv; struct hsr_node *node_real; struct sk_buff *skb = NULL; struct list_head *node_db; struct ethhdr *ethhdr; int i; unsigned int pull_size = 0; unsigned int total_pull_size = 0; /* Here either frame->skb_hsr or frame->skb_prp should be * valid as supervision frame always will have protocol * header info. */ if (frame->skb_hsr) skb = frame->skb_hsr; else if (frame->skb_prp) skb = frame->skb_prp; else if (frame->skb_std) skb = frame->skb_std; if (!skb) return; /* Leave the ethernet header. */ pull_size = sizeof(struct ethhdr); skb_pull(skb, pull_size); total_pull_size += pull_size; ethhdr = (struct ethhdr *)skb_mac_header(skb); /* And leave the HSR tag. */ if (ethhdr->h_proto == htons(ETH_P_HSR)) { pull_size = sizeof(struct hsr_tag); skb_pull(skb, pull_size); total_pull_size += pull_size; } /* And leave the HSR sup tag. */ pull_size = sizeof(struct hsr_sup_tag); skb_pull(skb, pull_size); total_pull_size += pull_size; /* get HSR sup payload */ hsr_sp = (struct hsr_sup_payload *)skb->data; /* Merge node_curr (registered on macaddress_B) into node_real */ node_db = &port_rcv->hsr->node_db; node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); if (!node_real) /* No frame received from AddrA of this node yet */ node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A, HSR_SEQNR_START - 1, true, port_rcv->type); if (!node_real) goto done; /* No mem */ if (node_real == node_curr) /* Node has already been merged */ goto done; /* Leave the first HSR sup payload. */ pull_size = sizeof(struct hsr_sup_payload); skb_pull(skb, pull_size); total_pull_size += pull_size; /* Get second supervision tlv */ hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data; /* And check if it is a redbox mac TLV */ if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) { /* We could stop here after pushing hsr_sup_payload, * or proceed and allow macaddress_B and for redboxes. */ /* Sanity check length */ if (hsr_sup_tlv->HSR_TLV_length != 6) goto done; /* Leave the second HSR sup tlv. */ pull_size = sizeof(struct hsr_sup_tlv); skb_pull(skb, pull_size); total_pull_size += pull_size; /* Get redbox mac address. */ hsr_sp = (struct hsr_sup_payload *)skb->data; /* Check if redbox mac and node mac are equal. */ if (!ether_addr_equal(node_real->macaddress_A, hsr_sp->macaddress_A)) { /* This is a redbox supervision frame for a VDAN! */ goto done; } } ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); spin_lock_bh(&node_real->seq_out_lock); for (i = 0; i < HSR_PT_PORTS; i++) { if (!node_curr->time_in_stale[i] && time_after(node_curr->time_in[i], node_real->time_in[i])) { node_real->time_in[i] = node_curr->time_in[i]; node_real->time_in_stale[i] = node_curr->time_in_stale[i]; } if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) node_real->seq_out[i] = node_curr->seq_out[i]; } spin_unlock_bh(&node_real->seq_out_lock); node_real->addr_B_port = port_rcv->type; spin_lock_bh(&hsr->list_lock); if (!node_curr->removed) { list_del_rcu(&node_curr->mac_list); node_curr->removed = true; kfree_rcu(node_curr, rcu_head); } spin_unlock_bh(&hsr->list_lock); done: /* Push back here */ skb_push(skb, total_pull_size); } /* 'skb' is a frame meant for this host, that is to be passed to upper layers. * * If the frame was sent by a node's B interface, replace the source * address with that node's "official" address (macaddress_A) so that upper * layers recognize where it came from. */ void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) { if (!skb_mac_header_was_set(skb)) { WARN_ONCE(1, "%s: Mac header not set\n", __func__); return; } memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); } /* 'skb' is a frame meant for another host. * 'port' is the outgoing interface * * Substitute the target (dest) MAC address if necessary, so the it matches the * recipient interface MAC address, regardless of whether that is the * recipient's A or B interface. * This is needed to keep the packets flowing through switches that learn on * which "side" the different interfaces are. */ void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, struct hsr_port *port) { struct hsr_node *node_dst; if (!skb_mac_header_was_set(skb)) { WARN_ONCE(1, "%s: Mac header not set\n", __func__); return; } if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) return; node_dst = find_node_by_addr_A(&port->hsr->node_db, eth_hdr(skb)->h_dest); if (!node_dst && port->hsr->redbox) node_dst = find_node_by_addr_A(&port->hsr->proxy_node_db, eth_hdr(skb)->h_dest); if (!node_dst) { if (port->hsr->prot_version != PRP_V1 && net_ratelimit()) netdev_err(skb->dev, "%s: Unknown node\n", __func__); return; } if (port->type != node_dst->addr_B_port) return; if (is_valid_ether_addr(node_dst->macaddress_B)) ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); } void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, u16 sequence_nr) { /* Don't register incoming frames without a valid sequence number. This * ensures entries of restarted nodes gets pruned so that they can * re-register and resume communications. */ if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) && seq_nr_before(sequence_nr, node->seq_out[port->type])) return; node->time_in[port->type] = jiffies; node->time_in_stale[port->type] = false; } /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid * ethhdr->h_source address and skb->mac_header set. * * Return: * 1 if frame can be shown to have been sent recently on this interface, * 0 otherwise, or * negative error code on error */ int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, u16 sequence_nr) { spin_lock_bh(&node->seq_out_lock); if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) && time_is_after_jiffies(node->time_out[port->type] + msecs_to_jiffies(HSR_ENTRY_FORGET_TIME))) { spin_unlock_bh(&node->seq_out_lock); return 1; } node->time_out[port->type] = jiffies; node->seq_out[port->type] = sequence_nr; spin_unlock_bh(&node->seq_out_lock); return 0; } static struct hsr_port *get_late_port(struct hsr_priv *hsr, struct hsr_node *node) { if (node->time_in_stale[HSR_PT_SLAVE_A]) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (node->time_in_stale[HSR_PT_SLAVE_B]) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); if (time_after(node->time_in[HSR_PT_SLAVE_B], node->time_in[HSR_PT_SLAVE_A] + msecs_to_jiffies(MAX_SLAVE_DIFF))) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); if (time_after(node->time_in[HSR_PT_SLAVE_A], node->time_in[HSR_PT_SLAVE_B] + msecs_to_jiffies(MAX_SLAVE_DIFF))) return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); return NULL; } /* Remove stale sequence_nr records. Called by timer every * HSR_LIFE_CHECK_INTERVAL (two seconds or so). */ void hsr_prune_nodes(struct timer_list *t) { struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); struct hsr_node *node; struct hsr_node *tmp; struct hsr_port *port; unsigned long timestamp; unsigned long time_a, time_b; spin_lock_bh(&hsr->list_lock); list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) { /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A] * nor time_in[HSR_PT_SLAVE_B], will ever be updated for * the master port. Thus the master node will be repeatedly * pruned leading to packet loss. */ if (hsr_addr_is_self(hsr, node->macaddress_A)) continue; /* Shorthand */ time_a = node->time_in[HSR_PT_SLAVE_A]; time_b = node->time_in[HSR_PT_SLAVE_B]; /* Check for timestamps old enough to risk wrap-around */ if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) node->time_in_stale[HSR_PT_SLAVE_A] = true; if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) node->time_in_stale[HSR_PT_SLAVE_B] = true; /* Get age of newest frame from node. * At least one time_in is OK here; nodes get pruned long * before both time_ins can get stale */ timestamp = time_a; if (node->time_in_stale[HSR_PT_SLAVE_A] || (!node->time_in_stale[HSR_PT_SLAVE_B] && time_after(time_b, time_a))) timestamp = time_b; /* Warn of ring error only as long as we get frames at all */ if (time_is_after_jiffies(timestamp + msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { rcu_read_lock(); port = get_late_port(hsr, node); if (port) hsr_nl_ringerror(hsr, node->macaddress_A, port); rcu_read_unlock(); } /* Prune old entries */ if (time_is_before_jiffies(timestamp + msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { hsr_nl_nodedown(hsr, node->macaddress_A); if (!node->removed) { list_del_rcu(&node->mac_list); node->removed = true; /* Note that we need to free this entry later: */ kfree_rcu(node, rcu_head); } } } spin_unlock_bh(&hsr->list_lock); /* Restart timer */ mod_timer(&hsr->prune_timer, jiffies + msecs_to_jiffies(PRUNE_PERIOD)); } void hsr_prune_proxy_nodes(struct timer_list *t) { struct hsr_priv *hsr = from_timer(hsr, t, prune_proxy_timer); unsigned long timestamp; struct hsr_node *node; struct hsr_node *tmp; spin_lock_bh(&hsr->list_lock); list_for_each_entry_safe(node, tmp, &hsr->proxy_node_db, mac_list) { /* Don't prune RedBox node. */ if (hsr_addr_is_redbox(hsr, node->macaddress_A)) continue; timestamp = node->time_in[HSR_PT_INTERLINK]; /* Prune old entries */ if (time_is_before_jiffies(timestamp + msecs_to_jiffies(HSR_PROXY_NODE_FORGET_TIME))) { hsr_nl_nodedown(hsr, node->macaddress_A); if (!node->removed) { list_del_rcu(&node->mac_list); node->removed = true; /* Note that we need to free this entry later: */ kfree_rcu(node, rcu_head); } } } spin_unlock_bh(&hsr->list_lock); /* Restart timer */ mod_timer(&hsr->prune_proxy_timer, jiffies + msecs_to_jiffies(PRUNE_PROXY_PERIOD)); } void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, unsigned char addr[ETH_ALEN]) { struct hsr_node *node; if (!_pos) { node = list_first_or_null_rcu(&hsr->node_db, struct hsr_node, mac_list); if (node) ether_addr_copy(addr, node->macaddress_A); return node; } node = _pos; list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { ether_addr_copy(addr, node->macaddress_A); return node; } return NULL; } int hsr_get_node_data(struct hsr_priv *hsr, const unsigned char *addr, unsigned char addr_b[ETH_ALEN], unsigned int *addr_b_ifindex, int *if1_age, u16 *if1_seq, int *if2_age, u16 *if2_seq) { struct hsr_node *node; struct hsr_port *port; unsigned long tdiff; node = find_node_by_addr_A(&hsr->node_db, addr); if (!node) return -ENOENT; ether_addr_copy(addr_b, node->macaddress_B); tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; if (node->time_in_stale[HSR_PT_SLAVE_A]) *if1_age = INT_MAX; #if HZ <= MSEC_PER_SEC else if (tdiff > msecs_to_jiffies(INT_MAX)) *if1_age = INT_MAX; #endif else *if1_age = jiffies_to_msecs(tdiff); tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; if (node->time_in_stale[HSR_PT_SLAVE_B]) *if2_age = INT_MAX; #if HZ <= MSEC_PER_SEC else if (tdiff > msecs_to_jiffies(INT_MAX)) *if2_age = INT_MAX; #endif else *if2_age = jiffies_to_msecs(tdiff); /* Present sequence numbers as if they were incoming on interface */ *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; if (node->addr_B_port != HSR_PT_NONE) { port = hsr_port_get_hsr(hsr, node->addr_B_port); *addr_b_ifindex = port->dev->ifindex; } else { *addr_b_ifindex = -1; } return 0; } |
1 1 65 1 18 2 60 17 30 32 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google Corporation */ #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include <net/bluetooth/mgmt.h> #include "mgmt_util.h" #include "mgmt_config.h" #define HDEV_PARAM_U16(_param_name_) \ struct {\ struct mgmt_tlv entry; \ __le16 value; \ } __packed _param_name_ #define HDEV_PARAM_U8(_param_name_) \ struct {\ struct mgmt_tlv entry; \ __u8 value; \ } __packed _param_name_ #define TLV_SET_U16(_param_code_, _param_name_) \ { \ { cpu_to_le16(_param_code_), sizeof(__u16) }, \ cpu_to_le16(hdev->_param_name_) \ } #define TLV_SET_U8(_param_code_, _param_name_) \ { \ { cpu_to_le16(_param_code_), sizeof(__u8) }, \ hdev->_param_name_ \ } #define TLV_SET_U16_JIFFIES_TO_MSECS(_param_code_, _param_name_) \ { \ { cpu_to_le16(_param_code_), sizeof(__u16) }, \ cpu_to_le16(jiffies_to_msecs(hdev->_param_name_)) \ } int read_def_system_config(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { int ret; struct mgmt_rp_read_def_system_config { /* Please see mgmt-api.txt for documentation of these values */ HDEV_PARAM_U16(def_page_scan_type); HDEV_PARAM_U16(def_page_scan_int); HDEV_PARAM_U16(def_page_scan_window); HDEV_PARAM_U16(def_inq_scan_type); HDEV_PARAM_U16(def_inq_scan_int); HDEV_PARAM_U16(def_inq_scan_window); HDEV_PARAM_U16(def_br_lsto); HDEV_PARAM_U16(def_page_timeout); HDEV_PARAM_U16(sniff_min_interval); HDEV_PARAM_U16(sniff_max_interval); HDEV_PARAM_U16(le_adv_min_interval); HDEV_PARAM_U16(le_adv_max_interval); HDEV_PARAM_U16(def_multi_adv_rotation_duration); HDEV_PARAM_U16(le_scan_interval); HDEV_PARAM_U16(le_scan_window); HDEV_PARAM_U16(le_scan_int_suspend); HDEV_PARAM_U16(le_scan_window_suspend); HDEV_PARAM_U16(le_scan_int_discovery); HDEV_PARAM_U16(le_scan_window_discovery); HDEV_PARAM_U16(le_scan_int_adv_monitor); HDEV_PARAM_U16(le_scan_window_adv_monitor); HDEV_PARAM_U16(le_scan_int_connect); HDEV_PARAM_U16(le_scan_window_connect); HDEV_PARAM_U16(le_conn_min_interval); HDEV_PARAM_U16(le_conn_max_interval); HDEV_PARAM_U16(le_conn_latency); HDEV_PARAM_U16(le_supv_timeout); HDEV_PARAM_U16(def_le_autoconnect_timeout); HDEV_PARAM_U16(advmon_allowlist_duration); HDEV_PARAM_U16(advmon_no_filter_duration); HDEV_PARAM_U8(enable_advmon_interleave_scan); } __packed rp = { TLV_SET_U16(0x0000, def_page_scan_type), TLV_SET_U16(0x0001, def_page_scan_int), TLV_SET_U16(0x0002, def_page_scan_window), TLV_SET_U16(0x0003, def_inq_scan_type), TLV_SET_U16(0x0004, def_inq_scan_int), TLV_SET_U16(0x0005, def_inq_scan_window), TLV_SET_U16(0x0006, def_br_lsto), TLV_SET_U16(0x0007, def_page_timeout), TLV_SET_U16(0x0008, sniff_min_interval), TLV_SET_U16(0x0009, sniff_max_interval), TLV_SET_U16(0x000a, le_adv_min_interval), TLV_SET_U16(0x000b, le_adv_max_interval), TLV_SET_U16(0x000c, def_multi_adv_rotation_duration), TLV_SET_U16(0x000d, le_scan_interval), TLV_SET_U16(0x000e, le_scan_window), TLV_SET_U16(0x000f, le_scan_int_suspend), TLV_SET_U16(0x0010, le_scan_window_suspend), TLV_SET_U16(0x0011, le_scan_int_discovery), TLV_SET_U16(0x0012, le_scan_window_discovery), TLV_SET_U16(0x0013, le_scan_int_adv_monitor), TLV_SET_U16(0x0014, le_scan_window_adv_monitor), TLV_SET_U16(0x0015, le_scan_int_connect), TLV_SET_U16(0x0016, le_scan_window_connect), TLV_SET_U16(0x0017, le_conn_min_interval), TLV_SET_U16(0x0018, le_conn_max_interval), TLV_SET_U16(0x0019, le_conn_latency), TLV_SET_U16(0x001a, le_supv_timeout), TLV_SET_U16_JIFFIES_TO_MSECS(0x001b, def_le_autoconnect_timeout), TLV_SET_U16(0x001d, advmon_allowlist_duration), TLV_SET_U16(0x001e, advmon_no_filter_duration), TLV_SET_U8(0x001f, enable_advmon_interleave_scan), }; bt_dev_dbg(hdev, "sock %p", sk); ret = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_DEF_SYSTEM_CONFIG, 0, &rp, sizeof(rp)); return ret; } #define TO_TLV(x) ((struct mgmt_tlv *)(x)) #define TLV_GET_LE16(tlv) le16_to_cpu(*((__le16 *)(TO_TLV(tlv)->value))) #define TLV_GET_U8(tlv) (*((__u8 *)(TO_TLV(tlv)->value))) int set_def_system_config(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { u16 buffer_left = data_len; u8 *buffer = data; if (buffer_left < sizeof(struct mgmt_tlv)) { return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEF_SYSTEM_CONFIG, MGMT_STATUS_INVALID_PARAMS); } /* First pass to validate the tlv */ while (buffer_left >= sizeof(struct mgmt_tlv)) { const u8 len = TO_TLV(buffer)->length; size_t exp_type_len; const u16 exp_len = sizeof(struct mgmt_tlv) + len; const u16 type = le16_to_cpu(TO_TLV(buffer)->type); if (buffer_left < exp_len) { bt_dev_warn(hdev, "invalid len left %u, exp >= %u", buffer_left, exp_len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEF_SYSTEM_CONFIG, MGMT_STATUS_INVALID_PARAMS); } /* Please see mgmt-api.txt for documentation of these values */ switch (type) { case 0x0000: case 0x0001: case 0x0002: case 0x0003: case 0x0004: case 0x0005: case 0x0006: case 0x0007: case 0x0008: case 0x0009: case 0x000a: case 0x000b: case 0x000c: case 0x000d: case 0x000e: case 0x000f: case 0x0010: case 0x0011: case 0x0012: case 0x0013: case 0x0014: case 0x0015: case 0x0016: case 0x0017: case 0x0018: case 0x0019: case 0x001a: case 0x001b: case 0x001d: case 0x001e: exp_type_len = sizeof(u16); break; case 0x001f: exp_type_len = sizeof(u8); break; default: exp_type_len = 0; bt_dev_warn(hdev, "unsupported parameter %u", type); break; } if (exp_type_len && len != exp_type_len) { bt_dev_warn(hdev, "invalid length %d, exp %zu for type %u", len, exp_type_len, type); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEF_SYSTEM_CONFIG, MGMT_STATUS_INVALID_PARAMS); } buffer_left -= exp_len; buffer += exp_len; } buffer_left = data_len; buffer = data; while (buffer_left >= sizeof(struct mgmt_tlv)) { const u8 len = TO_TLV(buffer)->length; const u16 exp_len = sizeof(struct mgmt_tlv) + len; const u16 type = le16_to_cpu(TO_TLV(buffer)->type); switch (type) { case 0x0000: hdev->def_page_scan_type = TLV_GET_LE16(buffer); break; case 0x0001: hdev->def_page_scan_int = TLV_GET_LE16(buffer); break; case 0x0002: hdev->def_page_scan_window = TLV_GET_LE16(buffer); break; case 0x0003: hdev->def_inq_scan_type = TLV_GET_LE16(buffer); break; case 0x0004: hdev->def_inq_scan_int = TLV_GET_LE16(buffer); break; case 0x0005: hdev->def_inq_scan_window = TLV_GET_LE16(buffer); break; case 0x0006: hdev->def_br_lsto = TLV_GET_LE16(buffer); break; case 0x0007: hdev->def_page_timeout = TLV_GET_LE16(buffer); break; case 0x0008: hdev->sniff_min_interval = TLV_GET_LE16(buffer); break; case 0x0009: hdev->sniff_max_interval = TLV_GET_LE16(buffer); break; case 0x000a: hdev->le_adv_min_interval = TLV_GET_LE16(buffer); break; case 0x000b: hdev->le_adv_max_interval = TLV_GET_LE16(buffer); break; case 0x000c: hdev->def_multi_adv_rotation_duration = TLV_GET_LE16(buffer); break; case 0x000d: hdev->le_scan_interval = TLV_GET_LE16(buffer); break; case 0x000e: hdev->le_scan_window = TLV_GET_LE16(buffer); break; case 0x000f: hdev->le_scan_int_suspend = TLV_GET_LE16(buffer); break; case 0x0010: hdev->le_scan_window_suspend = TLV_GET_LE16(buffer); break; case 0x0011: hdev->le_scan_int_discovery = TLV_GET_LE16(buffer); break; case 0x00012: hdev->le_scan_window_discovery = TLV_GET_LE16(buffer); break; case 0x00013: hdev->le_scan_int_adv_monitor = TLV_GET_LE16(buffer); break; case 0x00014: hdev->le_scan_window_adv_monitor = TLV_GET_LE16(buffer); break; case 0x00015: hdev->le_scan_int_connect = TLV_GET_LE16(buffer); break; case 0x00016: hdev->le_scan_window_connect = TLV_GET_LE16(buffer); break; case 0x00017: hdev->le_conn_min_interval = TLV_GET_LE16(buffer); break; case 0x00018: hdev->le_conn_max_interval = TLV_GET_LE16(buffer); break; case 0x00019: hdev->le_conn_latency = TLV_GET_LE16(buffer); break; case 0x0001a: hdev->le_supv_timeout = TLV_GET_LE16(buffer); break; case 0x0001b: hdev->def_le_autoconnect_timeout = msecs_to_jiffies(TLV_GET_LE16(buffer)); break; case 0x0001d: hdev->advmon_allowlist_duration = TLV_GET_LE16(buffer); break; case 0x0001e: hdev->advmon_no_filter_duration = TLV_GET_LE16(buffer); break; case 0x0001f: hdev->enable_advmon_interleave_scan = TLV_GET_U8(buffer); break; default: bt_dev_warn(hdev, "unsupported parameter %u", type); break; } buffer_left -= exp_len; buffer += exp_len; } return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_DEF_SYSTEM_CONFIG, 0, NULL, 0); } int read_def_runtime_config(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { bt_dev_dbg(hdev, "sock %p", sk); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_DEF_RUNTIME_CONFIG, 0, NULL, 0); } int set_def_runtime_config(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { bt_dev_dbg(hdev, "sock %p", sk); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEF_SYSTEM_CONFIG, MGMT_STATUS_INVALID_PARAMS); } |
175 174 175 175 175 175 175 174 175 444 76 76 1 76 1 76 54 1 54 441 1 440 442 258 222 72 8 8 8 434 434 435 416 18 197 300 418 15 1 420 16 433 1 315 112 48 5 8 304 4 113 189 283 18 297 61 5 272 232 227 5 228 119 108 228 1 227 227 15 217 154 65 114 106 227 228 2 17 210 2 210 298 232 531 27 2 502 12 32 8 2 514 9 228 445 454 453 182 96 120 397 6 198 107 106 1 376 33 33 32 1 33 42 14 30 31 3 3 3 11 16 26 554 1751 399 1558 1559 1561 1 1 1 279 45 234 203 101 238 201 1 185 32 49 80 90 26 258 190 1 32 1 12 1 88 4 73 319 319 2 2 2 2 2 300 588 42 42 42 1 40 41 3 3 41 41 1 8 32 15 15 17 32 3 32 4 1 3 49 49 46 9 3 3 2 32 32 32 3 3 38 13 6 7 60 60 60 60 60 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 | // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * PF_INET protocol family socket handler. * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Florian La Roche, <flla@stud.uni-sb.de> * Alan Cox, <A.Cox@swansea.ac.uk> * * Changes (see also sock.c) * * piggy, * Karl Knutson : Socket protocol table * A.N.Kuznetsov : Socket death error in accept(). * John Richardson : Fix non blocking error in connect() * so sockets that fail to connect * don't return -EINPROGRESS. * Alan Cox : Asynchronous I/O support * Alan Cox : Keep correct socket pointer on sock * structures * when accept() ed * Alan Cox : Semantics of SO_LINGER aren't state * moved to close when you look carefully. * With this fixed and the accept bug fixed * some RPC stuff seems happier. * Niibe Yutaka : 4.4BSD style write async I/O * Alan Cox, * Tony Gale : Fixed reuse semantics. * Alan Cox : bind() shouldn't abort existing but dead * sockets. Stops FTP netin:.. I hope. * Alan Cox : bind() works correctly for RAW sockets. * Note that FreeBSD at least was broken * in this respect so be careful with * compatibility tests... * Alan Cox : routing cache support * Alan Cox : memzero the socket structure for * compactness. * Matt Day : nonblock connect error handler * Alan Cox : Allow large numbers of pending sockets * (eg for big web sites), but only if * specifically application requested. * Alan Cox : New buffering throughout IP. Used * dumbly. * Alan Cox : New buffering now used smartly. * Alan Cox : BSD rather than common sense * interpretation of listen. * Germano Caronni : Assorted small races. * Alan Cox : sendmsg/recvmsg basic support. * Alan Cox : Only sendmsg/recvmsg now supported. * Alan Cox : Locked down bind (see security list). * Alan Cox : Loosened bind a little. * Mike McLagan : ADD/DEL DLCI Ioctls * Willy Konynenberg : Transparent proxying support. * David S. Miller : New socket lookup architecture. * Some other random speedups. * Cyrus Durgin : Cleaned up file for kmod hacks. * Andi Kleen : Fix inet_stream_connect TCP race. */ #define pr_fmt(fmt) "IPv4: " fmt #include <linux/err.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/kmod.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/capability.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/stat.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/netfilter_ipv4.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/inet.h> #include <linux/igmp.h> #include <linux/inetdevice.h> #include <linux/netdevice.h> #include <net/checksum.h> #include <net/ip.h> #include <net/protocol.h> #include <net/arp.h> #include <net/route.h> #include <net/ip_fib.h> #include <net/inet_connection_sock.h> #include <net/gro.h> #include <net/gso.h> #include <net/tcp.h> #include <net/udp.h> #include <net/udplite.h> #include <net/ping.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/raw.h> #include <net/icmp.h> #include <net/inet_common.h> #include <net/ip_tunnels.h> #include <net/xfrm.h> #include <net/net_namespace.h> #include <net/secure_seq.h> #ifdef CONFIG_IP_MROUTE #include <linux/mroute.h> #endif #include <net/l3mdev.h> #include <net/compat.h> #include <net/rps.h> #include <trace/events/sock.h> /* The inetsw table contains everything that inet_create needs to * build a new socket. */ static struct list_head inetsw[SOCK_MAX]; static DEFINE_SPINLOCK(inetsw_lock); /* New destruction routine */ void inet_sock_destruct(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); __skb_queue_purge(&sk->sk_receive_queue); __skb_queue_purge(&sk->sk_error_queue); sk_mem_reclaim_final(sk); if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { pr_err("Attempt to release TCP socket in state %d %p\n", sk->sk_state, sk); return; } if (!sock_flag(sk, SOCK_DEAD)) { pr_err("Attempt to release alive inet socket %p\n", sk); return; } WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); WARN_ON_ONCE(sk->sk_wmem_queued); WARN_ON_ONCE(sk_forward_alloc_get(sk)); kfree(rcu_dereference_protected(inet->inet_opt, 1)); dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); } EXPORT_SYMBOL(inet_sock_destruct); /* * The routines beyond this point handle the behaviour of an AF_INET * socket object. Mostly it punts to the subprotocols of IP to do * the work. */ /* * Automatically bind an unbound socket. */ static int inet_autobind(struct sock *sk) { struct inet_sock *inet; /* We may need to bind the socket. */ lock_sock(sk); inet = inet_sk(sk); if (!inet->inet_num) { if (sk->sk_prot->get_port(sk, 0)) { release_sock(sk); return -EAGAIN; } inet->inet_sport = htons(inet->inet_num); } release_sock(sk); return 0; } int __inet_listen_sk(struct sock *sk, int backlog) { unsigned char old_state = sk->sk_state; int err, tcp_fastopen; if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) return -EINVAL; WRITE_ONCE(sk->sk_max_ack_backlog, backlog); /* Really, if the socket is already in listen state * we can only allow the backlog to be adjusted. */ if (old_state != TCP_LISTEN) { /* Enable TFO w/o requiring TCP_FASTOPEN socket option. * Note that only TCP sockets (SOCK_STREAM) will reach here. * Also fastopen backlog may already been set via the option * because the socket was in TCP_LISTEN state previously but * was shutdown() rather than close(). */ tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && (tcp_fastopen & TFO_SERVER_ENABLE) && !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { fastopen_queue_tune(sk, backlog); tcp_fastopen_init_key_once(sock_net(sk)); } err = inet_csk_listen_start(sk); if (err) return err; tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); } return 0; } /* * Move a socket into listening state. */ int inet_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; int err = -EINVAL; lock_sock(sk); if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) goto out; err = __inet_listen_sk(sk, backlog); out: release_sock(sk); return err; } EXPORT_SYMBOL(inet_listen); /* * Create an inet socket. */ static int inet_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct inet_protosw *answer; struct inet_sock *inet; struct proto *answer_prot; unsigned char answer_flags; int try_loading_module = 0; int err; if (protocol < 0 || protocol >= IPPROTO_MAX) return -EINVAL; sock->state = SS_UNCONNECTED; /* Look for the requested type/protocol pair. */ lookup_protocol: err = -ESOCKTNOSUPPORT; rcu_read_lock(); list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { err = 0; /* Check the non-wild match. */ if (protocol == answer->protocol) { if (protocol != IPPROTO_IP) break; } else { /* Check for the two wild cases. */ if (IPPROTO_IP == protocol) { protocol = answer->protocol; break; } if (IPPROTO_IP == answer->protocol) break; } err = -EPROTONOSUPPORT; } if (unlikely(err)) { if (try_loading_module < 2) { rcu_read_unlock(); /* * Be more specific, e.g. net-pf-2-proto-132-type-1 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) */ if (++try_loading_module == 1) request_module("net-pf-%d-proto-%d-type-%d", PF_INET, protocol, sock->type); /* * Fall back to generic, e.g. net-pf-2-proto-132 * (net-pf-PF_INET-proto-IPPROTO_SCTP) */ else request_module("net-pf-%d-proto-%d", PF_INET, protocol); goto lookup_protocol; } else goto out_rcu_unlock; } err = -EPERM; if (sock->type == SOCK_RAW && !kern && !ns_capable(net->user_ns, CAP_NET_RAW)) goto out_rcu_unlock; sock->ops = answer->ops; answer_prot = answer->prot; answer_flags = answer->flags; rcu_read_unlock(); WARN_ON(!answer_prot->slab); err = -ENOMEM; sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); if (!sk) goto out; err = 0; if (INET_PROTOSW_REUSE & answer_flags) sk->sk_reuse = SK_CAN_REUSE; if (INET_PROTOSW_ICSK & answer_flags) inet_init_csk_locks(sk); inet = inet_sk(sk); inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags); inet_clear_bit(NODEFRAG, sk); if (SOCK_RAW == sock->type) { inet->inet_num = protocol; if (IPPROTO_RAW == protocol) inet_set_bit(HDRINCL, sk); } if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) inet->pmtudisc = IP_PMTUDISC_DONT; else inet->pmtudisc = IP_PMTUDISC_WANT; atomic_set(&inet->inet_id, 0); sock_init_data(sock, sk); sk->sk_destruct = inet_sock_destruct; sk->sk_protocol = protocol; sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); inet->uc_ttl = -1; inet_set_bit(MC_LOOP, sk); inet->mc_ttl = 1; inet_set_bit(MC_ALL, sk); inet->mc_index = 0; inet->mc_list = NULL; inet->rcv_tos = 0; if (inet->inet_num) { /* It assumes that any protocol which allows * the user to assign a number at socket * creation time automatically * shares. */ inet->inet_sport = htons(inet->inet_num); /* Add to protocol hash chains. */ err = sk->sk_prot->hash(sk); if (err) { sk_common_release(sk); goto out; } } if (sk->sk_prot->init) { err = sk->sk_prot->init(sk); if (err) { sk_common_release(sk); goto out; } } if (!kern) { err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); if (err) { sk_common_release(sk); goto out; } } out: return err; out_rcu_unlock: rcu_read_unlock(); goto out; } /* * The peer socket should always be NULL (or else). When we call this * function we are destroying the object and from then on nobody * should refer to it. */ int inet_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk) { long timeout; if (!sk->sk_kern_sock) BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); /* Applications forget to leave groups before exiting */ ip_mc_drop_socket(sk); /* If linger is set, we don't return until the close * is complete. Otherwise we return immediately. The * actually closing is done the same either way. * * If the close is due to the process exiting, we never * linger.. */ timeout = 0; if (sock_flag(sk, SOCK_LINGER) && !(current->flags & PF_EXITING)) timeout = sk->sk_lingertime; sk->sk_prot->close(sk, timeout); sock->sk = NULL; } return 0; } EXPORT_SYMBOL(inet_release); int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) { u32 flags = BIND_WITH_LOCK; int err; /* If the socket has its own bind function then use it. (RAW) */ if (sk->sk_prot->bind) { return sk->sk_prot->bind(sk, uaddr, addr_len); } if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; /* BPF prog is run before any checks are done so that if the prog * changes context in a wrong way it will be caught. */ err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, &addr_len, CGROUP_INET4_BIND, &flags); if (err) return err; return __inet_bind(sk, uaddr, addr_len, flags); } int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { return inet_bind_sk(sock->sk, uaddr, addr_len); } EXPORT_SYMBOL(inet_bind); int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, u32 flags) { struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); unsigned short snum; int chk_addr_ret; u32 tb_id = RT_TABLE_LOCAL; int err; if (addr->sin_family != AF_INET) { /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) * only if s_addr is INADDR_ANY. */ err = -EAFNOSUPPORT; if (addr->sin_family != AF_UNSPEC || addr->sin_addr.s_addr != htonl(INADDR_ANY)) goto out; } tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); /* Not specified by any standard per-se, however it breaks too * many applications when removed. It is unfortunate since * allowing applications to make a non-local bind solves * several problems with systems using dynamic addressing. * (ie. your servers still start up even if your ISDN link * is temporarily down) */ err = -EADDRNOTAVAIL; if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, chk_addr_ret)) goto out; snum = ntohs(addr->sin_port); err = -EACCES; if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && snum && inet_port_requires_bind_service(net, snum) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) goto out; /* We keep a pair of addresses. rcv_saddr is the one * used by hash lookups, and saddr is used for transmit. * * In the BSD API these are the same except where it * would be illegal to use them (multicast/broadcast) in * which case the sending device address is used. */ if (flags & BIND_WITH_LOCK) lock_sock(sk); /* Check these errors (active socket, double bind). */ err = -EINVAL; if (sk->sk_state != TCP_CLOSE || inet->inet_num) goto out_release_sock; inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) inet->inet_saddr = 0; /* Use device */ /* Make sure we are allowed to bind here. */ if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) || (flags & BIND_FORCE_ADDRESS_NO_PORT))) { err = sk->sk_prot->get_port(sk, snum); if (err) { inet->inet_saddr = inet->inet_rcv_saddr = 0; goto out_release_sock; } if (!(flags & BIND_FROM_BPF)) { err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); if (err) { inet->inet_saddr = inet->inet_rcv_saddr = 0; if (sk->sk_prot->put_port) sk->sk_prot->put_port(sk); goto out_release_sock; } } } if (inet->inet_rcv_saddr) sk->sk_userlocks |= SOCK_BINDADDR_LOCK; if (snum) sk->sk_userlocks |= SOCK_BINDPORT_LOCK; inet->inet_sport = htons(inet->inet_num); inet->inet_daddr = 0; inet->inet_dport = 0; sk_dst_reset(sk); err = 0; out_release_sock: if (flags & BIND_WITH_LOCK) release_sock(sk); out: return err; } int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; const struct proto *prot; int err; if (addr_len < sizeof(uaddr->sa_family)) return -EINVAL; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); if (uaddr->sa_family == AF_UNSPEC) return prot->disconnect(sk, flags); if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { err = prot->pre_connect(sk, uaddr, addr_len); if (err) return err; } if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) return -EAGAIN; return prot->connect(sk, uaddr, addr_len); } EXPORT_SYMBOL(inet_dgram_connect); static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) { DEFINE_WAIT_FUNC(wait, woken_wake_function); add_wait_queue(sk_sleep(sk), &wait); sk->sk_write_pending += writebias; /* Basic assumption: if someone sets sk->sk_err, he _must_ * change state of the socket from TCP_SYN_*. * Connect() does not allow to get error notifications * without closing the socket. */ while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { release_sock(sk); timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); lock_sock(sk); if (signal_pending(current) || !timeo) break; } remove_wait_queue(sk_sleep(sk), &wait); sk->sk_write_pending -= writebias; return timeo; } /* * Connect to a remote host. There is regrettably still a little * TCP 'magic' in here. */ int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags, int is_sendmsg) { struct sock *sk = sock->sk; int err; long timeo; /* * uaddr can be NULL and addr_len can be 0 if: * sk is a TCP fastopen active socket and * TCP_FASTOPEN_CONNECT sockopt is set and * we already have a valid cookie for this socket. * In this case, user can call write() after connect(). * write() will invoke tcp_sendmsg_fastopen() which calls * __inet_stream_connect(). */ if (uaddr) { if (addr_len < sizeof(uaddr->sa_family)) return -EINVAL; if (uaddr->sa_family == AF_UNSPEC) { sk->sk_disconnects++; err = sk->sk_prot->disconnect(sk, flags); sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; goto out; } } switch (sock->state) { default: err = -EINVAL; goto out; case SS_CONNECTED: err = -EISCONN; goto out; case SS_CONNECTING: if (inet_test_bit(DEFER_CONNECT, sk)) err = is_sendmsg ? -EINPROGRESS : -EISCONN; else err = -EALREADY; /* Fall out of switch with err, set for this state */ break; case SS_UNCONNECTED: err = -EISCONN; if (sk->sk_state != TCP_CLOSE) goto out; if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); if (err) goto out; } err = sk->sk_prot->connect(sk, uaddr, addr_len); if (err < 0) goto out; sock->state = SS_CONNECTING; if (!err && inet_test_bit(DEFER_CONNECT, sk)) goto out; /* Just entered SS_CONNECTING state; the only * difference is that return value in non-blocking * case is EINPROGRESS, rather than EALREADY. */ err = -EINPROGRESS; break; } timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { int writebias = (sk->sk_protocol == IPPROTO_TCP) && tcp_sk(sk)->fastopen_req && tcp_sk(sk)->fastopen_req->data ? 1 : 0; int dis = sk->sk_disconnects; /* Error code is set above */ if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) goto out; err = sock_intr_errno(timeo); if (signal_pending(current)) goto out; if (dis != sk->sk_disconnects) { err = -EPIPE; goto out; } } /* Connection was closed by RST, timeout, ICMP error * or another process disconnected us. */ if (sk->sk_state == TCP_CLOSE) goto sock_error; /* sk->sk_err may be not zero now, if RECVERR was ordered by user * and error was received after socket entered established state. * Hence, it is handled normally after connect() return successfully. */ sock->state = SS_CONNECTED; err = 0; out: return err; sock_error: err = sock_error(sk) ? : -ECONNABORTED; sock->state = SS_UNCONNECTED; sk->sk_disconnects++; if (sk->sk_prot->disconnect(sk, flags)) sock->state = SS_DISCONNECTING; goto out; } EXPORT_SYMBOL(__inet_stream_connect); int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { int err; lock_sock(sock->sk); err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); release_sock(sock->sk); return err; } EXPORT_SYMBOL(inet_stream_connect); void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) { sock_rps_record_flow(newsk); WARN_ON(!((1 << newsk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_RECV | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSING | TCPF_CLOSE_WAIT | TCPF_CLOSE))); if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) set_bit(SOCK_SUPPORT_ZC, &newsock->flags); sock_graft(newsk, newsock); newsock->state = SS_CONNECTED; } /* * Accept a pending connection. The TCP layer now gives BSD semantics. */ int inet_accept(struct socket *sock, struct socket *newsock, struct proto_accept_arg *arg) { struct sock *sk1 = sock->sk, *sk2; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ arg->err = -EINVAL; sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, arg); if (!sk2) return arg->err; lock_sock(sk2); __inet_accept(sock, newsock, sk2); release_sock(sk2); return 0; } EXPORT_SYMBOL(inet_accept); /* * This does both peername and sockname. */ int inet_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sock *sk = sock->sk; struct inet_sock *inet = inet_sk(sk); DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); int sin_addr_len = sizeof(*sin); sin->sin_family = AF_INET; lock_sock(sk); if (peer) { if (!inet->inet_dport || (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && peer == 1)) { release_sock(sk); return -ENOTCONN; } sin->sin_port = inet->inet_dport; sin->sin_addr.s_addr = inet->inet_daddr; BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, CGROUP_INET4_GETPEERNAME); } else { __be32 addr = inet->inet_rcv_saddr; if (!addr) addr = inet->inet_saddr; sin->sin_port = inet->inet_sport; sin->sin_addr.s_addr = addr; BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, CGROUP_INET4_GETSOCKNAME); } release_sock(sk); memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); return sin_addr_len; } EXPORT_SYMBOL(inet_getname); int inet_send_prepare(struct sock *sk) { sock_rps_record_flow(sk); /* We may need to bind the socket. */ if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && inet_autobind(sk)) return -EAGAIN; return 0; } EXPORT_SYMBOL_GPL(inet_send_prepare); int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; if (unlikely(inet_send_prepare(sk))) return -EAGAIN; return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, sk, msg, size); } EXPORT_SYMBOL(inet_sendmsg); void inet_splice_eof(struct socket *sock) { const struct proto *prot; struct sock *sk = sock->sk; if (unlikely(inet_send_prepare(sk))) return; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); if (prot->splice_eof) prot->splice_eof(sock); } EXPORT_SYMBOL_GPL(inet_splice_eof); INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, size_t, int, int *)); int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int addr_len = 0; int err; if (likely(!(flags & MSG_ERRQUEUE))) sock_rps_record_flow(sk); err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, sk, msg, size, flags, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } EXPORT_SYMBOL(inet_recvmsg); int inet_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; int err = 0; /* This should really check to make sure * the socket is a TCP socket. (WHY AC...) */ how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 1->2 bit 2 snds. 2->3 */ if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ return -EINVAL; lock_sock(sk); if (sock->state == SS_CONNECTING) { if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) sock->state = SS_DISCONNECTING; else sock->state = SS_CONNECTED; } switch (sk->sk_state) { case TCP_CLOSE: err = -ENOTCONN; /* Hack to wake up other listeners, who can poll for EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ fallthrough; default: WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); if (sk->sk_prot->shutdown) sk->sk_prot->shutdown(sk, how); break; /* Remaining two branches are temporary solution for missing * close() in multithreaded environment. It is _not_ a good idea, * but we have no choice until close() is repaired at VFS level. */ case TCP_LISTEN: if (!(how & RCV_SHUTDOWN)) break; fallthrough; case TCP_SYN_SENT: err = sk->sk_prot->disconnect(sk, O_NONBLOCK); sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; break; } /* Wake up anyone sleeping in poll. */ sk->sk_state_change(sk); release_sock(sk); return err; } EXPORT_SYMBOL(inet_shutdown); /* * ioctl() calls you can issue on an INET socket. Most of these are * device configuration and stuff and very rarely used. Some ioctls * pass on to the socket itself. * * NOTE: I like the idea of a module for the config stuff. ie ifconfig * loads the devconfigure module does its configuring and unloads it. * There's a good 20K of config code hanging around the kernel. */ int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; int err = 0; struct net *net = sock_net(sk); void __user *p = (void __user *)arg; struct ifreq ifr; struct rtentry rt; switch (cmd) { case SIOCADDRT: case SIOCDELRT: if (copy_from_user(&rt, p, sizeof(struct rtentry))) return -EFAULT; err = ip_rt_ioctl(net, cmd, &rt); break; case SIOCRTMSG: err = -EINVAL; break; case SIOCDARP: case SIOCGARP: case SIOCSARP: err = arp_ioctl(net, cmd, (void __user *)arg); break; case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFNETMASK: case SIOCGIFDSTADDR: case SIOCGIFPFLAGS: if (get_user_ifreq(&ifr, NULL, p)) return -EFAULT; err = devinet_ioctl(net, cmd, &ifr); if (!err && put_user_ifreq(&ifr, p)) err = -EFAULT; break; case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFNETMASK: case SIOCSIFDSTADDR: case SIOCSIFPFLAGS: case SIOCSIFFLAGS: if (get_user_ifreq(&ifr, NULL, p)) return -EFAULT; err = devinet_ioctl(net, cmd, &ifr); break; default: if (sk->sk_prot->ioctl) err = sk_ioctl(sk, cmd, (void __user *)arg); else err = -ENOIOCTLCMD; break; } return err; } EXPORT_SYMBOL(inet_ioctl); #ifdef CONFIG_COMPAT static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, struct compat_rtentry __user *ur) { compat_uptr_t rtdev; struct rtentry rt; if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 3 * sizeof(struct sockaddr)) || get_user(rt.rt_flags, &ur->rt_flags) || get_user(rt.rt_metric, &ur->rt_metric) || get_user(rt.rt_mtu, &ur->rt_mtu) || get_user(rt.rt_window, &ur->rt_window) || get_user(rt.rt_irtt, &ur->rt_irtt) || get_user(rtdev, &ur->rt_dev)) return -EFAULT; rt.rt_dev = compat_ptr(rtdev); return ip_rt_ioctl(sock_net(sk), cmd, &rt); } static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); struct sock *sk = sock->sk; switch (cmd) { case SIOCADDRT: case SIOCDELRT: return inet_compat_routing_ioctl(sk, cmd, argp); default: if (!sk->sk_prot->compat_ioctl) return -ENOIOCTLCMD; return sk->sk_prot->compat_ioctl(sk, cmd, arg); } } #endif /* CONFIG_COMPAT */ const struct proto_ops inet_stream_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, .bind = inet_bind, .connect = inet_stream_connect, .socketpair = sock_no_socketpair, .accept = inet_accept, .getname = inet_getname, .poll = tcp_poll, .ioctl = inet_ioctl, .gettstamp = sock_gettstamp, .listen = inet_listen, .shutdown = inet_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = inet_recvmsg, #ifdef CONFIG_MMU .mmap = tcp_mmap, #endif .splice_eof = inet_splice_eof, .splice_read = tcp_splice_read, .set_peek_off = sk_set_peek_off, .read_sock = tcp_read_sock, .read_skb = tcp_read_skb, .sendmsg_locked = tcp_sendmsg_locked, .peek_len = tcp_peek_len, #ifdef CONFIG_COMPAT .compat_ioctl = inet_compat_ioctl, #endif .set_rcvlowat = tcp_set_rcvlowat, }; EXPORT_SYMBOL(inet_stream_ops); const struct proto_ops inet_dgram_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, .bind = inet_bind, .connect = inet_dgram_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = inet_getname, .poll = udp_poll, .ioctl = inet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = inet_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .read_skb = udp_read_skb, .recvmsg = inet_recvmsg, .mmap = sock_no_mmap, .splice_eof = inet_splice_eof, .set_peek_off = udp_set_peek_off, #ifdef CONFIG_COMPAT .compat_ioctl = inet_compat_ioctl, #endif }; EXPORT_SYMBOL(inet_dgram_ops); /* * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without * udp_poll */ static const struct proto_ops inet_sockraw_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, .bind = inet_bind, .connect = inet_dgram_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = inet_getname, .poll = datagram_poll, .ioctl = inet_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = inet_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = inet_recvmsg, .mmap = sock_no_mmap, .splice_eof = inet_splice_eof, #ifdef CONFIG_COMPAT .compat_ioctl = inet_compat_ioctl, #endif }; static const struct net_proto_family inet_family_ops = { .family = PF_INET, .create = inet_create, .owner = THIS_MODULE, }; /* Upon startup we insert all the elements in inetsw_array[] into * the linked list inetsw. */ static struct inet_protosw inetsw_array[] = { { .type = SOCK_STREAM, .protocol = IPPROTO_TCP, .prot = &tcp_prot, .ops = &inet_stream_ops, .flags = INET_PROTOSW_PERMANENT | INET_PROTOSW_ICSK, }, { .type = SOCK_DGRAM, .protocol = IPPROTO_UDP, .prot = &udp_prot, .ops = &inet_dgram_ops, .flags = INET_PROTOSW_PERMANENT, }, { .type = SOCK_DGRAM, .protocol = IPPROTO_ICMP, .prot = &ping_prot, .ops = &inet_sockraw_ops, .flags = INET_PROTOSW_REUSE, }, { .type = SOCK_RAW, .protocol = IPPROTO_IP, /* wild card */ .prot = &raw_prot, .ops = &inet_sockraw_ops, .flags = INET_PROTOSW_REUSE, } }; #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) void inet_register_protosw(struct inet_protosw *p) { struct list_head *lh; struct inet_protosw *answer; int protocol = p->protocol; struct list_head *last_perm; spin_lock_bh(&inetsw_lock); if (p->type >= SOCK_MAX) goto out_illegal; /* If we are trying to override a permanent protocol, bail. */ last_perm = &inetsw[p->type]; list_for_each(lh, &inetsw[p->type]) { answer = list_entry(lh, struct inet_protosw, list); /* Check only the non-wild match. */ if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) break; if (protocol == answer->protocol) goto out_permanent; last_perm = lh; } /* Add the new entry after the last permanent entry if any, so that * the new entry does not override a permanent entry when matched with * a wild-card protocol. But it is allowed to override any existing * non-permanent entry. This means that when we remove this entry, the * system automatically returns to the old behavior. */ list_add_rcu(&p->list, last_perm); out: spin_unlock_bh(&inetsw_lock); return; out_permanent: pr_err("Attempt to override permanent protocol %d\n", protocol); goto out; out_illegal: pr_err("Ignoring attempt to register invalid socket type %d\n", p->type); goto out; } EXPORT_SYMBOL(inet_register_protosw); void inet_unregister_protosw(struct inet_protosw *p) { if (INET_PROTOSW_PERMANENT & p->flags) { pr_err("Attempt to unregister permanent protocol %d\n", p->protocol); } else { spin_lock_bh(&inetsw_lock); list_del_rcu(&p->list); spin_unlock_bh(&inetsw_lock); synchronize_net(); } } EXPORT_SYMBOL(inet_unregister_protosw); static int inet_sk_reselect_saddr(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); __be32 old_saddr = inet->inet_saddr; __be32 daddr = inet->inet_daddr; struct flowi4 *fl4; struct rtable *rt; __be32 new_saddr; struct ip_options_rcu *inet_opt; int err; inet_opt = rcu_dereference_protected(inet->inet_opt, lockdep_sock_is_held(sk)); if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; /* Query new route. */ fl4 = &inet->cork.fl.u.ip4; rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, sk->sk_protocol, inet->inet_sport, inet->inet_dport, sk); if (IS_ERR(rt)) return PTR_ERR(rt); new_saddr = fl4->saddr; if (new_saddr == old_saddr) { sk_setup_caps(sk, &rt->dst); return 0; } err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); if (err) { ip_rt_put(rt); return err; } sk_setup_caps(sk, &rt->dst); if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", __func__, &old_saddr, &new_saddr); } /* * XXX The only one ugly spot where we need to * XXX really change the sockets identity after * XXX it has entered the hashes. -DaveM * * Besides that, it does not check for connection * uniqueness. Wait for troubles. */ return __sk_prot_rehash(sk); } int inet_sk_rebuild_header(struct sock *sk) { struct rtable *rt = dst_rtable(__sk_dst_check(sk, 0)); struct inet_sock *inet = inet_sk(sk); __be32 daddr; struct ip_options_rcu *inet_opt; struct flowi4 *fl4; int err; /* Route is OK, nothing to do. */ if (rt) return 0; /* Reroute. */ rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); daddr = inet->inet_daddr; if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; rcu_read_unlock(); fl4 = &inet->cork.fl.u.ip4; rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, inet->inet_dport, inet->inet_sport, sk->sk_protocol, ip_sock_rt_tos(sk), sk->sk_bound_dev_if); if (!IS_ERR(rt)) { err = 0; sk_setup_caps(sk, &rt->dst); } else { err = PTR_ERR(rt); /* Routing failed... */ sk->sk_route_caps = 0; /* * Other protocols have to map its equivalent state to TCP_SYN_SENT. * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme */ if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || sk->sk_state != TCP_SYN_SENT || (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || (err = inet_sk_reselect_saddr(sk)) != 0) WRITE_ONCE(sk->sk_err_soft, -err); } return err; } EXPORT_SYMBOL(inet_sk_rebuild_header); void inet_sk_set_state(struct sock *sk, int state) { trace_inet_sock_set_state(sk, sk->sk_state, state); sk->sk_state = state; } EXPORT_SYMBOL(inet_sk_set_state); void inet_sk_state_store(struct sock *sk, int newstate) { trace_inet_sock_set_state(sk, sk->sk_state, newstate); smp_store_release(&sk->sk_state, newstate); } struct sk_buff *inet_gso_segment(struct sk_buff *skb, netdev_features_t features) { bool udpfrag = false, fixedid = false, gso_partial, encap; struct sk_buff *segs = ERR_PTR(-EINVAL); const struct net_offload *ops; unsigned int offset = 0; struct iphdr *iph; int proto, tot_len; int nhoff; int ihl; int id; skb_reset_network_header(skb); nhoff = skb_network_header(skb) - skb_mac_header(skb); if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) goto out; iph = ip_hdr(skb); ihl = iph->ihl * 4; if (ihl < sizeof(*iph)) goto out; id = ntohs(iph->id); proto = iph->protocol; /* Warning: after this point, iph might be no longer valid */ if (unlikely(!pskb_may_pull(skb, ihl))) goto out; __skb_pull(skb, ihl); encap = SKB_GSO_CB(skb)->encap_level > 0; if (encap) features &= skb->dev->hw_enc_features; SKB_GSO_CB(skb)->encap_level += ihl; skb_reset_transport_header(skb); segs = ERR_PTR(-EPROTONOSUPPORT); if (!skb->encapsulation || encap) { udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); /* fixed ID is invalid if DF bit is not set */ if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) goto out; } ops = rcu_dereference(inet_offloads[proto]); if (likely(ops && ops->callbacks.gso_segment)) { segs = ops->callbacks.gso_segment(skb, features); if (!segs) skb->network_header = skb_mac_header(skb) + nhoff - skb->head; } if (IS_ERR_OR_NULL(segs)) goto out; gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); skb = segs; do { iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); if (udpfrag) { iph->frag_off = htons(offset >> 3); if (skb->next) iph->frag_off |= htons(IP_MF); offset += skb->len - nhoff - ihl; tot_len = skb->len - nhoff; } else if (skb_is_gso(skb)) { if (!fixedid) { iph->id = htons(id); id += skb_shinfo(skb)->gso_segs; } if (gso_partial) tot_len = skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)iph; else tot_len = skb->len - nhoff; } else { if (!fixedid) iph->id = htons(id++); tot_len = skb->len - nhoff; } iph->tot_len = htons(tot_len); ip_send_check(iph); if (encap) skb_reset_inner_headers(skb); skb->network_header = (u8 *)iph - skb->head; skb_reset_mac_len(skb); } while ((skb = skb->next)); out: return segs; } static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) return ERR_PTR(-EINVAL); return inet_gso_segment(skb, features); } struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct net_offload *ops; struct sk_buff *pp = NULL; const struct iphdr *iph; struct sk_buff *p; unsigned int hlen; unsigned int off; int flush = 1; int proto; off = skb_gro_offset(skb); hlen = off + sizeof(*iph); iph = skb_gro_header(skb, hlen, off); if (unlikely(!iph)) goto out; proto = iph->protocol; ops = rcu_dereference(inet_offloads[proto]); if (!ops || !ops->callbacks.gro_receive) goto out; if (*(u8 *)iph != 0x45) goto out; if (ip_is_fragment(iph)) goto out; if (unlikely(ip_fast_csum((u8 *)iph, 5))) goto out; NAPI_GRO_CB(skb)->proto = proto; flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (ntohl(*(__be32 *)&iph->id) & ~IP_DF)); list_for_each_entry(p, head, list) { struct iphdr *iph2; if (!NAPI_GRO_CB(p)->same_flow) continue; iph2 = (struct iphdr *)(p->data + off); /* The above works because, with the exception of the top * (inner most) layer, we only aggregate pkts with the same * hdr length so all the hdrs we'll need to verify will start * at the same offset. */ if ((iph->protocol ^ iph2->protocol) | ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } NAPI_GRO_CB(skb)->flush |= flush; NAPI_GRO_CB(skb)->network_offsets[NAPI_GRO_CB(skb)->encap_mark] = off; /* Note : No need to call skb_gro_postpull_rcsum() here, * as we already checked checksum over ipv4 header was 0 */ skb_gro_pull(skb, sizeof(*iph)); skb_set_transport_header(skb, skb_gro_offset(skb)); pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, ops->callbacks.gro_receive, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } static struct sk_buff *ipip_gro_receive(struct list_head *head, struct sk_buff *skb) { if (NAPI_GRO_CB(skb)->encap_mark) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } NAPI_GRO_CB(skb)->encap_mark = 1; return inet_gro_receive(head, skb); } #define SECONDS_PER_DAY 86400 /* inet_current_timestamp - Return IP network timestamp * * Return milliseconds since midnight in network byte order. */ __be32 inet_current_timestamp(void) { u32 secs; u32 msecs; struct timespec64 ts; ktime_get_real_ts64(&ts); /* Get secs since midnight. */ (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); /* Convert to msecs. */ msecs = secs * MSEC_PER_SEC; /* Convert nsec to msec. */ msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; /* Convert to network byte order. */ return htonl(msecs); } EXPORT_SYMBOL(inet_current_timestamp); int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) { unsigned int family = READ_ONCE(sk->sk_family); if (family == AF_INET) return ip_recv_error(sk, msg, len, addr_len); #if IS_ENABLED(CONFIG_IPV6) if (family == AF_INET6) return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); #endif return -EINVAL; } EXPORT_SYMBOL(inet_recv_error); int inet_gro_complete(struct sk_buff *skb, int nhoff) { struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); const struct net_offload *ops; __be16 totlen = iph->tot_len; int proto = iph->protocol; int err = -ENOSYS; if (skb->encapsulation) { skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); skb_set_inner_network_header(skb, nhoff); } iph_set_totlen(iph, skb->len - nhoff); csum_replace2(&iph->check, totlen, iph->tot_len); ops = rcu_dereference(inet_offloads[proto]); if (WARN_ON(!ops || !ops->callbacks.gro_complete)) goto out; /* Only need to add sizeof(*iph) to get to the next hdr below * because any hdr with option will have been flushed in * inet_gro_receive(). */ err = INDIRECT_CALL_2(ops->callbacks.gro_complete, tcp4_gro_complete, udp4_gro_complete, skb, nhoff + sizeof(*iph)); out: return err; } static int ipip_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; return inet_gro_complete(skb, nhoff); } int inet_ctl_sock_create(struct sock **sk, unsigned short family, unsigned short type, unsigned char protocol, struct net *net) { struct socket *sock; int rc = sock_create_kern(net, family, type, protocol, &sock); if (rc == 0) { *sk = sock->sk; (*sk)->sk_allocation = GFP_ATOMIC; (*sk)->sk_use_task_frag = false; /* * Unhash it so that IP input processing does not even see it, * we do not wish this socket to see incoming packets. */ (*sk)->sk_prot->unhash(*sk); } return rc; } EXPORT_SYMBOL_GPL(inet_ctl_sock_create); unsigned long snmp_fold_field(void __percpu *mib, int offt) { unsigned long res = 0; int i; for_each_possible_cpu(i) res += snmp_get_cpu_field(mib, i, offt); return res; } EXPORT_SYMBOL_GPL(snmp_fold_field); #if BITS_PER_LONG==32 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, size_t syncp_offset) { void *bhptr; struct u64_stats_sync *syncp; u64 v; unsigned int start; bhptr = per_cpu_ptr(mib, cpu); syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); do { start = u64_stats_fetch_begin(syncp); v = *(((u64 *)bhptr) + offt); } while (u64_stats_fetch_retry(syncp, start)); return v; } EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) { u64 res = 0; int cpu; for_each_possible_cpu(cpu) { res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); } return res; } EXPORT_SYMBOL_GPL(snmp_fold_field64); #endif #ifdef CONFIG_IP_MULTICAST static const struct net_protocol igmp_protocol = { .handler = igmp_rcv, }; #endif static const struct net_protocol icmp_protocol = { .handler = icmp_rcv, .err_handler = icmp_err, .no_policy = 1, }; static __net_init int ipv4_mib_init_net(struct net *net) { int i; net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); if (!net->mib.tcp_statistics) goto err_tcp_mib; net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); if (!net->mib.ip_statistics) goto err_ip_mib; for_each_possible_cpu(i) { struct ipstats_mib *af_inet_stats; af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); u64_stats_init(&af_inet_stats->syncp); } net->mib.net_statistics = alloc_percpu(struct linux_mib); if (!net->mib.net_statistics) goto err_net_mib; net->mib.udp_statistics = alloc_percpu(struct udp_mib); if (!net->mib.udp_statistics) goto err_udp_mib; net->mib.udplite_statistics = alloc_percpu(struct udp_mib); if (!net->mib.udplite_statistics) goto err_udplite_mib; net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); if (!net->mib.icmp_statistics) goto err_icmp_mib; net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), GFP_KERNEL); if (!net->mib.icmpmsg_statistics) goto err_icmpmsg_mib; tcp_mib_init(net); return 0; err_icmpmsg_mib: free_percpu(net->mib.icmp_statistics); err_icmp_mib: free_percpu(net->mib.udplite_statistics); err_udplite_mib: free_percpu(net->mib.udp_statistics); err_udp_mib: free_percpu(net->mib.net_statistics); err_net_mib: free_percpu(net->mib.ip_statistics); err_ip_mib: free_percpu(net->mib.tcp_statistics); err_tcp_mib: return -ENOMEM; } static __net_exit void ipv4_mib_exit_net(struct net *net) { kfree(net->mib.icmpmsg_statistics); free_percpu(net->mib.icmp_statistics); free_percpu(net->mib.udplite_statistics); free_percpu(net->mib.udp_statistics); free_percpu(net->mib.net_statistics); free_percpu(net->mib.ip_statistics); free_percpu(net->mib.tcp_statistics); #ifdef CONFIG_MPTCP /* allocated on demand, see mptcp_init_sock() */ free_percpu(net->mib.mptcp_statistics); #endif } static __net_initdata struct pernet_operations ipv4_mib_ops = { .init = ipv4_mib_init_net, .exit = ipv4_mib_exit_net, }; static int __init init_ipv4_mibs(void) { return register_pernet_subsys(&ipv4_mib_ops); } static __net_init int inet_init_net(struct net *net) { /* * Set defaults for local port range */ net->ipv4.ip_local_ports.range = 60999u << 16 | 32768u; seqlock_init(&net->ipv4.ping_group_range.lock); /* * Sane defaults - nobody may create ping sockets. * Boot scripts should set this to distro-specific group. */ net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); /* Default values for sysctl-controlled parameters. * We set them here, in case sysctl is not compiled. */ net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; net->ipv4.sysctl_ip_fwd_update_priority = 1; net->ipv4.sysctl_ip_dynaddr = 0; net->ipv4.sysctl_ip_early_demux = 1; net->ipv4.sysctl_udp_early_demux = 1; net->ipv4.sysctl_tcp_early_demux = 1; net->ipv4.sysctl_nexthop_compat_mode = 1; #ifdef CONFIG_SYSCTL net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; #endif /* Some igmp sysctl, whose values are always used */ net->ipv4.sysctl_igmp_max_memberships = 20; net->ipv4.sysctl_igmp_max_msf = 10; /* IGMP reports for link-local multicast groups are enabled by default */ net->ipv4.sysctl_igmp_llm_reports = 1; net->ipv4.sysctl_igmp_qrv = 2; net->ipv4.sysctl_fib_notify_on_flag_change = 0; return 0; } static __net_initdata struct pernet_operations af_inet_ops = { .init = inet_init_net, }; static int __init init_inet_pernet_ops(void) { return register_pernet_subsys(&af_inet_ops); } static int ipv4_proc_init(void); /* * IP protocol layer initialiser */ static const struct net_offload ipip_offload = { .callbacks = { .gso_segment = ipip_gso_segment, .gro_receive = ipip_gro_receive, .gro_complete = ipip_gro_complete, }, }; static int __init ipip_offload_init(void) { return inet_add_offload(&ipip_offload, IPPROTO_IPIP); } static int __init ipv4_offload_init(void) { /* * Add offloads */ if (udpv4_offload_init() < 0) pr_crit("%s: Cannot add UDP protocol offload\n", __func__); if (tcpv4_offload_init() < 0) pr_crit("%s: Cannot add TCP protocol offload\n", __func__); if (ipip_offload_init() < 0) pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); net_hotdata.ip_packet_offload = (struct packet_offload) { .type = cpu_to_be16(ETH_P_IP), .callbacks = { .gso_segment = inet_gso_segment, .gro_receive = inet_gro_receive, .gro_complete = inet_gro_complete, }, }; dev_add_offload(&net_hotdata.ip_packet_offload); return 0; } fs_initcall(ipv4_offload_init); static struct packet_type ip_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_IP), .func = ip_rcv, .list_func = ip_list_rcv, }; static int __init inet_init(void) { struct inet_protosw *q; struct list_head *r; int rc; sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); raw_hashinfo_init(&raw_v4_hashinfo); rc = proto_register(&tcp_prot, 1); if (rc) goto out; rc = proto_register(&udp_prot, 1); if (rc) goto out_unregister_tcp_proto; rc = proto_register(&raw_prot, 1); if (rc) goto out_unregister_udp_proto; rc = proto_register(&ping_prot, 1); if (rc) goto out_unregister_raw_proto; /* * Tell SOCKET that we are alive... */ (void)sock_register(&inet_family_ops); #ifdef CONFIG_SYSCTL ip_static_sysctl_init(); #endif /* * Add all the base protocols. */ if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) pr_crit("%s: Cannot add ICMP protocol\n", __func__); net_hotdata.udp_protocol = (struct net_protocol) { .handler = udp_rcv, .err_handler = udp_err, .no_policy = 1, }; if (inet_add_protocol(&net_hotdata.udp_protocol, IPPROTO_UDP) < 0) pr_crit("%s: Cannot add UDP protocol\n", __func__); net_hotdata.tcp_protocol = (struct net_protocol) { .handler = tcp_v4_rcv, .err_handler = tcp_v4_err, .no_policy = 1, .icmp_strict_tag_validation = 1, }; if (inet_add_protocol(&net_hotdata.tcp_protocol, IPPROTO_TCP) < 0) pr_crit("%s: Cannot add TCP protocol\n", __func__); #ifdef CONFIG_IP_MULTICAST if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) pr_crit("%s: Cannot add IGMP protocol\n", __func__); #endif /* Register the socket-side information for inet_create. */ for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) INIT_LIST_HEAD(r); for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) inet_register_protosw(q); /* * Set the ARP module up */ arp_init(); /* * Set the IP module up */ ip_init(); /* Initialise per-cpu ipv4 mibs */ if (init_ipv4_mibs()) panic("%s: Cannot init ipv4 mibs\n", __func__); /* Setup TCP slab cache for open requests. */ tcp_init(); /* Setup UDP memory threshold */ udp_init(); /* Add UDP-Lite (RFC 3828) */ udplite4_register(); raw_init(); ping_init(); /* * Set the ICMP layer up */ if (icmp_init() < 0) panic("Failed to create the ICMP control socket.\n"); /* * Initialise the multicast router */ #if defined(CONFIG_IP_MROUTE) if (ip_mr_init()) pr_crit("%s: Cannot init ipv4 mroute\n", __func__); #endif if (init_inet_pernet_ops()) pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); ipv4_proc_init(); ipfrag_init(); dev_add_pack(&ip_packet_type); ip_tunnel_core_init(); rc = 0; out: return rc; out_unregister_raw_proto: proto_unregister(&raw_prot); out_unregister_udp_proto: proto_unregister(&udp_prot); out_unregister_tcp_proto: proto_unregister(&tcp_prot); goto out; } fs_initcall(inet_init); /* ------------------------------------------------------------------------ */ #ifdef CONFIG_PROC_FS static int __init ipv4_proc_init(void) { int rc = 0; if (raw_proc_init()) goto out_raw; if (tcp4_proc_init()) goto out_tcp; if (udp4_proc_init()) goto out_udp; if (ping_proc_init()) goto out_ping; if (ip_misc_proc_init()) goto out_misc; out: return rc; out_misc: ping_proc_exit(); out_ping: udp4_proc_exit(); out_udp: tcp4_proc_exit(); out_tcp: raw_proc_exit(); out_raw: rc = -ENOMEM; goto out; } #else /* CONFIG_PROC_FS */ static int __init ipv4_proc_init(void) { return 0; } #endif /* CONFIG_PROC_FS */ |
523 528 451 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIMENS_H #define _LINUX_TIMENS_H #include <linux/sched.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/err.h> #include <linux/time64.h> struct user_namespace; extern struct user_namespace init_user_ns; struct vm_area_struct; struct timens_offsets { struct timespec64 monotonic; struct timespec64 boottime; }; struct time_namespace { struct user_namespace *user_ns; struct ucounts *ucounts; struct ns_common ns; struct timens_offsets offsets; struct page *vvar_page; /* If set prevents changing offsets after any task joined namespace. */ bool frozen_offsets; } __randomize_layout; extern struct time_namespace init_time_ns; #ifdef CONFIG_TIME_NS extern int vdso_join_timens(struct task_struct *task, struct time_namespace *ns); extern void timens_commit(struct task_struct *tsk, struct time_namespace *ns); static inline struct time_namespace *get_time_ns(struct time_namespace *ns) { refcount_inc(&ns->ns.count); return ns; } struct time_namespace *copy_time_ns(unsigned long flags, struct user_namespace *user_ns, struct time_namespace *old_ns); void free_time_ns(struct time_namespace *ns); void timens_on_fork(struct nsproxy *nsproxy, struct task_struct *tsk); struct page *find_timens_vvar_page(struct vm_area_struct *vma); static inline void put_time_ns(struct time_namespace *ns) { if (refcount_dec_and_test(&ns->ns.count)) free_time_ns(ns); } void proc_timens_show_offsets(struct task_struct *p, struct seq_file *m); struct proc_timens_offset { int clockid; struct timespec64 val; }; int proc_timens_set_offset(struct file *file, struct task_struct *p, struct proc_timens_offset *offsets, int n); static inline void timens_add_monotonic(struct timespec64 *ts) { struct timens_offsets *ns_offsets = ¤t->nsproxy->time_ns->offsets; *ts = timespec64_add(*ts, ns_offsets->monotonic); } static inline void timens_add_boottime(struct timespec64 *ts) { struct timens_offsets *ns_offsets = ¤t->nsproxy->time_ns->offsets; *ts = timespec64_add(*ts, ns_offsets->boottime); } static inline u64 timens_add_boottime_ns(u64 nsec) { struct timens_offsets *ns_offsets = ¤t->nsproxy->time_ns->offsets; return nsec + timespec64_to_ns(&ns_offsets->boottime); } static inline void timens_sub_boottime(struct timespec64 *ts) { struct timens_offsets *ns_offsets = ¤t->nsproxy->time_ns->offsets; *ts = timespec64_sub(*ts, ns_offsets->boottime); } ktime_t do_timens_ktime_to_host(clockid_t clockid, ktime_t tim, struct timens_offsets *offsets); static inline ktime_t timens_ktime_to_host(clockid_t clockid, ktime_t tim) { struct time_namespace *ns = current->nsproxy->time_ns; if (likely(ns == &init_time_ns)) return tim; return do_timens_ktime_to_host(clockid, tim, &ns->offsets); } #else static inline int vdso_join_timens(struct task_struct *task, struct time_namespace *ns) { return 0; } static inline void timens_commit(struct task_struct *tsk, struct time_namespace *ns) { } static inline struct time_namespace *get_time_ns(struct time_namespace *ns) { return NULL; } static inline void put_time_ns(struct time_namespace *ns) { } static inline struct time_namespace *copy_time_ns(unsigned long flags, struct user_namespace *user_ns, struct time_namespace *old_ns) { if (flags & CLONE_NEWTIME) return ERR_PTR(-EINVAL); return old_ns; } static inline void timens_on_fork(struct nsproxy *nsproxy, struct task_struct *tsk) { return; } static inline struct page *find_timens_vvar_page(struct vm_area_struct *vma) { return NULL; } static inline void timens_add_monotonic(struct timespec64 *ts) { } static inline void timens_add_boottime(struct timespec64 *ts) { } static inline u64 timens_add_boottime_ns(u64 nsec) { return nsec; } static inline void timens_sub_boottime(struct timespec64 *ts) { } static inline ktime_t timens_ktime_to_host(clockid_t clockid, ktime_t tim) { return tim; } #endif struct vdso_data *arch_get_vdso_data(void *vvar_page); #endif /* _LINUX_TIMENS_H */ |
1 4 4 2 3 2 2 4 1 1 36 7 3 15 11 11 14 10 1 1 2 1 1 5 12 2 2 1 2 4 1 54 2 1 1 37 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2009 Patrick McHardy <kaber@trash.net> * * Development of this code funded by Astaro AG (http://www.astaro.com/) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_core.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_offload.h> struct nft_bitwise { u8 sreg; u8 dreg; enum nft_bitwise_ops op:8; u8 len; struct nft_data mask; struct nft_data xor; struct nft_data data; }; static void nft_bitwise_eval_bool(u32 *dst, const u32 *src, const struct nft_bitwise *priv) { unsigned int i; for (i = 0; i < DIV_ROUND_UP(priv->len, sizeof(u32)); i++) dst[i] = (src[i] & priv->mask.data[i]) ^ priv->xor.data[i]; } static void nft_bitwise_eval_lshift(u32 *dst, const u32 *src, const struct nft_bitwise *priv) { u32 shift = priv->data.data[0]; unsigned int i; u32 carry = 0; for (i = DIV_ROUND_UP(priv->len, sizeof(u32)); i > 0; i--) { dst[i - 1] = (src[i - 1] << shift) | carry; carry = src[i - 1] >> (BITS_PER_TYPE(u32) - shift); } } static void nft_bitwise_eval_rshift(u32 *dst, const u32 *src, const struct nft_bitwise *priv) { u32 shift = priv->data.data[0]; unsigned int i; u32 carry = 0; for (i = 0; i < DIV_ROUND_UP(priv->len, sizeof(u32)); i++) { dst[i] = carry | (src[i] >> shift); carry = src[i] << (BITS_PER_TYPE(u32) - shift); } } void nft_bitwise_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_bitwise *priv = nft_expr_priv(expr); const u32 *src = ®s->data[priv->sreg]; u32 *dst = ®s->data[priv->dreg]; switch (priv->op) { case NFT_BITWISE_BOOL: nft_bitwise_eval_bool(dst, src, priv); break; case NFT_BITWISE_LSHIFT: nft_bitwise_eval_lshift(dst, src, priv); break; case NFT_BITWISE_RSHIFT: nft_bitwise_eval_rshift(dst, src, priv); break; } } static const struct nla_policy nft_bitwise_policy[NFTA_BITWISE_MAX + 1] = { [NFTA_BITWISE_SREG] = { .type = NLA_U32 }, [NFTA_BITWISE_DREG] = { .type = NLA_U32 }, [NFTA_BITWISE_LEN] = { .type = NLA_U32 }, [NFTA_BITWISE_MASK] = { .type = NLA_NESTED }, [NFTA_BITWISE_XOR] = { .type = NLA_NESTED }, [NFTA_BITWISE_OP] = NLA_POLICY_MAX(NLA_BE32, 255), [NFTA_BITWISE_DATA] = { .type = NLA_NESTED }, }; static int nft_bitwise_init_bool(struct nft_bitwise *priv, const struct nlattr *const tb[]) { struct nft_data_desc mask = { .type = NFT_DATA_VALUE, .size = sizeof(priv->mask), .len = priv->len, }; struct nft_data_desc xor = { .type = NFT_DATA_VALUE, .size = sizeof(priv->xor), .len = priv->len, }; int err; if (tb[NFTA_BITWISE_DATA]) return -EINVAL; if (!tb[NFTA_BITWISE_MASK] || !tb[NFTA_BITWISE_XOR]) return -EINVAL; err = nft_data_init(NULL, &priv->mask, &mask, tb[NFTA_BITWISE_MASK]); if (err < 0) return err; err = nft_data_init(NULL, &priv->xor, &xor, tb[NFTA_BITWISE_XOR]); if (err < 0) goto err_xor_err; return 0; err_xor_err: nft_data_release(&priv->mask, mask.type); return err; } static int nft_bitwise_init_shift(struct nft_bitwise *priv, const struct nlattr *const tb[]) { struct nft_data_desc desc = { .type = NFT_DATA_VALUE, .size = sizeof(priv->data), .len = sizeof(u32), }; int err; if (tb[NFTA_BITWISE_MASK] || tb[NFTA_BITWISE_XOR]) return -EINVAL; if (!tb[NFTA_BITWISE_DATA]) return -EINVAL; err = nft_data_init(NULL, &priv->data, &desc, tb[NFTA_BITWISE_DATA]); if (err < 0) return err; if (priv->data.data[0] >= BITS_PER_TYPE(u32)) { nft_data_release(&priv->data, desc.type); return -EINVAL; } return 0; } static int nft_bitwise_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_bitwise *priv = nft_expr_priv(expr); u32 len; int err; err = nft_parse_u32_check(tb[NFTA_BITWISE_LEN], U8_MAX, &len); if (err < 0) return err; priv->len = len; err = nft_parse_register_load(tb[NFTA_BITWISE_SREG], &priv->sreg, priv->len); if (err < 0) return err; err = nft_parse_register_store(ctx, tb[NFTA_BITWISE_DREG], &priv->dreg, NULL, NFT_DATA_VALUE, priv->len); if (err < 0) return err; if (tb[NFTA_BITWISE_OP]) { priv->op = ntohl(nla_get_be32(tb[NFTA_BITWISE_OP])); switch (priv->op) { case NFT_BITWISE_BOOL: case NFT_BITWISE_LSHIFT: case NFT_BITWISE_RSHIFT: break; default: return -EOPNOTSUPP; } } else { priv->op = NFT_BITWISE_BOOL; } switch(priv->op) { case NFT_BITWISE_BOOL: err = nft_bitwise_init_bool(priv, tb); break; case NFT_BITWISE_LSHIFT: case NFT_BITWISE_RSHIFT: err = nft_bitwise_init_shift(priv, tb); break; } return err; } static int nft_bitwise_dump_bool(struct sk_buff *skb, const struct nft_bitwise *priv) { if (nft_data_dump(skb, NFTA_BITWISE_MASK, &priv->mask, NFT_DATA_VALUE, priv->len) < 0) return -1; if (nft_data_dump(skb, NFTA_BITWISE_XOR, &priv->xor, NFT_DATA_VALUE, priv->len) < 0) return -1; return 0; } static int nft_bitwise_dump_shift(struct sk_buff *skb, const struct nft_bitwise *priv) { if (nft_data_dump(skb, NFTA_BITWISE_DATA, &priv->data, NFT_DATA_VALUE, sizeof(u32)) < 0) return -1; return 0; } static int nft_bitwise_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_bitwise *priv = nft_expr_priv(expr); int err = 0; if (nft_dump_register(skb, NFTA_BITWISE_SREG, priv->sreg)) return -1; if (nft_dump_register(skb, NFTA_BITWISE_DREG, priv->dreg)) return -1; if (nla_put_be32(skb, NFTA_BITWISE_LEN, htonl(priv->len))) return -1; if (nla_put_be32(skb, NFTA_BITWISE_OP, htonl(priv->op))) return -1; switch (priv->op) { case NFT_BITWISE_BOOL: err = nft_bitwise_dump_bool(skb, priv); break; case NFT_BITWISE_LSHIFT: case NFT_BITWISE_RSHIFT: err = nft_bitwise_dump_shift(skb, priv); break; } return err; } static struct nft_data zero; static int nft_bitwise_offload(struct nft_offload_ctx *ctx, struct nft_flow_rule *flow, const struct nft_expr *expr) { const struct nft_bitwise *priv = nft_expr_priv(expr); struct nft_offload_reg *reg = &ctx->regs[priv->dreg]; if (priv->op != NFT_BITWISE_BOOL) return -EOPNOTSUPP; if (memcmp(&priv->xor, &zero, sizeof(priv->xor)) || priv->sreg != priv->dreg || priv->len != reg->len) return -EOPNOTSUPP; memcpy(®->mask, &priv->mask, sizeof(priv->mask)); return 0; } static bool nft_bitwise_reduce(struct nft_regs_track *track, const struct nft_expr *expr) { const struct nft_bitwise *priv = nft_expr_priv(expr); const struct nft_bitwise *bitwise; unsigned int regcount; u8 dreg; int i; if (!track->regs[priv->sreg].selector) return false; bitwise = nft_expr_priv(track->regs[priv->dreg].selector); if (track->regs[priv->sreg].selector == track->regs[priv->dreg].selector && track->regs[priv->sreg].num_reg == 0 && track->regs[priv->dreg].bitwise && track->regs[priv->dreg].bitwise->ops == expr->ops && priv->sreg == bitwise->sreg && priv->dreg == bitwise->dreg && priv->op == bitwise->op && priv->len == bitwise->len && !memcmp(&priv->mask, &bitwise->mask, sizeof(priv->mask)) && !memcmp(&priv->xor, &bitwise->xor, sizeof(priv->xor)) && !memcmp(&priv->data, &bitwise->data, sizeof(priv->data))) { track->cur = expr; return true; } if (track->regs[priv->sreg].bitwise || track->regs[priv->sreg].num_reg != 0) { nft_reg_track_cancel(track, priv->dreg, priv->len); return false; } if (priv->sreg != priv->dreg) { nft_reg_track_update(track, track->regs[priv->sreg].selector, priv->dreg, priv->len); } dreg = priv->dreg; regcount = DIV_ROUND_UP(priv->len, NFT_REG32_SIZE); for (i = 0; i < regcount; i++, dreg++) track->regs[dreg].bitwise = expr; return false; } static const struct nft_expr_ops nft_bitwise_ops = { .type = &nft_bitwise_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_bitwise)), .eval = nft_bitwise_eval, .init = nft_bitwise_init, .dump = nft_bitwise_dump, .reduce = nft_bitwise_reduce, .offload = nft_bitwise_offload, }; static int nft_bitwise_extract_u32_data(const struct nlattr * const tb, u32 *out) { struct nft_data data; struct nft_data_desc desc = { .type = NFT_DATA_VALUE, .size = sizeof(data), .len = sizeof(u32), }; int err; err = nft_data_init(NULL, &data, &desc, tb); if (err < 0) return err; *out = data.data[0]; return 0; } static int nft_bitwise_fast_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_bitwise_fast_expr *priv = nft_expr_priv(expr); int err; err = nft_parse_register_load(tb[NFTA_BITWISE_SREG], &priv->sreg, sizeof(u32)); if (err < 0) return err; err = nft_parse_register_store(ctx, tb[NFTA_BITWISE_DREG], &priv->dreg, NULL, NFT_DATA_VALUE, sizeof(u32)); if (err < 0) return err; if (tb[NFTA_BITWISE_DATA]) return -EINVAL; if (!tb[NFTA_BITWISE_MASK] || !tb[NFTA_BITWISE_XOR]) return -EINVAL; err = nft_bitwise_extract_u32_data(tb[NFTA_BITWISE_MASK], &priv->mask); if (err < 0) return err; err = nft_bitwise_extract_u32_data(tb[NFTA_BITWISE_XOR], &priv->xor); if (err < 0) return err; return 0; } static int nft_bitwise_fast_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_bitwise_fast_expr *priv = nft_expr_priv(expr); struct nft_data data; if (nft_dump_register(skb, NFTA_BITWISE_SREG, priv->sreg)) return -1; if (nft_dump_register(skb, NFTA_BITWISE_DREG, priv->dreg)) return -1; if (nla_put_be32(skb, NFTA_BITWISE_LEN, htonl(sizeof(u32)))) return -1; if (nla_put_be32(skb, NFTA_BITWISE_OP, htonl(NFT_BITWISE_BOOL))) return -1; data.data[0] = priv->mask; if (nft_data_dump(skb, NFTA_BITWISE_MASK, &data, NFT_DATA_VALUE, sizeof(u32)) < 0) return -1; data.data[0] = priv->xor; if (nft_data_dump(skb, NFTA_BITWISE_XOR, &data, NFT_DATA_VALUE, sizeof(u32)) < 0) return -1; return 0; } static int nft_bitwise_fast_offload(struct nft_offload_ctx *ctx, struct nft_flow_rule *flow, const struct nft_expr *expr) { const struct nft_bitwise_fast_expr *priv = nft_expr_priv(expr); struct nft_offload_reg *reg = &ctx->regs[priv->dreg]; if (priv->xor || priv->sreg != priv->dreg || reg->len != sizeof(u32)) return -EOPNOTSUPP; reg->mask.data[0] = priv->mask; return 0; } static bool nft_bitwise_fast_reduce(struct nft_regs_track *track, const struct nft_expr *expr) { const struct nft_bitwise_fast_expr *priv = nft_expr_priv(expr); const struct nft_bitwise_fast_expr *bitwise; if (!track->regs[priv->sreg].selector) return false; bitwise = nft_expr_priv(track->regs[priv->dreg].selector); if (track->regs[priv->sreg].selector == track->regs[priv->dreg].selector && track->regs[priv->dreg].bitwise && track->regs[priv->dreg].bitwise->ops == expr->ops && priv->sreg == bitwise->sreg && priv->dreg == bitwise->dreg && priv->mask == bitwise->mask && priv->xor == bitwise->xor) { track->cur = expr; return true; } if (track->regs[priv->sreg].bitwise) { nft_reg_track_cancel(track, priv->dreg, NFT_REG32_SIZE); return false; } if (priv->sreg != priv->dreg) { track->regs[priv->dreg].selector = track->regs[priv->sreg].selector; } track->regs[priv->dreg].bitwise = expr; return false; } const struct nft_expr_ops nft_bitwise_fast_ops = { .type = &nft_bitwise_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_bitwise_fast_expr)), .eval = NULL, /* inlined */ .init = nft_bitwise_fast_init, .dump = nft_bitwise_fast_dump, .reduce = nft_bitwise_fast_reduce, .offload = nft_bitwise_fast_offload, }; static const struct nft_expr_ops * nft_bitwise_select_ops(const struct nft_ctx *ctx, const struct nlattr * const tb[]) { int err; u32 len; if (!tb[NFTA_BITWISE_LEN] || !tb[NFTA_BITWISE_SREG] || !tb[NFTA_BITWISE_DREG]) return ERR_PTR(-EINVAL); err = nft_parse_u32_check(tb[NFTA_BITWISE_LEN], U8_MAX, &len); if (err < 0) return ERR_PTR(err); if (len != sizeof(u32)) return &nft_bitwise_ops; if (tb[NFTA_BITWISE_OP] && ntohl(nla_get_be32(tb[NFTA_BITWISE_OP])) != NFT_BITWISE_BOOL) return &nft_bitwise_ops; return &nft_bitwise_fast_ops; } struct nft_expr_type nft_bitwise_type __read_mostly = { .name = "bitwise", .select_ops = nft_bitwise_select_ops, .policy = nft_bitwise_policy, .maxattr = NFTA_BITWISE_MAX, .owner = THIS_MODULE, }; bool nft_expr_reduce_bitwise(struct nft_regs_track *track, const struct nft_expr *expr) { const struct nft_expr *last = track->last; const struct nft_expr *next; if (expr == last) return false; next = nft_expr_next(expr); if (next->ops == &nft_bitwise_ops) return nft_bitwise_reduce(track, next); else if (next->ops == &nft_bitwise_fast_ops) return nft_bitwise_fast_reduce(track, next); return false; } EXPORT_SYMBOL_GPL(nft_expr_reduce_bitwise); |
15 15 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | // SPDX-License-Identifier: GPL-2.0-only /* * x86 APERF/MPERF KHz calculation for * /sys/.../cpufreq/scaling_cur_freq * * Copyright (C) 2017 Intel Corp. * Author: Len Brown <len.brown@intel.com> */ #include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/ktime.h> #include <linux/math64.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/sched/isolation.h> #include <linux/sched/topology.h> #include <linux/smp.h> #include <linux/syscore_ops.h> #include <asm/cpu.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include "cpu.h" struct aperfmperf { seqcount_t seq; unsigned long last_update; u64 acnt; u64 mcnt; u64 aperf; u64 mperf; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct aperfmperf, cpu_samples) = { .seq = SEQCNT_ZERO(cpu_samples.seq) }; static void init_counter_refs(void) { u64 aperf, mperf; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); this_cpu_write(cpu_samples.aperf, aperf); this_cpu_write(cpu_samples.mperf, mperf); } #if defined(CONFIG_X86_64) && defined(CONFIG_SMP) /* * APERF/MPERF frequency ratio computation. * * The scheduler wants to do frequency invariant accounting and needs a <1 * ratio to account for the 'current' frequency, corresponding to * freq_curr / freq_max. * * Since the frequency freq_curr on x86 is controlled by micro-controller and * our P-state setting is little more than a request/hint, we need to observe * the effective frequency 'BusyMHz', i.e. the average frequency over a time * interval after discarding idle time. This is given by: * * BusyMHz = delta_APERF / delta_MPERF * freq_base * * where freq_base is the max non-turbo P-state. * * The freq_max term has to be set to a somewhat arbitrary value, because we * can't know which turbo states will be available at a given point in time: * it all depends on the thermal headroom of the entire package. We set it to * the turbo level with 4 cores active. * * Benchmarks show that's a good compromise between the 1C turbo ratio * (freq_curr/freq_max would rarely reach 1) and something close to freq_base, * which would ignore the entire turbo range (a conspicuous part, making * freq_curr/freq_max always maxed out). * * An exception to the heuristic above is the Atom uarch, where we choose the * highest turbo level for freq_max since Atom's are generally oriented towards * power efficiency. * * Setting freq_max to anything less than the 1C turbo ratio makes the ratio * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1. */ DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key); static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE; static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE; void arch_set_max_freq_ratio(bool turbo_disabled) { arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE : arch_turbo_freq_ratio; } EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio); static bool __init turbo_disabled(void) { u64 misc_en; int err; err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en); if (err) return false; return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); } static bool __init slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) { int err; err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq); if (err) return false; err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq); if (err) return false; *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */ *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */ return true; } #define X86_MATCH(vfm) \ X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, NULL) static const struct x86_cpu_id has_knl_turbo_ratio_limits[] __initconst = { X86_MATCH(INTEL_XEON_PHI_KNL), X86_MATCH(INTEL_XEON_PHI_KNM), {} }; static const struct x86_cpu_id has_skx_turbo_ratio_limits[] __initconst = { X86_MATCH(INTEL_SKYLAKE_X), {} }; static const struct x86_cpu_id has_glm_turbo_ratio_limits[] __initconst = { X86_MATCH(INTEL_ATOM_GOLDMONT), X86_MATCH(INTEL_ATOM_GOLDMONT_D), X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS), {} }; static bool __init knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int num_delta_fratio) { int fratio, delta_fratio, found; int err, i; u64 msr; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); if (err) return false; fratio = (msr >> 8) & 0xFF; i = 16; found = 0; do { if (found >= num_delta_fratio) { *turbo_freq = fratio; return true; } delta_fratio = (msr >> (i + 5)) & 0x7; if (delta_fratio) { found += 1; fratio -= delta_fratio; } i += 8; } while (i < 64); return true; } static bool __init skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size) { u64 ratios, counts; u32 group_size; int err, i; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios); if (err) return false; err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts); if (err) return false; for (i = 0; i < 64; i += 8) { group_size = (counts >> i) & 0xFF; if (group_size >= size) { *turbo_freq = (ratios >> i) & 0xFF; return true; } } return false; } static bool __init core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) { u64 msr; int err; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */ /* The CPU may have less than 4 cores */ if (!*turbo_freq) *turbo_freq = msr & 0xFF; /* 1C turbo */ return true; } static bool __init intel_set_max_freq_ratio(void) { u64 base_freq, turbo_freq; u64 turbo_ratio; if (slv_set_max_freq_ratio(&base_freq, &turbo_freq)) goto out; if (x86_match_cpu(has_glm_turbo_ratio_limits) && skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) goto out; if (x86_match_cpu(has_knl_turbo_ratio_limits) && knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) goto out; if (x86_match_cpu(has_skx_turbo_ratio_limits) && skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4)) goto out; if (core_set_max_freq_ratio(&base_freq, &turbo_freq)) goto out; return false; out: /* * Some hypervisors advertise X86_FEATURE_APERFMPERF * but then fill all MSR's with zeroes. * Some CPUs have turbo boost but don't declare any turbo ratio * in MSR_TURBO_RATIO_LIMIT. */ if (!base_freq || !turbo_freq) { pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n"); return false; } turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq); if (!turbo_ratio) { pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n"); return false; } arch_turbo_freq_ratio = turbo_ratio; arch_set_max_freq_ratio(turbo_disabled()); return true; } #ifdef CONFIG_PM_SLEEP static struct syscore_ops freq_invariance_syscore_ops = { .resume = init_counter_refs, }; static void register_freq_invariance_syscore_ops(void) { register_syscore_ops(&freq_invariance_syscore_ops); } #else static inline void register_freq_invariance_syscore_ops(void) {} #endif static void freq_invariance_enable(void) { if (static_branch_unlikely(&arch_scale_freq_key)) { WARN_ON_ONCE(1); return; } static_branch_enable(&arch_scale_freq_key); register_freq_invariance_syscore_ops(); pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio); } void freq_invariance_set_perf_ratio(u64 ratio, bool turbo_disabled) { arch_turbo_freq_ratio = ratio; arch_set_max_freq_ratio(turbo_disabled); freq_invariance_enable(); } static void __init bp_init_freq_invariance(void) { if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) return; if (intel_set_max_freq_ratio()) freq_invariance_enable(); } static void disable_freq_invariance_workfn(struct work_struct *work) { int cpu; static_branch_disable(&arch_scale_freq_key); /* * Set arch_freq_scale to a default value on all cpus * This negates the effect of scaling */ for_each_possible_cpu(cpu) per_cpu(arch_freq_scale, cpu) = SCHED_CAPACITY_SCALE; } static DECLARE_WORK(disable_freq_invariance_work, disable_freq_invariance_workfn); DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); static void scale_freq_tick(u64 acnt, u64 mcnt) { u64 freq_scale; if (!arch_scale_freq_invariant()) return; if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt)) goto error; if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt) goto error; freq_scale = div64_u64(acnt, mcnt); if (!freq_scale) goto error; if (freq_scale > SCHED_CAPACITY_SCALE) freq_scale = SCHED_CAPACITY_SCALE; this_cpu_write(arch_freq_scale, freq_scale); return; error: pr_warn("Scheduler frequency invariance went wobbly, disabling!\n"); schedule_work(&disable_freq_invariance_work); } #else static inline void bp_init_freq_invariance(void) { } static inline void scale_freq_tick(u64 acnt, u64 mcnt) { } #endif /* CONFIG_X86_64 && CONFIG_SMP */ void arch_scale_freq_tick(void) { struct aperfmperf *s = this_cpu_ptr(&cpu_samples); u64 acnt, mcnt, aperf, mperf; if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) return; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); acnt = aperf - s->aperf; mcnt = mperf - s->mperf; s->aperf = aperf; s->mperf = mperf; raw_write_seqcount_begin(&s->seq); s->last_update = jiffies; s->acnt = acnt; s->mcnt = mcnt; raw_write_seqcount_end(&s->seq); scale_freq_tick(acnt, mcnt); } /* * Discard samples older than the define maximum sample age of 20ms. There * is no point in sending IPIs in such a case. If the scheduler tick was * not running then the CPU is either idle or isolated. */ #define MAX_SAMPLE_AGE ((unsigned long)HZ / 50) unsigned int arch_freq_get_on_cpu(int cpu) { struct aperfmperf *s = per_cpu_ptr(&cpu_samples, cpu); unsigned int seq, freq; unsigned long last; u64 acnt, mcnt; if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) goto fallback; do { seq = raw_read_seqcount_begin(&s->seq); last = s->last_update; acnt = s->acnt; mcnt = s->mcnt; } while (read_seqcount_retry(&s->seq, seq)); /* * Bail on invalid count and when the last update was too long ago, * which covers idle and NOHZ full CPUs. */ if (!mcnt || (jiffies - last) > MAX_SAMPLE_AGE) goto fallback; return div64_u64((cpu_khz * acnt), mcnt); fallback: freq = cpufreq_quick_get(cpu); return freq ? freq : cpu_khz; } static int __init bp_init_aperfmperf(void) { if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) return 0; init_counter_refs(); bp_init_freq_invariance(); return 0; } early_initcall(bp_init_aperfmperf); void ap_init_aperfmperf(void) { if (cpu_feature_enabled(X86_FEATURE_APERFMPERF)) init_counter_refs(); } |
34 5 3 1 1 34 32 5 27 5 25 32 32 32 32 32 27 5 32 34 34 33 34 34 4 32 32 32 34 34 4 4 4 38 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | // SPDX-License-Identifier: GPL-2.0-or-later /* RxRPC remote transport endpoint record management * * Copyright (C) 2007, 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/udp.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/slab.h> #include <linux/hashtable.h> #include <net/sock.h> #include <net/af_rxrpc.h> #include <net/ip.h> #include <net/route.h> #include <net/ip6_route.h> #include "ar-internal.h" static const struct sockaddr_rxrpc rxrpc_null_addr; /* * Hash a peer key. */ static unsigned long rxrpc_peer_hash_key(struct rxrpc_local *local, const struct sockaddr_rxrpc *srx) { const u16 *p; unsigned int i, size; unsigned long hash_key; _enter(""); hash_key = (unsigned long)local / __alignof__(*local); hash_key += srx->transport_type; hash_key += srx->transport_len; hash_key += srx->transport.family; switch (srx->transport.family) { case AF_INET: hash_key += (u16 __force)srx->transport.sin.sin_port; size = sizeof(srx->transport.sin.sin_addr); p = (u16 *)&srx->transport.sin.sin_addr; break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: hash_key += (u16 __force)srx->transport.sin.sin_port; size = sizeof(srx->transport.sin6.sin6_addr); p = (u16 *)&srx->transport.sin6.sin6_addr; break; #endif default: WARN(1, "AF_RXRPC: Unsupported transport address family\n"); return 0; } /* Step through the peer address in 16-bit portions for speed */ for (i = 0; i < size; i += sizeof(*p), p++) hash_key += *p; _leave(" 0x%lx", hash_key); return hash_key; } /* * Compare a peer to a key. Return -ve, 0 or +ve to indicate less than, same * or greater than. * * Unfortunately, the primitives in linux/hashtable.h don't allow for sorted * buckets and mid-bucket insertion, so we don't make full use of this * information at this point. */ static long rxrpc_peer_cmp_key(const struct rxrpc_peer *peer, struct rxrpc_local *local, const struct sockaddr_rxrpc *srx, unsigned long hash_key) { long diff; diff = ((peer->hash_key - hash_key) ?: ((unsigned long)peer->local - (unsigned long)local) ?: (peer->srx.transport_type - srx->transport_type) ?: (peer->srx.transport_len - srx->transport_len) ?: (peer->srx.transport.family - srx->transport.family)); if (diff != 0) return diff; switch (srx->transport.family) { case AF_INET: return ((u16 __force)peer->srx.transport.sin.sin_port - (u16 __force)srx->transport.sin.sin_port) ?: memcmp(&peer->srx.transport.sin.sin_addr, &srx->transport.sin.sin_addr, sizeof(struct in_addr)); #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: return ((u16 __force)peer->srx.transport.sin6.sin6_port - (u16 __force)srx->transport.sin6.sin6_port) ?: memcmp(&peer->srx.transport.sin6.sin6_addr, &srx->transport.sin6.sin6_addr, sizeof(struct in6_addr)); #endif default: BUG(); } } /* * Look up a remote transport endpoint for the specified address using RCU. */ static struct rxrpc_peer *__rxrpc_lookup_peer_rcu( struct rxrpc_local *local, const struct sockaddr_rxrpc *srx, unsigned long hash_key) { struct rxrpc_peer *peer; struct rxrpc_net *rxnet = local->rxnet; hash_for_each_possible_rcu(rxnet->peer_hash, peer, hash_link, hash_key) { if (rxrpc_peer_cmp_key(peer, local, srx, hash_key) == 0 && refcount_read(&peer->ref) > 0) return peer; } return NULL; } /* * Look up a remote transport endpoint for the specified address using RCU. */ struct rxrpc_peer *rxrpc_lookup_peer_rcu(struct rxrpc_local *local, const struct sockaddr_rxrpc *srx) { struct rxrpc_peer *peer; unsigned long hash_key = rxrpc_peer_hash_key(local, srx); peer = __rxrpc_lookup_peer_rcu(local, srx, hash_key); if (peer) _leave(" = %p {u=%d}", peer, refcount_read(&peer->ref)); return peer; } /* * assess the MTU size for the network interface through which this peer is * reached */ static void rxrpc_assess_MTU_size(struct rxrpc_local *local, struct rxrpc_peer *peer) { struct net *net = local->net; struct dst_entry *dst; struct rtable *rt; struct flowi fl; struct flowi4 *fl4 = &fl.u.ip4; #ifdef CONFIG_AF_RXRPC_IPV6 struct flowi6 *fl6 = &fl.u.ip6; #endif peer->if_mtu = 1500; memset(&fl, 0, sizeof(fl)); switch (peer->srx.transport.family) { case AF_INET: rt = ip_route_output_ports( net, fl4, NULL, peer->srx.transport.sin.sin_addr.s_addr, 0, htons(7000), htons(7001), IPPROTO_UDP, 0, 0); if (IS_ERR(rt)) { _leave(" [route err %ld]", PTR_ERR(rt)); return; } dst = &rt->dst; break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: fl6->flowi6_iif = LOOPBACK_IFINDEX; fl6->flowi6_scope = RT_SCOPE_UNIVERSE; fl6->flowi6_proto = IPPROTO_UDP; memcpy(&fl6->daddr, &peer->srx.transport.sin6.sin6_addr, sizeof(struct in6_addr)); fl6->fl6_dport = htons(7001); fl6->fl6_sport = htons(7000); dst = ip6_route_output(net, NULL, fl6); if (dst->error) { _leave(" [route err %d]", dst->error); return; } break; #endif default: BUG(); } peer->if_mtu = dst_mtu(dst); dst_release(dst); _leave(" [if_mtu %u]", peer->if_mtu); } /* * Allocate a peer. */ struct rxrpc_peer *rxrpc_alloc_peer(struct rxrpc_local *local, gfp_t gfp, enum rxrpc_peer_trace why) { struct rxrpc_peer *peer; _enter(""); peer = kzalloc(sizeof(struct rxrpc_peer), gfp); if (peer) { refcount_set(&peer->ref, 1); peer->local = rxrpc_get_local(local, rxrpc_local_get_peer); INIT_HLIST_HEAD(&peer->error_targets); peer->service_conns = RB_ROOT; seqlock_init(&peer->service_conn_lock); spin_lock_init(&peer->lock); spin_lock_init(&peer->rtt_input_lock); peer->debug_id = atomic_inc_return(&rxrpc_debug_id); rxrpc_peer_init_rtt(peer); peer->cong_ssthresh = RXRPC_TX_MAX_WINDOW; trace_rxrpc_peer(peer->debug_id, 1, why); } _leave(" = %p", peer); return peer; } /* * Initialise peer record. */ static void rxrpc_init_peer(struct rxrpc_local *local, struct rxrpc_peer *peer, unsigned long hash_key) { peer->hash_key = hash_key; rxrpc_assess_MTU_size(local, peer); peer->mtu = peer->if_mtu; peer->rtt_last_req = ktime_get_real(); switch (peer->srx.transport.family) { case AF_INET: peer->hdrsize = sizeof(struct iphdr); break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: peer->hdrsize = sizeof(struct ipv6hdr); break; #endif default: BUG(); } switch (peer->srx.transport_type) { case SOCK_DGRAM: peer->hdrsize += sizeof(struct udphdr); break; default: BUG(); } peer->hdrsize += sizeof(struct rxrpc_wire_header); peer->maxdata = peer->mtu - peer->hdrsize; } /* * Set up a new peer. */ static struct rxrpc_peer *rxrpc_create_peer(struct rxrpc_local *local, struct sockaddr_rxrpc *srx, unsigned long hash_key, gfp_t gfp) { struct rxrpc_peer *peer; _enter(""); peer = rxrpc_alloc_peer(local, gfp, rxrpc_peer_new_client); if (peer) { memcpy(&peer->srx, srx, sizeof(*srx)); rxrpc_init_peer(local, peer, hash_key); } _leave(" = %p", peer); return peer; } static void rxrpc_free_peer(struct rxrpc_peer *peer) { trace_rxrpc_peer(peer->debug_id, 0, rxrpc_peer_free); rxrpc_put_local(peer->local, rxrpc_local_put_peer); kfree_rcu(peer, rcu); } /* * Set up a new incoming peer. There shouldn't be any other matching peers * since we've already done a search in the list from the non-reentrant context * (the data_ready handler) that is the only place we can add new peers. */ void rxrpc_new_incoming_peer(struct rxrpc_local *local, struct rxrpc_peer *peer) { struct rxrpc_net *rxnet = local->rxnet; unsigned long hash_key; hash_key = rxrpc_peer_hash_key(local, &peer->srx); rxrpc_init_peer(local, peer, hash_key); spin_lock(&rxnet->peer_hash_lock); hash_add_rcu(rxnet->peer_hash, &peer->hash_link, hash_key); list_add_tail(&peer->keepalive_link, &rxnet->peer_keepalive_new); spin_unlock(&rxnet->peer_hash_lock); } /* * obtain a remote transport endpoint for the specified address */ struct rxrpc_peer *rxrpc_lookup_peer(struct rxrpc_local *local, struct sockaddr_rxrpc *srx, gfp_t gfp) { struct rxrpc_peer *peer, *candidate; struct rxrpc_net *rxnet = local->rxnet; unsigned long hash_key = rxrpc_peer_hash_key(local, srx); _enter("{%pISp}", &srx->transport); /* search the peer list first */ rcu_read_lock(); peer = __rxrpc_lookup_peer_rcu(local, srx, hash_key); if (peer && !rxrpc_get_peer_maybe(peer, rxrpc_peer_get_lookup_client)) peer = NULL; rcu_read_unlock(); if (!peer) { /* The peer is not yet present in hash - create a candidate * for a new record and then redo the search. */ candidate = rxrpc_create_peer(local, srx, hash_key, gfp); if (!candidate) { _leave(" = NULL [nomem]"); return NULL; } spin_lock(&rxnet->peer_hash_lock); /* Need to check that we aren't racing with someone else */ peer = __rxrpc_lookup_peer_rcu(local, srx, hash_key); if (peer && !rxrpc_get_peer_maybe(peer, rxrpc_peer_get_lookup_client)) peer = NULL; if (!peer) { hash_add_rcu(rxnet->peer_hash, &candidate->hash_link, hash_key); list_add_tail(&candidate->keepalive_link, &rxnet->peer_keepalive_new); } spin_unlock(&rxnet->peer_hash_lock); if (peer) rxrpc_free_peer(candidate); else peer = candidate; } _leave(" = %p {u=%d}", peer, refcount_read(&peer->ref)); return peer; } /* * Get a ref on a peer record. */ struct rxrpc_peer *rxrpc_get_peer(struct rxrpc_peer *peer, enum rxrpc_peer_trace why) { int r; __refcount_inc(&peer->ref, &r); trace_rxrpc_peer(peer->debug_id, r + 1, why); return peer; } /* * Get a ref on a peer record unless its usage has already reached 0. */ struct rxrpc_peer *rxrpc_get_peer_maybe(struct rxrpc_peer *peer, enum rxrpc_peer_trace why) { int r; if (peer) { if (__refcount_inc_not_zero(&peer->ref, &r)) trace_rxrpc_peer(peer->debug_id, r + 1, why); else peer = NULL; } return peer; } /* * Discard a peer record. */ static void __rxrpc_put_peer(struct rxrpc_peer *peer) { struct rxrpc_net *rxnet = peer->local->rxnet; ASSERT(hlist_empty(&peer->error_targets)); spin_lock(&rxnet->peer_hash_lock); hash_del_rcu(&peer->hash_link); list_del_init(&peer->keepalive_link); spin_unlock(&rxnet->peer_hash_lock); rxrpc_free_peer(peer); } /* * Drop a ref on a peer record. */ void rxrpc_put_peer(struct rxrpc_peer *peer, enum rxrpc_peer_trace why) { unsigned int debug_id; bool dead; int r; if (peer) { debug_id = peer->debug_id; dead = __refcount_dec_and_test(&peer->ref, &r); trace_rxrpc_peer(debug_id, r - 1, why); if (dead) __rxrpc_put_peer(peer); } } /* * Make sure all peer records have been discarded. */ void rxrpc_destroy_all_peers(struct rxrpc_net *rxnet) { struct rxrpc_peer *peer; int i; for (i = 0; i < HASH_SIZE(rxnet->peer_hash); i++) { if (hlist_empty(&rxnet->peer_hash[i])) continue; hlist_for_each_entry(peer, &rxnet->peer_hash[i], hash_link) { pr_err("Leaked peer %u {%u} %pISp\n", peer->debug_id, refcount_read(&peer->ref), &peer->srx.transport); } } } /** * rxrpc_kernel_get_call_peer - Get the peer address of a call * @sock: The socket on which the call is in progress. * @call: The call to query * * Get a record for the remote peer in a call. */ struct rxrpc_peer *rxrpc_kernel_get_call_peer(struct socket *sock, struct rxrpc_call *call) { return call->peer; } EXPORT_SYMBOL(rxrpc_kernel_get_call_peer); /** * rxrpc_kernel_get_srtt - Get a call's peer smoothed RTT * @peer: The peer to query * * Get the call's peer smoothed RTT in uS or UINT_MAX if we have no samples. */ unsigned int rxrpc_kernel_get_srtt(const struct rxrpc_peer *peer) { return peer->rtt_count > 0 ? peer->srtt_us >> 3 : UINT_MAX; } EXPORT_SYMBOL(rxrpc_kernel_get_srtt); /** * rxrpc_kernel_remote_srx - Get the address of a peer * @peer: The peer to query * * Get a pointer to the address from a peer record. The caller is responsible * for making sure that the address is not deallocated. */ const struct sockaddr_rxrpc *rxrpc_kernel_remote_srx(const struct rxrpc_peer *peer) { return peer ? &peer->srx : &rxrpc_null_addr; } EXPORT_SYMBOL(rxrpc_kernel_remote_srx); /** * rxrpc_kernel_remote_addr - Get the peer transport address of a call * @peer: The peer to query * * Get a pointer to the transport address from a peer record. The caller is * responsible for making sure that the address is not deallocated. */ const struct sockaddr *rxrpc_kernel_remote_addr(const struct rxrpc_peer *peer) { return (const struct sockaddr *) (peer ? &peer->srx.transport : &rxrpc_null_addr.transport); } EXPORT_SYMBOL(rxrpc_kernel_remote_addr); |
8 6 6 6 6 30 19 15 4 15 4 15 4 13 6 18 11 8 11 8 19 19 4 1 4 2 1 4 6 6 4 4 1 1 4 1 4 8 8 3 1 14 1 2 1 1 1 3 3 5 3 6 5 3 3 9 7 2 13 4 5 3 1 7 7 7 6 6 47 10 2 25 12 6 6 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Fraunhofer ITWM * * Written by: * Phoebe Buckheister <phoebe.buckheister@itwm.fraunhofer.de> */ #include <linux/err.h> #include <linux/bug.h> #include <linux/completion.h> #include <linux/ieee802154.h> #include <linux/rculist.h> #include <crypto/aead.h> #include <crypto/skcipher.h> #include "ieee802154_i.h" #include "llsec.h" static void llsec_key_put(struct mac802154_llsec_key *key); static bool llsec_key_id_equal(const struct ieee802154_llsec_key_id *a, const struct ieee802154_llsec_key_id *b); static void llsec_dev_free(struct mac802154_llsec_device *dev); void mac802154_llsec_init(struct mac802154_llsec *sec) { memset(sec, 0, sizeof(*sec)); memset(&sec->params.default_key_source, 0xFF, IEEE802154_ADDR_LEN); INIT_LIST_HEAD(&sec->table.security_levels); INIT_LIST_HEAD(&sec->table.devices); INIT_LIST_HEAD(&sec->table.keys); hash_init(sec->devices_short); hash_init(sec->devices_hw); rwlock_init(&sec->lock); } void mac802154_llsec_destroy(struct mac802154_llsec *sec) { struct ieee802154_llsec_seclevel *sl, *sn; struct ieee802154_llsec_device *dev, *dn; struct ieee802154_llsec_key_entry *key, *kn; list_for_each_entry_safe(sl, sn, &sec->table.security_levels, list) { struct mac802154_llsec_seclevel *msl; msl = container_of(sl, struct mac802154_llsec_seclevel, level); list_del(&sl->list); kfree_sensitive(msl); } list_for_each_entry_safe(dev, dn, &sec->table.devices, list) { struct mac802154_llsec_device *mdev; mdev = container_of(dev, struct mac802154_llsec_device, dev); list_del(&dev->list); llsec_dev_free(mdev); } list_for_each_entry_safe(key, kn, &sec->table.keys, list) { struct mac802154_llsec_key *mkey; mkey = container_of(key->key, struct mac802154_llsec_key, key); list_del(&key->list); llsec_key_put(mkey); kfree_sensitive(key); } } int mac802154_llsec_get_params(struct mac802154_llsec *sec, struct ieee802154_llsec_params *params) { read_lock_bh(&sec->lock); *params = sec->params; read_unlock_bh(&sec->lock); return 0; } int mac802154_llsec_set_params(struct mac802154_llsec *sec, const struct ieee802154_llsec_params *params, int changed) { write_lock_bh(&sec->lock); if (changed & IEEE802154_LLSEC_PARAM_ENABLED) sec->params.enabled = params->enabled; if (changed & IEEE802154_LLSEC_PARAM_FRAME_COUNTER) sec->params.frame_counter = params->frame_counter; if (changed & IEEE802154_LLSEC_PARAM_OUT_LEVEL) sec->params.out_level = params->out_level; if (changed & IEEE802154_LLSEC_PARAM_OUT_KEY) sec->params.out_key = params->out_key; if (changed & IEEE802154_LLSEC_PARAM_KEY_SOURCE) sec->params.default_key_source = params->default_key_source; if (changed & IEEE802154_LLSEC_PARAM_PAN_ID) sec->params.pan_id = params->pan_id; if (changed & IEEE802154_LLSEC_PARAM_HWADDR) sec->params.hwaddr = params->hwaddr; if (changed & IEEE802154_LLSEC_PARAM_COORD_HWADDR) sec->params.coord_hwaddr = params->coord_hwaddr; if (changed & IEEE802154_LLSEC_PARAM_COORD_SHORTADDR) sec->params.coord_shortaddr = params->coord_shortaddr; write_unlock_bh(&sec->lock); return 0; } static struct mac802154_llsec_key* llsec_key_alloc(const struct ieee802154_llsec_key *template) { const int authsizes[3] = { 4, 8, 16 }; struct mac802154_llsec_key *key; int i; key = kzalloc(sizeof(*key), GFP_KERNEL); if (!key) return NULL; kref_init(&key->ref); key->key = *template; BUILD_BUG_ON(ARRAY_SIZE(authsizes) != ARRAY_SIZE(key->tfm)); for (i = 0; i < ARRAY_SIZE(key->tfm); i++) { key->tfm[i] = crypto_alloc_aead("ccm(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(key->tfm[i])) goto err_tfm; if (crypto_aead_setkey(key->tfm[i], template->key, IEEE802154_LLSEC_KEY_SIZE)) goto err_tfm; if (crypto_aead_setauthsize(key->tfm[i], authsizes[i])) goto err_tfm; } key->tfm0 = crypto_alloc_sync_skcipher("ctr(aes)", 0, 0); if (IS_ERR(key->tfm0)) goto err_tfm; if (crypto_sync_skcipher_setkey(key->tfm0, template->key, IEEE802154_LLSEC_KEY_SIZE)) goto err_tfm0; return key; err_tfm0: crypto_free_sync_skcipher(key->tfm0); err_tfm: for (i = 0; i < ARRAY_SIZE(key->tfm); i++) if (!IS_ERR_OR_NULL(key->tfm[i])) crypto_free_aead(key->tfm[i]); kfree_sensitive(key); return NULL; } static void llsec_key_release(struct kref *ref) { struct mac802154_llsec_key *key; int i; key = container_of(ref, struct mac802154_llsec_key, ref); for (i = 0; i < ARRAY_SIZE(key->tfm); i++) crypto_free_aead(key->tfm[i]); crypto_free_sync_skcipher(key->tfm0); kfree_sensitive(key); } static struct mac802154_llsec_key* llsec_key_get(struct mac802154_llsec_key *key) { kref_get(&key->ref); return key; } static void llsec_key_put(struct mac802154_llsec_key *key) { kref_put(&key->ref, llsec_key_release); } static bool llsec_key_id_equal(const struct ieee802154_llsec_key_id *a, const struct ieee802154_llsec_key_id *b) { if (a->mode != b->mode) return false; if (a->mode == IEEE802154_SCF_KEY_IMPLICIT) return ieee802154_addr_equal(&a->device_addr, &b->device_addr); if (a->id != b->id) return false; switch (a->mode) { case IEEE802154_SCF_KEY_INDEX: return true; case IEEE802154_SCF_KEY_SHORT_INDEX: return a->short_source == b->short_source; case IEEE802154_SCF_KEY_HW_INDEX: return a->extended_source == b->extended_source; } return false; } int mac802154_llsec_key_add(struct mac802154_llsec *sec, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key) { struct mac802154_llsec_key *mkey = NULL; struct ieee802154_llsec_key_entry *pos, *new; if (!(key->frame_types & (1 << IEEE802154_FC_TYPE_MAC_CMD)) && key->cmd_frame_ids) return -EINVAL; list_for_each_entry(pos, &sec->table.keys, list) { if (llsec_key_id_equal(&pos->id, id)) return -EEXIST; if (memcmp(pos->key->key, key->key, IEEE802154_LLSEC_KEY_SIZE)) continue; mkey = container_of(pos->key, struct mac802154_llsec_key, key); /* Don't allow multiple instances of the same AES key to have * different allowed frame types/command frame ids, as this is * not possible in the 802.15.4 PIB. */ if (pos->key->frame_types != key->frame_types || pos->key->cmd_frame_ids != key->cmd_frame_ids) return -EEXIST; break; } new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return -ENOMEM; if (!mkey) mkey = llsec_key_alloc(key); else mkey = llsec_key_get(mkey); if (!mkey) goto fail; new->id = *id; new->key = &mkey->key; list_add_rcu(&new->list, &sec->table.keys); return 0; fail: kfree_sensitive(new); return -ENOMEM; } static void mac802154_llsec_key_del_rcu(struct rcu_head *rcu) { struct ieee802154_llsec_key_entry *pos; struct mac802154_llsec_key *mkey; pos = container_of(rcu, struct ieee802154_llsec_key_entry, rcu); mkey = container_of(pos->key, struct mac802154_llsec_key, key); llsec_key_put(mkey); kfree_sensitive(pos); } int mac802154_llsec_key_del(struct mac802154_llsec *sec, const struct ieee802154_llsec_key_id *key) { struct ieee802154_llsec_key_entry *pos; list_for_each_entry(pos, &sec->table.keys, list) { if (llsec_key_id_equal(&pos->id, key)) { list_del_rcu(&pos->list); call_rcu(&pos->rcu, mac802154_llsec_key_del_rcu); return 0; } } return -ENOENT; } static bool llsec_dev_use_shortaddr(__le16 short_addr) { return short_addr != cpu_to_le16(IEEE802154_ADDR_UNDEF) && short_addr != cpu_to_le16(0xffff); } static u32 llsec_dev_hash_short(__le16 short_addr, __le16 pan_id) { return ((__force u16)short_addr) << 16 | (__force u16)pan_id; } static u64 llsec_dev_hash_long(__le64 hwaddr) { return (__force u64)hwaddr; } static struct mac802154_llsec_device* llsec_dev_find_short(struct mac802154_llsec *sec, __le16 short_addr, __le16 pan_id) { struct mac802154_llsec_device *dev; u32 key = llsec_dev_hash_short(short_addr, pan_id); hash_for_each_possible_rcu(sec->devices_short, dev, bucket_s, key) { if (dev->dev.short_addr == short_addr && dev->dev.pan_id == pan_id) return dev; } return NULL; } static struct mac802154_llsec_device* llsec_dev_find_long(struct mac802154_llsec *sec, __le64 hwaddr) { struct mac802154_llsec_device *dev; u64 key = llsec_dev_hash_long(hwaddr); hash_for_each_possible_rcu(sec->devices_hw, dev, bucket_hw, key) { if (dev->dev.hwaddr == hwaddr) return dev; } return NULL; } static void llsec_dev_free(struct mac802154_llsec_device *dev) { struct ieee802154_llsec_device_key *pos, *pn; struct mac802154_llsec_device_key *devkey; list_for_each_entry_safe(pos, pn, &dev->dev.keys, list) { devkey = container_of(pos, struct mac802154_llsec_device_key, devkey); list_del(&pos->list); kfree_sensitive(devkey); } kfree_sensitive(dev); } int mac802154_llsec_dev_add(struct mac802154_llsec *sec, const struct ieee802154_llsec_device *dev) { struct mac802154_llsec_device *entry; u32 skey = llsec_dev_hash_short(dev->short_addr, dev->pan_id); u64 hwkey = llsec_dev_hash_long(dev->hwaddr); BUILD_BUG_ON(sizeof(hwkey) != IEEE802154_ADDR_LEN); if ((llsec_dev_use_shortaddr(dev->short_addr) && llsec_dev_find_short(sec, dev->short_addr, dev->pan_id)) || llsec_dev_find_long(sec, dev->hwaddr)) return -EEXIST; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->dev = *dev; spin_lock_init(&entry->lock); INIT_LIST_HEAD(&entry->dev.keys); if (llsec_dev_use_shortaddr(dev->short_addr)) hash_add_rcu(sec->devices_short, &entry->bucket_s, skey); else INIT_HLIST_NODE(&entry->bucket_s); hash_add_rcu(sec->devices_hw, &entry->bucket_hw, hwkey); list_add_tail_rcu(&entry->dev.list, &sec->table.devices); return 0; } static void llsec_dev_free_rcu(struct rcu_head *rcu) { llsec_dev_free(container_of(rcu, struct mac802154_llsec_device, rcu)); } int mac802154_llsec_dev_del(struct mac802154_llsec *sec, __le64 device_addr) { struct mac802154_llsec_device *pos; pos = llsec_dev_find_long(sec, device_addr); if (!pos) return -ENOENT; hash_del_rcu(&pos->bucket_s); hash_del_rcu(&pos->bucket_hw); list_del_rcu(&pos->dev.list); call_rcu(&pos->rcu, llsec_dev_free_rcu); return 0; } static struct mac802154_llsec_device_key* llsec_devkey_find(struct mac802154_llsec_device *dev, const struct ieee802154_llsec_key_id *key) { struct ieee802154_llsec_device_key *devkey; list_for_each_entry_rcu(devkey, &dev->dev.keys, list) { if (!llsec_key_id_equal(key, &devkey->key_id)) continue; return container_of(devkey, struct mac802154_llsec_device_key, devkey); } return NULL; } int mac802154_llsec_devkey_add(struct mac802154_llsec *sec, __le64 dev_addr, const struct ieee802154_llsec_device_key *key) { struct mac802154_llsec_device *dev; struct mac802154_llsec_device_key *devkey; dev = llsec_dev_find_long(sec, dev_addr); if (!dev) return -ENOENT; if (llsec_devkey_find(dev, &key->key_id)) return -EEXIST; devkey = kmalloc(sizeof(*devkey), GFP_KERNEL); if (!devkey) return -ENOMEM; devkey->devkey = *key; list_add_tail_rcu(&devkey->devkey.list, &dev->dev.keys); return 0; } int mac802154_llsec_devkey_del(struct mac802154_llsec *sec, __le64 dev_addr, const struct ieee802154_llsec_device_key *key) { struct mac802154_llsec_device *dev; struct mac802154_llsec_device_key *devkey; dev = llsec_dev_find_long(sec, dev_addr); if (!dev) return -ENOENT; devkey = llsec_devkey_find(dev, &key->key_id); if (!devkey) return -ENOENT; list_del_rcu(&devkey->devkey.list); kfree_rcu(devkey, rcu); return 0; } static struct mac802154_llsec_seclevel* llsec_find_seclevel(const struct mac802154_llsec *sec, const struct ieee802154_llsec_seclevel *sl) { struct ieee802154_llsec_seclevel *pos; list_for_each_entry(pos, &sec->table.security_levels, list) { if (pos->frame_type != sl->frame_type || (pos->frame_type == IEEE802154_FC_TYPE_MAC_CMD && pos->cmd_frame_id != sl->cmd_frame_id) || pos->device_override != sl->device_override || pos->sec_levels != sl->sec_levels) continue; return container_of(pos, struct mac802154_llsec_seclevel, level); } return NULL; } int mac802154_llsec_seclevel_add(struct mac802154_llsec *sec, const struct ieee802154_llsec_seclevel *sl) { struct mac802154_llsec_seclevel *entry; if (llsec_find_seclevel(sec, sl)) return -EEXIST; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->level = *sl; list_add_tail_rcu(&entry->level.list, &sec->table.security_levels); return 0; } int mac802154_llsec_seclevel_del(struct mac802154_llsec *sec, const struct ieee802154_llsec_seclevel *sl) { struct mac802154_llsec_seclevel *pos; pos = llsec_find_seclevel(sec, sl); if (!pos) return -ENOENT; list_del_rcu(&pos->level.list); kfree_rcu(pos, rcu); return 0; } static int llsec_recover_addr(struct mac802154_llsec *sec, struct ieee802154_addr *addr) { __le16 caddr = sec->params.coord_shortaddr; addr->pan_id = sec->params.pan_id; if (caddr == cpu_to_le16(IEEE802154_ADDR_BROADCAST)) { return -EINVAL; } else if (caddr == cpu_to_le16(IEEE802154_ADDR_UNDEF)) { addr->extended_addr = sec->params.coord_hwaddr; addr->mode = IEEE802154_ADDR_LONG; } else { addr->short_addr = sec->params.coord_shortaddr; addr->mode = IEEE802154_ADDR_SHORT; } return 0; } static struct mac802154_llsec_key* llsec_lookup_key(struct mac802154_llsec *sec, const struct ieee802154_hdr *hdr, const struct ieee802154_addr *addr, struct ieee802154_llsec_key_id *key_id) { struct ieee802154_addr devaddr = *addr; u8 key_id_mode = hdr->sec.key_id_mode; struct ieee802154_llsec_key_entry *key_entry; struct mac802154_llsec_key *key; if (key_id_mode == IEEE802154_SCF_KEY_IMPLICIT && devaddr.mode == IEEE802154_ADDR_NONE) { if (hdr->fc.type == IEEE802154_FC_TYPE_BEACON) { devaddr.extended_addr = sec->params.coord_hwaddr; devaddr.mode = IEEE802154_ADDR_LONG; } else if (llsec_recover_addr(sec, &devaddr) < 0) { return NULL; } } list_for_each_entry_rcu(key_entry, &sec->table.keys, list) { const struct ieee802154_llsec_key_id *id = &key_entry->id; if (!(key_entry->key->frame_types & BIT(hdr->fc.type))) continue; if (id->mode != key_id_mode) continue; if (key_id_mode == IEEE802154_SCF_KEY_IMPLICIT) { if (ieee802154_addr_equal(&devaddr, &id->device_addr)) goto found; } else { if (id->id != hdr->sec.key_id) continue; if ((key_id_mode == IEEE802154_SCF_KEY_INDEX) || (key_id_mode == IEEE802154_SCF_KEY_SHORT_INDEX && id->short_source == hdr->sec.short_src) || (key_id_mode == IEEE802154_SCF_KEY_HW_INDEX && id->extended_source == hdr->sec.extended_src)) goto found; } } return NULL; found: key = container_of(key_entry->key, struct mac802154_llsec_key, key); if (key_id) *key_id = key_entry->id; return llsec_key_get(key); } static void llsec_geniv(u8 iv[16], __le64 addr, const struct ieee802154_sechdr *sec) { __be64 addr_bytes = (__force __be64) swab64((__force u64) addr); __be32 frame_counter = (__force __be32) swab32((__force u32) sec->frame_counter); iv[0] = 1; /* L' = L - 1 = 1 */ memcpy(iv + 1, &addr_bytes, sizeof(addr_bytes)); memcpy(iv + 9, &frame_counter, sizeof(frame_counter)); iv[13] = sec->level; iv[14] = 0; iv[15] = 1; } static int llsec_do_encrypt_unauth(struct sk_buff *skb, const struct mac802154_llsec *sec, const struct ieee802154_hdr *hdr, struct mac802154_llsec_key *key) { u8 iv[16]; struct scatterlist src; SYNC_SKCIPHER_REQUEST_ON_STACK(req, key->tfm0); int err, datalen; unsigned char *data; llsec_geniv(iv, sec->params.hwaddr, &hdr->sec); /* Compute data payload offset and data length */ data = skb_mac_header(skb) + skb->mac_len; datalen = skb_tail_pointer(skb) - data; sg_init_one(&src, data, datalen); skcipher_request_set_sync_tfm(req, key->tfm0); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &src, &src, datalen, iv); err = crypto_skcipher_encrypt(req); skcipher_request_zero(req); return err; } static struct crypto_aead* llsec_tfm_by_len(struct mac802154_llsec_key *key, int authlen) { int i; for (i = 0; i < ARRAY_SIZE(key->tfm); i++) if (crypto_aead_authsize(key->tfm[i]) == authlen) return key->tfm[i]; BUG(); } static int llsec_do_encrypt_auth(struct sk_buff *skb, const struct mac802154_llsec *sec, const struct ieee802154_hdr *hdr, struct mac802154_llsec_key *key) { u8 iv[16]; unsigned char *data; int authlen, assoclen, datalen, rc; struct scatterlist sg; struct aead_request *req; authlen = ieee802154_sechdr_authtag_len(&hdr->sec); llsec_geniv(iv, sec->params.hwaddr, &hdr->sec); req = aead_request_alloc(llsec_tfm_by_len(key, authlen), GFP_ATOMIC); if (!req) return -ENOMEM; assoclen = skb->mac_len; data = skb_mac_header(skb) + skb->mac_len; datalen = skb_tail_pointer(skb) - data; skb_put(skb, authlen); sg_init_one(&sg, skb_mac_header(skb), assoclen + datalen + authlen); if (!(hdr->sec.level & IEEE802154_SCF_SECLEVEL_ENC)) { assoclen += datalen; datalen = 0; } aead_request_set_callback(req, 0, NULL, NULL); aead_request_set_crypt(req, &sg, &sg, datalen, iv); aead_request_set_ad(req, assoclen); rc = crypto_aead_encrypt(req); kfree_sensitive(req); return rc; } static int llsec_do_encrypt(struct sk_buff *skb, const struct mac802154_llsec *sec, const struct ieee802154_hdr *hdr, struct mac802154_llsec_key *key) { if (hdr->sec.level == IEEE802154_SCF_SECLEVEL_ENC) return llsec_do_encrypt_unauth(skb, sec, hdr, key); else return llsec_do_encrypt_auth(skb, sec, hdr, key); } int mac802154_llsec_encrypt(struct mac802154_llsec *sec, struct sk_buff *skb) { struct ieee802154_hdr hdr; int rc, authlen, hlen; struct mac802154_llsec_key *key; u32 frame_ctr; hlen = ieee802154_hdr_pull(skb, &hdr); /* TODO: control frames security support */ if (hlen < 0 || (hdr.fc.type != IEEE802154_FC_TYPE_DATA && hdr.fc.type != IEEE802154_FC_TYPE_BEACON)) return -EINVAL; if (!hdr.fc.security_enabled || (hdr.sec.level == IEEE802154_SCF_SECLEVEL_NONE)) { skb_push(skb, hlen); return 0; } authlen = ieee802154_sechdr_authtag_len(&hdr.sec); if (skb->len + hlen + authlen + IEEE802154_MFR_SIZE > IEEE802154_MTU) return -EMSGSIZE; rcu_read_lock(); read_lock_bh(&sec->lock); if (!sec->params.enabled) { rc = -EINVAL; goto fail_read; } key = llsec_lookup_key(sec, &hdr, &hdr.dest, NULL); if (!key) { rc = -ENOKEY; goto fail_read; } read_unlock_bh(&sec->lock); write_lock_bh(&sec->lock); frame_ctr = be32_to_cpu(sec->params.frame_counter); hdr.sec.frame_counter = cpu_to_le32(frame_ctr); if (frame_ctr == 0xFFFFFFFF) { write_unlock_bh(&sec->lock); llsec_key_put(key); rc = -EOVERFLOW; goto fail; } sec->params.frame_counter = cpu_to_be32(frame_ctr + 1); write_unlock_bh(&sec->lock); rcu_read_unlock(); skb->mac_len = ieee802154_hdr_push(skb, &hdr); skb_reset_mac_header(skb); rc = llsec_do_encrypt(skb, sec, &hdr, key); llsec_key_put(key); return rc; fail_read: read_unlock_bh(&sec->lock); fail: rcu_read_unlock(); return rc; } static struct mac802154_llsec_device* llsec_lookup_dev(struct mac802154_llsec *sec, const struct ieee802154_addr *addr) { struct ieee802154_addr devaddr = *addr; struct mac802154_llsec_device *dev = NULL; if (devaddr.mode == IEEE802154_ADDR_NONE && llsec_recover_addr(sec, &devaddr) < 0) return NULL; if (devaddr.mode == IEEE802154_ADDR_SHORT) { u32 key = llsec_dev_hash_short(devaddr.short_addr, devaddr.pan_id); hash_for_each_possible_rcu(sec->devices_short, dev, bucket_s, key) { if (dev->dev.pan_id == devaddr.pan_id && dev->dev.short_addr == devaddr.short_addr) return dev; } } else { u64 key = llsec_dev_hash_long(devaddr.extended_addr); hash_for_each_possible_rcu(sec->devices_hw, dev, bucket_hw, key) { if (dev->dev.hwaddr == devaddr.extended_addr) return dev; } } return NULL; } static int llsec_lookup_seclevel(const struct mac802154_llsec *sec, u8 frame_type, u8 cmd_frame_id, struct ieee802154_llsec_seclevel *rlevel) { struct ieee802154_llsec_seclevel *level; list_for_each_entry_rcu(level, &sec->table.security_levels, list) { if (level->frame_type == frame_type && (frame_type != IEEE802154_FC_TYPE_MAC_CMD || level->cmd_frame_id == cmd_frame_id)) { *rlevel = *level; return 0; } } return -EINVAL; } static int llsec_do_decrypt_unauth(struct sk_buff *skb, const struct mac802154_llsec *sec, const struct ieee802154_hdr *hdr, struct mac802154_llsec_key *key, __le64 dev_addr) { u8 iv[16]; unsigned char *data; int datalen; struct scatterlist src; SYNC_SKCIPHER_REQUEST_ON_STACK(req, key->tfm0); int err; llsec_geniv(iv, dev_addr, &hdr->sec); data = skb_mac_header(skb) + skb->mac_len; datalen = skb_tail_pointer(skb) - data; sg_init_one(&src, data, datalen); skcipher_request_set_sync_tfm(req, key->tfm0); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &src, &src, datalen, iv); err = crypto_skcipher_decrypt(req); skcipher_request_zero(req); return err; } static int llsec_do_decrypt_auth(struct sk_buff *skb, const struct mac802154_llsec *sec, const struct ieee802154_hdr *hdr, struct mac802154_llsec_key *key, __le64 dev_addr) { u8 iv[16]; unsigned char *data; int authlen, datalen, assoclen, rc; struct scatterlist sg; struct aead_request *req; authlen = ieee802154_sechdr_authtag_len(&hdr->sec); llsec_geniv(iv, dev_addr, &hdr->sec); req = aead_request_alloc(llsec_tfm_by_len(key, authlen), GFP_ATOMIC); if (!req) return -ENOMEM; assoclen = skb->mac_len; data = skb_mac_header(skb) + skb->mac_len; datalen = skb_tail_pointer(skb) - data; sg_init_one(&sg, skb_mac_header(skb), assoclen + datalen); if (!(hdr->sec.level & IEEE802154_SCF_SECLEVEL_ENC)) { assoclen += datalen - authlen; datalen = authlen; } aead_request_set_callback(req, 0, NULL, NULL); aead_request_set_crypt(req, &sg, &sg, datalen, iv); aead_request_set_ad(req, assoclen); rc = crypto_aead_decrypt(req); kfree_sensitive(req); skb_trim(skb, skb->len - authlen); return rc; } static int llsec_do_decrypt(struct sk_buff *skb, const struct mac802154_llsec *sec, const struct ieee802154_hdr *hdr, struct mac802154_llsec_key *key, __le64 dev_addr) { if (hdr->sec.level == IEEE802154_SCF_SECLEVEL_ENC) return llsec_do_decrypt_unauth(skb, sec, hdr, key, dev_addr); else return llsec_do_decrypt_auth(skb, sec, hdr, key, dev_addr); } static int llsec_update_devkey_record(struct mac802154_llsec_device *dev, const struct ieee802154_llsec_key_id *in_key) { struct mac802154_llsec_device_key *devkey; devkey = llsec_devkey_find(dev, in_key); if (!devkey) { struct mac802154_llsec_device_key *next; next = kzalloc(sizeof(*devkey), GFP_ATOMIC); if (!next) return -ENOMEM; next->devkey.key_id = *in_key; spin_lock_bh(&dev->lock); devkey = llsec_devkey_find(dev, in_key); if (!devkey) list_add_rcu(&next->devkey.list, &dev->dev.keys); else kfree_sensitive(next); spin_unlock_bh(&dev->lock); } return 0; } static int llsec_update_devkey_info(struct mac802154_llsec_device *dev, const struct ieee802154_llsec_key_id *in_key, u32 frame_counter) { struct mac802154_llsec_device_key *devkey = NULL; if (dev->dev.key_mode == IEEE802154_LLSEC_DEVKEY_RESTRICT) { devkey = llsec_devkey_find(dev, in_key); if (!devkey) return -ENOENT; } if (dev->dev.key_mode == IEEE802154_LLSEC_DEVKEY_RECORD) { int rc = llsec_update_devkey_record(dev, in_key); if (rc < 0) return rc; } spin_lock_bh(&dev->lock); if ((!devkey && frame_counter < dev->dev.frame_counter) || (devkey && frame_counter < devkey->devkey.frame_counter)) { spin_unlock_bh(&dev->lock); return -EINVAL; } if (devkey) devkey->devkey.frame_counter = frame_counter + 1; else dev->dev.frame_counter = frame_counter + 1; spin_unlock_bh(&dev->lock); return 0; } int mac802154_llsec_decrypt(struct mac802154_llsec *sec, struct sk_buff *skb) { struct ieee802154_hdr hdr; struct mac802154_llsec_key *key; struct ieee802154_llsec_key_id key_id; struct mac802154_llsec_device *dev; struct ieee802154_llsec_seclevel seclevel; int err; __le64 dev_addr; u32 frame_ctr; if (ieee802154_hdr_peek(skb, &hdr) < 0) return -EINVAL; if (!hdr.fc.security_enabled) return 0; if (hdr.fc.version == 0) return -EINVAL; read_lock_bh(&sec->lock); if (!sec->params.enabled) { read_unlock_bh(&sec->lock); return -EINVAL; } read_unlock_bh(&sec->lock); rcu_read_lock(); key = llsec_lookup_key(sec, &hdr, &hdr.source, &key_id); if (!key) { err = -ENOKEY; goto fail; } dev = llsec_lookup_dev(sec, &hdr.source); if (!dev) { err = -EINVAL; goto fail_dev; } if (llsec_lookup_seclevel(sec, hdr.fc.type, 0, &seclevel) < 0) { err = -EINVAL; goto fail_dev; } if (!(seclevel.sec_levels & BIT(hdr.sec.level)) && (hdr.sec.level == 0 && seclevel.device_override && !dev->dev.seclevel_exempt)) { err = -EINVAL; goto fail_dev; } frame_ctr = le32_to_cpu(hdr.sec.frame_counter); if (frame_ctr == 0xffffffff) { err = -EOVERFLOW; goto fail_dev; } err = llsec_update_devkey_info(dev, &key_id, frame_ctr); if (err) goto fail_dev; dev_addr = dev->dev.hwaddr; rcu_read_unlock(); err = llsec_do_decrypt(skb, sec, &hdr, key, dev_addr); llsec_key_put(key); return err; fail_dev: llsec_key_put(key); fail: rcu_read_unlock(); return err; } |
2345 235 340 19 4848 8 4844 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | // SPDX-License-Identifier: GPL-2.0 #include <linux/compiler.h> #include <linux/export.h> #include <linux/fault-inject-usercopy.h> #include <linux/kasan-checks.h> #include <linux/thread_info.h> #include <linux/uaccess.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/mm.h> #include <asm/byteorder.h> #include <asm/word-at-a-time.h> #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS #define IS_UNALIGNED(src, dst) 0 #else #define IS_UNALIGNED(src, dst) \ (((long) dst | (long) src) & (sizeof(long) - 1)) #endif /* * Do a strncpy, return length of string without final '\0'. * 'count' is the user-supplied count (return 'count' if we * hit it), 'max' is the address space maximum (and we return * -EFAULT if we hit it). */ static __always_inline long do_strncpy_from_user(char *dst, const char __user *src, unsigned long count, unsigned long max) { const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; unsigned long res = 0; if (IS_UNALIGNED(src, dst)) goto byte_at_a_time; while (max >= sizeof(unsigned long)) { unsigned long c, data, mask; /* Fall back to byte-at-a-time if we get a page fault */ unsafe_get_user(c, (unsigned long __user *)(src+res), byte_at_a_time); /* * Note that we mask out the bytes following the NUL. This is * important to do because string oblivious code may read past * the NUL. For those routines, we don't want to give them * potentially random bytes after the NUL in `src`. * * One example of such code is BPF map keys. BPF treats map keys * as an opaque set of bytes. Without the post-NUL mask, any BPF * maps keyed by strings returned from strncpy_from_user() may * have multiple entries for semantically identical strings. */ if (has_zero(c, &data, &constants)) { data = prep_zero_mask(c, data, &constants); data = create_zero_mask(data); mask = zero_bytemask(data); *(unsigned long *)(dst+res) = c & mask; return res + find_zero(data); } *(unsigned long *)(dst+res) = c; res += sizeof(unsigned long); max -= sizeof(unsigned long); } byte_at_a_time: while (max) { char c; unsafe_get_user(c,src+res, efault); dst[res] = c; if (!c) return res; res++; max--; } /* * Uhhuh. We hit 'max'. But was that the user-specified maximum * too? If so, that's ok - we got as much as the user asked for. */ if (res >= count) return res; /* * Nope: we hit the address space limit, and we still had more * characters the caller would have wanted. That's an EFAULT. */ efault: return -EFAULT; } /** * strncpy_from_user: - Copy a NUL terminated string from userspace. * @dst: Destination address, in kernel space. This buffer must be at * least @count bytes long. * @src: Source address, in user space. * @count: Maximum number of bytes to copy, including the trailing NUL. * * Copies a NUL-terminated string from userspace to kernel space. * * On success, returns the length of the string (not including the trailing * NUL). * * If access to userspace fails, returns -EFAULT (some data may have been * copied). * * If @count is smaller than the length of the string, copies @count bytes * and returns @count. */ long strncpy_from_user(char *dst, const char __user *src, long count) { unsigned long max_addr, src_addr; might_fault(); if (should_fail_usercopy()) return -EFAULT; if (unlikely(count <= 0)) return 0; max_addr = TASK_SIZE_MAX; src_addr = (unsigned long)untagged_addr(src); if (likely(src_addr < max_addr)) { unsigned long max = max_addr - src_addr; long retval; /* * Truncate 'max' to the user-specified limit, so that * we only have one limit we need to check in the loop */ if (max > count) max = count; kasan_check_write(dst, count); check_object_size(dst, count, false); if (user_read_access_begin(src, max)) { retval = do_strncpy_from_user(dst, src, count, max); user_read_access_end(); return retval; } } return -EFAULT; } EXPORT_SYMBOL(strncpy_from_user); |
1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | // SPDX-License-Identifier: GPL-2.0-only /* * "security" table for IPv6 * * This is for use by Mandatory Access Control (MAC) security models, * which need to be able to manage security policy in separate context * to DAC. * * Based on iptable_mangle.c * * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling * Copyright (C) 2000-2004 Netfilter Core Team <coreteam <at> netfilter.org> * Copyright (C) 2008 Red Hat, Inc., James Morris <jmorris <at> redhat.com> */ #include <linux/module.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/slab.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("James Morris <jmorris <at> redhat.com>"); MODULE_DESCRIPTION("ip6tables security table, for MAC rules"); #define SECURITY_VALID_HOOKS (1 << NF_INET_LOCAL_IN) | \ (1 << NF_INET_FORWARD) | \ (1 << NF_INET_LOCAL_OUT) static const struct xt_table security_table = { .name = "security", .valid_hooks = SECURITY_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_SECURITY, }; static struct nf_hook_ops *sectbl_ops __read_mostly; static int ip6table_security_table_init(struct net *net) { struct ip6t_replace *repl; int ret; repl = ip6t_alloc_initial_table(&security_table); if (repl == NULL) return -ENOMEM; ret = ip6t_register_table(net, &security_table, repl, sectbl_ops); kfree(repl); return ret; } static void __net_exit ip6table_security_net_pre_exit(struct net *net) { ip6t_unregister_table_pre_exit(net, "security"); } static void __net_exit ip6table_security_net_exit(struct net *net) { ip6t_unregister_table_exit(net, "security"); } static struct pernet_operations ip6table_security_net_ops = { .pre_exit = ip6table_security_net_pre_exit, .exit = ip6table_security_net_exit, }; static int __init ip6table_security_init(void) { int ret = xt_register_template(&security_table, ip6table_security_table_init); if (ret < 0) return ret; sectbl_ops = xt_hook_ops_alloc(&security_table, ip6t_do_table); if (IS_ERR(sectbl_ops)) { xt_unregister_template(&security_table); return PTR_ERR(sectbl_ops); } ret = register_pernet_subsys(&ip6table_security_net_ops); if (ret < 0) { kfree(sectbl_ops); xt_unregister_template(&security_table); return ret; } return ret; } static void __exit ip6table_security_fini(void) { unregister_pernet_subsys(&ip6table_security_net_ops); xt_unregister_template(&security_table); kfree(sectbl_ops); } module_init(ip6table_security_init); module_exit(ip6table_security_fini); |
27 27 27 7 7 7 7 3097 2979 3096 3093 1 162 1 4 7 1343 1342 1341 27 27 27 7 7 1345 16 1335 1 1 2051 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/kdebug.h> #include <linux/kprobes.h> #include <linux/export.h> #include <linux/notifier.h> #include <linux/rcupdate.h> #include <linux/vmalloc.h> #include <linux/reboot.h> #define CREATE_TRACE_POINTS #include <trace/events/notifier.h> /* * Notifier list for kernel code which wants to be called * at shutdown. This is used to stop any idling DMA operations * and the like. */ BLOCKING_NOTIFIER_HEAD(reboot_notifier_list); /* * Notifier chain core routines. The exported routines below * are layered on top of these, with appropriate locking added. */ static int notifier_chain_register(struct notifier_block **nl, struct notifier_block *n, bool unique_priority) { while ((*nl) != NULL) { if (unlikely((*nl) == n)) { WARN(1, "notifier callback %ps already registered", n->notifier_call); return -EEXIST; } if (n->priority > (*nl)->priority) break; if (n->priority == (*nl)->priority && unique_priority) return -EBUSY; nl = &((*nl)->next); } n->next = *nl; rcu_assign_pointer(*nl, n); trace_notifier_register((void *)n->notifier_call); return 0; } static int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) { while ((*nl) != NULL) { if ((*nl) == n) { rcu_assign_pointer(*nl, n->next); trace_notifier_unregister((void *)n->notifier_call); return 0; } nl = &((*nl)->next); } return -ENOENT; } /** * notifier_call_chain - Informs the registered notifiers about an event. * @nl: Pointer to head of the blocking notifier chain * @val: Value passed unmodified to notifier function * @v: Pointer passed unmodified to notifier function * @nr_to_call: Number of notifier functions to be called. Don't care * value of this parameter is -1. * @nr_calls: Records the number of notifications sent. Don't care * value of this field is NULL. * Return: notifier_call_chain returns the value returned by the * last notifier function called. */ static int notifier_call_chain(struct notifier_block **nl, unsigned long val, void *v, int nr_to_call, int *nr_calls) { int ret = NOTIFY_DONE; struct notifier_block *nb, *next_nb; nb = rcu_dereference_raw(*nl); while (nb && nr_to_call) { next_nb = rcu_dereference_raw(nb->next); #ifdef CONFIG_DEBUG_NOTIFIERS if (unlikely(!func_ptr_is_kernel_text(nb->notifier_call))) { WARN(1, "Invalid notifier called!"); nb = next_nb; continue; } #endif trace_notifier_run((void *)nb->notifier_call); ret = nb->notifier_call(nb, val, v); if (nr_calls) (*nr_calls)++; if (ret & NOTIFY_STOP_MASK) break; nb = next_nb; nr_to_call--; } return ret; } NOKPROBE_SYMBOL(notifier_call_chain); /** * notifier_call_chain_robust - Inform the registered notifiers about an event * and rollback on error. * @nl: Pointer to head of the blocking notifier chain * @val_up: Value passed unmodified to the notifier function * @val_down: Value passed unmodified to the notifier function when recovering * from an error on @val_up * @v: Pointer passed unmodified to the notifier function * * NOTE: It is important the @nl chain doesn't change between the two * invocations of notifier_call_chain() such that we visit the * exact same notifier callbacks; this rules out any RCU usage. * * Return: the return value of the @val_up call. */ static int notifier_call_chain_robust(struct notifier_block **nl, unsigned long val_up, unsigned long val_down, void *v) { int ret, nr = 0; ret = notifier_call_chain(nl, val_up, v, -1, &nr); if (ret & NOTIFY_STOP_MASK) notifier_call_chain(nl, val_down, v, nr-1, NULL); return ret; } /* * Atomic notifier chain routines. Registration and unregistration * use a spinlock, and call_chain is synchronized by RCU (no locks). */ /** * atomic_notifier_chain_register - Add notifier to an atomic notifier chain * @nh: Pointer to head of the atomic notifier chain * @n: New entry in notifier chain * * Adds a notifier to an atomic notifier chain. * * Returns 0 on success, %-EEXIST on error. */ int atomic_notifier_chain_register(struct atomic_notifier_head *nh, struct notifier_block *n) { unsigned long flags; int ret; spin_lock_irqsave(&nh->lock, flags); ret = notifier_chain_register(&nh->head, n, false); spin_unlock_irqrestore(&nh->lock, flags); return ret; } EXPORT_SYMBOL_GPL(atomic_notifier_chain_register); /** * atomic_notifier_chain_register_unique_prio - Add notifier to an atomic notifier chain * @nh: Pointer to head of the atomic notifier chain * @n: New entry in notifier chain * * Adds a notifier to an atomic notifier chain if there is no other * notifier registered using the same priority. * * Returns 0 on success, %-EEXIST or %-EBUSY on error. */ int atomic_notifier_chain_register_unique_prio(struct atomic_notifier_head *nh, struct notifier_block *n) { unsigned long flags; int ret; spin_lock_irqsave(&nh->lock, flags); ret = notifier_chain_register(&nh->head, n, true); spin_unlock_irqrestore(&nh->lock, flags); return ret; } EXPORT_SYMBOL_GPL(atomic_notifier_chain_register_unique_prio); /** * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain * @nh: Pointer to head of the atomic notifier chain * @n: Entry to remove from notifier chain * * Removes a notifier from an atomic notifier chain. * * Returns zero on success or %-ENOENT on failure. */ int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, struct notifier_block *n) { unsigned long flags; int ret; spin_lock_irqsave(&nh->lock, flags); ret = notifier_chain_unregister(&nh->head, n); spin_unlock_irqrestore(&nh->lock, flags); synchronize_rcu(); return ret; } EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister); /** * atomic_notifier_call_chain - Call functions in an atomic notifier chain * @nh: Pointer to head of the atomic notifier chain * @val: Value passed unmodified to notifier function * @v: Pointer passed unmodified to notifier function * * Calls each function in a notifier chain in turn. The functions * run in an atomic context, so they must not block. * This routine uses RCU to synchronize with changes to the chain. * * If the return value of the notifier can be and'ed * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain() * will return immediately, with the return value of * the notifier function which halted execution. * Otherwise the return value is the return value * of the last notifier function called. */ int atomic_notifier_call_chain(struct atomic_notifier_head *nh, unsigned long val, void *v) { int ret; rcu_read_lock(); ret = notifier_call_chain(&nh->head, val, v, -1, NULL); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(atomic_notifier_call_chain); NOKPROBE_SYMBOL(atomic_notifier_call_chain); /** * atomic_notifier_call_chain_is_empty - Check whether notifier chain is empty * @nh: Pointer to head of the atomic notifier chain * * Checks whether notifier chain is empty. * * Returns true is notifier chain is empty, false otherwise. */ bool atomic_notifier_call_chain_is_empty(struct atomic_notifier_head *nh) { return !rcu_access_pointer(nh->head); } /* * Blocking notifier chain routines. All access to the chain is * synchronized by an rwsem. */ static int __blocking_notifier_chain_register(struct blocking_notifier_head *nh, struct notifier_block *n, bool unique_priority) { int ret; /* * This code gets used during boot-up, when task switching is * not yet working and interrupts must remain disabled. At * such times we must not call down_write(). */ if (unlikely(system_state == SYSTEM_BOOTING)) return notifier_chain_register(&nh->head, n, unique_priority); down_write(&nh->rwsem); ret = notifier_chain_register(&nh->head, n, unique_priority); up_write(&nh->rwsem); return ret; } /** * blocking_notifier_chain_register - Add notifier to a blocking notifier chain * @nh: Pointer to head of the blocking notifier chain * @n: New entry in notifier chain * * Adds a notifier to a blocking notifier chain. * Must be called in process context. * * Returns 0 on success, %-EEXIST on error. */ int blocking_notifier_chain_register(struct blocking_notifier_head *nh, struct notifier_block *n) { return __blocking_notifier_chain_register(nh, n, false); } EXPORT_SYMBOL_GPL(blocking_notifier_chain_register); /** * blocking_notifier_chain_register_unique_prio - Add notifier to a blocking notifier chain * @nh: Pointer to head of the blocking notifier chain * @n: New entry in notifier chain * * Adds a notifier to an blocking notifier chain if there is no other * notifier registered using the same priority. * * Returns 0 on success, %-EEXIST or %-EBUSY on error. */ int blocking_notifier_chain_register_unique_prio(struct blocking_notifier_head *nh, struct notifier_block *n) { return __blocking_notifier_chain_register(nh, n, true); } EXPORT_SYMBOL_GPL(blocking_notifier_chain_register_unique_prio); /** * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain * @nh: Pointer to head of the blocking notifier chain * @n: Entry to remove from notifier chain * * Removes a notifier from a blocking notifier chain. * Must be called from process context. * * Returns zero on success or %-ENOENT on failure. */ int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, struct notifier_block *n) { int ret; /* * This code gets used during boot-up, when task switching is * not yet working and interrupts must remain disabled. At * such times we must not call down_write(). */ if (unlikely(system_state == SYSTEM_BOOTING)) return notifier_chain_unregister(&nh->head, n); down_write(&nh->rwsem); ret = notifier_chain_unregister(&nh->head, n); up_write(&nh->rwsem); return ret; } EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister); int blocking_notifier_call_chain_robust(struct blocking_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v) { int ret = NOTIFY_DONE; /* * We check the head outside the lock, but if this access is * racy then it does not matter what the result of the test * is, we re-check the list after having taken the lock anyway: */ if (rcu_access_pointer(nh->head)) { down_read(&nh->rwsem); ret = notifier_call_chain_robust(&nh->head, val_up, val_down, v); up_read(&nh->rwsem); } return ret; } EXPORT_SYMBOL_GPL(blocking_notifier_call_chain_robust); /** * blocking_notifier_call_chain - Call functions in a blocking notifier chain * @nh: Pointer to head of the blocking notifier chain * @val: Value passed unmodified to notifier function * @v: Pointer passed unmodified to notifier function * * Calls each function in a notifier chain in turn. The functions * run in a process context, so they are allowed to block. * * If the return value of the notifier can be and'ed * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain() * will return immediately, with the return value of * the notifier function which halted execution. * Otherwise the return value is the return value * of the last notifier function called. */ int blocking_notifier_call_chain(struct blocking_notifier_head *nh, unsigned long val, void *v) { int ret = NOTIFY_DONE; /* * We check the head outside the lock, but if this access is * racy then it does not matter what the result of the test * is, we re-check the list after having taken the lock anyway: */ if (rcu_access_pointer(nh->head)) { down_read(&nh->rwsem); ret = notifier_call_chain(&nh->head, val, v, -1, NULL); up_read(&nh->rwsem); } return ret; } EXPORT_SYMBOL_GPL(blocking_notifier_call_chain); /* * Raw notifier chain routines. There is no protection; * the caller must provide it. Use at your own risk! */ /** * raw_notifier_chain_register - Add notifier to a raw notifier chain * @nh: Pointer to head of the raw notifier chain * @n: New entry in notifier chain * * Adds a notifier to a raw notifier chain. * All locking must be provided by the caller. * * Returns 0 on success, %-EEXIST on error. */ int raw_notifier_chain_register(struct raw_notifier_head *nh, struct notifier_block *n) { return notifier_chain_register(&nh->head, n, false); } EXPORT_SYMBOL_GPL(raw_notifier_chain_register); /** * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain * @nh: Pointer to head of the raw notifier chain * @n: Entry to remove from notifier chain * * Removes a notifier from a raw notifier chain. * All locking must be provided by the caller. * * Returns zero on success or %-ENOENT on failure. */ int raw_notifier_chain_unregister(struct raw_notifier_head *nh, struct notifier_block *n) { return notifier_chain_unregister(&nh->head, n); } EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister); int raw_notifier_call_chain_robust(struct raw_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v) { return notifier_call_chain_robust(&nh->head, val_up, val_down, v); } EXPORT_SYMBOL_GPL(raw_notifier_call_chain_robust); /** * raw_notifier_call_chain - Call functions in a raw notifier chain * @nh: Pointer to head of the raw notifier chain * @val: Value passed unmodified to notifier function * @v: Pointer passed unmodified to notifier function * * Calls each function in a notifier chain in turn. The functions * run in an undefined context. * All locking must be provided by the caller. * * If the return value of the notifier can be and'ed * with %NOTIFY_STOP_MASK then raw_notifier_call_chain() * will return immediately, with the return value of * the notifier function which halted execution. * Otherwise the return value is the return value * of the last notifier function called. */ int raw_notifier_call_chain(struct raw_notifier_head *nh, unsigned long val, void *v) { return notifier_call_chain(&nh->head, val, v, -1, NULL); } EXPORT_SYMBOL_GPL(raw_notifier_call_chain); /* * SRCU notifier chain routines. Registration and unregistration * use a mutex, and call_chain is synchronized by SRCU (no locks). */ /** * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain * @nh: Pointer to head of the SRCU notifier chain * @n: New entry in notifier chain * * Adds a notifier to an SRCU notifier chain. * Must be called in process context. * * Returns 0 on success, %-EEXIST on error. */ int srcu_notifier_chain_register(struct srcu_notifier_head *nh, struct notifier_block *n) { int ret; /* * This code gets used during boot-up, when task switching is * not yet working and interrupts must remain disabled. At * such times we must not call mutex_lock(). */ if (unlikely(system_state == SYSTEM_BOOTING)) return notifier_chain_register(&nh->head, n, false); mutex_lock(&nh->mutex); ret = notifier_chain_register(&nh->head, n, false); mutex_unlock(&nh->mutex); return ret; } EXPORT_SYMBOL_GPL(srcu_notifier_chain_register); /** * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain * @nh: Pointer to head of the SRCU notifier chain * @n: Entry to remove from notifier chain * * Removes a notifier from an SRCU notifier chain. * Must be called from process context. * * Returns zero on success or %-ENOENT on failure. */ int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh, struct notifier_block *n) { int ret; /* * This code gets used during boot-up, when task switching is * not yet working and interrupts must remain disabled. At * such times we must not call mutex_lock(). */ if (unlikely(system_state == SYSTEM_BOOTING)) return notifier_chain_unregister(&nh->head, n); mutex_lock(&nh->mutex); ret = notifier_chain_unregister(&nh->head, n); mutex_unlock(&nh->mutex); synchronize_srcu(&nh->srcu); return ret; } EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister); /** * srcu_notifier_call_chain - Call functions in an SRCU notifier chain * @nh: Pointer to head of the SRCU notifier chain * @val: Value passed unmodified to notifier function * @v: Pointer passed unmodified to notifier function * * Calls each function in a notifier chain in turn. The functions * run in a process context, so they are allowed to block. * * If the return value of the notifier can be and'ed * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain() * will return immediately, with the return value of * the notifier function which halted execution. * Otherwise the return value is the return value * of the last notifier function called. */ int srcu_notifier_call_chain(struct srcu_notifier_head *nh, unsigned long val, void *v) { int ret; int idx; idx = srcu_read_lock(&nh->srcu); ret = notifier_call_chain(&nh->head, val, v, -1, NULL); srcu_read_unlock(&nh->srcu, idx); return ret; } EXPORT_SYMBOL_GPL(srcu_notifier_call_chain); /** * srcu_init_notifier_head - Initialize an SRCU notifier head * @nh: Pointer to head of the srcu notifier chain * * Unlike other sorts of notifier heads, SRCU notifier heads require * dynamic initialization. Be sure to call this routine before * calling any of the other SRCU notifier routines for this head. * * If an SRCU notifier head is deallocated, it must first be cleaned * up by calling srcu_cleanup_notifier_head(). Otherwise the head's * per-cpu data (used by the SRCU mechanism) will leak. */ void srcu_init_notifier_head(struct srcu_notifier_head *nh) { mutex_init(&nh->mutex); if (init_srcu_struct(&nh->srcu) < 0) BUG(); nh->head = NULL; } EXPORT_SYMBOL_GPL(srcu_init_notifier_head); static ATOMIC_NOTIFIER_HEAD(die_chain); int notrace notify_die(enum die_val val, const char *str, struct pt_regs *regs, long err, int trap, int sig) { struct die_args args = { .regs = regs, .str = str, .err = err, .trapnr = trap, .signr = sig, }; RCU_LOCKDEP_WARN(!rcu_is_watching(), "notify_die called but RCU thinks we're quiescent"); return atomic_notifier_call_chain(&die_chain, val, &args); } NOKPROBE_SYMBOL(notify_die); int register_die_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&die_chain, nb); } EXPORT_SYMBOL_GPL(register_die_notifier); int unregister_die_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&die_chain, nb); } EXPORT_SYMBOL_GPL(unregister_die_notifier); |
2 1 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar * Copyright (C) 2005-2006, Thomas Gleixner, Russell King * * This file contains the core interrupt handling code, for irq-chip based * architectures. Detailed information is available in * Documentation/core-api/genericirq.rst */ #include <linux/irq.h> #include <linux/msi.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/irqdomain.h> #include <trace/events/irq.h> #include "internals.h" static irqreturn_t bad_chained_irq(int irq, void *dev_id) { WARN_ONCE(1, "Chained irq %d should not call an action\n", irq); return IRQ_NONE; } /* * Chained handlers should never call action on their IRQ. This default * action will emit warning if such thing happens. */ struct irqaction chained_action = { .handler = bad_chained_irq, }; /** * irq_set_chip - set the irq chip for an irq * @irq: irq number * @chip: pointer to irq chip description structure */ int irq_set_chip(unsigned int irq, const struct irq_chip *chip) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return -EINVAL; desc->irq_data.chip = (struct irq_chip *)(chip ?: &no_irq_chip); irq_put_desc_unlock(desc, flags); /* * For !CONFIG_SPARSE_IRQ make the irq show up in * allocated_irqs. */ irq_mark_irq(irq); return 0; } EXPORT_SYMBOL(irq_set_chip); /** * irq_set_irq_type - set the irq trigger type for an irq * @irq: irq number * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h */ int irq_set_irq_type(unsigned int irq, unsigned int type) { unsigned long flags; struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); int ret = 0; if (!desc) return -EINVAL; ret = __irq_set_trigger(desc, type); irq_put_desc_busunlock(desc, flags); return ret; } EXPORT_SYMBOL(irq_set_irq_type); /** * irq_set_handler_data - set irq handler data for an irq * @irq: Interrupt number * @data: Pointer to interrupt specific data * * Set the hardware irq controller data for an irq */ int irq_set_handler_data(unsigned int irq, void *data) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return -EINVAL; desc->irq_common_data.handler_data = data; irq_put_desc_unlock(desc, flags); return 0; } EXPORT_SYMBOL(irq_set_handler_data); /** * irq_set_msi_desc_off - set MSI descriptor data for an irq at offset * @irq_base: Interrupt number base * @irq_offset: Interrupt number offset * @entry: Pointer to MSI descriptor data * * Set the MSI descriptor entry for an irq at offset */ int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset, struct msi_desc *entry) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq_base + irq_offset, &flags, IRQ_GET_DESC_CHECK_GLOBAL); if (!desc) return -EINVAL; desc->irq_common_data.msi_desc = entry; if (entry && !irq_offset) entry->irq = irq_base; irq_put_desc_unlock(desc, flags); return 0; } /** * irq_set_msi_desc - set MSI descriptor data for an irq * @irq: Interrupt number * @entry: Pointer to MSI descriptor data * * Set the MSI descriptor entry for an irq */ int irq_set_msi_desc(unsigned int irq, struct msi_desc *entry) { return irq_set_msi_desc_off(irq, 0, entry); } /** * irq_set_chip_data - set irq chip data for an irq * @irq: Interrupt number * @data: Pointer to chip specific data * * Set the hardware irq chip data for an irq */ int irq_set_chip_data(unsigned int irq, void *data) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return -EINVAL; desc->irq_data.chip_data = data; irq_put_desc_unlock(desc, flags); return 0; } EXPORT_SYMBOL(irq_set_chip_data); struct irq_data *irq_get_irq_data(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); return desc ? &desc->irq_data : NULL; } EXPORT_SYMBOL_GPL(irq_get_irq_data); static void irq_state_clr_disabled(struct irq_desc *desc) { irqd_clear(&desc->irq_data, IRQD_IRQ_DISABLED); } static void irq_state_clr_masked(struct irq_desc *desc) { irqd_clear(&desc->irq_data, IRQD_IRQ_MASKED); } static void irq_state_clr_started(struct irq_desc *desc) { irqd_clear(&desc->irq_data, IRQD_IRQ_STARTED); } static void irq_state_set_started(struct irq_desc *desc) { irqd_set(&desc->irq_data, IRQD_IRQ_STARTED); } enum { IRQ_STARTUP_NORMAL, IRQ_STARTUP_MANAGED, IRQ_STARTUP_ABORT, }; #ifdef CONFIG_SMP static int __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff, bool force) { struct irq_data *d = irq_desc_get_irq_data(desc); if (!irqd_affinity_is_managed(d)) return IRQ_STARTUP_NORMAL; irqd_clr_managed_shutdown(d); if (cpumask_any_and(aff, cpu_online_mask) >= nr_cpu_ids) { /* * Catch code which fiddles with enable_irq() on a managed * and potentially shutdown IRQ. Chained interrupt * installment or irq auto probing should not happen on * managed irqs either. */ if (WARN_ON_ONCE(force)) return IRQ_STARTUP_ABORT; /* * The interrupt was requested, but there is no online CPU * in it's affinity mask. Put it into managed shutdown * state and let the cpu hotplug mechanism start it up once * a CPU in the mask becomes available. */ return IRQ_STARTUP_ABORT; } /* * Managed interrupts have reserved resources, so this should not * happen. */ if (WARN_ON(irq_domain_activate_irq(d, false))) return IRQ_STARTUP_ABORT; return IRQ_STARTUP_MANAGED; } #else static __always_inline int __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff, bool force) { return IRQ_STARTUP_NORMAL; } #endif static int __irq_startup(struct irq_desc *desc) { struct irq_data *d = irq_desc_get_irq_data(desc); int ret = 0; /* Warn if this interrupt is not activated but try nevertheless */ WARN_ON_ONCE(!irqd_is_activated(d)); if (d->chip->irq_startup) { ret = d->chip->irq_startup(d); irq_state_clr_disabled(desc); irq_state_clr_masked(desc); } else { irq_enable(desc); } irq_state_set_started(desc); return ret; } int irq_startup(struct irq_desc *desc, bool resend, bool force) { struct irq_data *d = irq_desc_get_irq_data(desc); const struct cpumask *aff = irq_data_get_affinity_mask(d); int ret = 0; desc->depth = 0; if (irqd_is_started(d)) { irq_enable(desc); } else { switch (__irq_startup_managed(desc, aff, force)) { case IRQ_STARTUP_NORMAL: if (d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP) irq_setup_affinity(desc); ret = __irq_startup(desc); if (!(d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP)) irq_setup_affinity(desc); break; case IRQ_STARTUP_MANAGED: irq_do_set_affinity(d, aff, false); ret = __irq_startup(desc); break; case IRQ_STARTUP_ABORT: irqd_set_managed_shutdown(d); return 0; } } if (resend) check_irq_resend(desc, false); return ret; } int irq_activate(struct irq_desc *desc) { struct irq_data *d = irq_desc_get_irq_data(desc); if (!irqd_affinity_is_managed(d)) return irq_domain_activate_irq(d, false); return 0; } int irq_activate_and_startup(struct irq_desc *desc, bool resend) { if (WARN_ON(irq_activate(desc))) return 0; return irq_startup(desc, resend, IRQ_START_FORCE); } static void __irq_disable(struct irq_desc *desc, bool mask); void irq_shutdown(struct irq_desc *desc) { if (irqd_is_started(&desc->irq_data)) { clear_irq_resend(desc); desc->depth = 1; if (desc->irq_data.chip->irq_shutdown) { desc->irq_data.chip->irq_shutdown(&desc->irq_data); irq_state_set_disabled(desc); irq_state_set_masked(desc); } else { __irq_disable(desc, true); } irq_state_clr_started(desc); } } void irq_shutdown_and_deactivate(struct irq_desc *desc) { irq_shutdown(desc); /* * This must be called even if the interrupt was never started up, * because the activation can happen before the interrupt is * available for request/startup. It has it's own state tracking so * it's safe to call it unconditionally. */ irq_domain_deactivate_irq(&desc->irq_data); } void irq_enable(struct irq_desc *desc) { if (!irqd_irq_disabled(&desc->irq_data)) { unmask_irq(desc); } else { irq_state_clr_disabled(desc); if (desc->irq_data.chip->irq_enable) { desc->irq_data.chip->irq_enable(&desc->irq_data); irq_state_clr_masked(desc); } else { unmask_irq(desc); } } } static void __irq_disable(struct irq_desc *desc, bool mask) { if (irqd_irq_disabled(&desc->irq_data)) { if (mask) mask_irq(desc); } else { irq_state_set_disabled(desc); if (desc->irq_data.chip->irq_disable) { desc->irq_data.chip->irq_disable(&desc->irq_data); irq_state_set_masked(desc); } else if (mask) { mask_irq(desc); } } } /** * irq_disable - Mark interrupt disabled * @desc: irq descriptor which should be disabled * * If the chip does not implement the irq_disable callback, we * use a lazy disable approach. That means we mark the interrupt * disabled, but leave the hardware unmasked. That's an * optimization because we avoid the hardware access for the * common case where no interrupt happens after we marked it * disabled. If an interrupt happens, then the interrupt flow * handler masks the line at the hardware level and marks it * pending. * * If the interrupt chip does not implement the irq_disable callback, * a driver can disable the lazy approach for a particular irq line by * calling 'irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY)'. This can * be used for devices which cannot disable the interrupt at the * device level under certain circumstances and have to use * disable_irq[_nosync] instead. */ void irq_disable(struct irq_desc *desc) { __irq_disable(desc, irq_settings_disable_unlazy(desc)); } void irq_percpu_enable(struct irq_desc *desc, unsigned int cpu) { if (desc->irq_data.chip->irq_enable) desc->irq_data.chip->irq_enable(&desc->irq_data); else desc->irq_data.chip->irq_unmask(&desc->irq_data); cpumask_set_cpu(cpu, desc->percpu_enabled); } void irq_percpu_disable(struct irq_desc *desc, unsigned int cpu) { if (desc->irq_data.chip->irq_disable) desc->irq_data.chip->irq_disable(&desc->irq_data); else desc->irq_data.chip->irq_mask(&desc->irq_data); cpumask_clear_cpu(cpu, desc->percpu_enabled); } static inline void mask_ack_irq(struct irq_desc *desc) { if (desc->irq_data.chip->irq_mask_ack) { desc->irq_data.chip->irq_mask_ack(&desc->irq_data); irq_state_set_masked(desc); } else { mask_irq(desc); if (desc->irq_data.chip->irq_ack) desc->irq_data.chip->irq_ack(&desc->irq_data); } } void mask_irq(struct irq_desc *desc) { if (irqd_irq_masked(&desc->irq_data)) return; if (desc->irq_data.chip->irq_mask) { desc->irq_data.chip->irq_mask(&desc->irq_data); irq_state_set_masked(desc); } } void unmask_irq(struct irq_desc *desc) { if (!irqd_irq_masked(&desc->irq_data)) return; if (desc->irq_data.chip->irq_unmask) { desc->irq_data.chip->irq_unmask(&desc->irq_data); irq_state_clr_masked(desc); } } void unmask_threaded_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; if (chip->flags & IRQCHIP_EOI_THREADED) chip->irq_eoi(&desc->irq_data); unmask_irq(desc); } /* * handle_nested_irq - Handle a nested irq from a irq thread * @irq: the interrupt number * * Handle interrupts which are nested into a threaded interrupt * handler. The handler function is called inside the calling * threads context. */ void handle_nested_irq(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); struct irqaction *action; irqreturn_t action_ret; might_sleep(); raw_spin_lock_irq(&desc->lock); desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); action = desc->action; if (unlikely(!action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; raw_spin_unlock_irq(&desc->lock); return; } kstat_incr_irqs_this_cpu(desc); atomic_inc(&desc->threads_active); raw_spin_unlock_irq(&desc->lock); action_ret = IRQ_NONE; for_each_action_of_desc(desc, action) action_ret |= action->thread_fn(action->irq, action->dev_id); if (!irq_settings_no_debug(desc)) note_interrupt(desc, action_ret); wake_threads_waitq(desc); } EXPORT_SYMBOL_GPL(handle_nested_irq); static bool irq_check_poll(struct irq_desc *desc) { if (!(desc->istate & IRQS_POLL_INPROGRESS)) return false; return irq_wait_for_poll(desc); } static bool irq_may_run(struct irq_desc *desc) { unsigned int mask = IRQD_IRQ_INPROGRESS | IRQD_WAKEUP_ARMED; /* * If the interrupt is not in progress and is not an armed * wakeup interrupt, proceed. */ if (!irqd_has_set(&desc->irq_data, mask)) return true; /* * If the interrupt is an armed wakeup source, mark it pending * and suspended, disable it and notify the pm core about the * event. */ if (irq_pm_check_wakeup(desc)) return false; /* * Handle a potential concurrent poll on a different core. */ return irq_check_poll(desc); } /** * handle_simple_irq - Simple and software-decoded IRQs. * @desc: the interrupt description structure for this irq * * Simple interrupts are either sent from a demultiplexing interrupt * handler or come from hardware, where no interrupt hardware control * is necessary. * * Note: The caller is expected to handle the ack, clear, mask and * unmask issues if necessary. */ void handle_simple_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); if (!irq_may_run(desc)) goto out_unlock; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; goto out_unlock; } kstat_incr_irqs_this_cpu(desc); handle_irq_event(desc); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_simple_irq); /** * handle_untracked_irq - Simple and software-decoded IRQs. * @desc: the interrupt description structure for this irq * * Untracked interrupts are sent from a demultiplexing interrupt * handler when the demultiplexer does not know which device it its * multiplexed irq domain generated the interrupt. IRQ's handled * through here are not subjected to stats tracking, randomness, or * spurious interrupt detection. * * Note: Like handle_simple_irq, the caller is expected to handle * the ack, clear, mask and unmask issues if necessary. */ void handle_untracked_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); if (!irq_may_run(desc)) goto out_unlock; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; goto out_unlock; } desc->istate &= ~IRQS_PENDING; irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS); raw_spin_unlock(&desc->lock); __handle_irq_event_percpu(desc); raw_spin_lock(&desc->lock); irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_untracked_irq); /* * Called unconditionally from handle_level_irq() and only for oneshot * interrupts from handle_fasteoi_irq() */ static void cond_unmask_irq(struct irq_desc *desc) { /* * We need to unmask in the following cases: * - Standard level irq (IRQF_ONESHOT is not set) * - Oneshot irq which did not wake the thread (caused by a * spurious interrupt or a primary handler handling it * completely). */ if (!irqd_irq_disabled(&desc->irq_data) && irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) unmask_irq(desc); } /** * handle_level_irq - Level type irq handler * @desc: the interrupt description structure for this irq * * Level type interrupts are active as long as the hardware line has * the active level. This may require to mask the interrupt and unmask * it after the associated handler has acknowledged the device, so the * interrupt line is back to inactive. */ void handle_level_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); mask_ack_irq(desc); if (!irq_may_run(desc)) goto out_unlock; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * keep it masked and get out of here */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; goto out_unlock; } kstat_incr_irqs_this_cpu(desc); handle_irq_event(desc); cond_unmask_irq(desc); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_level_irq); static void cond_unmask_eoi_irq(struct irq_desc *desc, struct irq_chip *chip) { if (!(desc->istate & IRQS_ONESHOT)) { chip->irq_eoi(&desc->irq_data); return; } /* * We need to unmask in the following cases: * - Oneshot irq which did not wake the thread (caused by a * spurious interrupt or a primary handler handling it * completely). */ if (!irqd_irq_disabled(&desc->irq_data) && irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) { chip->irq_eoi(&desc->irq_data); unmask_irq(desc); } else if (!(chip->flags & IRQCHIP_EOI_THREADED)) { chip->irq_eoi(&desc->irq_data); } } /** * handle_fasteoi_irq - irq handler for transparent controllers * @desc: the interrupt description structure for this irq * * Only a single callback will be issued to the chip: an ->eoi() * call when the interrupt has been serviced. This enables support * for modern forms of interrupt handlers, which handle the flow * details in hardware, transparently. */ void handle_fasteoi_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; raw_spin_lock(&desc->lock); /* * When an affinity change races with IRQ handling, the next interrupt * can arrive on the new CPU before the original CPU has completed * handling the previous one - it may need to be resent. */ if (!irq_may_run(desc)) { if (irqd_needs_resend_when_in_progress(&desc->irq_data)) desc->istate |= IRQS_PENDING; goto out; } desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * then mask it and get out of here: */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; mask_irq(desc); goto out; } kstat_incr_irqs_this_cpu(desc); if (desc->istate & IRQS_ONESHOT) mask_irq(desc); handle_irq_event(desc); cond_unmask_eoi_irq(desc, chip); /* * When the race described above happens this will resend the interrupt. */ if (unlikely(desc->istate & IRQS_PENDING)) check_irq_resend(desc, false); raw_spin_unlock(&desc->lock); return; out: if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED)) chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_fasteoi_irq); /** * handle_fasteoi_nmi - irq handler for NMI interrupt lines * @desc: the interrupt description structure for this irq * * A simple NMI-safe handler, considering the restrictions * from request_nmi. * * Only a single callback will be issued to the chip: an ->eoi() * call when the interrupt has been serviced. This enables support * for modern forms of interrupt handlers, which handle the flow * details in hardware, transparently. */ void handle_fasteoi_nmi(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct irqaction *action = desc->action; unsigned int irq = irq_desc_get_irq(desc); irqreturn_t res; __kstat_incr_irqs_this_cpu(desc); trace_irq_handler_entry(irq, action); /* * NMIs cannot be shared, there is only one action. */ res = action->handler(irq, action->dev_id); trace_irq_handler_exit(irq, action, res); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } EXPORT_SYMBOL_GPL(handle_fasteoi_nmi); /** * handle_edge_irq - edge type IRQ handler * @desc: the interrupt description structure for this irq * * Interrupt occurs on the falling and/or rising edge of a hardware * signal. The occurrence is latched into the irq controller hardware * and must be acked in order to be reenabled. After the ack another * interrupt can happen on the same source even before the first one * is handled by the associated event handler. If this happens it * might be necessary to disable (mask) the interrupt depending on the * controller hardware. This requires to reenable the interrupt inside * of the loop which handles the interrupts which have arrived while * the handler was running. If all pending interrupts are handled, the * loop is left. */ void handle_edge_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (!irq_may_run(desc)) { desc->istate |= IRQS_PENDING; mask_ack_irq(desc); goto out_unlock; } /* * If its disabled or no action available then mask it and get * out of here. */ if (irqd_irq_disabled(&desc->irq_data) || !desc->action) { desc->istate |= IRQS_PENDING; mask_ack_irq(desc); goto out_unlock; } kstat_incr_irqs_this_cpu(desc); /* Start handling the irq */ desc->irq_data.chip->irq_ack(&desc->irq_data); do { if (unlikely(!desc->action)) { mask_irq(desc); goto out_unlock; } /* * When another irq arrived while we were handling * one, we could have masked the irq. * Reenable it, if it was not disabled in meantime. */ if (unlikely(desc->istate & IRQS_PENDING)) { if (!irqd_irq_disabled(&desc->irq_data) && irqd_irq_masked(&desc->irq_data)) unmask_irq(desc); } handle_irq_event(desc); } while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data)); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL(handle_edge_irq); #ifdef CONFIG_IRQ_EDGE_EOI_HANDLER /** * handle_edge_eoi_irq - edge eoi type IRQ handler * @desc: the interrupt description structure for this irq * * Similar as the above handle_edge_irq, but using eoi and w/o the * mask/unmask logic. */ void handle_edge_eoi_irq(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); raw_spin_lock(&desc->lock); desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (!irq_may_run(desc)) { desc->istate |= IRQS_PENDING; goto out_eoi; } /* * If its disabled or no action available then mask it and get * out of here. */ if (irqd_irq_disabled(&desc->irq_data) || !desc->action) { desc->istate |= IRQS_PENDING; goto out_eoi; } kstat_incr_irqs_this_cpu(desc); do { if (unlikely(!desc->action)) goto out_eoi; handle_irq_event(desc); } while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data)); out_eoi: chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } #endif /** * handle_percpu_irq - Per CPU local irq handler * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements */ void handle_percpu_irq(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); /* * PER CPU interrupts are not serialized. Do not touch * desc->tot_count. */ __kstat_incr_irqs_this_cpu(desc); if (chip->irq_ack) chip->irq_ack(&desc->irq_data); handle_irq_event_percpu(desc); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } /** * handle_percpu_devid_irq - Per CPU local irq handler with per cpu dev ids * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements. Same as * handle_percpu_irq() above but with the following extras: * * action->percpu_dev_id is a pointer to percpu variables which * contain the real device id for the cpu on which this handler is * called */ void handle_percpu_devid_irq(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct irqaction *action = desc->action; unsigned int irq = irq_desc_get_irq(desc); irqreturn_t res; /* * PER CPU interrupts are not serialized. Do not touch * desc->tot_count. */ __kstat_incr_irqs_this_cpu(desc); if (chip->irq_ack) chip->irq_ack(&desc->irq_data); if (likely(action)) { trace_irq_handler_entry(irq, action); res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id)); trace_irq_handler_exit(irq, action, res); } else { unsigned int cpu = smp_processor_id(); bool enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); if (enabled) irq_percpu_disable(desc, cpu); pr_err_once("Spurious%s percpu IRQ%u on CPU%u\n", enabled ? " and unmasked" : "", irq, cpu); } if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } /** * handle_percpu_devid_fasteoi_nmi - Per CPU local NMI handler with per cpu * dev ids * @desc: the interrupt description structure for this irq * * Similar to handle_fasteoi_nmi, but handling the dev_id cookie * as a percpu pointer. */ void handle_percpu_devid_fasteoi_nmi(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct irqaction *action = desc->action; unsigned int irq = irq_desc_get_irq(desc); irqreturn_t res; __kstat_incr_irqs_this_cpu(desc); trace_irq_handler_entry(irq, action); res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id)); trace_irq_handler_exit(irq, action, res); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } static void __irq_do_set_handler(struct irq_desc *desc, irq_flow_handler_t handle, int is_chained, const char *name) { if (!handle) { handle = handle_bad_irq; } else { struct irq_data *irq_data = &desc->irq_data; #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY /* * With hierarchical domains we might run into a * situation where the outermost chip is not yet set * up, but the inner chips are there. Instead of * bailing we install the handler, but obviously we * cannot enable/startup the interrupt at this point. */ while (irq_data) { if (irq_data->chip != &no_irq_chip) break; /* * Bail out if the outer chip is not set up * and the interrupt supposed to be started * right away. */ if (WARN_ON(is_chained)) return; /* Try the parent */ irq_data = irq_data->parent_data; } #endif if (WARN_ON(!irq_data || irq_data->chip == &no_irq_chip)) return; } /* Uninstall? */ if (handle == handle_bad_irq) { if (desc->irq_data.chip != &no_irq_chip) mask_ack_irq(desc); irq_state_set_disabled(desc); if (is_chained) { desc->action = NULL; WARN_ON(irq_chip_pm_put(irq_desc_get_irq_data(desc))); } desc->depth = 1; } desc->handle_irq = handle; desc->name = name; if (handle != handle_bad_irq && is_chained) { unsigned int type = irqd_get_trigger_type(&desc->irq_data); /* * We're about to start this interrupt immediately, * hence the need to set the trigger configuration. * But the .set_type callback may have overridden the * flow handler, ignoring that we're dealing with a * chained interrupt. Reset it immediately because we * do know better. */ if (type != IRQ_TYPE_NONE) { __irq_set_trigger(desc, type); desc->handle_irq = handle; } irq_settings_set_noprobe(desc); irq_settings_set_norequest(desc); irq_settings_set_nothread(desc); desc->action = &chained_action; WARN_ON(irq_chip_pm_get(irq_desc_get_irq_data(desc))); irq_activate_and_startup(desc, IRQ_RESEND); } } void __irq_set_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, const char *name) { unsigned long flags; struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, 0); if (!desc) return; __irq_do_set_handler(desc, handle, is_chained, name); irq_put_desc_busunlock(desc, flags); } EXPORT_SYMBOL_GPL(__irq_set_handler); void irq_set_chained_handler_and_data(unsigned int irq, irq_flow_handler_t handle, void *data) { unsigned long flags; struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, 0); if (!desc) return; desc->irq_common_data.handler_data = data; __irq_do_set_handler(desc, handle, 1, NULL); irq_put_desc_busunlock(desc, flags); } EXPORT_SYMBOL_GPL(irq_set_chained_handler_and_data); void irq_set_chip_and_handler_name(unsigned int irq, const struct irq_chip *chip, irq_flow_handler_t handle, const char *name) { irq_set_chip(irq, chip); __irq_set_handler(irq, handle, 0, name); } EXPORT_SYMBOL_GPL(irq_set_chip_and_handler_name); void irq_modify_status(unsigned int irq, unsigned long clr, unsigned long set) { unsigned long flags, trigger, tmp; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return; /* * Warn when a driver sets the no autoenable flag on an already * active interrupt. */ WARN_ON_ONCE(!desc->depth && (set & _IRQ_NOAUTOEN)); irq_settings_clr_and_set(desc, clr, set); trigger = irqd_get_trigger_type(&desc->irq_data); irqd_clear(&desc->irq_data, IRQD_NO_BALANCING | IRQD_PER_CPU | IRQD_TRIGGER_MASK | IRQD_LEVEL | IRQD_MOVE_PCNTXT); if (irq_settings_has_no_balance_set(desc)) irqd_set(&desc->irq_data, IRQD_NO_BALANCING); if (irq_settings_is_per_cpu(desc)) irqd_set(&desc->irq_data, IRQD_PER_CPU); if (irq_settings_can_move_pcntxt(desc)) irqd_set(&desc->irq_data, IRQD_MOVE_PCNTXT); if (irq_settings_is_level(desc)) irqd_set(&desc->irq_data, IRQD_LEVEL); tmp = irq_settings_get_trigger_mask(desc); if (tmp != IRQ_TYPE_NONE) trigger = tmp; irqd_set(&desc->irq_data, trigger); irq_put_desc_unlock(desc, flags); } EXPORT_SYMBOL_GPL(irq_modify_status); #ifdef CONFIG_DEPRECATED_IRQ_CPU_ONOFFLINE /** * irq_cpu_online - Invoke all irq_cpu_online functions. * * Iterate through all irqs and invoke the chip.irq_cpu_online() * for each. */ void irq_cpu_online(void) { struct irq_desc *desc; struct irq_chip *chip; unsigned long flags; unsigned int irq; for_each_active_irq(irq) { desc = irq_to_desc(irq); if (!desc) continue; raw_spin_lock_irqsave(&desc->lock, flags); chip = irq_data_get_irq_chip(&desc->irq_data); if (chip && chip->irq_cpu_online && (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) || !irqd_irq_disabled(&desc->irq_data))) chip->irq_cpu_online(&desc->irq_data); raw_spin_unlock_irqrestore(&desc->lock, flags); } } /** * irq_cpu_offline - Invoke all irq_cpu_offline functions. * * Iterate through all irqs and invoke the chip.irq_cpu_offline() * for each. */ void irq_cpu_offline(void) { struct irq_desc *desc; struct irq_chip *chip; unsigned long flags; unsigned int irq; for_each_active_irq(irq) { desc = irq_to_desc(irq); if (!desc) continue; raw_spin_lock_irqsave(&desc->lock, flags); chip = irq_data_get_irq_chip(&desc->irq_data); if (chip && chip->irq_cpu_offline && (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) || !irqd_irq_disabled(&desc->irq_data))) chip->irq_cpu_offline(&desc->irq_data); raw_spin_unlock_irqrestore(&desc->lock, flags); } } #endif #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY #ifdef CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS /** * handle_fasteoi_ack_irq - irq handler for edge hierarchy * stacked on transparent controllers * * @desc: the interrupt description structure for this irq * * Like handle_fasteoi_irq(), but for use with hierarchy where * the irq_chip also needs to have its ->irq_ack() function * called. */ void handle_fasteoi_ack_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; raw_spin_lock(&desc->lock); if (!irq_may_run(desc)) goto out; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * then mask it and get out of here: */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; mask_irq(desc); goto out; } kstat_incr_irqs_this_cpu(desc); if (desc->istate & IRQS_ONESHOT) mask_irq(desc); /* Start handling the irq */ desc->irq_data.chip->irq_ack(&desc->irq_data); handle_irq_event(desc); cond_unmask_eoi_irq(desc, chip); raw_spin_unlock(&desc->lock); return; out: if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED)) chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_fasteoi_ack_irq); /** * handle_fasteoi_mask_irq - irq handler for level hierarchy * stacked on transparent controllers * * @desc: the interrupt description structure for this irq * * Like handle_fasteoi_irq(), but for use with hierarchy where * the irq_chip also needs to have its ->irq_mask_ack() function * called. */ void handle_fasteoi_mask_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; raw_spin_lock(&desc->lock); mask_ack_irq(desc); if (!irq_may_run(desc)) goto out; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * then mask it and get out of here: */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; mask_irq(desc); goto out; } kstat_incr_irqs_this_cpu(desc); if (desc->istate & IRQS_ONESHOT) mask_irq(desc); handle_irq_event(desc); cond_unmask_eoi_irq(desc, chip); raw_spin_unlock(&desc->lock); return; out: if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED)) chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_fasteoi_mask_irq); #endif /* CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS */ /** * irq_chip_set_parent_state - set the state of a parent interrupt. * * @data: Pointer to interrupt specific data * @which: State to be restored (one of IRQCHIP_STATE_*) * @val: Value corresponding to @which * * Conditional success, if the underlying irqchip does not implement it. */ int irq_chip_set_parent_state(struct irq_data *data, enum irqchip_irq_state which, bool val) { data = data->parent_data; if (!data || !data->chip->irq_set_irqchip_state) return 0; return data->chip->irq_set_irqchip_state(data, which, val); } EXPORT_SYMBOL_GPL(irq_chip_set_parent_state); /** * irq_chip_get_parent_state - get the state of a parent interrupt. * * @data: Pointer to interrupt specific data * @which: one of IRQCHIP_STATE_* the caller wants to know * @state: a pointer to a boolean where the state is to be stored * * Conditional success, if the underlying irqchip does not implement it. */ int irq_chip_get_parent_state(struct irq_data *data, enum irqchip_irq_state which, bool *state) { data = data->parent_data; if (!data || !data->chip->irq_get_irqchip_state) return 0; return data->chip->irq_get_irqchip_state(data, which, state); } EXPORT_SYMBOL_GPL(irq_chip_get_parent_state); /** * irq_chip_enable_parent - Enable the parent interrupt (defaults to unmask if * NULL) * @data: Pointer to interrupt specific data */ void irq_chip_enable_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_enable) data->chip->irq_enable(data); else data->chip->irq_unmask(data); } EXPORT_SYMBOL_GPL(irq_chip_enable_parent); /** * irq_chip_disable_parent - Disable the parent interrupt (defaults to mask if * NULL) * @data: Pointer to interrupt specific data */ void irq_chip_disable_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_disable) data->chip->irq_disable(data); else data->chip->irq_mask(data); } EXPORT_SYMBOL_GPL(irq_chip_disable_parent); /** * irq_chip_ack_parent - Acknowledge the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_ack_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_ack(data); } EXPORT_SYMBOL_GPL(irq_chip_ack_parent); /** * irq_chip_mask_parent - Mask the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_mask_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_mask(data); } EXPORT_SYMBOL_GPL(irq_chip_mask_parent); /** * irq_chip_mask_ack_parent - Mask and acknowledge the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_mask_ack_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_mask_ack(data); } EXPORT_SYMBOL_GPL(irq_chip_mask_ack_parent); /** * irq_chip_unmask_parent - Unmask the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_unmask_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_unmask(data); } EXPORT_SYMBOL_GPL(irq_chip_unmask_parent); /** * irq_chip_eoi_parent - Invoke EOI on the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_eoi_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_eoi(data); } EXPORT_SYMBOL_GPL(irq_chip_eoi_parent); /** * irq_chip_set_affinity_parent - Set affinity on the parent interrupt * @data: Pointer to interrupt specific data * @dest: The affinity mask to set * @force: Flag to enforce setting (disable online checks) * * Conditional, as the underlying parent chip might not implement it. */ int irq_chip_set_affinity_parent(struct irq_data *data, const struct cpumask *dest, bool force) { data = data->parent_data; if (data->chip->irq_set_affinity) return data->chip->irq_set_affinity(data, dest, force); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_affinity_parent); /** * irq_chip_set_type_parent - Set IRQ type on the parent interrupt * @data: Pointer to interrupt specific data * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h * * Conditional, as the underlying parent chip might not implement it. */ int irq_chip_set_type_parent(struct irq_data *data, unsigned int type) { data = data->parent_data; if (data->chip->irq_set_type) return data->chip->irq_set_type(data, type); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_type_parent); /** * irq_chip_retrigger_hierarchy - Retrigger an interrupt in hardware * @data: Pointer to interrupt specific data * * Iterate through the domain hierarchy of the interrupt and check * whether a hw retrigger function exists. If yes, invoke it. */ int irq_chip_retrigger_hierarchy(struct irq_data *data) { for (data = data->parent_data; data; data = data->parent_data) if (data->chip && data->chip->irq_retrigger) return data->chip->irq_retrigger(data); return 0; } EXPORT_SYMBOL_GPL(irq_chip_retrigger_hierarchy); /** * irq_chip_set_vcpu_affinity_parent - Set vcpu affinity on the parent interrupt * @data: Pointer to interrupt specific data * @vcpu_info: The vcpu affinity information */ int irq_chip_set_vcpu_affinity_parent(struct irq_data *data, void *vcpu_info) { data = data->parent_data; if (data->chip->irq_set_vcpu_affinity) return data->chip->irq_set_vcpu_affinity(data, vcpu_info); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_vcpu_affinity_parent); /** * irq_chip_set_wake_parent - Set/reset wake-up on the parent interrupt * @data: Pointer to interrupt specific data * @on: Whether to set or reset the wake-up capability of this irq * * Conditional, as the underlying parent chip might not implement it. */ int irq_chip_set_wake_parent(struct irq_data *data, unsigned int on) { data = data->parent_data; if (data->chip->flags & IRQCHIP_SKIP_SET_WAKE) return 0; if (data->chip->irq_set_wake) return data->chip->irq_set_wake(data, on); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_wake_parent); /** * irq_chip_request_resources_parent - Request resources on the parent interrupt * @data: Pointer to interrupt specific data */ int irq_chip_request_resources_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_request_resources) return data->chip->irq_request_resources(data); /* no error on missing optional irq_chip::irq_request_resources */ return 0; } EXPORT_SYMBOL_GPL(irq_chip_request_resources_parent); /** * irq_chip_release_resources_parent - Release resources on the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_release_resources_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_release_resources) data->chip->irq_release_resources(data); } EXPORT_SYMBOL_GPL(irq_chip_release_resources_parent); #endif /** * irq_chip_compose_msi_msg - Compose msi message for a irq chip * @data: Pointer to interrupt specific data * @msg: Pointer to the MSI message * * For hierarchical domains we find the first chip in the hierarchy * which implements the irq_compose_msi_msg callback. For non * hierarchical we use the top level chip. */ int irq_chip_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct irq_data *pos; for (pos = NULL; !pos && data; data = irqd_get_parent_data(data)) { if (data->chip && data->chip->irq_compose_msi_msg) pos = data; } if (!pos) return -ENOSYS; pos->chip->irq_compose_msi_msg(pos, msg); return 0; } static struct device *irq_get_pm_device(struct irq_data *data) { if (data->domain) return data->domain->pm_dev; return NULL; } /** * irq_chip_pm_get - Enable power for an IRQ chip * @data: Pointer to interrupt specific data * * Enable the power to the IRQ chip referenced by the interrupt data * structure. */ int irq_chip_pm_get(struct irq_data *data) { struct device *dev = irq_get_pm_device(data); int retval = 0; if (IS_ENABLED(CONFIG_PM) && dev) retval = pm_runtime_resume_and_get(dev); return retval; } /** * irq_chip_pm_put - Disable power for an IRQ chip * @data: Pointer to interrupt specific data * * Disable the power to the IRQ chip referenced by the interrupt data * structure, belongs. Note that power will only be disabled, once this * function has been called for all IRQs that have called irq_chip_pm_get(). */ int irq_chip_pm_put(struct irq_data *data) { struct device *dev = irq_get_pm_device(data); int retval = 0; if (IS_ENABLED(CONFIG_PM) && dev) retval = pm_runtime_put(dev); return (retval < 0) ? retval : 0; } |
10 7 3 3 1 1 2 2 2 2 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | // SPDX-License-Identifier: GPL-2.0 /* MPTCP socket monitoring support * * Copyright (c) 2019 Red Hat * * Author: Davide Caratti <dcaratti@redhat.com> */ #include <linux/kernel.h> #include <linux/net.h> #include <linux/inet_diag.h> #include <net/netlink.h> #include "protocol.h" static int subflow_get_info(struct sock *sk, struct sk_buff *skb) { struct mptcp_subflow_context *sf; struct nlattr *start; u32 flags = 0; bool slow; int err; if (inet_sk_state_load(sk) == TCP_LISTEN) return 0; start = nla_nest_start_noflag(skb, INET_ULP_INFO_MPTCP); if (!start) return -EMSGSIZE; slow = lock_sock_fast(sk); rcu_read_lock(); sf = rcu_dereference(inet_csk(sk)->icsk_ulp_data); if (!sf) { err = 0; goto nla_failure; } if (sf->mp_capable) flags |= MPTCP_SUBFLOW_FLAG_MCAP_REM; if (sf->request_mptcp) flags |= MPTCP_SUBFLOW_FLAG_MCAP_LOC; if (sf->mp_join) flags |= MPTCP_SUBFLOW_FLAG_JOIN_REM; if (sf->request_join) flags |= MPTCP_SUBFLOW_FLAG_JOIN_LOC; if (sf->backup) flags |= MPTCP_SUBFLOW_FLAG_BKUP_REM; if (sf->request_bkup) flags |= MPTCP_SUBFLOW_FLAG_BKUP_LOC; if (sf->fully_established) flags |= MPTCP_SUBFLOW_FLAG_FULLY_ESTABLISHED; if (sf->conn_finished) flags |= MPTCP_SUBFLOW_FLAG_CONNECTED; if (sf->map_valid) flags |= MPTCP_SUBFLOW_FLAG_MAPVALID; if (nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_TOKEN_REM, sf->remote_token) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_TOKEN_LOC, sf->token) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_RELWRITE_SEQ, sf->rel_write_seq) || nla_put_u64_64bit(skb, MPTCP_SUBFLOW_ATTR_MAP_SEQ, sf->map_seq, MPTCP_SUBFLOW_ATTR_PAD) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_MAP_SFSEQ, sf->map_subflow_seq) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_SSN_OFFSET, sf->ssn_offset) || nla_put_u16(skb, MPTCP_SUBFLOW_ATTR_MAP_DATALEN, sf->map_data_len) || nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_FLAGS, flags) || nla_put_u8(skb, MPTCP_SUBFLOW_ATTR_ID_REM, sf->remote_id) || nla_put_u8(skb, MPTCP_SUBFLOW_ATTR_ID_LOC, subflow_get_local_id(sf))) { err = -EMSGSIZE; goto nla_failure; } rcu_read_unlock(); unlock_sock_fast(sk, slow); nla_nest_end(skb, start); return 0; nla_failure: rcu_read_unlock(); unlock_sock_fast(sk, slow); nla_nest_cancel(skb, start); return err; } static size_t subflow_get_info_size(const struct sock *sk) { size_t size = 0; size += nla_total_size(0) + /* INET_ULP_INFO_MPTCP */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_TOKEN_REM */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_TOKEN_LOC */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_RELWRITE_SEQ */ nla_total_size_64bit(8) + /* MPTCP_SUBFLOW_ATTR_MAP_SEQ */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_MAP_SFSEQ */ nla_total_size(2) + /* MPTCP_SUBFLOW_ATTR_SSN_OFFSET */ nla_total_size(2) + /* MPTCP_SUBFLOW_ATTR_MAP_DATALEN */ nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_FLAGS */ nla_total_size(1) + /* MPTCP_SUBFLOW_ATTR_ID_REM */ nla_total_size(1) + /* MPTCP_SUBFLOW_ATTR_ID_LOC */ 0; return size; } void mptcp_diag_subflow_init(struct tcp_ulp_ops *ops) { ops->get_info = subflow_get_info; ops->get_info_size = subflow_get_info_size; } |
38 38 38 38 3 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 | /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org> Copyright (C) 2010 Google Inc. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __L2CAP_H #define __L2CAP_H #include <asm/unaligned.h> #include <linux/atomic.h> /* L2CAP defaults */ #define L2CAP_DEFAULT_MTU 672 #define L2CAP_DEFAULT_MIN_MTU 48 #define L2CAP_DEFAULT_FLUSH_TO 0xFFFF #define L2CAP_EFS_DEFAULT_FLUSH_TO 0xFFFFFFFF #define L2CAP_DEFAULT_TX_WINDOW 63 #define L2CAP_DEFAULT_EXT_WINDOW 0x3FFF #define L2CAP_DEFAULT_MAX_TX 3 #define L2CAP_DEFAULT_RETRANS_TO 2000 /* 2 seconds */ #define L2CAP_DEFAULT_MONITOR_TO 12000 /* 12 seconds */ #define L2CAP_DEFAULT_MAX_PDU_SIZE 1492 /* Sized for AMP packet */ #define L2CAP_DEFAULT_ACK_TO 200 #define L2CAP_DEFAULT_MAX_SDU_SIZE 0xFFFF #define L2CAP_DEFAULT_SDU_ITIME 0xFFFFFFFF #define L2CAP_DEFAULT_ACC_LAT 0xFFFFFFFF #define L2CAP_BREDR_MAX_PAYLOAD 1019 /* 3-DH5 packet */ #define L2CAP_LE_MIN_MTU 23 #define L2CAP_ECRED_CONN_SCID_MAX 5 #define L2CAP_DISC_TIMEOUT msecs_to_jiffies(100) #define L2CAP_DISC_REJ_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_ENC_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_CONN_TIMEOUT msecs_to_jiffies(40000) #define L2CAP_INFO_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_ERTX_TIMEOUT msecs_to_jiffies(60000) #define L2CAP_WAIT_ACK_POLL_PERIOD msecs_to_jiffies(200) #define L2CAP_WAIT_ACK_TIMEOUT msecs_to_jiffies(10000) /* L2CAP socket address */ struct sockaddr_l2 { sa_family_t l2_family; __le16 l2_psm; bdaddr_t l2_bdaddr; __le16 l2_cid; __u8 l2_bdaddr_type; }; /* L2CAP socket options */ #define L2CAP_OPTIONS 0x01 struct l2cap_options { __u16 omtu; __u16 imtu; __u16 flush_to; __u8 mode; __u8 fcs; __u8 max_tx; __u16 txwin_size; }; #define L2CAP_CONNINFO 0x02 struct l2cap_conninfo { __u16 hci_handle; __u8 dev_class[3]; }; #define L2CAP_LM 0x03 #define L2CAP_LM_MASTER 0x0001 #define L2CAP_LM_AUTH 0x0002 #define L2CAP_LM_ENCRYPT 0x0004 #define L2CAP_LM_TRUSTED 0x0008 #define L2CAP_LM_RELIABLE 0x0010 #define L2CAP_LM_SECURE 0x0020 #define L2CAP_LM_FIPS 0x0040 /* L2CAP command codes */ #define L2CAP_COMMAND_REJ 0x01 #define L2CAP_CONN_REQ 0x02 #define L2CAP_CONN_RSP 0x03 #define L2CAP_CONF_REQ 0x04 #define L2CAP_CONF_RSP 0x05 #define L2CAP_DISCONN_REQ 0x06 #define L2CAP_DISCONN_RSP 0x07 #define L2CAP_ECHO_REQ 0x08 #define L2CAP_ECHO_RSP 0x09 #define L2CAP_INFO_REQ 0x0a #define L2CAP_INFO_RSP 0x0b #define L2CAP_CONN_PARAM_UPDATE_REQ 0x12 #define L2CAP_CONN_PARAM_UPDATE_RSP 0x13 #define L2CAP_LE_CONN_REQ 0x14 #define L2CAP_LE_CONN_RSP 0x15 #define L2CAP_LE_CREDITS 0x16 #define L2CAP_ECRED_CONN_REQ 0x17 #define L2CAP_ECRED_CONN_RSP 0x18 #define L2CAP_ECRED_RECONF_REQ 0x19 #define L2CAP_ECRED_RECONF_RSP 0x1a /* L2CAP extended feature mask */ #define L2CAP_FEAT_FLOWCTL 0x00000001 #define L2CAP_FEAT_RETRANS 0x00000002 #define L2CAP_FEAT_BIDIR_QOS 0x00000004 #define L2CAP_FEAT_ERTM 0x00000008 #define L2CAP_FEAT_STREAMING 0x00000010 #define L2CAP_FEAT_FCS 0x00000020 #define L2CAP_FEAT_EXT_FLOW 0x00000040 #define L2CAP_FEAT_FIXED_CHAN 0x00000080 #define L2CAP_FEAT_EXT_WINDOW 0x00000100 #define L2CAP_FEAT_UCD 0x00000200 /* L2CAP checksum option */ #define L2CAP_FCS_NONE 0x00 #define L2CAP_FCS_CRC16 0x01 /* L2CAP fixed channels */ #define L2CAP_FC_SIG_BREDR 0x02 #define L2CAP_FC_CONNLESS 0x04 #define L2CAP_FC_ATT 0x10 #define L2CAP_FC_SIG_LE 0x20 #define L2CAP_FC_SMP_LE 0x40 #define L2CAP_FC_SMP_BREDR 0x80 /* L2CAP Control Field bit masks */ #define L2CAP_CTRL_SAR 0xC000 #define L2CAP_CTRL_REQSEQ 0x3F00 #define L2CAP_CTRL_TXSEQ 0x007E #define L2CAP_CTRL_SUPERVISE 0x000C #define L2CAP_CTRL_RETRANS 0x0080 #define L2CAP_CTRL_FINAL 0x0080 #define L2CAP_CTRL_POLL 0x0010 #define L2CAP_CTRL_FRAME_TYPE 0x0001 /* I- or S-Frame */ #define L2CAP_CTRL_TXSEQ_SHIFT 1 #define L2CAP_CTRL_SUPER_SHIFT 2 #define L2CAP_CTRL_POLL_SHIFT 4 #define L2CAP_CTRL_FINAL_SHIFT 7 #define L2CAP_CTRL_REQSEQ_SHIFT 8 #define L2CAP_CTRL_SAR_SHIFT 14 /* L2CAP Extended Control Field bit mask */ #define L2CAP_EXT_CTRL_TXSEQ 0xFFFC0000 #define L2CAP_EXT_CTRL_SAR 0x00030000 #define L2CAP_EXT_CTRL_SUPERVISE 0x00030000 #define L2CAP_EXT_CTRL_REQSEQ 0x0000FFFC #define L2CAP_EXT_CTRL_POLL 0x00040000 #define L2CAP_EXT_CTRL_FINAL 0x00000002 #define L2CAP_EXT_CTRL_FRAME_TYPE 0x00000001 /* I- or S-Frame */ #define L2CAP_EXT_CTRL_FINAL_SHIFT 1 #define L2CAP_EXT_CTRL_REQSEQ_SHIFT 2 #define L2CAP_EXT_CTRL_SAR_SHIFT 16 #define L2CAP_EXT_CTRL_SUPER_SHIFT 16 #define L2CAP_EXT_CTRL_POLL_SHIFT 18 #define L2CAP_EXT_CTRL_TXSEQ_SHIFT 18 /* L2CAP Supervisory Function */ #define L2CAP_SUPER_RR 0x00 #define L2CAP_SUPER_REJ 0x01 #define L2CAP_SUPER_RNR 0x02 #define L2CAP_SUPER_SREJ 0x03 /* L2CAP Segmentation and Reassembly */ #define L2CAP_SAR_UNSEGMENTED 0x00 #define L2CAP_SAR_START 0x01 #define L2CAP_SAR_END 0x02 #define L2CAP_SAR_CONTINUE 0x03 /* L2CAP Command rej. reasons */ #define L2CAP_REJ_NOT_UNDERSTOOD 0x0000 #define L2CAP_REJ_MTU_EXCEEDED 0x0001 #define L2CAP_REJ_INVALID_CID 0x0002 /* L2CAP structures */ struct l2cap_hdr { __le16 len; __le16 cid; } __packed; #define L2CAP_LEN_SIZE 2 #define L2CAP_HDR_SIZE 4 #define L2CAP_ENH_HDR_SIZE 6 #define L2CAP_EXT_HDR_SIZE 8 #define L2CAP_FCS_SIZE 2 #define L2CAP_SDULEN_SIZE 2 #define L2CAP_PSMLEN_SIZE 2 #define L2CAP_ENH_CTRL_SIZE 2 #define L2CAP_EXT_CTRL_SIZE 4 struct l2cap_cmd_hdr { __u8 code; __u8 ident; __le16 len; } __packed; #define L2CAP_CMD_HDR_SIZE 4 struct l2cap_cmd_rej_unk { __le16 reason; } __packed; struct l2cap_cmd_rej_mtu { __le16 reason; __le16 max_mtu; } __packed; struct l2cap_cmd_rej_cid { __le16 reason; __le16 scid; __le16 dcid; } __packed; struct l2cap_conn_req { __le16 psm; __le16 scid; } __packed; struct l2cap_conn_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; /* protocol/service multiplexer (PSM) */ #define L2CAP_PSM_SDP 0x0001 #define L2CAP_PSM_RFCOMM 0x0003 #define L2CAP_PSM_3DSP 0x0021 #define L2CAP_PSM_IPSP 0x0023 /* 6LoWPAN */ #define L2CAP_PSM_DYN_START 0x1001 #define L2CAP_PSM_DYN_END 0xffff #define L2CAP_PSM_AUTO_END 0x10ff #define L2CAP_PSM_LE_DYN_START 0x0080 #define L2CAP_PSM_LE_DYN_END 0x00ff /* channel identifier */ #define L2CAP_CID_SIGNALING 0x0001 #define L2CAP_CID_CONN_LESS 0x0002 #define L2CAP_CID_ATT 0x0004 #define L2CAP_CID_LE_SIGNALING 0x0005 #define L2CAP_CID_SMP 0x0006 #define L2CAP_CID_SMP_BREDR 0x0007 #define L2CAP_CID_DYN_START 0x0040 #define L2CAP_CID_DYN_END 0xffff #define L2CAP_CID_LE_DYN_END 0x007f /* connect/create channel results */ #define L2CAP_CR_SUCCESS 0x0000 #define L2CAP_CR_PEND 0x0001 #define L2CAP_CR_BAD_PSM 0x0002 #define L2CAP_CR_SEC_BLOCK 0x0003 #define L2CAP_CR_NO_MEM 0x0004 #define L2CAP_CR_INVALID_SCID 0x0006 #define L2CAP_CR_SCID_IN_USE 0x0007 /* credit based connect results */ #define L2CAP_CR_LE_SUCCESS 0x0000 #define L2CAP_CR_LE_BAD_PSM 0x0002 #define L2CAP_CR_LE_NO_MEM 0x0004 #define L2CAP_CR_LE_AUTHENTICATION 0x0005 #define L2CAP_CR_LE_AUTHORIZATION 0x0006 #define L2CAP_CR_LE_BAD_KEY_SIZE 0x0007 #define L2CAP_CR_LE_ENCRYPTION 0x0008 #define L2CAP_CR_LE_INVALID_SCID 0x0009 #define L2CAP_CR_LE_SCID_IN_USE 0X000A #define L2CAP_CR_LE_UNACCEPT_PARAMS 0X000B #define L2CAP_CR_LE_INVALID_PARAMS 0X000C /* connect/create channel status */ #define L2CAP_CS_NO_INFO 0x0000 #define L2CAP_CS_AUTHEN_PEND 0x0001 #define L2CAP_CS_AUTHOR_PEND 0x0002 struct l2cap_conf_req { __le16 dcid; __le16 flags; __u8 data[]; } __packed; struct l2cap_conf_rsp { __le16 scid; __le16 flags; __le16 result; __u8 data[]; } __packed; #define L2CAP_CONF_SUCCESS 0x0000 #define L2CAP_CONF_UNACCEPT 0x0001 #define L2CAP_CONF_REJECT 0x0002 #define L2CAP_CONF_UNKNOWN 0x0003 #define L2CAP_CONF_PENDING 0x0004 #define L2CAP_CONF_EFS_REJECT 0x0005 /* configuration req/rsp continuation flag */ #define L2CAP_CONF_FLAG_CONTINUATION 0x0001 struct l2cap_conf_opt { __u8 type; __u8 len; __u8 val[]; } __packed; #define L2CAP_CONF_OPT_SIZE 2 #define L2CAP_CONF_HINT 0x80 #define L2CAP_CONF_MASK 0x7f #define L2CAP_CONF_MTU 0x01 #define L2CAP_CONF_FLUSH_TO 0x02 #define L2CAP_CONF_QOS 0x03 #define L2CAP_CONF_RFC 0x04 #define L2CAP_CONF_FCS 0x05 #define L2CAP_CONF_EFS 0x06 #define L2CAP_CONF_EWS 0x07 #define L2CAP_CONF_MAX_SIZE 22 struct l2cap_conf_rfc { __u8 mode; __u8 txwin_size; __u8 max_transmit; __le16 retrans_timeout; __le16 monitor_timeout; __le16 max_pdu_size; } __packed; #define L2CAP_MODE_BASIC 0x00 #define L2CAP_MODE_RETRANS 0x01 #define L2CAP_MODE_FLOWCTL 0x02 #define L2CAP_MODE_ERTM 0x03 #define L2CAP_MODE_STREAMING 0x04 /* Unlike the above this one doesn't actually map to anything that would * ever be sent over the air. Therefore, use a value that's unlikely to * ever be used in the BR/EDR configuration phase. */ #define L2CAP_MODE_LE_FLOWCTL 0x80 #define L2CAP_MODE_EXT_FLOWCTL 0x81 struct l2cap_conf_efs { __u8 id; __u8 stype; __le16 msdu; __le32 sdu_itime; __le32 acc_lat; __le32 flush_to; } __packed; #define L2CAP_SERV_NOTRAFIC 0x00 #define L2CAP_SERV_BESTEFFORT 0x01 #define L2CAP_SERV_GUARANTEED 0x02 #define L2CAP_BESTEFFORT_ID 0x01 struct l2cap_disconn_req { __le16 dcid; __le16 scid; } __packed; struct l2cap_disconn_rsp { __le16 dcid; __le16 scid; } __packed; struct l2cap_info_req { __le16 type; } __packed; struct l2cap_info_rsp { __le16 type; __le16 result; __u8 data[]; } __packed; #define L2CAP_MR_SUCCESS 0x0000 #define L2CAP_MR_PEND 0x0001 #define L2CAP_MR_BAD_ID 0x0002 #define L2CAP_MR_SAME_ID 0x0003 #define L2CAP_MR_NOT_SUPP 0x0004 #define L2CAP_MR_COLLISION 0x0005 #define L2CAP_MR_NOT_ALLOWED 0x0006 struct l2cap_move_chan_cfm { __le16 icid; __le16 result; } __packed; #define L2CAP_MC_CONFIRMED 0x0000 #define L2CAP_MC_UNCONFIRMED 0x0001 struct l2cap_move_chan_cfm_rsp { __le16 icid; } __packed; /* info type */ #define L2CAP_IT_CL_MTU 0x0001 #define L2CAP_IT_FEAT_MASK 0x0002 #define L2CAP_IT_FIXED_CHAN 0x0003 /* info result */ #define L2CAP_IR_SUCCESS 0x0000 #define L2CAP_IR_NOTSUPP 0x0001 struct l2cap_conn_param_update_req { __le16 min; __le16 max; __le16 latency; __le16 to_multiplier; } __packed; struct l2cap_conn_param_update_rsp { __le16 result; } __packed; /* Connection Parameters result */ #define L2CAP_CONN_PARAM_ACCEPTED 0x0000 #define L2CAP_CONN_PARAM_REJECTED 0x0001 struct l2cap_le_conn_req { __le16 psm; __le16 scid; __le16 mtu; __le16 mps; __le16 credits; } __packed; struct l2cap_le_conn_rsp { __le16 dcid; __le16 mtu; __le16 mps; __le16 credits; __le16 result; } __packed; struct l2cap_le_credits { __le16 cid; __le16 credits; } __packed; #define L2CAP_ECRED_MIN_MTU 64 #define L2CAP_ECRED_MIN_MPS 64 #define L2CAP_ECRED_MAX_CID 5 struct l2cap_ecred_conn_req { /* New members must be added within the struct_group() macro below. */ __struct_group(l2cap_ecred_conn_req_hdr, hdr, __packed, __le16 psm; __le16 mtu; __le16 mps; __le16 credits; ); __le16 scid[]; } __packed; struct l2cap_ecred_conn_rsp { /* New members must be added within the struct_group() macro below. */ struct_group_tagged(l2cap_ecred_conn_rsp_hdr, hdr, __le16 mtu; __le16 mps; __le16 credits; __le16 result; ); __le16 dcid[]; }; struct l2cap_ecred_reconf_req { __le16 mtu; __le16 mps; __le16 scid[]; } __packed; #define L2CAP_RECONF_SUCCESS 0x0000 #define L2CAP_RECONF_INVALID_MTU 0x0001 #define L2CAP_RECONF_INVALID_MPS 0x0002 struct l2cap_ecred_reconf_rsp { __le16 result; } __packed; /* ----- L2CAP channels and connections ----- */ struct l2cap_seq_list { __u16 head; __u16 tail; __u16 mask; __u16 *list; }; #define L2CAP_SEQ_LIST_CLEAR 0xFFFF #define L2CAP_SEQ_LIST_TAIL 0x8000 struct l2cap_chan { struct l2cap_conn *conn; struct kref kref; atomic_t nesting; __u8 state; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; __le16 psm; __le16 sport; __u16 dcid; __u16 scid; __u16 imtu; __u16 omtu; __u16 flush_to; __u8 mode; __u8 chan_type; __u8 chan_policy; __u8 sec_level; __u8 ident; __u8 conf_req[64]; __u8 conf_len; __u8 num_conf_req; __u8 num_conf_rsp; __u8 fcs; __u16 tx_win; __u16 tx_win_max; __u16 ack_win; __u8 max_tx; __u16 retrans_timeout; __u16 monitor_timeout; __u16 mps; __u16 tx_credits; __u16 rx_credits; /* estimated available receive buffer space or -1 if unknown */ ssize_t rx_avail; __u8 tx_state; __u8 rx_state; unsigned long conf_state; unsigned long conn_state; unsigned long flags; __u16 next_tx_seq; __u16 expected_ack_seq; __u16 expected_tx_seq; __u16 buffer_seq; __u16 srej_save_reqseq; __u16 last_acked_seq; __u16 frames_sent; __u16 unacked_frames; __u8 retry_count; __u16 sdu_len; struct sk_buff *sdu; struct sk_buff *sdu_last_frag; __u16 remote_tx_win; __u8 remote_max_tx; __u16 remote_mps; __u8 local_id; __u8 local_stype; __u16 local_msdu; __u32 local_sdu_itime; __u32 local_acc_lat; __u32 local_flush_to; __u8 remote_id; __u8 remote_stype; __u16 remote_msdu; __u32 remote_sdu_itime; __u32 remote_acc_lat; __u32 remote_flush_to; struct delayed_work chan_timer; struct delayed_work retrans_timer; struct delayed_work monitor_timer; struct delayed_work ack_timer; struct sk_buff *tx_send_head; struct sk_buff_head tx_q; struct sk_buff_head srej_q; struct l2cap_seq_list srej_list; struct l2cap_seq_list retrans_list; struct list_head list; struct list_head global_l; void *data; const struct l2cap_ops *ops; struct mutex lock; }; struct l2cap_ops { char *name; struct l2cap_chan *(*new_connection) (struct l2cap_chan *chan); int (*recv) (struct l2cap_chan * chan, struct sk_buff *skb); void (*teardown) (struct l2cap_chan *chan, int err); void (*close) (struct l2cap_chan *chan); void (*state_change) (struct l2cap_chan *chan, int state, int err); void (*ready) (struct l2cap_chan *chan); void (*defer) (struct l2cap_chan *chan); void (*resume) (struct l2cap_chan *chan); void (*suspend) (struct l2cap_chan *chan); void (*set_shutdown) (struct l2cap_chan *chan); long (*get_sndtimeo) (struct l2cap_chan *chan); struct pid *(*get_peer_pid) (struct l2cap_chan *chan); struct sk_buff *(*alloc_skb) (struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb); int (*filter) (struct l2cap_chan * chan, struct sk_buff *skb); }; struct l2cap_conn { struct hci_conn *hcon; struct hci_chan *hchan; unsigned int mtu; __u32 feat_mask; __u8 remote_fixed_chan; __u8 local_fixed_chan; __u8 info_state; __u8 info_ident; struct delayed_work info_timer; struct sk_buff *rx_skb; __u32 rx_len; __u8 tx_ident; struct mutex ident_lock; struct sk_buff_head pending_rx; struct work_struct pending_rx_work; struct delayed_work id_addr_timer; __u8 disc_reason; struct l2cap_chan *smp; struct list_head chan_l; struct mutex chan_lock; struct kref ref; struct list_head users; }; struct l2cap_user { struct list_head list; int (*probe) (struct l2cap_conn *conn, struct l2cap_user *user); void (*remove) (struct l2cap_conn *conn, struct l2cap_user *user); }; #define L2CAP_INFO_CL_MTU_REQ_SENT 0x01 #define L2CAP_INFO_FEAT_MASK_REQ_SENT 0x04 #define L2CAP_INFO_FEAT_MASK_REQ_DONE 0x08 #define L2CAP_CHAN_RAW 1 #define L2CAP_CHAN_CONN_LESS 2 #define L2CAP_CHAN_CONN_ORIENTED 3 #define L2CAP_CHAN_FIXED 4 /* ----- L2CAP socket info ----- */ #define l2cap_pi(sk) ((struct l2cap_pinfo *) sk) struct l2cap_rx_busy { struct list_head list; struct sk_buff *skb; }; struct l2cap_pinfo { struct bt_sock bt; struct l2cap_chan *chan; struct list_head rx_busy; }; enum { CONF_REQ_SENT, CONF_INPUT_DONE, CONF_OUTPUT_DONE, CONF_MTU_DONE, CONF_MODE_DONE, CONF_CONNECT_PEND, CONF_RECV_NO_FCS, CONF_STATE2_DEVICE, CONF_EWS_RECV, CONF_LOC_CONF_PEND, CONF_REM_CONF_PEND, CONF_NOT_COMPLETE, }; #define L2CAP_CONF_MAX_CONF_REQ 2 #define L2CAP_CONF_MAX_CONF_RSP 2 enum { CONN_SREJ_SENT, CONN_WAIT_F, CONN_SREJ_ACT, CONN_SEND_PBIT, CONN_REMOTE_BUSY, CONN_LOCAL_BUSY, CONN_REJ_ACT, CONN_SEND_FBIT, CONN_RNR_SENT, }; /* Definitions for flags in l2cap_chan */ enum { FLAG_ROLE_SWITCH, FLAG_FORCE_ACTIVE, FLAG_FORCE_RELIABLE, FLAG_FLUSHABLE, FLAG_EXT_CTRL, FLAG_EFS_ENABLE, FLAG_DEFER_SETUP, FLAG_LE_CONN_REQ_SENT, FLAG_ECRED_CONN_REQ_SENT, FLAG_PENDING_SECURITY, FLAG_HOLD_HCI_CONN, }; /* Lock nesting levels for L2CAP channels. We need these because lockdep * otherwise considers all channels equal and will e.g. complain about a * connection oriented channel triggering SMP procedures or a listening * channel creating and locking a child channel. */ enum { L2CAP_NESTING_SMP, L2CAP_NESTING_NORMAL, L2CAP_NESTING_PARENT, }; enum { L2CAP_TX_STATE_XMIT, L2CAP_TX_STATE_WAIT_F, }; enum { L2CAP_RX_STATE_RECV, L2CAP_RX_STATE_SREJ_SENT, L2CAP_RX_STATE_MOVE, L2CAP_RX_STATE_WAIT_P, L2CAP_RX_STATE_WAIT_F, }; enum { L2CAP_TXSEQ_EXPECTED, L2CAP_TXSEQ_EXPECTED_SREJ, L2CAP_TXSEQ_UNEXPECTED, L2CAP_TXSEQ_UNEXPECTED_SREJ, L2CAP_TXSEQ_DUPLICATE, L2CAP_TXSEQ_DUPLICATE_SREJ, L2CAP_TXSEQ_INVALID, L2CAP_TXSEQ_INVALID_IGNORE, }; enum { L2CAP_EV_DATA_REQUEST, L2CAP_EV_LOCAL_BUSY_DETECTED, L2CAP_EV_LOCAL_BUSY_CLEAR, L2CAP_EV_RECV_REQSEQ_AND_FBIT, L2CAP_EV_RECV_FBIT, L2CAP_EV_RETRANS_TO, L2CAP_EV_MONITOR_TO, L2CAP_EV_EXPLICIT_POLL, L2CAP_EV_RECV_IFRAME, L2CAP_EV_RECV_RR, L2CAP_EV_RECV_REJ, L2CAP_EV_RECV_RNR, L2CAP_EV_RECV_SREJ, L2CAP_EV_RECV_FRAME, }; enum { L2CAP_MOVE_ROLE_NONE, L2CAP_MOVE_ROLE_INITIATOR, L2CAP_MOVE_ROLE_RESPONDER, }; enum { L2CAP_MOVE_STABLE, L2CAP_MOVE_WAIT_REQ, L2CAP_MOVE_WAIT_RSP, L2CAP_MOVE_WAIT_RSP_SUCCESS, L2CAP_MOVE_WAIT_CONFIRM, L2CAP_MOVE_WAIT_CONFIRM_RSP, L2CAP_MOVE_WAIT_LOGICAL_COMP, L2CAP_MOVE_WAIT_LOGICAL_CFM, L2CAP_MOVE_WAIT_LOCAL_BUSY, L2CAP_MOVE_WAIT_PREPARE, }; void l2cap_chan_hold(struct l2cap_chan *c); struct l2cap_chan *l2cap_chan_hold_unless_zero(struct l2cap_chan *c); void l2cap_chan_put(struct l2cap_chan *c); static inline void l2cap_chan_lock(struct l2cap_chan *chan) { mutex_lock_nested(&chan->lock, atomic_read(&chan->nesting)); } static inline void l2cap_chan_unlock(struct l2cap_chan *chan) { mutex_unlock(&chan->lock); } static inline void l2cap_set_timer(struct l2cap_chan *chan, struct delayed_work *work, long timeout) { BT_DBG("chan %p state %s timeout %ld", chan, state_to_string(chan->state), timeout); /* If delayed work cancelled do not hold(chan) since it is already done with previous set_timer */ if (!cancel_delayed_work(work)) l2cap_chan_hold(chan); schedule_delayed_work(work, timeout); } static inline bool l2cap_clear_timer(struct l2cap_chan *chan, struct delayed_work *work) { bool ret; /* put(chan) if delayed work cancelled otherwise it is done in delayed work function */ ret = cancel_delayed_work(work); if (ret) l2cap_chan_put(chan); return ret; } #define __set_chan_timer(c, t) l2cap_set_timer(c, &c->chan_timer, (t)) #define __clear_chan_timer(c) l2cap_clear_timer(c, &c->chan_timer) #define __clear_retrans_timer(c) l2cap_clear_timer(c, &c->retrans_timer) #define __clear_monitor_timer(c) l2cap_clear_timer(c, &c->monitor_timer) #define __set_ack_timer(c) l2cap_set_timer(c, &chan->ack_timer, \ msecs_to_jiffies(L2CAP_DEFAULT_ACK_TO)); #define __clear_ack_timer(c) l2cap_clear_timer(c, &c->ack_timer) static inline int __seq_offset(struct l2cap_chan *chan, __u16 seq1, __u16 seq2) { if (seq1 >= seq2) return seq1 - seq2; else return chan->tx_win_max + 1 - seq2 + seq1; } static inline __u16 __next_seq(struct l2cap_chan *chan, __u16 seq) { return (seq + 1) % (chan->tx_win_max + 1); } static inline struct l2cap_chan *l2cap_chan_no_new_connection(struct l2cap_chan *chan) { return NULL; } static inline int l2cap_chan_no_recv(struct l2cap_chan *chan, struct sk_buff *skb) { return -ENOSYS; } static inline struct sk_buff *l2cap_chan_no_alloc_skb(struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb) { return ERR_PTR(-ENOSYS); } static inline void l2cap_chan_no_teardown(struct l2cap_chan *chan, int err) { } static inline void l2cap_chan_no_close(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_ready(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_state_change(struct l2cap_chan *chan, int state, int err) { } static inline void l2cap_chan_no_defer(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_suspend(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_resume(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_set_shutdown(struct l2cap_chan *chan) { } static inline long l2cap_chan_no_get_sndtimeo(struct l2cap_chan *chan) { return 0; } extern bool disable_ertm; extern bool enable_ecred; int l2cap_init_sockets(void); void l2cap_cleanup_sockets(void); bool l2cap_is_socket(struct socket *sock); void __l2cap_le_connect_rsp_defer(struct l2cap_chan *chan); void __l2cap_ecred_conn_rsp_defer(struct l2cap_chan *chan); void __l2cap_connect_rsp_defer(struct l2cap_chan *chan); int l2cap_add_psm(struct l2cap_chan *chan, bdaddr_t *src, __le16 psm); int l2cap_add_scid(struct l2cap_chan *chan, __u16 scid); struct l2cap_chan *l2cap_chan_create(void); void l2cap_chan_close(struct l2cap_chan *chan, int reason); int l2cap_chan_connect(struct l2cap_chan *chan, __le16 psm, u16 cid, bdaddr_t *dst, u8 dst_type, u16 timeout); int l2cap_chan_reconfigure(struct l2cap_chan *chan, __u16 mtu); int l2cap_chan_send(struct l2cap_chan *chan, struct msghdr *msg, size_t len); void l2cap_chan_busy(struct l2cap_chan *chan, int busy); void l2cap_chan_rx_avail(struct l2cap_chan *chan, ssize_t rx_avail); int l2cap_chan_check_security(struct l2cap_chan *chan, bool initiator); void l2cap_chan_set_defaults(struct l2cap_chan *chan); int l2cap_ertm_init(struct l2cap_chan *chan); void l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); void __l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); typedef void (*l2cap_chan_func_t)(struct l2cap_chan *chan, void *data); void l2cap_chan_list(struct l2cap_conn *conn, l2cap_chan_func_t func, void *data); void l2cap_chan_del(struct l2cap_chan *chan, int err); void l2cap_send_conn_req(struct l2cap_chan *chan); void l2cap_move_start(struct l2cap_chan *chan); void l2cap_logical_cfm(struct l2cap_chan *chan, struct hci_chan *hchan, u8 status); void __l2cap_physical_cfm(struct l2cap_chan *chan, int result); struct l2cap_conn *l2cap_conn_get(struct l2cap_conn *conn); void l2cap_conn_put(struct l2cap_conn *conn); int l2cap_register_user(struct l2cap_conn *conn, struct l2cap_user *user); void l2cap_unregister_user(struct l2cap_conn *conn, struct l2cap_user *user); #endif /* __L2CAP_H */ |
7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 | // SPDX-License-Identifier: LGPL-2.1 /* * Copyright (c) 2012 Taobao. * Written by Tao Ma <boyu.mt@taobao.com> */ #include <linux/iomap.h> #include <linux/fiemap.h> #include <linux/namei.h> #include <linux/iversion.h> #include <linux/sched/mm.h> #include "ext4_jbd2.h" #include "ext4.h" #include "xattr.h" #include "truncate.h" #define EXT4_XATTR_SYSTEM_DATA "data" #define EXT4_MIN_INLINE_DATA_SIZE ((sizeof(__le32) * EXT4_N_BLOCKS)) #define EXT4_INLINE_DOTDOT_OFFSET 2 #define EXT4_INLINE_DOTDOT_SIZE 4 static int ext4_get_inline_size(struct inode *inode) { if (EXT4_I(inode)->i_inline_off) return EXT4_I(inode)->i_inline_size; return 0; } static int get_max_inline_xattr_value_size(struct inode *inode, struct ext4_iloc *iloc) { struct ext4_xattr_ibody_header *header; struct ext4_xattr_entry *entry; struct ext4_inode *raw_inode; void *end; int free, min_offs; if (!EXT4_INODE_HAS_XATTR_SPACE(inode)) return 0; min_offs = EXT4_SB(inode->i_sb)->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE - EXT4_I(inode)->i_extra_isize - sizeof(struct ext4_xattr_ibody_header); /* * We need to subtract another sizeof(__u32) since an in-inode xattr * needs an empty 4 bytes to indicate the gap between the xattr entry * and the name/value pair. */ if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR)) return EXT4_XATTR_SIZE(min_offs - EXT4_XATTR_LEN(strlen(EXT4_XATTR_SYSTEM_DATA)) - EXT4_XATTR_ROUND - sizeof(__u32)); raw_inode = ext4_raw_inode(iloc); header = IHDR(inode, raw_inode); entry = IFIRST(header); end = (void *)raw_inode + EXT4_SB(inode->i_sb)->s_inode_size; /* Compute min_offs. */ while (!IS_LAST_ENTRY(entry)) { void *next = EXT4_XATTR_NEXT(entry); if (next >= end) { EXT4_ERROR_INODE(inode, "corrupt xattr in inline inode"); return 0; } if (!entry->e_value_inum && entry->e_value_size) { size_t offs = le16_to_cpu(entry->e_value_offs); if (offs < min_offs) min_offs = offs; } entry = next; } free = min_offs - ((void *)entry - (void *)IFIRST(header)) - sizeof(__u32); if (EXT4_I(inode)->i_inline_off) { entry = (struct ext4_xattr_entry *) ((void *)raw_inode + EXT4_I(inode)->i_inline_off); free += EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size)); goto out; } free -= EXT4_XATTR_LEN(strlen(EXT4_XATTR_SYSTEM_DATA)); if (free > EXT4_XATTR_ROUND) free = EXT4_XATTR_SIZE(free - EXT4_XATTR_ROUND); else free = 0; out: return free; } /* * Get the maximum size we now can store in an inode. * If we can't find the space for a xattr entry, don't use the space * of the extents since we have no space to indicate the inline data. */ int ext4_get_max_inline_size(struct inode *inode) { int error, max_inline_size; struct ext4_iloc iloc; if (EXT4_I(inode)->i_extra_isize == 0) return 0; error = ext4_get_inode_loc(inode, &iloc); if (error) { ext4_error_inode_err(inode, __func__, __LINE__, 0, -error, "can't get inode location %lu", inode->i_ino); return 0; } down_read(&EXT4_I(inode)->xattr_sem); max_inline_size = get_max_inline_xattr_value_size(inode, &iloc); up_read(&EXT4_I(inode)->xattr_sem); brelse(iloc.bh); if (!max_inline_size) return 0; return max_inline_size + EXT4_MIN_INLINE_DATA_SIZE; } /* * this function does not take xattr_sem, which is OK because it is * currently only used in a code path coming form ext4_iget, before * the new inode has been unlocked */ int ext4_find_inline_data_nolock(struct inode *inode) { struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; int error; if (EXT4_I(inode)->i_extra_isize == 0) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; if (!is.s.not_found) { if (is.s.here->e_value_inum) { EXT4_ERROR_INODE(inode, "inline data xattr refers " "to an external xattr inode"); error = -EFSCORRUPTED; goto out; } EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = EXT4_MIN_INLINE_DATA_SIZE + le32_to_cpu(is.s.here->e_value_size); } out: brelse(is.iloc.bh); return error; } static int ext4_read_inline_data(struct inode *inode, void *buffer, unsigned int len, struct ext4_iloc *iloc) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; int cp_len = 0; struct ext4_inode *raw_inode; if (!len) return 0; BUG_ON(len > EXT4_I(inode)->i_inline_size); cp_len = min_t(unsigned int, len, EXT4_MIN_INLINE_DATA_SIZE); raw_inode = ext4_raw_inode(iloc); memcpy(buffer, (void *)(raw_inode->i_block), cp_len); len -= cp_len; buffer += cp_len; if (!len) goto out; header = IHDR(inode, raw_inode); entry = (struct ext4_xattr_entry *)((void *)raw_inode + EXT4_I(inode)->i_inline_off); len = min_t(unsigned int, len, (unsigned int)le32_to_cpu(entry->e_value_size)); memcpy(buffer, (void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs), len); cp_len += len; out: return cp_len; } /* * write the buffer to the inline inode. * If 'create' is set, we don't need to do the extra copy in the xattr * value since it is already handled by ext4_xattr_ibody_set. * That saves us one memcpy. */ static void ext4_write_inline_data(struct inode *inode, struct ext4_iloc *iloc, void *buffer, loff_t pos, unsigned int len) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; struct ext4_inode *raw_inode; int cp_len = 0; if (unlikely(ext4_forced_shutdown(inode->i_sb))) return; BUG_ON(!EXT4_I(inode)->i_inline_off); BUG_ON(pos + len > EXT4_I(inode)->i_inline_size); raw_inode = ext4_raw_inode(iloc); buffer += pos; if (pos < EXT4_MIN_INLINE_DATA_SIZE) { cp_len = pos + len > EXT4_MIN_INLINE_DATA_SIZE ? EXT4_MIN_INLINE_DATA_SIZE - pos : len; memcpy((void *)raw_inode->i_block + pos, buffer, cp_len); len -= cp_len; buffer += cp_len; pos += cp_len; } if (!len) return; pos -= EXT4_MIN_INLINE_DATA_SIZE; header = IHDR(inode, raw_inode); entry = (struct ext4_xattr_entry *)((void *)raw_inode + EXT4_I(inode)->i_inline_off); memcpy((void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs) + pos, buffer, len); } static int ext4_create_inline_data(handle_t *handle, struct inode *inode, unsigned len) { int error; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; BUFFER_TRACE(is.iloc.bh, "get_write_access"); error = ext4_journal_get_write_access(handle, inode->i_sb, is.iloc.bh, EXT4_JTR_NONE); if (error) goto out; if (len > EXT4_MIN_INLINE_DATA_SIZE) { value = EXT4_ZERO_XATTR_VALUE; len -= EXT4_MIN_INLINE_DATA_SIZE; } else { value = ""; len = 0; } /* Insert the xttr entry. */ i.value = value; i.value_len = len; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUG_ON(!is.s.not_found); error = ext4_xattr_ibody_set(handle, inode, &i, &is); if (error) { if (error == -ENOSPC) ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); goto out; } memset((void *)ext4_raw_inode(&is.iloc)->i_block, 0, EXT4_MIN_INLINE_DATA_SIZE); EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = len + EXT4_MIN_INLINE_DATA_SIZE; ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); ext4_set_inode_flag(inode, EXT4_INODE_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); out: brelse(is.iloc.bh); return error; } static int ext4_update_inline_data(handle_t *handle, struct inode *inode, unsigned int len) { int error; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; /* If the old space is ok, write the data directly. */ if (len <= EXT4_I(inode)->i_inline_size) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUG_ON(is.s.not_found); len -= EXT4_MIN_INLINE_DATA_SIZE; value = kzalloc(len, GFP_NOFS); if (!value) { error = -ENOMEM; goto out; } error = ext4_xattr_ibody_get(inode, i.name_index, i.name, value, len); if (error < 0) goto out; BUFFER_TRACE(is.iloc.bh, "get_write_access"); error = ext4_journal_get_write_access(handle, inode->i_sb, is.iloc.bh, EXT4_JTR_NONE); if (error) goto out; /* Update the xattr entry. */ i.value = value; i.value_len = len; error = ext4_xattr_ibody_set(handle, inode, &i, &is); if (error) goto out; EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = EXT4_MIN_INLINE_DATA_SIZE + le32_to_cpu(is.s.here->e_value_size); ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); out: kfree(value); brelse(is.iloc.bh); return error; } static int ext4_prepare_inline_data(handle_t *handle, struct inode *inode, unsigned int len) { int ret, size, no_expand; struct ext4_inode_info *ei = EXT4_I(inode); if (!ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) return -ENOSPC; size = ext4_get_max_inline_size(inode); if (size < len) return -ENOSPC; ext4_write_lock_xattr(inode, &no_expand); if (ei->i_inline_off) ret = ext4_update_inline_data(handle, inode, len); else ret = ext4_create_inline_data(handle, inode, len); ext4_write_unlock_xattr(inode, &no_expand); return ret; } static int ext4_destroy_inline_data_nolock(handle_t *handle, struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_xattr_ibody_find is = { .s = { .not_found = 0, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, .value = NULL, .value_len = 0, }; int error; if (!ei->i_inline_off) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUFFER_TRACE(is.iloc.bh, "get_write_access"); error = ext4_journal_get_write_access(handle, inode->i_sb, is.iloc.bh, EXT4_JTR_NONE); if (error) goto out; error = ext4_xattr_ibody_set(handle, inode, &i, &is); if (error) goto out; memset((void *)ext4_raw_inode(&is.iloc)->i_block, 0, EXT4_MIN_INLINE_DATA_SIZE); memset(ei->i_data, 0, EXT4_MIN_INLINE_DATA_SIZE); if (ext4_has_feature_extents(inode->i_sb)) { if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) { ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); ext4_ext_tree_init(handle, inode); } } ext4_clear_inode_flag(inode, EXT4_INODE_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); EXT4_I(inode)->i_inline_off = 0; EXT4_I(inode)->i_inline_size = 0; ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); out: brelse(is.iloc.bh); if (error == -ENODATA) error = 0; return error; } static int ext4_read_inline_folio(struct inode *inode, struct folio *folio) { void *kaddr; int ret = 0; size_t len; struct ext4_iloc iloc; BUG_ON(!folio_test_locked(folio)); BUG_ON(!ext4_has_inline_data(inode)); BUG_ON(folio->index); if (!EXT4_I(inode)->i_inline_off) { ext4_warning(inode->i_sb, "inode %lu doesn't have inline data.", inode->i_ino); goto out; } ret = ext4_get_inode_loc(inode, &iloc); if (ret) goto out; len = min_t(size_t, ext4_get_inline_size(inode), i_size_read(inode)); BUG_ON(len > PAGE_SIZE); kaddr = kmap_local_folio(folio, 0); ret = ext4_read_inline_data(inode, kaddr, len, &iloc); kaddr = folio_zero_tail(folio, len, kaddr + len); kunmap_local(kaddr); folio_mark_uptodate(folio); brelse(iloc.bh); out: return ret; } int ext4_readpage_inline(struct inode *inode, struct folio *folio) { int ret = 0; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); return -EAGAIN; } /* * Current inline data can only exist in the 1st page, * So for all the other pages, just set them uptodate. */ if (!folio->index) ret = ext4_read_inline_folio(inode, folio); else if (!folio_test_uptodate(folio)) { folio_zero_segment(folio, 0, folio_size(folio)); folio_mark_uptodate(folio); } up_read(&EXT4_I(inode)->xattr_sem); folio_unlock(folio); return ret >= 0 ? 0 : ret; } static int ext4_convert_inline_data_to_extent(struct address_space *mapping, struct inode *inode) { int ret, needed_blocks, no_expand; handle_t *handle = NULL; int retries = 0, sem_held = 0; struct folio *folio = NULL; unsigned from, to; struct ext4_iloc iloc; if (!ext4_has_inline_data(inode)) { /* * clear the flag so that no new write * will trap here again. */ ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); return 0; } needed_blocks = ext4_writepage_trans_blocks(inode); ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; retry: handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out; } /* We cannot recurse into the filesystem as the transaction is already * started */ folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN | FGP_NOFS, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) { ret = PTR_ERR(folio); goto out_nofolio; } ext4_write_lock_xattr(inode, &no_expand); sem_held = 1; /* If some one has already done this for us, just exit. */ if (!ext4_has_inline_data(inode)) { ret = 0; goto out; } from = 0; to = ext4_get_inline_size(inode); if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) goto out; } ret = ext4_destroy_inline_data_nolock(handle, inode); if (ret) goto out; if (ext4_should_dioread_nolock(inode)) { ret = __block_write_begin(&folio->page, from, to, ext4_get_block_unwritten); } else ret = __block_write_begin(&folio->page, from, to, ext4_get_block); if (!ret && ext4_should_journal_data(inode)) { ret = ext4_walk_page_buffers(handle, inode, folio_buffers(folio), from, to, NULL, do_journal_get_write_access); } if (ret) { folio_unlock(folio); folio_put(folio); folio = NULL; ext4_orphan_add(handle, inode); ext4_write_unlock_xattr(inode, &no_expand); sem_held = 0; ext4_journal_stop(handle); handle = NULL; ext4_truncate_failed_write(inode); /* * If truncate failed early the inode might * still be on the orphan list; we need to * make sure the inode is removed from the * orphan list in that case. */ if (inode->i_nlink) ext4_orphan_del(NULL, inode); } if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) goto retry; if (folio) block_commit_write(&folio->page, from, to); out: if (folio) { folio_unlock(folio); folio_put(folio); } out_nofolio: if (sem_held) ext4_write_unlock_xattr(inode, &no_expand); if (handle) ext4_journal_stop(handle); brelse(iloc.bh); return ret; } /* * Try to write data in the inode. * If the inode has inline data, check whether the new write can be * in the inode also. If not, create the page the handle, move the data * to the page make it update and let the later codes create extent for it. */ int ext4_try_to_write_inline_data(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, struct page **pagep) { int ret; handle_t *handle; struct folio *folio; struct ext4_iloc iloc; if (pos + len > ext4_get_max_inline_size(inode)) goto convert; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; /* * The possible write could happen in the inode, * so try to reserve the space in inode first. */ handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out; } ret = ext4_prepare_inline_data(handle, inode, pos + len); if (ret && ret != -ENOSPC) goto out; /* We don't have space in inline inode, so convert it to extent. */ if (ret == -ENOSPC) { ext4_journal_stop(handle); brelse(iloc.bh); goto convert; } ret = ext4_journal_get_write_access(handle, inode->i_sb, iloc.bh, EXT4_JTR_NONE); if (ret) goto out; folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN | FGP_NOFS, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) { ret = PTR_ERR(folio); goto out; } *pagep = &folio->page; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ret = 0; folio_unlock(folio); folio_put(folio); goto out_up_read; } if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) { folio_unlock(folio); folio_put(folio); goto out_up_read; } } ret = 1; handle = NULL; out_up_read: up_read(&EXT4_I(inode)->xattr_sem); out: if (handle && (ret != 1)) ext4_journal_stop(handle); brelse(iloc.bh); return ret; convert: return ext4_convert_inline_data_to_extent(mapping, inode); } int ext4_write_inline_data_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, struct folio *folio) { handle_t *handle = ext4_journal_current_handle(); int no_expand; void *kaddr; struct ext4_iloc iloc; int ret = 0, ret2; if (unlikely(copied < len) && !folio_test_uptodate(folio)) copied = 0; if (likely(copied)) { ret = ext4_get_inode_loc(inode, &iloc); if (ret) { folio_unlock(folio); folio_put(folio); ext4_std_error(inode->i_sb, ret); goto out; } ext4_write_lock_xattr(inode, &no_expand); BUG_ON(!ext4_has_inline_data(inode)); /* * ei->i_inline_off may have changed since * ext4_write_begin() called * ext4_try_to_write_inline_data() */ (void) ext4_find_inline_data_nolock(inode); kaddr = kmap_local_folio(folio, 0); ext4_write_inline_data(inode, &iloc, kaddr, pos, copied); kunmap_local(kaddr); folio_mark_uptodate(folio); /* clear dirty flag so that writepages wouldn't work for us. */ folio_clear_dirty(folio); ext4_write_unlock_xattr(inode, &no_expand); brelse(iloc.bh); /* * It's important to update i_size while still holding folio * lock: page writeout could otherwise come in and zero * beyond i_size. */ ext4_update_inode_size(inode, pos + copied); } folio_unlock(folio); folio_put(folio); /* * Don't mark the inode dirty under folio lock. First, it unnecessarily * makes the holding time of folio lock longer. Second, it forces lock * ordering of folio lock and transaction start for journaling * filesystems. */ if (likely(copied)) mark_inode_dirty(inode); out: /* * If we didn't copy as much data as expected, we need to trim back * size of xattr containing inline data. */ if (pos + len > inode->i_size && ext4_can_truncate(inode)) ext4_orphan_add(handle, inode); ret2 = ext4_journal_stop(handle); if (!ret) ret = ret2; if (pos + len > inode->i_size) { ext4_truncate_failed_write(inode); /* * If truncate failed early the inode might still be * on the orphan list; we need to make sure the inode * is removed from the orphan list in that case. */ if (inode->i_nlink) ext4_orphan_del(NULL, inode); } return ret ? ret : copied; } /* * Try to make the page cache and handle ready for the inline data case. * We can call this function in 2 cases: * 1. The inode is created and the first write exceeds inline size. We can * clear the inode state safely. * 2. The inode has inline data, then we need to read the data, make it * update and dirty so that ext4_da_writepages can handle it. We don't * need to start the journal since the file's metadata isn't changed now. */ static int ext4_da_convert_inline_data_to_extent(struct address_space *mapping, struct inode *inode, void **fsdata) { int ret = 0, inline_size; struct folio *folio; folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) return PTR_ERR(folio); down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); goto out; } inline_size = ext4_get_inline_size(inode); if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) goto out; } ret = __block_write_begin(&folio->page, 0, inline_size, ext4_da_get_block_prep); if (ret) { up_read(&EXT4_I(inode)->xattr_sem); folio_unlock(folio); folio_put(folio); ext4_truncate_failed_write(inode); return ret; } folio_mark_dirty(folio); folio_mark_uptodate(folio); ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); *fsdata = (void *)CONVERT_INLINE_DATA; out: up_read(&EXT4_I(inode)->xattr_sem); if (folio) { folio_unlock(folio); folio_put(folio); } return ret; } /* * Prepare the write for the inline data. * If the data can be written into the inode, we just read * the page and make it uptodate, and start the journal. * Otherwise read the page, makes it dirty so that it can be * handle in writepages(the i_disksize update is left to the * normal ext4_da_write_end). */ int ext4_da_write_inline_data_begin(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { int ret; handle_t *handle; struct folio *folio; struct ext4_iloc iloc; int retries = 0; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; retry_journal: handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); goto out; } ret = ext4_prepare_inline_data(handle, inode, pos + len); if (ret && ret != -ENOSPC) goto out_journal; if (ret == -ENOSPC) { ext4_journal_stop(handle); ret = ext4_da_convert_inline_data_to_extent(mapping, inode, fsdata); if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) goto retry_journal; goto out; } /* * We cannot recurse into the filesystem as the transaction * is already started. */ folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN | FGP_NOFS, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) { ret = PTR_ERR(folio); goto out_journal; } down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ret = 0; goto out_release_page; } if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) goto out_release_page; } ret = ext4_journal_get_write_access(handle, inode->i_sb, iloc.bh, EXT4_JTR_NONE); if (ret) goto out_release_page; up_read(&EXT4_I(inode)->xattr_sem); *pagep = &folio->page; brelse(iloc.bh); return 1; out_release_page: up_read(&EXT4_I(inode)->xattr_sem); folio_unlock(folio); folio_put(folio); out_journal: ext4_journal_stop(handle); out: brelse(iloc.bh); return ret; } #ifdef INLINE_DIR_DEBUG void ext4_show_inline_dir(struct inode *dir, struct buffer_head *bh, void *inline_start, int inline_size) { int offset; unsigned short de_len; struct ext4_dir_entry_2 *de = inline_start; void *dlimit = inline_start + inline_size; trace_printk("inode %lu\n", dir->i_ino); offset = 0; while ((void *)de < dlimit) { de_len = ext4_rec_len_from_disk(de->rec_len, inline_size); trace_printk("de: off %u rlen %u name %.*s nlen %u ino %u\n", offset, de_len, de->name_len, de->name, de->name_len, le32_to_cpu(de->inode)); if (ext4_check_dir_entry(dir, NULL, de, bh, inline_start, inline_size, offset)) BUG(); offset += de_len; de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); } } #else #define ext4_show_inline_dir(dir, bh, inline_start, inline_size) #endif /* * Add a new entry into a inline dir. * It will return -ENOSPC if no space is available, and -EIO * and -EEXIST if directory entry already exists. */ static int ext4_add_dirent_to_inline(handle_t *handle, struct ext4_filename *fname, struct inode *dir, struct inode *inode, struct ext4_iloc *iloc, void *inline_start, int inline_size) { int err; struct ext4_dir_entry_2 *de; err = ext4_find_dest_de(dir, inode, iloc->bh, inline_start, inline_size, fname, &de); if (err) return err; BUFFER_TRACE(iloc->bh, "get_write_access"); err = ext4_journal_get_write_access(handle, dir->i_sb, iloc->bh, EXT4_JTR_NONE); if (err) return err; ext4_insert_dentry(dir, inode, de, inline_size, fname); ext4_show_inline_dir(dir, iloc->bh, inline_start, inline_size); /* * XXX shouldn't update any times until successful * completion of syscall, but too many callers depend * on this. * * XXX similarly, too many callers depend on * ext4_new_inode() setting the times, but error * recovery deletes the inode, so the worst that can * happen is that the times are slightly out of date * and/or different from the directory change time. */ inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); ext4_update_dx_flag(dir); inode_inc_iversion(dir); return 1; } static void *ext4_get_inline_xattr_pos(struct inode *inode, struct ext4_iloc *iloc) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; BUG_ON(!EXT4_I(inode)->i_inline_off); header = IHDR(inode, ext4_raw_inode(iloc)); entry = (struct ext4_xattr_entry *)((void *)ext4_raw_inode(iloc) + EXT4_I(inode)->i_inline_off); return (void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs); } /* Set the final de to cover the whole block. */ static void ext4_update_final_de(void *de_buf, int old_size, int new_size) { struct ext4_dir_entry_2 *de, *prev_de; void *limit; int de_len; de = de_buf; if (old_size) { limit = de_buf + old_size; do { prev_de = de; de_len = ext4_rec_len_from_disk(de->rec_len, old_size); de_buf += de_len; de = de_buf; } while (de_buf < limit); prev_de->rec_len = ext4_rec_len_to_disk(de_len + new_size - old_size, new_size); } else { /* this is just created, so create an empty entry. */ de->inode = 0; de->rec_len = ext4_rec_len_to_disk(new_size, new_size); } } static int ext4_update_inline_dir(handle_t *handle, struct inode *dir, struct ext4_iloc *iloc) { int ret; int old_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; int new_size = get_max_inline_xattr_value_size(dir, iloc); if (new_size - old_size <= ext4_dir_rec_len(1, NULL)) return -ENOSPC; ret = ext4_update_inline_data(handle, dir, new_size + EXT4_MIN_INLINE_DATA_SIZE); if (ret) return ret; ext4_update_final_de(ext4_get_inline_xattr_pos(dir, iloc), old_size, EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE); dir->i_size = EXT4_I(dir)->i_disksize = EXT4_I(dir)->i_inline_size; return 0; } static void ext4_restore_inline_data(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc, void *buf, int inline_size) { int ret; ret = ext4_create_inline_data(handle, inode, inline_size); if (ret) { ext4_msg(inode->i_sb, KERN_EMERG, "error restoring inline_data for inode -- potential data loss! (inode %lu, error %d)", inode->i_ino, ret); return; } ext4_write_inline_data(inode, iloc, buf, 0, inline_size); ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); } static int ext4_finish_convert_inline_dir(handle_t *handle, struct inode *inode, struct buffer_head *dir_block, void *buf, int inline_size) { int err, csum_size = 0, header_size = 0; struct ext4_dir_entry_2 *de; void *target = dir_block->b_data; /* * First create "." and ".." and then copy the dir information * back to the block. */ de = target; de = ext4_init_dot_dotdot(inode, de, inode->i_sb->s_blocksize, csum_size, le32_to_cpu(((struct ext4_dir_entry_2 *)buf)->inode), 1); header_size = (void *)de - target; memcpy((void *)de, buf + EXT4_INLINE_DOTDOT_SIZE, inline_size - EXT4_INLINE_DOTDOT_SIZE); if (ext4_has_metadata_csum(inode->i_sb)) csum_size = sizeof(struct ext4_dir_entry_tail); inode->i_size = inode->i_sb->s_blocksize; i_size_write(inode, inode->i_sb->s_blocksize); EXT4_I(inode)->i_disksize = inode->i_sb->s_blocksize; ext4_update_final_de(dir_block->b_data, inline_size - EXT4_INLINE_DOTDOT_SIZE + header_size, inode->i_sb->s_blocksize - csum_size); if (csum_size) ext4_initialize_dirent_tail(dir_block, inode->i_sb->s_blocksize); set_buffer_uptodate(dir_block); unlock_buffer(dir_block); err = ext4_handle_dirty_dirblock(handle, inode, dir_block); if (err) return err; set_buffer_verified(dir_block); return ext4_mark_inode_dirty(handle, inode); } static int ext4_convert_inline_data_nolock(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc) { int error; void *buf = NULL; struct buffer_head *data_bh = NULL; struct ext4_map_blocks map; int inline_size; inline_size = ext4_get_inline_size(inode); buf = kmalloc(inline_size, GFP_NOFS); if (!buf) { error = -ENOMEM; goto out; } error = ext4_read_inline_data(inode, buf, inline_size, iloc); if (error < 0) goto out; /* * Make sure the inline directory entries pass checks before we try to * convert them, so that we avoid touching stuff that needs fsck. */ if (S_ISDIR(inode->i_mode)) { error = ext4_check_all_de(inode, iloc->bh, buf + EXT4_INLINE_DOTDOT_SIZE, inline_size - EXT4_INLINE_DOTDOT_SIZE); if (error) goto out; } error = ext4_destroy_inline_data_nolock(handle, inode); if (error) goto out; map.m_lblk = 0; map.m_len = 1; map.m_flags = 0; error = ext4_map_blocks(handle, inode, &map, EXT4_GET_BLOCKS_CREATE); if (error < 0) goto out_restore; if (!(map.m_flags & EXT4_MAP_MAPPED)) { error = -EIO; goto out_restore; } data_bh = sb_getblk(inode->i_sb, map.m_pblk); if (!data_bh) { error = -ENOMEM; goto out_restore; } lock_buffer(data_bh); error = ext4_journal_get_create_access(handle, inode->i_sb, data_bh, EXT4_JTR_NONE); if (error) { unlock_buffer(data_bh); error = -EIO; goto out_restore; } memset(data_bh->b_data, 0, inode->i_sb->s_blocksize); if (!S_ISDIR(inode->i_mode)) { memcpy(data_bh->b_data, buf, inline_size); set_buffer_uptodate(data_bh); unlock_buffer(data_bh); error = ext4_handle_dirty_metadata(handle, inode, data_bh); } else { error = ext4_finish_convert_inline_dir(handle, inode, data_bh, buf, inline_size); } out_restore: if (error) ext4_restore_inline_data(handle, inode, iloc, buf, inline_size); out: brelse(data_bh); kfree(buf); return error; } /* * Try to add the new entry to the inline data. * If succeeds, return 0. If not, extended the inline dir and copied data to * the new created block. */ int ext4_try_add_inline_entry(handle_t *handle, struct ext4_filename *fname, struct inode *dir, struct inode *inode) { int ret, ret2, inline_size, no_expand; void *inline_start; struct ext4_iloc iloc; ret = ext4_get_inode_loc(dir, &iloc); if (ret) return ret; ext4_write_lock_xattr(dir, &no_expand); if (!ext4_has_inline_data(dir)) goto out; inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; ret = ext4_add_dirent_to_inline(handle, fname, dir, inode, &iloc, inline_start, inline_size); if (ret != -ENOSPC) goto out; /* check whether it can be inserted to inline xattr space. */ inline_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; if (!inline_size) { /* Try to use the xattr space.*/ ret = ext4_update_inline_dir(handle, dir, &iloc); if (ret && ret != -ENOSPC) goto out; inline_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; } if (inline_size) { inline_start = ext4_get_inline_xattr_pos(dir, &iloc); ret = ext4_add_dirent_to_inline(handle, fname, dir, inode, &iloc, inline_start, inline_size); if (ret != -ENOSPC) goto out; } /* * The inline space is filled up, so create a new block for it. * As the extent tree will be created, we have to save the inline * dir first. */ ret = ext4_convert_inline_data_nolock(handle, dir, &iloc); out: ext4_write_unlock_xattr(dir, &no_expand); ret2 = ext4_mark_inode_dirty(handle, dir); if (unlikely(ret2 && !ret)) ret = ret2; brelse(iloc.bh); return ret; } /* * This function fills a red-black tree with information from an * inlined dir. It returns the number directory entries loaded * into the tree. If there is an error it is returned in err. */ int ext4_inlinedir_to_tree(struct file *dir_file, struct inode *dir, ext4_lblk_t block, struct dx_hash_info *hinfo, __u32 start_hash, __u32 start_minor_hash, int *has_inline_data) { int err = 0, count = 0; unsigned int parent_ino; int pos; struct ext4_dir_entry_2 *de; struct inode *inode = file_inode(dir_file); int ret, inline_size = 0; struct ext4_iloc iloc; void *dir_buf = NULL; struct ext4_dir_entry_2 fake; struct fscrypt_str tmp_str; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); *has_inline_data = 0; goto out; } inline_size = ext4_get_inline_size(inode); dir_buf = kmalloc(inline_size, GFP_NOFS); if (!dir_buf) { ret = -ENOMEM; up_read(&EXT4_I(inode)->xattr_sem); goto out; } ret = ext4_read_inline_data(inode, dir_buf, inline_size, &iloc); up_read(&EXT4_I(inode)->xattr_sem); if (ret < 0) goto out; pos = 0; parent_ino = le32_to_cpu(((struct ext4_dir_entry_2 *)dir_buf)->inode); while (pos < inline_size) { /* * As inlined dir doesn't store any information about '.' and * only the inode number of '..' is stored, we have to handle * them differently. */ if (pos == 0) { fake.inode = cpu_to_le32(inode->i_ino); fake.name_len = 1; strcpy(fake.name, "."); fake.rec_len = ext4_rec_len_to_disk( ext4_dir_rec_len(fake.name_len, NULL), inline_size); ext4_set_de_type(inode->i_sb, &fake, S_IFDIR); de = &fake; pos = EXT4_INLINE_DOTDOT_OFFSET; } else if (pos == EXT4_INLINE_DOTDOT_OFFSET) { fake.inode = cpu_to_le32(parent_ino); fake.name_len = 2; strcpy(fake.name, ".."); fake.rec_len = ext4_rec_len_to_disk( ext4_dir_rec_len(fake.name_len, NULL), inline_size); ext4_set_de_type(inode->i_sb, &fake, S_IFDIR); de = &fake; pos = EXT4_INLINE_DOTDOT_SIZE; } else { de = (struct ext4_dir_entry_2 *)(dir_buf + pos); pos += ext4_rec_len_from_disk(de->rec_len, inline_size); if (ext4_check_dir_entry(inode, dir_file, de, iloc.bh, dir_buf, inline_size, pos)) { ret = count; goto out; } } if (ext4_hash_in_dirent(dir)) { hinfo->hash = EXT4_DIRENT_HASH(de); hinfo->minor_hash = EXT4_DIRENT_MINOR_HASH(de); } else { err = ext4fs_dirhash(dir, de->name, de->name_len, hinfo); if (err) { ret = err; goto out; } } if ((hinfo->hash < start_hash) || ((hinfo->hash == start_hash) && (hinfo->minor_hash < start_minor_hash))) continue; if (de->inode == 0) continue; tmp_str.name = de->name; tmp_str.len = de->name_len; err = ext4_htree_store_dirent(dir_file, hinfo->hash, hinfo->minor_hash, de, &tmp_str); if (err) { ret = err; goto out; } count++; } ret = count; out: kfree(dir_buf); brelse(iloc.bh); return ret; } /* * So this function is called when the volume is mkfsed with * dir_index disabled. In order to keep f_pos persistent * after we convert from an inlined dir to a blocked based, * we just pretend that we are a normal dir and return the * offset as if '.' and '..' really take place. * */ int ext4_read_inline_dir(struct file *file, struct dir_context *ctx, int *has_inline_data) { unsigned int offset, parent_ino; int i; struct ext4_dir_entry_2 *de; struct super_block *sb; struct inode *inode = file_inode(file); int ret, inline_size = 0; struct ext4_iloc iloc; void *dir_buf = NULL; int dotdot_offset, dotdot_size, extra_offset, extra_size; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); *has_inline_data = 0; goto out; } inline_size = ext4_get_inline_size(inode); dir_buf = kmalloc(inline_size, GFP_NOFS); if (!dir_buf) { ret = -ENOMEM; up_read(&EXT4_I(inode)->xattr_sem); goto out; } ret = ext4_read_inline_data(inode, dir_buf, inline_size, &iloc); up_read(&EXT4_I(inode)->xattr_sem); if (ret < 0) goto out; ret = 0; sb = inode->i_sb; parent_ino = le32_to_cpu(((struct ext4_dir_entry_2 *)dir_buf)->inode); offset = ctx->pos; /* * dotdot_offset and dotdot_size is the real offset and * size for ".." and "." if the dir is block based while * the real size for them are only EXT4_INLINE_DOTDOT_SIZE. * So we will use extra_offset and extra_size to indicate them * during the inline dir iteration. */ dotdot_offset = ext4_dir_rec_len(1, NULL); dotdot_size = dotdot_offset + ext4_dir_rec_len(2, NULL); extra_offset = dotdot_size - EXT4_INLINE_DOTDOT_SIZE; extra_size = extra_offset + inline_size; /* * If the version has changed since the last call to * readdir(2), then we might be pointing to an invalid * dirent right now. Scan from the start of the inline * dir to make sure. */ if (!inode_eq_iversion(inode, file->f_version)) { for (i = 0; i < extra_size && i < offset;) { /* * "." is with offset 0 and * ".." is dotdot_offset. */ if (!i) { i = dotdot_offset; continue; } else if (i == dotdot_offset) { i = dotdot_size; continue; } /* for other entry, the real offset in * the buf has to be tuned accordingly. */ de = (struct ext4_dir_entry_2 *) (dir_buf + i - extra_offset); /* It's too expensive to do a full * dirent test each time round this * loop, but we do have to test at * least that it is non-zero. A * failure will be detected in the * dirent test below. */ if (ext4_rec_len_from_disk(de->rec_len, extra_size) < ext4_dir_rec_len(1, NULL)) break; i += ext4_rec_len_from_disk(de->rec_len, extra_size); } offset = i; ctx->pos = offset; file->f_version = inode_query_iversion(inode); } while (ctx->pos < extra_size) { if (ctx->pos == 0) { if (!dir_emit(ctx, ".", 1, inode->i_ino, DT_DIR)) goto out; ctx->pos = dotdot_offset; continue; } if (ctx->pos == dotdot_offset) { if (!dir_emit(ctx, "..", 2, parent_ino, DT_DIR)) goto out; ctx->pos = dotdot_size; continue; } de = (struct ext4_dir_entry_2 *) (dir_buf + ctx->pos - extra_offset); if (ext4_check_dir_entry(inode, file, de, iloc.bh, dir_buf, extra_size, ctx->pos)) goto out; if (le32_to_cpu(de->inode)) { if (!dir_emit(ctx, de->name, de->name_len, le32_to_cpu(de->inode), get_dtype(sb, de->file_type))) goto out; } ctx->pos += ext4_rec_len_from_disk(de->rec_len, extra_size); } out: kfree(dir_buf); brelse(iloc.bh); return ret; } void *ext4_read_inline_link(struct inode *inode) { struct ext4_iloc iloc; int ret, inline_size; void *link; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ERR_PTR(ret); ret = -ENOMEM; inline_size = ext4_get_inline_size(inode); link = kmalloc(inline_size + 1, GFP_NOFS); if (!link) goto out; ret = ext4_read_inline_data(inode, link, inline_size, &iloc); if (ret < 0) { kfree(link); goto out; } nd_terminate_link(link, inode->i_size, ret); out: if (ret < 0) link = ERR_PTR(ret); brelse(iloc.bh); return link; } struct buffer_head *ext4_get_first_inline_block(struct inode *inode, struct ext4_dir_entry_2 **parent_de, int *retval) { struct ext4_iloc iloc; *retval = ext4_get_inode_loc(inode, &iloc); if (*retval) return NULL; *parent_de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; return iloc.bh; } /* * Try to create the inline data for the new dir. * If it succeeds, return 0, otherwise return the error. * In case of ENOSPC, the caller should create the normal disk layout dir. */ int ext4_try_create_inline_dir(handle_t *handle, struct inode *parent, struct inode *inode) { int ret, inline_size = EXT4_MIN_INLINE_DATA_SIZE; struct ext4_iloc iloc; struct ext4_dir_entry_2 *de; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; ret = ext4_prepare_inline_data(handle, inode, inline_size); if (ret) goto out; /* * For inline dir, we only save the inode information for the ".." * and create a fake dentry to cover the left space. */ de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; de->inode = cpu_to_le32(parent->i_ino); de = (struct ext4_dir_entry_2 *)((void *)de + EXT4_INLINE_DOTDOT_SIZE); de->inode = 0; de->rec_len = ext4_rec_len_to_disk( inline_size - EXT4_INLINE_DOTDOT_SIZE, inline_size); set_nlink(inode, 2); inode->i_size = EXT4_I(inode)->i_disksize = inline_size; out: brelse(iloc.bh); return ret; } struct buffer_head *ext4_find_inline_entry(struct inode *dir, struct ext4_filename *fname, struct ext4_dir_entry_2 **res_dir, int *has_inline_data) { int ret; struct ext4_iloc iloc; void *inline_start; int inline_size; if (ext4_get_inode_loc(dir, &iloc)) return NULL; down_read(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; goto out; } inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; ret = ext4_search_dir(iloc.bh, inline_start, inline_size, dir, fname, 0, res_dir); if (ret == 1) goto out_find; if (ret < 0) goto out; if (ext4_get_inline_size(dir) == EXT4_MIN_INLINE_DATA_SIZE) goto out; inline_start = ext4_get_inline_xattr_pos(dir, &iloc); inline_size = ext4_get_inline_size(dir) - EXT4_MIN_INLINE_DATA_SIZE; ret = ext4_search_dir(iloc.bh, inline_start, inline_size, dir, fname, 0, res_dir); if (ret == 1) goto out_find; out: brelse(iloc.bh); iloc.bh = NULL; out_find: up_read(&EXT4_I(dir)->xattr_sem); return iloc.bh; } int ext4_delete_inline_entry(handle_t *handle, struct inode *dir, struct ext4_dir_entry_2 *de_del, struct buffer_head *bh, int *has_inline_data) { int err, inline_size, no_expand; struct ext4_iloc iloc; void *inline_start; err = ext4_get_inode_loc(dir, &iloc); if (err) return err; ext4_write_lock_xattr(dir, &no_expand); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; goto out; } if ((void *)de_del - ((void *)ext4_raw_inode(&iloc)->i_block) < EXT4_MIN_INLINE_DATA_SIZE) { inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; } else { inline_start = ext4_get_inline_xattr_pos(dir, &iloc); inline_size = ext4_get_inline_size(dir) - EXT4_MIN_INLINE_DATA_SIZE; } BUFFER_TRACE(bh, "get_write_access"); err = ext4_journal_get_write_access(handle, dir->i_sb, bh, EXT4_JTR_NONE); if (err) goto out; err = ext4_generic_delete_entry(dir, de_del, bh, inline_start, inline_size, 0); if (err) goto out; ext4_show_inline_dir(dir, iloc.bh, inline_start, inline_size); out: ext4_write_unlock_xattr(dir, &no_expand); if (likely(err == 0)) err = ext4_mark_inode_dirty(handle, dir); brelse(iloc.bh); if (err != -ENOENT) ext4_std_error(dir->i_sb, err); return err; } /* * Get the inline dentry at offset. */ static inline struct ext4_dir_entry_2 * ext4_get_inline_entry(struct inode *inode, struct ext4_iloc *iloc, unsigned int offset, void **inline_start, int *inline_size) { void *inline_pos; BUG_ON(offset > ext4_get_inline_size(inode)); if (offset < EXT4_MIN_INLINE_DATA_SIZE) { inline_pos = (void *)ext4_raw_inode(iloc)->i_block; *inline_size = EXT4_MIN_INLINE_DATA_SIZE; } else { inline_pos = ext4_get_inline_xattr_pos(inode, iloc); offset -= EXT4_MIN_INLINE_DATA_SIZE; *inline_size = ext4_get_inline_size(inode) - EXT4_MIN_INLINE_DATA_SIZE; } if (inline_start) *inline_start = inline_pos; return (struct ext4_dir_entry_2 *)(inline_pos + offset); } bool empty_inline_dir(struct inode *dir, int *has_inline_data) { int err, inline_size; struct ext4_iloc iloc; size_t inline_len; void *inline_pos; unsigned int offset; struct ext4_dir_entry_2 *de; bool ret = false; err = ext4_get_inode_loc(dir, &iloc); if (err) { EXT4_ERROR_INODE_ERR(dir, -err, "error %d getting inode %lu block", err, dir->i_ino); return false; } down_read(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; ret = true; goto out; } de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; if (!le32_to_cpu(de->inode)) { ext4_warning(dir->i_sb, "bad inline directory (dir #%lu) - no `..'", dir->i_ino); goto out; } inline_len = ext4_get_inline_size(dir); offset = EXT4_INLINE_DOTDOT_SIZE; while (offset < inline_len) { de = ext4_get_inline_entry(dir, &iloc, offset, &inline_pos, &inline_size); if (ext4_check_dir_entry(dir, NULL, de, iloc.bh, inline_pos, inline_size, offset)) { ext4_warning(dir->i_sb, "bad inline directory (dir #%lu) - " "inode %u, rec_len %u, name_len %d" "inline size %d", dir->i_ino, le32_to_cpu(de->inode), le16_to_cpu(de->rec_len), de->name_len, inline_size); goto out; } if (le32_to_cpu(de->inode)) { goto out; } offset += ext4_rec_len_from_disk(de->rec_len, inline_size); } ret = true; out: up_read(&EXT4_I(dir)->xattr_sem); brelse(iloc.bh); return ret; } int ext4_destroy_inline_data(handle_t *handle, struct inode *inode) { int ret, no_expand; ext4_write_lock_xattr(inode, &no_expand); ret = ext4_destroy_inline_data_nolock(handle, inode); ext4_write_unlock_xattr(inode, &no_expand); return ret; } int ext4_inline_data_iomap(struct inode *inode, struct iomap *iomap) { __u64 addr; int error = -EAGAIN; struct ext4_iloc iloc; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) goto out; error = ext4_get_inode_loc(inode, &iloc); if (error) goto out; addr = (__u64)iloc.bh->b_blocknr << inode->i_sb->s_blocksize_bits; addr += (char *)ext4_raw_inode(&iloc) - iloc.bh->b_data; addr += offsetof(struct ext4_inode, i_block); brelse(iloc.bh); iomap->addr = addr; iomap->offset = 0; iomap->length = min_t(loff_t, ext4_get_inline_size(inode), i_size_read(inode)); iomap->type = IOMAP_INLINE; iomap->flags = 0; out: up_read(&EXT4_I(inode)->xattr_sem); return error; } int ext4_inline_data_truncate(struct inode *inode, int *has_inline) { handle_t *handle; int inline_size, value_len, needed_blocks, no_expand, err = 0; size_t i_size; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; needed_blocks = ext4_writepage_trans_blocks(inode); handle = ext4_journal_start(inode, EXT4_HT_INODE, needed_blocks); if (IS_ERR(handle)) return PTR_ERR(handle); ext4_write_lock_xattr(inode, &no_expand); if (!ext4_has_inline_data(inode)) { ext4_write_unlock_xattr(inode, &no_expand); *has_inline = 0; ext4_journal_stop(handle); return 0; } if ((err = ext4_orphan_add(handle, inode)) != 0) goto out; if ((err = ext4_get_inode_loc(inode, &is.iloc)) != 0) goto out; down_write(&EXT4_I(inode)->i_data_sem); i_size = inode->i_size; inline_size = ext4_get_inline_size(inode); EXT4_I(inode)->i_disksize = i_size; if (i_size < inline_size) { /* * if there's inline data to truncate and this file was * converted to extents after that inline data was written, * the extent status cache must be cleared to avoid leaving * behind stale delayed allocated extent entries */ if (!ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); /* Clear the content in the xattr space. */ if (inline_size > EXT4_MIN_INLINE_DATA_SIZE) { if ((err = ext4_xattr_ibody_find(inode, &i, &is)) != 0) goto out_error; BUG_ON(is.s.not_found); value_len = le32_to_cpu(is.s.here->e_value_size); value = kmalloc(value_len, GFP_NOFS); if (!value) { err = -ENOMEM; goto out_error; } err = ext4_xattr_ibody_get(inode, i.name_index, i.name, value, value_len); if (err <= 0) goto out_error; i.value = value; i.value_len = i_size > EXT4_MIN_INLINE_DATA_SIZE ? i_size - EXT4_MIN_INLINE_DATA_SIZE : 0; err = ext4_xattr_ibody_set(handle, inode, &i, &is); if (err) goto out_error; } /* Clear the content within i_blocks. */ if (i_size < EXT4_MIN_INLINE_DATA_SIZE) { void *p = (void *) ext4_raw_inode(&is.iloc)->i_block; memset(p + i_size, 0, EXT4_MIN_INLINE_DATA_SIZE - i_size); } EXT4_I(inode)->i_inline_size = i_size < EXT4_MIN_INLINE_DATA_SIZE ? EXT4_MIN_INLINE_DATA_SIZE : i_size; } out_error: up_write(&EXT4_I(inode)->i_data_sem); out: brelse(is.iloc.bh); ext4_write_unlock_xattr(inode, &no_expand); kfree(value); if (inode->i_nlink) ext4_orphan_del(handle, inode); if (err == 0) { inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); err = ext4_mark_inode_dirty(handle, inode); if (IS_SYNC(inode)) ext4_handle_sync(handle); } ext4_journal_stop(handle); return err; } int ext4_convert_inline_data(struct inode *inode) { int error, needed_blocks, no_expand; handle_t *handle; struct ext4_iloc iloc; if (!ext4_has_inline_data(inode)) { ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); return 0; } else if (!ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { /* * Inode has inline data but EXT4_STATE_MAY_INLINE_DATA is * cleared. This means we are in the middle of moving of * inline data to delay allocated block. Just force writeout * here to finish conversion. */ error = filemap_flush(inode->i_mapping); if (error) return error; if (!ext4_has_inline_data(inode)) return 0; } needed_blocks = ext4_writepage_trans_blocks(inode); iloc.bh = NULL; error = ext4_get_inode_loc(inode, &iloc); if (error) return error; handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); if (IS_ERR(handle)) { error = PTR_ERR(handle); goto out_free; } ext4_write_lock_xattr(inode, &no_expand); if (ext4_has_inline_data(inode)) error = ext4_convert_inline_data_nolock(handle, inode, &iloc); ext4_write_unlock_xattr(inode, &no_expand); ext4_journal_stop(handle); out_free: brelse(iloc.bh); return error; } |
6 5 5 1 1 6 2 4 6 9 9 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2008-2013 Jozsef Kadlecsik <kadlec@netfilter.org> */ /* Kernel module implementing an IP set type: the list:set type */ #include <linux/module.h> #include <linux/ip.h> #include <linux/rculist.h> #include <linux/skbuff.h> #include <linux/errno.h> #include <linux/netfilter/ipset/ip_set.h> #include <linux/netfilter/ipset/ip_set_list.h> #define IPSET_TYPE_REV_MIN 0 /* 1 Counters support added */ /* 2 Comments support added */ #define IPSET_TYPE_REV_MAX 3 /* skbinfo support added */ MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jozsef Kadlecsik <kadlec@netfilter.org>"); IP_SET_MODULE_DESC("list:set", IPSET_TYPE_REV_MIN, IPSET_TYPE_REV_MAX); MODULE_ALIAS("ip_set_list:set"); /* Member elements */ struct set_elem { struct rcu_head rcu; struct list_head list; struct ip_set *set; /* Sigh, in order to cleanup reference */ ip_set_id_t id; } __aligned(__alignof__(u64)); struct set_adt_elem { ip_set_id_t id; ip_set_id_t refid; int before; }; /* Type structure */ struct list_set { u32 size; /* size of set list array */ struct timer_list gc; /* garbage collection */ struct ip_set *set; /* attached to this ip_set */ struct net *net; /* namespace */ struct list_head members; /* the set members */ }; static int list_set_ktest(struct ip_set *set, const struct sk_buff *skb, const struct xt_action_param *par, struct ip_set_adt_opt *opt, const struct ip_set_ext *ext) { struct list_set *map = set->data; struct ip_set_ext *mext = &opt->ext; struct set_elem *e; u32 flags = opt->cmdflags; int ret; /* Don't lookup sub-counters at all */ opt->cmdflags &= ~IPSET_FLAG_MATCH_COUNTERS; if (opt->cmdflags & IPSET_FLAG_SKIP_SUBCOUNTER_UPDATE) opt->cmdflags |= IPSET_FLAG_SKIP_COUNTER_UPDATE; list_for_each_entry_rcu(e, &map->members, list) { ret = ip_set_test(e->id, skb, par, opt); if (ret <= 0) continue; if (ip_set_match_extensions(set, ext, mext, flags, e)) return 1; } return 0; } static int list_set_kadd(struct ip_set *set, const struct sk_buff *skb, const struct xt_action_param *par, struct ip_set_adt_opt *opt, const struct ip_set_ext *ext) { struct list_set *map = set->data; struct set_elem *e; int ret; list_for_each_entry_rcu(e, &map->members, list) { if (SET_WITH_TIMEOUT(set) && ip_set_timeout_expired(ext_timeout(e, set))) continue; ret = ip_set_add(e->id, skb, par, opt); if (ret == 0) return ret; } return 0; } static int list_set_kdel(struct ip_set *set, const struct sk_buff *skb, const struct xt_action_param *par, struct ip_set_adt_opt *opt, const struct ip_set_ext *ext) { struct list_set *map = set->data; struct set_elem *e; int ret; list_for_each_entry_rcu(e, &map->members, list) { if (SET_WITH_TIMEOUT(set) && ip_set_timeout_expired(ext_timeout(e, set))) continue; ret = ip_set_del(e->id, skb, par, opt); if (ret == 0) return ret; } return 0; } static int list_set_kadt(struct ip_set *set, const struct sk_buff *skb, const struct xt_action_param *par, enum ipset_adt adt, struct ip_set_adt_opt *opt) { struct ip_set_ext ext = IP_SET_INIT_KEXT(skb, opt, set); int ret = -EINVAL; rcu_read_lock(); switch (adt) { case IPSET_TEST: ret = list_set_ktest(set, skb, par, opt, &ext); break; case IPSET_ADD: ret = list_set_kadd(set, skb, par, opt, &ext); break; case IPSET_DEL: ret = list_set_kdel(set, skb, par, opt, &ext); break; default: break; } rcu_read_unlock(); return ret; } /* Userspace interfaces: we are protected by the nfnl mutex */ static void __list_set_del_rcu(struct rcu_head * rcu) { struct set_elem *e = container_of(rcu, struct set_elem, rcu); struct ip_set *set = e->set; ip_set_ext_destroy(set, e); kfree(e); } static void list_set_del(struct ip_set *set, struct set_elem *e) { struct list_set *map = set->data; set->elements--; list_del_rcu(&e->list); ip_set_put_byindex(map->net, e->id); call_rcu(&e->rcu, __list_set_del_rcu); } static void list_set_replace(struct ip_set *set, struct set_elem *e, struct set_elem *old) { struct list_set *map = set->data; list_replace_rcu(&old->list, &e->list); ip_set_put_byindex(map->net, old->id); call_rcu(&old->rcu, __list_set_del_rcu); } static void set_cleanup_entries(struct ip_set *set) { struct list_set *map = set->data; struct set_elem *e, *n; list_for_each_entry_safe(e, n, &map->members, list) if (ip_set_timeout_expired(ext_timeout(e, set))) list_set_del(set, e); } static int list_set_utest(struct ip_set *set, void *value, const struct ip_set_ext *ext, struct ip_set_ext *mext, u32 flags) { struct list_set *map = set->data; struct set_adt_elem *d = value; struct set_elem *e, *next, *prev = NULL; int ret = 0; rcu_read_lock(); list_for_each_entry_rcu(e, &map->members, list) { if (SET_WITH_TIMEOUT(set) && ip_set_timeout_expired(ext_timeout(e, set))) continue; else if (e->id != d->id) { prev = e; continue; } if (d->before == 0) { ret = 1; goto out; } else if (d->before > 0) { next = list_next_entry(e, list); ret = !list_is_last(&e->list, &map->members) && next->id == d->refid; } else { ret = prev && prev->id == d->refid; } goto out; } out: rcu_read_unlock(); return ret; } static void list_set_init_extensions(struct ip_set *set, const struct ip_set_ext *ext, struct set_elem *e) { if (SET_WITH_COUNTER(set)) ip_set_init_counter(ext_counter(e, set), ext); if (SET_WITH_COMMENT(set)) ip_set_init_comment(set, ext_comment(e, set), ext); if (SET_WITH_SKBINFO(set)) ip_set_init_skbinfo(ext_skbinfo(e, set), ext); /* Update timeout last */ if (SET_WITH_TIMEOUT(set)) ip_set_timeout_set(ext_timeout(e, set), ext->timeout); } static int list_set_uadd(struct ip_set *set, void *value, const struct ip_set_ext *ext, struct ip_set_ext *mext, u32 flags) { struct list_set *map = set->data; struct set_adt_elem *d = value; struct set_elem *e, *n, *prev, *next; bool flag_exist = flags & IPSET_FLAG_EXIST; /* Find where to add the new entry */ n = prev = next = NULL; list_for_each_entry_rcu(e, &map->members, list) { if (SET_WITH_TIMEOUT(set) && ip_set_timeout_expired(ext_timeout(e, set))) continue; else if (d->id == e->id) n = e; else if (d->before == 0 || e->id != d->refid) continue; else if (d->before > 0) next = e; else prev = e; } /* If before/after is used on an empty set */ if ((d->before > 0 && !next) || (d->before < 0 && !prev)) return -IPSET_ERR_REF_EXIST; /* Re-add already existing element */ if (n) { if (!flag_exist) return -IPSET_ERR_EXIST; /* Update extensions */ ip_set_ext_destroy(set, n); list_set_init_extensions(set, ext, n); /* Set is already added to the list */ ip_set_put_byindex(map->net, d->id); return 0; } /* Add new entry */ if (d->before == 0) { /* Append */ n = list_empty(&map->members) ? NULL : list_last_entry(&map->members, struct set_elem, list); } else if (d->before > 0) { /* Insert after next element */ if (!list_is_last(&next->list, &map->members)) n = list_next_entry(next, list); } else { /* Insert before prev element */ if (prev->list.prev != &map->members) n = list_prev_entry(prev, list); } /* Can we replace a timed out entry? */ if (n && !(SET_WITH_TIMEOUT(set) && ip_set_timeout_expired(ext_timeout(n, set)))) n = NULL; e = kzalloc(set->dsize, GFP_ATOMIC); if (!e) return -ENOMEM; e->id = d->id; e->set = set; INIT_LIST_HEAD(&e->list); list_set_init_extensions(set, ext, e); if (n) list_set_replace(set, e, n); else if (next) list_add_tail_rcu(&e->list, &next->list); else if (prev) list_add_rcu(&e->list, &prev->list); else list_add_tail_rcu(&e->list, &map->members); set->elements++; return 0; } static int list_set_udel(struct ip_set *set, void *value, const struct ip_set_ext *ext, struct ip_set_ext *mext, u32 flags) { struct list_set *map = set->data; struct set_adt_elem *d = value; struct set_elem *e, *n, *next, *prev = NULL; list_for_each_entry_safe(e, n, &map->members, list) { if (SET_WITH_TIMEOUT(set) && ip_set_timeout_expired(ext_timeout(e, set))) continue; else if (e->id != d->id) { prev = e; continue; } if (d->before > 0) { next = list_next_entry(e, list); if (list_is_last(&e->list, &map->members) || next->id != d->refid) return -IPSET_ERR_REF_EXIST; } else if (d->before < 0) { if (!prev || prev->id != d->refid) return -IPSET_ERR_REF_EXIST; } list_set_del(set, e); return 0; } return d->before != 0 ? -IPSET_ERR_REF_EXIST : -IPSET_ERR_EXIST; } static int list_set_uadt(struct ip_set *set, struct nlattr *tb[], enum ipset_adt adt, u32 *lineno, u32 flags, bool retried) { struct list_set *map = set->data; ipset_adtfn adtfn = set->variant->adt[adt]; struct set_adt_elem e = { .refid = IPSET_INVALID_ID }; struct ip_set_ext ext = IP_SET_INIT_UEXT(set); struct ip_set *s; int ret = 0; if (tb[IPSET_ATTR_LINENO]) *lineno = nla_get_u32(tb[IPSET_ATTR_LINENO]); if (unlikely(!tb[IPSET_ATTR_NAME] || !ip_set_optattr_netorder(tb, IPSET_ATTR_CADT_FLAGS))) return -IPSET_ERR_PROTOCOL; ret = ip_set_get_extensions(set, tb, &ext); if (ret) return ret; e.id = ip_set_get_byname(map->net, nla_data(tb[IPSET_ATTR_NAME]), &s); if (e.id == IPSET_INVALID_ID) return -IPSET_ERR_NAME; /* "Loop detection" */ if (s->type->features & IPSET_TYPE_NAME) { ret = -IPSET_ERR_LOOP; goto finish; } if (tb[IPSET_ATTR_CADT_FLAGS]) { u32 f = ip_set_get_h32(tb[IPSET_ATTR_CADT_FLAGS]); e.before = f & IPSET_FLAG_BEFORE; } if (e.before && !tb[IPSET_ATTR_NAMEREF]) { ret = -IPSET_ERR_BEFORE; goto finish; } if (tb[IPSET_ATTR_NAMEREF]) { e.refid = ip_set_get_byname(map->net, nla_data(tb[IPSET_ATTR_NAMEREF]), &s); if (e.refid == IPSET_INVALID_ID) { ret = -IPSET_ERR_NAMEREF; goto finish; } if (!e.before) e.before = -1; } if (adt != IPSET_TEST && SET_WITH_TIMEOUT(set)) set_cleanup_entries(set); ret = adtfn(set, &e, &ext, &ext, flags); finish: if (e.refid != IPSET_INVALID_ID) ip_set_put_byindex(map->net, e.refid); if (adt != IPSET_ADD || ret) ip_set_put_byindex(map->net, e.id); return ip_set_eexist(ret, flags) ? 0 : ret; } static void list_set_flush(struct ip_set *set) { struct list_set *map = set->data; struct set_elem *e, *n; list_for_each_entry_safe(e, n, &map->members, list) list_set_del(set, e); set->elements = 0; set->ext_size = 0; } static void list_set_destroy(struct ip_set *set) { struct list_set *map = set->data; WARN_ON_ONCE(!list_empty(&map->members)); kfree(map); set->data = NULL; } /* Calculate the actual memory size of the set data */ static size_t list_set_memsize(const struct list_set *map, size_t dsize) { struct set_elem *e; u32 n = 0; rcu_read_lock(); list_for_each_entry_rcu(e, &map->members, list) n++; rcu_read_unlock(); return (sizeof(*map) + n * dsize); } static int list_set_head(struct ip_set *set, struct sk_buff *skb) { const struct list_set *map = set->data; struct nlattr *nested; size_t memsize = list_set_memsize(map, set->dsize) + set->ext_size; nested = nla_nest_start(skb, IPSET_ATTR_DATA); if (!nested) goto nla_put_failure; if (nla_put_net32(skb, IPSET_ATTR_SIZE, htonl(map->size)) || nla_put_net32(skb, IPSET_ATTR_REFERENCES, htonl(set->ref)) || nla_put_net32(skb, IPSET_ATTR_MEMSIZE, htonl(memsize)) || nla_put_net32(skb, IPSET_ATTR_ELEMENTS, htonl(set->elements))) goto nla_put_failure; if (unlikely(ip_set_put_flags(skb, set))) goto nla_put_failure; nla_nest_end(skb, nested); return 0; nla_put_failure: return -EMSGSIZE; } static int list_set_list(const struct ip_set *set, struct sk_buff *skb, struct netlink_callback *cb) { const struct list_set *map = set->data; struct nlattr *atd, *nested; u32 i = 0, first = cb->args[IPSET_CB_ARG0]; char name[IPSET_MAXNAMELEN]; struct set_elem *e; int ret = 0; atd = nla_nest_start(skb, IPSET_ATTR_ADT); if (!atd) return -EMSGSIZE; rcu_read_lock(); list_for_each_entry_rcu(e, &map->members, list) { if (i < first || (SET_WITH_TIMEOUT(set) && ip_set_timeout_expired(ext_timeout(e, set)))) { i++; continue; } nested = nla_nest_start(skb, IPSET_ATTR_DATA); if (!nested) goto nla_put_failure; ip_set_name_byindex(map->net, e->id, name); if (nla_put_string(skb, IPSET_ATTR_NAME, name)) goto nla_put_failure; if (ip_set_put_extensions(skb, set, e, true)) goto nla_put_failure; nla_nest_end(skb, nested); i++; } nla_nest_end(skb, atd); /* Set listing finished */ cb->args[IPSET_CB_ARG0] = 0; goto out; nla_put_failure: nla_nest_cancel(skb, nested); if (unlikely(i == first)) { nla_nest_cancel(skb, atd); cb->args[IPSET_CB_ARG0] = 0; ret = -EMSGSIZE; } else { cb->args[IPSET_CB_ARG0] = i; nla_nest_end(skb, atd); } out: rcu_read_unlock(); return ret; } static bool list_set_same_set(const struct ip_set *a, const struct ip_set *b) { const struct list_set *x = a->data; const struct list_set *y = b->data; return x->size == y->size && a->timeout == b->timeout && a->extensions == b->extensions; } static void list_set_cancel_gc(struct ip_set *set) { struct list_set *map = set->data; if (SET_WITH_TIMEOUT(set)) timer_shutdown_sync(&map->gc); /* Flush list to drop references to other ipsets */ list_set_flush(set); } static const struct ip_set_type_variant set_variant = { .kadt = list_set_kadt, .uadt = list_set_uadt, .adt = { [IPSET_ADD] = list_set_uadd, [IPSET_DEL] = list_set_udel, [IPSET_TEST] = list_set_utest, }, .destroy = list_set_destroy, .flush = list_set_flush, .head = list_set_head, .list = list_set_list, .same_set = list_set_same_set, .cancel_gc = list_set_cancel_gc, }; static void list_set_gc(struct timer_list *t) { struct list_set *map = from_timer(map, t, gc); struct ip_set *set = map->set; spin_lock_bh(&set->lock); set_cleanup_entries(set); spin_unlock_bh(&set->lock); map->gc.expires = jiffies + IPSET_GC_PERIOD(set->timeout) * HZ; add_timer(&map->gc); } static void list_set_gc_init(struct ip_set *set, void (*gc)(struct timer_list *t)) { struct list_set *map = set->data; timer_setup(&map->gc, gc, 0); mod_timer(&map->gc, jiffies + IPSET_GC_PERIOD(set->timeout) * HZ); } /* Create list:set type of sets */ static bool init_list_set(struct net *net, struct ip_set *set, u32 size) { struct list_set *map; map = kzalloc(sizeof(*map), GFP_KERNEL); if (!map) return false; map->size = size; map->net = net; map->set = set; INIT_LIST_HEAD(&map->members); set->data = map; return true; } static int list_set_create(struct net *net, struct ip_set *set, struct nlattr *tb[], u32 flags) { u32 size = IP_SET_LIST_DEFAULT_SIZE; if (unlikely(!ip_set_optattr_netorder(tb, IPSET_ATTR_SIZE) || !ip_set_optattr_netorder(tb, IPSET_ATTR_TIMEOUT) || !ip_set_optattr_netorder(tb, IPSET_ATTR_CADT_FLAGS))) return -IPSET_ERR_PROTOCOL; if (tb[IPSET_ATTR_SIZE]) size = ip_set_get_h32(tb[IPSET_ATTR_SIZE]); if (size < IP_SET_LIST_MIN_SIZE) size = IP_SET_LIST_MIN_SIZE; set->variant = &set_variant; set->dsize = ip_set_elem_len(set, tb, sizeof(struct set_elem), __alignof__(struct set_elem)); if (!init_list_set(net, set, size)) return -ENOMEM; if (tb[IPSET_ATTR_TIMEOUT]) { set->timeout = ip_set_timeout_uget(tb[IPSET_ATTR_TIMEOUT]); list_set_gc_init(set, list_set_gc); } return 0; } static struct ip_set_type list_set_type __read_mostly = { .name = "list:set", .protocol = IPSET_PROTOCOL, .features = IPSET_TYPE_NAME | IPSET_DUMP_LAST, .dimension = IPSET_DIM_ONE, .family = NFPROTO_UNSPEC, .revision_min = IPSET_TYPE_REV_MIN, .revision_max = IPSET_TYPE_REV_MAX, .create = list_set_create, .create_policy = { [IPSET_ATTR_SIZE] = { .type = NLA_U32 }, [IPSET_ATTR_TIMEOUT] = { .type = NLA_U32 }, [IPSET_ATTR_CADT_FLAGS] = { .type = NLA_U32 }, }, .adt_policy = { [IPSET_ATTR_NAME] = { .type = NLA_STRING, .len = IPSET_MAXNAMELEN }, [IPSET_ATTR_NAMEREF] = { .type = NLA_STRING, .len = IPSET_MAXNAMELEN }, [IPSET_ATTR_TIMEOUT] = { .type = NLA_U32 }, [IPSET_ATTR_LINENO] = { .type = NLA_U32 }, [IPSET_ATTR_CADT_FLAGS] = { .type = NLA_U32 }, [IPSET_ATTR_BYTES] = { .type = NLA_U64 }, [IPSET_ATTR_PACKETS] = { .type = NLA_U64 }, [IPSET_ATTR_COMMENT] = { .type = NLA_NUL_STRING, .len = IPSET_MAX_COMMENT_SIZE }, [IPSET_ATTR_SKBMARK] = { .type = NLA_U64 }, [IPSET_ATTR_SKBPRIO] = { .type = NLA_U32 }, [IPSET_ATTR_SKBQUEUE] = { .type = NLA_U16 }, }, .me = THIS_MODULE, }; static int __init list_set_init(void) { return ip_set_type_register(&list_set_type); } static void __exit list_set_fini(void) { rcu_barrier(); ip_set_type_unregister(&list_set_type); } module_init(list_set_init); module_exit(list_set_fini); |
2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | #ifndef _NF_FLOW_TABLE_H #define _NF_FLOW_TABLE_H #include <linux/in.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/rhashtable-types.h> #include <linux/rcupdate.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <net/flow_offload.h> #include <net/dst.h> #include <linux/if_pppox.h> #include <linux/ppp_defs.h> struct nf_flowtable; struct nf_flow_rule; struct flow_offload; enum flow_offload_tuple_dir; struct nf_flow_key { struct flow_dissector_key_meta meta; struct flow_dissector_key_control control; struct flow_dissector_key_control enc_control; struct flow_dissector_key_basic basic; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_vlan cvlan; union { struct flow_dissector_key_ipv4_addrs ipv4; struct flow_dissector_key_ipv6_addrs ipv6; }; struct flow_dissector_key_keyid enc_key_id; union { struct flow_dissector_key_ipv4_addrs enc_ipv4; struct flow_dissector_key_ipv6_addrs enc_ipv6; }; struct flow_dissector_key_tcp tcp; struct flow_dissector_key_ports tp; } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */ struct nf_flow_match { struct flow_dissector dissector; struct nf_flow_key key; struct nf_flow_key mask; }; struct nf_flow_rule { struct nf_flow_match match; struct flow_rule *rule; }; struct nf_flowtable_type { struct list_head list; int family; int (*init)(struct nf_flowtable *ft); bool (*gc)(const struct flow_offload *flow); int (*setup)(struct nf_flowtable *ft, struct net_device *dev, enum flow_block_command cmd); int (*action)(struct net *net, struct flow_offload *flow, enum flow_offload_tuple_dir dir, struct nf_flow_rule *flow_rule); void (*free)(struct nf_flowtable *ft); void (*get)(struct nf_flowtable *ft); void (*put)(struct nf_flowtable *ft); nf_hookfn *hook; struct module *owner; }; enum nf_flowtable_flags { NF_FLOWTABLE_HW_OFFLOAD = 0x1, /* NFT_FLOWTABLE_HW_OFFLOAD */ NF_FLOWTABLE_COUNTER = 0x2, /* NFT_FLOWTABLE_COUNTER */ }; struct nf_flowtable { unsigned int flags; /* readonly in datapath */ int priority; /* control path (padding hole) */ struct rhashtable rhashtable; /* datapath, read-mostly members come first */ struct list_head list; /* slowpath parts */ const struct nf_flowtable_type *type; struct delayed_work gc_work; struct flow_block flow_block; struct rw_semaphore flow_block_lock; /* Guards flow_block */ possible_net_t net; }; static inline bool nf_flowtable_hw_offload(struct nf_flowtable *flowtable) { return flowtable->flags & NF_FLOWTABLE_HW_OFFLOAD; } enum flow_offload_tuple_dir { FLOW_OFFLOAD_DIR_ORIGINAL = IP_CT_DIR_ORIGINAL, FLOW_OFFLOAD_DIR_REPLY = IP_CT_DIR_REPLY, }; #define FLOW_OFFLOAD_DIR_MAX IP_CT_DIR_MAX enum flow_offload_xmit_type { FLOW_OFFLOAD_XMIT_UNSPEC = 0, FLOW_OFFLOAD_XMIT_NEIGH, FLOW_OFFLOAD_XMIT_XFRM, FLOW_OFFLOAD_XMIT_DIRECT, FLOW_OFFLOAD_XMIT_TC, }; #define NF_FLOW_TABLE_ENCAP_MAX 2 struct flow_offload_tuple { union { struct in_addr src_v4; struct in6_addr src_v6; }; union { struct in_addr dst_v4; struct in6_addr dst_v6; }; struct { __be16 src_port; __be16 dst_port; }; int iifidx; u8 l3proto; u8 l4proto; struct { u16 id; __be16 proto; } encap[NF_FLOW_TABLE_ENCAP_MAX]; /* All members above are keys for lookups, see flow_offload_hash(). */ struct { } __hash; u8 dir:2, xmit_type:3, encap_num:2, in_vlan_ingress:2; u16 mtu; union { struct { struct dst_entry *dst_cache; u32 dst_cookie; }; struct { u32 ifidx; u32 hw_ifidx; u8 h_source[ETH_ALEN]; u8 h_dest[ETH_ALEN]; } out; struct { u32 iifidx; } tc; }; }; struct flow_offload_tuple_rhash { struct rhash_head node; struct flow_offload_tuple tuple; }; enum nf_flow_flags { NF_FLOW_SNAT, NF_FLOW_DNAT, NF_FLOW_TEARDOWN, NF_FLOW_HW, NF_FLOW_HW_DYING, NF_FLOW_HW_DEAD, NF_FLOW_HW_PENDING, NF_FLOW_HW_BIDIRECTIONAL, NF_FLOW_HW_ESTABLISHED, }; enum flow_offload_type { NF_FLOW_OFFLOAD_UNSPEC = 0, NF_FLOW_OFFLOAD_ROUTE, }; struct flow_offload { struct flow_offload_tuple_rhash tuplehash[FLOW_OFFLOAD_DIR_MAX]; struct nf_conn *ct; unsigned long flags; u16 type; u32 timeout; struct rcu_head rcu_head; }; #define NF_FLOW_TIMEOUT (30 * HZ) #define nf_flowtable_time_stamp (u32)jiffies unsigned long flow_offload_get_timeout(struct flow_offload *flow); static inline __s32 nf_flow_timeout_delta(unsigned int timeout) { return (__s32)(timeout - nf_flowtable_time_stamp); } struct nf_flow_route { struct { struct dst_entry *dst; struct { u32 ifindex; struct { u16 id; __be16 proto; } encap[NF_FLOW_TABLE_ENCAP_MAX]; u8 num_encaps:2, ingress_vlans:2; } in; struct { u32 ifindex; u32 hw_ifindex; u8 h_source[ETH_ALEN]; u8 h_dest[ETH_ALEN]; } out; enum flow_offload_xmit_type xmit_type; } tuple[FLOW_OFFLOAD_DIR_MAX]; }; struct flow_offload *flow_offload_alloc(struct nf_conn *ct); void flow_offload_free(struct flow_offload *flow); static inline int nf_flow_table_offload_add_cb(struct nf_flowtable *flow_table, flow_setup_cb_t *cb, void *cb_priv) { struct flow_block *block = &flow_table->flow_block; struct flow_block_cb *block_cb; int err = 0; down_write(&flow_table->flow_block_lock); block_cb = flow_block_cb_lookup(block, cb, cb_priv); if (block_cb) { err = -EEXIST; goto unlock; } block_cb = flow_block_cb_alloc(cb, cb_priv, cb_priv, NULL); if (IS_ERR(block_cb)) { err = PTR_ERR(block_cb); goto unlock; } list_add_tail(&block_cb->list, &block->cb_list); up_write(&flow_table->flow_block_lock); if (flow_table->type->get) flow_table->type->get(flow_table); return 0; unlock: up_write(&flow_table->flow_block_lock); return err; } static inline void nf_flow_table_offload_del_cb(struct nf_flowtable *flow_table, flow_setup_cb_t *cb, void *cb_priv) { struct flow_block *block = &flow_table->flow_block; struct flow_block_cb *block_cb; down_write(&flow_table->flow_block_lock); block_cb = flow_block_cb_lookup(block, cb, cb_priv); if (block_cb) { list_del(&block_cb->list); flow_block_cb_free(block_cb); } else { WARN_ON(true); } up_write(&flow_table->flow_block_lock); if (flow_table->type->put) flow_table->type->put(flow_table); } void flow_offload_route_init(struct flow_offload *flow, struct nf_flow_route *route); int flow_offload_add(struct nf_flowtable *flow_table, struct flow_offload *flow); void flow_offload_refresh(struct nf_flowtable *flow_table, struct flow_offload *flow, bool force); struct flow_offload_tuple_rhash *flow_offload_lookup(struct nf_flowtable *flow_table, struct flow_offload_tuple *tuple); void nf_flow_table_gc_run(struct nf_flowtable *flow_table); void nf_flow_table_gc_cleanup(struct nf_flowtable *flowtable, struct net_device *dev); void nf_flow_table_cleanup(struct net_device *dev); int nf_flow_table_init(struct nf_flowtable *flow_table); void nf_flow_table_free(struct nf_flowtable *flow_table); void flow_offload_teardown(struct flow_offload *flow); void nf_flow_snat_port(const struct flow_offload *flow, struct sk_buff *skb, unsigned int thoff, u8 protocol, enum flow_offload_tuple_dir dir); void nf_flow_dnat_port(const struct flow_offload *flow, struct sk_buff *skb, unsigned int thoff, u8 protocol, enum flow_offload_tuple_dir dir); struct flow_ports { __be16 source, dest; }; struct nf_flowtable *nf_flowtable_by_dev(const struct net_device *dev); int nf_flow_offload_xdp_setup(struct nf_flowtable *flowtable, struct net_device *dev, enum flow_block_command cmd); unsigned int nf_flow_offload_ip_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state); unsigned int nf_flow_offload_ipv6_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state); #if (IS_BUILTIN(CONFIG_NF_FLOW_TABLE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \ (IS_MODULE(CONFIG_NF_FLOW_TABLE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) extern int nf_flow_register_bpf(void); #else static inline int nf_flow_register_bpf(void) { return 0; } #endif #define MODULE_ALIAS_NF_FLOWTABLE(family) \ MODULE_ALIAS("nf-flowtable-" __stringify(family)) void nf_flow_offload_add(struct nf_flowtable *flowtable, struct flow_offload *flow); void nf_flow_offload_del(struct nf_flowtable *flowtable, struct flow_offload *flow); void nf_flow_offload_stats(struct nf_flowtable *flowtable, struct flow_offload *flow); void nf_flow_table_offload_flush(struct nf_flowtable *flowtable); void nf_flow_table_offload_flush_cleanup(struct nf_flowtable *flowtable); int nf_flow_table_offload_setup(struct nf_flowtable *flowtable, struct net_device *dev, enum flow_block_command cmd); int nf_flow_rule_route_ipv4(struct net *net, struct flow_offload *flow, enum flow_offload_tuple_dir dir, struct nf_flow_rule *flow_rule); int nf_flow_rule_route_ipv6(struct net *net, struct flow_offload *flow, enum flow_offload_tuple_dir dir, struct nf_flow_rule *flow_rule); int nf_flow_table_offload_init(void); void nf_flow_table_offload_exit(void); static inline __be16 __nf_flow_pppoe_proto(const struct sk_buff *skb) { __be16 proto; proto = *((__be16 *)(skb_mac_header(skb) + ETH_HLEN + sizeof(struct pppoe_hdr))); switch (proto) { case htons(PPP_IP): return htons(ETH_P_IP); case htons(PPP_IPV6): return htons(ETH_P_IPV6); } return 0; } static inline bool nf_flow_pppoe_proto(struct sk_buff *skb, __be16 *inner_proto) { if (!pskb_may_pull(skb, PPPOE_SES_HLEN)) return false; *inner_proto = __nf_flow_pppoe_proto(skb); return true; } #define NF_FLOW_TABLE_STAT_INC(net, count) __this_cpu_inc((net)->ft.stat->count) #define NF_FLOW_TABLE_STAT_DEC(net, count) __this_cpu_dec((net)->ft.stat->count) #define NF_FLOW_TABLE_STAT_INC_ATOMIC(net, count) \ this_cpu_inc((net)->ft.stat->count) #define NF_FLOW_TABLE_STAT_DEC_ATOMIC(net, count) \ this_cpu_dec((net)->ft.stat->count) #ifdef CONFIG_NF_FLOW_TABLE_PROCFS int nf_flow_table_init_proc(struct net *net); void nf_flow_table_fini_proc(struct net *net); #else static inline int nf_flow_table_init_proc(struct net *net) { return 0; } static inline void nf_flow_table_fini_proc(struct net *net) { } #endif /* CONFIG_NF_FLOW_TABLE_PROCFS */ #endif /* _NF_FLOW_TABLE_H */ |
28196 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/fault-inject.h> #include <linux/fault-inject-usercopy.h> static struct { struct fault_attr attr; } fail_usercopy = { .attr = FAULT_ATTR_INITIALIZER, }; static int __init setup_fail_usercopy(char *str) { return setup_fault_attr(&fail_usercopy.attr, str); } __setup("fail_usercopy=", setup_fail_usercopy); #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS static int __init fail_usercopy_debugfs(void) { struct dentry *dir; dir = fault_create_debugfs_attr("fail_usercopy", NULL, &fail_usercopy.attr); if (IS_ERR(dir)) return PTR_ERR(dir); return 0; } late_initcall(fail_usercopy_debugfs); #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ bool should_fail_usercopy(void) { return should_fail(&fail_usercopy.attr, 1); } EXPORT_SYMBOL_GPL(should_fail_usercopy); |
2 2 2 2 2 2 4 2 2 6 3 2 2 5 8 4 4 4 4 4 2 2 4 4 9 9 3 6 9 21 21 5 10 11 2 19 2 19 2 11 1 7 3 9 4 8 4 9 4 9 6 6 6 6 6 6 12 4 2 2 3 4 6 6 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 | // SPDX-License-Identifier: GPL-2.0 /* * IPVS An implementation of the IP virtual server support for the * LINUX operating system. IPVS is now implemented as a module * over the NetFilter framework. IPVS can be used to build a * high-performance and highly available server based on a * cluster of servers. * * Version 1, is capable of handling both version 0 and 1 messages. * Version 0 is the plain old format. * Note Version 0 receivers will just drop Ver 1 messages. * Version 1 is capable of handle IPv6, Persistence data, * time-outs, and firewall marks. * In ver.1 "ip_vs_sync_conn_options" will be sent in netw. order. * Ver. 0 can be turned on by sysctl -w net.ipv4.vs.sync_version=0 * * Definitions Message: is a complete datagram * Sync_conn: is a part of a Message * Param Data is an option to a Sync_conn. * * Authors: Wensong Zhang <wensong@linuxvirtualserver.org> * * ip_vs_sync: sync connection info from master load balancer to backups * through multicast * * Changes: * Alexandre Cassen : Added master & backup support at a time. * Alexandre Cassen : Added SyncID support for incoming sync * messages filtering. * Justin Ossevoort : Fix endian problem on sync message size. * Hans Schillstrom : Added Version 1: i.e. IPv6, * Persistence support, fwmark and time-out. */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/slab.h> #include <linux/inetdevice.h> #include <linux/net.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/igmp.h> /* for ip_mc_join_group */ #include <linux/udp.h> #include <linux/err.h> #include <linux/kthread.h> #include <linux/wait.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <asm/unaligned.h> /* Used for ntoh_seq and hton_seq */ #include <net/ip.h> #include <net/sock.h> #include <net/ip_vs.h> #define IP_VS_SYNC_GROUP 0xe0000051 /* multicast addr - 224.0.0.81 */ #define IP_VS_SYNC_PORT 8848 /* multicast port */ #define SYNC_PROTO_VER 1 /* Protocol version in header */ static struct lock_class_key __ipvs_sync_key; /* * IPVS sync connection entry * Version 0, i.e. original version. */ struct ip_vs_sync_conn_v0 { __u8 reserved; /* Protocol, addresses and port numbers */ __u8 protocol; /* Which protocol (TCP/UDP) */ __be16 cport; __be16 vport; __be16 dport; __be32 caddr; /* client address */ __be32 vaddr; /* virtual address */ __be32 daddr; /* destination address */ /* Flags and state transition */ __be16 flags; /* status flags */ __be16 state; /* state info */ /* The sequence options start here */ }; struct ip_vs_sync_conn_options { struct ip_vs_seq in_seq; /* incoming seq. struct */ struct ip_vs_seq out_seq; /* outgoing seq. struct */ }; /* Sync Connection format (sync_conn) 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Protocol | Ver. | Size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | State | cport | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | vport | dport | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | fwmark | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timeout (in sec.) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | | IP-Addresses (v4 or v6) | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Optional Parameters. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Param. Type | Param. Length | Param. data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ... | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Param Type | Param. Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Param data | | Last Param data should be padded for 32 bit alignment | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ /* * Type 0, IPv4 sync connection format */ struct ip_vs_sync_v4 { __u8 type; __u8 protocol; /* Which protocol (TCP/UDP) */ __be16 ver_size; /* Version msb 4 bits */ /* Flags and state transition */ __be32 flags; /* status flags */ __be16 state; /* state info */ /* Protocol, addresses and port numbers */ __be16 cport; __be16 vport; __be16 dport; __be32 fwmark; /* Firewall mark from skb */ __be32 timeout; /* cp timeout */ __be32 caddr; /* client address */ __be32 vaddr; /* virtual address */ __be32 daddr; /* destination address */ /* The sequence options start here */ /* PE data padded to 32bit alignment after seq. options */ }; /* * Type 2 messages IPv6 */ struct ip_vs_sync_v6 { __u8 type; __u8 protocol; /* Which protocol (TCP/UDP) */ __be16 ver_size; /* Version msb 4 bits */ /* Flags and state transition */ __be32 flags; /* status flags */ __be16 state; /* state info */ /* Protocol, addresses and port numbers */ __be16 cport; __be16 vport; __be16 dport; __be32 fwmark; /* Firewall mark from skb */ __be32 timeout; /* cp timeout */ struct in6_addr caddr; /* client address */ struct in6_addr vaddr; /* virtual address */ struct in6_addr daddr; /* destination address */ /* The sequence options start here */ /* PE data padded to 32bit alignment after seq. options */ }; union ip_vs_sync_conn { struct ip_vs_sync_v4 v4; struct ip_vs_sync_v6 v6; }; /* Bits in Type field in above */ #define STYPE_INET6 0 #define STYPE_F_INET6 (1 << STYPE_INET6) #define SVER_SHIFT 12 /* Shift to get version */ #define SVER_MASK 0x0fff /* Mask to strip version */ #define IPVS_OPT_SEQ_DATA 1 #define IPVS_OPT_PE_DATA 2 #define IPVS_OPT_PE_NAME 3 #define IPVS_OPT_PARAM 7 #define IPVS_OPT_F_SEQ_DATA (1 << (IPVS_OPT_SEQ_DATA-1)) #define IPVS_OPT_F_PE_DATA (1 << (IPVS_OPT_PE_DATA-1)) #define IPVS_OPT_F_PE_NAME (1 << (IPVS_OPT_PE_NAME-1)) #define IPVS_OPT_F_PARAM (1 << (IPVS_OPT_PARAM-1)) struct ip_vs_sync_thread_data { struct task_struct *task; struct netns_ipvs *ipvs; struct socket *sock; char *buf; int id; }; /* Version 0 definition of packet sizes */ #define SIMPLE_CONN_SIZE (sizeof(struct ip_vs_sync_conn_v0)) #define FULL_CONN_SIZE \ (sizeof(struct ip_vs_sync_conn_v0) + sizeof(struct ip_vs_sync_conn_options)) /* The master mulitcasts messages (Datagrams) to the backup load balancers in the following format. Version 1: Note, first byte should be Zero, so ver 0 receivers will drop the packet. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | SyncID | Size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Count Conns | Version | Reserved, set to Zero | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | IPVS Sync Connection (1) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . | ~ . ~ | . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | IPVS Sync Connection (n) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version 0 Header 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Count Conns | SyncID | Size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPVS Sync Connection (1) | */ /* Version 0 header */ struct ip_vs_sync_mesg_v0 { __u8 nr_conns; __u8 syncid; __be16 size; /* ip_vs_sync_conn entries start here */ }; /* Version 1 header */ struct ip_vs_sync_mesg { __u8 reserved; /* must be zero */ __u8 syncid; __be16 size; __u8 nr_conns; __s8 version; /* SYNC_PROTO_VER */ __u16 spare; /* ip_vs_sync_conn entries start here */ }; union ipvs_sockaddr { struct sockaddr_in in; struct sockaddr_in6 in6; }; struct ip_vs_sync_buff { struct list_head list; unsigned long firstuse; /* pointers for the message data */ struct ip_vs_sync_mesg *mesg; unsigned char *head; unsigned char *end; }; /* * Copy of struct ip_vs_seq * From unaligned network order to aligned host order */ static void ntoh_seq(struct ip_vs_seq *no, struct ip_vs_seq *ho) { memset(ho, 0, sizeof(*ho)); ho->init_seq = get_unaligned_be32(&no->init_seq); ho->delta = get_unaligned_be32(&no->delta); ho->previous_delta = get_unaligned_be32(&no->previous_delta); } /* * Copy of struct ip_vs_seq * From Aligned host order to unaligned network order */ static void hton_seq(struct ip_vs_seq *ho, struct ip_vs_seq *no) { put_unaligned_be32(ho->init_seq, &no->init_seq); put_unaligned_be32(ho->delta, &no->delta); put_unaligned_be32(ho->previous_delta, &no->previous_delta); } static inline struct ip_vs_sync_buff * sb_dequeue(struct netns_ipvs *ipvs, struct ipvs_master_sync_state *ms) { struct ip_vs_sync_buff *sb; spin_lock_bh(&ipvs->sync_lock); if (list_empty(&ms->sync_queue)) { sb = NULL; __set_current_state(TASK_INTERRUPTIBLE); } else { sb = list_entry(ms->sync_queue.next, struct ip_vs_sync_buff, list); list_del(&sb->list); ms->sync_queue_len--; if (!ms->sync_queue_len) ms->sync_queue_delay = 0; } spin_unlock_bh(&ipvs->sync_lock); return sb; } /* * Create a new sync buffer for Version 1 proto. */ static inline struct ip_vs_sync_buff * ip_vs_sync_buff_create(struct netns_ipvs *ipvs, unsigned int len) { struct ip_vs_sync_buff *sb; if (!(sb=kmalloc(sizeof(struct ip_vs_sync_buff), GFP_ATOMIC))) return NULL; len = max_t(unsigned int, len + sizeof(struct ip_vs_sync_mesg), ipvs->mcfg.sync_maxlen); sb->mesg = kmalloc(len, GFP_ATOMIC); if (!sb->mesg) { kfree(sb); return NULL; } sb->mesg->reserved = 0; /* old nr_conns i.e. must be zero now */ sb->mesg->version = SYNC_PROTO_VER; sb->mesg->syncid = ipvs->mcfg.syncid; sb->mesg->size = htons(sizeof(struct ip_vs_sync_mesg)); sb->mesg->nr_conns = 0; sb->mesg->spare = 0; sb->head = (unsigned char *)sb->mesg + sizeof(struct ip_vs_sync_mesg); sb->end = (unsigned char *)sb->mesg + len; sb->firstuse = jiffies; return sb; } static inline void ip_vs_sync_buff_release(struct ip_vs_sync_buff *sb) { kfree(sb->mesg); kfree(sb); } static inline void sb_queue_tail(struct netns_ipvs *ipvs, struct ipvs_master_sync_state *ms) { struct ip_vs_sync_buff *sb = ms->sync_buff; spin_lock(&ipvs->sync_lock); if (ipvs->sync_state & IP_VS_STATE_MASTER && ms->sync_queue_len < sysctl_sync_qlen_max(ipvs)) { if (!ms->sync_queue_len) schedule_delayed_work(&ms->master_wakeup_work, max(IPVS_SYNC_SEND_DELAY, 1)); ms->sync_queue_len++; list_add_tail(&sb->list, &ms->sync_queue); if ((++ms->sync_queue_delay) == IPVS_SYNC_WAKEUP_RATE) { int id = (int)(ms - ipvs->ms); wake_up_process(ipvs->master_tinfo[id].task); } } else ip_vs_sync_buff_release(sb); spin_unlock(&ipvs->sync_lock); } /* * Get the current sync buffer if it has been created for more * than the specified time or the specified time is zero. */ static inline struct ip_vs_sync_buff * get_curr_sync_buff(struct netns_ipvs *ipvs, struct ipvs_master_sync_state *ms, unsigned long time) { struct ip_vs_sync_buff *sb; spin_lock_bh(&ipvs->sync_buff_lock); sb = ms->sync_buff; if (sb && time_after_eq(jiffies - sb->firstuse, time)) { ms->sync_buff = NULL; __set_current_state(TASK_RUNNING); } else sb = NULL; spin_unlock_bh(&ipvs->sync_buff_lock); return sb; } static inline int select_master_thread_id(struct netns_ipvs *ipvs, struct ip_vs_conn *cp) { return ((long) cp >> (1 + ilog2(sizeof(*cp)))) & ipvs->threads_mask; } /* * Create a new sync buffer for Version 0 proto. */ static inline struct ip_vs_sync_buff * ip_vs_sync_buff_create_v0(struct netns_ipvs *ipvs, unsigned int len) { struct ip_vs_sync_buff *sb; struct ip_vs_sync_mesg_v0 *mesg; if (!(sb=kmalloc(sizeof(struct ip_vs_sync_buff), GFP_ATOMIC))) return NULL; len = max_t(unsigned int, len + sizeof(struct ip_vs_sync_mesg_v0), ipvs->mcfg.sync_maxlen); sb->mesg = kmalloc(len, GFP_ATOMIC); if (!sb->mesg) { kfree(sb); return NULL; } mesg = (struct ip_vs_sync_mesg_v0 *)sb->mesg; mesg->nr_conns = 0; mesg->syncid = ipvs->mcfg.syncid; mesg->size = htons(sizeof(struct ip_vs_sync_mesg_v0)); sb->head = (unsigned char *)mesg + sizeof(struct ip_vs_sync_mesg_v0); sb->end = (unsigned char *)mesg + len; sb->firstuse = jiffies; return sb; } /* Check if connection is controlled by persistence */ static inline bool in_persistence(struct ip_vs_conn *cp) { for (cp = cp->control; cp; cp = cp->control) { if (cp->flags & IP_VS_CONN_F_TEMPLATE) return true; } return false; } /* Check if conn should be synced. * pkts: conn packets, use sysctl_sync_threshold to avoid packet check * - (1) sync_refresh_period: reduce sync rate. Additionally, retry * sync_retries times with period of sync_refresh_period/8 * - (2) if both sync_refresh_period and sync_period are 0 send sync only * for state changes or only once when pkts matches sync_threshold * - (3) templates: rate can be reduced only with sync_refresh_period or * with (2) */ static int ip_vs_sync_conn_needed(struct netns_ipvs *ipvs, struct ip_vs_conn *cp, int pkts) { unsigned long orig = READ_ONCE(cp->sync_endtime); unsigned long now = jiffies; unsigned long n = (now + cp->timeout) & ~3UL; unsigned int sync_refresh_period; int sync_period; int force; /* Check if we sync in current state */ if (unlikely(cp->flags & IP_VS_CONN_F_TEMPLATE)) force = 0; else if (unlikely(sysctl_sync_persist_mode(ipvs) && in_persistence(cp))) return 0; else if (likely(cp->protocol == IPPROTO_TCP)) { if (!((1 << cp->state) & ((1 << IP_VS_TCP_S_ESTABLISHED) | (1 << IP_VS_TCP_S_FIN_WAIT) | (1 << IP_VS_TCP_S_CLOSE) | (1 << IP_VS_TCP_S_CLOSE_WAIT) | (1 << IP_VS_TCP_S_TIME_WAIT)))) return 0; force = cp->state != cp->old_state; if (force && cp->state != IP_VS_TCP_S_ESTABLISHED) goto set; } else if (unlikely(cp->protocol == IPPROTO_SCTP)) { if (!((1 << cp->state) & ((1 << IP_VS_SCTP_S_ESTABLISHED) | (1 << IP_VS_SCTP_S_SHUTDOWN_SENT) | (1 << IP_VS_SCTP_S_SHUTDOWN_RECEIVED) | (1 << IP_VS_SCTP_S_SHUTDOWN_ACK_SENT) | (1 << IP_VS_SCTP_S_CLOSED)))) return 0; force = cp->state != cp->old_state; if (force && cp->state != IP_VS_SCTP_S_ESTABLISHED) goto set; } else { /* UDP or another protocol with single state */ force = 0; } sync_refresh_period = sysctl_sync_refresh_period(ipvs); if (sync_refresh_period > 0) { long diff = n - orig; long min_diff = max(cp->timeout >> 1, 10UL * HZ); /* Avoid sync if difference is below sync_refresh_period * and below the half timeout. */ if (abs(diff) < min_t(long, sync_refresh_period, min_diff)) { int retries = orig & 3; if (retries >= sysctl_sync_retries(ipvs)) return 0; if (time_before(now, orig - cp->timeout + (sync_refresh_period >> 3))) return 0; n |= retries + 1; } } sync_period = sysctl_sync_period(ipvs); if (sync_period > 0) { if (!(cp->flags & IP_VS_CONN_F_TEMPLATE) && pkts % sync_period != sysctl_sync_threshold(ipvs)) return 0; } else if (!sync_refresh_period && pkts != sysctl_sync_threshold(ipvs)) return 0; set: cp->old_state = cp->state; n = cmpxchg(&cp->sync_endtime, orig, n); return n == orig || force; } /* * Version 0 , could be switched in by sys_ctl. * Add an ip_vs_conn information into the current sync_buff. */ static void ip_vs_sync_conn_v0(struct netns_ipvs *ipvs, struct ip_vs_conn *cp, int pkts) { struct ip_vs_sync_mesg_v0 *m; struct ip_vs_sync_conn_v0 *s; struct ip_vs_sync_buff *buff; struct ipvs_master_sync_state *ms; int id; unsigned int len; if (unlikely(cp->af != AF_INET)) return; /* Do not sync ONE PACKET */ if (cp->flags & IP_VS_CONN_F_ONE_PACKET) return; if (!ip_vs_sync_conn_needed(ipvs, cp, pkts)) return; spin_lock_bh(&ipvs->sync_buff_lock); if (!(ipvs->sync_state & IP_VS_STATE_MASTER)) { spin_unlock_bh(&ipvs->sync_buff_lock); return; } id = select_master_thread_id(ipvs, cp); ms = &ipvs->ms[id]; buff = ms->sync_buff; len = (cp->flags & IP_VS_CONN_F_SEQ_MASK) ? FULL_CONN_SIZE : SIMPLE_CONN_SIZE; if (buff) { m = (struct ip_vs_sync_mesg_v0 *) buff->mesg; /* Send buffer if it is for v1 */ if (buff->head + len > buff->end || !m->nr_conns) { sb_queue_tail(ipvs, ms); ms->sync_buff = NULL; buff = NULL; } } if (!buff) { buff = ip_vs_sync_buff_create_v0(ipvs, len); if (!buff) { spin_unlock_bh(&ipvs->sync_buff_lock); pr_err("ip_vs_sync_buff_create failed.\n"); return; } ms->sync_buff = buff; } m = (struct ip_vs_sync_mesg_v0 *) buff->mesg; s = (struct ip_vs_sync_conn_v0 *) buff->head; /* copy members */ s->reserved = 0; s->protocol = cp->protocol; s->cport = cp->cport; s->vport = cp->vport; s->dport = cp->dport; s->caddr = cp->caddr.ip; s->vaddr = cp->vaddr.ip; s->daddr = cp->daddr.ip; s->flags = htons(cp->flags & ~IP_VS_CONN_F_HASHED); s->state = htons(cp->state); if (cp->flags & IP_VS_CONN_F_SEQ_MASK) { struct ip_vs_sync_conn_options *opt = (struct ip_vs_sync_conn_options *)&s[1]; memcpy(opt, &cp->sync_conn_opt, sizeof(*opt)); } m->nr_conns++; m->size = htons(ntohs(m->size) + len); buff->head += len; spin_unlock_bh(&ipvs->sync_buff_lock); /* synchronize its controller if it has */ cp = cp->control; if (cp) { if (cp->flags & IP_VS_CONN_F_TEMPLATE) pkts = atomic_inc_return(&cp->in_pkts); else pkts = sysctl_sync_threshold(ipvs); ip_vs_sync_conn(ipvs, cp, pkts); } } /* * Add an ip_vs_conn information into the current sync_buff. * Called by ip_vs_in. * Sending Version 1 messages */ void ip_vs_sync_conn(struct netns_ipvs *ipvs, struct ip_vs_conn *cp, int pkts) { struct ip_vs_sync_mesg *m; union ip_vs_sync_conn *s; struct ip_vs_sync_buff *buff; struct ipvs_master_sync_state *ms; int id; __u8 *p; unsigned int len, pe_name_len, pad; /* Handle old version of the protocol */ if (sysctl_sync_ver(ipvs) == 0) { ip_vs_sync_conn_v0(ipvs, cp, pkts); return; } /* Do not sync ONE PACKET */ if (cp->flags & IP_VS_CONN_F_ONE_PACKET) goto control; sloop: if (!ip_vs_sync_conn_needed(ipvs, cp, pkts)) goto control; /* Sanity checks */ pe_name_len = 0; if (cp->pe_data_len) { if (!cp->pe_data || !cp->dest) { IP_VS_ERR_RL("SYNC, connection pe_data invalid\n"); return; } pe_name_len = strnlen(cp->pe->name, IP_VS_PENAME_MAXLEN); } spin_lock_bh(&ipvs->sync_buff_lock); if (!(ipvs->sync_state & IP_VS_STATE_MASTER)) { spin_unlock_bh(&ipvs->sync_buff_lock); return; } id = select_master_thread_id(ipvs, cp); ms = &ipvs->ms[id]; #ifdef CONFIG_IP_VS_IPV6 if (cp->af == AF_INET6) len = sizeof(struct ip_vs_sync_v6); else #endif len = sizeof(struct ip_vs_sync_v4); if (cp->flags & IP_VS_CONN_F_SEQ_MASK) len += sizeof(struct ip_vs_sync_conn_options) + 2; if (cp->pe_data_len) len += cp->pe_data_len + 2; /* + Param hdr field */ if (pe_name_len) len += pe_name_len + 2; /* check if there is a space for this one */ pad = 0; buff = ms->sync_buff; if (buff) { m = buff->mesg; pad = (4 - (size_t) buff->head) & 3; /* Send buffer if it is for v0 */ if (buff->head + len + pad > buff->end || m->reserved) { sb_queue_tail(ipvs, ms); ms->sync_buff = NULL; buff = NULL; pad = 0; } } if (!buff) { buff = ip_vs_sync_buff_create(ipvs, len); if (!buff) { spin_unlock_bh(&ipvs->sync_buff_lock); pr_err("ip_vs_sync_buff_create failed.\n"); return; } ms->sync_buff = buff; m = buff->mesg; } p = buff->head; buff->head += pad + len; m->size = htons(ntohs(m->size) + pad + len); /* Add ev. padding from prev. sync_conn */ while (pad--) *(p++) = 0; s = (union ip_vs_sync_conn *)p; /* Set message type & copy members */ s->v4.type = (cp->af == AF_INET6 ? STYPE_F_INET6 : 0); s->v4.ver_size = htons(len & SVER_MASK); /* Version 0 */ s->v4.flags = htonl(cp->flags & ~IP_VS_CONN_F_HASHED); s->v4.state = htons(cp->state); s->v4.protocol = cp->protocol; s->v4.cport = cp->cport; s->v4.vport = cp->vport; s->v4.dport = cp->dport; s->v4.fwmark = htonl(cp->fwmark); s->v4.timeout = htonl(cp->timeout / HZ); m->nr_conns++; #ifdef CONFIG_IP_VS_IPV6 if (cp->af == AF_INET6) { p += sizeof(struct ip_vs_sync_v6); s->v6.caddr = cp->caddr.in6; s->v6.vaddr = cp->vaddr.in6; s->v6.daddr = cp->daddr.in6; } else #endif { p += sizeof(struct ip_vs_sync_v4); /* options ptr */ s->v4.caddr = cp->caddr.ip; s->v4.vaddr = cp->vaddr.ip; s->v4.daddr = cp->daddr.ip; } if (cp->flags & IP_VS_CONN_F_SEQ_MASK) { *(p++) = IPVS_OPT_SEQ_DATA; *(p++) = sizeof(struct ip_vs_sync_conn_options); hton_seq((struct ip_vs_seq *)p, &cp->in_seq); p += sizeof(struct ip_vs_seq); hton_seq((struct ip_vs_seq *)p, &cp->out_seq); p += sizeof(struct ip_vs_seq); } /* Handle pe data */ if (cp->pe_data_len && cp->pe_data) { *(p++) = IPVS_OPT_PE_DATA; *(p++) = cp->pe_data_len; memcpy(p, cp->pe_data, cp->pe_data_len); p += cp->pe_data_len; if (pe_name_len) { /* Add PE_NAME */ *(p++) = IPVS_OPT_PE_NAME; *(p++) = pe_name_len; memcpy(p, cp->pe->name, pe_name_len); p += pe_name_len; } } spin_unlock_bh(&ipvs->sync_buff_lock); control: /* synchronize its controller if it has */ cp = cp->control; if (!cp) return; if (cp->flags & IP_VS_CONN_F_TEMPLATE) pkts = atomic_inc_return(&cp->in_pkts); else pkts = sysctl_sync_threshold(ipvs); goto sloop; } /* * fill_param used by version 1 */ static inline int ip_vs_conn_fill_param_sync(struct netns_ipvs *ipvs, int af, union ip_vs_sync_conn *sc, struct ip_vs_conn_param *p, __u8 *pe_data, unsigned int pe_data_len, __u8 *pe_name, unsigned int pe_name_len) { #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) ip_vs_conn_fill_param(ipvs, af, sc->v6.protocol, (const union nf_inet_addr *)&sc->v6.caddr, sc->v6.cport, (const union nf_inet_addr *)&sc->v6.vaddr, sc->v6.vport, p); else #endif ip_vs_conn_fill_param(ipvs, af, sc->v4.protocol, (const union nf_inet_addr *)&sc->v4.caddr, sc->v4.cport, (const union nf_inet_addr *)&sc->v4.vaddr, sc->v4.vport, p); /* Handle pe data */ if (pe_data_len) { if (pe_name_len) { char buff[IP_VS_PENAME_MAXLEN+1]; memcpy(buff, pe_name, pe_name_len); buff[pe_name_len]=0; p->pe = __ip_vs_pe_getbyname(buff); if (!p->pe) { IP_VS_DBG(3, "BACKUP, no %s engine found/loaded\n", buff); return 1; } } else { IP_VS_ERR_RL("BACKUP, Invalid PE parameters\n"); return 1; } p->pe_data = kmemdup(pe_data, pe_data_len, GFP_ATOMIC); if (!p->pe_data) { module_put(p->pe->module); return -ENOMEM; } p->pe_data_len = pe_data_len; } return 0; } /* * Connection Add / Update. * Common for version 0 and 1 reception of backup sync_conns. * Param: ... * timeout is in sec. */ static void ip_vs_proc_conn(struct netns_ipvs *ipvs, struct ip_vs_conn_param *param, unsigned int flags, unsigned int state, unsigned int protocol, unsigned int type, const union nf_inet_addr *daddr, __be16 dport, unsigned long timeout, __u32 fwmark, struct ip_vs_sync_conn_options *opt) { struct ip_vs_dest *dest; struct ip_vs_conn *cp; if (!(flags & IP_VS_CONN_F_TEMPLATE)) { cp = ip_vs_conn_in_get(param); if (cp && ((cp->dport != dport) || !ip_vs_addr_equal(cp->daf, &cp->daddr, daddr))) { if (!(flags & IP_VS_CONN_F_INACTIVE)) { ip_vs_conn_expire_now(cp); __ip_vs_conn_put(cp); cp = NULL; } else { /* This is the expiration message for the * connection that was already replaced, so we * just ignore it. */ __ip_vs_conn_put(cp); kfree(param->pe_data); return; } } } else { cp = ip_vs_ct_in_get(param); } if (cp) { /* Free pe_data */ kfree(param->pe_data); dest = cp->dest; spin_lock_bh(&cp->lock); if ((cp->flags ^ flags) & IP_VS_CONN_F_INACTIVE && !(flags & IP_VS_CONN_F_TEMPLATE) && dest) { if (flags & IP_VS_CONN_F_INACTIVE) { atomic_dec(&dest->activeconns); atomic_inc(&dest->inactconns); } else { atomic_inc(&dest->activeconns); atomic_dec(&dest->inactconns); } } flags &= IP_VS_CONN_F_BACKUP_UPD_MASK; flags |= cp->flags & ~IP_VS_CONN_F_BACKUP_UPD_MASK; cp->flags = flags; spin_unlock_bh(&cp->lock); if (!dest) ip_vs_try_bind_dest(cp); } else { /* * Find the appropriate destination for the connection. * If it is not found the connection will remain unbound * but still handled. */ rcu_read_lock(); /* This function is only invoked by the synchronization * code. We do not currently support heterogeneous pools * with synchronization, so we can make the assumption that * the svc_af is the same as the dest_af */ dest = ip_vs_find_dest(ipvs, type, type, daddr, dport, param->vaddr, param->vport, protocol, fwmark, flags); cp = ip_vs_conn_new(param, type, daddr, dport, flags, dest, fwmark); rcu_read_unlock(); if (!cp) { kfree(param->pe_data); IP_VS_DBG(2, "BACKUP, add new conn. failed\n"); return; } if (!(flags & IP_VS_CONN_F_TEMPLATE)) kfree(param->pe_data); } if (opt) { cp->in_seq = opt->in_seq; cp->out_seq = opt->out_seq; } atomic_set(&cp->in_pkts, sysctl_sync_threshold(ipvs)); cp->state = state; cp->old_state = cp->state; /* * For Ver 0 messages style * - Not possible to recover the right timeout for templates * - can not find the right fwmark * virtual service. If needed, we can do it for * non-fwmark persistent services. * Ver 1 messages style. * - No problem. */ if (timeout) { if (timeout > MAX_SCHEDULE_TIMEOUT / HZ) timeout = MAX_SCHEDULE_TIMEOUT / HZ; cp->timeout = timeout*HZ; } else { struct ip_vs_proto_data *pd; pd = ip_vs_proto_data_get(ipvs, protocol); if (!(flags & IP_VS_CONN_F_TEMPLATE) && pd && pd->timeout_table) cp->timeout = pd->timeout_table[state]; else cp->timeout = (3*60*HZ); } ip_vs_conn_put(cp); } /* * Process received multicast message for Version 0 */ static void ip_vs_process_message_v0(struct netns_ipvs *ipvs, const char *buffer, const size_t buflen) { struct ip_vs_sync_mesg_v0 *m = (struct ip_vs_sync_mesg_v0 *)buffer; struct ip_vs_sync_conn_v0 *s; struct ip_vs_sync_conn_options *opt; struct ip_vs_protocol *pp; struct ip_vs_conn_param param; char *p; int i; p = (char *)buffer + sizeof(struct ip_vs_sync_mesg_v0); for (i=0; i<m->nr_conns; i++) { unsigned int flags, state; if (p + SIMPLE_CONN_SIZE > buffer+buflen) { IP_VS_ERR_RL("BACKUP v0, bogus conn\n"); return; } s = (struct ip_vs_sync_conn_v0 *) p; flags = ntohs(s->flags) | IP_VS_CONN_F_SYNC; flags &= ~IP_VS_CONN_F_HASHED; if (flags & IP_VS_CONN_F_SEQ_MASK) { opt = (struct ip_vs_sync_conn_options *)&s[1]; p += FULL_CONN_SIZE; if (p > buffer+buflen) { IP_VS_ERR_RL("BACKUP v0, Dropping buffer bogus conn options\n"); return; } } else { opt = NULL; p += SIMPLE_CONN_SIZE; } state = ntohs(s->state); if (!(flags & IP_VS_CONN_F_TEMPLATE)) { pp = ip_vs_proto_get(s->protocol); if (!pp) { IP_VS_DBG(2, "BACKUP v0, Unsupported protocol %u\n", s->protocol); continue; } if (state >= pp->num_states) { IP_VS_DBG(2, "BACKUP v0, Invalid %s state %u\n", pp->name, state); continue; } } else { if (state >= IP_VS_CTPL_S_LAST) IP_VS_DBG(7, "BACKUP v0, Invalid tpl state %u\n", state); } ip_vs_conn_fill_param(ipvs, AF_INET, s->protocol, (const union nf_inet_addr *)&s->caddr, s->cport, (const union nf_inet_addr *)&s->vaddr, s->vport, ¶m); /* Send timeout as Zero */ ip_vs_proc_conn(ipvs, ¶m, flags, state, s->protocol, AF_INET, (union nf_inet_addr *)&s->daddr, s->dport, 0, 0, opt); } } /* * Handle options */ static inline int ip_vs_proc_seqopt(__u8 *p, unsigned int plen, __u32 *opt_flags, struct ip_vs_sync_conn_options *opt) { struct ip_vs_sync_conn_options *topt; topt = (struct ip_vs_sync_conn_options *)p; if (plen != sizeof(struct ip_vs_sync_conn_options)) { IP_VS_DBG(2, "BACKUP, bogus conn options length\n"); return -EINVAL; } if (*opt_flags & IPVS_OPT_F_SEQ_DATA) { IP_VS_DBG(2, "BACKUP, conn options found twice\n"); return -EINVAL; } ntoh_seq(&topt->in_seq, &opt->in_seq); ntoh_seq(&topt->out_seq, &opt->out_seq); *opt_flags |= IPVS_OPT_F_SEQ_DATA; return 0; } static int ip_vs_proc_str(__u8 *p, unsigned int plen, unsigned int *data_len, __u8 **data, unsigned int maxlen, __u32 *opt_flags, __u32 flag) { if (plen > maxlen) { IP_VS_DBG(2, "BACKUP, bogus par.data len > %d\n", maxlen); return -EINVAL; } if (*opt_flags & flag) { IP_VS_DBG(2, "BACKUP, Par.data found twice 0x%x\n", flag); return -EINVAL; } *data_len = plen; *data = p; *opt_flags |= flag; return 0; } /* * Process a Version 1 sync. connection */ static inline int ip_vs_proc_sync_conn(struct netns_ipvs *ipvs, __u8 *p, __u8 *msg_end) { struct ip_vs_sync_conn_options opt; union ip_vs_sync_conn *s; struct ip_vs_protocol *pp; struct ip_vs_conn_param param; __u32 flags; unsigned int af, state, pe_data_len=0, pe_name_len=0; __u8 *pe_data=NULL, *pe_name=NULL; __u32 opt_flags=0; int retc=0; s = (union ip_vs_sync_conn *) p; if (s->v6.type & STYPE_F_INET6) { #ifdef CONFIG_IP_VS_IPV6 af = AF_INET6; p += sizeof(struct ip_vs_sync_v6); #else IP_VS_DBG(3,"BACKUP, IPv6 msg received, and IPVS is not compiled for IPv6\n"); retc = 10; goto out; #endif } else if (!s->v4.type) { af = AF_INET; p += sizeof(struct ip_vs_sync_v4); } else { return -10; } if (p > msg_end) return -20; /* Process optional params check Type & Len. */ while (p < msg_end) { int ptype; int plen; if (p+2 > msg_end) return -30; ptype = *(p++); plen = *(p++); if (!plen || ((p + plen) > msg_end)) return -40; /* Handle seq option p = param data */ switch (ptype & ~IPVS_OPT_F_PARAM) { case IPVS_OPT_SEQ_DATA: if (ip_vs_proc_seqopt(p, plen, &opt_flags, &opt)) return -50; break; case IPVS_OPT_PE_DATA: if (ip_vs_proc_str(p, plen, &pe_data_len, &pe_data, IP_VS_PEDATA_MAXLEN, &opt_flags, IPVS_OPT_F_PE_DATA)) return -60; break; case IPVS_OPT_PE_NAME: if (ip_vs_proc_str(p, plen,&pe_name_len, &pe_name, IP_VS_PENAME_MAXLEN, &opt_flags, IPVS_OPT_F_PE_NAME)) return -70; break; default: /* Param data mandatory ? */ if (!(ptype & IPVS_OPT_F_PARAM)) { IP_VS_DBG(3, "BACKUP, Unknown mandatory param %d found\n", ptype & ~IPVS_OPT_F_PARAM); retc = 20; goto out; } } p += plen; /* Next option */ } /* Get flags and Mask off unsupported */ flags = ntohl(s->v4.flags) & IP_VS_CONN_F_BACKUP_MASK; flags |= IP_VS_CONN_F_SYNC; state = ntohs(s->v4.state); if (!(flags & IP_VS_CONN_F_TEMPLATE)) { pp = ip_vs_proto_get(s->v4.protocol); if (!pp) { IP_VS_DBG(3,"BACKUP, Unsupported protocol %u\n", s->v4.protocol); retc = 30; goto out; } if (state >= pp->num_states) { IP_VS_DBG(3, "BACKUP, Invalid %s state %u\n", pp->name, state); retc = 40; goto out; } } else { if (state >= IP_VS_CTPL_S_LAST) IP_VS_DBG(7, "BACKUP, Invalid tpl state %u\n", state); } if (ip_vs_conn_fill_param_sync(ipvs, af, s, ¶m, pe_data, pe_data_len, pe_name, pe_name_len)) { retc = 50; goto out; } /* If only IPv4, just silent skip IPv6 */ if (af == AF_INET) ip_vs_proc_conn(ipvs, ¶m, flags, state, s->v4.protocol, af, (union nf_inet_addr *)&s->v4.daddr, s->v4.dport, ntohl(s->v4.timeout), ntohl(s->v4.fwmark), (opt_flags & IPVS_OPT_F_SEQ_DATA ? &opt : NULL) ); #ifdef CONFIG_IP_VS_IPV6 else ip_vs_proc_conn(ipvs, ¶m, flags, state, s->v6.protocol, af, (union nf_inet_addr *)&s->v6.daddr, s->v6.dport, ntohl(s->v6.timeout), ntohl(s->v6.fwmark), (opt_flags & IPVS_OPT_F_SEQ_DATA ? &opt : NULL) ); #endif ip_vs_pe_put(param.pe); return 0; /* Error exit */ out: IP_VS_DBG(2, "BACKUP, Single msg dropped err:%d\n", retc); return retc; } /* * Process received multicast message and create the corresponding * ip_vs_conn entries. * Handles Version 0 & 1 */ static void ip_vs_process_message(struct netns_ipvs *ipvs, __u8 *buffer, const size_t buflen) { struct ip_vs_sync_mesg *m2 = (struct ip_vs_sync_mesg *)buffer; __u8 *p, *msg_end; int i, nr_conns; if (buflen < sizeof(struct ip_vs_sync_mesg_v0)) { IP_VS_DBG(2, "BACKUP, message header too short\n"); return; } if (buflen != ntohs(m2->size)) { IP_VS_DBG(2, "BACKUP, bogus message size\n"); return; } /* SyncID sanity check */ if (ipvs->bcfg.syncid != 0 && m2->syncid != ipvs->bcfg.syncid) { IP_VS_DBG(7, "BACKUP, Ignoring syncid = %d\n", m2->syncid); return; } /* Handle version 1 message */ if ((m2->version == SYNC_PROTO_VER) && (m2->reserved == 0) && (m2->spare == 0)) { msg_end = buffer + sizeof(struct ip_vs_sync_mesg); nr_conns = m2->nr_conns; for (i=0; i<nr_conns; i++) { union ip_vs_sync_conn *s; unsigned int size; int retc; p = msg_end; if (p + sizeof(s->v4) > buffer+buflen) { IP_VS_ERR_RL("BACKUP, Dropping buffer, too small\n"); return; } s = (union ip_vs_sync_conn *)p; size = ntohs(s->v4.ver_size) & SVER_MASK; msg_end = p + size; /* Basic sanity checks */ if (msg_end > buffer+buflen) { IP_VS_ERR_RL("BACKUP, Dropping buffer, msg > buffer\n"); return; } if (ntohs(s->v4.ver_size) >> SVER_SHIFT) { IP_VS_ERR_RL("BACKUP, Dropping buffer, Unknown version %d\n", ntohs(s->v4.ver_size) >> SVER_SHIFT); return; } /* Process a single sync_conn */ retc = ip_vs_proc_sync_conn(ipvs, p, msg_end); if (retc < 0) { IP_VS_ERR_RL("BACKUP, Dropping buffer, Err: %d in decoding\n", retc); return; } /* Make sure we have 32 bit alignment */ msg_end = p + ((size + 3) & ~3); } } else { /* Old type of message */ ip_vs_process_message_v0(ipvs, buffer, buflen); return; } } /* * Setup sndbuf (mode=1) or rcvbuf (mode=0) */ static void set_sock_size(struct sock *sk, int mode, int val) { /* setsockopt(sock, SOL_SOCKET, SO_SNDBUF, &val, sizeof(val)); */ /* setsockopt(sock, SOL_SOCKET, SO_RCVBUF, &val, sizeof(val)); */ lock_sock(sk); if (mode) { val = clamp_t(int, val, (SOCK_MIN_SNDBUF + 1) / 2, READ_ONCE(sysctl_wmem_max)); sk->sk_sndbuf = val * 2; sk->sk_userlocks |= SOCK_SNDBUF_LOCK; } else { val = clamp_t(int, val, (SOCK_MIN_RCVBUF + 1) / 2, READ_ONCE(sysctl_rmem_max)); sk->sk_rcvbuf = val * 2; sk->sk_userlocks |= SOCK_RCVBUF_LOCK; } release_sock(sk); } /* * Setup loopback of outgoing multicasts on a sending socket */ static void set_mcast_loop(struct sock *sk, u_char loop) { /* setsockopt(sock, SOL_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop)); */ inet_assign_bit(MC_LOOP, sk, loop); #ifdef CONFIG_IP_VS_IPV6 if (READ_ONCE(sk->sk_family) == AF_INET6) { /* IPV6_MULTICAST_LOOP */ inet6_assign_bit(MC6_LOOP, sk, loop); } #endif } /* * Specify TTL for outgoing multicasts on a sending socket */ static void set_mcast_ttl(struct sock *sk, u_char ttl) { struct inet_sock *inet = inet_sk(sk); /* setsockopt(sock, SOL_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)); */ lock_sock(sk); WRITE_ONCE(inet->mc_ttl, ttl); #ifdef CONFIG_IP_VS_IPV6 if (sk->sk_family == AF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); /* IPV6_MULTICAST_HOPS */ WRITE_ONCE(np->mcast_hops, ttl); } #endif release_sock(sk); } /* Control fragmentation of messages */ static void set_mcast_pmtudisc(struct sock *sk, int val) { struct inet_sock *inet = inet_sk(sk); /* setsockopt(sock, SOL_IP, IP_MTU_DISCOVER, &val, sizeof(val)); */ lock_sock(sk); WRITE_ONCE(inet->pmtudisc, val); #ifdef CONFIG_IP_VS_IPV6 if (sk->sk_family == AF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); /* IPV6_MTU_DISCOVER */ WRITE_ONCE(np->pmtudisc, val); } #endif release_sock(sk); } /* * Specifiy default interface for outgoing multicasts */ static int set_mcast_if(struct sock *sk, struct net_device *dev) { struct inet_sock *inet = inet_sk(sk); if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if) return -EINVAL; lock_sock(sk); inet->mc_index = dev->ifindex; /* inet->mc_addr = 0; */ #ifdef CONFIG_IP_VS_IPV6 if (sk->sk_family == AF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); /* IPV6_MULTICAST_IF */ WRITE_ONCE(np->mcast_oif, dev->ifindex); } #endif release_sock(sk); return 0; } /* * Join a multicast group. * the group is specified by a class D multicast address 224.0.0.0/8 * in the in_addr structure passed in as a parameter. */ static int join_mcast_group(struct sock *sk, struct in_addr *addr, struct net_device *dev) { struct ip_mreqn mreq; int ret; memset(&mreq, 0, sizeof(mreq)); memcpy(&mreq.imr_multiaddr, addr, sizeof(struct in_addr)); if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if) return -EINVAL; mreq.imr_ifindex = dev->ifindex; lock_sock(sk); ret = ip_mc_join_group(sk, &mreq); release_sock(sk); return ret; } #ifdef CONFIG_IP_VS_IPV6 static int join_mcast_group6(struct sock *sk, struct in6_addr *addr, struct net_device *dev) { int ret; if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if) return -EINVAL; lock_sock(sk); ret = ipv6_sock_mc_join(sk, dev->ifindex, addr); release_sock(sk); return ret; } #endif static int bind_mcastif_addr(struct socket *sock, struct net_device *dev) { __be32 addr; struct sockaddr_in sin; addr = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE); if (!addr) pr_err("You probably need to specify IP address on " "multicast interface.\n"); IP_VS_DBG(7, "binding socket with (%s) %pI4\n", dev->name, &addr); /* Now bind the socket with the address of multicast interface */ sin.sin_family = AF_INET; sin.sin_addr.s_addr = addr; sin.sin_port = 0; return kernel_bind(sock, (struct sockaddr *)&sin, sizeof(sin)); } static void get_mcast_sockaddr(union ipvs_sockaddr *sa, int *salen, struct ipvs_sync_daemon_cfg *c, int id) { if (AF_INET6 == c->mcast_af) { sa->in6 = (struct sockaddr_in6) { .sin6_family = AF_INET6, .sin6_port = htons(c->mcast_port + id), }; sa->in6.sin6_addr = c->mcast_group.in6; *salen = sizeof(sa->in6); } else { sa->in = (struct sockaddr_in) { .sin_family = AF_INET, .sin_port = htons(c->mcast_port + id), }; sa->in.sin_addr = c->mcast_group.in; *salen = sizeof(sa->in); } } /* * Set up sending multicast socket over UDP */ static int make_send_sock(struct netns_ipvs *ipvs, int id, struct net_device *dev, struct socket **sock_ret) { /* multicast addr */ union ipvs_sockaddr mcast_addr; struct socket *sock; int result, salen; /* First create a socket */ result = sock_create_kern(ipvs->net, ipvs->mcfg.mcast_af, SOCK_DGRAM, IPPROTO_UDP, &sock); if (result < 0) { pr_err("Error during creation of socket; terminating\n"); goto error; } *sock_ret = sock; result = set_mcast_if(sock->sk, dev); if (result < 0) { pr_err("Error setting outbound mcast interface\n"); goto error; } set_mcast_loop(sock->sk, 0); set_mcast_ttl(sock->sk, ipvs->mcfg.mcast_ttl); /* Allow fragmentation if MTU changes */ set_mcast_pmtudisc(sock->sk, IP_PMTUDISC_DONT); result = sysctl_sync_sock_size(ipvs); if (result > 0) set_sock_size(sock->sk, 1, result); if (AF_INET == ipvs->mcfg.mcast_af) result = bind_mcastif_addr(sock, dev); else result = 0; if (result < 0) { pr_err("Error binding address of the mcast interface\n"); goto error; } get_mcast_sockaddr(&mcast_addr, &salen, &ipvs->mcfg, id); result = kernel_connect(sock, (struct sockaddr *)&mcast_addr, salen, 0); if (result < 0) { pr_err("Error connecting to the multicast addr\n"); goto error; } return 0; error: return result; } /* * Set up receiving multicast socket over UDP */ static int make_receive_sock(struct netns_ipvs *ipvs, int id, struct net_device *dev, struct socket **sock_ret) { /* multicast addr */ union ipvs_sockaddr mcast_addr; struct socket *sock; int result, salen; /* First create a socket */ result = sock_create_kern(ipvs->net, ipvs->bcfg.mcast_af, SOCK_DGRAM, IPPROTO_UDP, &sock); if (result < 0) { pr_err("Error during creation of socket; terminating\n"); goto error; } *sock_ret = sock; /* it is equivalent to the REUSEADDR option in user-space */ sock->sk->sk_reuse = SK_CAN_REUSE; result = sysctl_sync_sock_size(ipvs); if (result > 0) set_sock_size(sock->sk, 0, result); get_mcast_sockaddr(&mcast_addr, &salen, &ipvs->bcfg, id); sock->sk->sk_bound_dev_if = dev->ifindex; result = kernel_bind(sock, (struct sockaddr *)&mcast_addr, salen); if (result < 0) { pr_err("Error binding to the multicast addr\n"); goto error; } /* join the multicast group */ #ifdef CONFIG_IP_VS_IPV6 if (ipvs->bcfg.mcast_af == AF_INET6) result = join_mcast_group6(sock->sk, &mcast_addr.in6.sin6_addr, dev); else #endif result = join_mcast_group(sock->sk, &mcast_addr.in.sin_addr, dev); if (result < 0) { pr_err("Error joining to the multicast group\n"); goto error; } return 0; error: return result; } static int ip_vs_send_async(struct socket *sock, const char *buffer, const size_t length) { struct msghdr msg = {.msg_flags = MSG_DONTWAIT|MSG_NOSIGNAL}; struct kvec iov; int len; iov.iov_base = (void *)buffer; iov.iov_len = length; len = kernel_sendmsg(sock, &msg, &iov, 1, (size_t)(length)); return len; } static int ip_vs_send_sync_msg(struct socket *sock, struct ip_vs_sync_mesg *msg) { int msize; int ret; msize = ntohs(msg->size); ret = ip_vs_send_async(sock, (char *)msg, msize); if (ret >= 0 || ret == -EAGAIN) return ret; pr_err("ip_vs_send_async error %d\n", ret); return 0; } static int ip_vs_receive(struct socket *sock, char *buffer, const size_t buflen) { struct msghdr msg = {NULL,}; struct kvec iov = {buffer, buflen}; int len; /* Receive a packet */ iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, buflen); len = sock_recvmsg(sock, &msg, MSG_DONTWAIT); if (len < 0) return len; return len; } /* Wakeup the master thread for sending */ static void master_wakeup_work_handler(struct work_struct *work) { struct ipvs_master_sync_state *ms = container_of(work, struct ipvs_master_sync_state, master_wakeup_work.work); struct netns_ipvs *ipvs = ms->ipvs; spin_lock_bh(&ipvs->sync_lock); if (ms->sync_queue_len && ms->sync_queue_delay < IPVS_SYNC_WAKEUP_RATE) { int id = (int)(ms - ipvs->ms); ms->sync_queue_delay = IPVS_SYNC_WAKEUP_RATE; wake_up_process(ipvs->master_tinfo[id].task); } spin_unlock_bh(&ipvs->sync_lock); } /* Get next buffer to send */ static inline struct ip_vs_sync_buff * next_sync_buff(struct netns_ipvs *ipvs, struct ipvs_master_sync_state *ms) { struct ip_vs_sync_buff *sb; sb = sb_dequeue(ipvs, ms); if (sb) return sb; /* Do not delay entries in buffer for more than 2 seconds */ return get_curr_sync_buff(ipvs, ms, IPVS_SYNC_FLUSH_TIME); } static int sync_thread_master(void *data) { struct ip_vs_sync_thread_data *tinfo = data; struct netns_ipvs *ipvs = tinfo->ipvs; struct ipvs_master_sync_state *ms = &ipvs->ms[tinfo->id]; struct sock *sk = tinfo->sock->sk; struct ip_vs_sync_buff *sb; pr_info("sync thread started: state = MASTER, mcast_ifn = %s, " "syncid = %d, id = %d\n", ipvs->mcfg.mcast_ifn, ipvs->mcfg.syncid, tinfo->id); for (;;) { sb = next_sync_buff(ipvs, ms); if (unlikely(kthread_should_stop())) break; if (!sb) { schedule_timeout(IPVS_SYNC_CHECK_PERIOD); continue; } while (ip_vs_send_sync_msg(tinfo->sock, sb->mesg) < 0) { /* (Ab)use interruptible sleep to avoid increasing * the load avg. */ __wait_event_interruptible(*sk_sleep(sk), sock_writeable(sk) || kthread_should_stop()); if (unlikely(kthread_should_stop())) goto done; } ip_vs_sync_buff_release(sb); } done: __set_current_state(TASK_RUNNING); if (sb) ip_vs_sync_buff_release(sb); /* clean up the sync_buff queue */ while ((sb = sb_dequeue(ipvs, ms))) ip_vs_sync_buff_release(sb); __set_current_state(TASK_RUNNING); /* clean up the current sync_buff */ sb = get_curr_sync_buff(ipvs, ms, 0); if (sb) ip_vs_sync_buff_release(sb); return 0; } static int sync_thread_backup(void *data) { struct ip_vs_sync_thread_data *tinfo = data; struct netns_ipvs *ipvs = tinfo->ipvs; struct sock *sk = tinfo->sock->sk; struct udp_sock *up = udp_sk(sk); int len; pr_info("sync thread started: state = BACKUP, mcast_ifn = %s, " "syncid = %d, id = %d\n", ipvs->bcfg.mcast_ifn, ipvs->bcfg.syncid, tinfo->id); while (!kthread_should_stop()) { wait_event_interruptible(*sk_sleep(sk), !skb_queue_empty_lockless(&sk->sk_receive_queue) || !skb_queue_empty_lockless(&up->reader_queue) || kthread_should_stop()); /* do we have data now? */ while (!skb_queue_empty_lockless(&sk->sk_receive_queue) || !skb_queue_empty_lockless(&up->reader_queue)) { len = ip_vs_receive(tinfo->sock, tinfo->buf, ipvs->bcfg.sync_maxlen); if (len <= 0) { if (len != -EAGAIN) pr_err("receiving message error\n"); break; } ip_vs_process_message(ipvs, tinfo->buf, len); } } return 0; } int start_sync_thread(struct netns_ipvs *ipvs, struct ipvs_sync_daemon_cfg *c, int state) { struct ip_vs_sync_thread_data *ti = NULL, *tinfo; struct task_struct *task; struct net_device *dev; char *name; int (*threadfn)(void *data); int id = 0, count, hlen; int result = -ENOMEM; u16 mtu, min_mtu; IP_VS_DBG(7, "%s(): pid %d\n", __func__, task_pid_nr(current)); IP_VS_DBG(7, "Each ip_vs_sync_conn entry needs %zd bytes\n", sizeof(struct ip_vs_sync_conn_v0)); /* increase the module use count */ if (!ip_vs_use_count_inc()) return -ENOPROTOOPT; /* Do not hold one mutex and then to block on another */ for (;;) { rtnl_lock(); if (mutex_trylock(&ipvs->sync_mutex)) break; rtnl_unlock(); mutex_lock(&ipvs->sync_mutex); if (rtnl_trylock()) break; mutex_unlock(&ipvs->sync_mutex); } if (!ipvs->sync_state) { count = clamp(sysctl_sync_ports(ipvs), 1, IPVS_SYNC_PORTS_MAX); ipvs->threads_mask = count - 1; } else count = ipvs->threads_mask + 1; if (c->mcast_af == AF_UNSPEC) { c->mcast_af = AF_INET; c->mcast_group.ip = cpu_to_be32(IP_VS_SYNC_GROUP); } if (!c->mcast_port) c->mcast_port = IP_VS_SYNC_PORT; if (!c->mcast_ttl) c->mcast_ttl = 1; dev = __dev_get_by_name(ipvs->net, c->mcast_ifn); if (!dev) { pr_err("Unknown mcast interface: %s\n", c->mcast_ifn); result = -ENODEV; goto out_early; } hlen = (AF_INET6 == c->mcast_af) ? sizeof(struct ipv6hdr) + sizeof(struct udphdr) : sizeof(struct iphdr) + sizeof(struct udphdr); mtu = (state == IP_VS_STATE_BACKUP) ? clamp(dev->mtu, 1500U, 65535U) : 1500U; min_mtu = (state == IP_VS_STATE_BACKUP) ? 1024 : 1; if (c->sync_maxlen) c->sync_maxlen = clamp_t(unsigned int, c->sync_maxlen, min_mtu, 65535 - hlen); else c->sync_maxlen = mtu - hlen; if (state == IP_VS_STATE_MASTER) { result = -EEXIST; if (ipvs->ms) goto out_early; ipvs->mcfg = *c; name = "ipvs-m:%d:%d"; threadfn = sync_thread_master; } else if (state == IP_VS_STATE_BACKUP) { result = -EEXIST; if (ipvs->backup_tinfo) goto out_early; ipvs->bcfg = *c; name = "ipvs-b:%d:%d"; threadfn = sync_thread_backup; } else { result = -EINVAL; goto out_early; } if (state == IP_VS_STATE_MASTER) { struct ipvs_master_sync_state *ms; result = -ENOMEM; ipvs->ms = kcalloc(count, sizeof(ipvs->ms[0]), GFP_KERNEL); if (!ipvs->ms) goto out; ms = ipvs->ms; for (id = 0; id < count; id++, ms++) { INIT_LIST_HEAD(&ms->sync_queue); ms->sync_queue_len = 0; ms->sync_queue_delay = 0; INIT_DELAYED_WORK(&ms->master_wakeup_work, master_wakeup_work_handler); ms->ipvs = ipvs; } } result = -ENOMEM; ti = kcalloc(count, sizeof(struct ip_vs_sync_thread_data), GFP_KERNEL); if (!ti) goto out; for (id = 0; id < count; id++) { tinfo = &ti[id]; tinfo->ipvs = ipvs; if (state == IP_VS_STATE_BACKUP) { result = -ENOMEM; tinfo->buf = kmalloc(ipvs->bcfg.sync_maxlen, GFP_KERNEL); if (!tinfo->buf) goto out; } tinfo->id = id; if (state == IP_VS_STATE_MASTER) result = make_send_sock(ipvs, id, dev, &tinfo->sock); else result = make_receive_sock(ipvs, id, dev, &tinfo->sock); if (result < 0) goto out; task = kthread_run(threadfn, tinfo, name, ipvs->gen, id); if (IS_ERR(task)) { result = PTR_ERR(task); goto out; } tinfo->task = task; } /* mark as active */ if (state == IP_VS_STATE_MASTER) ipvs->master_tinfo = ti; else ipvs->backup_tinfo = ti; spin_lock_bh(&ipvs->sync_buff_lock); ipvs->sync_state |= state; spin_unlock_bh(&ipvs->sync_buff_lock); mutex_unlock(&ipvs->sync_mutex); rtnl_unlock(); return 0; out: /* We do not need RTNL lock anymore, release it here so that * sock_release below can use rtnl_lock to leave the mcast group. */ rtnl_unlock(); id = min(id, count - 1); if (ti) { for (tinfo = ti + id; tinfo >= ti; tinfo--) { if (tinfo->task) kthread_stop(tinfo->task); } } if (!(ipvs->sync_state & IP_VS_STATE_MASTER)) { kfree(ipvs->ms); ipvs->ms = NULL; } mutex_unlock(&ipvs->sync_mutex); /* No more mutexes, release socks */ if (ti) { for (tinfo = ti + id; tinfo >= ti; tinfo--) { if (tinfo->sock) sock_release(tinfo->sock); kfree(tinfo->buf); } kfree(ti); } /* decrease the module use count */ ip_vs_use_count_dec(); return result; out_early: mutex_unlock(&ipvs->sync_mutex); rtnl_unlock(); /* decrease the module use count */ ip_vs_use_count_dec(); return result; } int stop_sync_thread(struct netns_ipvs *ipvs, int state) { struct ip_vs_sync_thread_data *ti, *tinfo; int id; int retc = -EINVAL; IP_VS_DBG(7, "%s(): pid %d\n", __func__, task_pid_nr(current)); mutex_lock(&ipvs->sync_mutex); if (state == IP_VS_STATE_MASTER) { retc = -ESRCH; if (!ipvs->ms) goto err; ti = ipvs->master_tinfo; /* * The lock synchronizes with sb_queue_tail(), so that we don't * add sync buffers to the queue, when we are already in * progress of stopping the master sync daemon. */ spin_lock_bh(&ipvs->sync_buff_lock); spin_lock(&ipvs->sync_lock); ipvs->sync_state &= ~IP_VS_STATE_MASTER; spin_unlock(&ipvs->sync_lock); spin_unlock_bh(&ipvs->sync_buff_lock); retc = 0; for (id = ipvs->threads_mask; id >= 0; id--) { struct ipvs_master_sync_state *ms = &ipvs->ms[id]; int ret; tinfo = &ti[id]; pr_info("stopping master sync thread %d ...\n", task_pid_nr(tinfo->task)); cancel_delayed_work_sync(&ms->master_wakeup_work); ret = kthread_stop(tinfo->task); if (retc >= 0) retc = ret; } kfree(ipvs->ms); ipvs->ms = NULL; ipvs->master_tinfo = NULL; } else if (state == IP_VS_STATE_BACKUP) { retc = -ESRCH; if (!ipvs->backup_tinfo) goto err; ti = ipvs->backup_tinfo; ipvs->sync_state &= ~IP_VS_STATE_BACKUP; retc = 0; for (id = ipvs->threads_mask; id >= 0; id--) { int ret; tinfo = &ti[id]; pr_info("stopping backup sync thread %d ...\n", task_pid_nr(tinfo->task)); ret = kthread_stop(tinfo->task); if (retc >= 0) retc = ret; } ipvs->backup_tinfo = NULL; } else { goto err; } id = ipvs->threads_mask; mutex_unlock(&ipvs->sync_mutex); /* No more mutexes, release socks */ for (tinfo = ti + id; tinfo >= ti; tinfo--) { if (tinfo->sock) sock_release(tinfo->sock); kfree(tinfo->buf); } kfree(ti); /* decrease the module use count */ ip_vs_use_count_dec(); return retc; err: mutex_unlock(&ipvs->sync_mutex); return retc; } /* * Initialize data struct for each netns */ int __net_init ip_vs_sync_net_init(struct netns_ipvs *ipvs) { __mutex_init(&ipvs->sync_mutex, "ipvs->sync_mutex", &__ipvs_sync_key); spin_lock_init(&ipvs->sync_lock); spin_lock_init(&ipvs->sync_buff_lock); return 0; } void ip_vs_sync_net_cleanup(struct netns_ipvs *ipvs) { int retc; retc = stop_sync_thread(ipvs, IP_VS_STATE_MASTER); if (retc && retc != -ESRCH) pr_err("Failed to stop Master Daemon\n"); retc = stop_sync_thread(ipvs, IP_VS_STATE_BACKUP); if (retc && retc != -ESRCH) pr_err("Failed to stop Backup Daemon\n"); } |
1 1 1 89 1 1 89 89 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2003-2005 Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz> * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * Copyright (C) 2018 - 2023 Intel Corporation */ #include <linux/debugfs.h> #include <linux/ieee80211.h> #include "ieee80211_i.h" #include "debugfs.h" #include "debugfs_sta.h" #include "sta_info.h" #include "driver-ops.h" /* sta attributes */ #define STA_READ(name, field, format_string) \ static ssize_t sta_ ##name## _read(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ struct sta_info *sta = file->private_data; \ return mac80211_format_buffer(userbuf, count, ppos, \ format_string, sta->field); \ } #define STA_READ_D(name, field) STA_READ(name, field, "%d\n") #define STA_OPS(name) \ static const struct file_operations sta_ ##name## _ops = { \ .read = sta_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define STA_OPS_RW(name) \ static const struct file_operations sta_ ##name## _ops = { \ .read = sta_##name##_read, \ .write = sta_##name##_write, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define STA_FILE(name, field, format) \ STA_READ_##format(name, field) \ STA_OPS(name) STA_FILE(aid, sta.aid, D); static const char * const sta_flag_names[] = { #define FLAG(F) [WLAN_STA_##F] = #F FLAG(AUTH), FLAG(ASSOC), FLAG(PS_STA), FLAG(AUTHORIZED), FLAG(SHORT_PREAMBLE), FLAG(WDS), FLAG(CLEAR_PS_FILT), FLAG(MFP), FLAG(BLOCK_BA), FLAG(PS_DRIVER), FLAG(PSPOLL), FLAG(TDLS_PEER), FLAG(TDLS_PEER_AUTH), FLAG(TDLS_INITIATOR), FLAG(TDLS_CHAN_SWITCH), FLAG(TDLS_OFF_CHANNEL), FLAG(TDLS_WIDER_BW), FLAG(UAPSD), FLAG(SP), FLAG(4ADDR_EVENT), FLAG(INSERTED), FLAG(RATE_CONTROL), FLAG(TOFFSET_KNOWN), FLAG(MPSP_OWNER), FLAG(MPSP_RECIPIENT), FLAG(PS_DELIVER), FLAG(USES_ENCRYPTION), FLAG(DECAP_OFFLOAD), #undef FLAG }; static ssize_t sta_flags_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char buf[16 * NUM_WLAN_STA_FLAGS], *pos = buf; char *end = buf + sizeof(buf) - 1; struct sta_info *sta = file->private_data; unsigned int flg; BUILD_BUG_ON(ARRAY_SIZE(sta_flag_names) != NUM_WLAN_STA_FLAGS); for (flg = 0; flg < NUM_WLAN_STA_FLAGS; flg++) { if (test_sta_flag(sta, flg)) pos += scnprintf(pos, end - pos, "%s\n", sta_flag_names[flg]); } return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); } STA_OPS(flags); static ssize_t sta_num_ps_buf_frames_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; char buf[17*IEEE80211_NUM_ACS], *p = buf; int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) p += scnprintf(p, sizeof(buf)+buf-p, "AC%d: %d\n", ac, skb_queue_len(&sta->ps_tx_buf[ac]) + skb_queue_len(&sta->tx_filtered[ac])); return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); } STA_OPS(num_ps_buf_frames); static ssize_t sta_last_seq_ctrl_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char buf[15*IEEE80211_NUM_TIDS], *p = buf; int i; struct sta_info *sta = file->private_data; for (i = 0; i < IEEE80211_NUM_TIDS; i++) p += scnprintf(p, sizeof(buf)+buf-p, "%x ", le16_to_cpu(sta->last_seq_ctrl[i])); p += scnprintf(p, sizeof(buf)+buf-p, "\n"); return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); } STA_OPS(last_seq_ctrl); #define AQM_TXQ_ENTRY_LEN 130 static ssize_t sta_aqm_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->local; size_t bufsz = AQM_TXQ_ENTRY_LEN * (IEEE80211_NUM_TIDS + 2); char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; struct txq_info *txqi; ssize_t rv; int i; if (!buf) return -ENOMEM; spin_lock_bh(&local->fq.lock); rcu_read_lock(); p += scnprintf(p, bufsz + buf - p, "target %uus interval %uus ecn %s\n", codel_time_to_us(sta->cparams.target), codel_time_to_us(sta->cparams.interval), sta->cparams.ecn ? "yes" : "no"); p += scnprintf(p, bufsz + buf - p, "tid ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets flags\n"); for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { if (!sta->sta.txq[i]) continue; txqi = to_txq_info(sta->sta.txq[i]); p += scnprintf(p, bufsz + buf - p, "%d %d %u %u %u %u %u %u %u %u %u 0x%lx(%s%s%s%s)\n", txqi->txq.tid, txqi->txq.ac, txqi->tin.backlog_bytes, txqi->tin.backlog_packets, txqi->tin.flows, txqi->cstats.drop_count, txqi->cstats.ecn_mark, txqi->tin.overlimit, txqi->tin.collisions, txqi->tin.tx_bytes, txqi->tin.tx_packets, txqi->flags, test_bit(IEEE80211_TXQ_STOP, &txqi->flags) ? "STOP" : "RUN", test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags) ? " AMPDU" : "", test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags) ? " NO-AMSDU" : "", test_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) ? " DIRTY" : ""); } rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } STA_OPS(aqm); static ssize_t sta_airtime_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; size_t bufsz = 400; char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; u64 rx_airtime = 0, tx_airtime = 0; s32 deficit[IEEE80211_NUM_ACS]; ssize_t rv; int ac; if (!buf) return -ENOMEM; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); rx_airtime += sta->airtime[ac].rx_airtime; tx_airtime += sta->airtime[ac].tx_airtime; deficit[ac] = sta->airtime[ac].deficit; spin_unlock_bh(&local->active_txq_lock[ac]); } p += scnprintf(p, bufsz + buf - p, "RX: %llu us\nTX: %llu us\nWeight: %u\n" "Deficit: VO: %d us VI: %d us BE: %d us BK: %d us\n", rx_airtime, tx_airtime, sta->airtime_weight, deficit[0], deficit[1], deficit[2], deficit[3]); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } static ssize_t sta_airtime_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); sta->airtime[ac].rx_airtime = 0; sta->airtime[ac].tx_airtime = 0; sta->airtime[ac].deficit = sta->airtime_weight; spin_unlock_bh(&local->active_txq_lock[ac]); } return count; } STA_OPS_RW(airtime); static ssize_t sta_aql_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; size_t bufsz = 400; char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; u32 q_depth[IEEE80211_NUM_ACS]; u32 q_limit_l[IEEE80211_NUM_ACS], q_limit_h[IEEE80211_NUM_ACS]; ssize_t rv; int ac; if (!buf) return -ENOMEM; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); q_limit_l[ac] = sta->airtime[ac].aql_limit_low; q_limit_h[ac] = sta->airtime[ac].aql_limit_high; spin_unlock_bh(&local->active_txq_lock[ac]); q_depth[ac] = atomic_read(&sta->airtime[ac].aql_tx_pending); } p += scnprintf(p, bufsz + buf - p, "Q depth: VO: %u us VI: %u us BE: %u us BK: %u us\n" "Q limit[low/high]: VO: %u/%u VI: %u/%u BE: %u/%u BK: %u/%u\n", q_depth[0], q_depth[1], q_depth[2], q_depth[3], q_limit_l[0], q_limit_h[0], q_limit_l[1], q_limit_h[1], q_limit_l[2], q_limit_h[2], q_limit_l[3], q_limit_h[3]); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } static ssize_t sta_aql_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; u32 ac, q_limit_l, q_limit_h; char _buf[100] = {}, *buf = _buf; if (count > sizeof(_buf)) return -EINVAL; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[sizeof(_buf) - 1] = '\0'; if (sscanf(buf, "limit %u %u %u", &ac, &q_limit_l, &q_limit_h) != 3) return -EINVAL; if (ac >= IEEE80211_NUM_ACS) return -EINVAL; sta->airtime[ac].aql_limit_low = q_limit_l; sta->airtime[ac].aql_limit_high = q_limit_h; return count; } STA_OPS_RW(aql); static ssize_t sta_agg_status_do_read(struct wiphy *wiphy, struct file *file, char *buf, size_t bufsz, void *data) { struct sta_info *sta = data; char *p = buf; int i; struct tid_ampdu_rx *tid_rx; struct tid_ampdu_tx *tid_tx; p += scnprintf(p, bufsz + buf - p, "next dialog_token: %#02x\n", sta->ampdu_mlme.dialog_token_allocator + 1); p += scnprintf(p, bufsz + buf - p, "TID\t\tRX\tDTKN\tSSN\t\tTX\tDTKN\tpending\n"); for (i = 0; i < IEEE80211_NUM_TIDS; i++) { bool tid_rx_valid; tid_rx = wiphy_dereference(wiphy, sta->ampdu_mlme.tid_rx[i]); tid_tx = wiphy_dereference(wiphy, sta->ampdu_mlme.tid_tx[i]); tid_rx_valid = test_bit(i, sta->ampdu_mlme.agg_session_valid); p += scnprintf(p, bufsz + buf - p, "%02d", i); p += scnprintf(p, bufsz + buf - p, "\t\t%x", tid_rx_valid); p += scnprintf(p, bufsz + buf - p, "\t%#.2x", tid_rx_valid ? sta->ampdu_mlme.tid_rx_token[i] : 0); p += scnprintf(p, bufsz + buf - p, "\t%#.3x", tid_rx ? tid_rx->ssn : 0); p += scnprintf(p, bufsz + buf - p, "\t\t%x", !!tid_tx); p += scnprintf(p, bufsz + buf - p, "\t%#.2x", tid_tx ? tid_tx->dialog_token : 0); p += scnprintf(p, bufsz + buf - p, "\t%03d", tid_tx ? skb_queue_len(&tid_tx->pending) : 0); p += scnprintf(p, bufsz + buf - p, "\n"); } return p - buf; } static ssize_t sta_agg_status_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct wiphy *wiphy = sta->local->hw.wiphy; size_t bufsz = 71 + IEEE80211_NUM_TIDS * 40; char *buf = kmalloc(bufsz, GFP_KERNEL); ssize_t ret; if (!buf) return -ENOMEM; ret = wiphy_locked_debugfs_read(wiphy, file, buf, bufsz, userbuf, count, ppos, sta_agg_status_do_read, sta); kfree(buf); return ret; } static ssize_t sta_agg_status_do_write(struct wiphy *wiphy, struct file *file, char *buf, size_t count, void *data) { struct sta_info *sta = data; bool start, tx; unsigned long tid; char *pos = buf; int ret, timeout = 5000; buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (!strcmp(buf, "tx")) tx = true; else if (!strcmp(buf, "rx")) tx = false; else return -EINVAL; buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (!strcmp(buf, "start")) { start = true; if (!tx) return -EINVAL; } else if (!strcmp(buf, "stop")) { start = false; } else { return -EINVAL; } buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (sscanf(buf, "timeout=%d", &timeout) == 1) { buf = strsep(&pos, " "); if (!buf || !tx || !start) return -EINVAL; } ret = kstrtoul(buf, 0, &tid); if (ret || tid >= IEEE80211_NUM_TIDS) return -EINVAL; if (tx) { if (start) ret = ieee80211_start_tx_ba_session(&sta->sta, tid, timeout); else ret = ieee80211_stop_tx_ba_session(&sta->sta, tid); } else { __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT, 3, true); ret = 0; } return ret ?: count; } static ssize_t sta_agg_status_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct wiphy *wiphy = sta->local->hw.wiphy; char _buf[26]; return wiphy_locked_debugfs_write(wiphy, file, _buf, sizeof(_buf), userbuf, count, sta_agg_status_do_write, sta); } STA_OPS_RW(agg_status); /* link sta attributes */ #define LINK_STA_OPS(name) \ static const struct file_operations link_sta_ ##name## _ops = { \ .read = link_sta_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } static ssize_t link_sta_addr_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct link_sta_info *link_sta = file->private_data; u8 mac[3 * ETH_ALEN + 1]; snprintf(mac, sizeof(mac), "%pM\n", link_sta->pub->addr); return simple_read_from_buffer(userbuf, count, ppos, mac, 3 * ETH_ALEN); } LINK_STA_OPS(addr); static ssize_t link_sta_ht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { #define PRINT_HT_CAP(_cond, _str) \ do { \ if (_cond) \ p += scnprintf(p, bufsz + buf - p, "\t" _str "\n"); \ } while (0) char *buf, *p; int i; ssize_t bufsz = 512; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_ht_cap *htc = &link_sta->pub->ht_cap; ssize_t ret; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, bufsz + buf - p, "ht %ssupported\n", htc->ht_supported ? "" : "not "); if (htc->ht_supported) { p += scnprintf(p, bufsz + buf - p, "cap: %#.4x\n", htc->cap); PRINT_HT_CAP((htc->cap & BIT(0)), "RX LDPC"); PRINT_HT_CAP((htc->cap & BIT(1)), "HT20/HT40"); PRINT_HT_CAP(!(htc->cap & BIT(1)), "HT20"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 0, "Static SM Power Save"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 1, "Dynamic SM Power Save"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 3, "SM Power Save disabled"); PRINT_HT_CAP((htc->cap & BIT(4)), "RX Greenfield"); PRINT_HT_CAP((htc->cap & BIT(5)), "RX HT20 SGI"); PRINT_HT_CAP((htc->cap & BIT(6)), "RX HT40 SGI"); PRINT_HT_CAP((htc->cap & BIT(7)), "TX STBC"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 0, "No RX STBC"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 1, "RX STBC 1-stream"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 2, "RX STBC 2-streams"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 3, "RX STBC 3-streams"); PRINT_HT_CAP((htc->cap & BIT(10)), "HT Delayed Block Ack"); PRINT_HT_CAP(!(htc->cap & BIT(11)), "Max AMSDU length: " "3839 bytes"); PRINT_HT_CAP((htc->cap & BIT(11)), "Max AMSDU length: " "7935 bytes"); /* * For beacons and probe response this would mean the BSS * does or does not allow the usage of DSSS/CCK HT40. * Otherwise it means the STA does or does not use * DSSS/CCK HT40. */ PRINT_HT_CAP((htc->cap & BIT(12)), "DSSS/CCK HT40"); PRINT_HT_CAP(!(htc->cap & BIT(12)), "No DSSS/CCK HT40"); /* BIT(13) is reserved */ PRINT_HT_CAP((htc->cap & BIT(14)), "40 MHz Intolerant"); PRINT_HT_CAP((htc->cap & BIT(15)), "L-SIG TXOP protection"); p += scnprintf(p, bufsz + buf - p, "ampdu factor/density: %d/%d\n", htc->ampdu_factor, htc->ampdu_density); p += scnprintf(p, bufsz + buf - p, "MCS mask:"); for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) p += scnprintf(p, bufsz + buf - p, " %.2x", htc->mcs.rx_mask[i]); p += scnprintf(p, bufsz + buf - p, "\n"); /* If not set this is meaningless */ if (le16_to_cpu(htc->mcs.rx_highest)) { p += scnprintf(p, bufsz + buf - p, "MCS rx highest: %d Mbps\n", le16_to_cpu(htc->mcs.rx_highest)); } p += scnprintf(p, bufsz + buf - p, "MCS tx params: %x\n", htc->mcs.tx_params); } ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(ht_capa); static ssize_t link_sta_vht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_vht_cap *vhtc = &link_sta->pub->vht_cap; ssize_t ret; ssize_t bufsz = 512; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, bufsz + buf - p, "VHT %ssupported\n", vhtc->vht_supported ? "" : "not "); if (vhtc->vht_supported) { p += scnprintf(p, bufsz + buf - p, "cap: %#.8x\n", vhtc->cap); #define PFLAG(a, b) \ do { \ if (vhtc->cap & IEEE80211_VHT_CAP_ ## a) \ p += scnprintf(p, bufsz + buf - p, \ "\t\t%s\n", b); \ } while (0) switch (vhtc->cap & 0x3) { case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-3895\n"); break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-7991\n"); break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-11454\n"); break; default: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-UNKNOWN\n"); } switch (vhtc->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { case 0: p += scnprintf(p, bufsz + buf - p, "\t\t80Mhz\n"); break; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: p += scnprintf(p, bufsz + buf - p, "\t\t160Mhz\n"); break; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: p += scnprintf(p, bufsz + buf - p, "\t\t80+80Mhz\n"); break; default: p += scnprintf(p, bufsz + buf - p, "\t\tUNKNOWN-MHZ: 0x%x\n", (vhtc->cap >> 2) & 0x3); } PFLAG(RXLDPC, "RXLDPC"); PFLAG(SHORT_GI_80, "SHORT-GI-80"); PFLAG(SHORT_GI_160, "SHORT-GI-160"); PFLAG(TXSTBC, "TXSTBC"); p += scnprintf(p, bufsz + buf - p, "\t\tRXSTBC_%d\n", (vhtc->cap >> 8) & 0x7); PFLAG(SU_BEAMFORMER_CAPABLE, "SU-BEAMFORMER-CAPABLE"); PFLAG(SU_BEAMFORMEE_CAPABLE, "SU-BEAMFORMEE-CAPABLE"); p += scnprintf(p, bufsz + buf - p, "\t\tBEAMFORMEE-STS: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK) >> IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); p += scnprintf(p, bufsz + buf - p, "\t\tSOUNDING-DIMENSIONS: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK) >> IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT); PFLAG(MU_BEAMFORMER_CAPABLE, "MU-BEAMFORMER-CAPABLE"); PFLAG(MU_BEAMFORMEE_CAPABLE, "MU-BEAMFORMEE-CAPABLE"); PFLAG(VHT_TXOP_PS, "TXOP-PS"); PFLAG(HTC_VHT, "HTC-VHT"); p += scnprintf(p, bufsz + buf - p, "\t\tMPDU-LENGTH-EXPONENT: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); PFLAG(VHT_LINK_ADAPTATION_VHT_UNSOL_MFB, "LINK-ADAPTATION-VHT-UNSOL-MFB"); p += scnprintf(p, bufsz + buf - p, "\t\tLINK-ADAPTATION-VHT-MRQ-MFB: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB) >> 26); PFLAG(RX_ANTENNA_PATTERN, "RX-ANTENNA-PATTERN"); PFLAG(TX_ANTENNA_PATTERN, "TX-ANTENNA-PATTERN"); p += scnprintf(p, bufsz + buf - p, "RX MCS: %.4x\n", le16_to_cpu(vhtc->vht_mcs.rx_mcs_map)); if (vhtc->vht_mcs.rx_highest) p += scnprintf(p, bufsz + buf - p, "MCS RX highest: %d Mbps\n", le16_to_cpu(vhtc->vht_mcs.rx_highest)); p += scnprintf(p, bufsz + buf - p, "TX MCS: %.4x\n", le16_to_cpu(vhtc->vht_mcs.tx_mcs_map)); if (vhtc->vht_mcs.tx_highest) p += scnprintf(p, bufsz + buf - p, "MCS TX highest: %d Mbps\n", le16_to_cpu(vhtc->vht_mcs.tx_highest)); #undef PFLAG } ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(vht_capa); static ssize_t link_sta_he_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; size_t buf_sz = PAGE_SIZE; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_he_cap *hec = &link_sta->pub->he_cap; struct ieee80211_he_mcs_nss_supp *nss = &hec->he_mcs_nss_supp; u8 ppe_size; u8 *cap; int i; ssize_t ret; buf = kmalloc(buf_sz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, buf_sz + buf - p, "HE %ssupported\n", hec->has_he ? "" : "not "); if (!hec->has_he) goto out; cap = hec->he_cap_elem.mac_cap_info; p += scnprintf(p, buf_sz + buf - p, "MAC-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", cap[0], cap[1], cap[2], cap[3], cap[4], cap[5]); #define PRINT(fmt, ...) \ p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \ ##__VA_ARGS__) #define PFLAG(t, n, a, b) \ do { \ if (cap[n] & IEEE80211_HE_##t##_CAP##n##_##a) \ PRINT("%s", b); \ } while (0) #define PFLAG_RANGE(t, i, n, s, m, off, fmt) \ do { \ u8 msk = IEEE80211_HE_##t##_CAP##i##_##n##_MASK; \ u8 idx = ((cap[i] & msk) >> (ffs(msk) - 1)) + off; \ PRINT(fmt, (s << idx) + (m * idx)); \ } while (0) #define PFLAG_RANGE_DEFAULT(t, i, n, s, m, off, fmt, a, b) \ do { \ if (cap[i] == IEEE80211_HE_##t ##_CAP##i##_##n##_##a) { \ PRINT("%s", b); \ break; \ } \ PFLAG_RANGE(t, i, n, s, m, off, fmt); \ } while (0) PFLAG(MAC, 0, HTC_HE, "HTC-HE"); PFLAG(MAC, 0, TWT_REQ, "TWT-REQ"); PFLAG(MAC, 0, TWT_RES, "TWT-RES"); PFLAG_RANGE_DEFAULT(MAC, 0, DYNAMIC_FRAG, 0, 1, 0, "DYNAMIC-FRAG-LEVEL-%d", NOT_SUPP, "NOT-SUPP"); PFLAG_RANGE_DEFAULT(MAC, 0, MAX_NUM_FRAG_MSDU, 1, 0, 0, "MAX-NUM-FRAG-MSDU-%d", UNLIMITED, "UNLIMITED"); PFLAG_RANGE_DEFAULT(MAC, 1, MIN_FRAG_SIZE, 128, 0, -1, "MIN-FRAG-SIZE-%d", UNLIMITED, "UNLIMITED"); PFLAG_RANGE_DEFAULT(MAC, 1, TF_MAC_PAD_DUR, 0, 8, 0, "TF-MAC-PAD-DUR-%dUS", MASK, "UNKNOWN"); PFLAG_RANGE(MAC, 1, MULTI_TID_AGG_RX_QOS, 0, 1, 1, "MULTI-TID-AGG-RX-QOS-%d"); if (cap[0] & IEEE80211_HE_MAC_CAP0_HTC_HE) { switch (((cap[2] << 1) | (cap[1] >> 7)) & 0x3) { case 0: PRINT("LINK-ADAPTATION-NO-FEEDBACK"); break; case 1: PRINT("LINK-ADAPTATION-RESERVED"); break; case 2: PRINT("LINK-ADAPTATION-UNSOLICITED-FEEDBACK"); break; case 3: PRINT("LINK-ADAPTATION-BOTH"); break; } } PFLAG(MAC, 2, ALL_ACK, "ALL-ACK"); PFLAG(MAC, 2, TRS, "TRS"); PFLAG(MAC, 2, BSR, "BSR"); PFLAG(MAC, 2, BCAST_TWT, "BCAST-TWT"); PFLAG(MAC, 2, 32BIT_BA_BITMAP, "32BIT-BA-BITMAP"); PFLAG(MAC, 2, MU_CASCADING, "MU-CASCADING"); PFLAG(MAC, 2, ACK_EN, "ACK-EN"); PFLAG(MAC, 3, OMI_CONTROL, "OMI-CONTROL"); PFLAG(MAC, 3, OFDMA_RA, "OFDMA-RA"); switch (cap[3] & IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) { case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0: PRINT("MAX-AMPDU-LEN-EXP-USE-EXT-0"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-1"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-2"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-3"); break; } PFLAG(MAC, 3, AMSDU_FRAG, "AMSDU-FRAG"); PFLAG(MAC, 3, FLEX_TWT_SCHED, "FLEX-TWT-SCHED"); PFLAG(MAC, 3, RX_CTRL_FRAME_TO_MULTIBSS, "RX-CTRL-FRAME-TO-MULTIBSS"); PFLAG(MAC, 4, BSRP_BQRP_A_MPDU_AGG, "BSRP-BQRP-A-MPDU-AGG"); PFLAG(MAC, 4, QTP, "QTP"); PFLAG(MAC, 4, BQR, "BQR"); PFLAG(MAC, 4, PSR_RESP, "PSR-RESP"); PFLAG(MAC, 4, NDP_FB_REP, "NDP-FB-REP"); PFLAG(MAC, 4, OPS, "OPS"); PFLAG(MAC, 4, AMSDU_IN_AMPDU, "AMSDU-IN-AMPDU"); PRINT("MULTI-TID-AGG-TX-QOS-%d", ((cap[5] << 1) | (cap[4] >> 7)) & 0x7); PFLAG(MAC, 5, SUBCHAN_SELECTIVE_TRANSMISSION, "SUBCHAN-SELECTIVE-TRANSMISSION"); PFLAG(MAC, 5, UL_2x996_TONE_RU, "UL-2x996-TONE-RU"); PFLAG(MAC, 5, OM_CTRL_UL_MU_DATA_DIS_RX, "OM-CTRL-UL-MU-DATA-DIS-RX"); PFLAG(MAC, 5, HE_DYNAMIC_SM_PS, "HE-DYNAMIC-SM-PS"); PFLAG(MAC, 5, PUNCTURED_SOUNDING, "PUNCTURED-SOUNDING"); PFLAG(MAC, 5, HT_VHT_TRIG_FRAME_RX, "HT-VHT-TRIG-FRAME-RX"); cap = hec->he_cap_elem.phy_cap_info; p += scnprintf(p, buf_sz + buf - p, "PHY CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", cap[0], cap[1], cap[2], cap[3], cap[4], cap[5], cap[6], cap[7], cap[8], cap[9], cap[10]); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_IN_2G, "CHANNEL-WIDTH-SET-40MHZ-IN-2G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G, "CHANNEL-WIDTH-SET-40MHZ-80MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_160MHZ_IN_5G, "CHANNEL-WIDTH-SET-160MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G, "CHANNEL-WIDTH-SET-80PLUS80-MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G, "CHANNEL-WIDTH-SET-RU-MAPPING-IN-2G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G, "CHANNEL-WIDTH-SET-RU-MAPPING-IN-5G"); switch (cap[1] & IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK) { case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ: PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-20MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ: PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-40MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ: PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-20MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ: PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-40MHZ"); break; } PFLAG(PHY, 1, DEVICE_CLASS_A, "IEEE80211-HE-PHY-CAP1-DEVICE-CLASS-A"); PFLAG(PHY, 1, LDPC_CODING_IN_PAYLOAD, "LDPC-CODING-IN-PAYLOAD"); PFLAG(PHY, 1, HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US, "HY-CAP1-HE-LTF-AND-GI-FOR-HE-PPDUS-0-8US"); PRINT("MIDAMBLE-RX-MAX-NSTS-%d", ((cap[2] << 1) | (cap[1] >> 7)) & 0x3); PFLAG(PHY, 2, NDP_4x_LTF_AND_3_2US, "NDP-4X-LTF-AND-3-2US"); PFLAG(PHY, 2, STBC_TX_UNDER_80MHZ, "STBC-TX-UNDER-80MHZ"); PFLAG(PHY, 2, STBC_RX_UNDER_80MHZ, "STBC-RX-UNDER-80MHZ"); PFLAG(PHY, 2, DOPPLER_TX, "DOPPLER-TX"); PFLAG(PHY, 2, DOPPLER_RX, "DOPPLER-RX"); PFLAG(PHY, 2, UL_MU_FULL_MU_MIMO, "UL-MU-FULL-MU-MIMO"); PFLAG(PHY, 2, UL_MU_PARTIAL_MU_MIMO, "UL-MU-PARTIAL-MU-MIMO"); switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK) { case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM: PRINT("DCM-MAX-CONST-TX-NO-DCM"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK: PRINT("DCM-MAX-CONST-TX-BPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK: PRINT("DCM-MAX-CONST-TX-QPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM: PRINT("DCM-MAX-CONST-TX-16-QAM"); break; } PFLAG(PHY, 3, DCM_MAX_TX_NSS_1, "DCM-MAX-TX-NSS-1"); PFLAG(PHY, 3, DCM_MAX_TX_NSS_2, "DCM-MAX-TX-NSS-2"); switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK) { case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM: PRINT("DCM-MAX-CONST-RX-NO-DCM"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK: PRINT("DCM-MAX-CONST-RX-BPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK: PRINT("DCM-MAX-CONST-RX-QPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM: PRINT("DCM-MAX-CONST-RX-16-QAM"); break; } PFLAG(PHY, 3, DCM_MAX_RX_NSS_1, "DCM-MAX-RX-NSS-1"); PFLAG(PHY, 3, DCM_MAX_RX_NSS_2, "DCM-MAX-RX-NSS-2"); PFLAG(PHY, 3, RX_PARTIAL_BW_SU_IN_20MHZ_MU, "RX-PARTIAL-BW-SU-IN-20MHZ-MU"); PFLAG(PHY, 3, SU_BEAMFORMER, "SU-BEAMFORMER"); PFLAG(PHY, 4, SU_BEAMFORMEE, "SU-BEAMFORMEE"); PFLAG(PHY, 4, MU_BEAMFORMER, "MU-BEAMFORMER"); PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_UNDER_80MHZ, 0, 1, 4, "BEAMFORMEE-MAX-STS-UNDER-%d"); PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_ABOVE_80MHZ, 0, 1, 4, "BEAMFORMEE-MAX-STS-ABOVE-%d"); PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ, 0, 1, 1, "NUM-SND-DIM-UNDER-80MHZ-%d"); PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ, 0, 1, 1, "NUM-SND-DIM-ABOVE-80MHZ-%d"); PFLAG(PHY, 5, NG16_SU_FEEDBACK, "NG16-SU-FEEDBACK"); PFLAG(PHY, 5, NG16_MU_FEEDBACK, "NG16-MU-FEEDBACK"); PFLAG(PHY, 6, CODEBOOK_SIZE_42_SU, "CODEBOOK-SIZE-42-SU"); PFLAG(PHY, 6, CODEBOOK_SIZE_75_MU, "CODEBOOK-SIZE-75-MU"); PFLAG(PHY, 6, TRIG_SU_BEAMFORMING_FB, "TRIG-SU-BEAMFORMING-FB"); PFLAG(PHY, 6, TRIG_MU_BEAMFORMING_PARTIAL_BW_FB, "MU-BEAMFORMING-PARTIAL-BW-FB"); PFLAG(PHY, 6, TRIG_CQI_FB, "TRIG-CQI-FB"); PFLAG(PHY, 6, PARTIAL_BW_EXT_RANGE, "PARTIAL-BW-EXT-RANGE"); PFLAG(PHY, 6, PARTIAL_BANDWIDTH_DL_MUMIMO, "PARTIAL-BANDWIDTH-DL-MUMIMO"); PFLAG(PHY, 6, PPE_THRESHOLD_PRESENT, "PPE-THRESHOLD-PRESENT"); PFLAG(PHY, 7, PSR_BASED_SR, "PSR-BASED-SR"); PFLAG(PHY, 7, POWER_BOOST_FACTOR_SUPP, "POWER-BOOST-FACTOR-SUPP"); PFLAG(PHY, 7, HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, "HE-SU-MU-PPDU-4XLTF-AND-08-US-GI"); PFLAG_RANGE(PHY, 7, MAX_NC, 0, 1, 1, "MAX-NC-%d"); PFLAG(PHY, 7, STBC_TX_ABOVE_80MHZ, "STBC-TX-ABOVE-80MHZ"); PFLAG(PHY, 7, STBC_RX_ABOVE_80MHZ, "STBC-RX-ABOVE-80MHZ"); PFLAG(PHY, 8, HE_ER_SU_PPDU_4XLTF_AND_08_US_GI, "HE-ER-SU-PPDU-4XLTF-AND-08-US-GI"); PFLAG(PHY, 8, 20MHZ_IN_40MHZ_HE_PPDU_IN_2G, "20MHZ-IN-40MHZ-HE-PPDU-IN-2G"); PFLAG(PHY, 8, 20MHZ_IN_160MHZ_HE_PPDU, "20MHZ-IN-160MHZ-HE-PPDU"); PFLAG(PHY, 8, 80MHZ_IN_160MHZ_HE_PPDU, "80MHZ-IN-160MHZ-HE-PPDU"); PFLAG(PHY, 8, HE_ER_SU_1XLTF_AND_08_US_GI, "HE-ER-SU-1XLTF-AND-08-US-GI"); PFLAG(PHY, 8, MIDAMBLE_RX_TX_2X_AND_1XLTF, "MIDAMBLE-RX-TX-2X-AND-1XLTF"); switch (cap[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK) { case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242: PRINT("DCM-MAX-RU-242"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484: PRINT("DCM-MAX-RU-484"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996: PRINT("DCM-MAX-RU-996"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996: PRINT("DCM-MAX-RU-2x996"); break; } PFLAG(PHY, 9, LONGER_THAN_16_SIGB_OFDM_SYM, "LONGER-THAN-16-SIGB-OFDM-SYM"); PFLAG(PHY, 9, NON_TRIGGERED_CQI_FEEDBACK, "NON-TRIGGERED-CQI-FEEDBACK"); PFLAG(PHY, 9, TX_1024_QAM_LESS_THAN_242_TONE_RU, "TX-1024-QAM-LESS-THAN-242-TONE-RU"); PFLAG(PHY, 9, RX_1024_QAM_LESS_THAN_242_TONE_RU, "RX-1024-QAM-LESS-THAN-242-TONE-RU"); PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB, "RX-FULL-BW-SU-USING-MU-WITH-COMP-SIGB"); PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB, "RX-FULL-BW-SU-USING-MU-WITH-NON-COMP-SIGB"); switch (u8_get_bits(cap[9], IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK)) { case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US: PRINT("NOMINAL-PACKET-PADDING-0US"); break; case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US: PRINT("NOMINAL-PACKET-PADDING-8US"); break; case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US: PRINT("NOMINAL-PACKET-PADDING-16US"); break; } #undef PFLAG_RANGE_DEFAULT #undef PFLAG_RANGE #undef PFLAG #define PRINT_NSS_SUPP(f, n) \ do { \ int _i; \ u16 v = le16_to_cpu(nss->f); \ p += scnprintf(p, buf_sz + buf - p, n ": %#.4x\n", v); \ for (_i = 0; _i < 8; _i += 2) { \ switch ((v >> _i) & 0x3) { \ case 0: \ PRINT(n "-%d-SUPPORT-0-7", _i / 2); \ break; \ case 1: \ PRINT(n "-%d-SUPPORT-0-9", _i / 2); \ break; \ case 2: \ PRINT(n "-%d-SUPPORT-0-11", _i / 2); \ break; \ case 3: \ PRINT(n "-%d-NOT-SUPPORTED", _i / 2); \ break; \ } \ } \ } while (0) PRINT_NSS_SUPP(rx_mcs_80, "RX-MCS-80"); PRINT_NSS_SUPP(tx_mcs_80, "TX-MCS-80"); if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) { PRINT_NSS_SUPP(rx_mcs_160, "RX-MCS-160"); PRINT_NSS_SUPP(tx_mcs_160, "TX-MCS-160"); } if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { PRINT_NSS_SUPP(rx_mcs_80p80, "RX-MCS-80P80"); PRINT_NSS_SUPP(tx_mcs_80p80, "TX-MCS-80P80"); } #undef PRINT_NSS_SUPP #undef PRINT if (!(cap[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT)) goto out; p += scnprintf(p, buf_sz + buf - p, "PPE-THRESHOLDS: %#.2x", hec->ppe_thres[0]); ppe_size = ieee80211_he_ppe_size(hec->ppe_thres[0], cap); for (i = 1; i < ppe_size; i++) { p += scnprintf(p, buf_sz + buf - p, " %#.2x", hec->ppe_thres[i]); } p += scnprintf(p, buf_sz + buf - p, "\n"); out: ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(he_capa); static ssize_t link_sta_eht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; size_t buf_sz = PAGE_SIZE; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_eht_cap *bec = &link_sta->pub->eht_cap; struct ieee80211_eht_cap_elem_fixed *fixed = &bec->eht_cap_elem; struct ieee80211_eht_mcs_nss_supp *nss = &bec->eht_mcs_nss_supp; u8 *cap; int i; ssize_t ret; static const char *mcs_desc[] = { "0-7", "8-9", "10-11", "12-13"}; buf = kmalloc(buf_sz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, buf_sz + buf - p, "EHT %ssupported\n", bec->has_eht ? "" : "not "); if (!bec->has_eht) goto out; p += scnprintf(p, buf_sz + buf - p, "MAC-CAP: %#.2x %#.2x\n", fixed->mac_cap_info[0], fixed->mac_cap_info[1]); p += scnprintf(p, buf_sz + buf - p, "PHY-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", fixed->phy_cap_info[0], fixed->phy_cap_info[1], fixed->phy_cap_info[2], fixed->phy_cap_info[3], fixed->phy_cap_info[4], fixed->phy_cap_info[5], fixed->phy_cap_info[6], fixed->phy_cap_info[7], fixed->phy_cap_info[8]); #define PRINT(fmt, ...) \ p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \ ##__VA_ARGS__) #define PFLAG(t, n, a, b) \ do { \ if (cap[n] & IEEE80211_EHT_##t##_CAP##n##_##a) \ PRINT("%s", b); \ } while (0) cap = fixed->mac_cap_info; PFLAG(MAC, 0, EPCS_PRIO_ACCESS, "EPCS-PRIO-ACCESS"); PFLAG(MAC, 0, OM_CONTROL, "OM-CONTROL"); PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE1, "TRIG-TXOP-SHARING-MODE1"); PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE2, "TRIG-TXOP-SHARING-MODE2"); PFLAG(MAC, 0, RESTRICTED_TWT, "RESTRICTED-TWT"); PFLAG(MAC, 0, SCS_TRAFFIC_DESC, "SCS-TRAFFIC-DESC"); switch ((cap[0] & 0xc0) >> 6) { case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895: PRINT("MAX-MPDU-LEN: 3985"); break; case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991: PRINT("MAX-MPDU-LEN: 7991"); break; case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454: PRINT("MAX-MPDU-LEN: 11454"); break; } cap = fixed->phy_cap_info; PFLAG(PHY, 0, 320MHZ_IN_6GHZ, "320MHZ-IN-6GHZ"); PFLAG(PHY, 0, 242_TONE_RU_GT20MHZ, "242-TONE-RU-GT20MHZ"); PFLAG(PHY, 0, NDP_4_EHT_LFT_32_GI, "NDP-4-EHT-LFT-32-GI"); PFLAG(PHY, 0, PARTIAL_BW_UL_MU_MIMO, "PARTIAL-BW-UL-MU-MIMO"); PFLAG(PHY, 0, SU_BEAMFORMER, "SU-BEAMFORMER"); PFLAG(PHY, 0, SU_BEAMFORMEE, "SU-BEAMFORMEE"); i = cap[0] >> 7; i |= (cap[1] & 0x3) << 1; PRINT("BEAMFORMEE-80-NSS: %i", i); PRINT("BEAMFORMEE-160-NSS: %i", (cap[1] >> 2) & 0x7); PRINT("BEAMFORMEE-320-NSS: %i", (cap[1] >> 5) & 0x7); PRINT("SOUNDING-DIM-80-NSS: %i", (cap[2] & 0x7)); PRINT("SOUNDING-DIM-160-NSS: %i", (cap[2] >> 3) & 0x7); i = cap[2] >> 6; i |= (cap[3] & 0x1) << 3; PRINT("SOUNDING-DIM-320-NSS: %i", i); PFLAG(PHY, 3, NG_16_SU_FEEDBACK, "NG-16-SU-FEEDBACK"); PFLAG(PHY, 3, NG_16_MU_FEEDBACK, "NG-16-MU-FEEDBACK"); PFLAG(PHY, 3, CODEBOOK_4_2_SU_FDBK, "CODEBOOK-4-2-SU-FDBK"); PFLAG(PHY, 3, CODEBOOK_7_5_MU_FDBK, "CODEBOOK-7-5-MU-FDBK"); PFLAG(PHY, 3, TRIG_SU_BF_FDBK, "TRIG-SU-BF-FDBK"); PFLAG(PHY, 3, TRIG_MU_BF_PART_BW_FDBK, "TRIG-MU-BF-PART-BW-FDBK"); PFLAG(PHY, 3, TRIG_CQI_FDBK, "TRIG-CQI-FDBK"); PFLAG(PHY, 4, PART_BW_DL_MU_MIMO, "PART-BW-DL-MU-MIMO"); PFLAG(PHY, 4, PSR_SR_SUPP, "PSR-SR-SUPP"); PFLAG(PHY, 4, POWER_BOOST_FACT_SUPP, "POWER-BOOST-FACT-SUPP"); PFLAG(PHY, 4, EHT_MU_PPDU_4_EHT_LTF_08_GI, "EHT-MU-PPDU-4-EHT-LTF-08-GI"); PRINT("MAX_NC: %i", cap[4] >> 4); PFLAG(PHY, 5, NON_TRIG_CQI_FEEDBACK, "NON-TRIG-CQI-FEEDBACK"); PFLAG(PHY, 5, TX_LESS_242_TONE_RU_SUPP, "TX-LESS-242-TONE-RU-SUPP"); PFLAG(PHY, 5, RX_LESS_242_TONE_RU_SUPP, "RX-LESS-242-TONE-RU-SUPP"); PFLAG(PHY, 5, PPE_THRESHOLD_PRESENT, "PPE_THRESHOLD_PRESENT"); switch (cap[5] >> 4 & 0x3) { case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US: PRINT("NOMINAL_PKT_PAD: 0us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US: PRINT("NOMINAL_PKT_PAD: 8us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US: PRINT("NOMINAL_PKT_PAD: 16us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US: PRINT("NOMINAL_PKT_PAD: 20us"); break; } i = cap[5] >> 6; i |= cap[6] & 0x7; PRINT("MAX-NUM-SUPP-EHT-LTF: %i", i); PFLAG(PHY, 5, SUPP_EXTRA_EHT_LTF, "SUPP-EXTRA-EHT-LTF"); i = (cap[6] >> 3) & 0xf; PRINT("MCS15-SUPP-MASK: %i", i); PFLAG(PHY, 6, EHT_DUP_6GHZ_SUPP, "EHT-DUP-6GHZ-SUPP"); PFLAG(PHY, 7, 20MHZ_STA_RX_NDP_WIDER_BW, "20MHZ-STA-RX-NDP-WIDER-BW"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_80MHZ, "NON-OFDMA-UL-MU-MIMO-80MHZ"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_160MHZ, "NON-OFDMA-UL-MU-MIMO-160MHZ"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_320MHZ, "NON-OFDMA-UL-MU-MIMO-320MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_80MHZ, "MU-BEAMFORMER-80MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_160MHZ, "MU-BEAMFORMER-160MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_320MHZ, "MU-BEAMFORMER-320MHZ"); PFLAG(PHY, 7, TB_SOUNDING_FDBK_RATE_LIMIT, "TB-SOUNDING-FDBK-RATE-LIMIT"); PFLAG(PHY, 8, RX_1024QAM_WIDER_BW_DL_OFDMA, "RX-1024QAM-WIDER-BW-DL-OFDMA"); PFLAG(PHY, 8, RX_4096QAM_WIDER_BW_DL_OFDMA, "RX-4096QAM-WIDER-BW-DL-OFDMA"); #undef PFLAG PRINT(""); /* newline */ if (!(link_sta->pub->he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) { u8 *mcs_vals = (u8 *)(&nss->only_20mhz); for (i = 0; i < 4; i++) PRINT("EHT bw=20 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); } else { u8 *mcs_vals = (u8 *)(&nss->bw._80); for (i = 0; i < 3; i++) PRINT("EHT bw <= 80 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); mcs_vals = (u8 *)(&nss->bw._160); for (i = 0; i < 3; i++) PRINT("EHT bw <= 160 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); mcs_vals = (u8 *)(&nss->bw._320); for (i = 0; i < 3; i++) PRINT("EHT bw <= 320 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); } if (cap[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { u8 ppe_size = ieee80211_eht_ppe_size(bec->eht_ppe_thres[0], cap); p += scnprintf(p, buf_sz + buf - p, "EHT PPE Thresholds: "); for (i = 0; i < ppe_size; i++) p += scnprintf(p, buf_sz + buf - p, "0x%02x ", bec->eht_ppe_thres[i]); PRINT(""); /* newline */ } out: ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(eht_capa); #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, \ sta->debugfs_dir, sta, &sta_ ##name## _ops) #define DEBUGFS_ADD_COUNTER(name, field) \ debugfs_create_ulong(#name, 0400, sta->debugfs_dir, &sta->field); void ieee80211_sta_debugfs_add(struct sta_info *sta) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct dentry *stations_dir = sta->sdata->debugfs.subdir_stations; u8 mac[3*ETH_ALEN]; if (!stations_dir) return; snprintf(mac, sizeof(mac), "%pM", sta->sta.addr); /* * This might fail due to a race condition: * When mac80211 unlinks a station, the debugfs entries * remain, but it is already possible to link a new * station with the same address which triggers adding * it to debugfs; therefore, if the old station isn't * destroyed quickly enough the old station's debugfs * dir might still be around. */ sta->debugfs_dir = debugfs_create_dir(mac, stations_dir); DEBUGFS_ADD(flags); DEBUGFS_ADD(aid); DEBUGFS_ADD(num_ps_buf_frames); DEBUGFS_ADD(last_seq_ctrl); DEBUGFS_ADD(agg_status); /* FIXME: Kept here as the statistics are only done on the deflink */ DEBUGFS_ADD_COUNTER(tx_filtered, deflink.status_stats.filtered); DEBUGFS_ADD(aqm); DEBUGFS_ADD(airtime); if (wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) DEBUGFS_ADD(aql); debugfs_create_xul("driver_buffered_tids", 0400, sta->debugfs_dir, &sta->driver_buffered_tids); drv_sta_add_debugfs(local, sdata, &sta->sta, sta->debugfs_dir); } void ieee80211_sta_debugfs_remove(struct sta_info *sta) { debugfs_remove_recursive(sta->debugfs_dir); sta->debugfs_dir = NULL; } #undef DEBUGFS_ADD #undef DEBUGFS_ADD_COUNTER #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, \ link_sta->debugfs_dir, link_sta, &link_sta_ ##name## _ops) #define DEBUGFS_ADD_COUNTER(name, field) \ debugfs_create_ulong(#name, 0400, link_sta->debugfs_dir, &link_sta->field) void ieee80211_link_sta_debugfs_add(struct link_sta_info *link_sta) { if (WARN_ON(!link_sta->sta->debugfs_dir)) return; /* For non-MLO, leave the files in the main directory. */ if (link_sta->sta->sta.valid_links) { char link_dir_name[10]; snprintf(link_dir_name, sizeof(link_dir_name), "link-%d", link_sta->link_id); link_sta->debugfs_dir = debugfs_create_dir(link_dir_name, link_sta->sta->debugfs_dir); DEBUGFS_ADD(addr); } else { if (WARN_ON(link_sta != &link_sta->sta->deflink)) return; link_sta->debugfs_dir = link_sta->sta->debugfs_dir; } DEBUGFS_ADD(ht_capa); DEBUGFS_ADD(vht_capa); DEBUGFS_ADD(he_capa); DEBUGFS_ADD(eht_capa); DEBUGFS_ADD_COUNTER(rx_duplicates, rx_stats.num_duplicates); DEBUGFS_ADD_COUNTER(rx_fragments, rx_stats.fragments); } void ieee80211_link_sta_debugfs_remove(struct link_sta_info *link_sta) { if (!link_sta->debugfs_dir || !link_sta->sta->debugfs_dir) { link_sta->debugfs_dir = NULL; return; } if (link_sta->debugfs_dir == link_sta->sta->debugfs_dir) { WARN_ON(link_sta != &link_sta->sta->deflink); link_sta->sta->debugfs_dir = NULL; return; } debugfs_remove_recursive(link_sta->debugfs_dir); link_sta->debugfs_dir = NULL; } void ieee80211_link_sta_debugfs_drv_add(struct link_sta_info *link_sta) { if (WARN_ON(!link_sta->debugfs_dir)) return; drv_link_sta_add_debugfs(link_sta->sta->local, link_sta->sta->sdata, link_sta->pub, link_sta->debugfs_dir); } void ieee80211_link_sta_debugfs_drv_remove(struct link_sta_info *link_sta) { if (!link_sta->debugfs_dir) return; if (WARN_ON(link_sta->debugfs_dir == link_sta->sta->debugfs_dir)) return; /* Recreate the directory excluding the driver data */ debugfs_remove_recursive(link_sta->debugfs_dir); link_sta->debugfs_dir = NULL; ieee80211_link_sta_debugfs_add(link_sta); } |
3 3 103 72 75 75 959 73 613 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _PROTO_MEMORY_H #define _PROTO_MEMORY_H #include <net/sock.h> #include <net/hotdata.h> /* 1 MB per cpu, in page units */ #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT)) static inline bool sk_has_memory_pressure(const struct sock *sk) { return sk->sk_prot->memory_pressure != NULL; } static inline bool proto_memory_pressure(const struct proto *prot) { if (!prot->memory_pressure) return false; return !!READ_ONCE(*prot->memory_pressure); } static inline bool sk_under_global_memory_pressure(const struct sock *sk) { return proto_memory_pressure(sk->sk_prot); } static inline bool sk_under_memory_pressure(const struct sock *sk) { if (!sk->sk_prot->memory_pressure) return false; if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return !!READ_ONCE(*sk->sk_prot->memory_pressure); } static inline long proto_memory_allocated(const struct proto *prot) { return max(0L, atomic_long_read(prot->memory_allocated)); } static inline long sk_memory_allocated(const struct sock *sk) { return proto_memory_allocated(sk->sk_prot); } static inline void proto_memory_pcpu_drain(struct proto *proto) { int val = this_cpu_xchg(*proto->per_cpu_fw_alloc, 0); if (val) atomic_long_add(val, proto->memory_allocated); } static inline void sk_memory_allocated_add(const struct sock *sk, int val) { struct proto *proto = sk->sk_prot; val = this_cpu_add_return(*proto->per_cpu_fw_alloc, val); if (unlikely(val >= READ_ONCE(net_hotdata.sysctl_mem_pcpu_rsv))) proto_memory_pcpu_drain(proto); } static inline void sk_memory_allocated_sub(const struct sock *sk, int val) { struct proto *proto = sk->sk_prot; val = this_cpu_sub_return(*proto->per_cpu_fw_alloc, val); if (unlikely(val <= -READ_ONCE(net_hotdata.sysctl_mem_pcpu_rsv))) proto_memory_pcpu_drain(proto); } #endif /* _PROTO_MEMORY_H */ |
560 560 26 3 34 27 12 34 34 30 2 18 18 6 6 6 6 6 2 5 466 425 41 41 3 3 41 1 39 10 26 3 2 34 34 23 13 3 1 18 18 3 3 9 16 6 2 17 18 7 16 19 4 28 60 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 | // SPDX-License-Identifier: GPL-2.0-only /* * This is a module which is used for logging packets to userspace via * nfetlink. * * (C) 2005 by Harald Welte <laforge@netfilter.org> * (C) 2006-2012 Patrick McHardy <kaber@trash.net> * * Based on the old ipv4-only ipt_ULOG.c: * (C) 2000-2004 by Harald Welte <laforge@netfilter.org> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/init.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/netdevice.h> #include <linux/netfilter.h> #include <linux/netfilter_bridge.h> #include <net/netlink.h> #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nfnetlink_log.h> #include <linux/netfilter/nf_conntrack_common.h> #include <linux/spinlock.h> #include <linux/sysctl.h> #include <linux/proc_fs.h> #include <linux/security.h> #include <linux/list.h> #include <linux/slab.h> #include <net/sock.h> #include <net/netfilter/nf_log.h> #include <net/netns/generic.h> #include <linux/atomic.h> #include <linux/refcount.h> #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) #include "../bridge/br_private.h" #endif #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack.h> #endif #define NFULNL_COPY_DISABLED 0xff #define NFULNL_NLBUFSIZ_DEFAULT NLMSG_GOODSIZE #define NFULNL_TIMEOUT_DEFAULT 100 /* every second */ #define NFULNL_QTHRESH_DEFAULT 100 /* 100 packets */ /* max packet size is limited by 16-bit struct nfattr nfa_len field */ #define NFULNL_COPY_RANGE_MAX (0xFFFF - NLA_HDRLEN) #define PRINTR(x, args...) do { if (net_ratelimit()) \ printk(x, ## args); } while (0); struct nfulnl_instance { struct hlist_node hlist; /* global list of instances */ spinlock_t lock; refcount_t use; /* use count */ unsigned int qlen; /* number of nlmsgs in skb */ struct sk_buff *skb; /* pre-allocatd skb */ struct timer_list timer; struct net *net; netns_tracker ns_tracker; struct user_namespace *peer_user_ns; /* User namespace of the peer process */ u32 peer_portid; /* PORTID of the peer process */ /* configurable parameters */ unsigned int flushtimeout; /* timeout until queue flush */ unsigned int nlbufsiz; /* netlink buffer allocation size */ unsigned int qthreshold; /* threshold of the queue */ u_int32_t copy_range; u_int32_t seq; /* instance-local sequential counter */ u_int16_t group_num; /* number of this queue */ u_int16_t flags; u_int8_t copy_mode; struct rcu_head rcu; }; #define INSTANCE_BUCKETS 16 static unsigned int nfnl_log_net_id __read_mostly; struct nfnl_log_net { spinlock_t instances_lock; struct hlist_head instance_table[INSTANCE_BUCKETS]; atomic_t global_seq; }; static struct nfnl_log_net *nfnl_log_pernet(struct net *net) { return net_generic(net, nfnl_log_net_id); } static inline u_int8_t instance_hashfn(u_int16_t group_num) { return ((group_num & 0xff) % INSTANCE_BUCKETS); } static struct nfulnl_instance * __instance_lookup(const struct nfnl_log_net *log, u16 group_num) { const struct hlist_head *head; struct nfulnl_instance *inst; head = &log->instance_table[instance_hashfn(group_num)]; hlist_for_each_entry_rcu(inst, head, hlist) { if (inst->group_num == group_num) return inst; } return NULL; } static inline void instance_get(struct nfulnl_instance *inst) { refcount_inc(&inst->use); } static struct nfulnl_instance * instance_lookup_get_rcu(const struct nfnl_log_net *log, u16 group_num) { struct nfulnl_instance *inst; inst = __instance_lookup(log, group_num); if (inst && !refcount_inc_not_zero(&inst->use)) inst = NULL; return inst; } static struct nfulnl_instance * instance_lookup_get(const struct nfnl_log_net *log, u16 group_num) { struct nfulnl_instance *inst; rcu_read_lock(); inst = instance_lookup_get_rcu(log, group_num); rcu_read_unlock(); return inst; } static void nfulnl_instance_free_rcu(struct rcu_head *head) { struct nfulnl_instance *inst = container_of(head, struct nfulnl_instance, rcu); put_net_track(inst->net, &inst->ns_tracker); kfree(inst); module_put(THIS_MODULE); } static void instance_put(struct nfulnl_instance *inst) { if (inst && refcount_dec_and_test(&inst->use)) call_rcu(&inst->rcu, nfulnl_instance_free_rcu); } static void nfulnl_timer(struct timer_list *t); static struct nfulnl_instance * instance_create(struct net *net, u_int16_t group_num, u32 portid, struct user_namespace *user_ns) { struct nfulnl_instance *inst; struct nfnl_log_net *log = nfnl_log_pernet(net); int err; spin_lock_bh(&log->instances_lock); if (__instance_lookup(log, group_num)) { err = -EEXIST; goto out_unlock; } inst = kzalloc(sizeof(*inst), GFP_ATOMIC); if (!inst) { err = -ENOMEM; goto out_unlock; } if (!try_module_get(THIS_MODULE)) { kfree(inst); err = -EAGAIN; goto out_unlock; } INIT_HLIST_NODE(&inst->hlist); spin_lock_init(&inst->lock); /* needs to be two, since we _put() after creation */ refcount_set(&inst->use, 2); timer_setup(&inst->timer, nfulnl_timer, 0); inst->net = get_net_track(net, &inst->ns_tracker, GFP_ATOMIC); inst->peer_user_ns = user_ns; inst->peer_portid = portid; inst->group_num = group_num; inst->qthreshold = NFULNL_QTHRESH_DEFAULT; inst->flushtimeout = NFULNL_TIMEOUT_DEFAULT; inst->nlbufsiz = NFULNL_NLBUFSIZ_DEFAULT; inst->copy_mode = NFULNL_COPY_PACKET; inst->copy_range = NFULNL_COPY_RANGE_MAX; hlist_add_head_rcu(&inst->hlist, &log->instance_table[instance_hashfn(group_num)]); spin_unlock_bh(&log->instances_lock); return inst; out_unlock: spin_unlock_bh(&log->instances_lock); return ERR_PTR(err); } static void __nfulnl_flush(struct nfulnl_instance *inst); /* called with BH disabled */ static void __instance_destroy(struct nfulnl_instance *inst) { /* first pull it out of the global list */ hlist_del_rcu(&inst->hlist); /* then flush all pending packets from skb */ spin_lock(&inst->lock); /* lockless readers wont be able to use us */ inst->copy_mode = NFULNL_COPY_DISABLED; if (inst->skb) __nfulnl_flush(inst); spin_unlock(&inst->lock); /* and finally put the refcount */ instance_put(inst); } static inline void instance_destroy(struct nfnl_log_net *log, struct nfulnl_instance *inst) { spin_lock_bh(&log->instances_lock); __instance_destroy(inst); spin_unlock_bh(&log->instances_lock); } static int nfulnl_set_mode(struct nfulnl_instance *inst, u_int8_t mode, unsigned int range) { int status = 0; spin_lock_bh(&inst->lock); switch (mode) { case NFULNL_COPY_NONE: case NFULNL_COPY_META: inst->copy_mode = mode; inst->copy_range = 0; break; case NFULNL_COPY_PACKET: inst->copy_mode = mode; if (range == 0) range = NFULNL_COPY_RANGE_MAX; inst->copy_range = min_t(unsigned int, range, NFULNL_COPY_RANGE_MAX); break; default: status = -EINVAL; break; } spin_unlock_bh(&inst->lock); return status; } static int nfulnl_set_nlbufsiz(struct nfulnl_instance *inst, u_int32_t nlbufsiz) { int status; spin_lock_bh(&inst->lock); if (nlbufsiz < NFULNL_NLBUFSIZ_DEFAULT) status = -ERANGE; else if (nlbufsiz > 131072) status = -ERANGE; else { inst->nlbufsiz = nlbufsiz; status = 0; } spin_unlock_bh(&inst->lock); return status; } static void nfulnl_set_timeout(struct nfulnl_instance *inst, u_int32_t timeout) { spin_lock_bh(&inst->lock); inst->flushtimeout = timeout; spin_unlock_bh(&inst->lock); } static void nfulnl_set_qthresh(struct nfulnl_instance *inst, u_int32_t qthresh) { spin_lock_bh(&inst->lock); inst->qthreshold = qthresh; spin_unlock_bh(&inst->lock); } static int nfulnl_set_flags(struct nfulnl_instance *inst, u_int16_t flags) { spin_lock_bh(&inst->lock); inst->flags = flags; spin_unlock_bh(&inst->lock); return 0; } static struct sk_buff * nfulnl_alloc_skb(struct net *net, u32 peer_portid, unsigned int inst_size, unsigned int pkt_size) { struct sk_buff *skb; unsigned int n; /* alloc skb which should be big enough for a whole multipart * message. WARNING: has to be <= 128k due to slab restrictions */ n = max(inst_size, pkt_size); skb = alloc_skb(n, GFP_ATOMIC | __GFP_NOWARN); if (!skb) { if (n > pkt_size) { /* try to allocate only as much as we need for current * packet */ skb = alloc_skb(pkt_size, GFP_ATOMIC); } } return skb; } static void __nfulnl_send(struct nfulnl_instance *inst) { if (inst->qlen > 1) { struct nlmsghdr *nlh = nlmsg_put(inst->skb, 0, 0, NLMSG_DONE, sizeof(struct nfgenmsg), 0); if (WARN_ONCE(!nlh, "bad nlskb size: %u, tailroom %d\n", inst->skb->len, skb_tailroom(inst->skb))) { kfree_skb(inst->skb); goto out; } } nfnetlink_unicast(inst->skb, inst->net, inst->peer_portid); out: inst->qlen = 0; inst->skb = NULL; } static void __nfulnl_flush(struct nfulnl_instance *inst) { /* timer holds a reference */ if (del_timer(&inst->timer)) instance_put(inst); if (inst->skb) __nfulnl_send(inst); } static void nfulnl_timer(struct timer_list *t) { struct nfulnl_instance *inst = from_timer(inst, t, timer); spin_lock_bh(&inst->lock); if (inst->skb) __nfulnl_send(inst); spin_unlock_bh(&inst->lock); instance_put(inst); } static u32 nfulnl_get_bridge_size(const struct sk_buff *skb) { u32 size = 0; if (!skb_mac_header_was_set(skb)) return 0; if (skb_vlan_tag_present(skb)) { size += nla_total_size(0); /* nested */ size += nla_total_size(sizeof(u16)); /* id */ size += nla_total_size(sizeof(u16)); /* tag */ } if (skb->network_header > skb->mac_header) size += nla_total_size(skb->network_header - skb->mac_header); return size; } static int nfulnl_put_bridge(struct nfulnl_instance *inst, const struct sk_buff *skb) { if (!skb_mac_header_was_set(skb)) return 0; if (skb_vlan_tag_present(skb)) { struct nlattr *nest; nest = nla_nest_start(inst->skb, NFULA_VLAN); if (!nest) goto nla_put_failure; if (nla_put_be16(inst->skb, NFULA_VLAN_TCI, htons(skb->vlan_tci)) || nla_put_be16(inst->skb, NFULA_VLAN_PROTO, skb->vlan_proto)) goto nla_put_failure; nla_nest_end(inst->skb, nest); } if (skb->mac_header < skb->network_header) { int len = (int)(skb->network_header - skb->mac_header); if (nla_put(inst->skb, NFULA_L2HDR, len, skb_mac_header(skb))) goto nla_put_failure; } return 0; nla_put_failure: return -1; } /* This is an inline function, we don't really care about a long * list of arguments */ static inline int __build_packet_message(struct nfnl_log_net *log, struct nfulnl_instance *inst, const struct sk_buff *skb, unsigned int data_len, u_int8_t pf, unsigned int hooknum, const struct net_device *indev, const struct net_device *outdev, const char *prefix, unsigned int plen, const struct nfnl_ct_hook *nfnl_ct, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { struct nfulnl_msg_packet_hdr pmsg; struct nlmsghdr *nlh; sk_buff_data_t old_tail = inst->skb->tail; struct sock *sk; const unsigned char *hwhdrp; nlh = nfnl_msg_put(inst->skb, 0, 0, nfnl_msg_type(NFNL_SUBSYS_ULOG, NFULNL_MSG_PACKET), 0, pf, NFNETLINK_V0, htons(inst->group_num)); if (!nlh) return -1; memset(&pmsg, 0, sizeof(pmsg)); pmsg.hw_protocol = skb->protocol; pmsg.hook = hooknum; if (nla_put(inst->skb, NFULA_PACKET_HDR, sizeof(pmsg), &pmsg)) goto nla_put_failure; if (prefix && nla_put(inst->skb, NFULA_PREFIX, plen, prefix)) goto nla_put_failure; if (indev) { #if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER) if (nla_put_be32(inst->skb, NFULA_IFINDEX_INDEV, htonl(indev->ifindex))) goto nla_put_failure; #else if (pf == PF_BRIDGE) { /* Case 1: outdev is physical input device, we need to * look for bridge group (when called from * netfilter_bridge) */ if (nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSINDEV, htonl(indev->ifindex)) || /* this is the bridge group "brX" */ /* rcu_read_lock()ed by nf_hook_thresh or * nf_log_packet. */ nla_put_be32(inst->skb, NFULA_IFINDEX_INDEV, htonl(br_port_get_rcu(indev)->br->dev->ifindex))) goto nla_put_failure; } else { int physinif; /* Case 2: indev is bridge group, we need to look for * physical device (when called from ipv4) */ if (nla_put_be32(inst->skb, NFULA_IFINDEX_INDEV, htonl(indev->ifindex))) goto nla_put_failure; physinif = nf_bridge_get_physinif(skb); if (physinif && nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSINDEV, htonl(physinif))) goto nla_put_failure; } #endif } if (outdev) { #if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER) if (nla_put_be32(inst->skb, NFULA_IFINDEX_OUTDEV, htonl(outdev->ifindex))) goto nla_put_failure; #else if (pf == PF_BRIDGE) { /* Case 1: outdev is physical output device, we need to * look for bridge group (when called from * netfilter_bridge) */ if (nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSOUTDEV, htonl(outdev->ifindex)) || /* this is the bridge group "brX" */ /* rcu_read_lock()ed by nf_hook_thresh or * nf_log_packet. */ nla_put_be32(inst->skb, NFULA_IFINDEX_OUTDEV, htonl(br_port_get_rcu(outdev)->br->dev->ifindex))) goto nla_put_failure; } else { struct net_device *physoutdev; /* Case 2: indev is a bridge group, we need to look * for physical device (when called from ipv4) */ if (nla_put_be32(inst->skb, NFULA_IFINDEX_OUTDEV, htonl(outdev->ifindex))) goto nla_put_failure; physoutdev = nf_bridge_get_physoutdev(skb); if (physoutdev && nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSOUTDEV, htonl(physoutdev->ifindex))) goto nla_put_failure; } #endif } if (skb->mark && nla_put_be32(inst->skb, NFULA_MARK, htonl(skb->mark))) goto nla_put_failure; if (indev && skb->dev && skb_mac_header_was_set(skb) && skb_mac_header_len(skb) != 0) { struct nfulnl_msg_packet_hw phw; int len; memset(&phw, 0, sizeof(phw)); len = dev_parse_header(skb, phw.hw_addr); if (len > 0) { phw.hw_addrlen = htons(len); if (nla_put(inst->skb, NFULA_HWADDR, sizeof(phw), &phw)) goto nla_put_failure; } } if (indev && skb_mac_header_was_set(skb)) { if (nla_put_be16(inst->skb, NFULA_HWTYPE, htons(skb->dev->type)) || nla_put_be16(inst->skb, NFULA_HWLEN, htons(skb->dev->hard_header_len))) goto nla_put_failure; hwhdrp = skb_mac_header(skb); if (skb->dev->type == ARPHRD_SIT) hwhdrp -= ETH_HLEN; if (hwhdrp >= skb->head && nla_put(inst->skb, NFULA_HWHEADER, skb->dev->hard_header_len, hwhdrp)) goto nla_put_failure; } if (hooknum <= NF_INET_FORWARD) { struct timespec64 kts = ktime_to_timespec64(skb_tstamp_cond(skb, true)); struct nfulnl_msg_packet_timestamp ts; ts.sec = cpu_to_be64(kts.tv_sec); ts.usec = cpu_to_be64(kts.tv_nsec / NSEC_PER_USEC); if (nla_put(inst->skb, NFULA_TIMESTAMP, sizeof(ts), &ts)) goto nla_put_failure; } /* UID */ sk = skb->sk; if (sk && sk_fullsock(sk)) { read_lock_bh(&sk->sk_callback_lock); if (sk->sk_socket && sk->sk_socket->file) { struct file *file = sk->sk_socket->file; const struct cred *cred = file->f_cred; struct user_namespace *user_ns = inst->peer_user_ns; __be32 uid = htonl(from_kuid_munged(user_ns, cred->fsuid)); __be32 gid = htonl(from_kgid_munged(user_ns, cred->fsgid)); read_unlock_bh(&sk->sk_callback_lock); if (nla_put_be32(inst->skb, NFULA_UID, uid) || nla_put_be32(inst->skb, NFULA_GID, gid)) goto nla_put_failure; } else read_unlock_bh(&sk->sk_callback_lock); } /* local sequence number */ if ((inst->flags & NFULNL_CFG_F_SEQ) && nla_put_be32(inst->skb, NFULA_SEQ, htonl(inst->seq++))) goto nla_put_failure; /* global sequence number */ if ((inst->flags & NFULNL_CFG_F_SEQ_GLOBAL) && nla_put_be32(inst->skb, NFULA_SEQ_GLOBAL, htonl(atomic_inc_return(&log->global_seq)))) goto nla_put_failure; if (ct && nfnl_ct->build(inst->skb, ct, ctinfo, NFULA_CT, NFULA_CT_INFO) < 0) goto nla_put_failure; if ((pf == NFPROTO_NETDEV || pf == NFPROTO_BRIDGE) && nfulnl_put_bridge(inst, skb) < 0) goto nla_put_failure; if (data_len) { struct nlattr *nla; int size = nla_attr_size(data_len); if (skb_tailroom(inst->skb) < nla_total_size(data_len)) goto nla_put_failure; nla = skb_put(inst->skb, nla_total_size(data_len)); nla->nla_type = NFULA_PAYLOAD; nla->nla_len = size; if (skb_copy_bits(skb, 0, nla_data(nla), data_len)) BUG(); } nlh->nlmsg_len = inst->skb->tail - old_tail; return 0; nla_put_failure: PRINTR(KERN_ERR "nfnetlink_log: error creating log nlmsg\n"); return -1; } static const struct nf_loginfo default_loginfo = { .type = NF_LOG_TYPE_ULOG, .u = { .ulog = { .copy_len = 0xffff, .group = 0, .qthreshold = 1, }, }, }; /* log handler for internal netfilter logging api */ static void nfulnl_log_packet(struct net *net, u_int8_t pf, unsigned int hooknum, const struct sk_buff *skb, const struct net_device *in, const struct net_device *out, const struct nf_loginfo *li_user, const char *prefix) { size_t size; unsigned int data_len; struct nfulnl_instance *inst; const struct nf_loginfo *li; unsigned int qthreshold; unsigned int plen = 0; struct nfnl_log_net *log = nfnl_log_pernet(net); const struct nfnl_ct_hook *nfnl_ct = NULL; enum ip_conntrack_info ctinfo = 0; struct nf_conn *ct = NULL; if (li_user && li_user->type == NF_LOG_TYPE_ULOG) li = li_user; else li = &default_loginfo; inst = instance_lookup_get_rcu(log, li->u.ulog.group); if (!inst) return; if (prefix) plen = strlen(prefix) + 1; /* FIXME: do we want to make the size calculation conditional based on * what is actually present? way more branches and checks, but more * memory efficient... */ size = nlmsg_total_size(sizeof(struct nfgenmsg)) + nla_total_size(sizeof(struct nfulnl_msg_packet_hdr)) + nla_total_size(sizeof(u_int32_t)) /* ifindex */ + nla_total_size(sizeof(u_int32_t)) /* ifindex */ #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) + nla_total_size(sizeof(u_int32_t)) /* ifindex */ + nla_total_size(sizeof(u_int32_t)) /* ifindex */ #endif + nla_total_size(sizeof(u_int32_t)) /* mark */ + nla_total_size(sizeof(u_int32_t)) /* uid */ + nla_total_size(sizeof(u_int32_t)) /* gid */ + nla_total_size(plen) /* prefix */ + nla_total_size(sizeof(struct nfulnl_msg_packet_hw)) + nla_total_size(sizeof(struct nfulnl_msg_packet_timestamp)) + nla_total_size(sizeof(struct nfgenmsg)); /* NLMSG_DONE */ if (in && skb_mac_header_was_set(skb)) { size += nla_total_size(skb->dev->hard_header_len) + nla_total_size(sizeof(u_int16_t)) /* hwtype */ + nla_total_size(sizeof(u_int16_t)); /* hwlen */ } spin_lock_bh(&inst->lock); if (inst->flags & NFULNL_CFG_F_SEQ) size += nla_total_size(sizeof(u_int32_t)); if (inst->flags & NFULNL_CFG_F_SEQ_GLOBAL) size += nla_total_size(sizeof(u_int32_t)); #if IS_ENABLED(CONFIG_NF_CONNTRACK) if (inst->flags & NFULNL_CFG_F_CONNTRACK) { nfnl_ct = rcu_dereference(nfnl_ct_hook); if (nfnl_ct != NULL) { ct = nf_ct_get(skb, &ctinfo); if (ct != NULL) size += nfnl_ct->build_size(ct); } } #endif if (pf == NFPROTO_NETDEV || pf == NFPROTO_BRIDGE) size += nfulnl_get_bridge_size(skb); qthreshold = inst->qthreshold; /* per-rule qthreshold overrides per-instance */ if (li->u.ulog.qthreshold) if (qthreshold > li->u.ulog.qthreshold) qthreshold = li->u.ulog.qthreshold; switch (inst->copy_mode) { case NFULNL_COPY_META: case NFULNL_COPY_NONE: data_len = 0; break; case NFULNL_COPY_PACKET: data_len = inst->copy_range; if ((li->u.ulog.flags & NF_LOG_F_COPY_LEN) && (li->u.ulog.copy_len < data_len)) data_len = li->u.ulog.copy_len; if (data_len > skb->len) data_len = skb->len; size += nla_total_size(data_len); break; case NFULNL_COPY_DISABLED: default: goto unlock_and_release; } if (inst->skb && size > skb_tailroom(inst->skb)) { /* either the queue len is too high or we don't have * enough room in the skb left. flush to userspace. */ __nfulnl_flush(inst); } if (!inst->skb) { inst->skb = nfulnl_alloc_skb(net, inst->peer_portid, inst->nlbufsiz, size); if (!inst->skb) goto alloc_failure; } inst->qlen++; __build_packet_message(log, inst, skb, data_len, pf, hooknum, in, out, prefix, plen, nfnl_ct, ct, ctinfo); if (inst->qlen >= qthreshold) __nfulnl_flush(inst); /* timer_pending always called within inst->lock, so there * is no chance of a race here */ else if (!timer_pending(&inst->timer)) { instance_get(inst); inst->timer.expires = jiffies + (inst->flushtimeout*HZ/100); add_timer(&inst->timer); } unlock_and_release: spin_unlock_bh(&inst->lock); instance_put(inst); return; alloc_failure: /* FIXME: statistics */ goto unlock_and_release; } static int nfulnl_rcv_nl_event(struct notifier_block *this, unsigned long event, void *ptr) { struct netlink_notify *n = ptr; struct nfnl_log_net *log = nfnl_log_pernet(n->net); if (event == NETLINK_URELEASE && n->protocol == NETLINK_NETFILTER) { int i; /* destroy all instances for this portid */ spin_lock_bh(&log->instances_lock); for (i = 0; i < INSTANCE_BUCKETS; i++) { struct hlist_node *t2; struct nfulnl_instance *inst; struct hlist_head *head = &log->instance_table[i]; hlist_for_each_entry_safe(inst, t2, head, hlist) { if (n->portid == inst->peer_portid) __instance_destroy(inst); } } spin_unlock_bh(&log->instances_lock); } return NOTIFY_DONE; } static struct notifier_block nfulnl_rtnl_notifier = { .notifier_call = nfulnl_rcv_nl_event, }; static int nfulnl_recv_unsupp(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nfula[]) { return -ENOTSUPP; } static struct nf_logger nfulnl_logger __read_mostly = { .name = "nfnetlink_log", .type = NF_LOG_TYPE_ULOG, .logfn = nfulnl_log_packet, .me = THIS_MODULE, }; static const struct nla_policy nfula_cfg_policy[NFULA_CFG_MAX+1] = { [NFULA_CFG_CMD] = { .len = sizeof(struct nfulnl_msg_config_cmd) }, [NFULA_CFG_MODE] = { .len = sizeof(struct nfulnl_msg_config_mode) }, [NFULA_CFG_TIMEOUT] = { .type = NLA_U32 }, [NFULA_CFG_QTHRESH] = { .type = NLA_U32 }, [NFULA_CFG_NLBUFSIZ] = { .type = NLA_U32 }, [NFULA_CFG_FLAGS] = { .type = NLA_U16 }, }; static int nfulnl_recv_config(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nfula[]) { struct nfnl_log_net *log = nfnl_log_pernet(info->net); u_int16_t group_num = ntohs(info->nfmsg->res_id); struct nfulnl_msg_config_cmd *cmd = NULL; struct nfulnl_instance *inst; u16 flags = 0; int ret = 0; if (nfula[NFULA_CFG_CMD]) { u_int8_t pf = info->nfmsg->nfgen_family; cmd = nla_data(nfula[NFULA_CFG_CMD]); /* Commands without queue context */ switch (cmd->command) { case NFULNL_CFG_CMD_PF_BIND: return nf_log_bind_pf(info->net, pf, &nfulnl_logger); case NFULNL_CFG_CMD_PF_UNBIND: nf_log_unbind_pf(info->net, pf); return 0; } } inst = instance_lookup_get(log, group_num); if (inst && inst->peer_portid != NETLINK_CB(skb).portid) { ret = -EPERM; goto out_put; } /* Check if we support these flags in first place, dependencies should * be there too not to break atomicity. */ if (nfula[NFULA_CFG_FLAGS]) { flags = ntohs(nla_get_be16(nfula[NFULA_CFG_FLAGS])); if ((flags & NFULNL_CFG_F_CONNTRACK) && !rcu_access_pointer(nfnl_ct_hook)) { #ifdef CONFIG_MODULES nfnl_unlock(NFNL_SUBSYS_ULOG); request_module("ip_conntrack_netlink"); nfnl_lock(NFNL_SUBSYS_ULOG); if (rcu_access_pointer(nfnl_ct_hook)) { ret = -EAGAIN; goto out_put; } #endif ret = -EOPNOTSUPP; goto out_put; } } if (cmd != NULL) { switch (cmd->command) { case NFULNL_CFG_CMD_BIND: if (inst) { ret = -EBUSY; goto out_put; } inst = instance_create(info->net, group_num, NETLINK_CB(skb).portid, sk_user_ns(NETLINK_CB(skb).sk)); if (IS_ERR(inst)) { ret = PTR_ERR(inst); goto out; } break; case NFULNL_CFG_CMD_UNBIND: if (!inst) { ret = -ENODEV; goto out; } instance_destroy(log, inst); goto out_put; default: ret = -ENOTSUPP; goto out_put; } } else if (!inst) { ret = -ENODEV; goto out; } if (nfula[NFULA_CFG_MODE]) { struct nfulnl_msg_config_mode *params = nla_data(nfula[NFULA_CFG_MODE]); nfulnl_set_mode(inst, params->copy_mode, ntohl(params->copy_range)); } if (nfula[NFULA_CFG_TIMEOUT]) { __be32 timeout = nla_get_be32(nfula[NFULA_CFG_TIMEOUT]); nfulnl_set_timeout(inst, ntohl(timeout)); } if (nfula[NFULA_CFG_NLBUFSIZ]) { __be32 nlbufsiz = nla_get_be32(nfula[NFULA_CFG_NLBUFSIZ]); nfulnl_set_nlbufsiz(inst, ntohl(nlbufsiz)); } if (nfula[NFULA_CFG_QTHRESH]) { __be32 qthresh = nla_get_be32(nfula[NFULA_CFG_QTHRESH]); nfulnl_set_qthresh(inst, ntohl(qthresh)); } if (nfula[NFULA_CFG_FLAGS]) nfulnl_set_flags(inst, flags); out_put: instance_put(inst); out: return ret; } static const struct nfnl_callback nfulnl_cb[NFULNL_MSG_MAX] = { [NFULNL_MSG_PACKET] = { .call = nfulnl_recv_unsupp, .type = NFNL_CB_MUTEX, .attr_count = NFULA_MAX, }, [NFULNL_MSG_CONFIG] = { .call = nfulnl_recv_config, .type = NFNL_CB_MUTEX, .attr_count = NFULA_CFG_MAX, .policy = nfula_cfg_policy }, }; static const struct nfnetlink_subsystem nfulnl_subsys = { .name = "log", .subsys_id = NFNL_SUBSYS_ULOG, .cb_count = NFULNL_MSG_MAX, .cb = nfulnl_cb, }; #ifdef CONFIG_PROC_FS struct iter_state { struct seq_net_private p; unsigned int bucket; }; static struct hlist_node *get_first(struct net *net, struct iter_state *st) { struct nfnl_log_net *log; if (!st) return NULL; log = nfnl_log_pernet(net); for (st->bucket = 0; st->bucket < INSTANCE_BUCKETS; st->bucket++) { struct hlist_head *head = &log->instance_table[st->bucket]; if (!hlist_empty(head)) return rcu_dereference(hlist_first_rcu(head)); } return NULL; } static struct hlist_node *get_next(struct net *net, struct iter_state *st, struct hlist_node *h) { h = rcu_dereference(hlist_next_rcu(h)); while (!h) { struct nfnl_log_net *log; struct hlist_head *head; if (++st->bucket >= INSTANCE_BUCKETS) return NULL; log = nfnl_log_pernet(net); head = &log->instance_table[st->bucket]; h = rcu_dereference(hlist_first_rcu(head)); } return h; } static struct hlist_node *get_idx(struct net *net, struct iter_state *st, loff_t pos) { struct hlist_node *head; head = get_first(net, st); if (head) while (pos && (head = get_next(net, st, head))) pos--; return pos ? NULL : head; } static void *seq_start(struct seq_file *s, loff_t *pos) __acquires(rcu) { rcu_read_lock(); return get_idx(seq_file_net(s), s->private, *pos); } static void *seq_next(struct seq_file *s, void *v, loff_t *pos) { (*pos)++; return get_next(seq_file_net(s), s->private, v); } static void seq_stop(struct seq_file *s, void *v) __releases(rcu) { rcu_read_unlock(); } static int seq_show(struct seq_file *s, void *v) { const struct nfulnl_instance *inst = v; seq_printf(s, "%5u %6u %5u %1u %5u %6u %2u\n", inst->group_num, inst->peer_portid, inst->qlen, inst->copy_mode, inst->copy_range, inst->flushtimeout, refcount_read(&inst->use)); return 0; } static const struct seq_operations nful_seq_ops = { .start = seq_start, .next = seq_next, .stop = seq_stop, .show = seq_show, }; #endif /* PROC_FS */ static int __net_init nfnl_log_net_init(struct net *net) { unsigned int i; struct nfnl_log_net *log = nfnl_log_pernet(net); #ifdef CONFIG_PROC_FS struct proc_dir_entry *proc; kuid_t root_uid; kgid_t root_gid; #endif for (i = 0; i < INSTANCE_BUCKETS; i++) INIT_HLIST_HEAD(&log->instance_table[i]); spin_lock_init(&log->instances_lock); #ifdef CONFIG_PROC_FS proc = proc_create_net("nfnetlink_log", 0440, net->nf.proc_netfilter, &nful_seq_ops, sizeof(struct iter_state)); if (!proc) return -ENOMEM; root_uid = make_kuid(net->user_ns, 0); root_gid = make_kgid(net->user_ns, 0); if (uid_valid(root_uid) && gid_valid(root_gid)) proc_set_user(proc, root_uid, root_gid); #endif return 0; } static void __net_exit nfnl_log_net_exit(struct net *net) { struct nfnl_log_net *log = nfnl_log_pernet(net); unsigned int i; #ifdef CONFIG_PROC_FS remove_proc_entry("nfnetlink_log", net->nf.proc_netfilter); #endif nf_log_unset(net, &nfulnl_logger); for (i = 0; i < INSTANCE_BUCKETS; i++) WARN_ON_ONCE(!hlist_empty(&log->instance_table[i])); } static struct pernet_operations nfnl_log_net_ops = { .init = nfnl_log_net_init, .exit = nfnl_log_net_exit, .id = &nfnl_log_net_id, .size = sizeof(struct nfnl_log_net), }; static int __init nfnetlink_log_init(void) { int status; status = register_pernet_subsys(&nfnl_log_net_ops); if (status < 0) { pr_err("failed to register pernet ops\n"); goto out; } netlink_register_notifier(&nfulnl_rtnl_notifier); status = nfnetlink_subsys_register(&nfulnl_subsys); if (status < 0) { pr_err("failed to create netlink socket\n"); goto cleanup_netlink_notifier; } status = nf_log_register(NFPROTO_UNSPEC, &nfulnl_logger); if (status < 0) { pr_err("failed to register logger\n"); goto cleanup_subsys; } return status; cleanup_subsys: nfnetlink_subsys_unregister(&nfulnl_subsys); cleanup_netlink_notifier: netlink_unregister_notifier(&nfulnl_rtnl_notifier); unregister_pernet_subsys(&nfnl_log_net_ops); out: return status; } static void __exit nfnetlink_log_fini(void) { nfnetlink_subsys_unregister(&nfulnl_subsys); netlink_unregister_notifier(&nfulnl_rtnl_notifier); unregister_pernet_subsys(&nfnl_log_net_ops); nf_log_unregister(&nfulnl_logger); } MODULE_DESCRIPTION("netfilter userspace logging"); MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_ULOG); MODULE_ALIAS_NF_LOGGER(AF_INET, 1); MODULE_ALIAS_NF_LOGGER(AF_INET6, 1); MODULE_ALIAS_NF_LOGGER(AF_BRIDGE, 1); MODULE_ALIAS_NF_LOGGER(3, 1); /* NFPROTO_ARP */ MODULE_ALIAS_NF_LOGGER(5, 1); /* NFPROTO_NETDEV */ module_init(nfnetlink_log_init); module_exit(nfnetlink_log_fini); |
60 60 60 60 60 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 | // SPDX-License-Identifier: GPL-2.0 /* * Neil Brown <neilb@cse.unsw.edu.au> * J. Bruce Fields <bfields@umich.edu> * Andy Adamson <andros@umich.edu> * Dug Song <dugsong@monkey.org> * * RPCSEC_GSS server authentication. * This implements RPCSEC_GSS as defined in rfc2203 (rpcsec_gss) and rfc2078 * (gssapi) * * The RPCSEC_GSS involves three stages: * 1/ context creation * 2/ data exchange * 3/ context destruction * * Context creation is handled largely by upcalls to user-space. * In particular, GSS_Accept_sec_context is handled by an upcall * Data exchange is handled entirely within the kernel * In particular, GSS_GetMIC, GSS_VerifyMIC, GSS_Seal, GSS_Unseal are in-kernel. * Context destruction is handled in-kernel * GSS_Delete_sec_context is in-kernel * * Context creation is initiated by a RPCSEC_GSS_INIT request arriving. * The context handle and gss_token are used as a key into the rpcsec_init cache. * The content of this cache includes some of the outputs of GSS_Accept_sec_context, * being major_status, minor_status, context_handle, reply_token. * These are sent back to the client. * Sequence window management is handled by the kernel. The window size if currently * a compile time constant. * * When user-space is happy that a context is established, it places an entry * in the rpcsec_context cache. The key for this cache is the context_handle. * The content includes: * uid/gidlist - for determining access rights * mechanism type * mechanism specific information, such as a key * */ #include <linux/slab.h> #include <linux/types.h> #include <linux/module.h> #include <linux/pagemap.h> #include <linux/user_namespace.h> #include <linux/sunrpc/auth_gss.h> #include <linux/sunrpc/gss_err.h> #include <linux/sunrpc/svcauth.h> #include <linux/sunrpc/svcauth_gss.h> #include <linux/sunrpc/cache.h> #include <linux/sunrpc/gss_krb5.h> #include <trace/events/rpcgss.h> #include "gss_rpc_upcall.h" /* * Unfortunately there isn't a maximum checksum size exported via the * GSS API. Manufacture one based on GSS mechanisms supported by this * implementation. */ #define GSS_MAX_CKSUMSIZE (GSS_KRB5_TOK_HDR_LEN + GSS_KRB5_MAX_CKSUM_LEN) /* * This value may be increased in the future to accommodate other * usage of the scratch buffer. */ #define GSS_SCRATCH_SIZE GSS_MAX_CKSUMSIZE struct gss_svc_data { /* decoded gss client cred: */ struct rpc_gss_wire_cred clcred; u32 gsd_databody_offset; struct rsc *rsci; /* for temporary results */ __be32 gsd_seq_num; u8 gsd_scratch[GSS_SCRATCH_SIZE]; }; /* The rpcsec_init cache is used for mapping RPCSEC_GSS_{,CONT_}INIT requests * into replies. * * Key is context handle (\x if empty) and gss_token. * Content is major_status minor_status (integers) context_handle, reply_token. * */ static int netobj_equal(struct xdr_netobj *a, struct xdr_netobj *b) { return a->len == b->len && 0 == memcmp(a->data, b->data, a->len); } #define RSI_HASHBITS 6 #define RSI_HASHMAX (1<<RSI_HASHBITS) struct rsi { struct cache_head h; struct xdr_netobj in_handle, in_token; struct xdr_netobj out_handle, out_token; int major_status, minor_status; struct rcu_head rcu_head; }; static struct rsi *rsi_update(struct cache_detail *cd, struct rsi *new, struct rsi *old); static struct rsi *rsi_lookup(struct cache_detail *cd, struct rsi *item); static void rsi_free(struct rsi *rsii) { kfree(rsii->in_handle.data); kfree(rsii->in_token.data); kfree(rsii->out_handle.data); kfree(rsii->out_token.data); } static void rsi_free_rcu(struct rcu_head *head) { struct rsi *rsii = container_of(head, struct rsi, rcu_head); rsi_free(rsii); kfree(rsii); } static void rsi_put(struct kref *ref) { struct rsi *rsii = container_of(ref, struct rsi, h.ref); call_rcu(&rsii->rcu_head, rsi_free_rcu); } static inline int rsi_hash(struct rsi *item) { return hash_mem(item->in_handle.data, item->in_handle.len, RSI_HASHBITS) ^ hash_mem(item->in_token.data, item->in_token.len, RSI_HASHBITS); } static int rsi_match(struct cache_head *a, struct cache_head *b) { struct rsi *item = container_of(a, struct rsi, h); struct rsi *tmp = container_of(b, struct rsi, h); return netobj_equal(&item->in_handle, &tmp->in_handle) && netobj_equal(&item->in_token, &tmp->in_token); } static int dup_to_netobj(struct xdr_netobj *dst, char *src, int len) { dst->len = len; dst->data = (len ? kmemdup(src, len, GFP_KERNEL) : NULL); if (len && !dst->data) return -ENOMEM; return 0; } static inline int dup_netobj(struct xdr_netobj *dst, struct xdr_netobj *src) { return dup_to_netobj(dst, src->data, src->len); } static void rsi_init(struct cache_head *cnew, struct cache_head *citem) { struct rsi *new = container_of(cnew, struct rsi, h); struct rsi *item = container_of(citem, struct rsi, h); new->out_handle.data = NULL; new->out_handle.len = 0; new->out_token.data = NULL; new->out_token.len = 0; new->in_handle.len = item->in_handle.len; item->in_handle.len = 0; new->in_token.len = item->in_token.len; item->in_token.len = 0; new->in_handle.data = item->in_handle.data; item->in_handle.data = NULL; new->in_token.data = item->in_token.data; item->in_token.data = NULL; } static void update_rsi(struct cache_head *cnew, struct cache_head *citem) { struct rsi *new = container_of(cnew, struct rsi, h); struct rsi *item = container_of(citem, struct rsi, h); BUG_ON(new->out_handle.data || new->out_token.data); new->out_handle.len = item->out_handle.len; item->out_handle.len = 0; new->out_token.len = item->out_token.len; item->out_token.len = 0; new->out_handle.data = item->out_handle.data; item->out_handle.data = NULL; new->out_token.data = item->out_token.data; item->out_token.data = NULL; new->major_status = item->major_status; new->minor_status = item->minor_status; } static struct cache_head *rsi_alloc(void) { struct rsi *rsii = kmalloc(sizeof(*rsii), GFP_KERNEL); if (rsii) return &rsii->h; else return NULL; } static int rsi_upcall(struct cache_detail *cd, struct cache_head *h) { return sunrpc_cache_pipe_upcall_timeout(cd, h); } static void rsi_request(struct cache_detail *cd, struct cache_head *h, char **bpp, int *blen) { struct rsi *rsii = container_of(h, struct rsi, h); qword_addhex(bpp, blen, rsii->in_handle.data, rsii->in_handle.len); qword_addhex(bpp, blen, rsii->in_token.data, rsii->in_token.len); (*bpp)[-1] = '\n'; WARN_ONCE(*blen < 0, "RPCSEC/GSS credential too large - please use gssproxy\n"); } static int rsi_parse(struct cache_detail *cd, char *mesg, int mlen) { /* context token expiry major minor context token */ char *buf = mesg; char *ep; int len; struct rsi rsii, *rsip = NULL; time64_t expiry; int status = -EINVAL; memset(&rsii, 0, sizeof(rsii)); /* handle */ len = qword_get(&mesg, buf, mlen); if (len < 0) goto out; status = -ENOMEM; if (dup_to_netobj(&rsii.in_handle, buf, len)) goto out; /* token */ len = qword_get(&mesg, buf, mlen); status = -EINVAL; if (len < 0) goto out; status = -ENOMEM; if (dup_to_netobj(&rsii.in_token, buf, len)) goto out; rsip = rsi_lookup(cd, &rsii); if (!rsip) goto out; rsii.h.flags = 0; /* expiry */ status = get_expiry(&mesg, &expiry); if (status) goto out; status = -EINVAL; /* major/minor */ len = qword_get(&mesg, buf, mlen); if (len <= 0) goto out; rsii.major_status = simple_strtoul(buf, &ep, 10); if (*ep) goto out; len = qword_get(&mesg, buf, mlen); if (len <= 0) goto out; rsii.minor_status = simple_strtoul(buf, &ep, 10); if (*ep) goto out; /* out_handle */ len = qword_get(&mesg, buf, mlen); if (len < 0) goto out; status = -ENOMEM; if (dup_to_netobj(&rsii.out_handle, buf, len)) goto out; /* out_token */ len = qword_get(&mesg, buf, mlen); status = -EINVAL; if (len < 0) goto out; status = -ENOMEM; if (dup_to_netobj(&rsii.out_token, buf, len)) goto out; rsii.h.expiry_time = expiry; rsip = rsi_update(cd, &rsii, rsip); status = 0; out: rsi_free(&rsii); if (rsip) cache_put(&rsip->h, cd); else status = -ENOMEM; return status; } static const struct cache_detail rsi_cache_template = { .owner = THIS_MODULE, .hash_size = RSI_HASHMAX, .name = "auth.rpcsec.init", .cache_put = rsi_put, .cache_upcall = rsi_upcall, .cache_request = rsi_request, .cache_parse = rsi_parse, .match = rsi_match, .init = rsi_init, .update = update_rsi, .alloc = rsi_alloc, }; static struct rsi *rsi_lookup(struct cache_detail *cd, struct rsi *item) { struct cache_head *ch; int hash = rsi_hash(item); ch = sunrpc_cache_lookup_rcu(cd, &item->h, hash); if (ch) return container_of(ch, struct rsi, h); else return NULL; } static struct rsi *rsi_update(struct cache_detail *cd, struct rsi *new, struct rsi *old) { struct cache_head *ch; int hash = rsi_hash(new); ch = sunrpc_cache_update(cd, &new->h, &old->h, hash); if (ch) return container_of(ch, struct rsi, h); else return NULL; } /* * The rpcsec_context cache is used to store a context that is * used in data exchange. * The key is a context handle. The content is: * uid, gidlist, mechanism, service-set, mech-specific-data */ #define RSC_HASHBITS 10 #define RSC_HASHMAX (1<<RSC_HASHBITS) #define GSS_SEQ_WIN 128 struct gss_svc_seq_data { /* highest seq number seen so far: */ u32 sd_max; /* for i such that sd_max-GSS_SEQ_WIN < i <= sd_max, the i-th bit of * sd_win is nonzero iff sequence number i has been seen already: */ unsigned long sd_win[GSS_SEQ_WIN/BITS_PER_LONG]; spinlock_t sd_lock; }; struct rsc { struct cache_head h; struct xdr_netobj handle; struct svc_cred cred; struct gss_svc_seq_data seqdata; struct gss_ctx *mechctx; struct rcu_head rcu_head; }; static struct rsc *rsc_update(struct cache_detail *cd, struct rsc *new, struct rsc *old); static struct rsc *rsc_lookup(struct cache_detail *cd, struct rsc *item); static void rsc_free(struct rsc *rsci) { kfree(rsci->handle.data); if (rsci->mechctx) gss_delete_sec_context(&rsci->mechctx); free_svc_cred(&rsci->cred); } static void rsc_free_rcu(struct rcu_head *head) { struct rsc *rsci = container_of(head, struct rsc, rcu_head); kfree(rsci->handle.data); kfree(rsci); } static void rsc_put(struct kref *ref) { struct rsc *rsci = container_of(ref, struct rsc, h.ref); if (rsci->mechctx) gss_delete_sec_context(&rsci->mechctx); free_svc_cred(&rsci->cred); call_rcu(&rsci->rcu_head, rsc_free_rcu); } static inline int rsc_hash(struct rsc *rsci) { return hash_mem(rsci->handle.data, rsci->handle.len, RSC_HASHBITS); } static int rsc_match(struct cache_head *a, struct cache_head *b) { struct rsc *new = container_of(a, struct rsc, h); struct rsc *tmp = container_of(b, struct rsc, h); return netobj_equal(&new->handle, &tmp->handle); } static void rsc_init(struct cache_head *cnew, struct cache_head *ctmp) { struct rsc *new = container_of(cnew, struct rsc, h); struct rsc *tmp = container_of(ctmp, struct rsc, h); new->handle.len = tmp->handle.len; tmp->handle.len = 0; new->handle.data = tmp->handle.data; tmp->handle.data = NULL; new->mechctx = NULL; init_svc_cred(&new->cred); } static void update_rsc(struct cache_head *cnew, struct cache_head *ctmp) { struct rsc *new = container_of(cnew, struct rsc, h); struct rsc *tmp = container_of(ctmp, struct rsc, h); new->mechctx = tmp->mechctx; tmp->mechctx = NULL; memset(&new->seqdata, 0, sizeof(new->seqdata)); spin_lock_init(&new->seqdata.sd_lock); new->cred = tmp->cred; init_svc_cred(&tmp->cred); } static struct cache_head * rsc_alloc(void) { struct rsc *rsci = kmalloc(sizeof(*rsci), GFP_KERNEL); if (rsci) return &rsci->h; else return NULL; } static int rsc_upcall(struct cache_detail *cd, struct cache_head *h) { return -EINVAL; } static int rsc_parse(struct cache_detail *cd, char *mesg, int mlen) { /* contexthandle expiry [ uid gid N <n gids> mechname ...mechdata... ] */ char *buf = mesg; int id; int len, rv; struct rsc rsci, *rscp = NULL; time64_t expiry; int status = -EINVAL; struct gss_api_mech *gm = NULL; memset(&rsci, 0, sizeof(rsci)); /* context handle */ len = qword_get(&mesg, buf, mlen); if (len < 0) goto out; status = -ENOMEM; if (dup_to_netobj(&rsci.handle, buf, len)) goto out; rsci.h.flags = 0; /* expiry */ status = get_expiry(&mesg, &expiry); if (status) goto out; status = -EINVAL; rscp = rsc_lookup(cd, &rsci); if (!rscp) goto out; /* uid, or NEGATIVE */ rv = get_int(&mesg, &id); if (rv == -EINVAL) goto out; if (rv == -ENOENT) set_bit(CACHE_NEGATIVE, &rsci.h.flags); else { int N, i; /* * NOTE: we skip uid_valid()/gid_valid() checks here: * instead, * -1 id's are later mapped to the * (export-specific) anonymous id by nfsd_setuser. * * (But supplementary gid's get no such special * treatment so are checked for validity here.) */ /* uid */ rsci.cred.cr_uid = make_kuid(current_user_ns(), id); /* gid */ if (get_int(&mesg, &id)) goto out; rsci.cred.cr_gid = make_kgid(current_user_ns(), id); /* number of additional gid's */ if (get_int(&mesg, &N)) goto out; if (N < 0 || N > NGROUPS_MAX) goto out; status = -ENOMEM; rsci.cred.cr_group_info = groups_alloc(N); if (rsci.cred.cr_group_info == NULL) goto out; /* gid's */ status = -EINVAL; for (i=0; i<N; i++) { kgid_t kgid; if (get_int(&mesg, &id)) goto out; kgid = make_kgid(current_user_ns(), id); if (!gid_valid(kgid)) goto out; rsci.cred.cr_group_info->gid[i] = kgid; } groups_sort(rsci.cred.cr_group_info); /* mech name */ len = qword_get(&mesg, buf, mlen); if (len < 0) goto out; gm = rsci.cred.cr_gss_mech = gss_mech_get_by_name(buf); status = -EOPNOTSUPP; if (!gm) goto out; status = -EINVAL; /* mech-specific data: */ len = qword_get(&mesg, buf, mlen); if (len < 0) goto out; status = gss_import_sec_context(buf, len, gm, &rsci.mechctx, NULL, GFP_KERNEL); if (status) goto out; /* get client name */ len = qword_get(&mesg, buf, mlen); if (len > 0) { rsci.cred.cr_principal = kstrdup(buf, GFP_KERNEL); if (!rsci.cred.cr_principal) { status = -ENOMEM; goto out; } } } rsci.h.expiry_time = expiry; rscp = rsc_update(cd, &rsci, rscp); status = 0; out: rsc_free(&rsci); if (rscp) cache_put(&rscp->h, cd); else status = -ENOMEM; return status; } static const struct cache_detail rsc_cache_template = { .owner = THIS_MODULE, .hash_size = RSC_HASHMAX, .name = "auth.rpcsec.context", .cache_put = rsc_put, .cache_upcall = rsc_upcall, .cache_parse = rsc_parse, .match = rsc_match, .init = rsc_init, .update = update_rsc, .alloc = rsc_alloc, }; static struct rsc *rsc_lookup(struct cache_detail *cd, struct rsc *item) { struct cache_head *ch; int hash = rsc_hash(item); ch = sunrpc_cache_lookup_rcu(cd, &item->h, hash); if (ch) return container_of(ch, struct rsc, h); else return NULL; } static struct rsc *rsc_update(struct cache_detail *cd, struct rsc *new, struct rsc *old) { struct cache_head *ch; int hash = rsc_hash(new); ch = sunrpc_cache_update(cd, &new->h, &old->h, hash); if (ch) return container_of(ch, struct rsc, h); else return NULL; } static struct rsc * gss_svc_searchbyctx(struct cache_detail *cd, struct xdr_netobj *handle) { struct rsc rsci; struct rsc *found; memset(&rsci, 0, sizeof(rsci)); if (dup_to_netobj(&rsci.handle, handle->data, handle->len)) return NULL; found = rsc_lookup(cd, &rsci); rsc_free(&rsci); if (!found) return NULL; if (cache_check(cd, &found->h, NULL)) return NULL; return found; } /** * gss_check_seq_num - GSS sequence number window check * @rqstp: RPC Call to use when reporting errors * @rsci: cached GSS context state (updated on return) * @seq_num: sequence number to check * * Implements sequence number algorithm as specified in * RFC 2203, Section 5.3.3.1. "Context Management". * * Return values: * %true: @rqstp's GSS sequence number is inside the window * %false: @rqstp's GSS sequence number is outside the window */ static bool gss_check_seq_num(const struct svc_rqst *rqstp, struct rsc *rsci, u32 seq_num) { struct gss_svc_seq_data *sd = &rsci->seqdata; bool result = false; spin_lock(&sd->sd_lock); if (seq_num > sd->sd_max) { if (seq_num >= sd->sd_max + GSS_SEQ_WIN) { memset(sd->sd_win, 0, sizeof(sd->sd_win)); sd->sd_max = seq_num; } else while (sd->sd_max < seq_num) { sd->sd_max++; __clear_bit(sd->sd_max % GSS_SEQ_WIN, sd->sd_win); } __set_bit(seq_num % GSS_SEQ_WIN, sd->sd_win); goto ok; } else if (seq_num + GSS_SEQ_WIN <= sd->sd_max) { goto toolow; } if (__test_and_set_bit(seq_num % GSS_SEQ_WIN, sd->sd_win)) goto alreadyseen; ok: result = true; out: spin_unlock(&sd->sd_lock); return result; toolow: trace_rpcgss_svc_seqno_low(rqstp, seq_num, sd->sd_max - GSS_SEQ_WIN, sd->sd_max); goto out; alreadyseen: trace_rpcgss_svc_seqno_seen(rqstp, seq_num); goto out; } /* * Decode and verify a Call's verifier field. For RPC_AUTH_GSS Calls, * the body of this field contains a variable length checksum. * * GSS-specific auth_stat values are mandated by RFC 2203 Section * 5.3.3.3. */ static int svcauth_gss_verify_header(struct svc_rqst *rqstp, struct rsc *rsci, __be32 *rpcstart, struct rpc_gss_wire_cred *gc) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; struct gss_ctx *ctx_id = rsci->mechctx; u32 flavor, maj_stat; struct xdr_buf rpchdr; struct xdr_netobj checksum; struct kvec iov; /* * Compute the checksum of the incoming Call from the * XID field to credential field: */ iov.iov_base = rpcstart; iov.iov_len = (u8 *)xdr->p - (u8 *)rpcstart; xdr_buf_from_iov(&iov, &rpchdr); /* Call's verf field: */ if (xdr_stream_decode_opaque_auth(xdr, &flavor, (void **)&checksum.data, &checksum.len) < 0) { rqstp->rq_auth_stat = rpc_autherr_badverf; return SVC_DENIED; } if (flavor != RPC_AUTH_GSS) { rqstp->rq_auth_stat = rpc_autherr_badverf; return SVC_DENIED; } if (rqstp->rq_deferred) return SVC_OK; maj_stat = gss_verify_mic(ctx_id, &rpchdr, &checksum); if (maj_stat != GSS_S_COMPLETE) { trace_rpcgss_svc_mic(rqstp, maj_stat); rqstp->rq_auth_stat = rpcsec_gsserr_credproblem; return SVC_DENIED; } if (gc->gc_seq > MAXSEQ) { trace_rpcgss_svc_seqno_large(rqstp, gc->gc_seq); rqstp->rq_auth_stat = rpcsec_gsserr_ctxproblem; return SVC_DENIED; } if (!gss_check_seq_num(rqstp, rsci, gc->gc_seq)) return SVC_DROP; return SVC_OK; } /* * Construct and encode a Reply's verifier field. The verifier's body * field contains a variable-length checksum of the GSS sequence * number. */ static bool svcauth_gss_encode_verf(struct svc_rqst *rqstp, struct gss_ctx *ctx_id, u32 seq) { struct gss_svc_data *gsd = rqstp->rq_auth_data; u32 maj_stat; struct xdr_buf verf_data; struct xdr_netobj checksum; struct kvec iov; gsd->gsd_seq_num = cpu_to_be32(seq); iov.iov_base = &gsd->gsd_seq_num; iov.iov_len = XDR_UNIT; xdr_buf_from_iov(&iov, &verf_data); checksum.data = gsd->gsd_scratch; maj_stat = gss_get_mic(ctx_id, &verf_data, &checksum); if (maj_stat != GSS_S_COMPLETE) goto bad_mic; return xdr_stream_encode_opaque_auth(&rqstp->rq_res_stream, RPC_AUTH_GSS, checksum.data, checksum.len) > 0; bad_mic: trace_rpcgss_svc_get_mic(rqstp, maj_stat); return false; } struct gss_domain { struct auth_domain h; u32 pseudoflavor; }; static struct auth_domain * find_gss_auth_domain(struct gss_ctx *ctx, u32 svc) { char *name; name = gss_service_to_auth_domain_name(ctx->mech_type, svc); if (!name) return NULL; return auth_domain_find(name); } static struct auth_ops svcauthops_gss; u32 svcauth_gss_flavor(struct auth_domain *dom) { struct gss_domain *gd = container_of(dom, struct gss_domain, h); return gd->pseudoflavor; } EXPORT_SYMBOL_GPL(svcauth_gss_flavor); struct auth_domain * svcauth_gss_register_pseudoflavor(u32 pseudoflavor, char * name) { struct gss_domain *new; struct auth_domain *test; int stat = -ENOMEM; new = kmalloc(sizeof(*new), GFP_KERNEL); if (!new) goto out; kref_init(&new->h.ref); new->h.name = kstrdup(name, GFP_KERNEL); if (!new->h.name) goto out_free_dom; new->h.flavour = &svcauthops_gss; new->pseudoflavor = pseudoflavor; test = auth_domain_lookup(name, &new->h); if (test != &new->h) { pr_warn("svc: duplicate registration of gss pseudo flavour %s.\n", name); stat = -EADDRINUSE; auth_domain_put(test); goto out_free_name; } return test; out_free_name: kfree(new->h.name); out_free_dom: kfree(new); out: return ERR_PTR(stat); } EXPORT_SYMBOL_GPL(svcauth_gss_register_pseudoflavor); /* * RFC 2203, Section 5.3.2.2 * * struct rpc_gss_integ_data { * opaque databody_integ<>; * opaque checksum<>; * }; * * struct rpc_gss_data_t { * unsigned int seq_num; * proc_req_arg_t arg; * }; */ static noinline_for_stack int svcauth_gss_unwrap_integ(struct svc_rqst *rqstp, u32 seq, struct gss_ctx *ctx) { struct gss_svc_data *gsd = rqstp->rq_auth_data; struct xdr_stream *xdr = &rqstp->rq_arg_stream; u32 len, offset, seq_num, maj_stat; struct xdr_buf *buf = xdr->buf; struct xdr_buf databody_integ; struct xdr_netobj checksum; /* Did we already verify the signature on the original pass through? */ if (rqstp->rq_deferred) return 0; if (xdr_stream_decode_u32(xdr, &len) < 0) goto unwrap_failed; if (len & 3) goto unwrap_failed; offset = xdr_stream_pos(xdr); if (xdr_buf_subsegment(buf, &databody_integ, offset, len)) goto unwrap_failed; /* * The xdr_stream now points to the @seq_num field. The next * XDR data item is the @arg field, which contains the clear * text RPC program payload. The checksum, which follows the * @arg field, is located and decoded without updating the * xdr_stream. */ offset += len; if (xdr_decode_word(buf, offset, &checksum.len)) goto unwrap_failed; if (checksum.len > sizeof(gsd->gsd_scratch)) goto unwrap_failed; checksum.data = gsd->gsd_scratch; if (read_bytes_from_xdr_buf(buf, offset + XDR_UNIT, checksum.data, checksum.len)) goto unwrap_failed; maj_stat = gss_verify_mic(ctx, &databody_integ, &checksum); if (maj_stat != GSS_S_COMPLETE) goto bad_mic; /* The received seqno is protected by the checksum. */ if (xdr_stream_decode_u32(xdr, &seq_num) < 0) goto unwrap_failed; if (seq_num != seq) goto bad_seqno; xdr_truncate_decode(xdr, XDR_UNIT + checksum.len); return 0; unwrap_failed: trace_rpcgss_svc_unwrap_failed(rqstp); return -EINVAL; bad_seqno: trace_rpcgss_svc_seqno_bad(rqstp, seq, seq_num); return -EINVAL; bad_mic: trace_rpcgss_svc_mic(rqstp, maj_stat); return -EINVAL; } /* * RFC 2203, Section 5.3.2.3 * * struct rpc_gss_priv_data { * opaque databody_priv<> * }; * * struct rpc_gss_data_t { * unsigned int seq_num; * proc_req_arg_t arg; * }; */ static noinline_for_stack int svcauth_gss_unwrap_priv(struct svc_rqst *rqstp, u32 seq, struct gss_ctx *ctx) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; u32 len, maj_stat, seq_num, offset; struct xdr_buf *buf = xdr->buf; unsigned int saved_len; if (xdr_stream_decode_u32(xdr, &len) < 0) goto unwrap_failed; if (rqstp->rq_deferred) { /* Already decrypted last time through! The sequence number * check at out_seq is unnecessary but harmless: */ goto out_seq; } if (len > xdr_stream_remaining(xdr)) goto unwrap_failed; offset = xdr_stream_pos(xdr); saved_len = buf->len; maj_stat = gss_unwrap(ctx, offset, offset + len, buf); if (maj_stat != GSS_S_COMPLETE) goto bad_unwrap; xdr->nwords -= XDR_QUADLEN(saved_len - buf->len); out_seq: /* gss_unwrap() decrypted the sequence number. */ if (xdr_stream_decode_u32(xdr, &seq_num) < 0) goto unwrap_failed; if (seq_num != seq) goto bad_seqno; return 0; unwrap_failed: trace_rpcgss_svc_unwrap_failed(rqstp); return -EINVAL; bad_seqno: trace_rpcgss_svc_seqno_bad(rqstp, seq, seq_num); return -EINVAL; bad_unwrap: trace_rpcgss_svc_unwrap(rqstp, maj_stat); return -EINVAL; } static enum svc_auth_status svcauth_gss_set_client(struct svc_rqst *rqstp) { struct gss_svc_data *svcdata = rqstp->rq_auth_data; struct rsc *rsci = svcdata->rsci; struct rpc_gss_wire_cred *gc = &svcdata->clcred; int stat; rqstp->rq_auth_stat = rpc_autherr_badcred; /* * A gss export can be specified either by: * export *(sec=krb5,rw) * or by * export gss/krb5(rw) * The latter is deprecated; but for backwards compatibility reasons * the nfsd code will still fall back on trying it if the former * doesn't work; so we try to make both available to nfsd, below. */ rqstp->rq_gssclient = find_gss_auth_domain(rsci->mechctx, gc->gc_svc); if (rqstp->rq_gssclient == NULL) return SVC_DENIED; stat = svcauth_unix_set_client(rqstp); if (stat == SVC_DROP || stat == SVC_CLOSE) return stat; rqstp->rq_auth_stat = rpc_auth_ok; return SVC_OK; } static bool svcauth_gss_proc_init_verf(struct cache_detail *cd, struct svc_rqst *rqstp, struct xdr_netobj *out_handle, int *major_status, u32 seq_num) { struct xdr_stream *xdr = &rqstp->rq_res_stream; struct rsc *rsci; bool rc; if (*major_status != GSS_S_COMPLETE) goto null_verifier; rsci = gss_svc_searchbyctx(cd, out_handle); if (rsci == NULL) { *major_status = GSS_S_NO_CONTEXT; goto null_verifier; } rc = svcauth_gss_encode_verf(rqstp, rsci->mechctx, seq_num); cache_put(&rsci->h, cd); return rc; null_verifier: return xdr_stream_encode_opaque_auth(xdr, RPC_AUTH_NULL, NULL, 0) > 0; } static void gss_free_in_token_pages(struct gssp_in_token *in_token) { int i; i = 0; while (in_token->pages[i]) put_page(in_token->pages[i++]); kfree(in_token->pages); in_token->pages = NULL; } static int gss_read_proxy_verf(struct svc_rqst *rqstp, struct rpc_gss_wire_cred *gc, struct xdr_netobj *in_handle, struct gssp_in_token *in_token) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; unsigned int length, pgto_offs, pgfrom_offs; int pages, i, pgto, pgfrom; size_t to_offs, from_offs; u32 inlen; if (dup_netobj(in_handle, &gc->gc_ctx)) return SVC_CLOSE; /* * RFC 2203 Section 5.2.2 * * struct rpc_gss_init_arg { * opaque gss_token<>; * }; */ if (xdr_stream_decode_u32(xdr, &inlen) < 0) goto out_denied_free; if (inlen > xdr_stream_remaining(xdr)) goto out_denied_free; pages = DIV_ROUND_UP(inlen, PAGE_SIZE); in_token->pages = kcalloc(pages + 1, sizeof(struct page *), GFP_KERNEL); if (!in_token->pages) goto out_denied_free; in_token->page_base = 0; in_token->page_len = inlen; for (i = 0; i < pages; i++) { in_token->pages[i] = alloc_page(GFP_KERNEL); if (!in_token->pages[i]) { gss_free_in_token_pages(in_token); goto out_denied_free; } } length = min_t(unsigned int, inlen, (char *)xdr->end - (char *)xdr->p); memcpy(page_address(in_token->pages[0]), xdr->p, length); inlen -= length; to_offs = length; from_offs = rqstp->rq_arg.page_base; while (inlen) { pgto = to_offs >> PAGE_SHIFT; pgfrom = from_offs >> PAGE_SHIFT; pgto_offs = to_offs & ~PAGE_MASK; pgfrom_offs = from_offs & ~PAGE_MASK; length = min_t(unsigned int, inlen, min_t(unsigned int, PAGE_SIZE - pgto_offs, PAGE_SIZE - pgfrom_offs)); memcpy(page_address(in_token->pages[pgto]) + pgto_offs, page_address(rqstp->rq_arg.pages[pgfrom]) + pgfrom_offs, length); to_offs += length; from_offs += length; inlen -= length; } return 0; out_denied_free: kfree(in_handle->data); return SVC_DENIED; } /* * RFC 2203, Section 5.2.3.1. * * struct rpc_gss_init_res { * opaque handle<>; * unsigned int gss_major; * unsigned int gss_minor; * unsigned int seq_window; * opaque gss_token<>; * }; */ static bool svcxdr_encode_gss_init_res(struct xdr_stream *xdr, struct xdr_netobj *handle, struct xdr_netobj *gss_token, unsigned int major_status, unsigned int minor_status, u32 seq_num) { if (xdr_stream_encode_opaque(xdr, handle->data, handle->len) < 0) return false; if (xdr_stream_encode_u32(xdr, major_status) < 0) return false; if (xdr_stream_encode_u32(xdr, minor_status) < 0) return false; if (xdr_stream_encode_u32(xdr, seq_num) < 0) return false; if (xdr_stream_encode_opaque(xdr, gss_token->data, gss_token->len) < 0) return false; return true; } /* * Having read the cred already and found we're in the context * initiation case, read the verifier and initiate (or check the results * of) upcalls to userspace for help with context initiation. If * the upcall results are available, write the verifier and result. * Otherwise, drop the request pending an answer to the upcall. */ static int svcauth_gss_legacy_init(struct svc_rqst *rqstp, struct rpc_gss_wire_cred *gc) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; struct rsi *rsip, rsikey; __be32 *p; u32 len; int ret; struct sunrpc_net *sn = net_generic(SVC_NET(rqstp), sunrpc_net_id); memset(&rsikey, 0, sizeof(rsikey)); if (dup_netobj(&rsikey.in_handle, &gc->gc_ctx)) return SVC_CLOSE; /* * RFC 2203 Section 5.2.2 * * struct rpc_gss_init_arg { * opaque gss_token<>; * }; */ if (xdr_stream_decode_u32(xdr, &len) < 0) { kfree(rsikey.in_handle.data); return SVC_DENIED; } p = xdr_inline_decode(xdr, len); if (!p) { kfree(rsikey.in_handle.data); return SVC_DENIED; } rsikey.in_token.data = kmalloc(len, GFP_KERNEL); if (ZERO_OR_NULL_PTR(rsikey.in_token.data)) { kfree(rsikey.in_handle.data); return SVC_CLOSE; } memcpy(rsikey.in_token.data, p, len); rsikey.in_token.len = len; /* Perform upcall, or find upcall result: */ rsip = rsi_lookup(sn->rsi_cache, &rsikey); rsi_free(&rsikey); if (!rsip) return SVC_CLOSE; if (cache_check(sn->rsi_cache, &rsip->h, &rqstp->rq_chandle) < 0) /* No upcall result: */ return SVC_CLOSE; ret = SVC_CLOSE; if (!svcauth_gss_proc_init_verf(sn->rsc_cache, rqstp, &rsip->out_handle, &rsip->major_status, GSS_SEQ_WIN)) goto out; if (!svcxdr_set_accept_stat(rqstp)) goto out; if (!svcxdr_encode_gss_init_res(&rqstp->rq_res_stream, &rsip->out_handle, &rsip->out_token, rsip->major_status, rsip->minor_status, GSS_SEQ_WIN)) goto out; ret = SVC_COMPLETE; out: cache_put(&rsip->h, sn->rsi_cache); return ret; } static int gss_proxy_save_rsc(struct cache_detail *cd, struct gssp_upcall_data *ud, uint64_t *handle) { struct rsc rsci, *rscp = NULL; static atomic64_t ctxhctr; long long ctxh; struct gss_api_mech *gm = NULL; time64_t expiry; int status; memset(&rsci, 0, sizeof(rsci)); /* context handle */ status = -ENOMEM; /* the handle needs to be just a unique id, * use a static counter */ ctxh = atomic64_inc_return(&ctxhctr); /* make a copy for the caller */ *handle = ctxh; /* make a copy for the rsc cache */ if (dup_to_netobj(&rsci.handle, (char *)handle, sizeof(uint64_t))) goto out; rscp = rsc_lookup(cd, &rsci); if (!rscp) goto out; /* creds */ if (!ud->found_creds) { /* userspace seem buggy, we should always get at least a * mapping to nobody */ goto out; } else { struct timespec64 boot; /* steal creds */ rsci.cred = ud->creds; memset(&ud->creds, 0, sizeof(struct svc_cred)); status = -EOPNOTSUPP; /* get mech handle from OID */ gm = gss_mech_get_by_OID(&ud->mech_oid); if (!gm) goto out; rsci.cred.cr_gss_mech = gm; status = -EINVAL; /* mech-specific data: */ status = gss_import_sec_context(ud->out_handle.data, ud->out_handle.len, gm, &rsci.mechctx, &expiry, GFP_KERNEL); if (status) goto out; getboottime64(&boot); expiry -= boot.tv_sec; } rsci.h.expiry_time = expiry; rscp = rsc_update(cd, &rsci, rscp); status = 0; out: rsc_free(&rsci); if (rscp) cache_put(&rscp->h, cd); else status = -ENOMEM; return status; } static int svcauth_gss_proxy_init(struct svc_rqst *rqstp, struct rpc_gss_wire_cred *gc) { struct xdr_netobj cli_handle; struct gssp_upcall_data ud; uint64_t handle; int status; int ret; struct net *net = SVC_NET(rqstp); struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); memset(&ud, 0, sizeof(ud)); ret = gss_read_proxy_verf(rqstp, gc, &ud.in_handle, &ud.in_token); if (ret) return ret; ret = SVC_CLOSE; /* Perform synchronous upcall to gss-proxy */ status = gssp_accept_sec_context_upcall(net, &ud); if (status) goto out; trace_rpcgss_svc_accept_upcall(rqstp, ud.major_status, ud.minor_status); switch (ud.major_status) { case GSS_S_CONTINUE_NEEDED: cli_handle = ud.out_handle; break; case GSS_S_COMPLETE: status = gss_proxy_save_rsc(sn->rsc_cache, &ud, &handle); if (status) goto out; cli_handle.data = (u8 *)&handle; cli_handle.len = sizeof(handle); break; default: goto out; } if (!svcauth_gss_proc_init_verf(sn->rsc_cache, rqstp, &cli_handle, &ud.major_status, GSS_SEQ_WIN)) goto out; if (!svcxdr_set_accept_stat(rqstp)) goto out; if (!svcxdr_encode_gss_init_res(&rqstp->rq_res_stream, &cli_handle, &ud.out_token, ud.major_status, ud.minor_status, GSS_SEQ_WIN)) goto out; ret = SVC_COMPLETE; out: gss_free_in_token_pages(&ud.in_token); gssp_free_upcall_data(&ud); return ret; } /* * Try to set the sn->use_gss_proxy variable to a new value. We only allow * it to be changed if it's currently undefined (-1). If it's any other value * then return -EBUSY unless the type wouldn't have changed anyway. */ static int set_gss_proxy(struct net *net, int type) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); int ret; WARN_ON_ONCE(type != 0 && type != 1); ret = cmpxchg(&sn->use_gss_proxy, -1, type); if (ret != -1 && ret != type) return -EBUSY; return 0; } static bool use_gss_proxy(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); /* If use_gss_proxy is still undefined, then try to disable it */ if (sn->use_gss_proxy == -1) set_gss_proxy(net, 0); return sn->use_gss_proxy; } static noinline_for_stack int svcauth_gss_proc_init(struct svc_rqst *rqstp, struct rpc_gss_wire_cred *gc) { struct xdr_stream *xdr = &rqstp->rq_arg_stream; u32 flavor, len; void *body; /* Call's verf field: */ if (xdr_stream_decode_opaque_auth(xdr, &flavor, &body, &len) < 0) return SVC_GARBAGE; if (flavor != RPC_AUTH_NULL || len != 0) { rqstp->rq_auth_stat = rpc_autherr_badverf; return SVC_DENIED; } if (gc->gc_proc == RPC_GSS_PROC_INIT && gc->gc_ctx.len != 0) { rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } if (!use_gss_proxy(SVC_NET(rqstp))) return svcauth_gss_legacy_init(rqstp, gc); return svcauth_gss_proxy_init(rqstp, gc); } #ifdef CONFIG_PROC_FS static ssize_t write_gssp(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct net *net = pde_data(file_inode(file)); char tbuf[20]; unsigned long i; int res; if (*ppos || count > sizeof(tbuf)-1) return -EINVAL; if (copy_from_user(tbuf, buf, count)) return -EFAULT; tbuf[count] = 0; res = kstrtoul(tbuf, 0, &i); if (res) return res; if (i != 1) return -EINVAL; res = set_gssp_clnt(net); if (res) return res; res = set_gss_proxy(net, 1); if (res) return res; return count; } static ssize_t read_gssp(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct net *net = pde_data(file_inode(file)); struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); unsigned long p = *ppos; char tbuf[10]; size_t len; snprintf(tbuf, sizeof(tbuf), "%d\n", sn->use_gss_proxy); len = strlen(tbuf); if (p >= len) return 0; len -= p; if (len > count) len = count; if (copy_to_user(buf, (void *)(tbuf+p), len)) return -EFAULT; *ppos += len; return len; } static const struct proc_ops use_gss_proxy_proc_ops = { .proc_open = nonseekable_open, .proc_write = write_gssp, .proc_read = read_gssp, }; static int create_use_gss_proxy_proc_entry(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct proc_dir_entry **p = &sn->use_gssp_proc; sn->use_gss_proxy = -1; *p = proc_create_data("use-gss-proxy", S_IFREG | 0600, sn->proc_net_rpc, &use_gss_proxy_proc_ops, net); if (!*p) return -ENOMEM; init_gssp_clnt(sn); return 0; } static void destroy_use_gss_proxy_proc_entry(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); if (sn->use_gssp_proc) { remove_proc_entry("use-gss-proxy", sn->proc_net_rpc); clear_gssp_clnt(sn); } } static ssize_t read_gss_krb5_enctypes(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct rpcsec_gss_oid oid = { .len = 9, .data = "\x2a\x86\x48\x86\xf7\x12\x01\x02\x02", }; struct gss_api_mech *mech; ssize_t ret; mech = gss_mech_get_by_OID(&oid); if (!mech) return 0; if (!mech->gm_upcall_enctypes) { gss_mech_put(mech); return 0; } ret = simple_read_from_buffer(buf, count, ppos, mech->gm_upcall_enctypes, strlen(mech->gm_upcall_enctypes)); gss_mech_put(mech); return ret; } static const struct proc_ops gss_krb5_enctypes_proc_ops = { .proc_open = nonseekable_open, .proc_read = read_gss_krb5_enctypes, }; static int create_krb5_enctypes_proc_entry(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); sn->gss_krb5_enctypes = proc_create_data("gss_krb5_enctypes", S_IFREG | 0444, sn->proc_net_rpc, &gss_krb5_enctypes_proc_ops, net); return sn->gss_krb5_enctypes ? 0 : -ENOMEM; } static void destroy_krb5_enctypes_proc_entry(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); if (sn->gss_krb5_enctypes) remove_proc_entry("gss_krb5_enctypes", sn->proc_net_rpc); } #else /* CONFIG_PROC_FS */ static int create_use_gss_proxy_proc_entry(struct net *net) { return 0; } static void destroy_use_gss_proxy_proc_entry(struct net *net) {} static int create_krb5_enctypes_proc_entry(struct net *net) { return 0; } static void destroy_krb5_enctypes_proc_entry(struct net *net) {} #endif /* CONFIG_PROC_FS */ /* * The Call's credential body should contain a struct rpc_gss_cred_t. * * RFC 2203 Section 5 * * struct rpc_gss_cred_t { * union switch (unsigned int version) { * case RPCSEC_GSS_VERS_1: * struct { * rpc_gss_proc_t gss_proc; * unsigned int seq_num; * rpc_gss_service_t service; * opaque handle<>; * } rpc_gss_cred_vers_1_t; * } * }; */ static bool svcauth_gss_decode_credbody(struct xdr_stream *xdr, struct rpc_gss_wire_cred *gc, __be32 **rpcstart) { ssize_t handle_len; u32 body_len; __be32 *p; p = xdr_inline_decode(xdr, XDR_UNIT); if (!p) return false; /* * start of rpc packet is 7 u32's back from here: * xid direction rpcversion prog vers proc flavour */ *rpcstart = p - 7; body_len = be32_to_cpup(p); if (body_len > RPC_MAX_AUTH_SIZE) return false; /* struct rpc_gss_cred_t */ if (xdr_stream_decode_u32(xdr, &gc->gc_v) < 0) return false; if (xdr_stream_decode_u32(xdr, &gc->gc_proc) < 0) return false; if (xdr_stream_decode_u32(xdr, &gc->gc_seq) < 0) return false; if (xdr_stream_decode_u32(xdr, &gc->gc_svc) < 0) return false; handle_len = xdr_stream_decode_opaque_inline(xdr, (void **)&gc->gc_ctx.data, body_len); if (handle_len < 0) return false; if (body_len != XDR_UNIT * 5 + xdr_align_size(handle_len)) return false; gc->gc_ctx.len = handle_len; return true; } /** * svcauth_gss_accept - Decode and validate incoming RPC_AUTH_GSS credential * @rqstp: RPC transaction * * Return values: * %SVC_OK: Success * %SVC_COMPLETE: GSS context lifetime event * %SVC_DENIED: Credential or verifier is not valid * %SVC_GARBAGE: Failed to decode credential or verifier * %SVC_CLOSE: Temporary failure * * The rqstp->rq_auth_stat field is also set (see RFCs 2203 and 5531). */ static enum svc_auth_status svcauth_gss_accept(struct svc_rqst *rqstp) { struct gss_svc_data *svcdata = rqstp->rq_auth_data; __be32 *rpcstart; struct rpc_gss_wire_cred *gc; struct rsc *rsci = NULL; int ret; struct sunrpc_net *sn = net_generic(SVC_NET(rqstp), sunrpc_net_id); rqstp->rq_auth_stat = rpc_autherr_badcred; if (!svcdata) svcdata = kmalloc(sizeof(*svcdata), GFP_KERNEL); if (!svcdata) goto auth_err; rqstp->rq_auth_data = svcdata; svcdata->gsd_databody_offset = 0; svcdata->rsci = NULL; gc = &svcdata->clcred; if (!svcauth_gss_decode_credbody(&rqstp->rq_arg_stream, gc, &rpcstart)) goto auth_err; if (gc->gc_v != RPC_GSS_VERSION) goto auth_err; switch (gc->gc_proc) { case RPC_GSS_PROC_INIT: case RPC_GSS_PROC_CONTINUE_INIT: if (rqstp->rq_proc != 0) goto auth_err; return svcauth_gss_proc_init(rqstp, gc); case RPC_GSS_PROC_DESTROY: if (rqstp->rq_proc != 0) goto auth_err; fallthrough; case RPC_GSS_PROC_DATA: rqstp->rq_auth_stat = rpcsec_gsserr_credproblem; rsci = gss_svc_searchbyctx(sn->rsc_cache, &gc->gc_ctx); if (!rsci) goto auth_err; switch (svcauth_gss_verify_header(rqstp, rsci, rpcstart, gc)) { case SVC_OK: break; case SVC_DENIED: goto auth_err; case SVC_DROP: goto drop; } break; default: if (rqstp->rq_proc != 0) goto auth_err; rqstp->rq_auth_stat = rpc_autherr_rejectedcred; goto auth_err; } /* now act upon the command: */ switch (gc->gc_proc) { case RPC_GSS_PROC_DESTROY: if (!svcauth_gss_encode_verf(rqstp, rsci->mechctx, gc->gc_seq)) goto auth_err; if (!svcxdr_set_accept_stat(rqstp)) goto auth_err; /* Delete the entry from the cache_list and call cache_put */ sunrpc_cache_unhash(sn->rsc_cache, &rsci->h); goto complete; case RPC_GSS_PROC_DATA: rqstp->rq_auth_stat = rpcsec_gsserr_ctxproblem; if (!svcauth_gss_encode_verf(rqstp, rsci->mechctx, gc->gc_seq)) goto auth_err; if (!svcxdr_set_accept_stat(rqstp)) goto auth_err; svcdata->gsd_databody_offset = xdr_stream_pos(&rqstp->rq_res_stream); rqstp->rq_cred = rsci->cred; get_group_info(rsci->cred.cr_group_info); rqstp->rq_auth_stat = rpc_autherr_badcred; switch (gc->gc_svc) { case RPC_GSS_SVC_NONE: break; case RPC_GSS_SVC_INTEGRITY: /* placeholders for body length and seq. number: */ xdr_reserve_space(&rqstp->rq_res_stream, XDR_UNIT * 2); if (svcauth_gss_unwrap_integ(rqstp, gc->gc_seq, rsci->mechctx)) goto garbage_args; svcxdr_set_auth_slack(rqstp, RPC_MAX_AUTH_SIZE); break; case RPC_GSS_SVC_PRIVACY: /* placeholders for body length and seq. number: */ xdr_reserve_space(&rqstp->rq_res_stream, XDR_UNIT * 2); if (svcauth_gss_unwrap_priv(rqstp, gc->gc_seq, rsci->mechctx)) goto garbage_args; svcxdr_set_auth_slack(rqstp, RPC_MAX_AUTH_SIZE * 2); break; default: goto auth_err; } svcdata->rsci = rsci; cache_get(&rsci->h); rqstp->rq_cred.cr_flavor = gss_svc_to_pseudoflavor( rsci->mechctx->mech_type, GSS_C_QOP_DEFAULT, gc->gc_svc); ret = SVC_OK; trace_rpcgss_svc_authenticate(rqstp, gc); goto out; } garbage_args: ret = SVC_GARBAGE; goto out; auth_err: xdr_truncate_encode(&rqstp->rq_res_stream, XDR_UNIT * 2); ret = SVC_DENIED; goto out; complete: ret = SVC_COMPLETE; goto out; drop: ret = SVC_CLOSE; out: if (rsci) cache_put(&rsci->h, sn->rsc_cache); return ret; } static u32 svcauth_gss_prepare_to_wrap(struct svc_rqst *rqstp, struct gss_svc_data *gsd) { u32 offset; /* Release can be called twice, but we only wrap once. */ offset = gsd->gsd_databody_offset; gsd->gsd_databody_offset = 0; /* AUTH_ERROR replies are not wrapped. */ if (rqstp->rq_auth_stat != rpc_auth_ok) return 0; /* Also don't wrap if the accept_stat is nonzero: */ if (*rqstp->rq_accept_statp != rpc_success) return 0; return offset; } /* * RFC 2203, Section 5.3.2.2 * * struct rpc_gss_integ_data { * opaque databody_integ<>; * opaque checksum<>; * }; * * struct rpc_gss_data_t { * unsigned int seq_num; * proc_req_arg_t arg; * }; * * The RPC Reply message has already been XDR-encoded. rq_res_stream * is now positioned so that the checksum can be written just past * the RPC Reply message. */ static int svcauth_gss_wrap_integ(struct svc_rqst *rqstp) { struct gss_svc_data *gsd = rqstp->rq_auth_data; struct xdr_stream *xdr = &rqstp->rq_res_stream; struct rpc_gss_wire_cred *gc = &gsd->clcred; struct xdr_buf *buf = xdr->buf; struct xdr_buf databody_integ; struct xdr_netobj checksum; u32 offset, maj_stat; offset = svcauth_gss_prepare_to_wrap(rqstp, gsd); if (!offset) goto out; if (xdr_buf_subsegment(buf, &databody_integ, offset + XDR_UNIT, buf->len - offset - XDR_UNIT)) goto wrap_failed; /* Buffer space for these has already been reserved in * svcauth_gss_accept(). */ if (xdr_encode_word(buf, offset, databody_integ.len)) goto wrap_failed; if (xdr_encode_word(buf, offset + XDR_UNIT, gc->gc_seq)) goto wrap_failed; checksum.data = gsd->gsd_scratch; maj_stat = gss_get_mic(gsd->rsci->mechctx, &databody_integ, &checksum); if (maj_stat != GSS_S_COMPLETE) goto bad_mic; if (xdr_stream_encode_opaque(xdr, checksum.data, checksum.len) < 0) goto wrap_failed; xdr_commit_encode(xdr); out: return 0; bad_mic: trace_rpcgss_svc_get_mic(rqstp, maj_stat); return -EINVAL; wrap_failed: trace_rpcgss_svc_wrap_failed(rqstp); return -EINVAL; } /* * RFC 2203, Section 5.3.2.3 * * struct rpc_gss_priv_data { * opaque databody_priv<> * }; * * struct rpc_gss_data_t { * unsigned int seq_num; * proc_req_arg_t arg; * }; * * gss_wrap() expands the size of the RPC message payload in the * response buffer. The main purpose of svcauth_gss_wrap_priv() * is to ensure there is adequate space in the response buffer to * avoid overflow during the wrap. */ static int svcauth_gss_wrap_priv(struct svc_rqst *rqstp) { struct gss_svc_data *gsd = rqstp->rq_auth_data; struct rpc_gss_wire_cred *gc = &gsd->clcred; struct xdr_buf *buf = &rqstp->rq_res; struct kvec *head = buf->head; struct kvec *tail = buf->tail; u32 offset, pad, maj_stat; __be32 *p; offset = svcauth_gss_prepare_to_wrap(rqstp, gsd); if (!offset) return 0; /* * Buffer space for this field has already been reserved * in svcauth_gss_accept(). Note that the GSS sequence * number is encrypted along with the RPC reply payload. */ if (xdr_encode_word(buf, offset + XDR_UNIT, gc->gc_seq)) goto wrap_failed; /* * If there is currently tail data, make sure there is * room for the head, tail, and 2 * RPC_MAX_AUTH_SIZE in * the page, and move the current tail data such that * there is RPC_MAX_AUTH_SIZE slack space available in * both the head and tail. */ if (tail->iov_base) { if (tail->iov_base >= head->iov_base + PAGE_SIZE) goto wrap_failed; if (tail->iov_base < head->iov_base) goto wrap_failed; if (tail->iov_len + head->iov_len + 2 * RPC_MAX_AUTH_SIZE > PAGE_SIZE) goto wrap_failed; memmove(tail->iov_base + RPC_MAX_AUTH_SIZE, tail->iov_base, tail->iov_len); tail->iov_base += RPC_MAX_AUTH_SIZE; } /* * If there is no current tail data, make sure there is * room for the head data, and 2 * RPC_MAX_AUTH_SIZE in the * allotted page, and set up tail information such that there * is RPC_MAX_AUTH_SIZE slack space available in both the * head and tail. */ if (!tail->iov_base) { if (head->iov_len + 2 * RPC_MAX_AUTH_SIZE > PAGE_SIZE) goto wrap_failed; tail->iov_base = head->iov_base + head->iov_len + RPC_MAX_AUTH_SIZE; tail->iov_len = 0; } maj_stat = gss_wrap(gsd->rsci->mechctx, offset + XDR_UNIT, buf, buf->pages); if (maj_stat != GSS_S_COMPLETE) goto bad_wrap; /* Wrapping can change the size of databody_priv. */ if (xdr_encode_word(buf, offset, buf->len - offset - XDR_UNIT)) goto wrap_failed; pad = xdr_pad_size(buf->len - offset - XDR_UNIT); p = (__be32 *)(tail->iov_base + tail->iov_len); memset(p, 0, pad); tail->iov_len += pad; buf->len += pad; return 0; wrap_failed: trace_rpcgss_svc_wrap_failed(rqstp); return -EINVAL; bad_wrap: trace_rpcgss_svc_wrap(rqstp, maj_stat); return -ENOMEM; } /** * svcauth_gss_release - Wrap payload and release resources * @rqstp: RPC transaction context * * Return values: * %0: the Reply is ready to be sent * %-ENOMEM: failed to allocate memory * %-EINVAL: encoding error */ static int svcauth_gss_release(struct svc_rqst *rqstp) { struct sunrpc_net *sn = net_generic(SVC_NET(rqstp), sunrpc_net_id); struct gss_svc_data *gsd = rqstp->rq_auth_data; struct rpc_gss_wire_cred *gc; int stat; if (!gsd) goto out; gc = &gsd->clcred; if (gc->gc_proc != RPC_GSS_PROC_DATA) goto out; switch (gc->gc_svc) { case RPC_GSS_SVC_NONE: break; case RPC_GSS_SVC_INTEGRITY: stat = svcauth_gss_wrap_integ(rqstp); if (stat) goto out_err; break; case RPC_GSS_SVC_PRIVACY: stat = svcauth_gss_wrap_priv(rqstp); if (stat) goto out_err; break; /* * For any other gc_svc value, svcauth_gss_accept() already set * the auth_error appropriately; just fall through: */ } out: stat = 0; out_err: if (rqstp->rq_client) auth_domain_put(rqstp->rq_client); rqstp->rq_client = NULL; if (rqstp->rq_gssclient) auth_domain_put(rqstp->rq_gssclient); rqstp->rq_gssclient = NULL; if (rqstp->rq_cred.cr_group_info) put_group_info(rqstp->rq_cred.cr_group_info); rqstp->rq_cred.cr_group_info = NULL; if (gsd && gsd->rsci) { cache_put(&gsd->rsci->h, sn->rsc_cache); gsd->rsci = NULL; } return stat; } static void svcauth_gss_domain_release_rcu(struct rcu_head *head) { struct auth_domain *dom = container_of(head, struct auth_domain, rcu_head); struct gss_domain *gd = container_of(dom, struct gss_domain, h); kfree(dom->name); kfree(gd); } static void svcauth_gss_domain_release(struct auth_domain *dom) { call_rcu(&dom->rcu_head, svcauth_gss_domain_release_rcu); } static rpc_authflavor_t svcauth_gss_pseudoflavor(struct svc_rqst *rqstp) { return svcauth_gss_flavor(rqstp->rq_gssclient); } static struct auth_ops svcauthops_gss = { .name = "rpcsec_gss", .owner = THIS_MODULE, .flavour = RPC_AUTH_GSS, .accept = svcauth_gss_accept, .release = svcauth_gss_release, .domain_release = svcauth_gss_domain_release, .set_client = svcauth_gss_set_client, .pseudoflavor = svcauth_gss_pseudoflavor, }; static int rsi_cache_create_net(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd; int err; cd = cache_create_net(&rsi_cache_template, net); if (IS_ERR(cd)) return PTR_ERR(cd); err = cache_register_net(cd, net); if (err) { cache_destroy_net(cd, net); return err; } sn->rsi_cache = cd; return 0; } static void rsi_cache_destroy_net(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd = sn->rsi_cache; sn->rsi_cache = NULL; cache_purge(cd); cache_unregister_net(cd, net); cache_destroy_net(cd, net); } static int rsc_cache_create_net(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd; int err; cd = cache_create_net(&rsc_cache_template, net); if (IS_ERR(cd)) return PTR_ERR(cd); err = cache_register_net(cd, net); if (err) { cache_destroy_net(cd, net); return err; } sn->rsc_cache = cd; return 0; } static void rsc_cache_destroy_net(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct cache_detail *cd = sn->rsc_cache; sn->rsc_cache = NULL; cache_purge(cd); cache_unregister_net(cd, net); cache_destroy_net(cd, net); } int gss_svc_init_net(struct net *net) { int rv; rv = rsc_cache_create_net(net); if (rv) return rv; rv = rsi_cache_create_net(net); if (rv) goto out1; rv = create_use_gss_proxy_proc_entry(net); if (rv) goto out2; rv = create_krb5_enctypes_proc_entry(net); if (rv) goto out3; return 0; out3: destroy_use_gss_proxy_proc_entry(net); out2: rsi_cache_destroy_net(net); out1: rsc_cache_destroy_net(net); return rv; } void gss_svc_shutdown_net(struct net *net) { destroy_krb5_enctypes_proc_entry(net); destroy_use_gss_proxy_proc_entry(net); rsi_cache_destroy_net(net); rsc_cache_destroy_net(net); } int gss_svc_init(void) { return svc_auth_register(RPC_AUTH_GSS, &svcauthops_gss); } void gss_svc_shutdown(void) { svc_auth_unregister(RPC_AUTH_GSS); } |
79 54 3 52 24 24 16 49 49 34 34 7 32 2 30 32 34 37 37 8 27 19 15 1 32 2 8 34 48 48 42 32 14 2 2 19 1 1 1 16 3 1 1 1 1 4 1 1 1 1 1 1 4 2 4 4 6 12 1 1 4 6 5 1 1 3 16 1 15 15 15 12 10 1 1 1 6 7 7 1 7 1 1 1 7 1 1 3 1 2 2 2 1 13 1 2 20 4 5 2 6 16 7 1 2 2 3 2 1 2 93 93 92 89 50 42 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 | /* * Copyright (c) 2014, Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "bearer.h" #include "link.h" #include "name_table.h" #include "socket.h" #include "node.h" #include "net.h" #include <net/genetlink.h> #include <linux/string_helpers.h> #include <linux/tipc_config.h> /* The legacy API had an artificial message length limit called * ULTRA_STRING_MAX_LEN. */ #define ULTRA_STRING_MAX_LEN 32768 #define TIPC_SKB_MAX TLV_SPACE(ULTRA_STRING_MAX_LEN) #define REPLY_TRUNCATED "<truncated>\n" struct tipc_nl_compat_msg { u16 cmd; int rep_type; int rep_size; int req_type; int req_size; struct net *net; struct sk_buff *rep; struct tlv_desc *req; struct sock *dst_sk; }; struct tipc_nl_compat_cmd_dump { int (*header)(struct tipc_nl_compat_msg *); int (*dumpit)(struct sk_buff *, struct netlink_callback *); int (*format)(struct tipc_nl_compat_msg *msg, struct nlattr **attrs); }; struct tipc_nl_compat_cmd_doit { int (*doit)(struct sk_buff *skb, struct genl_info *info); int (*transcode)(struct tipc_nl_compat_cmd_doit *cmd, struct sk_buff *skb, struct tipc_nl_compat_msg *msg); }; static int tipc_skb_tailroom(struct sk_buff *skb) { int tailroom; int limit; tailroom = skb_tailroom(skb); limit = TIPC_SKB_MAX - skb->len; if (tailroom < limit) return tailroom; return limit; } static inline int TLV_GET_DATA_LEN(struct tlv_desc *tlv) { return TLV_GET_LEN(tlv) - TLV_SPACE(0); } static int tipc_add_tlv(struct sk_buff *skb, u16 type, void *data, u16 len) { struct tlv_desc *tlv = (struct tlv_desc *)skb_tail_pointer(skb); if (tipc_skb_tailroom(skb) < TLV_SPACE(len)) return -EMSGSIZE; skb_put(skb, TLV_SPACE(len)); memset(tlv, 0, TLV_SPACE(len)); tlv->tlv_type = htons(type); tlv->tlv_len = htons(TLV_LENGTH(len)); if (len && data) memcpy(TLV_DATA(tlv), data, len); return 0; } static void tipc_tlv_init(struct sk_buff *skb, u16 type) { struct tlv_desc *tlv = (struct tlv_desc *)skb->data; TLV_SET_LEN(tlv, 0); TLV_SET_TYPE(tlv, type); skb_put(skb, sizeof(struct tlv_desc)); } static __printf(2, 3) int tipc_tlv_sprintf(struct sk_buff *skb, const char *fmt, ...) { int n; u16 len; u32 rem; char *buf; struct tlv_desc *tlv; va_list args; rem = tipc_skb_tailroom(skb); tlv = (struct tlv_desc *)skb->data; len = TLV_GET_LEN(tlv); buf = TLV_DATA(tlv) + len; va_start(args, fmt); n = vscnprintf(buf, rem, fmt, args); va_end(args); TLV_SET_LEN(tlv, n + len); skb_put(skb, n); return n; } static struct sk_buff *tipc_tlv_alloc(int size) { int hdr_len; struct sk_buff *buf; size = TLV_SPACE(size); hdr_len = nlmsg_total_size(GENL_HDRLEN + TIPC_GENL_HDRLEN); buf = alloc_skb(hdr_len + size, GFP_KERNEL); if (!buf) return NULL; skb_reserve(buf, hdr_len); return buf; } static struct sk_buff *tipc_get_err_tlv(char *str) { int str_len = strlen(str) + 1; struct sk_buff *buf; buf = tipc_tlv_alloc(str_len); if (buf) tipc_add_tlv(buf, TIPC_TLV_ERROR_STRING, str, str_len); return buf; } static int __tipc_nl_compat_dumpit(struct tipc_nl_compat_cmd_dump *cmd, struct tipc_nl_compat_msg *msg, struct sk_buff *arg) { struct genl_dumpit_info info; int len = 0; int err; struct sk_buff *buf; struct nlmsghdr *nlmsg; struct netlink_callback cb; struct nlattr **attrbuf; memset(&cb, 0, sizeof(cb)); cb.nlh = (struct nlmsghdr *)arg->data; cb.skb = arg; cb.data = &info; buf = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!buf) return -ENOMEM; buf->sk = msg->dst_sk; if (__tipc_dump_start(&cb, msg->net)) { kfree_skb(buf); return -ENOMEM; } attrbuf = kcalloc(tipc_genl_family.maxattr + 1, sizeof(struct nlattr *), GFP_KERNEL); if (!attrbuf) { err = -ENOMEM; goto err_out; } info.info.attrs = attrbuf; if (nlmsg_len(cb.nlh) > 0) { err = nlmsg_parse_deprecated(cb.nlh, GENL_HDRLEN, attrbuf, tipc_genl_family.maxattr, tipc_genl_family.policy, NULL); if (err) goto err_out; } do { int rem; len = (*cmd->dumpit)(buf, &cb); nlmsg_for_each_msg(nlmsg, nlmsg_hdr(buf), len, rem) { err = nlmsg_parse_deprecated(nlmsg, GENL_HDRLEN, attrbuf, tipc_genl_family.maxattr, tipc_genl_family.policy, NULL); if (err) goto err_out; err = (*cmd->format)(msg, attrbuf); if (err) goto err_out; if (tipc_skb_tailroom(msg->rep) <= 1) { err = -EMSGSIZE; goto err_out; } } skb_reset_tail_pointer(buf); buf->len = 0; } while (len); err = 0; err_out: kfree(attrbuf); tipc_dump_done(&cb); kfree_skb(buf); if (err == -EMSGSIZE) { /* The legacy API only considered messages filling * "ULTRA_STRING_MAX_LEN" to be truncated. */ if ((TIPC_SKB_MAX - msg->rep->len) <= 1) { char *tail = skb_tail_pointer(msg->rep); if (*tail != '\0') sprintf(tail - sizeof(REPLY_TRUNCATED) - 1, REPLY_TRUNCATED); } return 0; } return err; } static int tipc_nl_compat_dumpit(struct tipc_nl_compat_cmd_dump *cmd, struct tipc_nl_compat_msg *msg) { struct nlmsghdr *nlh; struct sk_buff *arg; int err; if (msg->req_type && (!msg->req_size || !TLV_CHECK_TYPE(msg->req, msg->req_type))) return -EINVAL; msg->rep = tipc_tlv_alloc(msg->rep_size); if (!msg->rep) return -ENOMEM; if (msg->rep_type) tipc_tlv_init(msg->rep, msg->rep_type); if (cmd->header) { err = (*cmd->header)(msg); if (err) { kfree_skb(msg->rep); msg->rep = NULL; return err; } } arg = nlmsg_new(0, GFP_KERNEL); if (!arg) { kfree_skb(msg->rep); msg->rep = NULL; return -ENOMEM; } nlh = nlmsg_put(arg, 0, 0, tipc_genl_family.id, 0, NLM_F_MULTI); if (!nlh) { kfree_skb(arg); kfree_skb(msg->rep); msg->rep = NULL; return -EMSGSIZE; } nlmsg_end(arg, nlh); err = __tipc_nl_compat_dumpit(cmd, msg, arg); if (err) { kfree_skb(msg->rep); msg->rep = NULL; } kfree_skb(arg); return err; } static int __tipc_nl_compat_doit(struct tipc_nl_compat_cmd_doit *cmd, struct tipc_nl_compat_msg *msg) { int err; struct sk_buff *doit_buf; struct sk_buff *trans_buf; struct nlattr **attrbuf; struct genl_info info; trans_buf = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!trans_buf) return -ENOMEM; attrbuf = kmalloc_array(tipc_genl_family.maxattr + 1, sizeof(struct nlattr *), GFP_KERNEL); if (!attrbuf) { err = -ENOMEM; goto trans_out; } doit_buf = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!doit_buf) { err = -ENOMEM; goto attrbuf_out; } memset(&info, 0, sizeof(info)); info.attrs = attrbuf; rtnl_lock(); err = (*cmd->transcode)(cmd, trans_buf, msg); if (err) goto doit_out; err = nla_parse_deprecated(attrbuf, tipc_genl_family.maxattr, (const struct nlattr *)trans_buf->data, trans_buf->len, NULL, NULL); if (err) goto doit_out; doit_buf->sk = msg->dst_sk; err = (*cmd->doit)(doit_buf, &info); doit_out: rtnl_unlock(); kfree_skb(doit_buf); attrbuf_out: kfree(attrbuf); trans_out: kfree_skb(trans_buf); return err; } static int tipc_nl_compat_doit(struct tipc_nl_compat_cmd_doit *cmd, struct tipc_nl_compat_msg *msg) { int err; if (msg->req_type && (!msg->req_size || !TLV_CHECK_TYPE(msg->req, msg->req_type))) return -EINVAL; err = __tipc_nl_compat_doit(cmd, msg); if (err) return err; /* The legacy API considered an empty message a success message */ msg->rep = tipc_tlv_alloc(0); if (!msg->rep) return -ENOMEM; return 0; } static int tipc_nl_compat_bearer_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { struct nlattr *bearer[TIPC_NLA_BEARER_MAX + 1]; int err; if (!attrs[TIPC_NLA_BEARER]) return -EINVAL; err = nla_parse_nested_deprecated(bearer, TIPC_NLA_BEARER_MAX, attrs[TIPC_NLA_BEARER], NULL, NULL); if (err) return err; return tipc_add_tlv(msg->rep, TIPC_TLV_BEARER_NAME, nla_data(bearer[TIPC_NLA_BEARER_NAME]), nla_len(bearer[TIPC_NLA_BEARER_NAME])); } static int tipc_nl_compat_bearer_enable(struct tipc_nl_compat_cmd_doit *cmd, struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { struct nlattr *prop; struct nlattr *bearer; struct tipc_bearer_config *b; int len; b = (struct tipc_bearer_config *)TLV_DATA(msg->req); bearer = nla_nest_start_noflag(skb, TIPC_NLA_BEARER); if (!bearer) return -EMSGSIZE; len = TLV_GET_DATA_LEN(msg->req); len -= offsetof(struct tipc_bearer_config, name); if (len <= 0) return -EINVAL; len = min_t(int, len, TIPC_MAX_BEARER_NAME); if (!string_is_terminated(b->name, len)) return -EINVAL; if (nla_put_string(skb, TIPC_NLA_BEARER_NAME, b->name)) return -EMSGSIZE; if (nla_put_u32(skb, TIPC_NLA_BEARER_DOMAIN, ntohl(b->disc_domain))) return -EMSGSIZE; if (ntohl(b->priority) <= TIPC_MAX_LINK_PRI) { prop = nla_nest_start_noflag(skb, TIPC_NLA_BEARER_PROP); if (!prop) return -EMSGSIZE; if (nla_put_u32(skb, TIPC_NLA_PROP_PRIO, ntohl(b->priority))) return -EMSGSIZE; nla_nest_end(skb, prop); } nla_nest_end(skb, bearer); return 0; } static int tipc_nl_compat_bearer_disable(struct tipc_nl_compat_cmd_doit *cmd, struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { char *name; struct nlattr *bearer; int len; name = (char *)TLV_DATA(msg->req); bearer = nla_nest_start_noflag(skb, TIPC_NLA_BEARER); if (!bearer) return -EMSGSIZE; len = TLV_GET_DATA_LEN(msg->req); if (len <= 0) return -EINVAL; len = min_t(int, len, TIPC_MAX_BEARER_NAME); if (!string_is_terminated(name, len)) return -EINVAL; if (nla_put_string(skb, TIPC_NLA_BEARER_NAME, name)) return -EMSGSIZE; nla_nest_end(skb, bearer); return 0; } static inline u32 perc(u32 count, u32 total) { return (count * 100 + (total / 2)) / total; } static void __fill_bc_link_stat(struct tipc_nl_compat_msg *msg, struct nlattr *prop[], struct nlattr *stats[]) { tipc_tlv_sprintf(msg->rep, " Window:%u packets\n", nla_get_u32(prop[TIPC_NLA_PROP_WIN])); tipc_tlv_sprintf(msg->rep, " RX packets:%u fragments:%u/%u bundles:%u/%u\n", nla_get_u32(stats[TIPC_NLA_STATS_RX_INFO]), nla_get_u32(stats[TIPC_NLA_STATS_RX_FRAGMENTS]), nla_get_u32(stats[TIPC_NLA_STATS_RX_FRAGMENTED]), nla_get_u32(stats[TIPC_NLA_STATS_RX_BUNDLES]), nla_get_u32(stats[TIPC_NLA_STATS_RX_BUNDLED])); tipc_tlv_sprintf(msg->rep, " TX packets:%u fragments:%u/%u bundles:%u/%u\n", nla_get_u32(stats[TIPC_NLA_STATS_TX_INFO]), nla_get_u32(stats[TIPC_NLA_STATS_TX_FRAGMENTS]), nla_get_u32(stats[TIPC_NLA_STATS_TX_FRAGMENTED]), nla_get_u32(stats[TIPC_NLA_STATS_TX_BUNDLES]), nla_get_u32(stats[TIPC_NLA_STATS_TX_BUNDLED])); tipc_tlv_sprintf(msg->rep, " RX naks:%u defs:%u dups:%u\n", nla_get_u32(stats[TIPC_NLA_STATS_RX_NACKS]), nla_get_u32(stats[TIPC_NLA_STATS_RX_DEFERRED]), nla_get_u32(stats[TIPC_NLA_STATS_DUPLICATES])); tipc_tlv_sprintf(msg->rep, " TX naks:%u acks:%u dups:%u\n", nla_get_u32(stats[TIPC_NLA_STATS_TX_NACKS]), nla_get_u32(stats[TIPC_NLA_STATS_TX_ACKS]), nla_get_u32(stats[TIPC_NLA_STATS_RETRANSMITTED])); tipc_tlv_sprintf(msg->rep, " Congestion link:%u Send queue max:%u avg:%u", nla_get_u32(stats[TIPC_NLA_STATS_LINK_CONGS]), nla_get_u32(stats[TIPC_NLA_STATS_MAX_QUEUE]), nla_get_u32(stats[TIPC_NLA_STATS_AVG_QUEUE])); } static int tipc_nl_compat_link_stat_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { char *name; struct nlattr *link[TIPC_NLA_LINK_MAX + 1]; struct nlattr *prop[TIPC_NLA_PROP_MAX + 1]; struct nlattr *stats[TIPC_NLA_STATS_MAX + 1]; int err; int len; if (!attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(link, TIPC_NLA_LINK_MAX, attrs[TIPC_NLA_LINK], NULL, NULL); if (err) return err; if (!link[TIPC_NLA_LINK_PROP]) return -EINVAL; err = nla_parse_nested_deprecated(prop, TIPC_NLA_PROP_MAX, link[TIPC_NLA_LINK_PROP], NULL, NULL); if (err) return err; if (!link[TIPC_NLA_LINK_STATS]) return -EINVAL; err = nla_parse_nested_deprecated(stats, TIPC_NLA_STATS_MAX, link[TIPC_NLA_LINK_STATS], NULL, NULL); if (err) return err; name = (char *)TLV_DATA(msg->req); len = TLV_GET_DATA_LEN(msg->req); if (len <= 0) return -EINVAL; len = min_t(int, len, TIPC_MAX_LINK_NAME); if (!string_is_terminated(name, len)) return -EINVAL; if (strcmp(name, nla_data(link[TIPC_NLA_LINK_NAME])) != 0) return 0; tipc_tlv_sprintf(msg->rep, "\nLink <%s>\n", (char *)nla_data(link[TIPC_NLA_LINK_NAME])); if (link[TIPC_NLA_LINK_BROADCAST]) { __fill_bc_link_stat(msg, prop, stats); return 0; } if (link[TIPC_NLA_LINK_ACTIVE]) tipc_tlv_sprintf(msg->rep, " ACTIVE"); else if (link[TIPC_NLA_LINK_UP]) tipc_tlv_sprintf(msg->rep, " STANDBY"); else tipc_tlv_sprintf(msg->rep, " DEFUNCT"); tipc_tlv_sprintf(msg->rep, " MTU:%u Priority:%u", nla_get_u32(link[TIPC_NLA_LINK_MTU]), nla_get_u32(prop[TIPC_NLA_PROP_PRIO])); tipc_tlv_sprintf(msg->rep, " Tolerance:%u ms Window:%u packets\n", nla_get_u32(prop[TIPC_NLA_PROP_TOL]), nla_get_u32(prop[TIPC_NLA_PROP_WIN])); tipc_tlv_sprintf(msg->rep, " RX packets:%u fragments:%u/%u bundles:%u/%u\n", nla_get_u32(link[TIPC_NLA_LINK_RX]) - nla_get_u32(stats[TIPC_NLA_STATS_RX_INFO]), nla_get_u32(stats[TIPC_NLA_STATS_RX_FRAGMENTS]), nla_get_u32(stats[TIPC_NLA_STATS_RX_FRAGMENTED]), nla_get_u32(stats[TIPC_NLA_STATS_RX_BUNDLES]), nla_get_u32(stats[TIPC_NLA_STATS_RX_BUNDLED])); tipc_tlv_sprintf(msg->rep, " TX packets:%u fragments:%u/%u bundles:%u/%u\n", nla_get_u32(link[TIPC_NLA_LINK_TX]) - nla_get_u32(stats[TIPC_NLA_STATS_TX_INFO]), nla_get_u32(stats[TIPC_NLA_STATS_TX_FRAGMENTS]), nla_get_u32(stats[TIPC_NLA_STATS_TX_FRAGMENTED]), nla_get_u32(stats[TIPC_NLA_STATS_TX_BUNDLES]), nla_get_u32(stats[TIPC_NLA_STATS_TX_BUNDLED])); tipc_tlv_sprintf(msg->rep, " TX profile sample:%u packets average:%u octets\n", nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_CNT]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_TOT]) / nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT])); tipc_tlv_sprintf(msg->rep, " 0-64:%u%% -256:%u%% -1024:%u%% -4096:%u%% ", perc(nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_P0]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT])), perc(nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_P1]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT])), perc(nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_P2]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT])), perc(nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_P3]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT]))); tipc_tlv_sprintf(msg->rep, "-16384:%u%% -32768:%u%% -66000:%u%%\n", perc(nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_P4]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT])), perc(nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_P5]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT])), perc(nla_get_u32(stats[TIPC_NLA_STATS_MSG_LEN_P6]), nla_get_u32(stats[TIPC_NLA_STATS_MSG_PROF_TOT]))); tipc_tlv_sprintf(msg->rep, " RX states:%u probes:%u naks:%u defs:%u dups:%u\n", nla_get_u32(stats[TIPC_NLA_STATS_RX_STATES]), nla_get_u32(stats[TIPC_NLA_STATS_RX_PROBES]), nla_get_u32(stats[TIPC_NLA_STATS_RX_NACKS]), nla_get_u32(stats[TIPC_NLA_STATS_RX_DEFERRED]), nla_get_u32(stats[TIPC_NLA_STATS_DUPLICATES])); tipc_tlv_sprintf(msg->rep, " TX states:%u probes:%u naks:%u acks:%u dups:%u\n", nla_get_u32(stats[TIPC_NLA_STATS_TX_STATES]), nla_get_u32(stats[TIPC_NLA_STATS_TX_PROBES]), nla_get_u32(stats[TIPC_NLA_STATS_TX_NACKS]), nla_get_u32(stats[TIPC_NLA_STATS_TX_ACKS]), nla_get_u32(stats[TIPC_NLA_STATS_RETRANSMITTED])); tipc_tlv_sprintf(msg->rep, " Congestion link:%u Send queue max:%u avg:%u", nla_get_u32(stats[TIPC_NLA_STATS_LINK_CONGS]), nla_get_u32(stats[TIPC_NLA_STATS_MAX_QUEUE]), nla_get_u32(stats[TIPC_NLA_STATS_AVG_QUEUE])); return 0; } static int tipc_nl_compat_link_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { struct nlattr *link[TIPC_NLA_LINK_MAX + 1]; struct tipc_link_info link_info; int err; if (!attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(link, TIPC_NLA_LINK_MAX, attrs[TIPC_NLA_LINK], NULL, NULL); if (err) return err; link_info.dest = htonl(nla_get_flag(link[TIPC_NLA_LINK_DEST])); link_info.up = htonl(nla_get_flag(link[TIPC_NLA_LINK_UP])); nla_strscpy(link_info.str, link[TIPC_NLA_LINK_NAME], TIPC_MAX_LINK_NAME); return tipc_add_tlv(msg->rep, TIPC_TLV_LINK_INFO, &link_info, sizeof(link_info)); } static int __tipc_add_link_prop(struct sk_buff *skb, struct tipc_nl_compat_msg *msg, struct tipc_link_config *lc) { switch (msg->cmd) { case TIPC_CMD_SET_LINK_PRI: return nla_put_u32(skb, TIPC_NLA_PROP_PRIO, ntohl(lc->value)); case TIPC_CMD_SET_LINK_TOL: return nla_put_u32(skb, TIPC_NLA_PROP_TOL, ntohl(lc->value)); case TIPC_CMD_SET_LINK_WINDOW: return nla_put_u32(skb, TIPC_NLA_PROP_WIN, ntohl(lc->value)); } return -EINVAL; } static int tipc_nl_compat_media_set(struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { struct nlattr *prop; struct nlattr *media; struct tipc_link_config *lc; lc = (struct tipc_link_config *)TLV_DATA(msg->req); media = nla_nest_start_noflag(skb, TIPC_NLA_MEDIA); if (!media) return -EMSGSIZE; if (nla_put_string(skb, TIPC_NLA_MEDIA_NAME, lc->name)) return -EMSGSIZE; prop = nla_nest_start_noflag(skb, TIPC_NLA_MEDIA_PROP); if (!prop) return -EMSGSIZE; __tipc_add_link_prop(skb, msg, lc); nla_nest_end(skb, prop); nla_nest_end(skb, media); return 0; } static int tipc_nl_compat_bearer_set(struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { struct nlattr *prop; struct nlattr *bearer; struct tipc_link_config *lc; lc = (struct tipc_link_config *)TLV_DATA(msg->req); bearer = nla_nest_start_noflag(skb, TIPC_NLA_BEARER); if (!bearer) return -EMSGSIZE; if (nla_put_string(skb, TIPC_NLA_BEARER_NAME, lc->name)) return -EMSGSIZE; prop = nla_nest_start_noflag(skb, TIPC_NLA_BEARER_PROP); if (!prop) return -EMSGSIZE; __tipc_add_link_prop(skb, msg, lc); nla_nest_end(skb, prop); nla_nest_end(skb, bearer); return 0; } static int __tipc_nl_compat_link_set(struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { struct nlattr *prop; struct nlattr *link; struct tipc_link_config *lc; lc = (struct tipc_link_config *)TLV_DATA(msg->req); link = nla_nest_start_noflag(skb, TIPC_NLA_LINK); if (!link) return -EMSGSIZE; if (nla_put_string(skb, TIPC_NLA_LINK_NAME, lc->name)) return -EMSGSIZE; prop = nla_nest_start_noflag(skb, TIPC_NLA_LINK_PROP); if (!prop) return -EMSGSIZE; __tipc_add_link_prop(skb, msg, lc); nla_nest_end(skb, prop); nla_nest_end(skb, link); return 0; } static int tipc_nl_compat_link_set(struct tipc_nl_compat_cmd_doit *cmd, struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { struct tipc_link_config *lc; struct tipc_bearer *bearer; struct tipc_media *media; int len; lc = (struct tipc_link_config *)TLV_DATA(msg->req); len = TLV_GET_DATA_LEN(msg->req); len -= offsetof(struct tipc_link_config, name); if (len <= 0) return -EINVAL; len = min_t(int, len, TIPC_MAX_LINK_NAME); if (!string_is_terminated(lc->name, len)) return -EINVAL; media = tipc_media_find(lc->name); if (media) { cmd->doit = &__tipc_nl_media_set; return tipc_nl_compat_media_set(skb, msg); } bearer = tipc_bearer_find(msg->net, lc->name); if (bearer) { cmd->doit = &__tipc_nl_bearer_set; return tipc_nl_compat_bearer_set(skb, msg); } return __tipc_nl_compat_link_set(skb, msg); } static int tipc_nl_compat_link_reset_stats(struct tipc_nl_compat_cmd_doit *cmd, struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { char *name; struct nlattr *link; int len; name = (char *)TLV_DATA(msg->req); link = nla_nest_start_noflag(skb, TIPC_NLA_LINK); if (!link) return -EMSGSIZE; len = TLV_GET_DATA_LEN(msg->req); if (len <= 0) return -EINVAL; len = min_t(int, len, TIPC_MAX_LINK_NAME); if (!string_is_terminated(name, len)) return -EINVAL; if (nla_put_string(skb, TIPC_NLA_LINK_NAME, name)) return -EMSGSIZE; nla_nest_end(skb, link); return 0; } static int tipc_nl_compat_name_table_dump_header(struct tipc_nl_compat_msg *msg) { int i; u32 depth; struct tipc_name_table_query *ntq; static const char * const header[] = { "Type ", "Lower Upper ", "Port Identity ", "Publication Scope" }; ntq = (struct tipc_name_table_query *)TLV_DATA(msg->req); if (TLV_GET_DATA_LEN(msg->req) < (int)sizeof(struct tipc_name_table_query)) return -EINVAL; depth = ntohl(ntq->depth); if (depth > 4) depth = 4; for (i = 0; i < depth; i++) tipc_tlv_sprintf(msg->rep, header[i]); tipc_tlv_sprintf(msg->rep, "\n"); return 0; } static int tipc_nl_compat_name_table_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { char port_str[27]; struct tipc_name_table_query *ntq; struct nlattr *nt[TIPC_NLA_NAME_TABLE_MAX + 1]; struct nlattr *publ[TIPC_NLA_PUBL_MAX + 1]; u32 node, depth, type, lowbound, upbound; static const char * const scope_str[] = {"", " zone", " cluster", " node"}; int err; if (!attrs[TIPC_NLA_NAME_TABLE]) return -EINVAL; err = nla_parse_nested_deprecated(nt, TIPC_NLA_NAME_TABLE_MAX, attrs[TIPC_NLA_NAME_TABLE], NULL, NULL); if (err) return err; if (!nt[TIPC_NLA_NAME_TABLE_PUBL]) return -EINVAL; err = nla_parse_nested_deprecated(publ, TIPC_NLA_PUBL_MAX, nt[TIPC_NLA_NAME_TABLE_PUBL], NULL, NULL); if (err) return err; ntq = (struct tipc_name_table_query *)TLV_DATA(msg->req); depth = ntohl(ntq->depth); type = ntohl(ntq->type); lowbound = ntohl(ntq->lowbound); upbound = ntohl(ntq->upbound); if (!(depth & TIPC_NTQ_ALLTYPES) && (type != nla_get_u32(publ[TIPC_NLA_PUBL_TYPE]))) return 0; if (lowbound && (lowbound > nla_get_u32(publ[TIPC_NLA_PUBL_UPPER]))) return 0; if (upbound && (upbound < nla_get_u32(publ[TIPC_NLA_PUBL_LOWER]))) return 0; tipc_tlv_sprintf(msg->rep, "%-10u ", nla_get_u32(publ[TIPC_NLA_PUBL_TYPE])); if (depth == 1) goto out; tipc_tlv_sprintf(msg->rep, "%-10u %-10u ", nla_get_u32(publ[TIPC_NLA_PUBL_LOWER]), nla_get_u32(publ[TIPC_NLA_PUBL_UPPER])); if (depth == 2) goto out; node = nla_get_u32(publ[TIPC_NLA_PUBL_NODE]); sprintf(port_str, "<%u.%u.%u:%u>", tipc_zone(node), tipc_cluster(node), tipc_node(node), nla_get_u32(publ[TIPC_NLA_PUBL_REF])); tipc_tlv_sprintf(msg->rep, "%-26s ", port_str); if (depth == 3) goto out; tipc_tlv_sprintf(msg->rep, "%-10u %s", nla_get_u32(publ[TIPC_NLA_PUBL_KEY]), scope_str[nla_get_u32(publ[TIPC_NLA_PUBL_SCOPE])]); out: tipc_tlv_sprintf(msg->rep, "\n"); return 0; } static int __tipc_nl_compat_publ_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { u32 type, lower, upper; struct nlattr *publ[TIPC_NLA_PUBL_MAX + 1]; int err; if (!attrs[TIPC_NLA_PUBL]) return -EINVAL; err = nla_parse_nested_deprecated(publ, TIPC_NLA_PUBL_MAX, attrs[TIPC_NLA_PUBL], NULL, NULL); if (err) return err; type = nla_get_u32(publ[TIPC_NLA_PUBL_TYPE]); lower = nla_get_u32(publ[TIPC_NLA_PUBL_LOWER]); upper = nla_get_u32(publ[TIPC_NLA_PUBL_UPPER]); if (lower == upper) tipc_tlv_sprintf(msg->rep, " {%u,%u}", type, lower); else tipc_tlv_sprintf(msg->rep, " {%u,%u,%u}", type, lower, upper); return 0; } static int tipc_nl_compat_publ_dump(struct tipc_nl_compat_msg *msg, u32 sock) { int err; void *hdr; struct nlattr *nest; struct sk_buff *args; struct tipc_nl_compat_cmd_dump dump; args = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!args) return -ENOMEM; hdr = genlmsg_put(args, 0, 0, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_PUBL_GET); if (!hdr) { kfree_skb(args); return -EMSGSIZE; } nest = nla_nest_start_noflag(args, TIPC_NLA_SOCK); if (!nest) { kfree_skb(args); return -EMSGSIZE; } if (nla_put_u32(args, TIPC_NLA_SOCK_REF, sock)) { kfree_skb(args); return -EMSGSIZE; } nla_nest_end(args, nest); genlmsg_end(args, hdr); dump.dumpit = tipc_nl_publ_dump; dump.format = __tipc_nl_compat_publ_dump; err = __tipc_nl_compat_dumpit(&dump, msg, args); kfree_skb(args); return err; } static int tipc_nl_compat_sk_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { int err; u32 sock_ref; struct nlattr *sock[TIPC_NLA_SOCK_MAX + 1]; if (!attrs[TIPC_NLA_SOCK]) return -EINVAL; err = nla_parse_nested_deprecated(sock, TIPC_NLA_SOCK_MAX, attrs[TIPC_NLA_SOCK], NULL, NULL); if (err) return err; sock_ref = nla_get_u32(sock[TIPC_NLA_SOCK_REF]); tipc_tlv_sprintf(msg->rep, "%u:", sock_ref); if (sock[TIPC_NLA_SOCK_CON]) { u32 node; struct nlattr *con[TIPC_NLA_CON_MAX + 1]; err = nla_parse_nested_deprecated(con, TIPC_NLA_CON_MAX, sock[TIPC_NLA_SOCK_CON], NULL, NULL); if (err) return err; node = nla_get_u32(con[TIPC_NLA_CON_NODE]); tipc_tlv_sprintf(msg->rep, " connected to <%u.%u.%u:%u>", tipc_zone(node), tipc_cluster(node), tipc_node(node), nla_get_u32(con[TIPC_NLA_CON_SOCK])); if (con[TIPC_NLA_CON_FLAG]) tipc_tlv_sprintf(msg->rep, " via {%u,%u}\n", nla_get_u32(con[TIPC_NLA_CON_TYPE]), nla_get_u32(con[TIPC_NLA_CON_INST])); else tipc_tlv_sprintf(msg->rep, "\n"); } else if (sock[TIPC_NLA_SOCK_HAS_PUBL]) { tipc_tlv_sprintf(msg->rep, " bound to"); err = tipc_nl_compat_publ_dump(msg, sock_ref); if (err) return err; } tipc_tlv_sprintf(msg->rep, "\n"); return 0; } static int tipc_nl_compat_media_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { struct nlattr *media[TIPC_NLA_MEDIA_MAX + 1]; int err; if (!attrs[TIPC_NLA_MEDIA]) return -EINVAL; err = nla_parse_nested_deprecated(media, TIPC_NLA_MEDIA_MAX, attrs[TIPC_NLA_MEDIA], NULL, NULL); if (err) return err; return tipc_add_tlv(msg->rep, TIPC_TLV_MEDIA_NAME, nla_data(media[TIPC_NLA_MEDIA_NAME]), nla_len(media[TIPC_NLA_MEDIA_NAME])); } static int tipc_nl_compat_node_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { struct tipc_node_info node_info; struct nlattr *node[TIPC_NLA_NODE_MAX + 1]; int err; if (!attrs[TIPC_NLA_NODE]) return -EINVAL; err = nla_parse_nested_deprecated(node, TIPC_NLA_NODE_MAX, attrs[TIPC_NLA_NODE], NULL, NULL); if (err) return err; node_info.addr = htonl(nla_get_u32(node[TIPC_NLA_NODE_ADDR])); node_info.up = htonl(nla_get_flag(node[TIPC_NLA_NODE_UP])); return tipc_add_tlv(msg->rep, TIPC_TLV_NODE_INFO, &node_info, sizeof(node_info)); } static int tipc_nl_compat_net_set(struct tipc_nl_compat_cmd_doit *cmd, struct sk_buff *skb, struct tipc_nl_compat_msg *msg) { u32 val; struct nlattr *net; val = ntohl(*(__be32 *)TLV_DATA(msg->req)); net = nla_nest_start_noflag(skb, TIPC_NLA_NET); if (!net) return -EMSGSIZE; if (msg->cmd == TIPC_CMD_SET_NODE_ADDR) { if (nla_put_u32(skb, TIPC_NLA_NET_ADDR, val)) return -EMSGSIZE; } else if (msg->cmd == TIPC_CMD_SET_NETID) { if (nla_put_u32(skb, TIPC_NLA_NET_ID, val)) return -EMSGSIZE; } nla_nest_end(skb, net); return 0; } static int tipc_nl_compat_net_dump(struct tipc_nl_compat_msg *msg, struct nlattr **attrs) { __be32 id; struct nlattr *net[TIPC_NLA_NET_MAX + 1]; int err; if (!attrs[TIPC_NLA_NET]) return -EINVAL; err = nla_parse_nested_deprecated(net, TIPC_NLA_NET_MAX, attrs[TIPC_NLA_NET], NULL, NULL); if (err) return err; id = htonl(nla_get_u32(net[TIPC_NLA_NET_ID])); return tipc_add_tlv(msg->rep, TIPC_TLV_UNSIGNED, &id, sizeof(id)); } static int tipc_cmd_show_stats_compat(struct tipc_nl_compat_msg *msg) { msg->rep = tipc_tlv_alloc(ULTRA_STRING_MAX_LEN); if (!msg->rep) return -ENOMEM; tipc_tlv_init(msg->rep, TIPC_TLV_ULTRA_STRING); tipc_tlv_sprintf(msg->rep, "TIPC version " TIPC_MOD_VER "\n"); return 0; } static int tipc_nl_compat_handle(struct tipc_nl_compat_msg *msg) { struct tipc_nl_compat_cmd_dump dump; struct tipc_nl_compat_cmd_doit doit; memset(&dump, 0, sizeof(dump)); memset(&doit, 0, sizeof(doit)); switch (msg->cmd) { case TIPC_CMD_NOOP: msg->rep = tipc_tlv_alloc(0); if (!msg->rep) return -ENOMEM; return 0; case TIPC_CMD_GET_BEARER_NAMES: msg->rep_size = MAX_BEARERS * TLV_SPACE(TIPC_MAX_BEARER_NAME); dump.dumpit = tipc_nl_bearer_dump; dump.format = tipc_nl_compat_bearer_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_ENABLE_BEARER: msg->req_type = TIPC_TLV_BEARER_CONFIG; doit.doit = __tipc_nl_bearer_enable; doit.transcode = tipc_nl_compat_bearer_enable; return tipc_nl_compat_doit(&doit, msg); case TIPC_CMD_DISABLE_BEARER: msg->req_type = TIPC_TLV_BEARER_NAME; doit.doit = __tipc_nl_bearer_disable; doit.transcode = tipc_nl_compat_bearer_disable; return tipc_nl_compat_doit(&doit, msg); case TIPC_CMD_SHOW_LINK_STATS: msg->req_type = TIPC_TLV_LINK_NAME; msg->rep_size = ULTRA_STRING_MAX_LEN; msg->rep_type = TIPC_TLV_ULTRA_STRING; dump.dumpit = tipc_nl_node_dump_link; dump.format = tipc_nl_compat_link_stat_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_GET_LINKS: msg->req_type = TIPC_TLV_NET_ADDR; msg->rep_size = ULTRA_STRING_MAX_LEN; dump.dumpit = tipc_nl_node_dump_link; dump.format = tipc_nl_compat_link_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_SET_LINK_TOL: case TIPC_CMD_SET_LINK_PRI: case TIPC_CMD_SET_LINK_WINDOW: msg->req_type = TIPC_TLV_LINK_CONFIG; doit.doit = tipc_nl_node_set_link; doit.transcode = tipc_nl_compat_link_set; return tipc_nl_compat_doit(&doit, msg); case TIPC_CMD_RESET_LINK_STATS: msg->req_type = TIPC_TLV_LINK_NAME; doit.doit = tipc_nl_node_reset_link_stats; doit.transcode = tipc_nl_compat_link_reset_stats; return tipc_nl_compat_doit(&doit, msg); case TIPC_CMD_SHOW_NAME_TABLE: msg->req_type = TIPC_TLV_NAME_TBL_QUERY; msg->rep_size = ULTRA_STRING_MAX_LEN; msg->rep_type = TIPC_TLV_ULTRA_STRING; dump.header = tipc_nl_compat_name_table_dump_header; dump.dumpit = tipc_nl_name_table_dump; dump.format = tipc_nl_compat_name_table_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_SHOW_PORTS: msg->rep_size = ULTRA_STRING_MAX_LEN; msg->rep_type = TIPC_TLV_ULTRA_STRING; dump.dumpit = tipc_nl_sk_dump; dump.format = tipc_nl_compat_sk_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_GET_MEDIA_NAMES: msg->rep_size = MAX_MEDIA * TLV_SPACE(TIPC_MAX_MEDIA_NAME); dump.dumpit = tipc_nl_media_dump; dump.format = tipc_nl_compat_media_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_GET_NODES: msg->rep_size = ULTRA_STRING_MAX_LEN; dump.dumpit = tipc_nl_node_dump; dump.format = tipc_nl_compat_node_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_SET_NODE_ADDR: msg->req_type = TIPC_TLV_NET_ADDR; doit.doit = __tipc_nl_net_set; doit.transcode = tipc_nl_compat_net_set; return tipc_nl_compat_doit(&doit, msg); case TIPC_CMD_SET_NETID: msg->req_type = TIPC_TLV_UNSIGNED; doit.doit = __tipc_nl_net_set; doit.transcode = tipc_nl_compat_net_set; return tipc_nl_compat_doit(&doit, msg); case TIPC_CMD_GET_NETID: msg->rep_size = sizeof(u32); dump.dumpit = tipc_nl_net_dump; dump.format = tipc_nl_compat_net_dump; return tipc_nl_compat_dumpit(&dump, msg); case TIPC_CMD_SHOW_STATS: return tipc_cmd_show_stats_compat(msg); } return -EOPNOTSUPP; } static int tipc_nl_compat_recv(struct sk_buff *skb, struct genl_info *info) { int err; int len; struct tipc_nl_compat_msg msg; struct nlmsghdr *req_nlh; struct nlmsghdr *rep_nlh; struct tipc_genlmsghdr *req_userhdr = genl_info_userhdr(info); memset(&msg, 0, sizeof(msg)); req_nlh = (struct nlmsghdr *)skb->data; msg.req = nlmsg_data(req_nlh) + GENL_HDRLEN + TIPC_GENL_HDRLEN; msg.cmd = req_userhdr->cmd; msg.net = genl_info_net(info); msg.dst_sk = skb->sk; if ((msg.cmd & 0xC000) && (!netlink_net_capable(skb, CAP_NET_ADMIN))) { msg.rep = tipc_get_err_tlv(TIPC_CFG_NOT_NET_ADMIN); err = -EACCES; goto send; } msg.req_size = nlmsg_attrlen(req_nlh, GENL_HDRLEN + TIPC_GENL_HDRLEN); if (msg.req_size && !TLV_OK(msg.req, msg.req_size)) { msg.rep = tipc_get_err_tlv(TIPC_CFG_NOT_SUPPORTED); err = -EOPNOTSUPP; goto send; } err = tipc_nl_compat_handle(&msg); if ((err == -EOPNOTSUPP) || (err == -EPERM)) msg.rep = tipc_get_err_tlv(TIPC_CFG_NOT_SUPPORTED); else if (err == -EINVAL) msg.rep = tipc_get_err_tlv(TIPC_CFG_TLV_ERROR); send: if (!msg.rep) return err; len = nlmsg_total_size(GENL_HDRLEN + TIPC_GENL_HDRLEN); skb_push(msg.rep, len); rep_nlh = nlmsg_hdr(msg.rep); memcpy(rep_nlh, info->nlhdr, len); rep_nlh->nlmsg_len = msg.rep->len; genlmsg_unicast(msg.net, msg.rep, NETLINK_CB(skb).portid); return err; } static const struct genl_small_ops tipc_genl_compat_ops[] = { { .cmd = TIPC_GENL_CMD, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = tipc_nl_compat_recv, }, }; static struct genl_family tipc_genl_compat_family __ro_after_init = { .name = TIPC_GENL_NAME, .version = TIPC_GENL_VERSION, .hdrsize = TIPC_GENL_HDRLEN, .maxattr = 0, .netnsok = true, .module = THIS_MODULE, .small_ops = tipc_genl_compat_ops, .n_small_ops = ARRAY_SIZE(tipc_genl_compat_ops), .resv_start_op = TIPC_GENL_CMD + 1, }; int __init tipc_netlink_compat_start(void) { int res; res = genl_register_family(&tipc_genl_compat_family); if (res) { pr_err("Failed to register legacy compat interface\n"); return res; } return 0; } void tipc_netlink_compat_stop(void) { genl_unregister_family(&tipc_genl_compat_family); } |
25 12 6 3 4 1 1 10 10 20 2 19 3 11 11 5 6 35 1 1 1 10 22 3 21 7 4 1 1 2 2 1 1 9 2 7 7 7 9 2 2 4 12 9 4 12 12 2 1 1 3 3 4 1 1 1 1 6 4 2 2 13 5 6 2 6 2 6 2 6 2 8 13 13 13 13 13 2 12 13 6 5 1 3 2 3 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | // SPDX-License-Identifier: GPL-2.0-only /* L2TP netlink layer, for management * * Copyright (c) 2008,2009,2010 Katalix Systems Ltd * * Partly based on the IrDA nelink implementation * (see net/irda/irnetlink.c) which is: * Copyright (c) 2007 Samuel Ortiz <samuel@sortiz.org> * which is in turn partly based on the wireless netlink code: * Copyright 2006 Johannes Berg <johannes@sipsolutions.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <net/sock.h> #include <net/genetlink.h> #include <net/udp.h> #include <linux/in.h> #include <linux/udp.h> #include <linux/socket.h> #include <linux/module.h> #include <linux/list.h> #include <net/net_namespace.h> #include <linux/l2tp.h> #include "l2tp_core.h" static struct genl_family l2tp_nl_family; static const struct genl_multicast_group l2tp_multicast_group[] = { { .name = L2TP_GENL_MCGROUP, }, }; static int l2tp_nl_tunnel_send(struct sk_buff *skb, u32 portid, u32 seq, int flags, struct l2tp_tunnel *tunnel, u8 cmd); static int l2tp_nl_session_send(struct sk_buff *skb, u32 portid, u32 seq, int flags, struct l2tp_session *session, u8 cmd); /* Accessed under genl lock */ static const struct l2tp_nl_cmd_ops *l2tp_nl_cmd_ops[__L2TP_PWTYPE_MAX]; static struct l2tp_session *l2tp_nl_session_get(struct genl_info *info) { u32 tunnel_id; u32 session_id; char *ifname; struct l2tp_tunnel *tunnel; struct l2tp_session *session = NULL; struct net *net = genl_info_net(info); if (info->attrs[L2TP_ATTR_IFNAME]) { ifname = nla_data(info->attrs[L2TP_ATTR_IFNAME]); session = l2tp_session_get_by_ifname(net, ifname); } else if ((info->attrs[L2TP_ATTR_SESSION_ID]) && (info->attrs[L2TP_ATTR_CONN_ID])) { tunnel_id = nla_get_u32(info->attrs[L2TP_ATTR_CONN_ID]); session_id = nla_get_u32(info->attrs[L2TP_ATTR_SESSION_ID]); tunnel = l2tp_tunnel_get(net, tunnel_id); if (tunnel) { session = l2tp_session_get(net, tunnel->sock, tunnel->version, tunnel_id, session_id); l2tp_tunnel_dec_refcount(tunnel); } } return session; } static int l2tp_nl_cmd_noop(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; void *hdr; int ret = -ENOBUFS; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto out; } hdr = genlmsg_put(msg, info->snd_portid, info->snd_seq, &l2tp_nl_family, 0, L2TP_CMD_NOOP); if (!hdr) { ret = -EMSGSIZE; goto err_out; } genlmsg_end(msg, hdr); return genlmsg_unicast(genl_info_net(info), msg, info->snd_portid); err_out: nlmsg_free(msg); out: return ret; } static int l2tp_tunnel_notify(struct genl_family *family, struct genl_info *info, struct l2tp_tunnel *tunnel, u8 cmd) { struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = l2tp_nl_tunnel_send(msg, info->snd_portid, info->snd_seq, NLM_F_ACK, tunnel, cmd); if (ret >= 0) { ret = genlmsg_multicast_allns(family, msg, 0, 0, GFP_ATOMIC); /* We don't care if no one is listening */ if (ret == -ESRCH) ret = 0; return ret; } nlmsg_free(msg); return ret; } static int l2tp_session_notify(struct genl_family *family, struct genl_info *info, struct l2tp_session *session, u8 cmd) { struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = l2tp_nl_session_send(msg, info->snd_portid, info->snd_seq, NLM_F_ACK, session, cmd); if (ret >= 0) { ret = genlmsg_multicast_allns(family, msg, 0, 0, GFP_ATOMIC); /* We don't care if no one is listening */ if (ret == -ESRCH) ret = 0; return ret; } nlmsg_free(msg); return ret; } static int l2tp_nl_cmd_tunnel_create_get_addr(struct nlattr **attrs, struct l2tp_tunnel_cfg *cfg) { if (attrs[L2TP_ATTR_UDP_SPORT]) cfg->local_udp_port = nla_get_u16(attrs[L2TP_ATTR_UDP_SPORT]); if (attrs[L2TP_ATTR_UDP_DPORT]) cfg->peer_udp_port = nla_get_u16(attrs[L2TP_ATTR_UDP_DPORT]); cfg->use_udp_checksums = nla_get_flag(attrs[L2TP_ATTR_UDP_CSUM]); /* Must have either AF_INET or AF_INET6 address for source and destination */ #if IS_ENABLED(CONFIG_IPV6) if (attrs[L2TP_ATTR_IP6_SADDR] && attrs[L2TP_ATTR_IP6_DADDR]) { cfg->local_ip6 = nla_data(attrs[L2TP_ATTR_IP6_SADDR]); cfg->peer_ip6 = nla_data(attrs[L2TP_ATTR_IP6_DADDR]); cfg->udp6_zero_tx_checksums = nla_get_flag(attrs[L2TP_ATTR_UDP_ZERO_CSUM6_TX]); cfg->udp6_zero_rx_checksums = nla_get_flag(attrs[L2TP_ATTR_UDP_ZERO_CSUM6_RX]); return 0; } #endif if (attrs[L2TP_ATTR_IP_SADDR] && attrs[L2TP_ATTR_IP_DADDR]) { cfg->local_ip.s_addr = nla_get_in_addr(attrs[L2TP_ATTR_IP_SADDR]); cfg->peer_ip.s_addr = nla_get_in_addr(attrs[L2TP_ATTR_IP_DADDR]); return 0; } return -EINVAL; } static int l2tp_nl_cmd_tunnel_create(struct sk_buff *skb, struct genl_info *info) { u32 tunnel_id; u32 peer_tunnel_id; int proto_version; int fd = -1; int ret = 0; struct l2tp_tunnel_cfg cfg = { 0, }; struct l2tp_tunnel *tunnel; struct net *net = genl_info_net(info); struct nlattr **attrs = info->attrs; if (!attrs[L2TP_ATTR_CONN_ID]) { ret = -EINVAL; goto out; } tunnel_id = nla_get_u32(attrs[L2TP_ATTR_CONN_ID]); if (!attrs[L2TP_ATTR_PEER_CONN_ID]) { ret = -EINVAL; goto out; } peer_tunnel_id = nla_get_u32(attrs[L2TP_ATTR_PEER_CONN_ID]); if (!attrs[L2TP_ATTR_PROTO_VERSION]) { ret = -EINVAL; goto out; } proto_version = nla_get_u8(attrs[L2TP_ATTR_PROTO_VERSION]); if (!attrs[L2TP_ATTR_ENCAP_TYPE]) { ret = -EINVAL; goto out; } cfg.encap = nla_get_u16(attrs[L2TP_ATTR_ENCAP_TYPE]); /* Managed tunnels take the tunnel socket from userspace. * Unmanaged tunnels must call out the source and destination addresses * for the kernel to create the tunnel socket itself. */ if (attrs[L2TP_ATTR_FD]) { fd = nla_get_u32(attrs[L2TP_ATTR_FD]); } else { ret = l2tp_nl_cmd_tunnel_create_get_addr(attrs, &cfg); if (ret < 0) goto out; } ret = -EINVAL; switch (cfg.encap) { case L2TP_ENCAPTYPE_UDP: case L2TP_ENCAPTYPE_IP: ret = l2tp_tunnel_create(fd, proto_version, tunnel_id, peer_tunnel_id, &cfg, &tunnel); break; } if (ret < 0) goto out; l2tp_tunnel_inc_refcount(tunnel); ret = l2tp_tunnel_register(tunnel, net, &cfg); if (ret < 0) { kfree(tunnel); goto out; } ret = l2tp_tunnel_notify(&l2tp_nl_family, info, tunnel, L2TP_CMD_TUNNEL_CREATE); l2tp_tunnel_dec_refcount(tunnel); out: return ret; } static int l2tp_nl_cmd_tunnel_delete(struct sk_buff *skb, struct genl_info *info) { struct l2tp_tunnel *tunnel; u32 tunnel_id; int ret = 0; struct net *net = genl_info_net(info); if (!info->attrs[L2TP_ATTR_CONN_ID]) { ret = -EINVAL; goto out; } tunnel_id = nla_get_u32(info->attrs[L2TP_ATTR_CONN_ID]); tunnel = l2tp_tunnel_get(net, tunnel_id); if (!tunnel) { ret = -ENODEV; goto out; } l2tp_tunnel_notify(&l2tp_nl_family, info, tunnel, L2TP_CMD_TUNNEL_DELETE); l2tp_tunnel_delete(tunnel); l2tp_tunnel_dec_refcount(tunnel); out: return ret; } static int l2tp_nl_cmd_tunnel_modify(struct sk_buff *skb, struct genl_info *info) { struct l2tp_tunnel *tunnel; u32 tunnel_id; int ret = 0; struct net *net = genl_info_net(info); if (!info->attrs[L2TP_ATTR_CONN_ID]) { ret = -EINVAL; goto out; } tunnel_id = nla_get_u32(info->attrs[L2TP_ATTR_CONN_ID]); tunnel = l2tp_tunnel_get(net, tunnel_id); if (!tunnel) { ret = -ENODEV; goto out; } ret = l2tp_tunnel_notify(&l2tp_nl_family, info, tunnel, L2TP_CMD_TUNNEL_MODIFY); l2tp_tunnel_dec_refcount(tunnel); out: return ret; } #if IS_ENABLED(CONFIG_IPV6) static int l2tp_nl_tunnel_send_addr6(struct sk_buff *skb, struct sock *sk, enum l2tp_encap_type encap) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); switch (encap) { case L2TP_ENCAPTYPE_UDP: if (udp_get_no_check6_tx(sk) && nla_put_flag(skb, L2TP_ATTR_UDP_ZERO_CSUM6_TX)) return -1; if (udp_get_no_check6_rx(sk) && nla_put_flag(skb, L2TP_ATTR_UDP_ZERO_CSUM6_RX)) return -1; if (nla_put_u16(skb, L2TP_ATTR_UDP_SPORT, ntohs(inet->inet_sport)) || nla_put_u16(skb, L2TP_ATTR_UDP_DPORT, ntohs(inet->inet_dport))) return -1; fallthrough; case L2TP_ENCAPTYPE_IP: if (nla_put_in6_addr(skb, L2TP_ATTR_IP6_SADDR, &np->saddr) || nla_put_in6_addr(skb, L2TP_ATTR_IP6_DADDR, &sk->sk_v6_daddr)) return -1; break; } return 0; } #endif static int l2tp_nl_tunnel_send_addr4(struct sk_buff *skb, struct sock *sk, enum l2tp_encap_type encap) { struct inet_sock *inet = inet_sk(sk); switch (encap) { case L2TP_ENCAPTYPE_UDP: if (nla_put_u8(skb, L2TP_ATTR_UDP_CSUM, !sk->sk_no_check_tx) || nla_put_u16(skb, L2TP_ATTR_UDP_SPORT, ntohs(inet->inet_sport)) || nla_put_u16(skb, L2TP_ATTR_UDP_DPORT, ntohs(inet->inet_dport))) return -1; fallthrough; case L2TP_ENCAPTYPE_IP: if (nla_put_in_addr(skb, L2TP_ATTR_IP_SADDR, inet->inet_saddr) || nla_put_in_addr(skb, L2TP_ATTR_IP_DADDR, inet->inet_daddr)) return -1; break; } return 0; } /* Append attributes for the tunnel address, handling the different attribute types * used for different tunnel encapsulation and AF_INET v.s. AF_INET6. */ static int l2tp_nl_tunnel_send_addr(struct sk_buff *skb, struct l2tp_tunnel *tunnel) { struct sock *sk = tunnel->sock; if (!sk) return 0; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == AF_INET6) return l2tp_nl_tunnel_send_addr6(skb, sk, tunnel->encap); #endif return l2tp_nl_tunnel_send_addr4(skb, sk, tunnel->encap); } static int l2tp_nl_tunnel_send(struct sk_buff *skb, u32 portid, u32 seq, int flags, struct l2tp_tunnel *tunnel, u8 cmd) { void *hdr; struct nlattr *nest; hdr = genlmsg_put(skb, portid, seq, &l2tp_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (nla_put_u8(skb, L2TP_ATTR_PROTO_VERSION, tunnel->version) || nla_put_u32(skb, L2TP_ATTR_CONN_ID, tunnel->tunnel_id) || nla_put_u32(skb, L2TP_ATTR_PEER_CONN_ID, tunnel->peer_tunnel_id) || nla_put_u32(skb, L2TP_ATTR_DEBUG, 0) || nla_put_u16(skb, L2TP_ATTR_ENCAP_TYPE, tunnel->encap)) goto nla_put_failure; nest = nla_nest_start_noflag(skb, L2TP_ATTR_STATS); if (!nest) goto nla_put_failure; if (nla_put_u64_64bit(skb, L2TP_ATTR_TX_PACKETS, atomic_long_read(&tunnel->stats.tx_packets), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_TX_BYTES, atomic_long_read(&tunnel->stats.tx_bytes), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_TX_ERRORS, atomic_long_read(&tunnel->stats.tx_errors), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_PACKETS, atomic_long_read(&tunnel->stats.rx_packets), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_BYTES, atomic_long_read(&tunnel->stats.rx_bytes), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_SEQ_DISCARDS, atomic_long_read(&tunnel->stats.rx_seq_discards), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_COOKIE_DISCARDS, atomic_long_read(&tunnel->stats.rx_cookie_discards), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_OOS_PACKETS, atomic_long_read(&tunnel->stats.rx_oos_packets), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_ERRORS, atomic_long_read(&tunnel->stats.rx_errors), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_INVALID, atomic_long_read(&tunnel->stats.rx_invalid), L2TP_ATTR_STATS_PAD)) goto nla_put_failure; nla_nest_end(skb, nest); if (l2tp_nl_tunnel_send_addr(skb, tunnel)) goto nla_put_failure; genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -1; } static int l2tp_nl_cmd_tunnel_get(struct sk_buff *skb, struct genl_info *info) { struct l2tp_tunnel *tunnel; struct sk_buff *msg; u32 tunnel_id; int ret = -ENOBUFS; struct net *net = genl_info_net(info); if (!info->attrs[L2TP_ATTR_CONN_ID]) { ret = -EINVAL; goto err; } tunnel_id = nla_get_u32(info->attrs[L2TP_ATTR_CONN_ID]); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err; } tunnel = l2tp_tunnel_get(net, tunnel_id); if (!tunnel) { ret = -ENODEV; goto err_nlmsg; } ret = l2tp_nl_tunnel_send(msg, info->snd_portid, info->snd_seq, NLM_F_ACK, tunnel, L2TP_CMD_TUNNEL_GET); if (ret < 0) goto err_nlmsg_tunnel; l2tp_tunnel_dec_refcount(tunnel); return genlmsg_unicast(net, msg, info->snd_portid); err_nlmsg_tunnel: l2tp_tunnel_dec_refcount(tunnel); err_nlmsg: nlmsg_free(msg); err: return ret; } static int l2tp_nl_cmd_tunnel_dump(struct sk_buff *skb, struct netlink_callback *cb) { int ti = cb->args[0]; struct l2tp_tunnel *tunnel; struct net *net = sock_net(skb->sk); for (;;) { tunnel = l2tp_tunnel_get_nth(net, ti); if (!tunnel) goto out; if (l2tp_nl_tunnel_send(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, tunnel, L2TP_CMD_TUNNEL_GET) < 0) { l2tp_tunnel_dec_refcount(tunnel); goto out; } l2tp_tunnel_dec_refcount(tunnel); ti++; } out: cb->args[0] = ti; return skb->len; } static int l2tp_nl_cmd_session_create(struct sk_buff *skb, struct genl_info *info) { u32 tunnel_id = 0; u32 session_id; u32 peer_session_id; int ret = 0; struct l2tp_tunnel *tunnel; struct l2tp_session *session; struct l2tp_session_cfg cfg = { 0, }; struct net *net = genl_info_net(info); if (!info->attrs[L2TP_ATTR_CONN_ID]) { ret = -EINVAL; goto out; } tunnel_id = nla_get_u32(info->attrs[L2TP_ATTR_CONN_ID]); tunnel = l2tp_tunnel_get(net, tunnel_id); if (!tunnel) { ret = -ENODEV; goto out; } if (!info->attrs[L2TP_ATTR_SESSION_ID]) { ret = -EINVAL; goto out_tunnel; } session_id = nla_get_u32(info->attrs[L2TP_ATTR_SESSION_ID]); if (!info->attrs[L2TP_ATTR_PEER_SESSION_ID]) { ret = -EINVAL; goto out_tunnel; } peer_session_id = nla_get_u32(info->attrs[L2TP_ATTR_PEER_SESSION_ID]); if (!info->attrs[L2TP_ATTR_PW_TYPE]) { ret = -EINVAL; goto out_tunnel; } cfg.pw_type = nla_get_u16(info->attrs[L2TP_ATTR_PW_TYPE]); if (cfg.pw_type >= __L2TP_PWTYPE_MAX) { ret = -EINVAL; goto out_tunnel; } /* L2TPv2 only accepts PPP pseudo-wires */ if (tunnel->version == 2 && cfg.pw_type != L2TP_PWTYPE_PPP) { ret = -EPROTONOSUPPORT; goto out_tunnel; } if (tunnel->version > 2) { if (info->attrs[L2TP_ATTR_L2SPEC_TYPE]) { cfg.l2specific_type = nla_get_u8(info->attrs[L2TP_ATTR_L2SPEC_TYPE]); if (cfg.l2specific_type != L2TP_L2SPECTYPE_DEFAULT && cfg.l2specific_type != L2TP_L2SPECTYPE_NONE) { ret = -EINVAL; goto out_tunnel; } } else { cfg.l2specific_type = L2TP_L2SPECTYPE_DEFAULT; } if (info->attrs[L2TP_ATTR_COOKIE]) { u16 len = nla_len(info->attrs[L2TP_ATTR_COOKIE]); if (len > 8) { ret = -EINVAL; goto out_tunnel; } cfg.cookie_len = len; memcpy(&cfg.cookie[0], nla_data(info->attrs[L2TP_ATTR_COOKIE]), len); } if (info->attrs[L2TP_ATTR_PEER_COOKIE]) { u16 len = nla_len(info->attrs[L2TP_ATTR_PEER_COOKIE]); if (len > 8) { ret = -EINVAL; goto out_tunnel; } cfg.peer_cookie_len = len; memcpy(&cfg.peer_cookie[0], nla_data(info->attrs[L2TP_ATTR_PEER_COOKIE]), len); } if (info->attrs[L2TP_ATTR_IFNAME]) cfg.ifname = nla_data(info->attrs[L2TP_ATTR_IFNAME]); } if (info->attrs[L2TP_ATTR_RECV_SEQ]) cfg.recv_seq = nla_get_u8(info->attrs[L2TP_ATTR_RECV_SEQ]); if (info->attrs[L2TP_ATTR_SEND_SEQ]) cfg.send_seq = nla_get_u8(info->attrs[L2TP_ATTR_SEND_SEQ]); if (info->attrs[L2TP_ATTR_LNS_MODE]) cfg.lns_mode = nla_get_u8(info->attrs[L2TP_ATTR_LNS_MODE]); if (info->attrs[L2TP_ATTR_RECV_TIMEOUT]) cfg.reorder_timeout = nla_get_msecs(info->attrs[L2TP_ATTR_RECV_TIMEOUT]); #ifdef CONFIG_MODULES if (!l2tp_nl_cmd_ops[cfg.pw_type]) { genl_unlock(); request_module("net-l2tp-type-%u", cfg.pw_type); genl_lock(); } #endif if (!l2tp_nl_cmd_ops[cfg.pw_type] || !l2tp_nl_cmd_ops[cfg.pw_type]->session_create) { ret = -EPROTONOSUPPORT; goto out_tunnel; } ret = l2tp_nl_cmd_ops[cfg.pw_type]->session_create(net, tunnel, session_id, peer_session_id, &cfg); if (ret >= 0) { session = l2tp_session_get(net, tunnel->sock, tunnel->version, tunnel_id, session_id); if (session) { ret = l2tp_session_notify(&l2tp_nl_family, info, session, L2TP_CMD_SESSION_CREATE); l2tp_session_dec_refcount(session); } } out_tunnel: l2tp_tunnel_dec_refcount(tunnel); out: return ret; } static int l2tp_nl_cmd_session_delete(struct sk_buff *skb, struct genl_info *info) { int ret = 0; struct l2tp_session *session; u16 pw_type; session = l2tp_nl_session_get(info); if (!session) { ret = -ENODEV; goto out; } l2tp_session_notify(&l2tp_nl_family, info, session, L2TP_CMD_SESSION_DELETE); pw_type = session->pwtype; if (pw_type < __L2TP_PWTYPE_MAX) if (l2tp_nl_cmd_ops[pw_type] && l2tp_nl_cmd_ops[pw_type]->session_delete) l2tp_nl_cmd_ops[pw_type]->session_delete(session); l2tp_session_dec_refcount(session); out: return ret; } static int l2tp_nl_cmd_session_modify(struct sk_buff *skb, struct genl_info *info) { int ret = 0; struct l2tp_session *session; session = l2tp_nl_session_get(info); if (!session) { ret = -ENODEV; goto out; } if (info->attrs[L2TP_ATTR_RECV_SEQ]) session->recv_seq = nla_get_u8(info->attrs[L2TP_ATTR_RECV_SEQ]); if (info->attrs[L2TP_ATTR_SEND_SEQ]) { session->send_seq = nla_get_u8(info->attrs[L2TP_ATTR_SEND_SEQ]); l2tp_session_set_header_len(session, session->tunnel->version); } if (info->attrs[L2TP_ATTR_LNS_MODE]) session->lns_mode = nla_get_u8(info->attrs[L2TP_ATTR_LNS_MODE]); if (info->attrs[L2TP_ATTR_RECV_TIMEOUT]) session->reorder_timeout = nla_get_msecs(info->attrs[L2TP_ATTR_RECV_TIMEOUT]); ret = l2tp_session_notify(&l2tp_nl_family, info, session, L2TP_CMD_SESSION_MODIFY); l2tp_session_dec_refcount(session); out: return ret; } static int l2tp_nl_session_send(struct sk_buff *skb, u32 portid, u32 seq, int flags, struct l2tp_session *session, u8 cmd) { void *hdr; struct nlattr *nest; struct l2tp_tunnel *tunnel = session->tunnel; hdr = genlmsg_put(skb, portid, seq, &l2tp_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (nla_put_u32(skb, L2TP_ATTR_CONN_ID, tunnel->tunnel_id) || nla_put_u32(skb, L2TP_ATTR_SESSION_ID, session->session_id) || nla_put_u32(skb, L2TP_ATTR_PEER_CONN_ID, tunnel->peer_tunnel_id) || nla_put_u32(skb, L2TP_ATTR_PEER_SESSION_ID, session->peer_session_id) || nla_put_u32(skb, L2TP_ATTR_DEBUG, 0) || nla_put_u16(skb, L2TP_ATTR_PW_TYPE, session->pwtype)) goto nla_put_failure; if ((session->ifname[0] && nla_put_string(skb, L2TP_ATTR_IFNAME, session->ifname)) || (session->cookie_len && nla_put(skb, L2TP_ATTR_COOKIE, session->cookie_len, session->cookie)) || (session->peer_cookie_len && nla_put(skb, L2TP_ATTR_PEER_COOKIE, session->peer_cookie_len, session->peer_cookie)) || nla_put_u8(skb, L2TP_ATTR_RECV_SEQ, session->recv_seq) || nla_put_u8(skb, L2TP_ATTR_SEND_SEQ, session->send_seq) || nla_put_u8(skb, L2TP_ATTR_LNS_MODE, session->lns_mode) || (l2tp_tunnel_uses_xfrm(tunnel) && nla_put_u8(skb, L2TP_ATTR_USING_IPSEC, 1)) || (session->reorder_timeout && nla_put_msecs(skb, L2TP_ATTR_RECV_TIMEOUT, session->reorder_timeout, L2TP_ATTR_PAD))) goto nla_put_failure; nest = nla_nest_start_noflag(skb, L2TP_ATTR_STATS); if (!nest) goto nla_put_failure; if (nla_put_u64_64bit(skb, L2TP_ATTR_TX_PACKETS, atomic_long_read(&session->stats.tx_packets), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_TX_BYTES, atomic_long_read(&session->stats.tx_bytes), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_TX_ERRORS, atomic_long_read(&session->stats.tx_errors), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_PACKETS, atomic_long_read(&session->stats.rx_packets), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_BYTES, atomic_long_read(&session->stats.rx_bytes), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_SEQ_DISCARDS, atomic_long_read(&session->stats.rx_seq_discards), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_COOKIE_DISCARDS, atomic_long_read(&session->stats.rx_cookie_discards), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_OOS_PACKETS, atomic_long_read(&session->stats.rx_oos_packets), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_ERRORS, atomic_long_read(&session->stats.rx_errors), L2TP_ATTR_STATS_PAD) || nla_put_u64_64bit(skb, L2TP_ATTR_RX_INVALID, atomic_long_read(&session->stats.rx_invalid), L2TP_ATTR_STATS_PAD)) goto nla_put_failure; nla_nest_end(skb, nest); genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -1; } static int l2tp_nl_cmd_session_get(struct sk_buff *skb, struct genl_info *info) { struct l2tp_session *session; struct sk_buff *msg; int ret; session = l2tp_nl_session_get(info); if (!session) { ret = -ENODEV; goto err; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { ret = -ENOMEM; goto err_ref; } ret = l2tp_nl_session_send(msg, info->snd_portid, info->snd_seq, 0, session, L2TP_CMD_SESSION_GET); if (ret < 0) goto err_ref_msg; ret = genlmsg_unicast(genl_info_net(info), msg, info->snd_portid); l2tp_session_dec_refcount(session); return ret; err_ref_msg: nlmsg_free(msg); err_ref: l2tp_session_dec_refcount(session); err: return ret; } static int l2tp_nl_cmd_session_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct l2tp_session *session; struct l2tp_tunnel *tunnel = NULL; int ti = cb->args[0]; int si = cb->args[1]; for (;;) { if (!tunnel) { tunnel = l2tp_tunnel_get_nth(net, ti); if (!tunnel) goto out; } session = l2tp_session_get_nth(tunnel, si); if (!session) { ti++; l2tp_tunnel_dec_refcount(tunnel); tunnel = NULL; si = 0; continue; } if (l2tp_nl_session_send(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, session, L2TP_CMD_SESSION_GET) < 0) { l2tp_session_dec_refcount(session); l2tp_tunnel_dec_refcount(tunnel); break; } l2tp_session_dec_refcount(session); si++; } out: cb->args[0] = ti; cb->args[1] = si; return skb->len; } static const struct nla_policy l2tp_nl_policy[L2TP_ATTR_MAX + 1] = { [L2TP_ATTR_NONE] = { .type = NLA_UNSPEC, }, [L2TP_ATTR_PW_TYPE] = { .type = NLA_U16, }, [L2TP_ATTR_ENCAP_TYPE] = { .type = NLA_U16, }, [L2TP_ATTR_OFFSET] = { .type = NLA_U16, }, [L2TP_ATTR_DATA_SEQ] = { .type = NLA_U8, }, [L2TP_ATTR_L2SPEC_TYPE] = { .type = NLA_U8, }, [L2TP_ATTR_L2SPEC_LEN] = { .type = NLA_U8, }, [L2TP_ATTR_PROTO_VERSION] = { .type = NLA_U8, }, [L2TP_ATTR_CONN_ID] = { .type = NLA_U32, }, [L2TP_ATTR_PEER_CONN_ID] = { .type = NLA_U32, }, [L2TP_ATTR_SESSION_ID] = { .type = NLA_U32, }, [L2TP_ATTR_PEER_SESSION_ID] = { .type = NLA_U32, }, [L2TP_ATTR_UDP_CSUM] = { .type = NLA_U8, }, [L2TP_ATTR_VLAN_ID] = { .type = NLA_U16, }, [L2TP_ATTR_DEBUG] = { .type = NLA_U32, }, [L2TP_ATTR_RECV_SEQ] = { .type = NLA_U8, }, [L2TP_ATTR_SEND_SEQ] = { .type = NLA_U8, }, [L2TP_ATTR_LNS_MODE] = { .type = NLA_U8, }, [L2TP_ATTR_USING_IPSEC] = { .type = NLA_U8, }, [L2TP_ATTR_RECV_TIMEOUT] = { .type = NLA_MSECS, }, [L2TP_ATTR_FD] = { .type = NLA_U32, }, [L2TP_ATTR_IP_SADDR] = { .type = NLA_U32, }, [L2TP_ATTR_IP_DADDR] = { .type = NLA_U32, }, [L2TP_ATTR_UDP_SPORT] = { .type = NLA_U16, }, [L2TP_ATTR_UDP_DPORT] = { .type = NLA_U16, }, [L2TP_ATTR_MTU] = { .type = NLA_U16, }, [L2TP_ATTR_MRU] = { .type = NLA_U16, }, [L2TP_ATTR_STATS] = { .type = NLA_NESTED, }, [L2TP_ATTR_IP6_SADDR] = { .type = NLA_BINARY, .len = sizeof(struct in6_addr), }, [L2TP_ATTR_IP6_DADDR] = { .type = NLA_BINARY, .len = sizeof(struct in6_addr), }, [L2TP_ATTR_IFNAME] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ - 1, }, [L2TP_ATTR_COOKIE] = { .type = NLA_BINARY, .len = 8, }, [L2TP_ATTR_PEER_COOKIE] = { .type = NLA_BINARY, .len = 8, }, }; static const struct genl_small_ops l2tp_nl_ops[] = { { .cmd = L2TP_CMD_NOOP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_noop, /* can be retrieved by unprivileged users */ }, { .cmd = L2TP_CMD_TUNNEL_CREATE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_tunnel_create, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = L2TP_CMD_TUNNEL_DELETE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_tunnel_delete, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = L2TP_CMD_TUNNEL_MODIFY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_tunnel_modify, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = L2TP_CMD_TUNNEL_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_tunnel_get, .dumpit = l2tp_nl_cmd_tunnel_dump, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = L2TP_CMD_SESSION_CREATE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_session_create, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = L2TP_CMD_SESSION_DELETE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_session_delete, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = L2TP_CMD_SESSION_MODIFY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_session_modify, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = L2TP_CMD_SESSION_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = l2tp_nl_cmd_session_get, .dumpit = l2tp_nl_cmd_session_dump, .flags = GENL_UNS_ADMIN_PERM, }, }; static struct genl_family l2tp_nl_family __ro_after_init = { .name = L2TP_GENL_NAME, .version = L2TP_GENL_VERSION, .hdrsize = 0, .maxattr = L2TP_ATTR_MAX, .policy = l2tp_nl_policy, .netnsok = true, .module = THIS_MODULE, .small_ops = l2tp_nl_ops, .n_small_ops = ARRAY_SIZE(l2tp_nl_ops), .resv_start_op = L2TP_CMD_SESSION_GET + 1, .mcgrps = l2tp_multicast_group, .n_mcgrps = ARRAY_SIZE(l2tp_multicast_group), }; int l2tp_nl_register_ops(enum l2tp_pwtype pw_type, const struct l2tp_nl_cmd_ops *ops) { int ret; ret = -EINVAL; if (pw_type >= __L2TP_PWTYPE_MAX) goto err; genl_lock(); ret = -EBUSY; if (l2tp_nl_cmd_ops[pw_type]) goto out; l2tp_nl_cmd_ops[pw_type] = ops; ret = 0; out: genl_unlock(); err: return ret; } EXPORT_SYMBOL_GPL(l2tp_nl_register_ops); void l2tp_nl_unregister_ops(enum l2tp_pwtype pw_type) { if (pw_type < __L2TP_PWTYPE_MAX) { genl_lock(); l2tp_nl_cmd_ops[pw_type] = NULL; genl_unlock(); } } EXPORT_SYMBOL_GPL(l2tp_nl_unregister_ops); static int __init l2tp_nl_init(void) { pr_info("L2TP netlink interface\n"); return genl_register_family(&l2tp_nl_family); } static void l2tp_nl_cleanup(void) { genl_unregister_family(&l2tp_nl_family); } module_init(l2tp_nl_init); module_exit(l2tp_nl_cleanup); MODULE_AUTHOR("James Chapman <jchapman@katalix.com>"); MODULE_DESCRIPTION("L2TP netlink"); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); MODULE_ALIAS_GENL_FAMILY("l2tp"); |
19 3 1 11 2 7 15 15 2 12 2 10 3 3 15 14 12 2 15 15 11 11 11 13 13 1 23 23 2 4 1 17 12 1 1 4 13 13 3 11 19 2 1 3 9 4 1 8 6 6 3 2 1 8 8 2 5 1 1 4 3 2 2 35 1 34 70 70 1 1 67 62 2 2 62 4 12 52 5 1 3 5 64 24 27 19 4 35 44 44 32 15 40 4 6 7 33 1 44 10 3 39 5 37 33 2 4 35 44 44 3 6 8 6 6 1 1 1 1 2 3 1 2 3 2 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 | // SPDX-License-Identifier: GPL-2.0-or-later /* L2TPv3 IP encapsulation support for IPv6 * * Copyright (c) 2012 Katalix Systems Ltd */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/icmp.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/random.h> #include <linux/socket.h> #include <linux/l2tp.h> #include <linux/in.h> #include <linux/in6.h> #include <net/sock.h> #include <net/ip.h> #include <net/icmp.h> #include <net/udp.h> #include <net/inet_common.h> #include <net/tcp_states.h> #include <net/protocol.h> #include <net/xfrm.h> #include <net/transp_v6.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include "l2tp_core.h" struct l2tp_ip6_sock { /* inet_sock has to be the first member of l2tp_ip6_sock */ struct inet_sock inet; u32 conn_id; u32 peer_conn_id; struct ipv6_pinfo inet6; }; static DEFINE_RWLOCK(l2tp_ip6_lock); static struct hlist_head l2tp_ip6_table; static struct hlist_head l2tp_ip6_bind_table; static inline struct l2tp_ip6_sock *l2tp_ip6_sk(const struct sock *sk) { return (struct l2tp_ip6_sock *)sk; } static struct sock *__l2tp_ip6_bind_lookup(const struct net *net, const struct in6_addr *laddr, const struct in6_addr *raddr, int dif, u32 tunnel_id) { struct sock *sk; sk_for_each_bound(sk, &l2tp_ip6_bind_table) { const struct in6_addr *sk_laddr = inet6_rcv_saddr(sk); const struct in6_addr *sk_raddr = &sk->sk_v6_daddr; const struct l2tp_ip6_sock *l2tp = l2tp_ip6_sk(sk); int bound_dev_if; if (!net_eq(sock_net(sk), net)) continue; bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); if (bound_dev_if && dif && bound_dev_if != dif) continue; if (sk_laddr && !ipv6_addr_any(sk_laddr) && !ipv6_addr_any(laddr) && !ipv6_addr_equal(sk_laddr, laddr)) continue; if (!ipv6_addr_any(sk_raddr) && raddr && !ipv6_addr_any(raddr) && !ipv6_addr_equal(sk_raddr, raddr)) continue; if (l2tp->conn_id != tunnel_id) continue; goto found; } sk = NULL; found: return sk; } /* When processing receive frames, there are two cases to * consider. Data frames consist of a non-zero session-id and an * optional cookie. Control frames consist of a regular L2TP header * preceded by 32-bits of zeros. * * L2TPv3 Session Header Over IP * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Session ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Cookie (optional, maximum 64 bits)... * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * L2TPv3 Control Message Header Over IP * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | (32 bits of zeros) | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |T|L|x|x|S|x|x|x|x|x|x|x| Ver | Length | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Control Connection ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Ns | Nr | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * All control frames are passed to userspace. */ static int l2tp_ip6_recv(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); struct sock *sk; u32 session_id; u32 tunnel_id; unsigned char *ptr, *optr; struct l2tp_session *session; struct l2tp_tunnel *tunnel = NULL; struct ipv6hdr *iph; if (!pskb_may_pull(skb, 4)) goto discard; /* Point to L2TP header */ optr = skb->data; ptr = skb->data; session_id = ntohl(*((__be32 *)ptr)); ptr += 4; /* RFC3931: L2TP/IP packets have the first 4 bytes containing * the session_id. If it is 0, the packet is a L2TP control * frame and the session_id value can be discarded. */ if (session_id == 0) { __skb_pull(skb, 4); goto pass_up; } /* Ok, this is a data packet. Lookup the session. */ session = l2tp_v3_session_get(net, NULL, session_id); if (!session) goto discard; tunnel = session->tunnel; if (!tunnel) goto discard_sess; if (l2tp_v3_ensure_opt_in_linear(session, skb, &ptr, &optr)) goto discard_sess; l2tp_recv_common(session, skb, ptr, optr, 0, skb->len); l2tp_session_dec_refcount(session); return 0; pass_up: /* Get the tunnel_id from the L2TP header */ if (!pskb_may_pull(skb, 12)) goto discard; if ((skb->data[0] & 0xc0) != 0xc0) goto discard; tunnel_id = ntohl(*(__be32 *)&skb->data[4]); iph = ipv6_hdr(skb); read_lock_bh(&l2tp_ip6_lock); sk = __l2tp_ip6_bind_lookup(net, &iph->daddr, &iph->saddr, inet6_iif(skb), tunnel_id); if (!sk) { read_unlock_bh(&l2tp_ip6_lock); goto discard; } sock_hold(sk); read_unlock_bh(&l2tp_ip6_lock); if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) goto discard_put; nf_reset_ct(skb); return sk_receive_skb(sk, skb, 1); discard_sess: l2tp_session_dec_refcount(session); goto discard; discard_put: sock_put(sk); discard: kfree_skb(skb); return 0; } static int l2tp_ip6_hash(struct sock *sk) { if (sk_unhashed(sk)) { write_lock_bh(&l2tp_ip6_lock); sk_add_node(sk, &l2tp_ip6_table); write_unlock_bh(&l2tp_ip6_lock); } return 0; } static void l2tp_ip6_unhash(struct sock *sk) { if (sk_unhashed(sk)) return; write_lock_bh(&l2tp_ip6_lock); sk_del_node_init(sk); write_unlock_bh(&l2tp_ip6_lock); } static int l2tp_ip6_open(struct sock *sk) { /* Prevent autobind. We don't have ports. */ inet_sk(sk)->inet_num = IPPROTO_L2TP; l2tp_ip6_hash(sk); return 0; } static void l2tp_ip6_close(struct sock *sk, long timeout) { write_lock_bh(&l2tp_ip6_lock); hlist_del_init(&sk->sk_bind_node); sk_del_node_init(sk); write_unlock_bh(&l2tp_ip6_lock); sk_common_release(sk); } static void l2tp_ip6_destroy_sock(struct sock *sk) { struct l2tp_tunnel *tunnel = l2tp_sk_to_tunnel(sk); lock_sock(sk); ip6_flush_pending_frames(sk); release_sock(sk); if (tunnel) l2tp_tunnel_delete(tunnel); } static int l2tp_ip6_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct sockaddr_l2tpip6 *addr = (struct sockaddr_l2tpip6 *)uaddr; struct net *net = sock_net(sk); __be32 v4addr = 0; int bound_dev_if; int addr_type; int err; if (addr->l2tp_family != AF_INET6) return -EINVAL; if (addr_len < sizeof(*addr)) return -EINVAL; addr_type = ipv6_addr_type(&addr->l2tp_addr); /* l2tp_ip6 sockets are IPv6 only */ if (addr_type == IPV6_ADDR_MAPPED) return -EADDRNOTAVAIL; /* L2TP is point-point, not multicast */ if (addr_type & IPV6_ADDR_MULTICAST) return -EADDRNOTAVAIL; lock_sock(sk); err = -EINVAL; if (!sock_flag(sk, SOCK_ZAPPED)) goto out_unlock; if (sk->sk_state != TCP_CLOSE) goto out_unlock; bound_dev_if = sk->sk_bound_dev_if; /* Check if the address belongs to the host. */ rcu_read_lock(); if (addr_type != IPV6_ADDR_ANY) { struct net_device *dev = NULL; if (addr_type & IPV6_ADDR_LINKLOCAL) { if (addr->l2tp_scope_id) bound_dev_if = addr->l2tp_scope_id; /* Binding to link-local address requires an * interface. */ if (!bound_dev_if) goto out_unlock_rcu; err = -ENODEV; dev = dev_get_by_index_rcu(sock_net(sk), bound_dev_if); if (!dev) goto out_unlock_rcu; } /* ipv4 addr of the socket is invalid. Only the * unspecified and mapped address have a v4 equivalent. */ v4addr = LOOPBACK4_IPV6; err = -EADDRNOTAVAIL; if (!ipv6_chk_addr(sock_net(sk), &addr->l2tp_addr, dev, 0)) goto out_unlock_rcu; } rcu_read_unlock(); write_lock_bh(&l2tp_ip6_lock); if (__l2tp_ip6_bind_lookup(net, &addr->l2tp_addr, NULL, bound_dev_if, addr->l2tp_conn_id)) { write_unlock_bh(&l2tp_ip6_lock); err = -EADDRINUSE; goto out_unlock; } inet->inet_saddr = v4addr; inet->inet_rcv_saddr = v4addr; sk->sk_bound_dev_if = bound_dev_if; sk->sk_v6_rcv_saddr = addr->l2tp_addr; np->saddr = addr->l2tp_addr; l2tp_ip6_sk(sk)->conn_id = addr->l2tp_conn_id; sk_add_bind_node(sk, &l2tp_ip6_bind_table); sk_del_node_init(sk); write_unlock_bh(&l2tp_ip6_lock); sock_reset_flag(sk, SOCK_ZAPPED); release_sock(sk); return 0; out_unlock_rcu: rcu_read_unlock(); out_unlock: release_sock(sk); return err; } static int l2tp_ip6_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct sockaddr_l2tpip6 *lsa = (struct sockaddr_l2tpip6 *)uaddr; struct sockaddr_in6 *usin = (struct sockaddr_in6 *)uaddr; struct in6_addr *daddr; int addr_type; int rc; if (addr_len < sizeof(*lsa)) return -EINVAL; if (usin->sin6_family != AF_INET6) return -EINVAL; addr_type = ipv6_addr_type(&usin->sin6_addr); if (addr_type & IPV6_ADDR_MULTICAST) return -EINVAL; if (addr_type & IPV6_ADDR_MAPPED) { daddr = &usin->sin6_addr; if (ipv4_is_multicast(daddr->s6_addr32[3])) return -EINVAL; } lock_sock(sk); /* Must bind first - autobinding does not work */ if (sock_flag(sk, SOCK_ZAPPED)) { rc = -EINVAL; goto out_sk; } rc = __ip6_datagram_connect(sk, uaddr, addr_len); if (rc < 0) goto out_sk; l2tp_ip6_sk(sk)->peer_conn_id = lsa->l2tp_conn_id; write_lock_bh(&l2tp_ip6_lock); hlist_del_init(&sk->sk_bind_node); sk_add_bind_node(sk, &l2tp_ip6_bind_table); write_unlock_bh(&l2tp_ip6_lock); out_sk: release_sock(sk); return rc; } static int l2tp_ip6_disconnect(struct sock *sk, int flags) { if (sock_flag(sk, SOCK_ZAPPED)) return 0; return __udp_disconnect(sk, flags); } static int l2tp_ip6_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sockaddr_l2tpip6 *lsa = (struct sockaddr_l2tpip6 *)uaddr; struct sock *sk = sock->sk; struct ipv6_pinfo *np = inet6_sk(sk); struct l2tp_ip6_sock *lsk = l2tp_ip6_sk(sk); lsa->l2tp_family = AF_INET6; lsa->l2tp_flowinfo = 0; lsa->l2tp_scope_id = 0; lsa->l2tp_unused = 0; if (peer) { if (!lsk->peer_conn_id) return -ENOTCONN; lsa->l2tp_conn_id = lsk->peer_conn_id; lsa->l2tp_addr = sk->sk_v6_daddr; if (inet6_test_bit(SNDFLOW, sk)) lsa->l2tp_flowinfo = np->flow_label; } else { if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) lsa->l2tp_addr = np->saddr; else lsa->l2tp_addr = sk->sk_v6_rcv_saddr; lsa->l2tp_conn_id = lsk->conn_id; } if (ipv6_addr_type(&lsa->l2tp_addr) & IPV6_ADDR_LINKLOCAL) lsa->l2tp_scope_id = READ_ONCE(sk->sk_bound_dev_if); return sizeof(*lsa); } static int l2tp_ip6_backlog_recv(struct sock *sk, struct sk_buff *skb) { int rc; /* Charge it to the socket, dropping if the queue is full. */ rc = sock_queue_rcv_skb(sk, skb); if (rc < 0) goto drop; return 0; drop: IP_INC_STATS(sock_net(sk), IPSTATS_MIB_INDISCARDS); kfree_skb(skb); return -1; } static int l2tp_ip6_push_pending_frames(struct sock *sk) { struct sk_buff *skb; __be32 *transhdr = NULL; int err = 0; skb = skb_peek(&sk->sk_write_queue); if (!skb) goto out; transhdr = (__be32 *)skb_transport_header(skb); *transhdr = 0; err = ip6_push_pending_frames(sk); out: return err; } /* Userspace will call sendmsg() on the tunnel socket to send L2TP * control frames. */ static int l2tp_ip6_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct ipv6_txoptions opt_space; DECLARE_SOCKADDR(struct sockaddr_l2tpip6 *, lsa, msg->msg_name); struct in6_addr *daddr, *final_p, final; struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_txoptions *opt_to_free = NULL; struct ipv6_txoptions *opt = NULL; struct ip6_flowlabel *flowlabel = NULL; struct dst_entry *dst = NULL; struct flowi6 fl6; struct ipcm6_cookie ipc6; int addr_len = msg->msg_namelen; int transhdrlen = 4; /* zero session-id */ int ulen; int err; /* Rough check on arithmetic overflow, * better check is made in ip6_append_data(). */ if (len > INT_MAX - transhdrlen) return -EMSGSIZE; /* Mirror BSD error message compatibility */ if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; /* Get and verify the address */ memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_mark = READ_ONCE(sk->sk_mark); fl6.flowi6_uid = sk->sk_uid; ipcm6_init(&ipc6); if (lsa) { if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (lsa->l2tp_family && lsa->l2tp_family != AF_INET6) return -EAFNOSUPPORT; daddr = &lsa->l2tp_addr; if (inet6_test_bit(SNDFLOW, sk)) { fl6.flowlabel = lsa->l2tp_flowinfo & IPV6_FLOWINFO_MASK; if (fl6.flowlabel & IPV6_FLOWLABEL_MASK) { flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } } /* Otherwise it will be difficult to maintain * sk->sk_dst_cache. */ if (sk->sk_state == TCP_ESTABLISHED && ipv6_addr_equal(daddr, &sk->sk_v6_daddr)) daddr = &sk->sk_v6_daddr; if (addr_len >= sizeof(struct sockaddr_in6) && lsa->l2tp_scope_id && ipv6_addr_type(daddr) & IPV6_ADDR_LINKLOCAL) fl6.flowi6_oif = lsa->l2tp_scope_id; } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; daddr = &sk->sk_v6_daddr; fl6.flowlabel = np->flow_label; } if (fl6.flowi6_oif == 0) fl6.flowi6_oif = READ_ONCE(sk->sk_bound_dev_if); if (msg->msg_controllen) { opt = &opt_space; memset(opt, 0, sizeof(struct ipv6_txoptions)); opt->tot_len = sizeof(struct ipv6_txoptions); ipc6.opt = opt; err = ip6_datagram_send_ctl(sock_net(sk), sk, msg, &fl6, &ipc6); if (err < 0) { fl6_sock_release(flowlabel); return err; } if ((fl6.flowlabel & IPV6_FLOWLABEL_MASK) && !flowlabel) { flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } if (!(opt->opt_nflen | opt->opt_flen)) opt = NULL; } if (!opt) { opt = txopt_get(np); opt_to_free = opt; } if (flowlabel) opt = fl6_merge_options(&opt_space, flowlabel, opt); opt = ipv6_fixup_options(&opt_space, opt); ipc6.opt = opt; fl6.flowi6_proto = sk->sk_protocol; if (!ipv6_addr_any(daddr)) fl6.daddr = *daddr; else fl6.daddr.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */ if (ipv6_addr_any(&fl6.saddr) && !ipv6_addr_any(&np->saddr)) fl6.saddr = np->saddr; final_p = fl6_update_dst(&fl6, opt, &final); if (!fl6.flowi6_oif && ipv6_addr_is_multicast(&fl6.daddr)) fl6.flowi6_oif = READ_ONCE(np->mcast_oif); else if (!fl6.flowi6_oif) fl6.flowi6_oif = READ_ONCE(np->ucast_oif); security_sk_classify_flow(sk, flowi6_to_flowi_common(&fl6)); if (ipc6.tclass < 0) ipc6.tclass = np->tclass; fl6.flowlabel = ip6_make_flowinfo(ipc6.tclass, fl6.flowlabel); dst = ip6_dst_lookup_flow(sock_net(sk), sk, &fl6, final_p); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto out; } if (ipc6.hlimit < 0) ipc6.hlimit = ip6_sk_dst_hoplimit(np, &fl6, dst); if (ipc6.dontfrag < 0) ipc6.dontfrag = inet6_test_bit(DONTFRAG, sk); if (msg->msg_flags & MSG_CONFIRM) goto do_confirm; back_from_confirm: lock_sock(sk); ulen = len + (skb_queue_empty(&sk->sk_write_queue) ? transhdrlen : 0); err = ip6_append_data(sk, ip_generic_getfrag, msg, ulen, transhdrlen, &ipc6, &fl6, dst_rt6_info(dst), msg->msg_flags); if (err) ip6_flush_pending_frames(sk); else if (!(msg->msg_flags & MSG_MORE)) err = l2tp_ip6_push_pending_frames(sk); release_sock(sk); done: dst_release(dst); out: fl6_sock_release(flowlabel); txopt_put(opt_to_free); return err < 0 ? err : len; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(dst, &fl6.daddr); if (!(msg->msg_flags & MSG_PROBE) || len) goto back_from_confirm; err = 0; goto done; } static int l2tp_ip6_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); DECLARE_SOCKADDR(struct sockaddr_l2tpip6 *, lsa, msg->msg_name); size_t copied = 0; int err = -EOPNOTSUPP; struct sk_buff *skb; if (flags & MSG_OOB) goto out; if (flags & MSG_ERRQUEUE) return ipv6_recv_error(sk, msg, len, addr_len); skb = skb_recv_datagram(sk, flags, &err); if (!skb) goto out; copied = skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto done; sock_recv_timestamp(msg, sk, skb); /* Copy the address. */ if (lsa) { lsa->l2tp_family = AF_INET6; lsa->l2tp_unused = 0; lsa->l2tp_addr = ipv6_hdr(skb)->saddr; lsa->l2tp_flowinfo = 0; lsa->l2tp_scope_id = 0; lsa->l2tp_conn_id = 0; if (ipv6_addr_type(&lsa->l2tp_addr) & IPV6_ADDR_LINKLOCAL) lsa->l2tp_scope_id = inet6_iif(skb); *addr_len = sizeof(*lsa); } if (np->rxopt.all) ip6_datagram_recv_ctl(sk, msg, skb); if (flags & MSG_TRUNC) copied = skb->len; done: skb_free_datagram(sk, skb); out: return err ? err : copied; } static struct proto l2tp_ip6_prot = { .name = "L2TP/IPv6", .owner = THIS_MODULE, .init = l2tp_ip6_open, .close = l2tp_ip6_close, .bind = l2tp_ip6_bind, .connect = l2tp_ip6_connect, .disconnect = l2tp_ip6_disconnect, .ioctl = l2tp_ioctl, .destroy = l2tp_ip6_destroy_sock, .setsockopt = ipv6_setsockopt, .getsockopt = ipv6_getsockopt, .sendmsg = l2tp_ip6_sendmsg, .recvmsg = l2tp_ip6_recvmsg, .backlog_rcv = l2tp_ip6_backlog_recv, .hash = l2tp_ip6_hash, .unhash = l2tp_ip6_unhash, .obj_size = sizeof(struct l2tp_ip6_sock), .ipv6_pinfo_offset = offsetof(struct l2tp_ip6_sock, inet6), }; static const struct proto_ops l2tp_ip6_ops = { .family = PF_INET6, .owner = THIS_MODULE, .release = inet6_release, .bind = inet6_bind, .connect = inet_dgram_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = l2tp_ip6_getname, .poll = datagram_poll, .ioctl = inet6_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = inet_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = sock_common_recvmsg, .mmap = sock_no_mmap, #ifdef CONFIG_COMPAT .compat_ioctl = inet6_compat_ioctl, #endif }; static struct inet_protosw l2tp_ip6_protosw = { .type = SOCK_DGRAM, .protocol = IPPROTO_L2TP, .prot = &l2tp_ip6_prot, .ops = &l2tp_ip6_ops, }; static struct inet6_protocol l2tp_ip6_protocol __read_mostly = { .handler = l2tp_ip6_recv, }; static int __init l2tp_ip6_init(void) { int err; pr_info("L2TP IP encapsulation support for IPv6 (L2TPv3)\n"); err = proto_register(&l2tp_ip6_prot, 1); if (err != 0) goto out; err = inet6_add_protocol(&l2tp_ip6_protocol, IPPROTO_L2TP); if (err) goto out1; inet6_register_protosw(&l2tp_ip6_protosw); return 0; out1: proto_unregister(&l2tp_ip6_prot); out: return err; } static void __exit l2tp_ip6_exit(void) { inet6_unregister_protosw(&l2tp_ip6_protosw); inet6_del_protocol(&l2tp_ip6_protocol, IPPROTO_L2TP); proto_unregister(&l2tp_ip6_prot); } module_init(l2tp_ip6_init); module_exit(l2tp_ip6_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Chris Elston <celston@katalix.com>"); MODULE_DESCRIPTION("L2TP IP encapsulation for IPv6"); MODULE_VERSION("1.0"); /* Use the values of SOCK_DGRAM (2) as type and IPPROTO_L2TP (115) as protocol, * because __stringify doesn't like enums */ MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_INET6, 115, 2); MODULE_ALIAS_NET_PF_PROTO(PF_INET6, 115); |
2 2 2 548 549 548 541 291 444 449 549 2 2 2 1 1 1 3 2 2 1 1 1 1 1 1 1 1 3 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2040 2039 1104 1104 365 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 | // SPDX-License-Identifier: GPL-2.0-only /* * Monitoring code for network dropped packet alerts * * Copyright (C) 2009 Neil Horman <nhorman@tuxdriver.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/string.h> #include <linux/if_arp.h> #include <linux/inetdevice.h> #include <linux/inet.h> #include <linux/interrupt.h> #include <linux/netpoll.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/netlink.h> #include <linux/net_dropmon.h> #include <linux/bitfield.h> #include <linux/percpu.h> #include <linux/timer.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/module.h> #include <net/genetlink.h> #include <net/netevent.h> #include <net/flow_offload.h> #include <net/dropreason.h> #include <net/devlink.h> #include <trace/events/skb.h> #include <trace/events/napi.h> #include <trace/events/devlink.h> #include <asm/unaligned.h> #define TRACE_ON 1 #define TRACE_OFF 0 /* * Globals, our netlink socket pointer * and the work handle that will send up * netlink alerts */ static int trace_state = TRACE_OFF; static bool monitor_hw; /* net_dm_mutex * * An overall lock guarding every operation coming from userspace. */ static DEFINE_MUTEX(net_dm_mutex); struct net_dm_stats { u64_stats_t dropped; struct u64_stats_sync syncp; }; #define NET_DM_MAX_HW_TRAP_NAME_LEN 40 struct net_dm_hw_entry { char trap_name[NET_DM_MAX_HW_TRAP_NAME_LEN]; u32 count; }; struct net_dm_hw_entries { u32 num_entries; struct net_dm_hw_entry entries[]; }; struct per_cpu_dm_data { raw_spinlock_t lock; /* Protects 'skb', 'hw_entries' and * 'send_timer' */ union { struct sk_buff *skb; struct net_dm_hw_entries *hw_entries; }; struct sk_buff_head drop_queue; struct work_struct dm_alert_work; struct timer_list send_timer; struct net_dm_stats stats; }; struct dm_hw_stat_delta { unsigned long last_rx; unsigned long last_drop_val; struct rcu_head rcu; }; static struct genl_family net_drop_monitor_family; static DEFINE_PER_CPU(struct per_cpu_dm_data, dm_cpu_data); static DEFINE_PER_CPU(struct per_cpu_dm_data, dm_hw_cpu_data); static int dm_hit_limit = 64; static int dm_delay = 1; static unsigned long dm_hw_check_delta = 2*HZ; static enum net_dm_alert_mode net_dm_alert_mode = NET_DM_ALERT_MODE_SUMMARY; static u32 net_dm_trunc_len; static u32 net_dm_queue_len = 1000; struct net_dm_alert_ops { void (*kfree_skb_probe)(void *ignore, struct sk_buff *skb, void *location, enum skb_drop_reason reason, struct sock *rx_sk); void (*napi_poll_probe)(void *ignore, struct napi_struct *napi, int work, int budget); void (*work_item_func)(struct work_struct *work); void (*hw_work_item_func)(struct work_struct *work); void (*hw_trap_probe)(void *ignore, const struct devlink *devlink, struct sk_buff *skb, const struct devlink_trap_metadata *metadata); }; struct net_dm_skb_cb { union { struct devlink_trap_metadata *hw_metadata; void *pc; }; enum skb_drop_reason reason; }; #define NET_DM_SKB_CB(__skb) ((struct net_dm_skb_cb *)&((__skb)->cb[0])) static struct sk_buff *reset_per_cpu_data(struct per_cpu_dm_data *data) { size_t al; struct net_dm_alert_msg *msg; struct nlattr *nla; struct sk_buff *skb; unsigned long flags; void *msg_header; al = sizeof(struct net_dm_alert_msg); al += dm_hit_limit * sizeof(struct net_dm_drop_point); al += sizeof(struct nlattr); skb = genlmsg_new(al, GFP_KERNEL); if (!skb) goto err; msg_header = genlmsg_put(skb, 0, 0, &net_drop_monitor_family, 0, NET_DM_CMD_ALERT); if (!msg_header) { nlmsg_free(skb); skb = NULL; goto err; } nla = nla_reserve(skb, NLA_UNSPEC, sizeof(struct net_dm_alert_msg)); if (!nla) { nlmsg_free(skb); skb = NULL; goto err; } msg = nla_data(nla); memset(msg, 0, al); goto out; err: mod_timer(&data->send_timer, jiffies + HZ / 10); out: raw_spin_lock_irqsave(&data->lock, flags); swap(data->skb, skb); raw_spin_unlock_irqrestore(&data->lock, flags); if (skb) { struct nlmsghdr *nlh = (struct nlmsghdr *)skb->data; struct genlmsghdr *gnlh = (struct genlmsghdr *)nlmsg_data(nlh); genlmsg_end(skb, genlmsg_data(gnlh)); } return skb; } static const struct genl_multicast_group dropmon_mcgrps[] = { { .name = "events", .flags = GENL_MCAST_CAP_SYS_ADMIN, }, }; static void send_dm_alert(struct work_struct *work) { struct sk_buff *skb; struct per_cpu_dm_data *data; data = container_of(work, struct per_cpu_dm_data, dm_alert_work); skb = reset_per_cpu_data(data); if (skb) genlmsg_multicast(&net_drop_monitor_family, skb, 0, 0, GFP_KERNEL); } /* * This is the timer function to delay the sending of an alert * in the event that more drops will arrive during the * hysteresis period. */ static void sched_send_work(struct timer_list *t) { struct per_cpu_dm_data *data = from_timer(data, t, send_timer); schedule_work(&data->dm_alert_work); } static void trace_drop_common(struct sk_buff *skb, void *location) { struct net_dm_alert_msg *msg; struct net_dm_drop_point *point; struct nlmsghdr *nlh; struct nlattr *nla; int i; struct sk_buff *dskb; struct per_cpu_dm_data *data; unsigned long flags; local_irq_save(flags); data = this_cpu_ptr(&dm_cpu_data); raw_spin_lock(&data->lock); dskb = data->skb; if (!dskb) goto out; nlh = (struct nlmsghdr *)dskb->data; nla = genlmsg_data(nlmsg_data(nlh)); msg = nla_data(nla); point = msg->points; for (i = 0; i < msg->entries; i++) { if (!memcmp(&location, &point->pc, sizeof(void *))) { point->count++; goto out; } point++; } if (msg->entries == dm_hit_limit) goto out; /* * We need to create a new entry */ __nla_reserve_nohdr(dskb, sizeof(struct net_dm_drop_point)); nla->nla_len += NLA_ALIGN(sizeof(struct net_dm_drop_point)); memcpy(point->pc, &location, sizeof(void *)); point->count = 1; msg->entries++; if (!timer_pending(&data->send_timer)) { data->send_timer.expires = jiffies + dm_delay * HZ; add_timer(&data->send_timer); } out: raw_spin_unlock_irqrestore(&data->lock, flags); } static void trace_kfree_skb_hit(void *ignore, struct sk_buff *skb, void *location, enum skb_drop_reason reason, struct sock *rx_sk) { trace_drop_common(skb, location); } static void trace_napi_poll_hit(void *ignore, struct napi_struct *napi, int work, int budget) { struct net_device *dev = napi->dev; struct dm_hw_stat_delta *stat; /* * Don't check napi structures with no associated device */ if (!dev) return; rcu_read_lock(); stat = rcu_dereference(dev->dm_private); if (stat) { /* * only add a note to our monitor buffer if: * 1) its after the last_rx delta * 2) our rx_dropped count has gone up */ if (time_after(jiffies, stat->last_rx + dm_hw_check_delta) && (dev->stats.rx_dropped != stat->last_drop_val)) { trace_drop_common(NULL, NULL); stat->last_drop_val = dev->stats.rx_dropped; stat->last_rx = jiffies; } } rcu_read_unlock(); } static struct net_dm_hw_entries * net_dm_hw_reset_per_cpu_data(struct per_cpu_dm_data *hw_data) { struct net_dm_hw_entries *hw_entries; unsigned long flags; hw_entries = kzalloc(struct_size(hw_entries, entries, dm_hit_limit), GFP_KERNEL); if (!hw_entries) { /* If the memory allocation failed, we try to perform another * allocation in 1/10 second. Otherwise, the probe function * will constantly bail out. */ mod_timer(&hw_data->send_timer, jiffies + HZ / 10); } raw_spin_lock_irqsave(&hw_data->lock, flags); swap(hw_data->hw_entries, hw_entries); raw_spin_unlock_irqrestore(&hw_data->lock, flags); return hw_entries; } static int net_dm_hw_entry_put(struct sk_buff *msg, const struct net_dm_hw_entry *hw_entry) { struct nlattr *attr; attr = nla_nest_start(msg, NET_DM_ATTR_HW_ENTRY); if (!attr) return -EMSGSIZE; if (nla_put_string(msg, NET_DM_ATTR_HW_TRAP_NAME, hw_entry->trap_name)) goto nla_put_failure; if (nla_put_u32(msg, NET_DM_ATTR_HW_TRAP_COUNT, hw_entry->count)) goto nla_put_failure; nla_nest_end(msg, attr); return 0; nla_put_failure: nla_nest_cancel(msg, attr); return -EMSGSIZE; } static int net_dm_hw_entries_put(struct sk_buff *msg, const struct net_dm_hw_entries *hw_entries) { struct nlattr *attr; int i; attr = nla_nest_start(msg, NET_DM_ATTR_HW_ENTRIES); if (!attr) return -EMSGSIZE; for (i = 0; i < hw_entries->num_entries; i++) { int rc; rc = net_dm_hw_entry_put(msg, &hw_entries->entries[i]); if (rc) goto nla_put_failure; } nla_nest_end(msg, attr); return 0; nla_put_failure: nla_nest_cancel(msg, attr); return -EMSGSIZE; } static int net_dm_hw_summary_report_fill(struct sk_buff *msg, const struct net_dm_hw_entries *hw_entries) { struct net_dm_alert_msg anc_hdr = { 0 }; void *hdr; int rc; hdr = genlmsg_put(msg, 0, 0, &net_drop_monitor_family, 0, NET_DM_CMD_ALERT); if (!hdr) return -EMSGSIZE; /* We need to put the ancillary header in order not to break user * space. */ if (nla_put(msg, NLA_UNSPEC, sizeof(anc_hdr), &anc_hdr)) goto nla_put_failure; rc = net_dm_hw_entries_put(msg, hw_entries); if (rc) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static void net_dm_hw_summary_work(struct work_struct *work) { struct net_dm_hw_entries *hw_entries; struct per_cpu_dm_data *hw_data; struct sk_buff *msg; int rc; hw_data = container_of(work, struct per_cpu_dm_data, dm_alert_work); hw_entries = net_dm_hw_reset_per_cpu_data(hw_data); if (!hw_entries) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) goto out; rc = net_dm_hw_summary_report_fill(msg, hw_entries); if (rc) { nlmsg_free(msg); goto out; } genlmsg_multicast(&net_drop_monitor_family, msg, 0, 0, GFP_KERNEL); out: kfree(hw_entries); } static void net_dm_hw_trap_summary_probe(void *ignore, const struct devlink *devlink, struct sk_buff *skb, const struct devlink_trap_metadata *metadata) { struct net_dm_hw_entries *hw_entries; struct net_dm_hw_entry *hw_entry; struct per_cpu_dm_data *hw_data; unsigned long flags; int i; if (metadata->trap_type == DEVLINK_TRAP_TYPE_CONTROL) return; hw_data = this_cpu_ptr(&dm_hw_cpu_data); raw_spin_lock_irqsave(&hw_data->lock, flags); hw_entries = hw_data->hw_entries; if (!hw_entries) goto out; for (i = 0; i < hw_entries->num_entries; i++) { hw_entry = &hw_entries->entries[i]; if (!strncmp(hw_entry->trap_name, metadata->trap_name, NET_DM_MAX_HW_TRAP_NAME_LEN - 1)) { hw_entry->count++; goto out; } } if (WARN_ON_ONCE(hw_entries->num_entries == dm_hit_limit)) goto out; hw_entry = &hw_entries->entries[hw_entries->num_entries]; strscpy(hw_entry->trap_name, metadata->trap_name, NET_DM_MAX_HW_TRAP_NAME_LEN - 1); hw_entry->count = 1; hw_entries->num_entries++; if (!timer_pending(&hw_data->send_timer)) { hw_data->send_timer.expires = jiffies + dm_delay * HZ; add_timer(&hw_data->send_timer); } out: raw_spin_unlock_irqrestore(&hw_data->lock, flags); } static const struct net_dm_alert_ops net_dm_alert_summary_ops = { .kfree_skb_probe = trace_kfree_skb_hit, .napi_poll_probe = trace_napi_poll_hit, .work_item_func = send_dm_alert, .hw_work_item_func = net_dm_hw_summary_work, .hw_trap_probe = net_dm_hw_trap_summary_probe, }; static void net_dm_packet_trace_kfree_skb_hit(void *ignore, struct sk_buff *skb, void *location, enum skb_drop_reason reason, struct sock *rx_sk) { ktime_t tstamp = ktime_get_real(); struct per_cpu_dm_data *data; struct net_dm_skb_cb *cb; struct sk_buff *nskb; unsigned long flags; if (!skb_mac_header_was_set(skb)) return; nskb = skb_clone(skb, GFP_ATOMIC); if (!nskb) return; cb = NET_DM_SKB_CB(nskb); cb->reason = reason; cb->pc = location; /* Override the timestamp because we care about the time when the * packet was dropped. */ nskb->tstamp = tstamp; data = this_cpu_ptr(&dm_cpu_data); spin_lock_irqsave(&data->drop_queue.lock, flags); if (skb_queue_len(&data->drop_queue) < net_dm_queue_len) __skb_queue_tail(&data->drop_queue, nskb); else goto unlock_free; spin_unlock_irqrestore(&data->drop_queue.lock, flags); schedule_work(&data->dm_alert_work); return; unlock_free: spin_unlock_irqrestore(&data->drop_queue.lock, flags); u64_stats_update_begin(&data->stats.syncp); u64_stats_inc(&data->stats.dropped); u64_stats_update_end(&data->stats.syncp); consume_skb(nskb); } static void net_dm_packet_trace_napi_poll_hit(void *ignore, struct napi_struct *napi, int work, int budget) { } static size_t net_dm_in_port_size(void) { /* NET_DM_ATTR_IN_PORT nest */ return nla_total_size(0) + /* NET_DM_ATTR_PORT_NETDEV_IFINDEX */ nla_total_size(sizeof(u32)) + /* NET_DM_ATTR_PORT_NETDEV_NAME */ nla_total_size(IFNAMSIZ + 1); } #define NET_DM_MAX_SYMBOL_LEN 40 #define NET_DM_MAX_REASON_LEN 50 static size_t net_dm_packet_report_size(size_t payload_len) { size_t size; size = nlmsg_msg_size(GENL_HDRLEN + net_drop_monitor_family.hdrsize); return NLMSG_ALIGN(size) + /* NET_DM_ATTR_ORIGIN */ nla_total_size(sizeof(u16)) + /* NET_DM_ATTR_PC */ nla_total_size(sizeof(u64)) + /* NET_DM_ATTR_SYMBOL */ nla_total_size(NET_DM_MAX_SYMBOL_LEN + 1) + /* NET_DM_ATTR_IN_PORT */ net_dm_in_port_size() + /* NET_DM_ATTR_TIMESTAMP */ nla_total_size(sizeof(u64)) + /* NET_DM_ATTR_ORIG_LEN */ nla_total_size(sizeof(u32)) + /* NET_DM_ATTR_PROTO */ nla_total_size(sizeof(u16)) + /* NET_DM_ATTR_REASON */ nla_total_size(NET_DM_MAX_REASON_LEN + 1) + /* NET_DM_ATTR_PAYLOAD */ nla_total_size(payload_len); } static int net_dm_packet_report_in_port_put(struct sk_buff *msg, int ifindex, const char *name) { struct nlattr *attr; attr = nla_nest_start(msg, NET_DM_ATTR_IN_PORT); if (!attr) return -EMSGSIZE; if (ifindex && nla_put_u32(msg, NET_DM_ATTR_PORT_NETDEV_IFINDEX, ifindex)) goto nla_put_failure; if (name && nla_put_string(msg, NET_DM_ATTR_PORT_NETDEV_NAME, name)) goto nla_put_failure; nla_nest_end(msg, attr); return 0; nla_put_failure: nla_nest_cancel(msg, attr); return -EMSGSIZE; } static int net_dm_packet_report_fill(struct sk_buff *msg, struct sk_buff *skb, size_t payload_len) { struct net_dm_skb_cb *cb = NET_DM_SKB_CB(skb); const struct drop_reason_list *list = NULL; unsigned int subsys, subsys_reason; char buf[NET_DM_MAX_SYMBOL_LEN]; struct nlattr *attr; void *hdr; int rc; hdr = genlmsg_put(msg, 0, 0, &net_drop_monitor_family, 0, NET_DM_CMD_PACKET_ALERT); if (!hdr) return -EMSGSIZE; if (nla_put_u16(msg, NET_DM_ATTR_ORIGIN, NET_DM_ORIGIN_SW)) goto nla_put_failure; if (nla_put_u64_64bit(msg, NET_DM_ATTR_PC, (u64)(uintptr_t)cb->pc, NET_DM_ATTR_PAD)) goto nla_put_failure; rcu_read_lock(); subsys = u32_get_bits(cb->reason, SKB_DROP_REASON_SUBSYS_MASK); if (subsys < SKB_DROP_REASON_SUBSYS_NUM) list = rcu_dereference(drop_reasons_by_subsys[subsys]); subsys_reason = cb->reason & ~SKB_DROP_REASON_SUBSYS_MASK; if (!list || subsys_reason >= list->n_reasons || !list->reasons[subsys_reason] || strlen(list->reasons[subsys_reason]) > NET_DM_MAX_REASON_LEN) { list = rcu_dereference(drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_CORE]); subsys_reason = SKB_DROP_REASON_NOT_SPECIFIED; } if (nla_put_string(msg, NET_DM_ATTR_REASON, list->reasons[subsys_reason])) { rcu_read_unlock(); goto nla_put_failure; } rcu_read_unlock(); snprintf(buf, sizeof(buf), "%pS", cb->pc); if (nla_put_string(msg, NET_DM_ATTR_SYMBOL, buf)) goto nla_put_failure; rc = net_dm_packet_report_in_port_put(msg, skb->skb_iif, NULL); if (rc) goto nla_put_failure; if (nla_put_u64_64bit(msg, NET_DM_ATTR_TIMESTAMP, ktime_to_ns(skb->tstamp), NET_DM_ATTR_PAD)) goto nla_put_failure; if (nla_put_u32(msg, NET_DM_ATTR_ORIG_LEN, skb->len)) goto nla_put_failure; if (!payload_len) goto out; if (nla_put_u16(msg, NET_DM_ATTR_PROTO, be16_to_cpu(skb->protocol))) goto nla_put_failure; attr = skb_put(msg, nla_total_size(payload_len)); attr->nla_type = NET_DM_ATTR_PAYLOAD; attr->nla_len = nla_attr_size(payload_len); if (skb_copy_bits(skb, 0, nla_data(attr), payload_len)) goto nla_put_failure; out: genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } #define NET_DM_MAX_PACKET_SIZE (0xffff - NLA_HDRLEN - NLA_ALIGNTO) static void net_dm_packet_report(struct sk_buff *skb) { struct sk_buff *msg; size_t payload_len; int rc; /* Make sure we start copying the packet from the MAC header */ if (skb->data > skb_mac_header(skb)) skb_push(skb, skb->data - skb_mac_header(skb)); else skb_pull(skb, skb_mac_header(skb) - skb->data); /* Ensure packet fits inside a single netlink attribute */ payload_len = min_t(size_t, skb->len, NET_DM_MAX_PACKET_SIZE); if (net_dm_trunc_len) payload_len = min_t(size_t, net_dm_trunc_len, payload_len); msg = nlmsg_new(net_dm_packet_report_size(payload_len), GFP_KERNEL); if (!msg) goto out; rc = net_dm_packet_report_fill(msg, skb, payload_len); if (rc) { nlmsg_free(msg); goto out; } genlmsg_multicast(&net_drop_monitor_family, msg, 0, 0, GFP_KERNEL); out: consume_skb(skb); } static void net_dm_packet_work(struct work_struct *work) { struct per_cpu_dm_data *data; struct sk_buff_head list; struct sk_buff *skb; unsigned long flags; data = container_of(work, struct per_cpu_dm_data, dm_alert_work); __skb_queue_head_init(&list); spin_lock_irqsave(&data->drop_queue.lock, flags); skb_queue_splice_tail_init(&data->drop_queue, &list); spin_unlock_irqrestore(&data->drop_queue.lock, flags); while ((skb = __skb_dequeue(&list))) net_dm_packet_report(skb); } static size_t net_dm_flow_action_cookie_size(const struct devlink_trap_metadata *hw_metadata) { return hw_metadata->fa_cookie ? nla_total_size(hw_metadata->fa_cookie->cookie_len) : 0; } static size_t net_dm_hw_packet_report_size(size_t payload_len, const struct devlink_trap_metadata *hw_metadata) { size_t size; size = nlmsg_msg_size(GENL_HDRLEN + net_drop_monitor_family.hdrsize); return NLMSG_ALIGN(size) + /* NET_DM_ATTR_ORIGIN */ nla_total_size(sizeof(u16)) + /* NET_DM_ATTR_HW_TRAP_GROUP_NAME */ nla_total_size(strlen(hw_metadata->trap_group_name) + 1) + /* NET_DM_ATTR_HW_TRAP_NAME */ nla_total_size(strlen(hw_metadata->trap_name) + 1) + /* NET_DM_ATTR_IN_PORT */ net_dm_in_port_size() + /* NET_DM_ATTR_FLOW_ACTION_COOKIE */ net_dm_flow_action_cookie_size(hw_metadata) + /* NET_DM_ATTR_TIMESTAMP */ nla_total_size(sizeof(u64)) + /* NET_DM_ATTR_ORIG_LEN */ nla_total_size(sizeof(u32)) + /* NET_DM_ATTR_PROTO */ nla_total_size(sizeof(u16)) + /* NET_DM_ATTR_PAYLOAD */ nla_total_size(payload_len); } static int net_dm_hw_packet_report_fill(struct sk_buff *msg, struct sk_buff *skb, size_t payload_len) { struct devlink_trap_metadata *hw_metadata; struct nlattr *attr; void *hdr; hw_metadata = NET_DM_SKB_CB(skb)->hw_metadata; hdr = genlmsg_put(msg, 0, 0, &net_drop_monitor_family, 0, NET_DM_CMD_PACKET_ALERT); if (!hdr) return -EMSGSIZE; if (nla_put_u16(msg, NET_DM_ATTR_ORIGIN, NET_DM_ORIGIN_HW)) goto nla_put_failure; if (nla_put_string(msg, NET_DM_ATTR_HW_TRAP_GROUP_NAME, hw_metadata->trap_group_name)) goto nla_put_failure; if (nla_put_string(msg, NET_DM_ATTR_HW_TRAP_NAME, hw_metadata->trap_name)) goto nla_put_failure; if (hw_metadata->input_dev) { struct net_device *dev = hw_metadata->input_dev; int rc; rc = net_dm_packet_report_in_port_put(msg, dev->ifindex, dev->name); if (rc) goto nla_put_failure; } if (hw_metadata->fa_cookie && nla_put(msg, NET_DM_ATTR_FLOW_ACTION_COOKIE, hw_metadata->fa_cookie->cookie_len, hw_metadata->fa_cookie->cookie)) goto nla_put_failure; if (nla_put_u64_64bit(msg, NET_DM_ATTR_TIMESTAMP, ktime_to_ns(skb->tstamp), NET_DM_ATTR_PAD)) goto nla_put_failure; if (nla_put_u32(msg, NET_DM_ATTR_ORIG_LEN, skb->len)) goto nla_put_failure; if (!payload_len) goto out; if (nla_put_u16(msg, NET_DM_ATTR_PROTO, be16_to_cpu(skb->protocol))) goto nla_put_failure; attr = skb_put(msg, nla_total_size(payload_len)); attr->nla_type = NET_DM_ATTR_PAYLOAD; attr->nla_len = nla_attr_size(payload_len); if (skb_copy_bits(skb, 0, nla_data(attr), payload_len)) goto nla_put_failure; out: genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static struct devlink_trap_metadata * net_dm_hw_metadata_copy(const struct devlink_trap_metadata *metadata) { const struct flow_action_cookie *fa_cookie; struct devlink_trap_metadata *hw_metadata; const char *trap_group_name; const char *trap_name; hw_metadata = kzalloc(sizeof(*hw_metadata), GFP_ATOMIC); if (!hw_metadata) return NULL; trap_group_name = kstrdup(metadata->trap_group_name, GFP_ATOMIC); if (!trap_group_name) goto free_hw_metadata; hw_metadata->trap_group_name = trap_group_name; trap_name = kstrdup(metadata->trap_name, GFP_ATOMIC); if (!trap_name) goto free_trap_group; hw_metadata->trap_name = trap_name; if (metadata->fa_cookie) { size_t cookie_size = sizeof(*fa_cookie) + metadata->fa_cookie->cookie_len; fa_cookie = kmemdup(metadata->fa_cookie, cookie_size, GFP_ATOMIC); if (!fa_cookie) goto free_trap_name; hw_metadata->fa_cookie = fa_cookie; } hw_metadata->input_dev = metadata->input_dev; netdev_hold(hw_metadata->input_dev, &hw_metadata->dev_tracker, GFP_ATOMIC); return hw_metadata; free_trap_name: kfree(trap_name); free_trap_group: kfree(trap_group_name); free_hw_metadata: kfree(hw_metadata); return NULL; } static void net_dm_hw_metadata_free(struct devlink_trap_metadata *hw_metadata) { netdev_put(hw_metadata->input_dev, &hw_metadata->dev_tracker); kfree(hw_metadata->fa_cookie); kfree(hw_metadata->trap_name); kfree(hw_metadata->trap_group_name); kfree(hw_metadata); } static void net_dm_hw_packet_report(struct sk_buff *skb) { struct devlink_trap_metadata *hw_metadata; struct sk_buff *msg; size_t payload_len; int rc; if (skb->data > skb_mac_header(skb)) skb_push(skb, skb->data - skb_mac_header(skb)); else skb_pull(skb, skb_mac_header(skb) - skb->data); payload_len = min_t(size_t, skb->len, NET_DM_MAX_PACKET_SIZE); if (net_dm_trunc_len) payload_len = min_t(size_t, net_dm_trunc_len, payload_len); hw_metadata = NET_DM_SKB_CB(skb)->hw_metadata; msg = nlmsg_new(net_dm_hw_packet_report_size(payload_len, hw_metadata), GFP_KERNEL); if (!msg) goto out; rc = net_dm_hw_packet_report_fill(msg, skb, payload_len); if (rc) { nlmsg_free(msg); goto out; } genlmsg_multicast(&net_drop_monitor_family, msg, 0, 0, GFP_KERNEL); out: net_dm_hw_metadata_free(NET_DM_SKB_CB(skb)->hw_metadata); consume_skb(skb); } static void net_dm_hw_packet_work(struct work_struct *work) { struct per_cpu_dm_data *hw_data; struct sk_buff_head list; struct sk_buff *skb; unsigned long flags; hw_data = container_of(work, struct per_cpu_dm_data, dm_alert_work); __skb_queue_head_init(&list); spin_lock_irqsave(&hw_data->drop_queue.lock, flags); skb_queue_splice_tail_init(&hw_data->drop_queue, &list); spin_unlock_irqrestore(&hw_data->drop_queue.lock, flags); while ((skb = __skb_dequeue(&list))) net_dm_hw_packet_report(skb); } static void net_dm_hw_trap_packet_probe(void *ignore, const struct devlink *devlink, struct sk_buff *skb, const struct devlink_trap_metadata *metadata) { struct devlink_trap_metadata *n_hw_metadata; ktime_t tstamp = ktime_get_real(); struct per_cpu_dm_data *hw_data; struct sk_buff *nskb; unsigned long flags; if (metadata->trap_type == DEVLINK_TRAP_TYPE_CONTROL) return; if (!skb_mac_header_was_set(skb)) return; nskb = skb_clone(skb, GFP_ATOMIC); if (!nskb) return; n_hw_metadata = net_dm_hw_metadata_copy(metadata); if (!n_hw_metadata) goto free; NET_DM_SKB_CB(nskb)->hw_metadata = n_hw_metadata; nskb->tstamp = tstamp; hw_data = this_cpu_ptr(&dm_hw_cpu_data); spin_lock_irqsave(&hw_data->drop_queue.lock, flags); if (skb_queue_len(&hw_data->drop_queue) < net_dm_queue_len) __skb_queue_tail(&hw_data->drop_queue, nskb); else goto unlock_free; spin_unlock_irqrestore(&hw_data->drop_queue.lock, flags); schedule_work(&hw_data->dm_alert_work); return; unlock_free: spin_unlock_irqrestore(&hw_data->drop_queue.lock, flags); u64_stats_update_begin(&hw_data->stats.syncp); u64_stats_inc(&hw_data->stats.dropped); u64_stats_update_end(&hw_data->stats.syncp); net_dm_hw_metadata_free(n_hw_metadata); free: consume_skb(nskb); } static const struct net_dm_alert_ops net_dm_alert_packet_ops = { .kfree_skb_probe = net_dm_packet_trace_kfree_skb_hit, .napi_poll_probe = net_dm_packet_trace_napi_poll_hit, .work_item_func = net_dm_packet_work, .hw_work_item_func = net_dm_hw_packet_work, .hw_trap_probe = net_dm_hw_trap_packet_probe, }; static const struct net_dm_alert_ops *net_dm_alert_ops_arr[] = { [NET_DM_ALERT_MODE_SUMMARY] = &net_dm_alert_summary_ops, [NET_DM_ALERT_MODE_PACKET] = &net_dm_alert_packet_ops, }; #if IS_ENABLED(CONFIG_NET_DEVLINK) static int net_dm_hw_probe_register(const struct net_dm_alert_ops *ops) { return register_trace_devlink_trap_report(ops->hw_trap_probe, NULL); } static void net_dm_hw_probe_unregister(const struct net_dm_alert_ops *ops) { unregister_trace_devlink_trap_report(ops->hw_trap_probe, NULL); tracepoint_synchronize_unregister(); } #else static int net_dm_hw_probe_register(const struct net_dm_alert_ops *ops) { return -EOPNOTSUPP; } static void net_dm_hw_probe_unregister(const struct net_dm_alert_ops *ops) { } #endif static int net_dm_hw_monitor_start(struct netlink_ext_ack *extack) { const struct net_dm_alert_ops *ops; int cpu, rc; if (monitor_hw) { NL_SET_ERR_MSG_MOD(extack, "Hardware monitoring already enabled"); return -EAGAIN; } ops = net_dm_alert_ops_arr[net_dm_alert_mode]; if (!try_module_get(THIS_MODULE)) { NL_SET_ERR_MSG_MOD(extack, "Failed to take reference on module"); return -ENODEV; } for_each_possible_cpu(cpu) { struct per_cpu_dm_data *hw_data = &per_cpu(dm_hw_cpu_data, cpu); struct net_dm_hw_entries *hw_entries; INIT_WORK(&hw_data->dm_alert_work, ops->hw_work_item_func); timer_setup(&hw_data->send_timer, sched_send_work, 0); hw_entries = net_dm_hw_reset_per_cpu_data(hw_data); kfree(hw_entries); } rc = net_dm_hw_probe_register(ops); if (rc) { NL_SET_ERR_MSG_MOD(extack, "Failed to connect probe to devlink_trap_probe() tracepoint"); goto err_module_put; } monitor_hw = true; return 0; err_module_put: for_each_possible_cpu(cpu) { struct per_cpu_dm_data *hw_data = &per_cpu(dm_hw_cpu_data, cpu); struct sk_buff *skb; del_timer_sync(&hw_data->send_timer); cancel_work_sync(&hw_data->dm_alert_work); while ((skb = __skb_dequeue(&hw_data->drop_queue))) { struct devlink_trap_metadata *hw_metadata; hw_metadata = NET_DM_SKB_CB(skb)->hw_metadata; net_dm_hw_metadata_free(hw_metadata); consume_skb(skb); } } module_put(THIS_MODULE); return rc; } static void net_dm_hw_monitor_stop(struct netlink_ext_ack *extack) { const struct net_dm_alert_ops *ops; int cpu; if (!monitor_hw) { NL_SET_ERR_MSG_MOD(extack, "Hardware monitoring already disabled"); return; } ops = net_dm_alert_ops_arr[net_dm_alert_mode]; monitor_hw = false; net_dm_hw_probe_unregister(ops); for_each_possible_cpu(cpu) { struct per_cpu_dm_data *hw_data = &per_cpu(dm_hw_cpu_data, cpu); struct sk_buff *skb; del_timer_sync(&hw_data->send_timer); cancel_work_sync(&hw_data->dm_alert_work); while ((skb = __skb_dequeue(&hw_data->drop_queue))) { struct devlink_trap_metadata *hw_metadata; hw_metadata = NET_DM_SKB_CB(skb)->hw_metadata; net_dm_hw_metadata_free(hw_metadata); consume_skb(skb); } } module_put(THIS_MODULE); } static int net_dm_trace_on_set(struct netlink_ext_ack *extack) { const struct net_dm_alert_ops *ops; int cpu, rc; ops = net_dm_alert_ops_arr[net_dm_alert_mode]; if (!try_module_get(THIS_MODULE)) { NL_SET_ERR_MSG_MOD(extack, "Failed to take reference on module"); return -ENODEV; } for_each_possible_cpu(cpu) { struct per_cpu_dm_data *data = &per_cpu(dm_cpu_data, cpu); struct sk_buff *skb; INIT_WORK(&data->dm_alert_work, ops->work_item_func); timer_setup(&data->send_timer, sched_send_work, 0); /* Allocate a new per-CPU skb for the summary alert message and * free the old one which might contain stale data from * previous tracing. */ skb = reset_per_cpu_data(data); consume_skb(skb); } rc = register_trace_kfree_skb(ops->kfree_skb_probe, NULL); if (rc) { NL_SET_ERR_MSG_MOD(extack, "Failed to connect probe to kfree_skb() tracepoint"); goto err_module_put; } rc = register_trace_napi_poll(ops->napi_poll_probe, NULL); if (rc) { NL_SET_ERR_MSG_MOD(extack, "Failed to connect probe to napi_poll() tracepoint"); goto err_unregister_trace; } return 0; err_unregister_trace: unregister_trace_kfree_skb(ops->kfree_skb_probe, NULL); err_module_put: for_each_possible_cpu(cpu) { struct per_cpu_dm_data *data = &per_cpu(dm_cpu_data, cpu); struct sk_buff *skb; del_timer_sync(&data->send_timer); cancel_work_sync(&data->dm_alert_work); while ((skb = __skb_dequeue(&data->drop_queue))) consume_skb(skb); } module_put(THIS_MODULE); return rc; } static void net_dm_trace_off_set(void) { const struct net_dm_alert_ops *ops; int cpu; ops = net_dm_alert_ops_arr[net_dm_alert_mode]; unregister_trace_napi_poll(ops->napi_poll_probe, NULL); unregister_trace_kfree_skb(ops->kfree_skb_probe, NULL); tracepoint_synchronize_unregister(); /* Make sure we do not send notifications to user space after request * to stop tracing returns. */ for_each_possible_cpu(cpu) { struct per_cpu_dm_data *data = &per_cpu(dm_cpu_data, cpu); struct sk_buff *skb; del_timer_sync(&data->send_timer); cancel_work_sync(&data->dm_alert_work); while ((skb = __skb_dequeue(&data->drop_queue))) consume_skb(skb); } module_put(THIS_MODULE); } static int set_all_monitor_traces(int state, struct netlink_ext_ack *extack) { int rc = 0; if (state == trace_state) { NL_SET_ERR_MSG_MOD(extack, "Trace state already set to requested state"); return -EAGAIN; } switch (state) { case TRACE_ON: rc = net_dm_trace_on_set(extack); break; case TRACE_OFF: net_dm_trace_off_set(); break; default: rc = 1; break; } if (!rc) trace_state = state; else rc = -EINPROGRESS; return rc; } static bool net_dm_is_monitoring(void) { return trace_state == TRACE_ON || monitor_hw; } static int net_dm_alert_mode_get_from_info(struct genl_info *info, enum net_dm_alert_mode *p_alert_mode) { u8 val; val = nla_get_u8(info->attrs[NET_DM_ATTR_ALERT_MODE]); switch (val) { case NET_DM_ALERT_MODE_SUMMARY: case NET_DM_ALERT_MODE_PACKET: *p_alert_mode = val; break; default: return -EINVAL; } return 0; } static int net_dm_alert_mode_set(struct genl_info *info) { struct netlink_ext_ack *extack = info->extack; enum net_dm_alert_mode alert_mode; int rc; if (!info->attrs[NET_DM_ATTR_ALERT_MODE]) return 0; rc = net_dm_alert_mode_get_from_info(info, &alert_mode); if (rc) { NL_SET_ERR_MSG_MOD(extack, "Invalid alert mode"); return -EINVAL; } net_dm_alert_mode = alert_mode; return 0; } static void net_dm_trunc_len_set(struct genl_info *info) { if (!info->attrs[NET_DM_ATTR_TRUNC_LEN]) return; net_dm_trunc_len = nla_get_u32(info->attrs[NET_DM_ATTR_TRUNC_LEN]); } static void net_dm_queue_len_set(struct genl_info *info) { if (!info->attrs[NET_DM_ATTR_QUEUE_LEN]) return; net_dm_queue_len = nla_get_u32(info->attrs[NET_DM_ATTR_QUEUE_LEN]); } static int net_dm_cmd_config(struct sk_buff *skb, struct genl_info *info) { struct netlink_ext_ack *extack = info->extack; int rc; if (net_dm_is_monitoring()) { NL_SET_ERR_MSG_MOD(extack, "Cannot configure drop monitor during monitoring"); return -EBUSY; } rc = net_dm_alert_mode_set(info); if (rc) return rc; net_dm_trunc_len_set(info); net_dm_queue_len_set(info); return 0; } static int net_dm_monitor_start(bool set_sw, bool set_hw, struct netlink_ext_ack *extack) { bool sw_set = false; int rc; if (set_sw) { rc = set_all_monitor_traces(TRACE_ON, extack); if (rc) return rc; sw_set = true; } if (set_hw) { rc = net_dm_hw_monitor_start(extack); if (rc) goto err_monitor_hw; } return 0; err_monitor_hw: if (sw_set) set_all_monitor_traces(TRACE_OFF, extack); return rc; } static void net_dm_monitor_stop(bool set_sw, bool set_hw, struct netlink_ext_ack *extack) { if (set_hw) net_dm_hw_monitor_stop(extack); if (set_sw) set_all_monitor_traces(TRACE_OFF, extack); } static int net_dm_cmd_trace(struct sk_buff *skb, struct genl_info *info) { bool set_sw = !!info->attrs[NET_DM_ATTR_SW_DROPS]; bool set_hw = !!info->attrs[NET_DM_ATTR_HW_DROPS]; struct netlink_ext_ack *extack = info->extack; /* To maintain backward compatibility, we start / stop monitoring of * software drops if no flag is specified. */ if (!set_sw && !set_hw) set_sw = true; switch (info->genlhdr->cmd) { case NET_DM_CMD_START: return net_dm_monitor_start(set_sw, set_hw, extack); case NET_DM_CMD_STOP: net_dm_monitor_stop(set_sw, set_hw, extack); return 0; } return -EOPNOTSUPP; } static int net_dm_config_fill(struct sk_buff *msg, struct genl_info *info) { void *hdr; hdr = genlmsg_put(msg, info->snd_portid, info->snd_seq, &net_drop_monitor_family, 0, NET_DM_CMD_CONFIG_NEW); if (!hdr) return -EMSGSIZE; if (nla_put_u8(msg, NET_DM_ATTR_ALERT_MODE, net_dm_alert_mode)) goto nla_put_failure; if (nla_put_u32(msg, NET_DM_ATTR_TRUNC_LEN, net_dm_trunc_len)) goto nla_put_failure; if (nla_put_u32(msg, NET_DM_ATTR_QUEUE_LEN, net_dm_queue_len)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int net_dm_cmd_config_get(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; int rc; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; rc = net_dm_config_fill(msg, info); if (rc) goto free_msg; return genlmsg_reply(msg, info); free_msg: nlmsg_free(msg); return rc; } static void net_dm_stats_read(struct net_dm_stats *stats) { int cpu; memset(stats, 0, sizeof(*stats)); for_each_possible_cpu(cpu) { struct per_cpu_dm_data *data = &per_cpu(dm_cpu_data, cpu); struct net_dm_stats *cpu_stats = &data->stats; unsigned int start; u64 dropped; do { start = u64_stats_fetch_begin(&cpu_stats->syncp); dropped = u64_stats_read(&cpu_stats->dropped); } while (u64_stats_fetch_retry(&cpu_stats->syncp, start)); u64_stats_add(&stats->dropped, dropped); } } static int net_dm_stats_put(struct sk_buff *msg) { struct net_dm_stats stats; struct nlattr *attr; net_dm_stats_read(&stats); attr = nla_nest_start(msg, NET_DM_ATTR_STATS); if (!attr) return -EMSGSIZE; if (nla_put_u64_64bit(msg, NET_DM_ATTR_STATS_DROPPED, u64_stats_read(&stats.dropped), NET_DM_ATTR_PAD)) goto nla_put_failure; nla_nest_end(msg, attr); return 0; nla_put_failure: nla_nest_cancel(msg, attr); return -EMSGSIZE; } static void net_dm_hw_stats_read(struct net_dm_stats *stats) { int cpu; memset(stats, 0, sizeof(*stats)); for_each_possible_cpu(cpu) { struct per_cpu_dm_data *hw_data = &per_cpu(dm_hw_cpu_data, cpu); struct net_dm_stats *cpu_stats = &hw_data->stats; unsigned int start; u64 dropped; do { start = u64_stats_fetch_begin(&cpu_stats->syncp); dropped = u64_stats_read(&cpu_stats->dropped); } while (u64_stats_fetch_retry(&cpu_stats->syncp, start)); u64_stats_add(&stats->dropped, dropped); } } static int net_dm_hw_stats_put(struct sk_buff *msg) { struct net_dm_stats stats; struct nlattr *attr; net_dm_hw_stats_read(&stats); attr = nla_nest_start(msg, NET_DM_ATTR_HW_STATS); if (!attr) return -EMSGSIZE; if (nla_put_u64_64bit(msg, NET_DM_ATTR_STATS_DROPPED, u64_stats_read(&stats.dropped), NET_DM_ATTR_PAD)) goto nla_put_failure; nla_nest_end(msg, attr); return 0; nla_put_failure: nla_nest_cancel(msg, attr); return -EMSGSIZE; } static int net_dm_stats_fill(struct sk_buff *msg, struct genl_info *info) { void *hdr; int rc; hdr = genlmsg_put(msg, info->snd_portid, info->snd_seq, &net_drop_monitor_family, 0, NET_DM_CMD_STATS_NEW); if (!hdr) return -EMSGSIZE; rc = net_dm_stats_put(msg); if (rc) goto nla_put_failure; rc = net_dm_hw_stats_put(msg); if (rc) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int net_dm_cmd_stats_get(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; int rc; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; rc = net_dm_stats_fill(msg, info); if (rc) goto free_msg; return genlmsg_reply(msg, info); free_msg: nlmsg_free(msg); return rc; } static int dropmon_net_event(struct notifier_block *ev_block, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct dm_hw_stat_delta *stat; switch (event) { case NETDEV_REGISTER: if (WARN_ON_ONCE(rtnl_dereference(dev->dm_private))) break; stat = kzalloc(sizeof(*stat), GFP_KERNEL); if (!stat) break; stat->last_rx = jiffies; rcu_assign_pointer(dev->dm_private, stat); break; case NETDEV_UNREGISTER: stat = rtnl_dereference(dev->dm_private); if (stat) { rcu_assign_pointer(dev->dm_private, NULL); kfree_rcu(stat, rcu); } break; } return NOTIFY_DONE; } static const struct nla_policy net_dm_nl_policy[NET_DM_ATTR_MAX + 1] = { [NET_DM_ATTR_UNSPEC] = { .strict_start_type = NET_DM_ATTR_UNSPEC + 1 }, [NET_DM_ATTR_ALERT_MODE] = { .type = NLA_U8 }, [NET_DM_ATTR_TRUNC_LEN] = { .type = NLA_U32 }, [NET_DM_ATTR_QUEUE_LEN] = { .type = NLA_U32 }, [NET_DM_ATTR_SW_DROPS] = {. type = NLA_FLAG }, [NET_DM_ATTR_HW_DROPS] = {. type = NLA_FLAG }, }; static const struct genl_small_ops dropmon_ops[] = { { .cmd = NET_DM_CMD_CONFIG, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = net_dm_cmd_config, .flags = GENL_ADMIN_PERM, }, { .cmd = NET_DM_CMD_START, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = net_dm_cmd_trace, .flags = GENL_ADMIN_PERM, }, { .cmd = NET_DM_CMD_STOP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = net_dm_cmd_trace, .flags = GENL_ADMIN_PERM, }, { .cmd = NET_DM_CMD_CONFIG_GET, .doit = net_dm_cmd_config_get, }, { .cmd = NET_DM_CMD_STATS_GET, .doit = net_dm_cmd_stats_get, }, }; static int net_dm_nl_pre_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { mutex_lock(&net_dm_mutex); return 0; } static void net_dm_nl_post_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { mutex_unlock(&net_dm_mutex); } static struct genl_family net_drop_monitor_family __ro_after_init = { .hdrsize = 0, .name = "NET_DM", .version = 2, .maxattr = NET_DM_ATTR_MAX, .policy = net_dm_nl_policy, .pre_doit = net_dm_nl_pre_doit, .post_doit = net_dm_nl_post_doit, .module = THIS_MODULE, .small_ops = dropmon_ops, .n_small_ops = ARRAY_SIZE(dropmon_ops), .resv_start_op = NET_DM_CMD_STATS_GET + 1, .mcgrps = dropmon_mcgrps, .n_mcgrps = ARRAY_SIZE(dropmon_mcgrps), }; static struct notifier_block dropmon_net_notifier = { .notifier_call = dropmon_net_event }; static void __net_dm_cpu_data_init(struct per_cpu_dm_data *data) { raw_spin_lock_init(&data->lock); skb_queue_head_init(&data->drop_queue); u64_stats_init(&data->stats.syncp); } static void __net_dm_cpu_data_fini(struct per_cpu_dm_data *data) { WARN_ON(!skb_queue_empty(&data->drop_queue)); } static void net_dm_cpu_data_init(int cpu) { struct per_cpu_dm_data *data; data = &per_cpu(dm_cpu_data, cpu); __net_dm_cpu_data_init(data); } static void net_dm_cpu_data_fini(int cpu) { struct per_cpu_dm_data *data; data = &per_cpu(dm_cpu_data, cpu); /* At this point, we should have exclusive access * to this struct and can free the skb inside it. */ consume_skb(data->skb); __net_dm_cpu_data_fini(data); } static void net_dm_hw_cpu_data_init(int cpu) { struct per_cpu_dm_data *hw_data; hw_data = &per_cpu(dm_hw_cpu_data, cpu); __net_dm_cpu_data_init(hw_data); } static void net_dm_hw_cpu_data_fini(int cpu) { struct per_cpu_dm_data *hw_data; hw_data = &per_cpu(dm_hw_cpu_data, cpu); kfree(hw_data->hw_entries); __net_dm_cpu_data_fini(hw_data); } static int __init init_net_drop_monitor(void) { int cpu, rc; pr_info("Initializing network drop monitor service\n"); if (sizeof(void *) > 8) { pr_err("Unable to store program counters on this arch, Drop monitor failed\n"); return -ENOSPC; } rc = genl_register_family(&net_drop_monitor_family); if (rc) { pr_err("Could not create drop monitor netlink family\n"); return rc; } WARN_ON(net_drop_monitor_family.mcgrp_offset != NET_DM_GRP_ALERT); rc = register_netdevice_notifier(&dropmon_net_notifier); if (rc < 0) { pr_crit("Failed to register netdevice notifier\n"); goto out_unreg; } rc = 0; for_each_possible_cpu(cpu) { net_dm_cpu_data_init(cpu); net_dm_hw_cpu_data_init(cpu); } goto out; out_unreg: genl_unregister_family(&net_drop_monitor_family); out: return rc; } static void exit_net_drop_monitor(void) { int cpu; BUG_ON(unregister_netdevice_notifier(&dropmon_net_notifier)); /* * Because of the module_get/put we do in the trace state change path * we are guaranteed not to have any current users when we get here */ for_each_possible_cpu(cpu) { net_dm_hw_cpu_data_fini(cpu); net_dm_cpu_data_fini(cpu); } BUG_ON(genl_unregister_family(&net_drop_monitor_family)); } module_init(init_net_drop_monitor); module_exit(exit_net_drop_monitor); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>"); MODULE_ALIAS_GENL_FAMILY("NET_DM"); MODULE_DESCRIPTION("Monitoring code for network dropped packet alerts"); |
4 4 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | // SPDX-License-Identifier: GPL-2.0 /* * linux/net/sunrpc/auth_null.c * * AUTH_NULL authentication. Really :-) * * Copyright (C) 1996, Olaf Kirch <okir@monad.swb.de> */ #include <linux/types.h> #include <linux/module.h> #include <linux/sunrpc/clnt.h> #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_AUTH #endif static struct rpc_auth null_auth; static struct rpc_cred null_cred; static struct rpc_auth * nul_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) { refcount_inc(&null_auth.au_count); return &null_auth; } static void nul_destroy(struct rpc_auth *auth) { } /* * Lookup NULL creds for current process */ static struct rpc_cred * nul_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) { return get_rpccred(&null_cred); } /* * Destroy cred handle. */ static void nul_destroy_cred(struct rpc_cred *cred) { } /* * Match cred handle against current process */ static int nul_match(struct auth_cred *acred, struct rpc_cred *cred, int taskflags) { return 1; } /* * Marshal credential. */ static int nul_marshal(struct rpc_task *task, struct xdr_stream *xdr) { __be32 *p; p = xdr_reserve_space(xdr, 4 * sizeof(*p)); if (!p) return -EMSGSIZE; /* Credential */ *p++ = rpc_auth_null; *p++ = xdr_zero; /* Verifier */ *p++ = rpc_auth_null; *p = xdr_zero; return 0; } /* * Refresh credential. This is a no-op for AUTH_NULL */ static int nul_refresh(struct rpc_task *task) { set_bit(RPCAUTH_CRED_UPTODATE, &task->tk_rqstp->rq_cred->cr_flags); return 0; } static int nul_validate(struct rpc_task *task, struct xdr_stream *xdr) { __be32 *p; p = xdr_inline_decode(xdr, 2 * sizeof(*p)); if (!p) return -EIO; if (*p++ != rpc_auth_null) return -EIO; if (*p != xdr_zero) return -EIO; return 0; } const struct rpc_authops authnull_ops = { .owner = THIS_MODULE, .au_flavor = RPC_AUTH_NULL, .au_name = "NULL", .create = nul_create, .destroy = nul_destroy, .lookup_cred = nul_lookup_cred, }; static struct rpc_auth null_auth = { .au_cslack = NUL_CALLSLACK, .au_rslack = NUL_REPLYSLACK, .au_verfsize = NUL_REPLYSLACK, .au_ralign = NUL_REPLYSLACK, .au_ops = &authnull_ops, .au_flavor = RPC_AUTH_NULL, .au_count = REFCOUNT_INIT(1), }; static const struct rpc_credops null_credops = { .cr_name = "AUTH_NULL", .crdestroy = nul_destroy_cred, .crmatch = nul_match, .crmarshal = nul_marshal, .crwrap_req = rpcauth_wrap_req_encode, .crrefresh = nul_refresh, .crvalidate = nul_validate, .crunwrap_resp = rpcauth_unwrap_resp_decode, }; static struct rpc_cred null_cred = { .cr_lru = LIST_HEAD_INIT(null_cred.cr_lru), .cr_auth = &null_auth, .cr_ops = &null_credops, .cr_count = REFCOUNT_INIT(2), .cr_flags = 1UL << RPCAUTH_CRED_UPTODATE, }; |
13454 15117 15119 15122 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | /* SPDX-License-Identifier: GPL-2.0 */ /* * generic net pointers */ #ifndef __NET_GENERIC_H__ #define __NET_GENERIC_H__ #include <linux/bug.h> #include <linux/rcupdate.h> #include <net/net_namespace.h> /* * Generic net pointers are to be used by modules to put some private * stuff on the struct net without explicit struct net modification * * The rules are simple: * 1. set pernet_operations->id. After register_pernet_device you * will have the id of your private pointer. * 2. set pernet_operations->size to have the code allocate and free * a private structure pointed to from struct net. * 3. do not change this pointer while the net is alive; * 4. do not try to have any private reference on the net_generic object. * * After accomplishing all of the above, the private pointer can be * accessed with the net_generic() call. */ struct net_generic { union { struct { unsigned int len; struct rcu_head rcu; } s; DECLARE_FLEX_ARRAY(void *, ptr); }; }; static inline void *net_generic(const struct net *net, unsigned int id) { struct net_generic *ng; void *ptr; rcu_read_lock(); ng = rcu_dereference(net->gen); ptr = ng->ptr[id]; rcu_read_unlock(); return ptr; } #endif |
54 54 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 | // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * (C) Copyright IBM Corp. 2002, 2004 * Copyright (c) 2002 Intel Corp. * * This file is part of the SCTP kernel implementation * * Sysctl related interfaces for SCTP. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * Mingqin Liu <liuming@us.ibm.com> * Jon Grimm <jgrimm@us.ibm.com> * Ardelle Fan <ardelle.fan@intel.com> * Ryan Layer <rmlayer@us.ibm.com> * Sridhar Samudrala <sri@us.ibm.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <net/sctp/structs.h> #include <net/sctp/sctp.h> #include <linux/sysctl.h> static int timer_max = 86400000; /* ms in one day */ static int sack_timer_min = 1; static int sack_timer_max = 500; static int addr_scope_max = SCTP_SCOPE_POLICY_MAX; static int rwnd_scale_max = 16; static int rto_alpha_min = 0; static int rto_beta_min = 0; static int rto_alpha_max = 1000; static int rto_beta_max = 1000; static int pf_expose_max = SCTP_PF_EXPOSE_MAX; static int ps_retrans_max = SCTP_PS_RETRANS_MAX; static int udp_port_max = 65535; static unsigned long max_autoclose_min = 0; static unsigned long max_autoclose_max = (MAX_SCHEDULE_TIMEOUT / HZ > UINT_MAX) ? UINT_MAX : MAX_SCHEDULE_TIMEOUT / HZ; static int proc_sctp_do_hmac_alg(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_rto_min(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_rto_max(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_udp_port(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_alpha_beta(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_auth(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static int proc_sctp_do_probe_interval(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); static struct ctl_table sctp_table[] = { { .procname = "sctp_mem", .data = &sysctl_sctp_mem, .maxlen = sizeof(sysctl_sctp_mem), .mode = 0644, .proc_handler = proc_doulongvec_minmax }, { .procname = "sctp_rmem", .data = &sysctl_sctp_rmem, .maxlen = sizeof(sysctl_sctp_rmem), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "sctp_wmem", .data = &sysctl_sctp_wmem, .maxlen = sizeof(sysctl_sctp_wmem), .mode = 0644, .proc_handler = proc_dointvec, }, }; /* The following index defines are used in sctp_sysctl_net_register(). * If you add new items to the sctp_net_table, please ensure that * the index values of these defines hold the same meaning indicated by * their macro names when they appear in sctp_net_table. */ #define SCTP_RTO_MIN_IDX 0 #define SCTP_RTO_MAX_IDX 1 #define SCTP_PF_RETRANS_IDX 2 #define SCTP_PS_RETRANS_IDX 3 static struct ctl_table sctp_net_table[] = { [SCTP_RTO_MIN_IDX] = { .procname = "rto_min", .data = &init_net.sctp.rto_min, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_sctp_do_rto_min, .extra1 = SYSCTL_ONE, .extra2 = &init_net.sctp.rto_max }, [SCTP_RTO_MAX_IDX] = { .procname = "rto_max", .data = &init_net.sctp.rto_max, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_sctp_do_rto_max, .extra1 = &init_net.sctp.rto_min, .extra2 = &timer_max }, [SCTP_PF_RETRANS_IDX] = { .procname = "pf_retrans", .data = &init_net.sctp.pf_retrans, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &init_net.sctp.ps_retrans, }, [SCTP_PS_RETRANS_IDX] = { .procname = "ps_retrans", .data = &init_net.sctp.ps_retrans, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &init_net.sctp.pf_retrans, .extra2 = &ps_retrans_max, }, { .procname = "rto_initial", .data = &init_net.sctp.rto_initial, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = &timer_max }, { .procname = "rto_alpha_exp_divisor", .data = &init_net.sctp.rto_alpha, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_sctp_do_alpha_beta, .extra1 = &rto_alpha_min, .extra2 = &rto_alpha_max, }, { .procname = "rto_beta_exp_divisor", .data = &init_net.sctp.rto_beta, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_sctp_do_alpha_beta, .extra1 = &rto_beta_min, .extra2 = &rto_beta_max, }, { .procname = "max_burst", .data = &init_net.sctp.max_burst, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, }, { .procname = "cookie_preserve_enable", .data = &init_net.sctp.cookie_preserve_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "cookie_hmac_alg", .data = &init_net.sctp.sctp_hmac_alg, .maxlen = 8, .mode = 0644, .proc_handler = proc_sctp_do_hmac_alg, }, { .procname = "valid_cookie_life", .data = &init_net.sctp.valid_cookie_life, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = &timer_max }, { .procname = "sack_timeout", .data = &init_net.sctp.sack_timeout, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &sack_timer_min, .extra2 = &sack_timer_max, }, { .procname = "hb_interval", .data = &init_net.sctp.hb_interval, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = &timer_max }, { .procname = "association_max_retrans", .data = &init_net.sctp.max_retrans_association, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = SYSCTL_INT_MAX, }, { .procname = "path_max_retrans", .data = &init_net.sctp.max_retrans_path, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = SYSCTL_INT_MAX, }, { .procname = "max_init_retransmits", .data = &init_net.sctp.max_retrans_init, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = SYSCTL_INT_MAX, }, { .procname = "sndbuf_policy", .data = &init_net.sctp.sndbuf_policy, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "rcvbuf_policy", .data = &init_net.sctp.rcvbuf_policy, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "default_auto_asconf", .data = &init_net.sctp.default_auto_asconf, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "addip_enable", .data = &init_net.sctp.addip_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "addip_noauth_enable", .data = &init_net.sctp.addip_noauth, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "prsctp_enable", .data = &init_net.sctp.prsctp_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "reconf_enable", .data = &init_net.sctp.reconf_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "auth_enable", .data = &init_net.sctp.auth_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_sctp_do_auth, }, { .procname = "intl_enable", .data = &init_net.sctp.intl_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "ecn_enable", .data = &init_net.sctp.ecn_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "plpmtud_probe_interval", .data = &init_net.sctp.probe_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_sctp_do_probe_interval, }, { .procname = "udp_port", .data = &init_net.sctp.udp_port, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_sctp_do_udp_port, .extra1 = SYSCTL_ZERO, .extra2 = &udp_port_max, }, { .procname = "encap_port", .data = &init_net.sctp.encap_port, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &udp_port_max, }, { .procname = "addr_scope_policy", .data = &init_net.sctp.scope_policy, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &addr_scope_max, }, { .procname = "rwnd_update_shift", .data = &init_net.sctp.rwnd_upd_shift, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec_minmax, .extra1 = SYSCTL_ONE, .extra2 = &rwnd_scale_max, }, { .procname = "max_autoclose", .data = &init_net.sctp.max_autoclose, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = &proc_doulongvec_minmax, .extra1 = &max_autoclose_min, .extra2 = &max_autoclose_max, }, #ifdef CONFIG_NET_L3_MASTER_DEV { .procname = "l3mdev_accept", .data = &init_net.sctp.l3mdev_accept, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, #endif { .procname = "pf_enable", .data = &init_net.sctp.pf_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "pf_expose", .data = &init_net.sctp.pf_expose, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &pf_expose_max, }, }; static int proc_sctp_do_hmac_alg(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = current->nsproxy->net_ns; struct ctl_table tbl; bool changed = false; char *none = "none"; char tmp[8] = {0}; int ret; memset(&tbl, 0, sizeof(struct ctl_table)); if (write) { tbl.data = tmp; tbl.maxlen = sizeof(tmp); } else { tbl.data = net->sctp.sctp_hmac_alg ? : none; tbl.maxlen = strlen(tbl.data); } ret = proc_dostring(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) { #ifdef CONFIG_CRYPTO_MD5 if (!strncmp(tmp, "md5", 3)) { net->sctp.sctp_hmac_alg = "md5"; changed = true; } #endif #ifdef CONFIG_CRYPTO_SHA1 if (!strncmp(tmp, "sha1", 4)) { net->sctp.sctp_hmac_alg = "sha1"; changed = true; } #endif if (!strncmp(tmp, "none", 4)) { net->sctp.sctp_hmac_alg = NULL; changed = true; } if (!changed) ret = -EINVAL; } return ret; } static int proc_sctp_do_rto_min(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = current->nsproxy->net_ns; unsigned int min = *(unsigned int *) ctl->extra1; unsigned int max = *(unsigned int *) ctl->extra2; struct ctl_table tbl; int ret, new_value; memset(&tbl, 0, sizeof(struct ctl_table)); tbl.maxlen = sizeof(unsigned int); if (write) tbl.data = &new_value; else tbl.data = &net->sctp.rto_min; ret = proc_dointvec(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) { if (new_value > max || new_value < min) return -EINVAL; net->sctp.rto_min = new_value; } return ret; } static int proc_sctp_do_rto_max(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = current->nsproxy->net_ns; unsigned int min = *(unsigned int *) ctl->extra1; unsigned int max = *(unsigned int *) ctl->extra2; struct ctl_table tbl; int ret, new_value; memset(&tbl, 0, sizeof(struct ctl_table)); tbl.maxlen = sizeof(unsigned int); if (write) tbl.data = &new_value; else tbl.data = &net->sctp.rto_max; ret = proc_dointvec(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) { if (new_value > max || new_value < min) return -EINVAL; net->sctp.rto_max = new_value; } return ret; } static int proc_sctp_do_alpha_beta(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { if (write) pr_warn_once("Changing rto_alpha or rto_beta may lead to " "suboptimal rtt/srtt estimations!\n"); return proc_dointvec_minmax(ctl, write, buffer, lenp, ppos); } static int proc_sctp_do_auth(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = current->nsproxy->net_ns; struct ctl_table tbl; int new_value, ret; memset(&tbl, 0, sizeof(struct ctl_table)); tbl.maxlen = sizeof(unsigned int); if (write) tbl.data = &new_value; else tbl.data = &net->sctp.auth_enable; ret = proc_dointvec(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) { struct sock *sk = net->sctp.ctl_sock; net->sctp.auth_enable = new_value; /* Update the value in the control socket */ lock_sock(sk); sctp_sk(sk)->ep->auth_enable = new_value; release_sock(sk); } return ret; } static int proc_sctp_do_udp_port(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = current->nsproxy->net_ns; unsigned int min = *(unsigned int *)ctl->extra1; unsigned int max = *(unsigned int *)ctl->extra2; struct ctl_table tbl; int ret, new_value; memset(&tbl, 0, sizeof(struct ctl_table)); tbl.maxlen = sizeof(unsigned int); if (write) tbl.data = &new_value; else tbl.data = &net->sctp.udp_port; ret = proc_dointvec(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) { struct sock *sk = net->sctp.ctl_sock; if (new_value > max || new_value < min) return -EINVAL; net->sctp.udp_port = new_value; sctp_udp_sock_stop(net); if (new_value) { ret = sctp_udp_sock_start(net); if (ret) net->sctp.udp_port = 0; } /* Update the value in the control socket */ lock_sock(sk); sctp_sk(sk)->udp_port = htons(net->sctp.udp_port); release_sock(sk); } return ret; } static int proc_sctp_do_probe_interval(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = current->nsproxy->net_ns; struct ctl_table tbl; int ret, new_value; memset(&tbl, 0, sizeof(struct ctl_table)); tbl.maxlen = sizeof(unsigned int); if (write) tbl.data = &new_value; else tbl.data = &net->sctp.probe_interval; ret = proc_dointvec(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) { if (new_value && new_value < SCTP_PROBE_TIMER_MIN) return -EINVAL; net->sctp.probe_interval = new_value; } return ret; } int sctp_sysctl_net_register(struct net *net) { size_t table_size = ARRAY_SIZE(sctp_net_table); struct ctl_table *table; int i; table = kmemdup(sctp_net_table, sizeof(sctp_net_table), GFP_KERNEL); if (!table) return -ENOMEM; for (i = 0; i < table_size; i++) table[i].data += (char *)(&net->sctp) - (char *)&init_net.sctp; table[SCTP_RTO_MIN_IDX].extra2 = &net->sctp.rto_max; table[SCTP_RTO_MAX_IDX].extra1 = &net->sctp.rto_min; table[SCTP_PF_RETRANS_IDX].extra2 = &net->sctp.ps_retrans; table[SCTP_PS_RETRANS_IDX].extra1 = &net->sctp.pf_retrans; net->sctp.sysctl_header = register_net_sysctl_sz(net, "net/sctp", table, table_size); if (net->sctp.sysctl_header == NULL) { kfree(table); return -ENOMEM; } return 0; } void sctp_sysctl_net_unregister(struct net *net) { const struct ctl_table *table; table = net->sctp.sysctl_header->ctl_table_arg; unregister_net_sysctl_table(net->sctp.sysctl_header); kfree(table); } static struct ctl_table_header *sctp_sysctl_header; /* Sysctl registration. */ void sctp_sysctl_register(void) { sctp_sysctl_header = register_net_sysctl(&init_net, "net/sctp", sctp_table); } /* Sysctl deregistration. */ void sctp_sysctl_unregister(void) { unregister_net_sysctl_table(sctp_sysctl_header); } |
9 109 485 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ /* * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. */ #ifndef IB_ADDR_H #define IB_ADDR_H #include <linux/ethtool.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/socket.h> #include <linux/if_vlan.h> #include <net/ipv6.h> #include <net/if_inet6.h> #include <net/ip.h> #include <rdma/ib_verbs.h> #include <rdma/ib_pack.h> #include <net/net_namespace.h> /** * struct rdma_dev_addr - Contains resolved RDMA hardware addresses * @src_dev_addr: Source MAC address. * @dst_dev_addr: Destination MAC address. * @broadcast: Broadcast address of the device. * @dev_type: The interface hardware type of the device. * @bound_dev_if: An optional device interface index. * @transport: The transport type used. * @net: Network namespace containing the bound_dev_if net_dev. * @sgid_attr: GID attribute to use for identified SGID */ struct rdma_dev_addr { unsigned char src_dev_addr[MAX_ADDR_LEN]; unsigned char dst_dev_addr[MAX_ADDR_LEN]; unsigned char broadcast[MAX_ADDR_LEN]; unsigned short dev_type; int bound_dev_if; enum rdma_transport_type transport; struct net *net; const struct ib_gid_attr *sgid_attr; enum rdma_network_type network; int hoplimit; }; /** * rdma_translate_ip - Translate a local IP address to an RDMA hardware * address. * * The dev_addr->net field must be initialized. */ int rdma_translate_ip(const struct sockaddr *addr, struct rdma_dev_addr *dev_addr); /** * rdma_resolve_ip - Resolve source and destination IP addresses to * RDMA hardware addresses. * @src_addr: An optional source address to use in the resolution. If a * source address is not provided, a usable address will be returned via * the callback. * @dst_addr: The destination address to resolve. * @addr: A reference to a data location that will receive the resolved * addresses. The data location must remain valid until the callback has * been invoked. The net field of the addr struct must be valid. * @timeout_ms: Amount of time to wait for the address resolution to complete. * @callback: Call invoked once address resolution has completed, timed out, * or been canceled. A status of 0 indicates success. * @resolve_by_gid_attr: Resolve the ip based on the GID attribute from * rdma_dev_addr. * @context: User-specified context associated with the call. */ int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, struct rdma_dev_addr *addr, unsigned long timeout_ms, void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context), bool resolve_by_gid_attr, void *context); void rdma_addr_cancel(struct rdma_dev_addr *addr); int rdma_addr_size(const struct sockaddr *addr); int rdma_addr_size_in6(struct sockaddr_in6 *addr); int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr); static inline u16 ib_addr_get_pkey(struct rdma_dev_addr *dev_addr) { return ((u16)dev_addr->broadcast[8] << 8) | (u16)dev_addr->broadcast[9]; } static inline void ib_addr_set_pkey(struct rdma_dev_addr *dev_addr, u16 pkey) { dev_addr->broadcast[8] = pkey >> 8; dev_addr->broadcast[9] = (unsigned char) pkey; } static inline void ib_addr_get_mgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(gid, dev_addr->broadcast + 4, sizeof *gid); } static inline int rdma_addr_gid_offset(struct rdma_dev_addr *dev_addr) { return dev_addr->dev_type == ARPHRD_INFINIBAND ? 4 : 0; } static inline u16 rdma_vlan_dev_vlan_id(const struct net_device *dev) { return is_vlan_dev(dev) ? vlan_dev_vlan_id(dev) : 0xffff; } static inline int rdma_ip2gid(struct sockaddr *addr, union ib_gid *gid) { switch (addr->sa_family) { case AF_INET: ipv6_addr_set_v4mapped(((struct sockaddr_in *) addr)->sin_addr.s_addr, (struct in6_addr *)gid); break; case AF_INET6: *(struct in6_addr *)&gid->raw = ((struct sockaddr_in6 *)addr)->sin6_addr; break; default: return -EINVAL; } return 0; } /* Important - sockaddr should be a union of sockaddr_in and sockaddr_in6 */ static inline void rdma_gid2ip(struct sockaddr *out, const union ib_gid *gid) { if (ipv6_addr_v4mapped((struct in6_addr *)gid)) { struct sockaddr_in *out_in = (struct sockaddr_in *)out; memset(out_in, 0, sizeof(*out_in)); out_in->sin_family = AF_INET; memcpy(&out_in->sin_addr.s_addr, gid->raw + 12, 4); } else { struct sockaddr_in6 *out_in = (struct sockaddr_in6 *)out; memset(out_in, 0, sizeof(*out_in)); out_in->sin6_family = AF_INET6; memcpy(&out_in->sin6_addr.s6_addr, gid->raw, 16); } } /* * rdma_get/set_sgid/dgid() APIs are applicable to IB, and iWarp. * They are not applicable to RoCE. * RoCE GIDs are derived from the IP addresses. */ static inline void rdma_addr_get_sgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(gid, dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof(*gid)); } static inline void rdma_addr_set_sgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), gid, sizeof *gid); } static inline void rdma_addr_get_dgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(gid, dev_addr->dst_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof *gid); } static inline void rdma_addr_set_dgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(dev_addr->dst_dev_addr + rdma_addr_gid_offset(dev_addr), gid, sizeof *gid); } static inline enum ib_mtu iboe_get_mtu(int mtu) { /* * Reduce IB headers from effective IBoE MTU. */ mtu = mtu - (IB_GRH_BYTES + IB_UDP_BYTES + IB_BTH_BYTES + IB_EXT_XRC_BYTES + IB_EXT_ATOMICETH_BYTES + IB_ICRC_BYTES); if (mtu >= ib_mtu_enum_to_int(IB_MTU_4096)) return IB_MTU_4096; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_2048)) return IB_MTU_2048; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_1024)) return IB_MTU_1024; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_512)) return IB_MTU_512; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_256)) return IB_MTU_256; else return 0; } static inline int rdma_link_local_addr(struct in6_addr *addr) { if (addr->s6_addr32[0] == htonl(0xfe800000) && addr->s6_addr32[1] == 0) return 1; return 0; } static inline void rdma_get_ll_mac(struct in6_addr *addr, u8 *mac) { memcpy(mac, &addr->s6_addr[8], 3); memcpy(mac + 3, &addr->s6_addr[13], 3); mac[0] ^= 2; } static inline int rdma_is_multicast_addr(struct in6_addr *addr) { __be32 ipv4_addr; if (addr->s6_addr[0] == 0xff) return 1; ipv4_addr = addr->s6_addr32[3]; return (ipv6_addr_v4mapped(addr) && ipv4_is_multicast(ipv4_addr)); } static inline void rdma_get_mcast_mac(struct in6_addr *addr, u8 *mac) { int i; mac[0] = 0x33; mac[1] = 0x33; for (i = 2; i < 6; ++i) mac[i] = addr->s6_addr[i + 10]; } static inline u16 rdma_get_vlan_id(union ib_gid *dgid) { u16 vid; vid = dgid->raw[11] << 8 | dgid->raw[12]; return vid < 0x1000 ? vid : 0xffff; } static inline struct net_device *rdma_vlan_dev_real_dev(const struct net_device *dev) { return is_vlan_dev(dev) ? vlan_dev_real_dev(dev) : NULL; } #endif /* IB_ADDR_H */ |
20 20 20 20 62 14 46 18 4 42 1 8 3 3 41 1 41 2 345 40 166 42 42 42 42 42 42 42 42 42 42 42 42 42 7 10 26 13 17 43 47 47 9 33 39 3 1 7 7 17 6 2 1 2 1 1 10 1 1 1 19 1 19 312 4 34 270 2 1 9 13 13 13 13 10 13 13 2 2 1 1 1 1 64 64 1 1 57 57 67 67 2 3 64 7 57 57 29 48 3 57 62 62 51 9 44 21 22 50 1 1 1 1 14 14 14 14 3 1 26 26 26 26 26 26 77 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 8 2 3 5 3 68 68 68 42 42 91 91 134 1 52 94 25 26 6 15 15 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 | // SPDX-License-Identifier: GPL-2.0 /* * Wireless utility functions * * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include <linux/export.h> #include <linux/bitops.h> #include <linux/etherdevice.h> #include <linux/slab.h> #include <linux/ieee80211.h> #include <net/cfg80211.h> #include <net/ip.h> #include <net/dsfield.h> #include <linux/if_vlan.h> #include <linux/mpls.h> #include <linux/gcd.h> #include <linux/bitfield.h> #include <linux/nospec.h> #include "core.h" #include "rdev-ops.h" const struct ieee80211_rate * ieee80211_get_response_rate(struct ieee80211_supported_band *sband, u32 basic_rates, int bitrate) { struct ieee80211_rate *result = &sband->bitrates[0]; int i; for (i = 0; i < sband->n_bitrates; i++) { if (!(basic_rates & BIT(i))) continue; if (sband->bitrates[i].bitrate > bitrate) continue; result = &sband->bitrates[i]; } return result; } EXPORT_SYMBOL(ieee80211_get_response_rate); u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) { struct ieee80211_rate *bitrates; u32 mandatory_rates = 0; enum ieee80211_rate_flags mandatory_flag; int i; if (WARN_ON(!sband)) return 1; if (sband->band == NL80211_BAND_2GHZ) mandatory_flag = IEEE80211_RATE_MANDATORY_B; else mandatory_flag = IEEE80211_RATE_MANDATORY_A; bitrates = sband->bitrates; for (i = 0; i < sband->n_bitrates; i++) if (bitrates[i].flags & mandatory_flag) mandatory_rates |= BIT(i); return mandatory_rates; } EXPORT_SYMBOL(ieee80211_mandatory_rates); u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) { /* see 802.11 17.3.8.3.2 and Annex J * there are overlapping channel numbers in 5GHz and 2GHz bands */ if (chan <= 0) return 0; /* not supported */ switch (band) { case NL80211_BAND_2GHZ: case NL80211_BAND_LC: if (chan == 14) return MHZ_TO_KHZ(2484); else if (chan < 14) return MHZ_TO_KHZ(2407 + chan * 5); break; case NL80211_BAND_5GHZ: if (chan >= 182 && chan <= 196) return MHZ_TO_KHZ(4000 + chan * 5); else return MHZ_TO_KHZ(5000 + chan * 5); break; case NL80211_BAND_6GHZ: /* see 802.11ax D6.1 27.3.23.2 */ if (chan == 2) return MHZ_TO_KHZ(5935); if (chan <= 233) return MHZ_TO_KHZ(5950 + chan * 5); break; case NL80211_BAND_60GHZ: if (chan < 7) return MHZ_TO_KHZ(56160 + chan * 2160); break; case NL80211_BAND_S1GHZ: return 902000 + chan * 500; default: ; } return 0; /* not supported */ } EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); enum nl80211_chan_width ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) { if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) return NL80211_CHAN_WIDTH_20_NOHT; /*S1G defines a single allowed channel width per channel. * Extract that width here. */ if (chan->flags & IEEE80211_CHAN_1MHZ) return NL80211_CHAN_WIDTH_1; else if (chan->flags & IEEE80211_CHAN_2MHZ) return NL80211_CHAN_WIDTH_2; else if (chan->flags & IEEE80211_CHAN_4MHZ) return NL80211_CHAN_WIDTH_4; else if (chan->flags & IEEE80211_CHAN_8MHZ) return NL80211_CHAN_WIDTH_8; else if (chan->flags & IEEE80211_CHAN_16MHZ) return NL80211_CHAN_WIDTH_16; pr_err("unknown channel width for channel at %dKHz?\n", ieee80211_channel_to_khz(chan)); return NL80211_CHAN_WIDTH_1; } EXPORT_SYMBOL(ieee80211_s1g_channel_width); int ieee80211_freq_khz_to_channel(u32 freq) { /* TODO: just handle MHz for now */ freq = KHZ_TO_MHZ(freq); /* see 802.11 17.3.8.3.2 and Annex J */ if (freq == 2484) return 14; else if (freq < 2484) return (freq - 2407) / 5; else if (freq >= 4910 && freq <= 4980) return (freq - 4000) / 5; else if (freq < 5925) return (freq - 5000) / 5; else if (freq == 5935) return 2; else if (freq <= 45000) /* DMG band lower limit */ /* see 802.11ax D6.1 27.3.22.2 */ return (freq - 5950) / 5; else if (freq >= 58320 && freq <= 70200) return (freq - 56160) / 2160; else return 0; } EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq) { enum nl80211_band band; struct ieee80211_supported_band *sband; int i; for (band = 0; band < NUM_NL80211_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *chan = &sband->channels[i]; if (ieee80211_channel_to_khz(chan) == freq) return chan; } } return NULL; } EXPORT_SYMBOL(ieee80211_get_channel_khz); static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) { int i, want; switch (sband->band) { case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: want = 3; for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].bitrate == 60 || sband->bitrates[i].bitrate == 120 || sband->bitrates[i].bitrate == 240) { sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_A; want--; } } WARN_ON(want); break; case NL80211_BAND_2GHZ: case NL80211_BAND_LC: want = 7; for (i = 0; i < sband->n_bitrates; i++) { switch (sband->bitrates[i].bitrate) { case 10: case 20: case 55: case 110: sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_B | IEEE80211_RATE_MANDATORY_G; want--; break; case 60: case 120: case 240: sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_G; want--; fallthrough; default: sband->bitrates[i].flags |= IEEE80211_RATE_ERP_G; break; } } WARN_ON(want != 0 && want != 3); break; case NL80211_BAND_60GHZ: /* check for mandatory HT MCS 1..4 */ WARN_ON(!sband->ht_cap.ht_supported); WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); break; case NL80211_BAND_S1GHZ: /* Figure 9-589bd: 3 means unsupported, so != 3 means at least * mandatory is ok. */ WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); break; case NUM_NL80211_BANDS: default: WARN_ON(1); break; } } void ieee80211_set_bitrate_flags(struct wiphy *wiphy) { enum nl80211_band band; for (band = 0; band < NUM_NL80211_BANDS; band++) if (wiphy->bands[band]) set_mandatory_flags_band(wiphy->bands[band]); } bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) { int i; for (i = 0; i < wiphy->n_cipher_suites; i++) if (cipher == wiphy->cipher_suites[i]) return true; return false; } static bool cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) { struct wiphy *wiphy = &rdev->wiphy; int i; for (i = 0; i < wiphy->n_cipher_suites; i++) { switch (wiphy->cipher_suites[i]) { case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: return true; } } return false; } bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise) { int max_key_idx; if (pairwise) max_key_idx = 3; else if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION) || wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) max_key_idx = 7; else if (cfg80211_igtk_cipher_supported(rdev)) max_key_idx = 5; else max_key_idx = 3; if (key_idx < 0 || key_idx > max_key_idx) return false; return true; } int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr) { if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) return -EINVAL; if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) return -EINVAL; if (pairwise && !mac_addr) return -EINVAL; switch (params->cipher) { case WLAN_CIPHER_SUITE_TKIP: /* Extended Key ID can only be used with CCMP/GCMP ciphers */ if ((pairwise && key_idx) || params->mode != NL80211_KEY_RX_TX) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: /* IEEE802.11-2016 allows only 0 and - when supporting * Extended Key ID - 1 as index for pairwise keys. * @NL80211_KEY_NO_TX is only allowed for pairwise keys when * the driver supports Extended Key ID. * @NL80211_KEY_SET_TX can't be set when installing and * validating a key. */ if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || params->mode == NL80211_KEY_SET_TX) return -EINVAL; if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_EXT_KEY_ID)) { if (pairwise && (key_idx < 0 || key_idx > 1)) return -EINVAL; } else if (pairwise && key_idx) { return -EINVAL; } break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: /* Disallow BIP (group-only) cipher as pairwise cipher */ if (pairwise) return -EINVAL; if (key_idx < 4) return -EINVAL; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: if (key_idx > 3) return -EINVAL; break; default: break; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: if (params->key_len != WLAN_KEY_LEN_WEP40) return -EINVAL; break; case WLAN_CIPHER_SUITE_TKIP: if (params->key_len != WLAN_KEY_LEN_TKIP) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: if (params->key_len != WLAN_KEY_LEN_CCMP) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP_256: if (params->key_len != WLAN_KEY_LEN_CCMP_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_GCMP: if (params->key_len != WLAN_KEY_LEN_GCMP) return -EINVAL; break; case WLAN_CIPHER_SUITE_GCMP_256: if (params->key_len != WLAN_KEY_LEN_GCMP_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_WEP104: if (params->key_len != WLAN_KEY_LEN_WEP104) return -EINVAL; break; case WLAN_CIPHER_SUITE_AES_CMAC: if (params->key_len != WLAN_KEY_LEN_AES_CMAC) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_CMAC_256: if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) return -EINVAL; break; default: /* * We don't know anything about this algorithm, * allow using it -- but the driver must check * all parameters! We still check below whether * or not the driver supports this algorithm, * of course. */ break; } if (params->seq) { switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* These ciphers do not use key sequence */ return -EINVAL; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (params->seq_len != 6) return -EINVAL; break; } } if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) return -EINVAL; return 0; } unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) { unsigned int hdrlen = 24; if (ieee80211_is_ext(fc)) { hdrlen = 4; goto out; } if (ieee80211_is_data(fc)) { if (ieee80211_has_a4(fc)) hdrlen = 30; if (ieee80211_is_data_qos(fc)) { hdrlen += IEEE80211_QOS_CTL_LEN; if (ieee80211_has_order(fc)) hdrlen += IEEE80211_HT_CTL_LEN; } goto out; } if (ieee80211_is_mgmt(fc)) { if (ieee80211_has_order(fc)) hdrlen += IEEE80211_HT_CTL_LEN; goto out; } if (ieee80211_is_ctl(fc)) { /* * ACK and CTS are 10 bytes, all others 16. To see how * to get this condition consider * subtype mask: 0b0000000011110000 (0x00F0) * ACK subtype: 0b0000000011010000 (0x00D0) * CTS subtype: 0b0000000011000000 (0x00C0) * bits that matter: ^^^ (0x00E0) * value of those: 0b0000000011000000 (0x00C0) */ if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) hdrlen = 10; else hdrlen = 16; } out: return hdrlen; } EXPORT_SYMBOL(ieee80211_hdrlen); unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *)skb->data; unsigned int hdrlen; if (unlikely(skb->len < 10)) return 0; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (unlikely(hdrlen > skb->len)) return 0; return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) { int ae = flags & MESH_FLAGS_AE; /* 802.11-2012, 8.2.4.7.3 */ switch (ae) { default: case 0: return 6; case MESH_FLAGS_AE_A4: return 12; case MESH_FLAGS_AE_A5_A6: return 18; } } unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) { return __ieee80211_get_mesh_hdrlen(meshhdr->flags); } EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) { const __be16 *hdr_proto = hdr + ETH_ALEN; if (!(ether_addr_equal(hdr, rfc1042_header) && *hdr_proto != htons(ETH_P_AARP) && *hdr_proto != htons(ETH_P_IPX)) && !ether_addr_equal(hdr, bridge_tunnel_header)) return false; *proto = *hdr_proto; return true; } EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) { const void *mesh_addr; struct { struct ethhdr eth; u8 flags; } payload; int hdrlen; int ret; ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); if (ret) return ret; hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); if (likely(pskb_may_pull(skb, hdrlen + 8) && ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, &payload.eth.h_proto))) hdrlen += ETH_ALEN + 2; else if (!pskb_may_pull(skb, hdrlen)) return -EINVAL; else payload.eth.h_proto = htons(skb->len - hdrlen); mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; switch (payload.flags & MESH_FLAGS_AE) { case MESH_FLAGS_AE_A4: memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); break; case MESH_FLAGS_AE_A5_A6: memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); break; default: break; } pskb_pull(skb, hdrlen - sizeof(payload.eth)); memcpy(skb->data, &payload.eth, sizeof(payload.eth)); return 0; } EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, const u8 *addr, enum nl80211_iftype iftype, u8 data_offset, bool is_amsdu) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct { u8 hdr[ETH_ALEN] __aligned(2); __be16 proto; } payload; struct ethhdr tmp; u16 hdrlen; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return -1; hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; if (skb->len < hdrlen) return -1; /* convert IEEE 802.11 header + possible LLC headers into Ethernet * header * IEEE 802.11 address fields: * ToDS FromDS Addr1 Addr2 Addr3 Addr4 * 0 0 DA SA BSSID n/a * 0 1 DA BSSID SA n/a * 1 0 BSSID SA DA n/a * 1 1 RA TA DA SA */ memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); switch (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case cpu_to_le16(IEEE80211_FCTL_TODS): if (unlikely(iftype != NL80211_IFTYPE_AP && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_P2P_GO)) return -1; break; case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_STATION)) return -1; break; case cpu_to_le16(IEEE80211_FCTL_FROMDS): if ((iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_P2P_CLIENT && iftype != NL80211_IFTYPE_MESH_POINT) || (is_multicast_ether_addr(tmp.h_dest) && ether_addr_equal(tmp.h_source, addr))) return -1; break; case cpu_to_le16(0): if (iftype != NL80211_IFTYPE_ADHOC && iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_OCB) return -1; break; } if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { /* remove RFC1042 or Bridge-Tunnel encapsulation */ hdrlen += ETH_ALEN + 2; skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); } else { tmp.h_proto = htons(skb->len - hdrlen); } pskb_pull(skb, hdrlen); if (!ehdr) ehdr = skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr, &tmp, sizeof(tmp)); return 0; } EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); static void __frame_add_frag(struct sk_buff *skb, struct page *page, void *ptr, int len, int size) { struct skb_shared_info *sh = skb_shinfo(skb); int page_offset; get_page(page); page_offset = ptr - page_address(page); skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); } static void __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, int offset, int len) { struct skb_shared_info *sh = skb_shinfo(skb); const skb_frag_t *frag = &sh->frags[0]; struct page *frag_page; void *frag_ptr; int frag_len, frag_size; int head_size = skb->len - skb->data_len; int cur_len; frag_page = virt_to_head_page(skb->head); frag_ptr = skb->data; frag_size = head_size; while (offset >= frag_size) { offset -= frag_size; frag_page = skb_frag_page(frag); frag_ptr = skb_frag_address(frag); frag_size = skb_frag_size(frag); frag++; } frag_ptr += offset; frag_len = frag_size - offset; cur_len = min(len, frag_len); __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); len -= cur_len; while (len > 0) { frag_len = skb_frag_size(frag); cur_len = min(len, frag_len); __frame_add_frag(frame, skb_frag_page(frag), skb_frag_address(frag), cur_len, frag_len); len -= cur_len; frag++; } } static struct sk_buff * __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, int offset, int len, bool reuse_frag, int min_len) { struct sk_buff *frame; int cur_len = len; if (skb->len - offset < len) return NULL; /* * When reusing framents, copy some data to the head to simplify * ethernet header handling and speed up protocol header processing * in the stack later. */ if (reuse_frag) cur_len = min_t(int, len, min_len); /* * Allocate and reserve two bytes more for payload * alignment since sizeof(struct ethhdr) is 14. */ frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); if (!frame) return NULL; frame->priority = skb->priority; skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); len -= cur_len; if (!len) return frame; offset += cur_len; __ieee80211_amsdu_copy_frag(skb, frame, offset, len); return frame; } static u16 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) { __le16 *field_le = field; __be16 *field_be = field; u16 len; if (hdr_type >= 2) len = le16_to_cpu(*field_le); else len = be16_to_cpu(*field_be); if (hdr_type) len += __ieee80211_get_mesh_hdrlen(mesh_flags); return len; } bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) { int offset = 0, subframe_len, padding; for (offset = 0; offset < skb->len; offset += subframe_len + padding) { int remaining = skb->len - offset; struct { __be16 len; u8 mesh_flags; } hdr; u16 len; if (sizeof(hdr) > remaining) return false; if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) return false; len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, mesh_hdr); subframe_len = sizeof(struct ethhdr) + len; padding = (4 - subframe_len) & 0x3; if (subframe_len > remaining) return false; } return true; } EXPORT_SYMBOL(ieee80211_is_valid_amsdu); void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, const u8 *addr, enum nl80211_iftype iftype, const unsigned int extra_headroom, const u8 *check_da, const u8 *check_sa, u8 mesh_control) { unsigned int hlen = ALIGN(extra_headroom, 4); struct sk_buff *frame = NULL; int offset = 0; struct { struct ethhdr eth; uint8_t flags; } hdr; bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); bool reuse_skb = false; bool last = false; int copy_len = sizeof(hdr.eth); if (iftype == NL80211_IFTYPE_MESH_POINT) copy_len = sizeof(hdr); while (!last) { int remaining = skb->len - offset; unsigned int subframe_len; int len, mesh_len = 0; u8 padding; if (copy_len > remaining) goto purge; skb_copy_bits(skb, offset, &hdr, copy_len); if (iftype == NL80211_IFTYPE_MESH_POINT) mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, mesh_control); subframe_len = sizeof(struct ethhdr) + len; padding = (4 - subframe_len) & 0x3; /* the last MSDU has no padding */ if (subframe_len > remaining) goto purge; /* mitigate A-MSDU aggregation injection attacks */ if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) goto purge; offset += sizeof(struct ethhdr); last = remaining <= subframe_len + padding; /* FIXME: should we really accept multicast DA? */ if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && !ether_addr_equal(check_da, hdr.eth.h_dest)) || (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { offset += len + padding; continue; } /* reuse skb for the last subframe */ if (!skb_is_nonlinear(skb) && !reuse_frag && last) { skb_pull(skb, offset); frame = skb; reuse_skb = true; } else { frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, reuse_frag, 32 + mesh_len); if (!frame) goto purge; offset += len + padding; } skb_reset_network_header(frame); frame->dev = skb->dev; frame->priority = skb->priority; if (likely(iftype != NL80211_IFTYPE_MESH_POINT && ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) skb_pull(frame, ETH_ALEN + 2); memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); __skb_queue_tail(list, frame); } if (!reuse_skb) dev_kfree_skb(skb); return; purge: __skb_queue_purge(list); dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); /* Given a data frame determine the 802.1p/1d tag to use. */ unsigned int cfg80211_classify8021d(struct sk_buff *skb, struct cfg80211_qos_map *qos_map) { unsigned int dscp; unsigned char vlan_priority; unsigned int ret; /* skb->priority values from 256->263 are magic values to * directly indicate a specific 802.1d priority. This is used * to allow 802.1d priority to be passed directly in from VLAN * tags, etc. */ if (skb->priority >= 256 && skb->priority <= 263) { ret = skb->priority - 256; goto out; } if (skb_vlan_tag_present(skb)) { vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; if (vlan_priority > 0) { ret = vlan_priority; goto out; } } switch (skb->protocol) { case htons(ETH_P_IP): dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; break; case htons(ETH_P_IPV6): dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; break; case htons(ETH_P_MPLS_UC): case htons(ETH_P_MPLS_MC): { struct mpls_label mpls_tmp, *mpls; mpls = skb_header_pointer(skb, sizeof(struct ethhdr), sizeof(*mpls), &mpls_tmp); if (!mpls) return 0; ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; goto out; } case htons(ETH_P_80221): /* 802.21 is always network control traffic */ return 7; default: return 0; } if (qos_map) { unsigned int i, tmp_dscp = dscp >> 2; for (i = 0; i < qos_map->num_des; i++) { if (tmp_dscp == qos_map->dscp_exception[i].dscp) { ret = qos_map->dscp_exception[i].up; goto out; } } for (i = 0; i < 8; i++) { if (tmp_dscp >= qos_map->up[i].low && tmp_dscp <= qos_map->up[i].high) { ret = i; goto out; } } } /* The default mapping as defined Section 2.3 in RFC8325: The three * Most Significant Bits (MSBs) of the DSCP are used as the * corresponding L2 markings. */ ret = dscp >> 5; /* Handle specific DSCP values for which the default mapping (as * described above) doesn't adhere to the intended usage of the DSCP * value. See section 4 in RFC8325. Specifically, for the following * Diffserv Service Classes no update is needed: * - Standard: DF * - Low Priority Data: CS1 * - Multimedia Streaming: AF31, AF32, AF33 * - Multimedia Conferencing: AF41, AF42, AF43 * - Network Control Traffic: CS7 * - Real-Time Interactive: CS4 */ switch (dscp >> 2) { case 10: case 12: case 14: /* High throughput data: AF11, AF12, AF13 */ ret = 0; break; case 16: /* Operations, Administration, and Maintenance and Provisioning: * CS2 */ ret = 0; break; case 18: case 20: case 22: /* Low latency data: AF21, AF22, AF23 */ ret = 3; break; case 24: /* Broadcasting video: CS3 */ ret = 4; break; case 40: /* Signaling: CS5 */ ret = 5; break; case 44: /* Voice Admit: VA */ ret = 6; break; case 46: /* Telephony traffic: EF */ ret = 6; break; case 48: /* Network Control Traffic: CS6 */ ret = 7; break; } out: return array_index_nospec(ret, IEEE80211_NUM_TIDS); } EXPORT_SYMBOL(cfg80211_classify8021d); const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) { const struct cfg80211_bss_ies *ies; ies = rcu_dereference(bss->ies); if (!ies) return NULL; return cfg80211_find_elem(id, ies->data, ies->len); } EXPORT_SYMBOL(ieee80211_bss_get_elem); void cfg80211_upload_connect_keys(struct wireless_dev *wdev) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct net_device *dev = wdev->netdev; int i; if (!wdev->connect_keys) return; for (i = 0; i < 4; i++) { if (!wdev->connect_keys->params[i].cipher) continue; if (rdev_add_key(rdev, dev, -1, i, false, NULL, &wdev->connect_keys->params[i])) { netdev_err(dev, "failed to set key %d\n", i); continue; } if (wdev->connect_keys->def == i && rdev_set_default_key(rdev, dev, -1, i, true, true)) { netdev_err(dev, "failed to set defkey %d\n", i); continue; } } kfree_sensitive(wdev->connect_keys); wdev->connect_keys = NULL; } void cfg80211_process_wdev_events(struct wireless_dev *wdev) { struct cfg80211_event *ev; unsigned long flags; spin_lock_irqsave(&wdev->event_lock, flags); while (!list_empty(&wdev->event_list)) { ev = list_first_entry(&wdev->event_list, struct cfg80211_event, list); list_del(&ev->list); spin_unlock_irqrestore(&wdev->event_lock, flags); switch (ev->type) { case EVENT_CONNECT_RESULT: __cfg80211_connect_result( wdev->netdev, &ev->cr, ev->cr.status == WLAN_STATUS_SUCCESS); break; case EVENT_ROAMED: __cfg80211_roamed(wdev, &ev->rm); break; case EVENT_DISCONNECTED: __cfg80211_disconnected(wdev->netdev, ev->dc.ie, ev->dc.ie_len, ev->dc.reason, !ev->dc.locally_generated); break; case EVENT_IBSS_JOINED: __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, ev->ij.channel); break; case EVENT_STOPPED: cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); break; case EVENT_PORT_AUTHORIZED: __cfg80211_port_authorized(wdev, ev->pa.peer_addr, ev->pa.td_bitmap, ev->pa.td_bitmap_len); break; } kfree(ev); spin_lock_irqsave(&wdev->event_lock, flags); } spin_unlock_irqrestore(&wdev->event_lock, flags); } void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) { struct wireless_dev *wdev; lockdep_assert_held(&rdev->wiphy.mtx); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) cfg80211_process_wdev_events(wdev); } int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params) { int err; enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; lockdep_assert_held(&rdev->wiphy.mtx); /* don't support changing VLANs, you just re-create them */ if (otype == NL80211_IFTYPE_AP_VLAN) return -EOPNOTSUPP; /* cannot change into P2P device or NAN */ if (ntype == NL80211_IFTYPE_P2P_DEVICE || ntype == NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!rdev->ops->change_virtual_intf || !(rdev->wiphy.interface_modes & (1 << ntype))) return -EOPNOTSUPP; if (ntype != otype) { /* if it's part of a bridge, reject changing type to station/ibss */ if (netif_is_bridge_port(dev) && (ntype == NL80211_IFTYPE_ADHOC || ntype == NL80211_IFTYPE_STATION || ntype == NL80211_IFTYPE_P2P_CLIENT)) return -EBUSY; dev->ieee80211_ptr->use_4addr = false; rdev_set_qos_map(rdev, dev, NULL); switch (otype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: cfg80211_stop_ap(rdev, dev, -1, true); break; case NL80211_IFTYPE_ADHOC: cfg80211_leave_ibss(rdev, dev, false); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: cfg80211_disconnect(rdev, dev, WLAN_REASON_DEAUTH_LEAVING, true); break; case NL80211_IFTYPE_MESH_POINT: /* mesh should be handled? */ break; case NL80211_IFTYPE_OCB: cfg80211_leave_ocb(rdev, dev); break; default: break; } cfg80211_process_rdev_events(rdev); cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); memset(&dev->ieee80211_ptr->u, 0, sizeof(dev->ieee80211_ptr->u)); memset(&dev->ieee80211_ptr->links, 0, sizeof(dev->ieee80211_ptr->links)); } err = rdev_change_virtual_intf(rdev, dev, ntype, params); WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); if (!err && params && params->use_4addr != -1) dev->ieee80211_ptr->use_4addr = params->use_4addr; if (!err) { dev->priv_flags &= ~IFF_DONT_BRIDGE; switch (ntype) { case NL80211_IFTYPE_STATION: if (dev->ieee80211_ptr->use_4addr) break; fallthrough; case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_ADHOC: dev->priv_flags |= IFF_DONT_BRIDGE; break; case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MESH_POINT: /* bridging OK */ break; case NL80211_IFTYPE_MONITOR: /* monitor can't bridge anyway */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: /* not happening */ break; case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_NAN: WARN_ON(1); break; } } if (!err && ntype != otype && netif_running(dev)) { cfg80211_update_iface_num(rdev, ntype, 1); cfg80211_update_iface_num(rdev, otype, -1); } return err; } static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) { int modulation, streams, bitrate; /* the formula below does only work for MCS values smaller than 32 */ if (WARN_ON_ONCE(rate->mcs >= 32)) return 0; modulation = rate->mcs & 7; streams = (rate->mcs >> 3) + 1; bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; if (modulation < 4) bitrate *= (modulation + 1); else if (modulation == 4) bitrate *= (modulation + 2); else bitrate *= (modulation + 3); bitrate *= streams; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; } static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) { static const u32 __mcs2bitrate[] = { /* control PHY */ [0] = 275, /* SC PHY */ [1] = 3850, [2] = 7700, [3] = 9625, [4] = 11550, [5] = 12512, /* 1251.25 mbps */ [6] = 15400, [7] = 19250, [8] = 23100, [9] = 25025, [10] = 30800, [11] = 38500, [12] = 46200, /* OFDM PHY */ [13] = 6930, [14] = 8662, /* 866.25 mbps */ [15] = 13860, [16] = 17325, [17] = 20790, [18] = 27720, [19] = 34650, [20] = 41580, [21] = 45045, [22] = 51975, [23] = 62370, [24] = 67568, /* 6756.75 mbps */ /* LP-SC PHY */ [25] = 6260, [26] = 8340, [27] = 11120, [28] = 12510, [29] = 16680, [30] = 22240, [31] = 25030, }; if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) return 0; return __mcs2bitrate[rate->mcs]; } static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) { static const u32 __mcs2bitrate[] = { [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ [7 - 6] = 50050, /* MCS 12.1 */ [8 - 6] = 53900, [9 - 6] = 57750, [10 - 6] = 63900, [11 - 6] = 75075, [12 - 6] = 80850, }; /* Extended SC MCS not defined for base MCS below 6 or above 12 */ if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) return 0; return __mcs2bitrate[rate->mcs - 6]; } static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) { static const u32 __mcs2bitrate[] = { /* control PHY */ [0] = 275, /* SC PHY */ [1] = 3850, [2] = 7700, [3] = 9625, [4] = 11550, [5] = 12512, /* 1251.25 mbps */ [6] = 13475, [7] = 15400, [8] = 19250, [9] = 23100, [10] = 25025, [11] = 26950, [12] = 30800, [13] = 38500, [14] = 46200, [15] = 50050, [16] = 53900, [17] = 57750, [18] = 69300, [19] = 75075, [20] = 80850, }; if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) return 0; return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; } static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) { static const u32 base[4][12] = { { 6500000, 13000000, 19500000, 26000000, 39000000, 52000000, 58500000, 65000000, 78000000, /* not in the spec, but some devices use this: */ 86700000, 97500000, 108300000, }, { 13500000, 27000000, 40500000, 54000000, 81000000, 108000000, 121500000, 135000000, 162000000, 180000000, 202500000, 225000000, }, { 29300000, 58500000, 87800000, 117000000, 175500000, 234000000, 263300000, 292500000, 351000000, 390000000, 438800000, 487500000, }, { 58500000, 117000000, 175500000, 234000000, 351000000, 468000000, 526500000, 585000000, 702000000, 780000000, 877500000, 975000000, }, }; u32 bitrate; int idx; if (rate->mcs > 11) goto warn; switch (rate->bw) { case RATE_INFO_BW_160: idx = 3; break; case RATE_INFO_BW_80: idx = 2; break; case RATE_INFO_BW_40: idx = 1; break; case RATE_INFO_BW_5: case RATE_INFO_BW_10: default: goto warn; case RATE_INFO_BW_20: idx = 0; } bitrate = base[idx][rate->mcs]; bitrate *= rate->nss; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; warn: WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", rate->bw, rate->mcs, rate->nss); return 0; } static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) { #define SCALE 6144 u32 mcs_divisors[14] = { 102399, /* 16.666666... */ 51201, /* 8.333333... */ 34134, /* 5.555555... */ 25599, /* 4.166666... */ 17067, /* 2.777777... */ 12801, /* 2.083333... */ 11377, /* 1.851725... */ 10239, /* 1.666666... */ 8532, /* 1.388888... */ 7680, /* 1.250000... */ 6828, /* 1.111111... */ 6144, /* 1.000000... */ 5690, /* 0.926106... */ 5120, /* 0.833333... */ }; u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; u32 rates_996[3] = { 480388888, 453700000, 408333333 }; u32 rates_484[3] = { 229411111, 216666666, 195000000 }; u32 rates_242[3] = { 114711111, 108333333, 97500000 }; u32 rates_106[3] = { 40000000, 37777777, 34000000 }; u32 rates_52[3] = { 18820000, 17777777, 16000000 }; u32 rates_26[3] = { 9411111, 8888888, 8000000 }; u64 tmp; u32 result; if (WARN_ON_ONCE(rate->mcs > 13)) return 0; if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) return 0; if (WARN_ON_ONCE(rate->he_ru_alloc > NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) return 0; if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) return 0; if (rate->bw == RATE_INFO_BW_160 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) result = rates_160M[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_80 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) result = rates_996[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_40 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) result = rates_484[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_20 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) result = rates_242[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) result = rates_106[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) result = rates_52[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) result = rates_26[rate->he_gi]; else { WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", rate->bw, rate->he_ru_alloc); return 0; } /* now scale to the appropriate MCS */ tmp = result; tmp *= SCALE; do_div(tmp, mcs_divisors[rate->mcs]); result = tmp; /* and take NSS, DCM into account */ result = (result * rate->nss) / 8; if (rate->he_dcm) result /= 2; return result / 10000; } static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) { #define SCALE 6144 static const u32 mcs_divisors[16] = { 102399, /* 16.666666... */ 51201, /* 8.333333... */ 34134, /* 5.555555... */ 25599, /* 4.166666... */ 17067, /* 2.777777... */ 12801, /* 2.083333... */ 11377, /* 1.851725... */ 10239, /* 1.666666... */ 8532, /* 1.388888... */ 7680, /* 1.250000... */ 6828, /* 1.111111... */ 6144, /* 1.000000... */ 5690, /* 0.926106... */ 5120, /* 0.833333... */ 409600, /* 66.666666... */ 204800, /* 33.333333... */ }; static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; u64 tmp; u32 result; if (WARN_ON_ONCE(rate->mcs > 15)) return 0; if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) return 0; if (WARN_ON_ONCE(rate->eht_ru_alloc > NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) return 0; if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) return 0; /* Bandwidth checks for MCS 14 */ if (rate->mcs == 14) { if ((rate->bw != RATE_INFO_BW_EHT_RU && rate->bw != RATE_INFO_BW_80 && rate->bw != RATE_INFO_BW_160 && rate->bw != RATE_INFO_BW_320) || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", rate->bw, rate->eht_ru_alloc); return 0; } } if (rate->bw == RATE_INFO_BW_320 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) result = 4 * rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) result = 3 * rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_160 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) result = 2 * rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_80 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) result = rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_40 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) result = rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_20 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) result = rates_242[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) result = rates_106[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) result = rates_52[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) result = rates_26[rate->eht_gi]; else { WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", rate->bw, rate->eht_ru_alloc); return 0; } /* now scale to the appropriate MCS */ tmp = result; tmp *= SCALE; do_div(tmp, mcs_divisors[rate->mcs]); /* and take NSS */ tmp *= rate->nss; do_div(tmp, 8); result = tmp; return result / 10000; } static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) { /* For 1, 2, 4, 8 and 16 MHz channels */ static const u32 base[5][11] = { { 300000, 600000, 900000, 1200000, 1800000, 2400000, 2700000, 3000000, 3600000, 4000000, /* MCS 10 supported in 1 MHz only */ 150000, }, { 650000, 1300000, 1950000, 2600000, 3900000, 5200000, 5850000, 6500000, 7800000, /* MCS 9 not valid */ }, { 1350000, 2700000, 4050000, 5400000, 8100000, 10800000, 12150000, 13500000, 16200000, 18000000, }, { 2925000, 5850000, 8775000, 11700000, 17550000, 23400000, 26325000, 29250000, 35100000, 39000000, }, { 8580000, 11700000, 17550000, 23400000, 35100000, 46800000, 52650000, 58500000, 70200000, 78000000, }, }; u32 bitrate; /* default is 1 MHz index */ int idx = 0; if (rate->mcs >= 11) goto warn; switch (rate->bw) { case RATE_INFO_BW_16: idx = 4; break; case RATE_INFO_BW_8: idx = 3; break; case RATE_INFO_BW_4: idx = 2; break; case RATE_INFO_BW_2: idx = 1; break; case RATE_INFO_BW_1: idx = 0; break; case RATE_INFO_BW_5: case RATE_INFO_BW_10: case RATE_INFO_BW_20: case RATE_INFO_BW_40: case RATE_INFO_BW_80: case RATE_INFO_BW_160: default: goto warn; } bitrate = base[idx][rate->mcs]; bitrate *= rate->nss; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; warn: WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", rate->bw, rate->mcs, rate->nss); return 0; } u32 cfg80211_calculate_bitrate(struct rate_info *rate) { if (rate->flags & RATE_INFO_FLAGS_MCS) return cfg80211_calculate_bitrate_ht(rate); if (rate->flags & RATE_INFO_FLAGS_DMG) return cfg80211_calculate_bitrate_dmg(rate); if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) return cfg80211_calculate_bitrate_extended_sc_dmg(rate); if (rate->flags & RATE_INFO_FLAGS_EDMG) return cfg80211_calculate_bitrate_edmg(rate); if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) return cfg80211_calculate_bitrate_vht(rate); if (rate->flags & RATE_INFO_FLAGS_HE_MCS) return cfg80211_calculate_bitrate_he(rate); if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) return cfg80211_calculate_bitrate_eht(rate); if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) return cfg80211_calculate_bitrate_s1g(rate); return rate->legacy; } EXPORT_SYMBOL(cfg80211_calculate_bitrate); int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, enum ieee80211_p2p_attr_id attr, u8 *buf, unsigned int bufsize) { u8 *out = buf; u16 attr_remaining = 0; bool desired_attr = false; u16 desired_len = 0; while (len > 0) { unsigned int iedatalen; unsigned int copy; const u8 *iedata; if (len < 2) return -EILSEQ; iedatalen = ies[1]; if (iedatalen + 2 > len) return -EILSEQ; if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) goto cont; if (iedatalen < 4) goto cont; iedata = ies + 2; /* check WFA OUI, P2P subtype */ if (iedata[0] != 0x50 || iedata[1] != 0x6f || iedata[2] != 0x9a || iedata[3] != 0x09) goto cont; iedatalen -= 4; iedata += 4; /* check attribute continuation into this IE */ copy = min_t(unsigned int, attr_remaining, iedatalen); if (copy && desired_attr) { desired_len += copy; if (out) { memcpy(out, iedata, min(bufsize, copy)); out += min(bufsize, copy); bufsize -= min(bufsize, copy); } if (copy == attr_remaining) return desired_len; } attr_remaining -= copy; if (attr_remaining) goto cont; iedatalen -= copy; iedata += copy; while (iedatalen > 0) { u16 attr_len; /* P2P attribute ID & size must fit */ if (iedatalen < 3) return -EILSEQ; desired_attr = iedata[0] == attr; attr_len = get_unaligned_le16(iedata + 1); iedatalen -= 3; iedata += 3; copy = min_t(unsigned int, attr_len, iedatalen); if (desired_attr) { desired_len += copy; if (out) { memcpy(out, iedata, min(bufsize, copy)); out += min(bufsize, copy); bufsize -= min(bufsize, copy); } if (copy == attr_len) return desired_len; } iedata += copy; iedatalen -= copy; attr_remaining = attr_len - copy; } cont: len -= ies[1] + 2; ies += ies[1] + 2; } if (attr_remaining && desired_attr) return -EILSEQ; return -ENOENT; } EXPORT_SYMBOL(cfg80211_get_p2p_attr); static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) { int i; /* Make sure array values are legal */ if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) return false; i = 0; while (i < n_ids) { if (ids[i] == WLAN_EID_EXTENSION) { if (id_ext && (ids[i + 1] == id)) return true; i += 2; continue; } if (ids[i] == id && !id_ext) return true; i++; } return false; } static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) { /* we assume a validly formed IEs buffer */ u8 len = ies[pos + 1]; pos += 2 + len; /* the IE itself must have 255 bytes for fragments to follow */ if (len < 255) return pos; while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { len = ies[pos + 1]; pos += 2 + len; } return pos; } size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, const u8 *ids, int n_ids, const u8 *after_ric, int n_after_ric, size_t offset) { size_t pos = offset; while (pos < ielen) { u8 ext = 0; if (ies[pos] == WLAN_EID_EXTENSION) ext = 2; if ((pos + ext) >= ielen) break; if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], ies[pos] == WLAN_EID_EXTENSION)) break; if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { pos = skip_ie(ies, ielen, pos); while (pos < ielen) { if (ies[pos] == WLAN_EID_EXTENSION) ext = 2; else ext = 0; if ((pos + ext) >= ielen) break; if (!ieee80211_id_in_list(after_ric, n_after_ric, ies[pos + ext], ext == 2)) pos = skip_ie(ies, ielen, pos); else break; } } else { pos = skip_ie(ies, ielen, pos); } } return pos; } EXPORT_SYMBOL(ieee80211_ie_split_ric); void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) { unsigned int elem_len; if (!len_pos) return; elem_len = skb->data + skb->len - len_pos - 1; while (elem_len > 255) { /* this one is 255 */ *len_pos = 255; /* remaining data gets smaller */ elem_len -= 255; /* make space for the fragment ID/len in SKB */ skb_put(skb, 2); /* shift back the remaining data to place fragment ID/len */ memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); /* place the fragment ID */ len_pos += 255 + 1; *len_pos = frag_id; /* and point to fragment length to update later */ len_pos++; } *len_pos = elem_len; } EXPORT_SYMBOL(ieee80211_fragment_element); bool ieee80211_operating_class_to_band(u8 operating_class, enum nl80211_band *band) { switch (operating_class) { case 112: case 115 ... 127: case 128 ... 130: *band = NL80211_BAND_5GHZ; return true; case 131 ... 135: case 137: *band = NL80211_BAND_6GHZ; return true; case 81: case 82: case 83: case 84: *band = NL80211_BAND_2GHZ; return true; case 180: *band = NL80211_BAND_60GHZ; return true; } return false; } EXPORT_SYMBOL(ieee80211_operating_class_to_band); bool ieee80211_operating_class_to_chandef(u8 operating_class, struct ieee80211_channel *chan, struct cfg80211_chan_def *chandef) { u32 control_freq, offset = 0; enum nl80211_band band; if (!ieee80211_operating_class_to_band(operating_class, &band) || !chan || band != chan->band) return false; control_freq = chan->center_freq; chandef->chan = chan; if (control_freq >= 5955) offset = control_freq - 5955; else if (control_freq >= 5745) offset = control_freq - 5745; else if (control_freq >= 5180) offset = control_freq - 5180; offset /= 20; switch (operating_class) { case 81: /* 2 GHz band; 20 MHz; channels 1..13 */ case 82: /* 2 GHz band; 20 MHz; channel 14 */ case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */ case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */ case 121: /* 5 GHz band; 20 MHz; channels 100..144 */ case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */ case 125: /* 5 GHz band; 20 MHz; channels 149..177 */ case 131: /* 6 GHz band; 20 MHz; channels 1..233*/ case 136: /* 6 GHz band; 20 MHz; channel 2 */ chandef->center_freq1 = control_freq; chandef->width = NL80211_CHAN_WIDTH_20; return true; case 83: /* 2 GHz band; 40 MHz; channels 1..9 */ case 116: /* 5 GHz band; 40 MHz; channels 36,44 */ case 119: /* 5 GHz band; 40 MHz; channels 52,60 */ case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */ case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */ chandef->center_freq1 = control_freq + 10; chandef->width = NL80211_CHAN_WIDTH_40; return true; case 84: /* 2 GHz band; 40 MHz; channels 5..13 */ case 117: /* 5 GHz band; 40 MHz; channels 40,48 */ case 120: /* 5 GHz band; 40 MHz; channels 56,64 */ case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */ case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */ chandef->center_freq1 = control_freq - 10; chandef->width = NL80211_CHAN_WIDTH_40; return true; case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/ chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20; chandef->width = NL80211_CHAN_WIDTH_40; return true; case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */ case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */ chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20; chandef->width = NL80211_CHAN_WIDTH_80; return true; case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */ case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */ chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20; chandef->width = NL80211_CHAN_WIDTH_160; return true; case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */ case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */ /* The center_freq2 of 80+80 MHz is unknown */ case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */ /* 320-1 or 320-2 channelization is unknown */ default: return false; } } EXPORT_SYMBOL(ieee80211_operating_class_to_chandef); bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, u8 *op_class) { u8 vht_opclass; u32 freq = chandef->center_freq1; if (freq >= 2412 && freq <= 2472) { if (chandef->width > NL80211_CHAN_WIDTH_40) return false; /* 2.407 GHz, channels 1..13 */ if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 83; /* HT40+ */ else *op_class = 84; /* HT40- */ } else { *op_class = 81; } return true; } if (freq == 2484) { /* channel 14 is only for IEEE 802.11b */ if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) return false; *op_class = 82; /* channel 14 */ return true; } switch (chandef->width) { case NL80211_CHAN_WIDTH_80: vht_opclass = 128; break; case NL80211_CHAN_WIDTH_160: vht_opclass = 129; break; case NL80211_CHAN_WIDTH_80P80: vht_opclass = 130; break; case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_5: return false; /* unsupported for now */ default: vht_opclass = 0; break; } /* 5 GHz, channels 36..48 */ if (freq >= 5180 && freq <= 5240) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 116; else *op_class = 117; } else { *op_class = 115; } return true; } /* 5 GHz, channels 52..64 */ if (freq >= 5260 && freq <= 5320) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 119; else *op_class = 120; } else { *op_class = 118; } return true; } /* 5 GHz, channels 100..144 */ if (freq >= 5500 && freq <= 5720) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 122; else *op_class = 123; } else { *op_class = 121; } return true; } /* 5 GHz, channels 149..169 */ if (freq >= 5745 && freq <= 5845) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 126; else *op_class = 127; } else if (freq <= 5805) { *op_class = 124; } else { *op_class = 125; } return true; } /* 56.16 GHz, channel 1..4 */ if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { if (chandef->width >= NL80211_CHAN_WIDTH_40) return false; *op_class = 180; return true; } /* not supported yet */ return false; } EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); static int cfg80211_wdev_bi(struct wireless_dev *wdev) { switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: WARN_ON(wdev->valid_links); return wdev->links[0].ap.beacon_interval; case NL80211_IFTYPE_MESH_POINT: return wdev->u.mesh.beacon_interval; case NL80211_IFTYPE_ADHOC: return wdev->u.ibss.beacon_interval; default: break; } return 0; } static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, u32 *beacon_int_gcd, bool *beacon_int_different, int radio_idx) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; *beacon_int_gcd = 0; *beacon_int_different = false; rdev = wiphy_to_rdev(wiphy); list_for_each_entry(wdev, &wiphy->wdev_list, list) { int wdev_bi; /* this feature isn't supported with MLO */ if (wdev->valid_links) continue; /* skip wdevs not active on the given wiphy radio */ if (radio_idx >= 0 && !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx))) continue; wdev_bi = cfg80211_wdev_bi(wdev); if (!wdev_bi) continue; if (!*beacon_int_gcd) { *beacon_int_gcd = wdev_bi; continue; } if (wdev_bi == *beacon_int_gcd) continue; *beacon_int_different = true; *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); } if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { if (*beacon_int_gcd) *beacon_int_different = true; *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); } } int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int) { /* * This is just a basic pre-condition check; if interface combinations * are possible the driver must already be checking those with a call * to cfg80211_check_combinations(), in which case we'll validate more * through the cfg80211_calculate_bi_data() call and code in * cfg80211_iter_combinations(). */ if (beacon_int < 10 || beacon_int > 10000) return -EINVAL; return 0; } int cfg80211_iter_combinations(struct wiphy *wiphy, struct iface_combination_params *params, void (*iter)(const struct ieee80211_iface_combination *c, void *data), void *data) { const struct wiphy_radio *radio = NULL; const struct ieee80211_iface_combination *c, *cs; const struct ieee80211_regdomain *regdom; enum nl80211_dfs_regions region = 0; int i, j, n, iftype; int num_interfaces = 0; u32 used_iftypes = 0; u32 beacon_int_gcd; bool beacon_int_different; if (params->radio_idx >= 0) radio = &wiphy->radio[params->radio_idx]; /* * This is a bit strange, since the iteration used to rely only on * the data given by the driver, but here it now relies on context, * in form of the currently operating interfaces. * This is OK for all current users, and saves us from having to * push the GCD calculations into all the drivers. * In the future, this should probably rely more on data that's in * cfg80211 already - the only thing not would appear to be any new * interfaces (while being brought up) and channel/radar data. */ cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, &beacon_int_gcd, &beacon_int_different, params->radio_idx); if (params->radar_detect) { rcu_read_lock(); regdom = rcu_dereference(cfg80211_regdomain); if (regdom) region = regdom->dfs_region; rcu_read_unlock(); } for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { num_interfaces += params->iftype_num[iftype]; if (params->iftype_num[iftype] > 0 && !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) used_iftypes |= BIT(iftype); } if (radio) { cs = radio->iface_combinations; n = radio->n_iface_combinations; } else { cs = wiphy->iface_combinations; n = wiphy->n_iface_combinations; } for (i = 0; i < n; i++) { struct ieee80211_iface_limit *limits; u32 all_iftypes = 0; c = &cs[i]; if (num_interfaces > c->max_interfaces) continue; if (params->num_different_channels > c->num_different_channels) continue; limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, GFP_KERNEL); if (!limits) return -ENOMEM; for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) continue; for (j = 0; j < c->n_limits; j++) { all_iftypes |= limits[j].types; if (!(limits[j].types & BIT(iftype))) continue; if (limits[j].max < params->iftype_num[iftype]) goto cont; limits[j].max -= params->iftype_num[iftype]; } } if (params->radar_detect != (c->radar_detect_widths & params->radar_detect)) goto cont; if (params->radar_detect && c->radar_detect_regions && !(c->radar_detect_regions & BIT(region))) goto cont; /* Finally check that all iftypes that we're currently * using are actually part of this combination. If they * aren't then we can't use this combination and have * to continue to the next. */ if ((all_iftypes & used_iftypes) != used_iftypes) goto cont; if (beacon_int_gcd) { if (c->beacon_int_min_gcd && beacon_int_gcd < c->beacon_int_min_gcd) goto cont; if (!c->beacon_int_min_gcd && beacon_int_different) goto cont; } /* This combination covered all interface types and * supported the requested numbers, so we're good. */ (*iter)(c, data); cont: kfree(limits); } return 0; } EXPORT_SYMBOL(cfg80211_iter_combinations); static void cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, void *data) { int *num = data; (*num)++; } int cfg80211_check_combinations(struct wiphy *wiphy, struct iface_combination_params *params) { int err, num = 0; err = cfg80211_iter_combinations(wiphy, params, cfg80211_iter_sum_ifcombs, &num); if (err) return err; if (num == 0) return -EBUSY; return 0; } EXPORT_SYMBOL(cfg80211_check_combinations); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask) { int i, j; if (!sband) return -EINVAL; if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) return -EINVAL; *mask = 0; for (i = 0; i < n_rates; i++) { int rate = (rates[i] & 0x7f) * 5; bool found = false; for (j = 0; j < sband->n_bitrates; j++) { if (sband->bitrates[j].bitrate == rate) { found = true; *mask |= BIT(j); break; } } if (!found) return -EINVAL; } /* * mask must have at least one bit set here since we * didn't accept a 0-length rates array nor allowed * entries in the array that didn't exist */ return 0; } unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) { enum nl80211_band band; unsigned int n_channels = 0; for (band = 0; band < NUM_NL80211_BANDS; band++) if (wiphy->bands[band]) n_channels += wiphy->bands[band]->n_channels; return n_channels; } EXPORT_SYMBOL(ieee80211_get_num_supported_channels); int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; int ret; wdev = dev->ieee80211_ptr; if (!wdev) return -EOPNOTSUPP; rdev = wiphy_to_rdev(wdev->wiphy); if (!rdev->ops->get_station) return -EOPNOTSUPP; memset(sinfo, 0, sizeof(*sinfo)); wiphy_lock(&rdev->wiphy); ret = rdev_get_station(rdev, dev, mac_addr, sinfo); wiphy_unlock(&rdev->wiphy); return ret; } EXPORT_SYMBOL(cfg80211_get_station); void cfg80211_free_nan_func(struct cfg80211_nan_func *f) { int i; if (!f) return; kfree(f->serv_spec_info); kfree(f->srf_bf); kfree(f->srf_macs); for (i = 0; i < f->num_rx_filters; i++) kfree(f->rx_filters[i].filter); for (i = 0; i < f->num_tx_filters; i++) kfree(f->tx_filters[i].filter); kfree(f->rx_filters); kfree(f->tx_filters); kfree(f); } EXPORT_SYMBOL(cfg80211_free_nan_func); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz) { u32 start_freq_khz, end_freq_khz; start_freq_khz = center_freq_khz - (bw_khz / 2); end_freq_khz = center_freq_khz + (bw_khz / 2); if (start_freq_khz >= freq_range->start_freq_khz && end_freq_khz <= freq_range->end_freq_khz) return true; return false; } int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) { sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, sizeof(*(sinfo->pertid)), gfp); if (!sinfo->pertid) return -ENOMEM; return 0; } EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ const unsigned char rfc1042_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; EXPORT_SYMBOL(rfc1042_header); /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ const unsigned char bridge_tunnel_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; EXPORT_SYMBOL(bridge_tunnel_header); /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ struct iapp_layer2_update { u8 da[ETH_ALEN]; /* broadcast */ u8 sa[ETH_ALEN]; /* STA addr */ __be16 len; /* 6 */ u8 dsap; /* 0 */ u8 ssap; /* 0 */ u8 control; u8 xid_info[3]; } __packed; void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) { struct iapp_layer2_update *msg; struct sk_buff *skb; /* Send Level 2 Update Frame to update forwarding tables in layer 2 * bridge devices */ skb = dev_alloc_skb(sizeof(*msg)); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ eth_broadcast_addr(msg->da); ether_addr_copy(msg->sa, addr); msg->len = htons(6); msg->dsap = 0; msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ msg->control = 0xaf; /* XID response lsb.1111F101. * F=0 (no poll command; unsolicited frame) */ msg->xid_info[0] = 0x81; /* XID format identifier */ msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } EXPORT_SYMBOL(cfg80211_send_layer2_update); int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, enum ieee80211_vht_chanwidth bw, int mcs, bool ext_nss_bw_capable, unsigned int max_vht_nss) { u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); int ext_nss_bw; int supp_width; int i, mcs_encoding; if (map == 0xffff) return 0; if (WARN_ON(mcs > 9 || max_vht_nss > 8)) return 0; if (mcs <= 7) mcs_encoding = 0; else if (mcs == 8) mcs_encoding = 1; else mcs_encoding = 2; if (!max_vht_nss) { /* find max_vht_nss for the given MCS */ for (i = 7; i >= 0; i--) { int supp = (map >> (2 * i)) & 3; if (supp == 3) continue; if (supp >= mcs_encoding) { max_vht_nss = i + 1; break; } } } if (!(cap->supp_mcs.tx_mcs_map & cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) return max_vht_nss; ext_nss_bw = le32_get_bits(cap->vht_cap_info, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); supp_width = le32_get_bits(cap->vht_cap_info, IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); /* if not capable, treat ext_nss_bw as 0 */ if (!ext_nss_bw_capable) ext_nss_bw = 0; /* This is invalid */ if (supp_width == 3) return 0; /* This is an invalid combination so pretend nothing is supported */ if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) return 0; /* * Cover all the special cases according to IEEE 802.11-2016 * Table 9-250. All other cases are either factor of 1 or not * valid/supported. */ switch (bw) { case IEEE80211_VHT_CHANWIDTH_USE_HT: case IEEE80211_VHT_CHANWIDTH_80MHZ: if ((supp_width == 1 || supp_width == 2) && ext_nss_bw == 3) return 2 * max_vht_nss; break; case IEEE80211_VHT_CHANWIDTH_160MHZ: if (supp_width == 0 && (ext_nss_bw == 1 || ext_nss_bw == 2)) return max_vht_nss / 2; if (supp_width == 0 && ext_nss_bw == 3) return (3 * max_vht_nss) / 4; if (supp_width == 1 && ext_nss_bw == 3) return 2 * max_vht_nss; break; case IEEE80211_VHT_CHANWIDTH_80P80MHZ: if (supp_width == 0 && ext_nss_bw == 1) return 0; /* not possible */ if (supp_width == 0 && ext_nss_bw == 2) return max_vht_nss / 2; if (supp_width == 0 && ext_nss_bw == 3) return (3 * max_vht_nss) / 4; if (supp_width == 1 && ext_nss_bw == 0) return 0; /* not possible */ if (supp_width == 1 && ext_nss_bw == 1) return max_vht_nss / 2; if (supp_width == 1 && ext_nss_bw == 2) return (3 * max_vht_nss) / 4; break; } /* not covered or invalid combination received */ return max_vht_nss; } EXPORT_SYMBOL(ieee80211_get_vht_max_nss); bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, bool is_4addr, u8 check_swif) { bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; switch (check_swif) { case 0: if (is_vlan && is_4addr) return wiphy->flags & WIPHY_FLAG_4ADDR_AP; return wiphy->interface_modes & BIT(iftype); case 1: if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) return wiphy->flags & WIPHY_FLAG_4ADDR_AP; return wiphy->software_iftypes & BIT(iftype); default: break; } return false; } EXPORT_SYMBOL(cfg80211_iftype_allowed); void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); lockdep_assert_wiphy(wdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); break; default: /* per-link not relevant */ break; } wdev->valid_links &= ~BIT(link_id); rdev_del_intf_link(rdev, wdev, link_id); eth_zero_addr(wdev->links[link_id].addr); } void cfg80211_remove_links(struct wireless_dev *wdev) { unsigned int link_id; /* * links are controlled by upper layers (userspace/cfg) * only for AP mode, so only remove them here for AP */ if (wdev->iftype != NL80211_IFTYPE_AP) return; if (wdev->valid_links) { for_each_valid_link(wdev, link_id) cfg80211_remove_link(wdev, link_id); } } int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { cfg80211_remove_links(wdev); return rdev_del_virtual_intf(rdev, wdev); } const struct wiphy_iftype_ext_capab * cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) { int i; for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { if (wiphy->iftype_ext_capab[i].iftype == type) return &wiphy->iftype_ext_capab[i]; } return NULL; } EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); static bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio, u32 freq, u32 width) { const struct wiphy_radio_freq_range *r; int i; for (i = 0; i < radio->n_freq_range; i++) { r = &radio->freq_range[i]; if (freq - width / 2 >= r->start_freq && freq + width / 2 <= r->end_freq) return true; } return false; } bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, const struct cfg80211_chan_def *chandef) { u32 freq, width; freq = ieee80211_chandef_to_khz(chandef); width = nl80211_chan_width_to_mhz(chandef->width); if (!ieee80211_radio_freq_range_valid(radio, freq, width)) return false; freq = MHZ_TO_KHZ(chandef->center_freq2); if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width)) return false; return true; } EXPORT_SYMBOL(cfg80211_radio_chandef_valid); |
10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VIRTIO_RING_H #define _LINUX_VIRTIO_RING_H #include <asm/barrier.h> #include <linux/irqreturn.h> #include <uapi/linux/virtio_ring.h> /* * Barriers in virtio are tricky. Non-SMP virtio guests can't assume * they're not on an SMP host system, so they need to assume real * barriers. Non-SMP virtio hosts could skip the barriers, but does * anyone care? * * For virtio_pci on SMP, we don't need to order with respect to MMIO * accesses through relaxed memory I/O windows, so virt_mb() et al are * sufficient. * * For using virtio to talk to real devices (eg. other heterogeneous * CPUs) we do need real barriers. In theory, we could be using both * kinds of virtio, so it's a runtime decision, and the branch is * actually quite cheap. */ static inline void virtio_mb(bool weak_barriers) { if (weak_barriers) virt_mb(); else mb(); } static inline void virtio_rmb(bool weak_barriers) { if (weak_barriers) virt_rmb(); else dma_rmb(); } static inline void virtio_wmb(bool weak_barriers) { if (weak_barriers) virt_wmb(); else dma_wmb(); } #define virtio_store_mb(weak_barriers, p, v) \ do { \ if (weak_barriers) { \ virt_store_mb(*p, v); \ } else { \ WRITE_ONCE(*p, v); \ mb(); \ } \ } while (0) \ struct virtio_device; struct virtqueue; struct device; /* * Creates a virtqueue and allocates the descriptor ring. If * may_reduce_num is set, then this may allocate a smaller ring than * expected. The caller should query virtqueue_get_vring_size to learn * the actual size of the ring. */ struct virtqueue *vring_create_virtqueue(unsigned int index, unsigned int num, unsigned int vring_align, struct virtio_device *vdev, bool weak_barriers, bool may_reduce_num, bool ctx, bool (*notify)(struct virtqueue *vq), void (*callback)(struct virtqueue *vq), const char *name); /* * Creates a virtqueue and allocates the descriptor ring with per * virtqueue DMA device. */ struct virtqueue *vring_create_virtqueue_dma(unsigned int index, unsigned int num, unsigned int vring_align, struct virtio_device *vdev, bool weak_barriers, bool may_reduce_num, bool ctx, bool (*notify)(struct virtqueue *vq), void (*callback)(struct virtqueue *vq), const char *name, struct device *dma_dev); /* * Creates a virtqueue with a standard layout but a caller-allocated * ring. */ struct virtqueue *vring_new_virtqueue(unsigned int index, unsigned int num, unsigned int vring_align, struct virtio_device *vdev, bool weak_barriers, bool ctx, void *pages, bool (*notify)(struct virtqueue *vq), void (*callback)(struct virtqueue *vq), const char *name); /* * Destroys a virtqueue. If created with vring_create_virtqueue, this * also frees the ring. */ void vring_del_virtqueue(struct virtqueue *vq); /* Filter out transport-specific feature bits. */ void vring_transport_features(struct virtio_device *vdev); irqreturn_t vring_interrupt(int irq, void *_vq); u32 vring_notification_data(struct virtqueue *_vq); #endif /* _LINUX_VIRTIO_RING_H */ |
54 54 582 537 54 500 503 5 3 3 3 3 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | // SPDX-License-Identifier: GPL-2.0 /* * linux/ipc/namespace.c * Copyright (C) 2006 Pavel Emelyanov <xemul@openvz.org> OpenVZ, SWsoft Inc. */ #include <linux/ipc.h> #include <linux/msg.h> #include <linux/ipc_namespace.h> #include <linux/rcupdate.h> #include <linux/nsproxy.h> #include <linux/slab.h> #include <linux/cred.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/user_namespace.h> #include <linux/proc_ns.h> #include <linux/sched/task.h> #include "util.h" /* * The work queue is used to avoid the cost of synchronize_rcu in kern_unmount. */ static void free_ipc(struct work_struct *unused); static DECLARE_WORK(free_ipc_work, free_ipc); static struct ucounts *inc_ipc_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_IPC_NAMESPACES); } static void dec_ipc_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_IPC_NAMESPACES); } static struct ipc_namespace *create_ipc_ns(struct user_namespace *user_ns, struct ipc_namespace *old_ns) { struct ipc_namespace *ns; struct ucounts *ucounts; int err; err = -ENOSPC; again: ucounts = inc_ipc_namespaces(user_ns); if (!ucounts) { /* * IPC namespaces are freed asynchronously, by free_ipc_work. * If frees were pending, flush_work will wait, and * return true. Fail the allocation if no frees are pending. */ if (flush_work(&free_ipc_work)) goto again; goto fail; } err = -ENOMEM; ns = kzalloc(sizeof(struct ipc_namespace), GFP_KERNEL_ACCOUNT); if (ns == NULL) goto fail_dec; err = ns_alloc_inum(&ns->ns); if (err) goto fail_free; ns->ns.ops = &ipcns_operations; refcount_set(&ns->ns.count, 1); ns->user_ns = get_user_ns(user_ns); ns->ucounts = ucounts; err = mq_init_ns(ns); if (err) goto fail_put; err = -ENOMEM; if (!setup_mq_sysctls(ns)) goto fail_put; if (!setup_ipc_sysctls(ns)) goto fail_mq; err = msg_init_ns(ns); if (err) goto fail_put; sem_init_ns(ns); shm_init_ns(ns); return ns; fail_mq: retire_mq_sysctls(ns); fail_put: put_user_ns(ns->user_ns); ns_free_inum(&ns->ns); fail_free: kfree(ns); fail_dec: dec_ipc_namespaces(ucounts); fail: return ERR_PTR(err); } struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (!(flags & CLONE_NEWIPC)) return get_ipc_ns(ns); return create_ipc_ns(user_ns, ns); } /* * free_ipcs - free all ipcs of one type * @ns: the namespace to remove the ipcs from * @ids: the table of ipcs to free * @free: the function called to free each individual ipc * * Called for each kind of ipc when an ipc_namespace exits. */ void free_ipcs(struct ipc_namespace *ns, struct ipc_ids *ids, void (*free)(struct ipc_namespace *, struct kern_ipc_perm *)) { struct kern_ipc_perm *perm; int next_id; int total, in_use; down_write(&ids->rwsem); in_use = ids->in_use; for (total = 0, next_id = 0; total < in_use; next_id++) { perm = idr_find(&ids->ipcs_idr, next_id); if (perm == NULL) continue; rcu_read_lock(); ipc_lock_object(perm); free(ns, perm); total++; } up_write(&ids->rwsem); } static void free_ipc_ns(struct ipc_namespace *ns) { /* * Caller needs to wait for an RCU grace period to have passed * after making the mount point inaccessible to new accesses. */ mntput(ns->mq_mnt); sem_exit_ns(ns); msg_exit_ns(ns); shm_exit_ns(ns); retire_mq_sysctls(ns); retire_ipc_sysctls(ns); dec_ipc_namespaces(ns->ucounts); put_user_ns(ns->user_ns); ns_free_inum(&ns->ns); kfree(ns); } static LLIST_HEAD(free_ipc_list); static void free_ipc(struct work_struct *unused) { struct llist_node *node = llist_del_all(&free_ipc_list); struct ipc_namespace *n, *t; llist_for_each_entry_safe(n, t, node, mnt_llist) mnt_make_shortterm(n->mq_mnt); /* Wait for any last users to have gone away. */ synchronize_rcu(); llist_for_each_entry_safe(n, t, node, mnt_llist) free_ipc_ns(n); } /* * put_ipc_ns - drop a reference to an ipc namespace. * @ns: the namespace to put * * If this is the last task in the namespace exiting, and * it is dropping the refcount to 0, then it can race with * a task in another ipc namespace but in a mounts namespace * which has this ipcns's mqueuefs mounted, doing some action * with one of the mqueuefs files. That can raise the refcount. * So dropping the refcount, and raising the refcount when * accessing it through the VFS, are protected with mq_lock. * * (Clearly, a task raising the refcount on its own ipc_ns * needn't take mq_lock since it can't race with the last task * in the ipcns exiting). */ void put_ipc_ns(struct ipc_namespace *ns) { if (refcount_dec_and_lock(&ns->ns.count, &mq_lock)) { mq_clear_sbinfo(ns); spin_unlock(&mq_lock); if (llist_add(&ns->mnt_llist, &free_ipc_list)) schedule_work(&free_ipc_work); } } static inline struct ipc_namespace *to_ipc_ns(struct ns_common *ns) { return container_of(ns, struct ipc_namespace, ns); } static struct ns_common *ipcns_get(struct task_struct *task) { struct ipc_namespace *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) ns = get_ipc_ns(nsproxy->ipc_ns); task_unlock(task); return ns ? &ns->ns : NULL; } static void ipcns_put(struct ns_common *ns) { return put_ipc_ns(to_ipc_ns(ns)); } static int ipcns_install(struct nsset *nsset, struct ns_common *new) { struct nsproxy *nsproxy = nsset->nsproxy; struct ipc_namespace *ns = to_ipc_ns(new); if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) return -EPERM; put_ipc_ns(nsproxy->ipc_ns); nsproxy->ipc_ns = get_ipc_ns(ns); return 0; } static struct user_namespace *ipcns_owner(struct ns_common *ns) { return to_ipc_ns(ns)->user_ns; } const struct proc_ns_operations ipcns_operations = { .name = "ipc", .type = CLONE_NEWIPC, .get = ipcns_get, .put = ipcns_put, .install = ipcns_install, .owner = ipcns_owner, }; |
13 13 4 9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | // SPDX-License-Identifier: GPL-2.0-or-later /* * ChaCha and XChaCha stream ciphers, including ChaCha20 (RFC7539) * * Copyright (C) 2015 Martin Willi * Copyright (C) 2018 Google LLC */ #include <asm/unaligned.h> #include <crypto/algapi.h> #include <crypto/internal/chacha.h> #include <crypto/internal/skcipher.h> #include <linux/module.h> static int chacha_stream_xor(struct skcipher_request *req, const struct chacha_ctx *ctx, const u8 *iv) { struct skcipher_walk walk; u32 state[16]; int err; err = skcipher_walk_virt(&walk, req, false); chacha_init_generic(state, ctx->key, iv); while (walk.nbytes > 0) { unsigned int nbytes = walk.nbytes; if (nbytes < walk.total) nbytes = round_down(nbytes, CHACHA_BLOCK_SIZE); chacha_crypt_generic(state, walk.dst.virt.addr, walk.src.virt.addr, nbytes, ctx->nrounds); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int crypto_chacha_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); return chacha_stream_xor(req, ctx, req->iv); } static int crypto_xchacha_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); struct chacha_ctx subctx; u32 state[16]; u8 real_iv[16]; /* Compute the subkey given the original key and first 128 nonce bits */ chacha_init_generic(state, ctx->key, req->iv); hchacha_block_generic(state, subctx.key, ctx->nrounds); subctx.nrounds = ctx->nrounds; /* Build the real IV */ memcpy(&real_iv[0], req->iv + 24, 8); /* stream position */ memcpy(&real_iv[8], req->iv + 16, 8); /* remaining 64 nonce bits */ /* Generate the stream and XOR it with the data */ return chacha_stream_xor(req, &subctx, real_iv); } static struct skcipher_alg algs[] = { { .base.cra_name = "chacha20", .base.cra_driver_name = "chacha20-generic", .base.cra_priority = 100, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct chacha_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = CHACHA_IV_SIZE, .chunksize = CHACHA_BLOCK_SIZE, .setkey = chacha20_setkey, .encrypt = crypto_chacha_crypt, .decrypt = crypto_chacha_crypt, }, { .base.cra_name = "xchacha20", .base.cra_driver_name = "xchacha20-generic", .base.cra_priority = 100, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct chacha_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = XCHACHA_IV_SIZE, .chunksize = CHACHA_BLOCK_SIZE, .setkey = chacha20_setkey, .encrypt = crypto_xchacha_crypt, .decrypt = crypto_xchacha_crypt, }, { .base.cra_name = "xchacha12", .base.cra_driver_name = "xchacha12-generic", .base.cra_priority = 100, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct chacha_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = XCHACHA_IV_SIZE, .chunksize = CHACHA_BLOCK_SIZE, .setkey = chacha12_setkey, .encrypt = crypto_xchacha_crypt, .decrypt = crypto_xchacha_crypt, } }; static int __init chacha_generic_mod_init(void) { return crypto_register_skciphers(algs, ARRAY_SIZE(algs)); } static void __exit chacha_generic_mod_fini(void) { crypto_unregister_skciphers(algs, ARRAY_SIZE(algs)); } subsys_initcall(chacha_generic_mod_init); module_exit(chacha_generic_mod_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Martin Willi <martin@strongswan.org>"); MODULE_DESCRIPTION("ChaCha and XChaCha stream ciphers (generic)"); MODULE_ALIAS_CRYPTO("chacha20"); MODULE_ALIAS_CRYPTO("chacha20-generic"); MODULE_ALIAS_CRYPTO("xchacha20"); MODULE_ALIAS_CRYPTO("xchacha20-generic"); MODULE_ALIAS_CRYPTO("xchacha12"); MODULE_ALIAS_CRYPTO("xchacha12-generic"); |
2033 14 2019 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2012 Nicira, Inc. */ #include <linux/netdevice.h> #include <net/genetlink.h> #include <net/netns/generic.h> #include "datapath.h" #include "vport-internal_dev.h" #include "vport-netdev.h" static void dp_detach_port_notify(struct vport *vport) { struct sk_buff *notify; struct datapath *dp; dp = vport->dp; notify = ovs_vport_cmd_build_info(vport, ovs_dp_get_net(dp), 0, 0, OVS_VPORT_CMD_DEL); ovs_dp_detach_port(vport); if (IS_ERR(notify)) { genl_set_err(&dp_vport_genl_family, ovs_dp_get_net(dp), 0, 0, PTR_ERR(notify)); return; } genlmsg_multicast_netns(&dp_vport_genl_family, ovs_dp_get_net(dp), notify, 0, 0, GFP_KERNEL); } void ovs_dp_notify_wq(struct work_struct *work) { struct ovs_net *ovs_net = container_of(work, struct ovs_net, dp_notify_work); struct datapath *dp; ovs_lock(); list_for_each_entry(dp, &ovs_net->dps, list_node) { int i; for (i = 0; i < DP_VPORT_HASH_BUCKETS; i++) { struct vport *vport; struct hlist_node *n; hlist_for_each_entry_safe(vport, n, &dp->ports[i], dp_hash_node) { if (vport->ops->type == OVS_VPORT_TYPE_INTERNAL) continue; if (!(netif_is_ovs_port(vport->dev))) dp_detach_port_notify(vport); } } } ovs_unlock(); } static int dp_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct ovs_net *ovs_net; struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct vport *vport = NULL; if (!ovs_is_internal_dev(dev)) vport = ovs_netdev_get_vport(dev); if (!vport) return NOTIFY_DONE; if (event == NETDEV_UNREGISTER) { /* upper_dev_unlink and decrement promisc immediately */ ovs_netdev_detach_dev(vport); /* schedule vport destroy, dev_put and genl notification */ ovs_net = net_generic(dev_net(dev), ovs_net_id); queue_work(system_wq, &ovs_net->dp_notify_work); } return NOTIFY_DONE; } struct notifier_block ovs_dp_device_notifier = { .notifier_call = dp_device_event }; |
592 591 589 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | // SPDX-License-Identifier: GPL-2.0 /* * Implement mseal() syscall. * * Copyright (c) 2023,2024 Google, Inc. * * Author: Jeff Xu <jeffxu@chromium.org> */ #include <linux/mempolicy.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/mm_inline.h> #include <linux/mmu_context.h> #include <linux/syscalls.h> #include <linux/sched.h> #include "internal.h" static inline bool vma_is_sealed(struct vm_area_struct *vma) { return (vma->vm_flags & VM_SEALED); } static inline void set_vma_sealed(struct vm_area_struct *vma) { vm_flags_set(vma, VM_SEALED); } /* * check if a vma is sealed for modification. * return true, if modification is allowed. */ static bool can_modify_vma(struct vm_area_struct *vma) { if (unlikely(vma_is_sealed(vma))) return false; return true; } static bool is_madv_discard(int behavior) { return behavior & (MADV_FREE | MADV_DONTNEED | MADV_DONTNEED_LOCKED | MADV_REMOVE | MADV_DONTFORK | MADV_WIPEONFORK); } static bool is_ro_anon(struct vm_area_struct *vma) { /* check anonymous mapping. */ if (vma->vm_file || vma->vm_flags & VM_SHARED) return false; /* * check for non-writable: * PROT=RO or PKRU is not writeable. */ if (!(vma->vm_flags & VM_WRITE) || !arch_vma_access_permitted(vma, true, false, false)) return true; return false; } /* * Check if the vmas of a memory range are allowed to be modified. * the memory ranger can have a gap (unallocated memory). * return true, if it is allowed. */ bool can_modify_mm(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, start); /* going through each vma to check. */ for_each_vma_range(vmi, vma, end) { if (unlikely(!can_modify_vma(vma))) return false; } /* Allow by default. */ return true; } /* * Check if the vmas of a memory range are allowed to be modified by madvise. * the memory ranger can have a gap (unallocated memory). * return true, if it is allowed. */ bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start, unsigned long end, int behavior) { struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, start); if (!is_madv_discard(behavior)) return true; /* going through each vma to check. */ for_each_vma_range(vmi, vma, end) if (unlikely(is_ro_anon(vma) && !can_modify_vma(vma))) return false; /* Allow by default. */ return true; } static int mseal_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end, vm_flags_t newflags) { int ret = 0; vm_flags_t oldflags = vma->vm_flags; if (newflags == oldflags) goto out; vma = vma_modify_flags(vmi, *prev, vma, start, end, newflags); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto out; } set_vma_sealed(vma); out: *prev = vma; return ret; } /* * Check for do_mseal: * 1> start is part of a valid vma. * 2> end is part of a valid vma. * 3> No gap (unallocated address) between start and end. * 4> map is sealable. */ static int check_mm_seal(unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long nstart = start; VMA_ITERATOR(vmi, current->mm, start); /* going through each vma to check. */ for_each_vma_range(vmi, vma, end) { if (vma->vm_start > nstart) /* unallocated memory found. */ return -ENOMEM; if (vma->vm_end >= end) return 0; nstart = vma->vm_end; } return -ENOMEM; } /* * Apply sealing. */ static int apply_mm_seal(unsigned long start, unsigned long end) { unsigned long nstart; struct vm_area_struct *vma, *prev; VMA_ITERATOR(vmi, current->mm, start); vma = vma_iter_load(&vmi); /* * Note: check_mm_seal should already checked ENOMEM case. * so vma should not be null, same for the other ENOMEM cases. */ prev = vma_prev(&vmi); if (start > vma->vm_start) prev = vma; nstart = start; for_each_vma_range(vmi, vma, end) { int error; unsigned long tmp; vm_flags_t newflags; newflags = vma->vm_flags | VM_SEALED; tmp = vma->vm_end; if (tmp > end) tmp = end; error = mseal_fixup(&vmi, vma, &prev, nstart, tmp, newflags); if (error) return error; nstart = vma_iter_end(&vmi); } return 0; } /* * mseal(2) seals the VM's meta data from * selected syscalls. * * addr/len: VM address range. * * The address range by addr/len must meet: * start (addr) must be in a valid VMA. * end (addr + len) must be in a valid VMA. * no gap (unallocated memory) between start and end. * start (addr) must be page aligned. * * len: len will be page aligned implicitly. * * Below VMA operations are blocked after sealing. * 1> Unmapping, moving to another location, and shrinking * the size, via munmap() and mremap(), can leave an empty * space, therefore can be replaced with a VMA with a new * set of attributes. * 2> Moving or expanding a different vma into the current location, * via mremap(). * 3> Modifying a VMA via mmap(MAP_FIXED). * 4> Size expansion, via mremap(), does not appear to pose any * specific risks to sealed VMAs. It is included anyway because * the use case is unclear. In any case, users can rely on * merging to expand a sealed VMA. * 5> mprotect and pkey_mprotect. * 6> Some destructive madvice() behavior (e.g. MADV_DONTNEED) * for anonymous memory, when users don't have write permission to the * memory. Those behaviors can alter region contents by discarding pages, * effectively a memset(0) for anonymous memory. * * flags: reserved. * * return values: * zero: success. * -EINVAL: * invalid input flags. * start address is not page aligned. * Address arange (start + len) overflow. * -ENOMEM: * addr is not a valid address (not allocated). * end (start + len) is not a valid address. * a gap (unallocated memory) between start and end. * -EPERM: * - In 32 bit architecture, sealing is not supported. * Note: * user can call mseal(2) multiple times, adding a seal on an * already sealed memory is a no-action (no error). * * unseal() is not supported. */ static int do_mseal(unsigned long start, size_t len_in, unsigned long flags) { size_t len; int ret = 0; unsigned long end; struct mm_struct *mm = current->mm; ret = can_do_mseal(flags); if (ret) return ret; start = untagged_addr(start); if (!PAGE_ALIGNED(start)) return -EINVAL; len = PAGE_ALIGN(len_in); /* Check to see whether len was rounded up from small -ve to zero. */ if (len_in && !len) return -EINVAL; end = start + len; if (end < start) return -EINVAL; if (end == start) return 0; if (mmap_write_lock_killable(mm)) return -EINTR; /* * First pass, this helps to avoid * partial sealing in case of error in input address range, * e.g. ENOMEM error. */ ret = check_mm_seal(start, end); if (ret) goto out; /* * Second pass, this should success, unless there are errors * from vma_modify_flags, e.g. merge/split error, or process * reaching the max supported VMAs, however, those cases shall * be rare. */ ret = apply_mm_seal(start, end); out: mmap_write_unlock(current->mm); return ret; } SYSCALL_DEFINE3(mseal, unsigned long, start, size_t, len, unsigned long, flags) { return do_mseal(start, len, flags); } |
14 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Contiguous Memory Allocator * * Copyright (c) 2010-2011 by Samsung Electronics. * Copyright IBM Corporation, 2013 * Copyright LG Electronics Inc., 2014 * Written by: * Marek Szyprowski <m.szyprowski@samsung.com> * Michal Nazarewicz <mina86@mina86.com> * Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> * Joonsoo Kim <iamjoonsoo.kim@lge.com> */ #define pr_fmt(fmt) "cma: " fmt #define CREATE_TRACE_POINTS #include <linux/memblock.h> #include <linux/err.h> #include <linux/mm.h> #include <linux/sizes.h> #include <linux/slab.h> #include <linux/log2.h> #include <linux/cma.h> #include <linux/highmem.h> #include <linux/io.h> #include <linux/kmemleak.h> #include <trace/events/cma.h> #include "internal.h" #include "cma.h" struct cma cma_areas[MAX_CMA_AREAS]; unsigned cma_area_count; static DEFINE_MUTEX(cma_mutex); phys_addr_t cma_get_base(const struct cma *cma) { return PFN_PHYS(cma->base_pfn); } unsigned long cma_get_size(const struct cma *cma) { return cma->count << PAGE_SHIFT; } const char *cma_get_name(const struct cma *cma) { return cma->name; } static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, unsigned int align_order) { if (align_order <= cma->order_per_bit) return 0; return (1UL << (align_order - cma->order_per_bit)) - 1; } /* * Find the offset of the base PFN from the specified align_order. * The value returned is represented in order_per_bits. */ static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, unsigned int align_order) { return (cma->base_pfn & ((1UL << align_order) - 1)) >> cma->order_per_bit; } static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, unsigned long pages) { return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; } static void cma_clear_bitmap(struct cma *cma, unsigned long pfn, unsigned long count) { unsigned long bitmap_no, bitmap_count; unsigned long flags; bitmap_no = (pfn - cma->base_pfn) >> cma->order_per_bit; bitmap_count = cma_bitmap_pages_to_bits(cma, count); spin_lock_irqsave(&cma->lock, flags); bitmap_clear(cma->bitmap, bitmap_no, bitmap_count); spin_unlock_irqrestore(&cma->lock, flags); } static void __init cma_activate_area(struct cma *cma) { unsigned long base_pfn = cma->base_pfn, pfn; struct zone *zone; cma->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma), GFP_KERNEL); if (!cma->bitmap) goto out_error; /* * alloc_contig_range() requires the pfn range specified to be in the * same zone. Simplify by forcing the entire CMA resv range to be in the * same zone. */ WARN_ON_ONCE(!pfn_valid(base_pfn)); zone = page_zone(pfn_to_page(base_pfn)); for (pfn = base_pfn + 1; pfn < base_pfn + cma->count; pfn++) { WARN_ON_ONCE(!pfn_valid(pfn)); if (page_zone(pfn_to_page(pfn)) != zone) goto not_in_zone; } for (pfn = base_pfn; pfn < base_pfn + cma->count; pfn += pageblock_nr_pages) init_cma_reserved_pageblock(pfn_to_page(pfn)); spin_lock_init(&cma->lock); #ifdef CONFIG_CMA_DEBUGFS INIT_HLIST_HEAD(&cma->mem_head); spin_lock_init(&cma->mem_head_lock); #endif return; not_in_zone: bitmap_free(cma->bitmap); out_error: /* Expose all pages to the buddy, they are useless for CMA. */ if (!cma->reserve_pages_on_error) { for (pfn = base_pfn; pfn < base_pfn + cma->count; pfn++) free_reserved_page(pfn_to_page(pfn)); } totalcma_pages -= cma->count; cma->count = 0; pr_err("CMA area %s could not be activated\n", cma->name); return; } static int __init cma_init_reserved_areas(void) { int i; for (i = 0; i < cma_area_count; i++) cma_activate_area(&cma_areas[i]); return 0; } core_initcall(cma_init_reserved_areas); void __init cma_reserve_pages_on_error(struct cma *cma) { cma->reserve_pages_on_error = true; } /** * cma_init_reserved_mem() - create custom contiguous area from reserved memory * @base: Base address of the reserved area * @size: Size of the reserved area (in bytes), * @order_per_bit: Order of pages represented by one bit on bitmap. * @name: The name of the area. If this parameter is NULL, the name of * the area will be set to "cmaN", where N is a running counter of * used areas. * @res_cma: Pointer to store the created cma region. * * This function creates custom contiguous area from already reserved memory. */ int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, unsigned int order_per_bit, const char *name, struct cma **res_cma) { struct cma *cma; /* Sanity checks */ if (cma_area_count == ARRAY_SIZE(cma_areas)) { pr_err("Not enough slots for CMA reserved regions!\n"); return -ENOSPC; } if (!size || !memblock_is_region_reserved(base, size)) return -EINVAL; /* ensure minimal alignment required by mm core */ if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) return -EINVAL; /* * Each reserved area must be initialised later, when more kernel * subsystems (like slab allocator) are available. */ cma = &cma_areas[cma_area_count]; if (name) snprintf(cma->name, CMA_MAX_NAME, name); else snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); cma->base_pfn = PFN_DOWN(base); cma->count = size >> PAGE_SHIFT; cma->order_per_bit = order_per_bit; *res_cma = cma; cma_area_count++; totalcma_pages += (size / PAGE_SIZE); return 0; } /** * cma_declare_contiguous_nid() - reserve custom contiguous area * @base: Base address of the reserved area optional, use 0 for any * @size: Size of the reserved area (in bytes), * @limit: End address of the reserved memory (optional, 0 for any). * @alignment: Alignment for the CMA area, should be power of 2 or zero * @order_per_bit: Order of pages represented by one bit on bitmap. * @fixed: hint about where to place the reserved area * @name: The name of the area. See function cma_init_reserved_mem() * @res_cma: Pointer to store the created cma region. * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * This function reserves memory from early allocator. It should be * called by arch specific code once the early allocator (memblock or bootmem) * has been activated and all other subsystems have already allocated/reserved * memory. This function allows to create custom reserved areas. * * If @fixed is true, reserve contiguous area at exactly @base. If false, * reserve in range from @base to @limit. */ int __init cma_declare_contiguous_nid(phys_addr_t base, phys_addr_t size, phys_addr_t limit, phys_addr_t alignment, unsigned int order_per_bit, bool fixed, const char *name, struct cma **res_cma, int nid) { phys_addr_t memblock_end = memblock_end_of_DRAM(); phys_addr_t highmem_start; int ret; /* * We can't use __pa(high_memory) directly, since high_memory * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly) * complain. Find the boundary by adding one to the last valid * address. */ highmem_start = __pa(high_memory - 1) + 1; pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", __func__, &size, &base, &limit, &alignment); if (cma_area_count == ARRAY_SIZE(cma_areas)) { pr_err("Not enough slots for CMA reserved regions!\n"); return -ENOSPC; } if (!size) return -EINVAL; if (alignment && !is_power_of_2(alignment)) return -EINVAL; if (!IS_ENABLED(CONFIG_NUMA)) nid = NUMA_NO_NODE; /* Sanitise input arguments. */ alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); if (fixed && base & (alignment - 1)) { ret = -EINVAL; pr_err("Region at %pa must be aligned to %pa bytes\n", &base, &alignment); goto err; } base = ALIGN(base, alignment); size = ALIGN(size, alignment); limit &= ~(alignment - 1); if (!base) fixed = false; /* size should be aligned with order_per_bit */ if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) return -EINVAL; /* * If allocating at a fixed base the request region must not cross the * low/high memory boundary. */ if (fixed && base < highmem_start && base + size > highmem_start) { ret = -EINVAL; pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", &base, &highmem_start); goto err; } /* * If the limit is unspecified or above the memblock end, its effective * value will be the memblock end. Set it explicitly to simplify further * checks. */ if (limit == 0 || limit > memblock_end) limit = memblock_end; if (base + size > limit) { ret = -EINVAL; pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", &size, &base, &limit); goto err; } /* Reserve memory */ if (fixed) { if (memblock_is_region_reserved(base, size) || memblock_reserve(base, size) < 0) { ret = -EBUSY; goto err; } } else { phys_addr_t addr = 0; /* * If there is enough memory, try a bottom-up allocation first. * It will place the new cma area close to the start of the node * and guarantee that the compaction is moving pages out of the * cma area and not into it. * Avoid using first 4GB to not interfere with constrained zones * like DMA/DMA32. */ #ifdef CONFIG_PHYS_ADDR_T_64BIT if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) { memblock_set_bottom_up(true); addr = memblock_alloc_range_nid(size, alignment, SZ_4G, limit, nid, true); memblock_set_bottom_up(false); } #endif /* * All pages in the reserved area must come from the same zone. * If the requested region crosses the low/high memory boundary, * try allocating from high memory first and fall back to low * memory in case of failure. */ if (!addr && base < highmem_start && limit > highmem_start) { addr = memblock_alloc_range_nid(size, alignment, highmem_start, limit, nid, true); limit = highmem_start; } if (!addr) { addr = memblock_alloc_range_nid(size, alignment, base, limit, nid, true); if (!addr) { ret = -ENOMEM; goto err; } } /* * kmemleak scans/reads tracked objects for pointers to other * objects but this address isn't mapped and accessible */ kmemleak_ignore_phys(addr); base = addr; } ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); if (ret) goto free_mem; pr_info("Reserved %ld MiB at %pa on node %d\n", (unsigned long)size / SZ_1M, &base, nid); return 0; free_mem: memblock_phys_free(base, size); err: pr_err("Failed to reserve %ld MiB on node %d\n", (unsigned long)size / SZ_1M, nid); return ret; } static void cma_debug_show_areas(struct cma *cma) { unsigned long next_zero_bit, next_set_bit, nr_zero; unsigned long start = 0; unsigned long nr_part, nr_total = 0; unsigned long nbits = cma_bitmap_maxno(cma); spin_lock_irq(&cma->lock); pr_info("number of available pages: "); for (;;) { next_zero_bit = find_next_zero_bit(cma->bitmap, nbits, start); if (next_zero_bit >= nbits) break; next_set_bit = find_next_bit(cma->bitmap, nbits, next_zero_bit); nr_zero = next_set_bit - next_zero_bit; nr_part = nr_zero << cma->order_per_bit; pr_cont("%s%lu@%lu", nr_total ? "+" : "", nr_part, next_zero_bit); nr_total += nr_part; start = next_zero_bit + nr_zero; } pr_cont("=> %lu free of %lu total pages\n", nr_total, cma->count); spin_unlock_irq(&cma->lock); } /** * cma_alloc() - allocate pages from contiguous area * @cma: Contiguous memory region for which the allocation is performed. * @count: Requested number of pages. * @align: Requested alignment of pages (in PAGE_SIZE order). * @no_warn: Avoid printing message about failed allocation * * This function allocates part of contiguous memory on specific * contiguous memory area. */ struct page *cma_alloc(struct cma *cma, unsigned long count, unsigned int align, bool no_warn) { unsigned long mask, offset; unsigned long pfn = -1; unsigned long start = 0; unsigned long bitmap_maxno, bitmap_no, bitmap_count; unsigned long i; struct page *page = NULL; int ret = -ENOMEM; const char *name = cma ? cma->name : NULL; trace_cma_alloc_start(name, count, align); if (!cma || !cma->count || !cma->bitmap) return page; pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, (void *)cma, cma->name, count, align); if (!count) return page; mask = cma_bitmap_aligned_mask(cma, align); offset = cma_bitmap_aligned_offset(cma, align); bitmap_maxno = cma_bitmap_maxno(cma); bitmap_count = cma_bitmap_pages_to_bits(cma, count); if (bitmap_count > bitmap_maxno) return page; for (;;) { spin_lock_irq(&cma->lock); bitmap_no = bitmap_find_next_zero_area_off(cma->bitmap, bitmap_maxno, start, bitmap_count, mask, offset); if (bitmap_no >= bitmap_maxno) { spin_unlock_irq(&cma->lock); break; } bitmap_set(cma->bitmap, bitmap_no, bitmap_count); /* * It's safe to drop the lock here. We've marked this region for * our exclusive use. If the migration fails we will take the * lock again and unmark it. */ spin_unlock_irq(&cma->lock); pfn = cma->base_pfn + (bitmap_no << cma->order_per_bit); mutex_lock(&cma_mutex); ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0)); mutex_unlock(&cma_mutex); if (ret == 0) { page = pfn_to_page(pfn); break; } cma_clear_bitmap(cma, pfn, count); if (ret != -EBUSY) break; pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", __func__, pfn, pfn_to_page(pfn)); trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn), count, align); /* try again with a bit different memory target */ start = bitmap_no + mask + 1; } /* * CMA can allocate multiple page blocks, which results in different * blocks being marked with different tags. Reset the tags to ignore * those page blocks. */ if (page) { for (i = 0; i < count; i++) page_kasan_tag_reset(nth_page(page, i)); } if (ret && !no_warn) { pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", __func__, cma->name, count, ret); cma_debug_show_areas(cma); } pr_debug("%s(): returned %p\n", __func__, page); trace_cma_alloc_finish(name, pfn, page, count, align, ret); if (page) { count_vm_event(CMA_ALLOC_SUCCESS); cma_sysfs_account_success_pages(cma, count); } else { count_vm_event(CMA_ALLOC_FAIL); cma_sysfs_account_fail_pages(cma, count); } return page; } bool cma_pages_valid(struct cma *cma, const struct page *pages, unsigned long count) { unsigned long pfn; if (!cma || !pages) return false; pfn = page_to_pfn(pages); if (pfn < cma->base_pfn || pfn >= cma->base_pfn + cma->count) { pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); return false; } return true; } /** * cma_release() - release allocated pages * @cma: Contiguous memory region for which the allocation is performed. * @pages: Allocated pages. * @count: Number of allocated pages. * * This function releases memory allocated by cma_alloc(). * It returns false when provided pages do not belong to contiguous area and * true otherwise. */ bool cma_release(struct cma *cma, const struct page *pages, unsigned long count) { unsigned long pfn; if (!cma_pages_valid(cma, pages, count)) return false; pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); pfn = page_to_pfn(pages); VM_BUG_ON(pfn + count > cma->base_pfn + cma->count); free_contig_range(pfn, count); cma_clear_bitmap(cma, pfn, count); cma_sysfs_account_release_pages(cma, count); trace_cma_release(cma->name, pfn, pages, count); return true; } int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) { int i; for (i = 0; i < cma_area_count; i++) { int ret = it(&cma_areas[i], data); if (ret) return ret; } return 0; } |
140 103 4 3 79 60 8 40 143 108 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DCCP_H #define _LINUX_DCCP_H #include <linux/in.h> #include <linux/interrupt.h> #include <linux/ktime.h> #include <linux/list.h> #include <linux/uio.h> #include <linux/workqueue.h> #include <net/inet_connection_sock.h> #include <net/inet_sock.h> #include <net/inet_timewait_sock.h> #include <net/tcp_states.h> #include <uapi/linux/dccp.h> enum dccp_state { DCCP_OPEN = TCP_ESTABLISHED, DCCP_REQUESTING = TCP_SYN_SENT, DCCP_LISTEN = TCP_LISTEN, DCCP_RESPOND = TCP_SYN_RECV, /* * States involved in closing a DCCP connection: * 1) ACTIVE_CLOSEREQ is entered by a server sending a CloseReq. * * 2) CLOSING can have three different meanings (RFC 4340, 8.3): * a. Client has performed active-close, has sent a Close to the server * from state OPEN or PARTOPEN, and is waiting for the final Reset * (in this case, SOCK_DONE == 1). * b. Client is asked to perform passive-close, by receiving a CloseReq * in (PART)OPEN state. It sends a Close and waits for final Reset * (in this case, SOCK_DONE == 0). * c. Server performs an active-close as in (a), keeps TIMEWAIT state. * * 3) The following intermediate states are employed to give passively * closing nodes a chance to process their unread data: * - PASSIVE_CLOSE (from OPEN => CLOSED) and * - PASSIVE_CLOSEREQ (from (PART)OPEN to CLOSING; case (b) above). */ DCCP_ACTIVE_CLOSEREQ = TCP_FIN_WAIT1, DCCP_PASSIVE_CLOSE = TCP_CLOSE_WAIT, /* any node receiving a Close */ DCCP_CLOSING = TCP_CLOSING, DCCP_TIME_WAIT = TCP_TIME_WAIT, DCCP_CLOSED = TCP_CLOSE, DCCP_NEW_SYN_RECV = TCP_NEW_SYN_RECV, DCCP_PARTOPEN = TCP_MAX_STATES, DCCP_PASSIVE_CLOSEREQ, /* clients receiving CloseReq */ DCCP_MAX_STATES }; enum { DCCPF_OPEN = TCPF_ESTABLISHED, DCCPF_REQUESTING = TCPF_SYN_SENT, DCCPF_LISTEN = TCPF_LISTEN, DCCPF_RESPOND = TCPF_SYN_RECV, DCCPF_ACTIVE_CLOSEREQ = TCPF_FIN_WAIT1, DCCPF_CLOSING = TCPF_CLOSING, DCCPF_TIME_WAIT = TCPF_TIME_WAIT, DCCPF_CLOSED = TCPF_CLOSE, DCCPF_NEW_SYN_RECV = TCPF_NEW_SYN_RECV, DCCPF_PARTOPEN = (1 << DCCP_PARTOPEN), }; static inline struct dccp_hdr *dccp_hdr(const struct sk_buff *skb) { return (struct dccp_hdr *)skb_transport_header(skb); } static inline struct dccp_hdr *dccp_zeroed_hdr(struct sk_buff *skb, int headlen) { skb_push(skb, headlen); skb_reset_transport_header(skb); return memset(skb_transport_header(skb), 0, headlen); } static inline struct dccp_hdr_ext *dccp_hdrx(const struct dccp_hdr *dh) { return (struct dccp_hdr_ext *)((unsigned char *)dh + sizeof(*dh)); } static inline unsigned int __dccp_basic_hdr_len(const struct dccp_hdr *dh) { return sizeof(*dh) + (dh->dccph_x ? sizeof(struct dccp_hdr_ext) : 0); } static inline unsigned int dccp_basic_hdr_len(const struct sk_buff *skb) { const struct dccp_hdr *dh = dccp_hdr(skb); return __dccp_basic_hdr_len(dh); } static inline __u64 dccp_hdr_seq(const struct dccp_hdr *dh) { __u64 seq_nr = ntohs(dh->dccph_seq); if (dh->dccph_x != 0) seq_nr = (seq_nr << 32) + ntohl(dccp_hdrx(dh)->dccph_seq_low); else seq_nr += (u32)dh->dccph_seq2 << 16; return seq_nr; } static inline struct dccp_hdr_request *dccp_hdr_request(struct sk_buff *skb) { return (struct dccp_hdr_request *)(skb_transport_header(skb) + dccp_basic_hdr_len(skb)); } static inline struct dccp_hdr_ack_bits *dccp_hdr_ack_bits(const struct sk_buff *skb) { return (struct dccp_hdr_ack_bits *)(skb_transport_header(skb) + dccp_basic_hdr_len(skb)); } static inline u64 dccp_hdr_ack_seq(const struct sk_buff *skb) { const struct dccp_hdr_ack_bits *dhack = dccp_hdr_ack_bits(skb); return ((u64)ntohs(dhack->dccph_ack_nr_high) << 32) + ntohl(dhack->dccph_ack_nr_low); } static inline struct dccp_hdr_response *dccp_hdr_response(struct sk_buff *skb) { return (struct dccp_hdr_response *)(skb_transport_header(skb) + dccp_basic_hdr_len(skb)); } static inline struct dccp_hdr_reset *dccp_hdr_reset(struct sk_buff *skb) { return (struct dccp_hdr_reset *)(skb_transport_header(skb) + dccp_basic_hdr_len(skb)); } static inline unsigned int __dccp_hdr_len(const struct dccp_hdr *dh) { return __dccp_basic_hdr_len(dh) + dccp_packet_hdr_len(dh->dccph_type); } static inline unsigned int dccp_hdr_len(const struct sk_buff *skb) { return __dccp_hdr_len(dccp_hdr(skb)); } /** * struct dccp_request_sock - represent DCCP-specific connection request * @dreq_inet_rsk: structure inherited from * @dreq_iss: initial sequence number, sent on the first Response (RFC 4340, 7.1) * @dreq_gss: greatest sequence number sent (for retransmitted Responses) * @dreq_isr: initial sequence number received in the first Request * @dreq_gsr: greatest sequence number received (for retransmitted Request(s)) * @dreq_service: service code present on the Request (there is just one) * @dreq_featneg: feature negotiation options for this connection * The following two fields are analogous to the ones in dccp_sock: * @dreq_timestamp_echo: last received timestamp to echo (13.1) * @dreq_timestamp_echo: the time of receiving the last @dreq_timestamp_echo */ struct dccp_request_sock { struct inet_request_sock dreq_inet_rsk; __u64 dreq_iss; __u64 dreq_gss; __u64 dreq_isr; __u64 dreq_gsr; __be32 dreq_service; spinlock_t dreq_lock; struct list_head dreq_featneg; __u32 dreq_timestamp_echo; __u32 dreq_timestamp_time; }; static inline struct dccp_request_sock *dccp_rsk(const struct request_sock *req) { return (struct dccp_request_sock *)req; } extern struct inet_timewait_death_row dccp_death_row; extern int dccp_parse_options(struct sock *sk, struct dccp_request_sock *dreq, struct sk_buff *skb); struct dccp_options_received { u64 dccpor_ndp:48; u32 dccpor_timestamp; u32 dccpor_timestamp_echo; u32 dccpor_elapsed_time; }; struct ccid; enum dccp_role { DCCP_ROLE_UNDEFINED, DCCP_ROLE_LISTEN, DCCP_ROLE_CLIENT, DCCP_ROLE_SERVER, }; struct dccp_service_list { __u32 dccpsl_nr; __be32 dccpsl_list[]; }; #define DCCP_SERVICE_INVALID_VALUE htonl((__u32)-1) #define DCCP_SERVICE_CODE_IS_ABSENT 0 static inline bool dccp_list_has_service(const struct dccp_service_list *sl, const __be32 service) { if (likely(sl != NULL)) { u32 i = sl->dccpsl_nr; while (i--) if (sl->dccpsl_list[i] == service) return true; } return false; } struct dccp_ackvec; /** * struct dccp_sock - DCCP socket state * * @dccps_swl - sequence number window low * @dccps_swh - sequence number window high * @dccps_awl - acknowledgement number window low * @dccps_awh - acknowledgement number window high * @dccps_iss - initial sequence number sent * @dccps_isr - initial sequence number received * @dccps_osr - first OPEN sequence number received * @dccps_gss - greatest sequence number sent * @dccps_gsr - greatest valid sequence number received * @dccps_gar - greatest valid ack number received on a non-Sync; initialized to %dccps_iss * @dccps_service - first (passive sock) or unique (active sock) service code * @dccps_service_list - second .. last service code on passive socket * @dccps_timestamp_echo - latest timestamp received on a TIMESTAMP option * @dccps_timestamp_time - time of receiving latest @dccps_timestamp_echo * @dccps_l_ack_ratio - feature-local Ack Ratio * @dccps_r_ack_ratio - feature-remote Ack Ratio * @dccps_l_seq_win - local Sequence Window (influences ack number validity) * @dccps_r_seq_win - remote Sequence Window (influences seq number validity) * @dccps_pcslen - sender partial checksum coverage (via sockopt) * @dccps_pcrlen - receiver partial checksum coverage (via sockopt) * @dccps_send_ndp_count - local Send NDP Count feature (7.7.2) * @dccps_ndp_count - number of Non Data Packets since last data packet * @dccps_mss_cache - current value of MSS (path MTU minus header sizes) * @dccps_rate_last - timestamp for rate-limiting DCCP-Sync (RFC 4340, 7.5.4) * @dccps_featneg - tracks feature-negotiation state (mostly during handshake) * @dccps_hc_rx_ackvec - rx half connection ack vector * @dccps_hc_rx_ccid - CCID used for the receiver (or receiving half-connection) * @dccps_hc_tx_ccid - CCID used for the sender (or sending half-connection) * @dccps_options_received - parsed set of retrieved options * @dccps_qpolicy - TX dequeueing policy, one of %dccp_packet_dequeueing_policy * @dccps_tx_qlen - maximum length of the TX queue * @dccps_role - role of this sock, one of %dccp_role * @dccps_hc_rx_insert_options - receiver wants to add options when acking * @dccps_hc_tx_insert_options - sender wants to add options when sending * @dccps_server_timewait - server holds timewait state on close (RFC 4340, 8.3) * @dccps_sync_scheduled - flag which signals "send out-of-band message soon" * @dccps_xmitlet - tasklet scheduled by the TX CCID to dequeue data packets * @dccps_xmit_timer - used by the TX CCID to delay sending (rate-based pacing) * @dccps_syn_rtt - RTT sample from Request/Response exchange (in usecs) */ struct dccp_sock { /* inet_connection_sock has to be the first member of dccp_sock */ struct inet_connection_sock dccps_inet_connection; #define dccps_syn_rtt dccps_inet_connection.icsk_ack.lrcvtime __u64 dccps_swl; __u64 dccps_swh; __u64 dccps_awl; __u64 dccps_awh; __u64 dccps_iss; __u64 dccps_isr; __u64 dccps_osr; __u64 dccps_gss; __u64 dccps_gsr; __u64 dccps_gar; __be32 dccps_service; __u32 dccps_mss_cache; struct dccp_service_list *dccps_service_list; __u32 dccps_timestamp_echo; __u32 dccps_timestamp_time; __u16 dccps_l_ack_ratio; __u16 dccps_r_ack_ratio; __u64 dccps_l_seq_win:48; __u64 dccps_r_seq_win:48; __u8 dccps_pcslen:4; __u8 dccps_pcrlen:4; __u8 dccps_send_ndp_count:1; __u64 dccps_ndp_count:48; unsigned long dccps_rate_last; struct list_head dccps_featneg; struct dccp_ackvec *dccps_hc_rx_ackvec; struct ccid *dccps_hc_rx_ccid; struct ccid *dccps_hc_tx_ccid; struct dccp_options_received dccps_options_received; __u8 dccps_qpolicy; __u32 dccps_tx_qlen; enum dccp_role dccps_role:2; __u8 dccps_hc_rx_insert_options:1; __u8 dccps_hc_tx_insert_options:1; __u8 dccps_server_timewait:1; __u8 dccps_sync_scheduled:1; struct tasklet_struct dccps_xmitlet; struct timer_list dccps_xmit_timer; }; #define dccp_sk(ptr) container_of_const(ptr, struct dccp_sock, \ dccps_inet_connection.icsk_inet.sk) static inline const char *dccp_role(const struct sock *sk) { switch (dccp_sk(sk)->dccps_role) { case DCCP_ROLE_UNDEFINED: return "undefined"; case DCCP_ROLE_LISTEN: return "listen"; case DCCP_ROLE_SERVER: return "server"; case DCCP_ROLE_CLIENT: return "client"; } return NULL; } extern void dccp_syn_ack_timeout(const struct request_sock *req); #endif /* _LINUX_DCCP_H */ |
4485 4491 4491 4485 4489 3167 3163 4 1 3 3 11 3 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | #include <linux/bpf.h> #include <linux/vmalloc.h> #include <linux/fdtable.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/idr.h> #include <linux/namei.h> #include <linux/user_namespace.h> #include <linux/security.h> static bool bpf_ns_capable(struct user_namespace *ns, int cap) { return ns_capable(ns, cap) || (cap != CAP_SYS_ADMIN && ns_capable(ns, CAP_SYS_ADMIN)); } bool bpf_token_capable(const struct bpf_token *token, int cap) { struct user_namespace *userns; /* BPF token allows ns_capable() level of capabilities */ userns = token ? token->userns : &init_user_ns; if (!bpf_ns_capable(userns, cap)) return false; if (token && security_bpf_token_capable(token, cap) < 0) return false; return true; } void bpf_token_inc(struct bpf_token *token) { atomic64_inc(&token->refcnt); } static void bpf_token_free(struct bpf_token *token) { security_bpf_token_free(token); put_user_ns(token->userns); kfree(token); } static void bpf_token_put_deferred(struct work_struct *work) { struct bpf_token *token = container_of(work, struct bpf_token, work); bpf_token_free(token); } void bpf_token_put(struct bpf_token *token) { if (!token) return; if (!atomic64_dec_and_test(&token->refcnt)) return; INIT_WORK(&token->work, bpf_token_put_deferred); schedule_work(&token->work); } static int bpf_token_release(struct inode *inode, struct file *filp) { struct bpf_token *token = filp->private_data; bpf_token_put(token); return 0; } static void bpf_token_show_fdinfo(struct seq_file *m, struct file *filp) { struct bpf_token *token = filp->private_data; u64 mask; BUILD_BUG_ON(__MAX_BPF_CMD >= 64); mask = BIT_ULL(__MAX_BPF_CMD) - 1; if ((token->allowed_cmds & mask) == mask) seq_printf(m, "allowed_cmds:\tany\n"); else seq_printf(m, "allowed_cmds:\t0x%llx\n", token->allowed_cmds); BUILD_BUG_ON(__MAX_BPF_MAP_TYPE >= 64); mask = BIT_ULL(__MAX_BPF_MAP_TYPE) - 1; if ((token->allowed_maps & mask) == mask) seq_printf(m, "allowed_maps:\tany\n"); else seq_printf(m, "allowed_maps:\t0x%llx\n", token->allowed_maps); BUILD_BUG_ON(__MAX_BPF_PROG_TYPE >= 64); mask = BIT_ULL(__MAX_BPF_PROG_TYPE) - 1; if ((token->allowed_progs & mask) == mask) seq_printf(m, "allowed_progs:\tany\n"); else seq_printf(m, "allowed_progs:\t0x%llx\n", token->allowed_progs); BUILD_BUG_ON(__MAX_BPF_ATTACH_TYPE >= 64); mask = BIT_ULL(__MAX_BPF_ATTACH_TYPE) - 1; if ((token->allowed_attachs & mask) == mask) seq_printf(m, "allowed_attachs:\tany\n"); else seq_printf(m, "allowed_attachs:\t0x%llx\n", token->allowed_attachs); } #define BPF_TOKEN_INODE_NAME "bpf-token" static const struct inode_operations bpf_token_iops = { }; static const struct file_operations bpf_token_fops = { .release = bpf_token_release, .show_fdinfo = bpf_token_show_fdinfo, }; int bpf_token_create(union bpf_attr *attr) { struct bpf_mount_opts *mnt_opts; struct bpf_token *token = NULL; struct user_namespace *userns; struct inode *inode; struct file *file; struct path path; struct fd f; umode_t mode; int err, fd; f = fdget(attr->token_create.bpffs_fd); if (!f.file) return -EBADF; path = f.file->f_path; path_get(&path); fdput(f); if (path.dentry != path.mnt->mnt_sb->s_root) { err = -EINVAL; goto out_path; } if (path.mnt->mnt_sb->s_op != &bpf_super_ops) { err = -EINVAL; goto out_path; } err = path_permission(&path, MAY_ACCESS); if (err) goto out_path; userns = path.dentry->d_sb->s_user_ns; /* * Enforce that creators of BPF tokens are in the same user * namespace as the BPF FS instance. This makes reasoning about * permissions a lot easier and we can always relax this later. */ if (current_user_ns() != userns) { err = -EPERM; goto out_path; } if (!ns_capable(userns, CAP_BPF)) { err = -EPERM; goto out_path; } /* Creating BPF token in init_user_ns doesn't make much sense. */ if (current_user_ns() == &init_user_ns) { err = -EOPNOTSUPP; goto out_path; } mnt_opts = path.dentry->d_sb->s_fs_info; if (mnt_opts->delegate_cmds == 0 && mnt_opts->delegate_maps == 0 && mnt_opts->delegate_progs == 0 && mnt_opts->delegate_attachs == 0) { err = -ENOENT; /* no BPF token delegation is set up */ goto out_path; } mode = S_IFREG | ((S_IRUSR | S_IWUSR) & ~current_umask()); inode = bpf_get_inode(path.mnt->mnt_sb, NULL, mode); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_path; } inode->i_op = &bpf_token_iops; inode->i_fop = &bpf_token_fops; clear_nlink(inode); /* make sure it is unlinked */ file = alloc_file_pseudo(inode, path.mnt, BPF_TOKEN_INODE_NAME, O_RDWR, &bpf_token_fops); if (IS_ERR(file)) { iput(inode); err = PTR_ERR(file); goto out_path; } token = kzalloc(sizeof(*token), GFP_USER); if (!token) { err = -ENOMEM; goto out_file; } atomic64_set(&token->refcnt, 1); /* remember bpffs owning userns for future ns_capable() checks */ token->userns = get_user_ns(userns); token->allowed_cmds = mnt_opts->delegate_cmds; token->allowed_maps = mnt_opts->delegate_maps; token->allowed_progs = mnt_opts->delegate_progs; token->allowed_attachs = mnt_opts->delegate_attachs; err = security_bpf_token_create(token, attr, &path); if (err) goto out_token; fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) { err = fd; goto out_token; } file->private_data = token; fd_install(fd, file); path_put(&path); return fd; out_token: bpf_token_free(token); out_file: fput(file); out_path: path_put(&path); return err; } struct bpf_token *bpf_token_get_from_fd(u32 ufd) { struct fd f = fdget(ufd); struct bpf_token *token; if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &bpf_token_fops) { fdput(f); return ERR_PTR(-EINVAL); } token = f.file->private_data; bpf_token_inc(token); fdput(f); return token; } bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd) { if (!token) return false; if (!(token->allowed_cmds & BIT_ULL(cmd))) return false; return security_bpf_token_cmd(token, cmd) == 0; } bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type) { if (!token || type >= __MAX_BPF_MAP_TYPE) return false; return token->allowed_maps & BIT_ULL(type); } bool bpf_token_allow_prog_type(const struct bpf_token *token, enum bpf_prog_type prog_type, enum bpf_attach_type attach_type) { if (!token || prog_type >= __MAX_BPF_PROG_TYPE || attach_type >= __MAX_BPF_ATTACH_TYPE) return false; return (token->allowed_progs & BIT_ULL(prog_type)) && (token->allowed_attachs & BIT_ULL(attach_type)); } |
6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | // SPDX-License-Identifier: GPL-2.0-only /* x_tables module for setting the IPv4/IPv6 DSCP field, Version 1.8 * * (C) 2002 by Harald Welte <laforge@netfilter.org> * based on ipt_FTOS.c (C) 2000 by Matthew G. Marsh <mgm@paktronix.com> * * See RFC2474 for a description of the DSCP field within the IP Header. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/dsfield.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_DSCP.h> MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>"); MODULE_DESCRIPTION("Xtables: DSCP/TOS field modification"); MODULE_LICENSE("GPL"); MODULE_ALIAS("ipt_DSCP"); MODULE_ALIAS("ip6t_DSCP"); MODULE_ALIAS("ipt_TOS"); MODULE_ALIAS("ip6t_TOS"); #define XT_DSCP_ECN_MASK 3u static unsigned int dscp_tg(struct sk_buff *skb, const struct xt_action_param *par) { const struct xt_DSCP_info *dinfo = par->targinfo; u_int8_t dscp = ipv4_get_dsfield(ip_hdr(skb)) >> XT_DSCP_SHIFT; if (dscp != dinfo->dscp) { if (skb_ensure_writable(skb, sizeof(struct iphdr))) return NF_DROP; ipv4_change_dsfield(ip_hdr(skb), XT_DSCP_ECN_MASK, dinfo->dscp << XT_DSCP_SHIFT); } return XT_CONTINUE; } static unsigned int dscp_tg6(struct sk_buff *skb, const struct xt_action_param *par) { const struct xt_DSCP_info *dinfo = par->targinfo; u_int8_t dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> XT_DSCP_SHIFT; if (dscp != dinfo->dscp) { if (skb_ensure_writable(skb, sizeof(struct ipv6hdr))) return NF_DROP; ipv6_change_dsfield(ipv6_hdr(skb), XT_DSCP_ECN_MASK, dinfo->dscp << XT_DSCP_SHIFT); } return XT_CONTINUE; } static int dscp_tg_check(const struct xt_tgchk_param *par) { const struct xt_DSCP_info *info = par->targinfo; if (info->dscp > XT_DSCP_MAX) return -EDOM; return 0; } static unsigned int tos_tg(struct sk_buff *skb, const struct xt_action_param *par) { const struct xt_tos_target_info *info = par->targinfo; struct iphdr *iph = ip_hdr(skb); u_int8_t orig, nv; orig = ipv4_get_dsfield(iph); nv = (orig & ~info->tos_mask) ^ info->tos_value; if (orig != nv) { if (skb_ensure_writable(skb, sizeof(struct iphdr))) return NF_DROP; iph = ip_hdr(skb); ipv4_change_dsfield(iph, 0, nv); } return XT_CONTINUE; } static unsigned int tos_tg6(struct sk_buff *skb, const struct xt_action_param *par) { const struct xt_tos_target_info *info = par->targinfo; struct ipv6hdr *iph = ipv6_hdr(skb); u_int8_t orig, nv; orig = ipv6_get_dsfield(iph); nv = (orig & ~info->tos_mask) ^ info->tos_value; if (orig != nv) { if (skb_ensure_writable(skb, sizeof(struct iphdr))) return NF_DROP; iph = ipv6_hdr(skb); ipv6_change_dsfield(iph, 0, nv); } return XT_CONTINUE; } static struct xt_target dscp_tg_reg[] __read_mostly = { { .name = "DSCP", .family = NFPROTO_IPV4, .checkentry = dscp_tg_check, .target = dscp_tg, .targetsize = sizeof(struct xt_DSCP_info), .table = "mangle", .me = THIS_MODULE, }, { .name = "DSCP", .family = NFPROTO_IPV6, .checkentry = dscp_tg_check, .target = dscp_tg6, .targetsize = sizeof(struct xt_DSCP_info), .table = "mangle", .me = THIS_MODULE, }, { .name = "TOS", .revision = 1, .family = NFPROTO_IPV4, .table = "mangle", .target = tos_tg, .targetsize = sizeof(struct xt_tos_target_info), .me = THIS_MODULE, }, { .name = "TOS", .revision = 1, .family = NFPROTO_IPV6, .table = "mangle", .target = tos_tg6, .targetsize = sizeof(struct xt_tos_target_info), .me = THIS_MODULE, }, }; static int __init dscp_tg_init(void) { return xt_register_targets(dscp_tg_reg, ARRAY_SIZE(dscp_tg_reg)); } static void __exit dscp_tg_exit(void) { xt_unregister_targets(dscp_tg_reg, ARRAY_SIZE(dscp_tg_reg)); } module_init(dscp_tg_init); module_exit(dscp_tg_exit); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NET_TIMESTAMPING_H_ #define _LINUX_NET_TIMESTAMPING_H_ #include <uapi/linux/net_tstamp.h> #define SOF_TIMESTAMPING_SOFTWARE_MASK (SOF_TIMESTAMPING_RX_SOFTWARE | \ SOF_TIMESTAMPING_TX_SOFTWARE | \ SOF_TIMESTAMPING_SOFTWARE) #define SOF_TIMESTAMPING_HARDWARE_MASK (SOF_TIMESTAMPING_RX_HARDWARE | \ SOF_TIMESTAMPING_TX_HARDWARE | \ SOF_TIMESTAMPING_RAW_HARDWARE) enum hwtstamp_source { HWTSTAMP_SOURCE_UNSPEC, HWTSTAMP_SOURCE_NETDEV, HWTSTAMP_SOURCE_PHYLIB, }; /** * struct kernel_hwtstamp_config - Kernel copy of struct hwtstamp_config * * @flags: see struct hwtstamp_config * @tx_type: see struct hwtstamp_config * @rx_filter: see struct hwtstamp_config * @ifr: pointer to ifreq structure from the original ioctl request, to pass to * a legacy implementation of a lower driver * @copied_to_user: request was passed to a legacy implementation which already * copied the ioctl request back to user space * @source: indication whether timestamps should come from the netdev or from * an attached phylib PHY * * Prefer using this structure for in-kernel processing of hardware * timestamping configuration, over the inextensible struct hwtstamp_config * exposed to the %SIOCGHWTSTAMP and %SIOCSHWTSTAMP ioctl UAPI. */ struct kernel_hwtstamp_config { int flags; int tx_type; int rx_filter; struct ifreq *ifr; bool copied_to_user; enum hwtstamp_source source; }; static inline void hwtstamp_config_to_kernel(struct kernel_hwtstamp_config *kernel_cfg, const struct hwtstamp_config *cfg) { kernel_cfg->flags = cfg->flags; kernel_cfg->tx_type = cfg->tx_type; kernel_cfg->rx_filter = cfg->rx_filter; } static inline void hwtstamp_config_from_kernel(struct hwtstamp_config *cfg, const struct kernel_hwtstamp_config *kernel_cfg) { cfg->flags = kernel_cfg->flags; cfg->tx_type = kernel_cfg->tx_type; cfg->rx_filter = kernel_cfg->rx_filter; } static inline bool kernel_hwtstamp_config_changed(const struct kernel_hwtstamp_config *a, const struct kernel_hwtstamp_config *b) { return a->flags != b->flags || a->tx_type != b->tx_type || a->rx_filter != b->rx_filter; } #endif /* _LINUX_NET_TIMESTAMPING_H_ */ |
591 591 591 264 258 21 262 19 263 263 264 17 248 123 41 116 107 107 4 104 9 9 11 4 11 575 589 590 566 12 16 4 380 364 571 609 17 574 416 375 226 226 381 288 264 78 78 2 20 20 20 20 72 34 69 77 78 81 81 3 18 15 64 12 10 1 12 581 26 570 22 571 566 22 16 107 8 82 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 | // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2003 International Business Machines Corp. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel implementation * * This module provides the abstraction for an SCTP transport representing * a remote transport address. For local transport addresses, we just use * union sctp_addr. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Jon Grimm <jgrimm@us.ibm.com> * Xingang Guo <xingang.guo@intel.com> * Hui Huang <hui.huang@nokia.com> * Sridhar Samudrala <sri@us.ibm.com> * Ardelle Fan <ardelle.fan@intel.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/types.h> #include <linux/random.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> /* 1st Level Abstractions. */ /* Initialize a new transport from provided memory. */ static struct sctp_transport *sctp_transport_init(struct net *net, struct sctp_transport *peer, const union sctp_addr *addr, gfp_t gfp) { /* Copy in the address. */ peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); memcpy(&peer->ipaddr, addr, peer->af_specific->sockaddr_len); memset(&peer->saddr, 0, sizeof(union sctp_addr)); peer->sack_generation = 0; /* From 6.3.1 RTO Calculation: * * C1) Until an RTT measurement has been made for a packet sent to the * given destination transport address, set RTO to the protocol * parameter 'RTO.Initial'. */ peer->rto = msecs_to_jiffies(net->sctp.rto_initial); peer->last_time_heard = 0; peer->last_time_ecne_reduced = jiffies; peer->param_flags = SPP_HB_DISABLE | SPP_PMTUD_ENABLE | SPP_SACKDELAY_ENABLE; /* Initialize the default path max_retrans. */ peer->pathmaxrxt = net->sctp.max_retrans_path; peer->pf_retrans = net->sctp.pf_retrans; INIT_LIST_HEAD(&peer->transmitted); INIT_LIST_HEAD(&peer->send_ready); INIT_LIST_HEAD(&peer->transports); timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0); timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0); timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0); timer_setup(&peer->probe_timer, sctp_generate_probe_event, 0); timer_setup(&peer->proto_unreach_timer, sctp_generate_proto_unreach_event, 0); /* Initialize the 64-bit random nonce sent with heartbeat. */ get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); refcount_set(&peer->refcnt, 1); return peer; } /* Allocate and initialize a new transport. */ struct sctp_transport *sctp_transport_new(struct net *net, const union sctp_addr *addr, gfp_t gfp) { struct sctp_transport *transport; transport = kzalloc(sizeof(*transport), gfp); if (!transport) goto fail; if (!sctp_transport_init(net, transport, addr, gfp)) goto fail_init; SCTP_DBG_OBJCNT_INC(transport); return transport; fail_init: kfree(transport); fail: return NULL; } /* This transport is no longer needed. Free up if possible, or * delay until it last reference count. */ void sctp_transport_free(struct sctp_transport *transport) { /* Try to delete the heartbeat timer. */ if (del_timer(&transport->hb_timer)) sctp_transport_put(transport); /* Delete the T3_rtx timer if it's active. * There is no point in not doing this now and letting * structure hang around in memory since we know * the transport is going away. */ if (del_timer(&transport->T3_rtx_timer)) sctp_transport_put(transport); if (del_timer(&transport->reconf_timer)) sctp_transport_put(transport); if (del_timer(&transport->probe_timer)) sctp_transport_put(transport); /* Delete the ICMP proto unreachable timer if it's active. */ if (del_timer(&transport->proto_unreach_timer)) sctp_transport_put(transport); sctp_transport_put(transport); } static void sctp_transport_destroy_rcu(struct rcu_head *head) { struct sctp_transport *transport; transport = container_of(head, struct sctp_transport, rcu); dst_release(transport->dst); kfree(transport); SCTP_DBG_OBJCNT_DEC(transport); } /* Destroy the transport data structure. * Assumes there are no more users of this structure. */ static void sctp_transport_destroy(struct sctp_transport *transport) { if (unlikely(refcount_read(&transport->refcnt))) { WARN(1, "Attempt to destroy undead transport %p!\n", transport); return; } sctp_packet_free(&transport->packet); if (transport->asoc) sctp_association_put(transport->asoc); call_rcu(&transport->rcu, sctp_transport_destroy_rcu); } /* Start T3_rtx timer if it is not already running and update the heartbeat * timer. This routine is called every time a DATA chunk is sent. */ void sctp_transport_reset_t3_rtx(struct sctp_transport *transport) { /* RFC 2960 6.3.2 Retransmission Timer Rules * * R1) Every time a DATA chunk is sent to any address(including a * retransmission), if the T3-rtx timer of that address is not running * start it running so that it will expire after the RTO of that * address. */ if (!timer_pending(&transport->T3_rtx_timer)) if (!mod_timer(&transport->T3_rtx_timer, jiffies + transport->rto)) sctp_transport_hold(transport); } void sctp_transport_reset_hb_timer(struct sctp_transport *transport) { unsigned long expires; /* When a data chunk is sent, reset the heartbeat interval. */ expires = jiffies + sctp_transport_timeout(transport); if (!mod_timer(&transport->hb_timer, expires + get_random_u32_below(transport->rto))) sctp_transport_hold(transport); } void sctp_transport_reset_reconf_timer(struct sctp_transport *transport) { if (!timer_pending(&transport->reconf_timer)) if (!mod_timer(&transport->reconf_timer, jiffies + transport->rto)) sctp_transport_hold(transport); } void sctp_transport_reset_probe_timer(struct sctp_transport *transport) { if (!mod_timer(&transport->probe_timer, jiffies + transport->probe_interval)) sctp_transport_hold(transport); } void sctp_transport_reset_raise_timer(struct sctp_transport *transport) { if (!mod_timer(&transport->probe_timer, jiffies + transport->probe_interval * 30)) sctp_transport_hold(transport); } /* This transport has been assigned to an association. * Initialize fields from the association or from the sock itself. * Register the reference count in the association. */ void sctp_transport_set_owner(struct sctp_transport *transport, struct sctp_association *asoc) { transport->asoc = asoc; sctp_association_hold(asoc); } /* Initialize the pmtu of a transport. */ void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk) { /* If we don't have a fresh route, look one up */ if (!transport->dst || transport->dst->obsolete) { sctp_transport_dst_release(transport); transport->af_specific->get_dst(transport, &transport->saddr, &transport->fl, sk); } if (transport->param_flags & SPP_PMTUD_DISABLE) { struct sctp_association *asoc = transport->asoc; if (!transport->pathmtu && asoc && asoc->pathmtu) transport->pathmtu = asoc->pathmtu; if (transport->pathmtu) return; } if (transport->dst) transport->pathmtu = sctp_dst_mtu(transport->dst); else transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; sctp_transport_pl_update(transport); } void sctp_transport_pl_send(struct sctp_transport *t) { if (t->pl.probe_count < SCTP_MAX_PROBES) goto out; t->pl.probe_count = 0; if (t->pl.state == SCTP_PL_BASE) { if (t->pl.probe_size == SCTP_BASE_PLPMTU) { /* BASE_PLPMTU Confirmation Failed */ t->pl.state = SCTP_PL_ERROR; /* Base -> Error */ t->pl.pmtu = SCTP_BASE_PLPMTU; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); sctp_assoc_sync_pmtu(t->asoc); } } else if (t->pl.state == SCTP_PL_SEARCH) { if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */ t->pl.state = SCTP_PL_BASE; /* Search -> Base */ t->pl.probe_size = SCTP_BASE_PLPMTU; t->pl.probe_high = 0; t->pl.pmtu = SCTP_BASE_PLPMTU; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); sctp_assoc_sync_pmtu(t->asoc); } else { /* Normal probe failure. */ t->pl.probe_high = t->pl.probe_size; t->pl.probe_size = t->pl.pmtu; } } else if (t->pl.state == SCTP_PL_COMPLETE) { if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */ t->pl.state = SCTP_PL_BASE; /* Search Complete -> Base */ t->pl.probe_size = SCTP_BASE_PLPMTU; t->pl.pmtu = SCTP_BASE_PLPMTU; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); sctp_assoc_sync_pmtu(t->asoc); } } out: pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n", __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high); t->pl.probe_count++; } bool sctp_transport_pl_recv(struct sctp_transport *t) { pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n", __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high); t->pl.pmtu = t->pl.probe_size; t->pl.probe_count = 0; if (t->pl.state == SCTP_PL_BASE) { t->pl.state = SCTP_PL_SEARCH; /* Base -> Search */ t->pl.probe_size += SCTP_PL_BIG_STEP; } else if (t->pl.state == SCTP_PL_ERROR) { t->pl.state = SCTP_PL_SEARCH; /* Error -> Search */ t->pl.pmtu = t->pl.probe_size; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); sctp_assoc_sync_pmtu(t->asoc); t->pl.probe_size += SCTP_PL_BIG_STEP; } else if (t->pl.state == SCTP_PL_SEARCH) { if (!t->pl.probe_high) { if (t->pl.probe_size < SCTP_MAX_PLPMTU) { t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_BIG_STEP, SCTP_MAX_PLPMTU); return false; } t->pl.probe_high = SCTP_MAX_PLPMTU; } t->pl.probe_size += SCTP_PL_MIN_STEP; if (t->pl.probe_size >= t->pl.probe_high) { t->pl.probe_high = 0; t->pl.state = SCTP_PL_COMPLETE; /* Search -> Search Complete */ t->pl.probe_size = t->pl.pmtu; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); sctp_assoc_sync_pmtu(t->asoc); sctp_transport_reset_raise_timer(t); } } else if (t->pl.state == SCTP_PL_COMPLETE) { /* Raise probe_size again after 30 * interval in Search Complete */ t->pl.state = SCTP_PL_SEARCH; /* Search Complete -> Search */ t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_MIN_STEP, SCTP_MAX_PLPMTU); } return t->pl.state == SCTP_PL_COMPLETE; } static bool sctp_transport_pl_toobig(struct sctp_transport *t, u32 pmtu) { pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, ptb: %d\n", __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, pmtu); if (pmtu < SCTP_MIN_PLPMTU || pmtu >= t->pl.probe_size) return false; if (t->pl.state == SCTP_PL_BASE) { if (pmtu >= SCTP_MIN_PLPMTU && pmtu < SCTP_BASE_PLPMTU) { t->pl.state = SCTP_PL_ERROR; /* Base -> Error */ t->pl.pmtu = SCTP_BASE_PLPMTU; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); return true; } } else if (t->pl.state == SCTP_PL_SEARCH) { if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) { t->pl.state = SCTP_PL_BASE; /* Search -> Base */ t->pl.probe_size = SCTP_BASE_PLPMTU; t->pl.probe_count = 0; t->pl.probe_high = 0; t->pl.pmtu = SCTP_BASE_PLPMTU; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); return true; } else if (pmtu > t->pl.pmtu && pmtu < t->pl.probe_size) { t->pl.probe_size = pmtu; t->pl.probe_count = 0; } } else if (t->pl.state == SCTP_PL_COMPLETE) { if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) { t->pl.state = SCTP_PL_BASE; /* Complete -> Base */ t->pl.probe_size = SCTP_BASE_PLPMTU; t->pl.probe_count = 0; t->pl.probe_high = 0; t->pl.pmtu = SCTP_BASE_PLPMTU; t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); sctp_transport_reset_probe_timer(t); return true; } } return false; } bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu) { struct sock *sk = t->asoc->base.sk; struct dst_entry *dst; bool change = true; if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n", __func__, pmtu, SCTP_DEFAULT_MINSEGMENT); /* Use default minimum segment instead */ pmtu = SCTP_DEFAULT_MINSEGMENT; } pmtu = SCTP_TRUNC4(pmtu); if (sctp_transport_pl_enabled(t)) return sctp_transport_pl_toobig(t, pmtu - sctp_transport_pl_hlen(t)); dst = sctp_transport_dst_check(t); if (dst) { struct sctp_pf *pf = sctp_get_pf_specific(dst->ops->family); union sctp_addr addr; pf->af->from_sk(&addr, sk); pf->to_sk_daddr(&t->ipaddr, sk); dst->ops->update_pmtu(dst, sk, NULL, pmtu, true); pf->to_sk_daddr(&addr, sk); dst = sctp_transport_dst_check(t); } if (!dst) { t->af_specific->get_dst(t, &t->saddr, &t->fl, sk); dst = t->dst; } if (dst) { /* Re-fetch, as under layers may have a higher minimum size */ pmtu = sctp_dst_mtu(dst); change = t->pathmtu != pmtu; } t->pathmtu = pmtu; return change; } /* Caches the dst entry and source address for a transport's destination * address. */ void sctp_transport_route(struct sctp_transport *transport, union sctp_addr *saddr, struct sctp_sock *opt) { struct sctp_association *asoc = transport->asoc; struct sctp_af *af = transport->af_specific; sctp_transport_dst_release(transport); af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt)); if (saddr) memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); else af->get_saddr(opt, transport, &transport->fl); sctp_transport_pmtu(transport, sctp_opt2sk(opt)); /* Initialize sk->sk_rcv_saddr, if the transport is the * association's active path for getsockname(). */ if (transport->dst && asoc && (!asoc->peer.primary_path || transport == asoc->peer.active_path)) opt->pf->to_sk_saddr(&transport->saddr, asoc->base.sk); } /* Hold a reference to a transport. */ int sctp_transport_hold(struct sctp_transport *transport) { return refcount_inc_not_zero(&transport->refcnt); } /* Release a reference to a transport and clean up * if there are no more references. */ void sctp_transport_put(struct sctp_transport *transport) { if (refcount_dec_and_test(&transport->refcnt)) sctp_transport_destroy(transport); } /* Update transport's RTO based on the newly calculated RTT. */ void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) { if (unlikely(!tp->rto_pending)) /* We should not be doing any RTO updates unless rto_pending is set. */ pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp); if (tp->rttvar || tp->srtt) { struct net *net = tp->asoc->base.net; /* 6.3.1 C3) When a new RTT measurement R' is made, set * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' */ /* Note: The above algorithm has been rewritten to * express rto_beta and rto_alpha as inverse powers * of two. * For example, assuming the default value of RTO.Alpha of * 1/8, rto_alpha would be expressed as 3. */ tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta) + (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta); tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha) + (rtt >> net->sctp.rto_alpha); } else { /* 6.3.1 C2) When the first RTT measurement R is made, set * SRTT <- R, RTTVAR <- R/2. */ tp->srtt = rtt; tp->rttvar = rtt >> 1; } /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. */ if (tp->rttvar == 0) tp->rttvar = SCTP_CLOCK_GRANULARITY; /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ tp->rto = tp->srtt + (tp->rttvar << 2); /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min * seconds then it is rounded up to RTO.Min seconds. */ if (tp->rto < tp->asoc->rto_min) tp->rto = tp->asoc->rto_min; /* 6.3.1 C7) A maximum value may be placed on RTO provided it is * at least RTO.max seconds. */ if (tp->rto > tp->asoc->rto_max) tp->rto = tp->asoc->rto_max; sctp_max_rto(tp->asoc, tp); tp->rtt = rtt; /* Reset rto_pending so that a new RTT measurement is started when a * new data chunk is sent. */ tp->rto_pending = 0; pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n", __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto); } /* This routine updates the transport's cwnd and partial_bytes_acked * parameters based on the bytes acked in the received SACK. */ void sctp_transport_raise_cwnd(struct sctp_transport *transport, __u32 sack_ctsn, __u32 bytes_acked) { struct sctp_association *asoc = transport->asoc; __u32 cwnd, ssthresh, flight_size, pba, pmtu; cwnd = transport->cwnd; flight_size = transport->flight_size; /* See if we need to exit Fast Recovery first */ if (asoc->fast_recovery && TSN_lte(asoc->fast_recovery_exit, sack_ctsn)) asoc->fast_recovery = 0; ssthresh = transport->ssthresh; pba = transport->partial_bytes_acked; pmtu = transport->asoc->pathmtu; if (cwnd <= ssthresh) { /* RFC 4960 7.2.1 * o When cwnd is less than or equal to ssthresh, an SCTP * endpoint MUST use the slow-start algorithm to increase * cwnd only if the current congestion window is being fully * utilized, an incoming SACK advances the Cumulative TSN * Ack Point, and the data sender is not in Fast Recovery. * Only when these three conditions are met can the cwnd be * increased; otherwise, the cwnd MUST not be increased. * If these conditions are met, then cwnd MUST be increased * by, at most, the lesser of 1) the total size of the * previously outstanding DATA chunk(s) acknowledged, and * 2) the destination's path MTU. This upper bound protects * against the ACK-Splitting attack outlined in [SAVAGE99]. */ if (asoc->fast_recovery) return; /* The appropriate cwnd increase algorithm is performed * if, and only if the congestion window is being fully * utilized. Note that RFC4960 Errata 3.22 removed the * other condition on ctsn moving. */ if (flight_size < cwnd) return; if (bytes_acked > pmtu) cwnd += pmtu; else cwnd += bytes_acked; pr_debug("%s: slow start: transport:%p, bytes_acked:%d, " "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n", __func__, transport, bytes_acked, cwnd, ssthresh, flight_size, pba); } else { /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, * upon each SACK arrival, increase partial_bytes_acked * by the total number of bytes of all new chunks * acknowledged in that SACK including chunks * acknowledged by the new Cumulative TSN Ack and by Gap * Ack Blocks. (updated by RFC4960 Errata 3.22) * * When partial_bytes_acked is greater than cwnd and * before the arrival of the SACK the sender had less * bytes of data outstanding than cwnd (i.e., before * arrival of the SACK, flightsize was less than cwnd), * reset partial_bytes_acked to cwnd. (RFC 4960 Errata * 3.26) * * When partial_bytes_acked is equal to or greater than * cwnd and before the arrival of the SACK the sender * had cwnd or more bytes of data outstanding (i.e., * before arrival of the SACK, flightsize was greater * than or equal to cwnd), partial_bytes_acked is reset * to (partial_bytes_acked - cwnd). Next, cwnd is * increased by MTU. (RFC 4960 Errata 3.12) */ pba += bytes_acked; if (pba > cwnd && flight_size < cwnd) pba = cwnd; if (pba >= cwnd && flight_size >= cwnd) { pba = pba - cwnd; cwnd += pmtu; } pr_debug("%s: congestion avoidance: transport:%p, " "bytes_acked:%d, cwnd:%d, ssthresh:%d, " "flight_size:%d, pba:%d\n", __func__, transport, bytes_acked, cwnd, ssthresh, flight_size, pba); } transport->cwnd = cwnd; transport->partial_bytes_acked = pba; } /* This routine is used to lower the transport's cwnd when congestion is * detected. */ void sctp_transport_lower_cwnd(struct sctp_transport *transport, enum sctp_lower_cwnd reason) { struct sctp_association *asoc = transport->asoc; switch (reason) { case SCTP_LOWER_CWND_T3_RTX: /* RFC 2960 Section 7.2.3, sctpimpguide * When the T3-rtx timer expires on an address, SCTP should * perform slow start by: * ssthresh = max(cwnd/2, 4*MTU) * cwnd = 1*MTU * partial_bytes_acked = 0 */ transport->ssthresh = max(transport->cwnd/2, 4*asoc->pathmtu); transport->cwnd = asoc->pathmtu; /* T3-rtx also clears fast recovery */ asoc->fast_recovery = 0; break; case SCTP_LOWER_CWND_FAST_RTX: /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the * destination address(es) to which the missing DATA chunks * were last sent, according to the formula described in * Section 7.2.3. * * RFC 2960 7.2.3, sctpimpguide Upon detection of packet * losses from SACK (see Section 7.2.4), An endpoint * should do the following: * ssthresh = max(cwnd/2, 4*MTU) * cwnd = ssthresh * partial_bytes_acked = 0 */ if (asoc->fast_recovery) return; /* Mark Fast recovery */ asoc->fast_recovery = 1; asoc->fast_recovery_exit = asoc->next_tsn - 1; transport->ssthresh = max(transport->cwnd/2, 4*asoc->pathmtu); transport->cwnd = transport->ssthresh; break; case SCTP_LOWER_CWND_ECNE: /* RFC 2481 Section 6.1.2. * If the sender receives an ECN-Echo ACK packet * then the sender knows that congestion was encountered in the * network on the path from the sender to the receiver. The * indication of congestion should be treated just as a * congestion loss in non-ECN Capable TCP. That is, the TCP * source halves the congestion window "cwnd" and reduces the * slow start threshold "ssthresh". * A critical condition is that TCP does not react to * congestion indications more than once every window of * data (or more loosely more than once every round-trip time). */ if (time_after(jiffies, transport->last_time_ecne_reduced + transport->rtt)) { transport->ssthresh = max(transport->cwnd/2, 4*asoc->pathmtu); transport->cwnd = transport->ssthresh; transport->last_time_ecne_reduced = jiffies; } break; case SCTP_LOWER_CWND_INACTIVE: /* RFC 2960 Section 7.2.1, sctpimpguide * When the endpoint does not transmit data on a given * transport address, the cwnd of the transport address * should be adjusted to max(cwnd/2, 4*MTU) per RTO. * NOTE: Although the draft recommends that this check needs * to be done every RTO interval, we do it every hearbeat * interval. */ transport->cwnd = max(transport->cwnd/2, 4*asoc->pathmtu); /* RFC 4960 Errata 3.27.2: also adjust sshthresh */ transport->ssthresh = transport->cwnd; break; } transport->partial_bytes_acked = 0; pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n", __func__, transport, reason, transport->cwnd, transport->ssthresh); } /* Apply Max.Burst limit to the congestion window: * sctpimpguide-05 2.14.2 * D) When the time comes for the sender to * transmit new DATA chunks, the protocol parameter Max.Burst MUST * first be applied to limit how many new DATA chunks may be sent. * The limit is applied by adjusting cwnd as follows: * if ((flightsize+ Max.Burst * MTU) < cwnd) * cwnd = flightsize + Max.Burst * MTU */ void sctp_transport_burst_limited(struct sctp_transport *t) { struct sctp_association *asoc = t->asoc; u32 old_cwnd = t->cwnd; u32 max_burst_bytes; if (t->burst_limited || asoc->max_burst == 0) return; max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu); if (max_burst_bytes < old_cwnd) { t->cwnd = max_burst_bytes; t->burst_limited = old_cwnd; } } /* Restore the old cwnd congestion window, after the burst had it's * desired effect. */ void sctp_transport_burst_reset(struct sctp_transport *t) { if (t->burst_limited) { t->cwnd = t->burst_limited; t->burst_limited = 0; } } /* What is the next timeout value for this transport? */ unsigned long sctp_transport_timeout(struct sctp_transport *trans) { /* RTO + timer slack +/- 50% of RTO */ unsigned long timeout = trans->rto >> 1; if (trans->state != SCTP_UNCONFIRMED && trans->state != SCTP_PF) timeout += trans->hbinterval; return max_t(unsigned long, timeout, HZ / 5); } /* Reset transport variables to their initial values */ void sctp_transport_reset(struct sctp_transport *t) { struct sctp_association *asoc = t->asoc; /* RFC 2960 (bis), Section 5.2.4 * All the congestion control parameters (e.g., cwnd, ssthresh) * related to this peer MUST be reset to their initial values * (see Section 6.2.1) */ t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); t->burst_limited = 0; t->ssthresh = asoc->peer.i.a_rwnd; t->rto = asoc->rto_initial; sctp_max_rto(asoc, t); t->rtt = 0; t->srtt = 0; t->rttvar = 0; /* Reset these additional variables so that we have a clean slate. */ t->partial_bytes_acked = 0; t->flight_size = 0; t->error_count = 0; t->rto_pending = 0; t->hb_sent = 0; /* Initialize the state information for SFR-CACC */ t->cacc.changeover_active = 0; t->cacc.cycling_changeover = 0; t->cacc.next_tsn_at_change = 0; t->cacc.cacc_saw_newack = 0; } /* Schedule retransmission on the given transport */ void sctp_transport_immediate_rtx(struct sctp_transport *t) { /* Stop pending T3_rtx_timer */ if (del_timer(&t->T3_rtx_timer)) sctp_transport_put(t); sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX); if (!timer_pending(&t->T3_rtx_timer)) { if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto)) sctp_transport_hold(t); } } /* Drop dst */ void sctp_transport_dst_release(struct sctp_transport *t) { dst_release(t->dst); t->dst = NULL; t->dst_pending_confirm = 0; } /* Schedule neighbour confirm */ void sctp_transport_dst_confirm(struct sctp_transport *t) { t->dst_pending_confirm = 1; } |
6 6 6 6 8 1 1 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | /* * net/tipc/diag.c: TIPC socket diag * * Copyright (c) 2018, Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "socket.h" #include <linux/sock_diag.h> #include <linux/tipc_sockets_diag.h> static u64 __tipc_diag_gen_cookie(struct sock *sk) { u32 res[2]; sock_diag_save_cookie(sk, res); return *((u64 *)res); } static int __tipc_add_sock_diag(struct sk_buff *skb, struct netlink_callback *cb, struct tipc_sock *tsk) { struct tipc_sock_diag_req *req = nlmsg_data(cb->nlh); struct nlmsghdr *nlh; int err; nlh = nlmsg_put_answer(skb, cb, SOCK_DIAG_BY_FAMILY, 0, NLM_F_MULTI); if (!nlh) return -EMSGSIZE; err = tipc_sk_fill_sock_diag(skb, cb, tsk, req->tidiag_states, __tipc_diag_gen_cookie); if (err) return err; nlmsg_end(skb, nlh); return 0; } static int tipc_diag_dump(struct sk_buff *skb, struct netlink_callback *cb) { return tipc_nl_sk_walk(skb, cb, __tipc_add_sock_diag); } static int tipc_sock_diag_handler_dump(struct sk_buff *skb, struct nlmsghdr *h) { int hdrlen = sizeof(struct tipc_sock_diag_req); struct net *net = sock_net(skb->sk); if (nlmsg_len(h) < hdrlen) return -EINVAL; if (h->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = tipc_dump_start, .dump = tipc_diag_dump, .done = tipc_dump_done, }; netlink_dump_start(net->diag_nlsk, skb, h, &c); return 0; } return -EOPNOTSUPP; } static const struct sock_diag_handler tipc_sock_diag_handler = { .owner = THIS_MODULE, .family = AF_TIPC, .dump = tipc_sock_diag_handler_dump, }; static int __init tipc_diag_init(void) { return sock_diag_register(&tipc_sock_diag_handler); } static void __exit tipc_diag_exit(void) { sock_diag_unregister(&tipc_sock_diag_handler); } module_init(tipc_diag_init); module_exit(tipc_diag_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("TIPC socket monitoring via SOCK_DIAG"); MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, AF_TIPC); |
2 541 195 73 36 289 386 95 177 2 1013 1162 1154 1163 1021 1021 1014 10 10 4 4 1652 13 1 930 390 175 405 265 154 8 8 11 6 40 98 139 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP module. * * Version: @(#)ip.h 1.0.2 05/07/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Changes: * Mike McLagan : Routing by source */ #ifndef _IP_H #define _IP_H #include <linux/types.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/skbuff.h> #include <linux/jhash.h> #include <linux/sockptr.h> #include <linux/static_key.h> #include <net/inet_sock.h> #include <net/route.h> #include <net/snmp.h> #include <net/flow.h> #include <net/flow_dissector.h> #include <net/netns/hash.h> #include <net/lwtunnel.h> #define IPV4_MAX_PMTU 65535U /* RFC 2675, Section 5.1 */ #define IPV4_MIN_MTU 68 /* RFC 791 */ extern unsigned int sysctl_fib_sync_mem; extern unsigned int sysctl_fib_sync_mem_min; extern unsigned int sysctl_fib_sync_mem_max; struct sock; struct inet_skb_parm { int iif; struct ip_options opt; /* Compiled IP options */ u16 flags; #define IPSKB_FORWARDED BIT(0) #define IPSKB_XFRM_TUNNEL_SIZE BIT(1) #define IPSKB_XFRM_TRANSFORMED BIT(2) #define IPSKB_FRAG_COMPLETE BIT(3) #define IPSKB_REROUTED BIT(4) #define IPSKB_DOREDIRECT BIT(5) #define IPSKB_FRAG_PMTU BIT(6) #define IPSKB_L3SLAVE BIT(7) #define IPSKB_NOPOLICY BIT(8) #define IPSKB_MULTIPATH BIT(9) u16 frag_max_size; }; static inline bool ipv4_l3mdev_skb(u16 flags) { return !!(flags & IPSKB_L3SLAVE); } static inline unsigned int ip_hdrlen(const struct sk_buff *skb) { return ip_hdr(skb)->ihl * 4; } struct ipcm_cookie { struct sockcm_cookie sockc; __be32 addr; int oif; struct ip_options_rcu *opt; __u8 protocol; __u8 ttl; __s16 tos; char priority; __u16 gso_size; }; static inline void ipcm_init(struct ipcm_cookie *ipcm) { *ipcm = (struct ipcm_cookie) { .tos = -1 }; } static inline void ipcm_init_sk(struct ipcm_cookie *ipcm, const struct inet_sock *inet) { ipcm_init(ipcm); ipcm->sockc.mark = READ_ONCE(inet->sk.sk_mark); ipcm->sockc.tsflags = READ_ONCE(inet->sk.sk_tsflags); ipcm->oif = READ_ONCE(inet->sk.sk_bound_dev_if); ipcm->addr = inet->inet_saddr; ipcm->protocol = inet->inet_num; } #define IPCB(skb) ((struct inet_skb_parm*)((skb)->cb)) #define PKTINFO_SKB_CB(skb) ((struct in_pktinfo *)((skb)->cb)) /* return enslaved device index if relevant */ static inline int inet_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) return IPCB(skb)->iif; #endif return 0; } /* Special input handler for packets caught by router alert option. They are selected only by protocol field, and then processed likely local ones; but only if someone wants them! Otherwise, router not running rsvpd will kill RSVP. It is user level problem, what it will make with them. I have no idea, how it will masquearde or NAT them (it is joke, joke :-)), but receiver should be enough clever f.e. to forward mtrace requests, sent to multicast group to reach destination designated router. */ struct ip_ra_chain { struct ip_ra_chain __rcu *next; struct sock *sk; union { void (*destructor)(struct sock *); struct sock *saved_sk; }; struct rcu_head rcu; }; /* IP flags. */ #define IP_CE 0x8000 /* Flag: "Congestion" */ #define IP_DF 0x4000 /* Flag: "Don't Fragment" */ #define IP_MF 0x2000 /* Flag: "More Fragments" */ #define IP_OFFSET 0x1FFF /* "Fragment Offset" part */ #define IP_FRAG_TIME (30 * HZ) /* fragment lifetime */ struct msghdr; struct net_device; struct packet_type; struct rtable; struct sockaddr; int igmp_mc_init(void); /* * Functions provided by ip.c */ int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, u8 tos); int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); void ip_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev); int ip_local_deliver(struct sk_buff *skb); void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int proto); int ip_mr_input(struct sk_buff *skb); int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)); struct ip_fraglist_iter { struct sk_buff *frag; struct iphdr *iph; int offset; unsigned int hlen; }; void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, unsigned int hlen, struct ip_fraglist_iter *iter); void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter); static inline struct sk_buff *ip_fraglist_next(struct ip_fraglist_iter *iter) { struct sk_buff *skb = iter->frag; iter->frag = skb->next; skb_mark_not_on_list(skb); return skb; } struct ip_frag_state { bool DF; unsigned int hlen; unsigned int ll_rs; unsigned int mtu; unsigned int left; int offset; int ptr; __be16 not_last_frag; }; void ip_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int ll_rs, unsigned int mtu, bool DF, struct ip_frag_state *state); struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state); void ip_send_check(struct iphdr *ip); int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, __u8 tos); void ip_init(void); int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int len, int protolen, struct ipcm_cookie *ipc, struct rtable **rt, unsigned int flags); int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb); struct sk_buff *__ip_make_skb(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork); int ip_send_skb(struct net *net, struct sk_buff *skb); int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4); void ip_flush_pending_frames(struct sock *sk); struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, struct inet_cork *cork, unsigned int flags); int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl); static inline struct sk_buff *ip_finish_skb(struct sock *sk, struct flowi4 *fl4) { return __ip_make_skb(sk, fl4, &sk->sk_write_queue, &inet_sk(sk)->cork.base); } /* Get the route scope that should be used when sending a packet. */ static inline u8 ip_sendmsg_scope(const struct inet_sock *inet, const struct ipcm_cookie *ipc, const struct msghdr *msg) { if (sock_flag(&inet->sk, SOCK_LOCALROUTE) || msg->msg_flags & MSG_DONTROUTE || (ipc->opt && ipc->opt->opt.is_strictroute)) return RT_SCOPE_LINK; return RT_SCOPE_UNIVERSE; } static inline __u8 get_rttos(struct ipcm_cookie* ipc, struct inet_sock *inet) { return (ipc->tos != -1) ? RT_TOS(ipc->tos) : RT_TOS(READ_ONCE(inet->tos)); } /* datagram.c */ int __ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); void ip4_datagram_release_cb(struct sock *sk); struct ip_reply_arg { struct kvec iov[1]; int flags; __wsum csum; int csumoffset; /* u16 offset of csum in iov[0].iov_base */ /* -1 if not needed */ int bound_dev_if; u8 tos; kuid_t uid; }; #define IP_REPLY_ARG_NOSRCCHECK 1 static inline __u8 ip_reply_arg_flowi_flags(const struct ip_reply_arg *arg) { return (arg->flags & IP_REPLY_ARG_NOSRCCHECK) ? FLOWI_FLAG_ANYSRC : 0; } void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, const struct ip_options *sopt, __be32 daddr, __be32 saddr, const struct ip_reply_arg *arg, unsigned int len, u64 transmit_time, u32 txhash); #define IP_INC_STATS(net, field) SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define __IP_INC_STATS(net, field) __SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define IP_ADD_STATS(net, field, val) SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define __IP_ADD_STATS(net, field, val) __SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define IP_UPD_PO_STATS(net, field, val) SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define __IP_UPD_PO_STATS(net, field, val) __SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define NET_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.net_statistics, field) #define __NET_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.net_statistics, field) #define NET_ADD_STATS(net, field, adnd) SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) #define __NET_ADD_STATS(net, field, adnd) __SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) static inline u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) { return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); } unsigned long snmp_fold_field(void __percpu *mib, int offt); #if BITS_PER_LONG==32 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset); u64 snmp_fold_field64(void __percpu *mib, int offt, size_t sync_off); #else static inline u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset) { return snmp_get_cpu_field(mib, cpu, offct); } static inline u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_off) { return snmp_fold_field(mib, offt); } #endif #define snmp_get_cpu_field64_batch(buff64, stats_list, mib_statistic, offset) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff64[i] += snmp_get_cpu_field64( \ mib_statistic, \ c, stats_list[i].entry, \ offset); \ } \ } #define snmp_get_cpu_field_batch(buff, stats_list, mib_statistic) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff[i] += snmp_get_cpu_field( \ mib_statistic, \ c, stats_list[i].entry); \ } \ } static inline void inet_get_local_port_range(const struct net *net, int *low, int *high) { u32 range = READ_ONCE(net->ipv4.ip_local_ports.range); *low = range & 0xffff; *high = range >> 16; } bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high); #ifdef CONFIG_SYSCTL static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { if (!net->ipv4.sysctl_local_reserved_ports) return false; return test_bit(port, net->ipv4.sysctl_local_reserved_ports); } static inline bool sysctl_dev_name_is_allowed(const char *name) { return strcmp(name, "default") != 0 && strcmp(name, "all") != 0; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < READ_ONCE(net->ipv4.sysctl_ip_prot_sock); } #else static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { return false; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < PROT_SOCK; } #endif __be32 inet_current_timestamp(void); /* From inetpeer.c */ extern int inet_peer_threshold; extern int inet_peer_minttl; extern int inet_peer_maxttl; void ipfrag_init(void); void ip_static_sysctl_init(void); #define IP4_REPLY_MARK(net, mark) \ (READ_ONCE((net)->ipv4.sysctl_fwmark_reflect) ? (mark) : 0) static inline bool ip_is_fragment(const struct iphdr *iph) { return (iph->frag_off & htons(IP_MF | IP_OFFSET)) != 0; } #ifdef CONFIG_INET #include <net/dst.h> /* The function in 2.2 was invalid, producing wrong result for * check=0xFEFF. It was noticed by Arthur Skawina _year_ ago. --ANK(000625) */ static inline int ip_decrease_ttl(struct iphdr *iph) { u32 check = (__force u32)iph->check; check += (__force u32)htons(0x0100); iph->check = (__force __sum16)(check + (check>=0xFFFF)); return --iph->ttl; } static inline int ip_mtu_locked(const struct dst_entry *dst) { const struct rtable *rt = dst_rtable(dst); return rt->rt_mtu_locked || dst_metric_locked(dst, RTAX_MTU); } static inline int ip_dont_fragment(const struct sock *sk, const struct dst_entry *dst) { u8 pmtudisc = READ_ONCE(inet_sk(sk)->pmtudisc); return pmtudisc == IP_PMTUDISC_DO || (pmtudisc == IP_PMTUDISC_WANT && !ip_mtu_locked(dst)); } static inline bool ip_sk_accept_pmtu(const struct sock *sk) { u8 pmtudisc = READ_ONCE(inet_sk(sk)->pmtudisc); return pmtudisc != IP_PMTUDISC_INTERFACE && pmtudisc != IP_PMTUDISC_OMIT; } static inline bool ip_sk_use_pmtu(const struct sock *sk) { return READ_ONCE(inet_sk(sk)->pmtudisc) < IP_PMTUDISC_PROBE; } static inline bool ip_sk_ignore_df(const struct sock *sk) { u8 pmtudisc = READ_ONCE(inet_sk(sk)->pmtudisc); return pmtudisc < IP_PMTUDISC_DO || pmtudisc == IP_PMTUDISC_OMIT; } static inline unsigned int ip_dst_mtu_maybe_forward(const struct dst_entry *dst, bool forwarding) { const struct rtable *rt = dst_rtable(dst); struct net *net = dev_net(dst->dev); unsigned int mtu; if (READ_ONCE(net->ipv4.sysctl_ip_fwd_use_pmtu) || ip_mtu_locked(dst) || !forwarding) { mtu = rt->rt_pmtu; if (mtu && time_before(jiffies, rt->dst.expires)) goto out; } /* 'forwarding = true' case should always honour route mtu */ mtu = dst_metric_raw(dst, RTAX_MTU); if (mtu) goto out; mtu = READ_ONCE(dst->dev->mtu); if (unlikely(ip_mtu_locked(dst))) { if (rt->rt_uses_gateway && mtu > 576) mtu = 576; } out: mtu = min_t(unsigned int, mtu, IP_MAX_MTU); return mtu - lwtunnel_headroom(dst->lwtstate, mtu); } static inline unsigned int ip_skb_dst_mtu(struct sock *sk, const struct sk_buff *skb) { unsigned int mtu; if (!sk || !sk_fullsock(sk) || ip_sk_use_pmtu(sk)) { bool forwarding = IPCB(skb)->flags & IPSKB_FORWARDED; return ip_dst_mtu_maybe_forward(skb_dst(skb), forwarding); } mtu = min(READ_ONCE(skb_dst(skb)->dev->mtu), IP_MAX_MTU); return mtu - lwtunnel_headroom(skb_dst(skb)->lwtstate, mtu); } struct dst_metrics *ip_fib_metrics_init(struct nlattr *fc_mx, int fc_mx_len, struct netlink_ext_ack *extack); static inline void ip_fib_metrics_put(struct dst_metrics *fib_metrics) { if (fib_metrics != &dst_default_metrics && refcount_dec_and_test(&fib_metrics->refcnt)) kfree(fib_metrics); } /* ipv4 and ipv6 both use refcounted metrics if it is not the default */ static inline void ip_dst_init_metrics(struct dst_entry *dst, struct dst_metrics *fib_metrics) { dst_init_metrics(dst, fib_metrics->metrics, true); if (fib_metrics != &dst_default_metrics) { dst->_metrics |= DST_METRICS_REFCOUNTED; refcount_inc(&fib_metrics->refcnt); } } static inline void ip_dst_metrics_put(struct dst_entry *dst) { struct dst_metrics *p = (struct dst_metrics *)DST_METRICS_PTR(dst); if (p != &dst_default_metrics && refcount_dec_and_test(&p->refcnt)) kfree(p); } void __ip_select_ident(struct net *net, struct iphdr *iph, int segs); static inline void ip_select_ident_segs(struct net *net, struct sk_buff *skb, struct sock *sk, int segs) { struct iphdr *iph = ip_hdr(skb); /* We had many attacks based on IPID, use the private * generator as much as we can. */ if (sk && inet_sk(sk)->inet_daddr) { int val; /* avoid atomic operations for TCP, * as we hold socket lock at this point. */ if (sk_is_tcp(sk)) { sock_owned_by_me(sk); val = atomic_read(&inet_sk(sk)->inet_id); atomic_set(&inet_sk(sk)->inet_id, val + segs); } else { val = atomic_add_return(segs, &inet_sk(sk)->inet_id); } iph->id = htons(val); return; } if ((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) { iph->id = 0; } else { /* Unfortunately we need the big hammer to get a suitable IPID */ __ip_select_ident(net, iph, segs); } } static inline void ip_select_ident(struct net *net, struct sk_buff *skb, struct sock *sk) { ip_select_ident_segs(net, skb, sk, 1); } static inline __wsum inet_compute_pseudo(struct sk_buff *skb, int proto) { return csum_tcpudp_nofold(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, skb->len, proto, 0); } /* copy IPv4 saddr & daddr to flow_keys, possibly using 64bit load/store * Equivalent to : flow->v4addrs.src = iph->saddr; * flow->v4addrs.dst = iph->daddr; */ static inline void iph_to_flow_copy_v4addrs(struct flow_keys *flow, const struct iphdr *iph) { BUILD_BUG_ON(offsetof(typeof(flow->addrs), v4addrs.dst) != offsetof(typeof(flow->addrs), v4addrs.src) + sizeof(flow->addrs.v4addrs.src)); memcpy(&flow->addrs.v4addrs, &iph->addrs, sizeof(flow->addrs.v4addrs)); flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } /* * Map a multicast IP onto multicast MAC for type ethernet. */ static inline void ip_eth_mc_map(__be32 naddr, char *buf) { __u32 addr=ntohl(naddr); buf[0]=0x01; buf[1]=0x00; buf[2]=0x5e; buf[5]=addr&0xFF; addr>>=8; buf[4]=addr&0xFF; addr>>=8; buf[3]=addr&0x7F; } /* * Map a multicast IP onto multicast MAC for type IP-over-InfiniBand. * Leave P_Key as 0 to be filled in by driver. */ static inline void ip_ib_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { __u32 addr; unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; addr = ntohl(naddr); buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x40; /* IPv4 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; buf[10] = 0; buf[11] = 0; buf[12] = 0; buf[13] = 0; buf[14] = 0; buf[15] = 0; buf[19] = addr & 0xff; addr >>= 8; buf[18] = addr & 0xff; addr >>= 8; buf[17] = addr & 0xff; addr >>= 8; buf[16] = addr & 0x0f; } static inline void ip_ipgre_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) memcpy(buf, broadcast, 4); else memcpy(buf, &naddr, sizeof(naddr)); } #if IS_ENABLED(CONFIG_IPV6) #include <linux/ipv6.h> #endif static __inline__ void inet_reset_saddr(struct sock *sk) { inet_sk(sk)->inet_rcv_saddr = inet_sk(sk)->inet_saddr = 0; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == PF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); memset(&np->saddr, 0, sizeof(np->saddr)); memset(&sk->sk_v6_rcv_saddr, 0, sizeof(sk->sk_v6_rcv_saddr)); } #endif } #endif static inline unsigned int ipv4_addr_hash(__be32 ip) { return (__force unsigned int) ip; } static inline u32 ipv4_portaddr_hash(const struct net *net, __be32 saddr, unsigned int port) { return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; } bool ip_call_ra_chain(struct sk_buff *skb); /* * Functions provided by ip_fragment.c */ enum ip_defrag_users { IP_DEFRAG_LOCAL_DELIVER, IP_DEFRAG_CALL_RA_CHAIN, IP_DEFRAG_CONNTRACK_IN, __IP_DEFRAG_CONNTRACK_IN_END = IP_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP_DEFRAG_CONNTRACK_OUT, __IP_DEFRAG_CONNTRACK_OUT_END = IP_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP_DEFRAG_CONNTRACK_BRIDGE_IN, __IP_DEFRAG_CONNTRACK_BRIDGE_IN = IP_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, IP_DEFRAG_VS_IN, IP_DEFRAG_VS_OUT, IP_DEFRAG_VS_FWD, IP_DEFRAG_AF_PACKET, IP_DEFRAG_MACVLAN, }; /* Return true if the value of 'user' is between 'lower_bond' * and 'upper_bond' inclusively. */ static inline bool ip_defrag_user_in_between(u32 user, enum ip_defrag_users lower_bond, enum ip_defrag_users upper_bond) { return user >= lower_bond && user <= upper_bond; } int ip_defrag(struct net *net, struct sk_buff *skb, u32 user); #ifdef CONFIG_INET struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user); #else static inline struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) { return skb; } #endif /* * Functions provided by ip_forward.c */ int ip_forward(struct sk_buff *skb); /* * Functions provided by ip_options.c */ void ip_options_build(struct sk_buff *skb, struct ip_options *opt, __be32 daddr, struct rtable *rt); int __ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb, const struct ip_options *sopt); static inline int ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb) { return __ip_options_echo(net, dopt, skb, &IPCB(skb)->opt); } void ip_options_fragment(struct sk_buff *skb); int __ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb, __be32 *info); int ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb); int ip_options_get(struct net *net, struct ip_options_rcu **optp, sockptr_t data, int optlen); void ip_options_undo(struct ip_options *opt); void ip_forward_options(struct sk_buff *skb); int ip_options_rcv_srr(struct sk_buff *skb, struct net_device *dev); /* * Functions provided by ip_sockglue.c */ void ipv4_pktinfo_prepare(const struct sock *sk, struct sk_buff *skb, bool drop_dst); void ip_cmsg_recv_offset(struct msghdr *msg, struct sock *sk, struct sk_buff *skb, int tlen, int offset); int ip_cmsg_send(struct sock *sk, struct msghdr *msg, struct ipcm_cookie *ipc, bool allow_ipv6); DECLARE_STATIC_KEY_FALSE(ip4_min_ttl); int do_ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int do_ip_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen); int ip_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int ip_ra_control(struct sock *sk, unsigned char on, void (*destructor)(struct sock *)); int ip_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len); void ip_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload); void ip_local_error(struct sock *sk, int err, __be32 daddr, __be16 dport, u32 info); static inline void ip_cmsg_recv(struct msghdr *msg, struct sk_buff *skb) { ip_cmsg_recv_offset(msg, skb->sk, skb, 0, 0); } bool icmp_global_allow(void); extern int sysctl_icmp_msgs_per_sec; extern int sysctl_icmp_msgs_burst; #ifdef CONFIG_PROC_FS int ip_misc_proc_init(void); #endif int rtm_getroute_parse_ip_proto(struct nlattr *attr, u8 *ip_proto, u8 family, struct netlink_ext_ack *extack); static inline bool inetdev_valid_mtu(unsigned int mtu) { return likely(mtu >= IPV4_MIN_MTU); } void ip_sock_set_freebind(struct sock *sk); int ip_sock_set_mtu_discover(struct sock *sk, int val); void ip_sock_set_pktinfo(struct sock *sk); void ip_sock_set_recverr(struct sock *sk); void ip_sock_set_tos(struct sock *sk, int val); void __ip_sock_set_tos(struct sock *sk, int val); #endif /* _IP_H */ |
8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_GENERIC_SECTIONS_H_ #define _ASM_GENERIC_SECTIONS_H_ /* References to section boundaries */ #include <linux/compiler.h> #include <linux/types.h> /* * Usage guidelines: * _text, _data: architecture specific, don't use them in arch-independent code * [_stext, _etext]: contains .text.* sections, may also contain .rodata.* * and/or .init.* sections * [_sdata, _edata]: contains .data.* sections, may also contain .rodata.* * and/or .init.* sections. * [__start_rodata, __end_rodata]: contains .rodata.* sections * [__start_ro_after_init, __end_ro_after_init]: * contains .data..ro_after_init section * [__init_begin, __init_end]: contains .init.* sections, but .init.text.* * may be out of this range on some architectures. * [_sinittext, _einittext]: contains .init.text.* sections * [__bss_start, __bss_stop]: contains BSS sections * * Following global variables are optional and may be unavailable on some * architectures and/or kernel configurations. * _text, _data * __kprobes_text_start, __kprobes_text_end * __entry_text_start, __entry_text_end * __ctors_start, __ctors_end * __irqentry_text_start, __irqentry_text_end * __softirqentry_text_start, __softirqentry_text_end * __start_opd, __end_opd */ extern char _text[], _stext[], _etext[]; extern char _data[], _sdata[], _edata[]; extern char __bss_start[], __bss_stop[]; extern char __init_begin[], __init_end[]; extern char _sinittext[], _einittext[]; extern char __start_ro_after_init[], __end_ro_after_init[]; extern char _end[]; extern char __per_cpu_load[], __per_cpu_start[], __per_cpu_end[]; extern char __kprobes_text_start[], __kprobes_text_end[]; extern char __entry_text_start[], __entry_text_end[]; extern char __start_rodata[], __end_rodata[]; extern char __irqentry_text_start[], __irqentry_text_end[]; extern char __softirqentry_text_start[], __softirqentry_text_end[]; extern char __start_once[], __end_once[]; /* Start and end of .ctors section - used for constructor calls. */ extern char __ctors_start[], __ctors_end[]; /* Start and end of .opd section - used for function descriptors. */ extern char __start_opd[], __end_opd[]; /* Start and end of instrumentation protected text section */ extern char __noinstr_text_start[], __noinstr_text_end[]; extern __visible const void __nosave_begin, __nosave_end; /* Function descriptor handling (if any). Override in asm/sections.h */ #ifdef CONFIG_HAVE_FUNCTION_DESCRIPTORS void *dereference_function_descriptor(void *ptr); void *dereference_kernel_function_descriptor(void *ptr); #else #define dereference_function_descriptor(p) ((void *)(p)) #define dereference_kernel_function_descriptor(p) ((void *)(p)) /* An address is simply the address of the function. */ typedef struct { unsigned long addr; } func_desc_t; #endif static inline bool have_function_descriptors(void) { return IS_ENABLED(CONFIG_HAVE_FUNCTION_DESCRIPTORS); } /** * memory_contains - checks if an object is contained within a memory region * @begin: virtual address of the beginning of the memory region * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the memory region defined by @begin and @end, false * otherwise. */ static inline bool memory_contains(void *begin, void *end, void *virt, size_t size) { return virt >= begin && virt + size <= end; } /** * memory_intersects - checks if the region occupied by an object intersects * with another memory region * @begin: virtual address of the beginning of the memory region * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the region specified by @begin and @end, false otherwise. */ static inline bool memory_intersects(void *begin, void *end, void *virt, size_t size) { void *vend = virt + size; if (virt < end && vend > begin) return true; return false; } /** * init_section_contains - checks if an object is contained within the init * section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the init section, false otherwise. */ static inline bool init_section_contains(void *virt, size_t size) { return memory_contains(__init_begin, __init_end, virt, size); } /** * init_section_intersects - checks if the region occupied by an object * intersects with the init section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the init section, false otherwise. */ static inline bool init_section_intersects(void *virt, size_t size) { return memory_intersects(__init_begin, __init_end, virt, size); } /** * is_kernel_core_data - checks if the pointer address is located in the * .data or .bss section * * @addr: address to check * * Returns: true if the address is located in .data or .bss, false otherwise. * Note: On some archs it may return true for core RODATA, and false * for others. But will always be true for core RW data. */ static inline bool is_kernel_core_data(unsigned long addr) { if (addr >= (unsigned long)_sdata && addr < (unsigned long)_edata) return true; if (addr >= (unsigned long)__bss_start && addr < (unsigned long)__bss_stop) return true; return false; } /** * is_kernel_rodata - checks if the pointer address is located in the * .rodata section * * @addr: address to check * * Returns: true if the address is located in .rodata, false otherwise. */ static inline bool is_kernel_rodata(unsigned long addr) { return addr >= (unsigned long)__start_rodata && addr < (unsigned long)__end_rodata; } static inline bool is_kernel_ro_after_init(unsigned long addr) { return addr >= (unsigned long)__start_ro_after_init && addr < (unsigned long)__end_ro_after_init; } /** * is_kernel_inittext - checks if the pointer address is located in the * .init.text section * * @addr: address to check * * Returns: true if the address is located in .init.text, false otherwise. */ static inline bool is_kernel_inittext(unsigned long addr) { return addr >= (unsigned long)_sinittext && addr < (unsigned long)_einittext; } /** * __is_kernel_text - checks if the pointer address is located in the * .text section * * @addr: address to check * * Returns: true if the address is located in .text, false otherwise. * Note: an internal helper, only check the range of _stext to _etext. */ static inline bool __is_kernel_text(unsigned long addr) { return addr >= (unsigned long)_stext && addr < (unsigned long)_etext; } /** * __is_kernel - checks if the pointer address is located in the kernel range * * @addr: address to check * * Returns: true if the address is located in the kernel range, false otherwise. * Note: an internal helper, check the range of _stext to _end, * and range from __init_begin to __init_end, which can be outside * of the _stext to _end range. */ static inline bool __is_kernel(unsigned long addr) { return ((addr >= (unsigned long)_stext && addr < (unsigned long)_end) || (addr >= (unsigned long)__init_begin && addr < (unsigned long)__init_end)); } #endif /* _ASM_GENERIC_SECTIONS_H_ */ |
455 74 1 454 454 384 23 17 383 1 383 384 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | // SPDX-License-Identifier: GPL-2.0 #include <linux/proc_fs.h> #include <linux/nsproxy.h> #include <linux/ptrace.h> #include <linux/namei.h> #include <linux/file.h> #include <linux/utsname.h> #include <net/net_namespace.h> #include <linux/ipc_namespace.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include "internal.h" static const struct proc_ns_operations *ns_entries[] = { #ifdef CONFIG_NET_NS &netns_operations, #endif #ifdef CONFIG_UTS_NS &utsns_operations, #endif #ifdef CONFIG_IPC_NS &ipcns_operations, #endif #ifdef CONFIG_PID_NS &pidns_operations, &pidns_for_children_operations, #endif #ifdef CONFIG_USER_NS &userns_operations, #endif &mntns_operations, #ifdef CONFIG_CGROUPS &cgroupns_operations, #endif #ifdef CONFIG_TIME_NS &timens_operations, &timens_for_children_operations, #endif }; static const char *proc_ns_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { const struct proc_ns_operations *ns_ops = PROC_I(inode)->ns_ops; struct task_struct *task; struct path ns_path; int error = -EACCES; if (!dentry) return ERR_PTR(-ECHILD); task = get_proc_task(inode); if (!task) return ERR_PTR(-EACCES); if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) goto out; error = ns_get_path(&ns_path, task, ns_ops); if (error) goto out; error = nd_jump_link(&ns_path); out: put_task_struct(task); return ERR_PTR(error); } static int proc_ns_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct inode *inode = d_inode(dentry); const struct proc_ns_operations *ns_ops = PROC_I(inode)->ns_ops; struct task_struct *task; char name[50]; int res = -EACCES; task = get_proc_task(inode); if (!task) return res; if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { res = ns_get_name(name, sizeof(name), task, ns_ops); if (res >= 0) res = readlink_copy(buffer, buflen, name); } put_task_struct(task); return res; } static const struct inode_operations proc_ns_link_inode_operations = { .readlink = proc_ns_readlink, .get_link = proc_ns_get_link, .setattr = proc_setattr, }; static struct dentry *proc_ns_instantiate(struct dentry *dentry, struct task_struct *task, const void *ptr) { const struct proc_ns_operations *ns_ops = ptr; struct inode *inode; struct proc_inode *ei; inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | S_IRWXUGO); if (!inode) return ERR_PTR(-ENOENT); ei = PROC_I(inode); inode->i_op = &proc_ns_link_inode_operations; ei->ns_ops = ns_ops; pid_update_inode(task, inode); d_set_d_op(dentry, &pid_dentry_operations); return d_splice_alias(inode, dentry); } static int proc_ns_dir_readdir(struct file *file, struct dir_context *ctx) { struct task_struct *task = get_proc_task(file_inode(file)); const struct proc_ns_operations **entry, **last; if (!task) return -ENOENT; if (!dir_emit_dots(file, ctx)) goto out; if (ctx->pos >= 2 + ARRAY_SIZE(ns_entries)) goto out; entry = ns_entries + (ctx->pos - 2); last = &ns_entries[ARRAY_SIZE(ns_entries) - 1]; while (entry <= last) { const struct proc_ns_operations *ops = *entry; if (!proc_fill_cache(file, ctx, ops->name, strlen(ops->name), proc_ns_instantiate, task, ops)) break; ctx->pos++; entry++; } out: put_task_struct(task); return 0; } const struct file_operations proc_ns_dir_operations = { .read = generic_read_dir, .iterate_shared = proc_ns_dir_readdir, .llseek = generic_file_llseek, }; static struct dentry *proc_ns_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct task_struct *task = get_proc_task(dir); const struct proc_ns_operations **entry, **last; unsigned int len = dentry->d_name.len; struct dentry *res = ERR_PTR(-ENOENT); if (!task) goto out_no_task; last = &ns_entries[ARRAY_SIZE(ns_entries)]; for (entry = ns_entries; entry < last; entry++) { if (strlen((*entry)->name) != len) continue; if (!memcmp(dentry->d_name.name, (*entry)->name, len)) break; } if (entry == last) goto out; res = proc_ns_instantiate(dentry, task, *entry); out: put_task_struct(task); out_no_task: return res; } const struct inode_operations proc_ns_dir_inode_operations = { .lookup = proc_ns_dir_lookup, .getattr = pid_getattr, .setattr = proc_setattr, }; |
1777 1777 1775 1777 6 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ #include <linux/bpf.h> #include <linux/btf.h> #include <linux/err.h> #include <linux/btf_ids.h> #include <linux/vmalloc.h> #include <linux/pagemap.h> /* * bpf_arena is a sparsely populated shared memory region between bpf program and * user space process. * * For example on x86-64 the values could be: * user_vm_start 7f7d26200000 // picked by mmap() * kern_vm_start ffffc90001e69000 // picked by get_vm_area() * For user space all pointers within the arena are normal 8-byte addresses. * In this example 7f7d26200000 is the address of the first page (pgoff=0). * The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr * (u32)7f7d26200000 -> 26200000 * hence * ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb * kernel memory region. * * BPF JITs generate the following code to access arena: * mov eax, eax // eax has lower 32-bit of user pointer * mov word ptr [rax + r12 + off], bx * where r12 == kern_vm_start and off is s16. * Hence allocate 4Gb + GUARD_SZ/2 on each side. * * Initially kernel vm_area and user vma are not populated. * User space can fault-in any address which will insert the page * into kernel and user vma. * bpf program can allocate a page via bpf_arena_alloc_pages() kfunc * which will insert it into kernel vm_area. * The later fault-in from user space will populate that page into user vma. */ /* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */ #define GUARD_SZ (1ull << sizeof_field(struct bpf_insn, off) * 8) #define KERN_VM_SZ (SZ_4G + GUARD_SZ) struct bpf_arena { struct bpf_map map; u64 user_vm_start; u64 user_vm_end; struct vm_struct *kern_vm; struct maple_tree mt; struct list_head vma_list; struct mutex lock; }; u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) { return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; } u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) { return arena ? arena->user_vm_start : 0; } static long arena_map_peek_elem(struct bpf_map *map, void *value) { return -EOPNOTSUPP; } static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) { return -EOPNOTSUPP; } static long arena_map_pop_elem(struct bpf_map *map, void *value) { return -EOPNOTSUPP; } static long arena_map_delete_elem(struct bpf_map *map, void *value) { return -EOPNOTSUPP; } static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -EOPNOTSUPP; } static long compute_pgoff(struct bpf_arena *arena, long uaddr) { return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; } static struct bpf_map *arena_map_alloc(union bpf_attr *attr) { struct vm_struct *kern_vm; int numa_node = bpf_map_attr_numa_node(attr); struct bpf_arena *arena; u64 vm_range; int err = -ENOMEM; if (attr->key_size || attr->value_size || attr->max_entries == 0 || /* BPF_F_MMAPABLE must be set */ !(attr->map_flags & BPF_F_MMAPABLE) || /* No unsupported flags present */ (attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV))) return ERR_PTR(-EINVAL); if (attr->map_extra & ~PAGE_MASK) /* If non-zero the map_extra is an expected user VMA start address */ return ERR_PTR(-EINVAL); vm_range = (u64)attr->max_entries * PAGE_SIZE; if (vm_range > SZ_4G) return ERR_PTR(-E2BIG); if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32)) /* user vma must not cross 32-bit boundary */ return ERR_PTR(-ERANGE); kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP); if (!kern_vm) return ERR_PTR(-ENOMEM); arena = bpf_map_area_alloc(sizeof(*arena), numa_node); if (!arena) goto err; arena->kern_vm = kern_vm; arena->user_vm_start = attr->map_extra; if (arena->user_vm_start) arena->user_vm_end = arena->user_vm_start + vm_range; INIT_LIST_HEAD(&arena->vma_list); bpf_map_init_from_attr(&arena->map, attr); mt_init_flags(&arena->mt, MT_FLAGS_ALLOC_RANGE); mutex_init(&arena->lock); return &arena->map; err: free_vm_area(kern_vm); return ERR_PTR(err); } static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data) { struct page *page; pte_t pte; pte = ptep_get(ptep); if (!pte_present(pte)) /* sanity check */ return 0; page = pte_page(pte); /* * We do not update pte here: * 1. Nobody should be accessing bpf_arena's range outside of a kernel bug * 2. TLB flushing is batched or deferred. Even if we clear pte, * the TLB entries can stick around and continue to permit access to * the freed page. So it all relies on 1. */ __free_page(page); return 0; } static void arena_map_free(struct bpf_map *map) { struct bpf_arena *arena = container_of(map, struct bpf_arena, map); /* * Check that user vma-s are not around when bpf map is freed. * mmap() holds vm_file which holds bpf_map refcnt. * munmap() must have happened on vma followed by arena_vm_close() * which would clear arena->vma_list. */ if (WARN_ON_ONCE(!list_empty(&arena->vma_list))) return; /* * free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area(). * It unmaps everything from vmalloc area and clears pgtables. * Call apply_to_existing_page_range() first to find populated ptes and * free those pages. */ apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena), KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL); free_vm_area(arena->kern_vm); mtree_destroy(&arena->mt); bpf_map_area_free(arena); } static void *arena_map_lookup_elem(struct bpf_map *map, void *key) { return ERR_PTR(-EINVAL); } static long arena_map_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return -EOPNOTSUPP; } static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type) { return 0; } static u64 arena_map_mem_usage(const struct bpf_map *map) { return 0; } struct vma_list { struct vm_area_struct *vma; struct list_head head; atomic_t mmap_count; }; static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma) { struct vma_list *vml; vml = kmalloc(sizeof(*vml), GFP_KERNEL); if (!vml) return -ENOMEM; atomic_set(&vml->mmap_count, 1); vma->vm_private_data = vml; vml->vma = vma; list_add(&vml->head, &arena->vma_list); return 0; } static void arena_vm_open(struct vm_area_struct *vma) { struct vma_list *vml = vma->vm_private_data; atomic_inc(&vml->mmap_count); } static void arena_vm_close(struct vm_area_struct *vma) { struct bpf_map *map = vma->vm_file->private_data; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); struct vma_list *vml = vma->vm_private_data; if (!atomic_dec_and_test(&vml->mmap_count)) return; guard(mutex)(&arena->lock); /* update link list under lock */ list_del(&vml->head); vma->vm_private_data = NULL; kfree(vml); } #define MT_ENTRY ((void *)&arena_map_ops) /* unused. has to be valid pointer */ static vm_fault_t arena_vm_fault(struct vm_fault *vmf) { struct bpf_map *map = vmf->vma->vm_file->private_data; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); struct page *page; long kbase, kaddr; int ret; kbase = bpf_arena_get_kern_vm_start(arena); kaddr = kbase + (u32)(vmf->address); guard(mutex)(&arena->lock); page = vmalloc_to_page((void *)kaddr); if (page) /* already have a page vmap-ed */ goto out; if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) /* User space requested to segfault when page is not allocated by bpf prog */ return VM_FAULT_SIGSEGV; ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL); if (ret) return VM_FAULT_SIGSEGV; /* Account into memcg of the process that created bpf_arena */ ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); if (ret) { mtree_erase(&arena->mt, vmf->pgoff); return VM_FAULT_SIGSEGV; } ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); if (ret) { mtree_erase(&arena->mt, vmf->pgoff); __free_page(page); return VM_FAULT_SIGSEGV; } out: page_ref_add(page, 1); vmf->page = page; return 0; } static const struct vm_operations_struct arena_vm_ops = { .open = arena_vm_open, .close = arena_vm_close, .fault = arena_vm_fault, }; static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct bpf_map *map = filp->private_data; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); long ret; if (pgoff) return -EINVAL; if (len > SZ_4G) return -E2BIG; /* if user_vm_start was specified at arena creation time */ if (arena->user_vm_start) { if (len > arena->user_vm_end - arena->user_vm_start) return -E2BIG; if (len != arena->user_vm_end - arena->user_vm_start) return -EINVAL; if (addr != arena->user_vm_start) return -EINVAL; } ret = mm_get_unmapped_area(current->mm, filp, addr, len * 2, 0, flags); if (IS_ERR_VALUE(ret)) return ret; if ((ret >> 32) == ((ret + len - 1) >> 32)) return ret; if (WARN_ON_ONCE(arena->user_vm_start)) /* checks at map creation time should prevent this */ return -EFAULT; return round_up(ret, SZ_4G); } static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_arena *arena = container_of(map, struct bpf_arena, map); guard(mutex)(&arena->lock); if (arena->user_vm_start && arena->user_vm_start != vma->vm_start) /* * If map_extra was not specified at arena creation time then * 1st user process can do mmap(NULL, ...) to pick user_vm_start * 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..); * or * specify addr in map_extra and * use the same addr later with mmap(addr, MAP_FIXED..); */ return -EBUSY; if (arena->user_vm_end && arena->user_vm_end != vma->vm_end) /* all user processes must have the same size of mmap-ed region */ return -EBUSY; /* Earlier checks should prevent this */ if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > SZ_4G || vma->vm_pgoff)) return -EFAULT; if (remember_vma(arena, vma)) return -ENOMEM; arena->user_vm_start = vma->vm_start; arena->user_vm_end = vma->vm_end; /* * bpf_map_mmap() checks that it's being mmaped as VM_SHARED and * clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid * potential change of user_vm_start. */ vm_flags_set(vma, VM_DONTEXPAND); vma->vm_ops = &arena_vm_ops; return 0; } static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) { struct bpf_arena *arena = container_of(map, struct bpf_arena, map); if ((u64)off > arena->user_vm_end - arena->user_vm_start) return -ERANGE; *imm = (unsigned long)arena->user_vm_start; return 0; } BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena) const struct bpf_map_ops arena_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = arena_map_alloc, .map_free = arena_map_free, .map_direct_value_addr = arena_map_direct_value_addr, .map_mmap = arena_map_mmap, .map_get_unmapped_area = arena_get_unmapped_area, .map_get_next_key = arena_map_get_next_key, .map_push_elem = arena_map_push_elem, .map_peek_elem = arena_map_peek_elem, .map_pop_elem = arena_map_pop_elem, .map_lookup_elem = arena_map_lookup_elem, .map_update_elem = arena_map_update_elem, .map_delete_elem = arena_map_delete_elem, .map_check_btf = arena_map_check_btf, .map_mem_usage = arena_map_mem_usage, .map_btf_id = &bpf_arena_map_btf_ids[0], }; static u64 clear_lo32(u64 val) { return val & ~(u64)~0U; } /* * Allocate pages and vmap them into kernel vmalloc area. * Later the pages will be mmaped into user space vma. */ static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) { /* user_vm_end/start are fixed before bpf prog runs */ long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); struct page **pages; long pgoff = 0; u32 uaddr32; int ret, i; if (page_cnt > page_cnt_max) return 0; if (uaddr) { if (uaddr & ~PAGE_MASK) return 0; pgoff = compute_pgoff(arena, uaddr); if (pgoff > page_cnt_max - page_cnt) /* requested address will be outside of user VMA */ return 0; } /* zeroing is needed, since alloc_pages_bulk_array() only fills in non-zero entries */ pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); if (!pages) return 0; guard(mutex)(&arena->lock); if (uaddr) ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1, MT_ENTRY, GFP_KERNEL); else ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY, page_cnt, 0, page_cnt_max - 1, GFP_KERNEL); if (ret) goto out_free_pages; ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, node_id, page_cnt, pages); if (ret) goto out; uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); /* Earlier checks made sure that uaddr32 + page_cnt * PAGE_SIZE - 1 * will not overflow 32-bit. Lower 32-bit need to represent * contiguous user address range. * Map these pages at kern_vm_start base. * kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE - 1 can overflow * lower 32-bit and it's ok. */ ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); if (ret) { for (i = 0; i < page_cnt; i++) __free_page(pages[i]); goto out; } kvfree(pages); return clear_lo32(arena->user_vm_start) + uaddr32; out: mtree_erase(&arena->mt, pgoff); out_free_pages: kvfree(pages); return 0; } /* * If page is present in vmalloc area, unmap it from vmalloc area, * unmap it from all user space vma-s, * and free it. */ static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) { struct vma_list *vml; list_for_each_entry(vml, &arena->vma_list, head) zap_page_range_single(vml->vma, uaddr, PAGE_SIZE * page_cnt, NULL); } static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) { u64 full_uaddr, uaddr_end; long kaddr, pgoff, i; struct page *page; /* only aligned lower 32-bit are relevant */ uaddr = (u32)uaddr; uaddr &= PAGE_MASK; full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); if (full_uaddr >= uaddr_end) return; page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; guard(mutex)(&arena->lock); pgoff = compute_pgoff(arena, uaddr); /* clear range */ mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL); if (page_cnt > 1) /* bulk zap if multiple pages being freed */ zap_pages(arena, full_uaddr, page_cnt); kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { page = vmalloc_to_page((void *)kaddr); if (!page) continue; if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ /* Optimization for the common case of page_cnt==1: * If page wasn't mapped into some user vma there * is no need to call zap_pages which is slow. When * page_cnt is big it's faster to do the batched zap. */ zap_pages(arena, full_uaddr, 1); vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); __free_page(page); } } __bpf_kfunc_start_defs(); __bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt, int node_id, u64 flags) { struct bpf_map *map = p__map; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt) return NULL; return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id); } __bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt) { struct bpf_map *map = p__map; struct bpf_arena *arena = container_of(map, struct bpf_arena, map); if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign) return; arena_free_pages(arena, (long)ptr__ign, page_cnt); } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(arena_kfuncs) BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) BTF_KFUNCS_END(arena_kfuncs) static const struct btf_kfunc_id_set common_kfunc_set = { .owner = THIS_MODULE, .set = &arena_kfuncs, }; static int __init kfunc_init(void) { return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); } late_initcall(kfunc_init); |
10 3 2 5 60 60 5 5 5 5 2 3 5 5 5 5 25 24 25 22 22 5 11 9 11 4 7 25 25 25 25 84 84 4 80 47 35 1 46 19 27 26 26 26 14 1 13 8 5 2 1 1 85 4 147 9 54 3 3 3 504 505 34 317 505 33 406 176 23 290 313 298 13 3 313 296 275 5 5 5 3 3 3 53 54 1 53 35 20 1 34 34 9 1 5 3 8 9 24 24 24 24 8 8 5 3 2 1 1 1 499 501 416 416 32 313 90 29 358 121 296 296 192 192 296 2 2 2 21 21 8 60 60 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPVS An implementation of the IP virtual server support for the * LINUX operating system. IPVS is now implemented as a module * over the Netfilter framework. IPVS can be used to build a * high-performance and highly available server based on a * cluster of servers. * * Authors: Wensong Zhang <wensong@linuxvirtualserver.org> * Peter Kese <peter.kese@ijs.si> * Julian Anastasov <ja@ssi.bg> * * The IPVS code for kernel 2.2 was done by Wensong Zhang and Peter Kese, * with changes/fixes from Julian Anastasov, Lars Marowsky-Bree, Horms * and others. * * Changes: * Paul `Rusty' Russell properly handle non-linear skbs * Harald Welte don't use nfcache */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/sctp.h> #include <linux/icmp.h> #include <linux/slab.h> #include <net/ip.h> #include <net/tcp.h> #include <net/udp.h> #include <net/icmp.h> /* for icmp_send */ #include <net/gue.h> #include <net/gre.h> #include <net/route.h> #include <net/ip6_checksum.h> #include <net/netns/generic.h> /* net_generic() */ #include <linux/netfilter.h> #include <linux/netfilter_ipv4.h> #ifdef CONFIG_IP_VS_IPV6 #include <net/ipv6.h> #include <linux/netfilter_ipv6.h> #include <net/ip6_route.h> #endif #include <net/ip_vs.h> #include <linux/indirect_call_wrapper.h> EXPORT_SYMBOL(register_ip_vs_scheduler); EXPORT_SYMBOL(unregister_ip_vs_scheduler); EXPORT_SYMBOL(ip_vs_proto_name); EXPORT_SYMBOL(ip_vs_conn_new); EXPORT_SYMBOL(ip_vs_conn_in_get); EXPORT_SYMBOL(ip_vs_conn_out_get); #ifdef CONFIG_IP_VS_PROTO_TCP EXPORT_SYMBOL(ip_vs_tcp_conn_listen); #endif EXPORT_SYMBOL(ip_vs_conn_put); #ifdef CONFIG_IP_VS_DEBUG EXPORT_SYMBOL(ip_vs_get_debug_level); #endif EXPORT_SYMBOL(ip_vs_new_conn_out); #if defined(CONFIG_IP_VS_PROTO_TCP) && defined(CONFIG_IP_VS_PROTO_UDP) #define SNAT_CALL(f, ...) \ INDIRECT_CALL_2(f, tcp_snat_handler, udp_snat_handler, __VA_ARGS__) #elif defined(CONFIG_IP_VS_PROTO_TCP) #define SNAT_CALL(f, ...) INDIRECT_CALL_1(f, tcp_snat_handler, __VA_ARGS__) #elif defined(CONFIG_IP_VS_PROTO_UDP) #define SNAT_CALL(f, ...) INDIRECT_CALL_1(f, udp_snat_handler, __VA_ARGS__) #else #define SNAT_CALL(f, ...) f(__VA_ARGS__) #endif static unsigned int ip_vs_net_id __read_mostly; /* netns cnt used for uniqueness */ static atomic_t ipvs_netns_cnt = ATOMIC_INIT(0); /* ID used in ICMP lookups */ #define icmp_id(icmph) (((icmph)->un).echo.id) #define icmpv6_id(icmph) (icmph->icmp6_dataun.u_echo.identifier) const char *ip_vs_proto_name(unsigned int proto) { static char buf[20]; switch (proto) { case IPPROTO_IP: return "IP"; case IPPROTO_UDP: return "UDP"; case IPPROTO_TCP: return "TCP"; case IPPROTO_SCTP: return "SCTP"; case IPPROTO_ICMP: return "ICMP"; #ifdef CONFIG_IP_VS_IPV6 case IPPROTO_ICMPV6: return "ICMPv6"; #endif default: sprintf(buf, "IP_%u", proto); return buf; } } void ip_vs_init_hash_table(struct list_head *table, int rows) { while (--rows >= 0) INIT_LIST_HEAD(&table[rows]); } static inline void ip_vs_in_stats(struct ip_vs_conn *cp, struct sk_buff *skb) { struct ip_vs_dest *dest = cp->dest; struct netns_ipvs *ipvs = cp->ipvs; if (dest && (dest->flags & IP_VS_DEST_F_AVAILABLE)) { struct ip_vs_cpu_stats *s; struct ip_vs_service *svc; local_bh_disable(); s = this_cpu_ptr(dest->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.inpkts); u64_stats_add(&s->cnt.inbytes, skb->len); u64_stats_update_end(&s->syncp); svc = rcu_dereference(dest->svc); s = this_cpu_ptr(svc->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.inpkts); u64_stats_add(&s->cnt.inbytes, skb->len); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(ipvs->tot_stats->s.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.inpkts); u64_stats_add(&s->cnt.inbytes, skb->len); u64_stats_update_end(&s->syncp); local_bh_enable(); } } static inline void ip_vs_out_stats(struct ip_vs_conn *cp, struct sk_buff *skb) { struct ip_vs_dest *dest = cp->dest; struct netns_ipvs *ipvs = cp->ipvs; if (dest && (dest->flags & IP_VS_DEST_F_AVAILABLE)) { struct ip_vs_cpu_stats *s; struct ip_vs_service *svc; local_bh_disable(); s = this_cpu_ptr(dest->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.outpkts); u64_stats_add(&s->cnt.outbytes, skb->len); u64_stats_update_end(&s->syncp); svc = rcu_dereference(dest->svc); s = this_cpu_ptr(svc->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.outpkts); u64_stats_add(&s->cnt.outbytes, skb->len); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(ipvs->tot_stats->s.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.outpkts); u64_stats_add(&s->cnt.outbytes, skb->len); u64_stats_update_end(&s->syncp); local_bh_enable(); } } static inline void ip_vs_conn_stats(struct ip_vs_conn *cp, struct ip_vs_service *svc) { struct netns_ipvs *ipvs = svc->ipvs; struct ip_vs_cpu_stats *s; local_bh_disable(); s = this_cpu_ptr(cp->dest->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.conns); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(svc->stats.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.conns); u64_stats_update_end(&s->syncp); s = this_cpu_ptr(ipvs->tot_stats->s.cpustats); u64_stats_update_begin(&s->syncp); u64_stats_inc(&s->cnt.conns); u64_stats_update_end(&s->syncp); local_bh_enable(); } static inline void ip_vs_set_state(struct ip_vs_conn *cp, int direction, const struct sk_buff *skb, struct ip_vs_proto_data *pd) { if (likely(pd->pp->state_transition)) pd->pp->state_transition(cp, direction, skb, pd); } static inline int ip_vs_conn_fill_param_persist(const struct ip_vs_service *svc, struct sk_buff *skb, int protocol, const union nf_inet_addr *caddr, __be16 cport, const union nf_inet_addr *vaddr, __be16 vport, struct ip_vs_conn_param *p) { ip_vs_conn_fill_param(svc->ipvs, svc->af, protocol, caddr, cport, vaddr, vport, p); p->pe = rcu_dereference(svc->pe); if (p->pe && p->pe->fill_param) return p->pe->fill_param(p, skb); return 0; } /* * IPVS persistent scheduling function * It creates a connection entry according to its template if exists, * or selects a server and creates a connection entry plus a template. * Locking: we are svc user (svc->refcnt), so we hold all dests too * Protocols supported: TCP, UDP */ static struct ip_vs_conn * ip_vs_sched_persist(struct ip_vs_service *svc, struct sk_buff *skb, __be16 src_port, __be16 dst_port, int *ignored, struct ip_vs_iphdr *iph) { struct ip_vs_conn *cp = NULL; struct ip_vs_dest *dest; struct ip_vs_conn *ct; __be16 dport = 0; /* destination port to forward */ unsigned int flags; struct ip_vs_conn_param param; const union nf_inet_addr fwmark = { .ip = htonl(svc->fwmark) }; union nf_inet_addr snet; /* source network of the client, after masking */ const union nf_inet_addr *src_addr, *dst_addr; if (likely(!ip_vs_iph_inverse(iph))) { src_addr = &iph->saddr; dst_addr = &iph->daddr; } else { src_addr = &iph->daddr; dst_addr = &iph->saddr; } /* Mask saddr with the netmask to adjust template granularity */ #ifdef CONFIG_IP_VS_IPV6 if (svc->af == AF_INET6) ipv6_addr_prefix(&snet.in6, &src_addr->in6, (__force __u32) svc->netmask); else #endif snet.ip = src_addr->ip & svc->netmask; IP_VS_DBG_BUF(6, "p-schedule: src %s:%u dest %s:%u " "mnet %s\n", IP_VS_DBG_ADDR(svc->af, src_addr), ntohs(src_port), IP_VS_DBG_ADDR(svc->af, dst_addr), ntohs(dst_port), IP_VS_DBG_ADDR(svc->af, &snet)); /* * As far as we know, FTP is a very complicated network protocol, and * it uses control connection and data connections. For active FTP, * FTP server initialize data connection to the client, its source port * is often 20. For passive FTP, FTP server tells the clients the port * that it passively listens to, and the client issues the data * connection. In the tunneling or direct routing mode, the load * balancer is on the client-to-server half of connection, the port * number is unknown to the load balancer. So, a conn template like * <caddr, 0, vaddr, 0, daddr, 0> is created for persistent FTP * service, and a template like <caddr, 0, vaddr, vport, daddr, dport> * is created for other persistent services. */ { int protocol = iph->protocol; const union nf_inet_addr *vaddr = dst_addr; __be16 vport = 0; if (dst_port == svc->port) { /* non-FTP template: * <protocol, caddr, 0, vaddr, vport, daddr, dport> * FTP template: * <protocol, caddr, 0, vaddr, 0, daddr, 0> */ if (svc->port != FTPPORT) vport = dst_port; } else { /* Note: persistent fwmark-based services and * persistent port zero service are handled here. * fwmark template: * <IPPROTO_IP,caddr,0,fwmark,0,daddr,0> * port zero template: * <protocol,caddr,0,vaddr,0,daddr,0> */ if (svc->fwmark) { protocol = IPPROTO_IP; vaddr = &fwmark; } } /* return *ignored = -1 so NF_DROP can be used */ if (ip_vs_conn_fill_param_persist(svc, skb, protocol, &snet, 0, vaddr, vport, ¶m) < 0) { *ignored = -1; return NULL; } } /* Check if a template already exists */ ct = ip_vs_ct_in_get(¶m); if (!ct || !ip_vs_check_template(ct, NULL)) { struct ip_vs_scheduler *sched; /* * No template found or the dest of the connection * template is not available. * return *ignored=0 i.e. ICMP and NF_DROP */ sched = rcu_dereference(svc->scheduler); if (sched) { /* read svc->sched_data after svc->scheduler */ smp_rmb(); dest = sched->schedule(svc, skb, iph); } else { dest = NULL; } if (!dest) { IP_VS_DBG(1, "p-schedule: no dest found.\n"); kfree(param.pe_data); *ignored = 0; return NULL; } if (dst_port == svc->port && svc->port != FTPPORT) dport = dest->port; /* Create a template * This adds param.pe_data to the template, * and thus param.pe_data will be destroyed * when the template expires */ ct = ip_vs_conn_new(¶m, dest->af, &dest->addr, dport, IP_VS_CONN_F_TEMPLATE, dest, skb->mark); if (ct == NULL) { kfree(param.pe_data); *ignored = -1; return NULL; } ct->timeout = svc->timeout; } else { /* set destination with the found template */ dest = ct->dest; kfree(param.pe_data); } dport = dst_port; if (dport == svc->port && dest->port) dport = dest->port; flags = (svc->flags & IP_VS_SVC_F_ONEPACKET && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; /* * Create a new connection according to the template */ ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, src_addr, src_port, dst_addr, dst_port, ¶m); cp = ip_vs_conn_new(¶m, dest->af, &dest->addr, dport, flags, dest, skb->mark); if (cp == NULL) { ip_vs_conn_put(ct); *ignored = -1; return NULL; } /* * Add its control */ ip_vs_control_add(cp, ct); ip_vs_conn_put(ct); ip_vs_conn_stats(cp, svc); return cp; } /* * IPVS main scheduling function * It selects a server according to the virtual service, and * creates a connection entry. * Protocols supported: TCP, UDP * * Usage of *ignored * * 1 : protocol tried to schedule (eg. on SYN), found svc but the * svc/scheduler decides that this packet should be accepted with * NF_ACCEPT because it must not be scheduled. * * 0 : scheduler can not find destination, so try bypass or * return ICMP and then NF_DROP (ip_vs_leave). * * -1 : scheduler tried to schedule but fatal error occurred, eg. * ip_vs_conn_new failure (ENOMEM) or ip_vs_sip_fill_param * failure such as missing Call-ID, ENOMEM on skb_linearize * or pe_data. In this case we should return NF_DROP without * any attempts to send ICMP with ip_vs_leave. */ struct ip_vs_conn * ip_vs_schedule(struct ip_vs_service *svc, struct sk_buff *skb, struct ip_vs_proto_data *pd, int *ignored, struct ip_vs_iphdr *iph) { struct ip_vs_protocol *pp = pd->pp; struct ip_vs_conn *cp = NULL; struct ip_vs_scheduler *sched; struct ip_vs_dest *dest; __be16 _ports[2], *pptr, cport, vport; const void *caddr, *vaddr; unsigned int flags; *ignored = 1; /* * IPv6 frags, only the first hit here. */ pptr = frag_safe_skb_hp(skb, iph->len, sizeof(_ports), _ports); if (pptr == NULL) return NULL; if (likely(!ip_vs_iph_inverse(iph))) { cport = pptr[0]; caddr = &iph->saddr; vport = pptr[1]; vaddr = &iph->daddr; } else { cport = pptr[1]; caddr = &iph->daddr; vport = pptr[0]; vaddr = &iph->saddr; } /* * FTPDATA needs this check when using local real server. * Never schedule Active FTPDATA connections from real server. * For LVS-NAT they must be already created. For other methods * with persistence the connection is created on SYN+ACK. */ if (cport == FTPDATA) { IP_VS_DBG_PKT(12, svc->af, pp, skb, iph->off, "Not scheduling FTPDATA"); return NULL; } /* * Do not schedule replies from local real server. */ if ((!skb->dev || skb->dev->flags & IFF_LOOPBACK)) { iph->hdr_flags ^= IP_VS_HDR_INVERSE; cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, svc->ipvs, svc->af, skb, iph); iph->hdr_flags ^= IP_VS_HDR_INVERSE; if (cp) { IP_VS_DBG_PKT(12, svc->af, pp, skb, iph->off, "Not scheduling reply for existing" " connection"); __ip_vs_conn_put(cp); return NULL; } } /* * Persistent service */ if (svc->flags & IP_VS_SVC_F_PERSISTENT) return ip_vs_sched_persist(svc, skb, cport, vport, ignored, iph); *ignored = 0; /* * Non-persistent service */ if (!svc->fwmark && vport != svc->port) { if (!svc->port) pr_err("Schedule: port zero only supported " "in persistent services, " "check your ipvs configuration\n"); return NULL; } sched = rcu_dereference(svc->scheduler); if (sched) { /* read svc->sched_data after svc->scheduler */ smp_rmb(); dest = sched->schedule(svc, skb, iph); } else { dest = NULL; } if (dest == NULL) { IP_VS_DBG(1, "Schedule: no dest found.\n"); return NULL; } flags = (svc->flags & IP_VS_SVC_F_ONEPACKET && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; /* * Create a connection entry. */ { struct ip_vs_conn_param p; ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, caddr, cport, vaddr, vport, &p); cp = ip_vs_conn_new(&p, dest->af, &dest->addr, dest->port ? dest->port : vport, flags, dest, skb->mark); if (!cp) { *ignored = -1; return NULL; } } IP_VS_DBG_BUF(6, "Schedule fwd:%c c:%s:%u v:%s:%u " "d:%s:%u conn->flags:%X conn->refcnt:%d\n", ip_vs_fwd_tag(cp), IP_VS_DBG_ADDR(cp->af, &cp->caddr), ntohs(cp->cport), IP_VS_DBG_ADDR(cp->af, &cp->vaddr), ntohs(cp->vport), IP_VS_DBG_ADDR(cp->daf, &cp->daddr), ntohs(cp->dport), cp->flags, refcount_read(&cp->refcnt)); ip_vs_conn_stats(cp, svc); return cp; } static inline int ip_vs_addr_is_unicast(struct net *net, int af, union nf_inet_addr *addr) { #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) return ipv6_addr_type(&addr->in6) & IPV6_ADDR_UNICAST; #endif return (inet_addr_type(net, addr->ip) == RTN_UNICAST); } /* * Pass or drop the packet. * Called by ip_vs_in, when the virtual service is available but * no destination is available for a new connection. */ int ip_vs_leave(struct ip_vs_service *svc, struct sk_buff *skb, struct ip_vs_proto_data *pd, struct ip_vs_iphdr *iph) { __be16 _ports[2], *pptr, dport; struct netns_ipvs *ipvs = svc->ipvs; struct net *net = ipvs->net; pptr = frag_safe_skb_hp(skb, iph->len, sizeof(_ports), _ports); if (!pptr) return NF_DROP; dport = likely(!ip_vs_iph_inverse(iph)) ? pptr[1] : pptr[0]; /* if it is fwmark-based service, the cache_bypass sysctl is up and the destination is a non-local unicast, then create a cache_bypass connection entry */ if (sysctl_cache_bypass(ipvs) && svc->fwmark && !(iph->hdr_flags & (IP_VS_HDR_INVERSE | IP_VS_HDR_ICMP)) && ip_vs_addr_is_unicast(net, svc->af, &iph->daddr)) { int ret; struct ip_vs_conn *cp; unsigned int flags = (svc->flags & IP_VS_SVC_F_ONEPACKET && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; union nf_inet_addr daddr = { .all = { 0, 0, 0, 0 } }; /* create a new connection entry */ IP_VS_DBG(6, "%s(): create a cache_bypass entry\n", __func__); { struct ip_vs_conn_param p; ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, &iph->saddr, pptr[0], &iph->daddr, pptr[1], &p); cp = ip_vs_conn_new(&p, svc->af, &daddr, 0, IP_VS_CONN_F_BYPASS | flags, NULL, skb->mark); if (!cp) return NF_DROP; } /* statistics */ ip_vs_in_stats(cp, skb); /* set state */ ip_vs_set_state(cp, IP_VS_DIR_INPUT, skb, pd); /* transmit the first SYN packet */ ret = cp->packet_xmit(skb, cp, pd->pp, iph); /* do not touch skb anymore */ if ((cp->flags & IP_VS_CONN_F_ONE_PACKET) && cp->control) atomic_inc(&cp->control->in_pkts); else atomic_inc(&cp->in_pkts); ip_vs_conn_put(cp); return ret; } /* * When the virtual ftp service is presented, packets destined * for other services on the VIP may get here (except services * listed in the ipvs table), pass the packets, because it is * not ipvs job to decide to drop the packets. */ if (svc->port == FTPPORT && dport != FTPPORT) return NF_ACCEPT; if (unlikely(ip_vs_iph_icmp(iph))) return NF_DROP; /* * Notify the client that the destination is unreachable, and * release the socket buffer. * Since it is in IP layer, the TCP socket is not actually * created, the TCP RST packet cannot be sent, instead that * ICMP_PORT_UNREACH is sent here no matter it is TCP/UDP. --WZ */ #ifdef CONFIG_IP_VS_IPV6 if (svc->af == AF_INET6) { if (!skb->dev) skb->dev = net->loopback_dev; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); } else #endif icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); return NF_DROP; } #ifdef CONFIG_SYSCTL static int sysctl_snat_reroute(struct netns_ipvs *ipvs) { return ipvs->sysctl_snat_reroute; } static int sysctl_nat_icmp_send(struct netns_ipvs *ipvs) { return ipvs->sysctl_nat_icmp_send; } #else static int sysctl_snat_reroute(struct netns_ipvs *ipvs) { return 0; } static int sysctl_nat_icmp_send(struct netns_ipvs *ipvs) { return 0; } #endif __sum16 ip_vs_checksum_complete(struct sk_buff *skb, int offset) { return csum_fold(skb_checksum(skb, offset, skb->len - offset, 0)); } static inline enum ip_defrag_users ip_vs_defrag_user(unsigned int hooknum) { if (NF_INET_LOCAL_IN == hooknum) return IP_DEFRAG_VS_IN; if (NF_INET_FORWARD == hooknum) return IP_DEFRAG_VS_FWD; return IP_DEFRAG_VS_OUT; } static inline int ip_vs_gather_frags(struct netns_ipvs *ipvs, struct sk_buff *skb, u_int32_t user) { int err; local_bh_disable(); err = ip_defrag(ipvs->net, skb, user); local_bh_enable(); if (!err) ip_send_check(ip_hdr(skb)); return err; } static int ip_vs_route_me_harder(struct netns_ipvs *ipvs, int af, struct sk_buff *skb, unsigned int hooknum) { if (!sysctl_snat_reroute(ipvs)) return 0; /* Reroute replies only to remote clients (FORWARD and LOCAL_OUT) */ if (NF_INET_LOCAL_IN == hooknum) return 0; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { struct dst_entry *dst = skb_dst(skb); if (dst->dev && !(dst->dev->flags & IFF_LOOPBACK) && ip6_route_me_harder(ipvs->net, skb->sk, skb) != 0) return 1; } else #endif if (!(skb_rtable(skb)->rt_flags & RTCF_LOCAL) && ip_route_me_harder(ipvs->net, skb->sk, skb, RTN_LOCAL) != 0) return 1; return 0; } /* * Packet has been made sufficiently writable in caller * - inout: 1=in->out, 0=out->in */ void ip_vs_nat_icmp(struct sk_buff *skb, struct ip_vs_protocol *pp, struct ip_vs_conn *cp, int inout) { struct iphdr *iph = ip_hdr(skb); unsigned int icmp_offset = iph->ihl*4; struct icmphdr *icmph = (struct icmphdr *)(skb_network_header(skb) + icmp_offset); struct iphdr *ciph = (struct iphdr *)(icmph + 1); if (inout) { iph->saddr = cp->vaddr.ip; ip_send_check(iph); ciph->daddr = cp->vaddr.ip; ip_send_check(ciph); } else { iph->daddr = cp->daddr.ip; ip_send_check(iph); ciph->saddr = cp->daddr.ip; ip_send_check(ciph); } /* the TCP/UDP/SCTP port */ if (IPPROTO_TCP == ciph->protocol || IPPROTO_UDP == ciph->protocol || IPPROTO_SCTP == ciph->protocol) { __be16 *ports = (void *)ciph + ciph->ihl*4; if (inout) ports[1] = cp->vport; else ports[0] = cp->dport; } /* And finally the ICMP checksum */ icmph->checksum = 0; icmph->checksum = ip_vs_checksum_complete(skb, icmp_offset); skb->ip_summed = CHECKSUM_UNNECESSARY; if (inout) IP_VS_DBG_PKT(11, AF_INET, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered outgoing ICMP"); else IP_VS_DBG_PKT(11, AF_INET, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered incoming ICMP"); } #ifdef CONFIG_IP_VS_IPV6 void ip_vs_nat_icmp_v6(struct sk_buff *skb, struct ip_vs_protocol *pp, struct ip_vs_conn *cp, int inout) { struct ipv6hdr *iph = ipv6_hdr(skb); unsigned int icmp_offset = 0; unsigned int offs = 0; /* header offset*/ int protocol; struct icmp6hdr *icmph; struct ipv6hdr *ciph; unsigned short fragoffs; ipv6_find_hdr(skb, &icmp_offset, IPPROTO_ICMPV6, &fragoffs, NULL); icmph = (struct icmp6hdr *)(skb_network_header(skb) + icmp_offset); offs = icmp_offset + sizeof(struct icmp6hdr); ciph = (struct ipv6hdr *)(skb_network_header(skb) + offs); protocol = ipv6_find_hdr(skb, &offs, -1, &fragoffs, NULL); if (inout) { iph->saddr = cp->vaddr.in6; ciph->daddr = cp->vaddr.in6; } else { iph->daddr = cp->daddr.in6; ciph->saddr = cp->daddr.in6; } /* the TCP/UDP/SCTP port */ if (!fragoffs && (IPPROTO_TCP == protocol || IPPROTO_UDP == protocol || IPPROTO_SCTP == protocol)) { __be16 *ports = (void *)(skb_network_header(skb) + offs); IP_VS_DBG(11, "%s() changed port %d to %d\n", __func__, ntohs(inout ? ports[1] : ports[0]), ntohs(inout ? cp->vport : cp->dport)); if (inout) ports[1] = cp->vport; else ports[0] = cp->dport; } /* And finally the ICMP checksum */ icmph->icmp6_cksum = ~csum_ipv6_magic(&iph->saddr, &iph->daddr, skb->len - icmp_offset, IPPROTO_ICMPV6, 0); skb->csum_start = skb_network_header(skb) - skb->head + icmp_offset; skb->csum_offset = offsetof(struct icmp6hdr, icmp6_cksum); skb->ip_summed = CHECKSUM_PARTIAL; if (inout) IP_VS_DBG_PKT(11, AF_INET6, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered outgoing ICMPv6"); else IP_VS_DBG_PKT(11, AF_INET6, pp, skb, (void *)ciph - (void *)iph, "Forwarding altered incoming ICMPv6"); } #endif /* Handle relevant response ICMP messages - forward to the right * destination host. */ static int handle_response_icmp(int af, struct sk_buff *skb, union nf_inet_addr *snet, __u8 protocol, struct ip_vs_conn *cp, struct ip_vs_protocol *pp, unsigned int offset, unsigned int ihl, unsigned int hooknum) { unsigned int verdict = NF_DROP; if (IP_VS_FWD_METHOD(cp) != IP_VS_CONN_F_MASQ) goto after_nat; /* Ensure the checksum is correct */ if (!skb_csum_unnecessary(skb) && ip_vs_checksum_complete(skb, ihl)) { /* Failed checksum! */ IP_VS_DBG_BUF(1, "Forward ICMP: failed checksum from %s!\n", IP_VS_DBG_ADDR(af, snet)); goto out; } if (IPPROTO_TCP == protocol || IPPROTO_UDP == protocol || IPPROTO_SCTP == protocol) offset += 2 * sizeof(__u16); if (skb_ensure_writable(skb, offset)) goto out; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) ip_vs_nat_icmp_v6(skb, pp, cp, 1); else #endif ip_vs_nat_icmp(skb, pp, cp, 1); if (ip_vs_route_me_harder(cp->ipvs, af, skb, hooknum)) goto out; after_nat: /* do the statistics and put it back */ ip_vs_out_stats(cp, skb); skb->ipvs_property = 1; if (!(cp->flags & IP_VS_CONN_F_NFCT)) ip_vs_notrack(skb); else ip_vs_update_conntrack(skb, cp, 0); verdict = NF_ACCEPT; out: __ip_vs_conn_put(cp); return verdict; } /* * Handle ICMP messages in the inside-to-outside direction (outgoing). * Find any that might be relevant, check against existing connections. * Currently handles error types - unreachable, quench, ttl exceeded. */ static int ip_vs_out_icmp(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum) { struct iphdr *iph; struct icmphdr _icmph, *ic; struct iphdr _ciph, *cih; /* The ip header contained within the ICMP */ struct ip_vs_iphdr ciph; struct ip_vs_conn *cp; struct ip_vs_protocol *pp; unsigned int offset, ihl; union nf_inet_addr snet; *related = 1; /* reassemble IP fragments */ if (ip_is_fragment(ip_hdr(skb))) { if (ip_vs_gather_frags(ipvs, skb, ip_vs_defrag_user(hooknum))) return NF_STOLEN; } iph = ip_hdr(skb); offset = ihl = iph->ihl * 4; ic = skb_header_pointer(skb, offset, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; IP_VS_DBG(12, "Outgoing ICMP (%d,%d) %pI4->%pI4\n", ic->type, ntohs(icmp_id(ic)), &iph->saddr, &iph->daddr); /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if ((ic->type != ICMP_DEST_UNREACH) && (ic->type != ICMP_SOURCE_QUENCH) && (ic->type != ICMP_TIME_EXCEEDED)) { *related = 0; return NF_ACCEPT; } /* Now find the contained IP header */ offset += sizeof(_icmph); cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih == NULL) return NF_ACCEPT; /* The packet looks wrong, ignore */ pp = ip_vs_proto_get(cih->protocol); if (!pp) return NF_ACCEPT; /* Is the embedded protocol header present? */ if (unlikely(cih->frag_off & htons(IP_OFFSET) && pp->dont_defrag)) return NF_ACCEPT; IP_VS_DBG_PKT(11, AF_INET, pp, skb, offset, "Checking outgoing ICMP for"); ip_vs_fill_iph_skb_icmp(AF_INET, skb, offset, true, &ciph); /* The embedded headers contain source and dest in reverse order */ cp = INDIRECT_CALL_1(pp->conn_out_get, ip_vs_conn_out_get_proto, ipvs, AF_INET, skb, &ciph); if (!cp) return NF_ACCEPT; snet.ip = iph->saddr; return handle_response_icmp(AF_INET, skb, &snet, cih->protocol, cp, pp, ciph.len, ihl, hooknum); } #ifdef CONFIG_IP_VS_IPV6 static int ip_vs_out_icmp_v6(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum, struct ip_vs_iphdr *ipvsh) { struct icmp6hdr _icmph, *ic; struct ip_vs_iphdr ciph = {.flags = 0, .fragoffs = 0};/*Contained IP */ struct ip_vs_conn *cp; struct ip_vs_protocol *pp; union nf_inet_addr snet; unsigned int offset; *related = 1; ic = frag_safe_skb_hp(skb, ipvsh->len, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if (ic->icmp6_type & ICMPV6_INFOMSG_MASK) { *related = 0; return NF_ACCEPT; } /* Fragment header that is before ICMP header tells us that: * it's not an error message since they can't be fragmented. */ if (ipvsh->flags & IP6_FH_F_FRAG) return NF_DROP; IP_VS_DBG(8, "Outgoing ICMPv6 (%d,%d) %pI6c->%pI6c\n", ic->icmp6_type, ntohs(icmpv6_id(ic)), &ipvsh->saddr, &ipvsh->daddr); if (!ip_vs_fill_iph_skb_icmp(AF_INET6, skb, ipvsh->len + sizeof(_icmph), true, &ciph)) return NF_ACCEPT; /* The packet looks wrong, ignore */ pp = ip_vs_proto_get(ciph.protocol); if (!pp) return NF_ACCEPT; /* The embedded headers contain source and dest in reverse order */ cp = INDIRECT_CALL_1(pp->conn_out_get, ip_vs_conn_out_get_proto, ipvs, AF_INET6, skb, &ciph); if (!cp) return NF_ACCEPT; snet.in6 = ciph.saddr.in6; offset = ciph.len; return handle_response_icmp(AF_INET6, skb, &snet, ciph.protocol, cp, pp, offset, sizeof(struct ipv6hdr), hooknum); } #endif /* * Check if sctp chunc is ABORT chunk */ static inline int is_sctp_abort(const struct sk_buff *skb, int nh_len) { struct sctp_chunkhdr *sch, schunk; sch = skb_header_pointer(skb, nh_len + sizeof(struct sctphdr), sizeof(schunk), &schunk); if (sch == NULL) return 0; if (sch->type == SCTP_CID_ABORT) return 1; return 0; } static inline int is_tcp_reset(const struct sk_buff *skb, int nh_len) { struct tcphdr _tcph, *th; th = skb_header_pointer(skb, nh_len, sizeof(_tcph), &_tcph); if (th == NULL) return 0; return th->rst; } static inline bool is_new_conn(const struct sk_buff *skb, struct ip_vs_iphdr *iph) { switch (iph->protocol) { case IPPROTO_TCP: { struct tcphdr _tcph, *th; th = skb_header_pointer(skb, iph->len, sizeof(_tcph), &_tcph); if (th == NULL) return false; return th->syn; } case IPPROTO_SCTP: { struct sctp_chunkhdr *sch, schunk; sch = skb_header_pointer(skb, iph->len + sizeof(struct sctphdr), sizeof(schunk), &schunk); if (sch == NULL) return false; return sch->type == SCTP_CID_INIT; } default: return false; } } static inline bool is_new_conn_expected(const struct ip_vs_conn *cp, int conn_reuse_mode) { /* Controlled (FTP DATA or persistence)? */ if (cp->control) return false; switch (cp->protocol) { case IPPROTO_TCP: return (cp->state == IP_VS_TCP_S_TIME_WAIT) || (cp->state == IP_VS_TCP_S_CLOSE) || ((conn_reuse_mode & 2) && (cp->state == IP_VS_TCP_S_FIN_WAIT) && (cp->flags & IP_VS_CONN_F_NOOUTPUT)); case IPPROTO_SCTP: return cp->state == IP_VS_SCTP_S_CLOSED; default: return false; } } /* Generic function to create new connections for outgoing RS packets * * Pre-requisites for successful connection creation: * 1) Virtual Service is NOT fwmark based: * In fwmark-VS actual vaddr and vport are unknown to IPVS * 2) Real Server and Virtual Service were NOT configured without port: * This is to allow match of different VS to the same RS ip-addr */ struct ip_vs_conn *ip_vs_new_conn_out(struct ip_vs_service *svc, struct ip_vs_dest *dest, struct sk_buff *skb, const struct ip_vs_iphdr *iph, __be16 dport, __be16 cport) { struct ip_vs_conn_param param; struct ip_vs_conn *ct = NULL, *cp = NULL; const union nf_inet_addr *vaddr, *daddr, *caddr; union nf_inet_addr snet; __be16 vport; unsigned int flags; vaddr = &svc->addr; vport = svc->port; daddr = &iph->saddr; caddr = &iph->daddr; /* check pre-requisites are satisfied */ if (svc->fwmark) return NULL; if (!vport || !dport) return NULL; /* for persistent service first create connection template */ if (svc->flags & IP_VS_SVC_F_PERSISTENT) { /* apply netmask the same way ingress-side does */ #ifdef CONFIG_IP_VS_IPV6 if (svc->af == AF_INET6) ipv6_addr_prefix(&snet.in6, &caddr->in6, (__force __u32)svc->netmask); else #endif snet.ip = caddr->ip & svc->netmask; /* fill params and create template if not existent */ if (ip_vs_conn_fill_param_persist(svc, skb, iph->protocol, &snet, 0, vaddr, vport, ¶m) < 0) return NULL; ct = ip_vs_ct_in_get(¶m); /* check if template exists and points to the same dest */ if (!ct || !ip_vs_check_template(ct, dest)) { ct = ip_vs_conn_new(¶m, dest->af, daddr, dport, IP_VS_CONN_F_TEMPLATE, dest, 0); if (!ct) { kfree(param.pe_data); return NULL; } ct->timeout = svc->timeout; } else { kfree(param.pe_data); } } /* connection flags */ flags = ((svc->flags & IP_VS_SVC_F_ONEPACKET) && iph->protocol == IPPROTO_UDP) ? IP_VS_CONN_F_ONE_PACKET : 0; /* create connection */ ip_vs_conn_fill_param(svc->ipvs, svc->af, iph->protocol, caddr, cport, vaddr, vport, ¶m); cp = ip_vs_conn_new(¶m, dest->af, daddr, dport, flags, dest, 0); if (!cp) { if (ct) ip_vs_conn_put(ct); return NULL; } if (ct) { ip_vs_control_add(cp, ct); ip_vs_conn_put(ct); } ip_vs_conn_stats(cp, svc); /* return connection (will be used to handle outgoing packet) */ IP_VS_DBG_BUF(6, "New connection RS-initiated:%c c:%s:%u v:%s:%u " "d:%s:%u conn->flags:%X conn->refcnt:%d\n", ip_vs_fwd_tag(cp), IP_VS_DBG_ADDR(cp->af, &cp->caddr), ntohs(cp->cport), IP_VS_DBG_ADDR(cp->af, &cp->vaddr), ntohs(cp->vport), IP_VS_DBG_ADDR(cp->af, &cp->daddr), ntohs(cp->dport), cp->flags, refcount_read(&cp->refcnt)); return cp; } /* Handle outgoing packets which are considered requests initiated by * real servers, so that subsequent responses from external client can be * routed to the right real server. * Used also for outgoing responses in OPS mode. * * Connection management is handled by persistent-engine specific callback. */ static struct ip_vs_conn *__ip_vs_rs_conn_out(unsigned int hooknum, struct netns_ipvs *ipvs, int af, struct sk_buff *skb, const struct ip_vs_iphdr *iph) { struct ip_vs_dest *dest; struct ip_vs_conn *cp = NULL; __be16 _ports[2], *pptr; if (hooknum == NF_INET_LOCAL_IN) return NULL; pptr = frag_safe_skb_hp(skb, iph->len, sizeof(_ports), _ports); if (!pptr) return NULL; dest = ip_vs_find_real_service(ipvs, af, iph->protocol, &iph->saddr, pptr[0]); if (dest) { struct ip_vs_service *svc; struct ip_vs_pe *pe; svc = rcu_dereference(dest->svc); if (svc) { pe = rcu_dereference(svc->pe); if (pe && pe->conn_out) cp = pe->conn_out(svc, dest, skb, iph, pptr[0], pptr[1]); } } return cp; } /* Handle response packets: rewrite addresses and send away... */ static unsigned int handle_response(int af, struct sk_buff *skb, struct ip_vs_proto_data *pd, struct ip_vs_conn *cp, struct ip_vs_iphdr *iph, unsigned int hooknum) { struct ip_vs_protocol *pp = pd->pp; if (IP_VS_FWD_METHOD(cp) != IP_VS_CONN_F_MASQ) goto after_nat; IP_VS_DBG_PKT(11, af, pp, skb, iph->off, "Outgoing packet"); if (skb_ensure_writable(skb, iph->len)) goto drop; /* mangle the packet */ if (pp->snat_handler && !SNAT_CALL(pp->snat_handler, skb, pp, cp, iph)) goto drop; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) ipv6_hdr(skb)->saddr = cp->vaddr.in6; else #endif { ip_hdr(skb)->saddr = cp->vaddr.ip; ip_send_check(ip_hdr(skb)); } /* * nf_iterate does not expect change in the skb->dst->dev. * It looks like it is not fatal to enable this code for hooks * where our handlers are at the end of the chain list and * when all next handlers use skb->dst->dev and not outdev. * It will definitely route properly the inout NAT traffic * when multiple paths are used. */ /* For policy routing, packets originating from this * machine itself may be routed differently to packets * passing through. We want this packet to be routed as * if it came from this machine itself. So re-compute * the routing information. */ if (ip_vs_route_me_harder(cp->ipvs, af, skb, hooknum)) goto drop; IP_VS_DBG_PKT(10, af, pp, skb, iph->off, "After SNAT"); after_nat: ip_vs_out_stats(cp, skb); ip_vs_set_state(cp, IP_VS_DIR_OUTPUT, skb, pd); skb->ipvs_property = 1; if (!(cp->flags & IP_VS_CONN_F_NFCT)) ip_vs_notrack(skb); else ip_vs_update_conntrack(skb, cp, 0); ip_vs_conn_put(cp); return NF_ACCEPT; drop: ip_vs_conn_put(cp); kfree_skb(skb); return NF_STOLEN; } /* * Check if outgoing packet belongs to the established ip_vs_conn. */ static unsigned int ip_vs_out_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct netns_ipvs *ipvs = net_ipvs(state->net); unsigned int hooknum = state->hook; struct ip_vs_iphdr iph; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; struct ip_vs_conn *cp; int af = state->pf; struct sock *sk; /* Already marked as IPVS request or reply? */ if (skb->ipvs_property) return NF_ACCEPT; sk = skb_to_full_sk(skb); /* Bad... Do not break raw sockets */ if (unlikely(sk && hooknum == NF_INET_LOCAL_OUT && af == AF_INET)) { if (sk->sk_family == PF_INET && inet_test_bit(NODEFRAG, sk)) return NF_ACCEPT; } if (unlikely(!skb_dst(skb))) return NF_ACCEPT; if (!ipvs->enable) return NF_ACCEPT; ip_vs_fill_iph_skb(af, skb, false, &iph); #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { if (unlikely(iph.protocol == IPPROTO_ICMPV6)) { int related; int verdict = ip_vs_out_icmp_v6(ipvs, skb, &related, hooknum, &iph); if (related) return verdict; } } else #endif if (unlikely(iph.protocol == IPPROTO_ICMP)) { int related; int verdict = ip_vs_out_icmp(ipvs, skb, &related, hooknum); if (related) return verdict; } pd = ip_vs_proto_data_get(ipvs, iph.protocol); if (unlikely(!pd)) return NF_ACCEPT; pp = pd->pp; /* reassemble IP fragments */ #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET) #endif if (unlikely(ip_is_fragment(ip_hdr(skb)) && !pp->dont_defrag)) { if (ip_vs_gather_frags(ipvs, skb, ip_vs_defrag_user(hooknum))) return NF_STOLEN; ip_vs_fill_iph_skb(AF_INET, skb, false, &iph); } /* * Check if the packet belongs to an existing entry */ cp = INDIRECT_CALL_1(pp->conn_out_get, ip_vs_conn_out_get_proto, ipvs, af, skb, &iph); if (likely(cp)) return handle_response(af, skb, pd, cp, &iph, hooknum); /* Check for real-server-started requests */ if (atomic_read(&ipvs->conn_out_counter)) { /* Currently only for UDP: * connection oriented protocols typically use * ephemeral ports for outgoing connections, so * related incoming responses would not match any VS */ if (pp->protocol == IPPROTO_UDP) { cp = __ip_vs_rs_conn_out(hooknum, ipvs, af, skb, &iph); if (likely(cp)) return handle_response(af, skb, pd, cp, &iph, hooknum); } } if (sysctl_nat_icmp_send(ipvs) && (pp->protocol == IPPROTO_TCP || pp->protocol == IPPROTO_UDP || pp->protocol == IPPROTO_SCTP)) { __be16 _ports[2], *pptr; pptr = frag_safe_skb_hp(skb, iph.len, sizeof(_ports), _ports); if (pptr == NULL) return NF_ACCEPT; /* Not for me */ if (ip_vs_has_real_service(ipvs, af, iph.protocol, &iph.saddr, pptr[0])) { /* * Notify the real server: there is no * existing entry if it is not RST * packet or not TCP packet. */ if ((iph.protocol != IPPROTO_TCP && iph.protocol != IPPROTO_SCTP) || ((iph.protocol == IPPROTO_TCP && !is_tcp_reset(skb, iph.len)) || (iph.protocol == IPPROTO_SCTP && !is_sctp_abort(skb, iph.len)))) { #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { if (!skb->dev) skb->dev = ipvs->net->loopback_dev; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); } else #endif icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); return NF_DROP; } } } IP_VS_DBG_PKT(12, af, pp, skb, iph.off, "ip_vs_out: packet continues traversal as normal"); return NF_ACCEPT; } static unsigned int ip_vs_try_to_schedule(struct netns_ipvs *ipvs, int af, struct sk_buff *skb, struct ip_vs_proto_data *pd, int *verdict, struct ip_vs_conn **cpp, struct ip_vs_iphdr *iph) { struct ip_vs_protocol *pp = pd->pp; if (!iph->fragoffs) { /* No (second) fragments need to enter here, as nf_defrag_ipv6 * replayed fragment zero will already have created the cp */ /* Schedule and create new connection entry into cpp */ if (!pp->conn_schedule(ipvs, af, skb, pd, verdict, cpp, iph)) return 0; } if (unlikely(!*cpp)) { /* sorry, all this trouble for a no-hit :) */ IP_VS_DBG_PKT(12, af, pp, skb, iph->off, "ip_vs_in: packet continues traversal as normal"); /* Fragment couldn't be mapped to a conn entry */ if (iph->fragoffs) IP_VS_DBG_PKT(7, af, pp, skb, iph->off, "unhandled fragment"); *verdict = NF_ACCEPT; return 0; } return 1; } /* Check the UDP tunnel and return its header length */ static int ipvs_udp_decap(struct netns_ipvs *ipvs, struct sk_buff *skb, unsigned int offset, __u16 af, const union nf_inet_addr *daddr, __u8 *proto) { struct udphdr _udph, *udph; struct ip_vs_dest *dest; udph = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); if (!udph) goto unk; offset += sizeof(struct udphdr); dest = ip_vs_find_tunnel(ipvs, af, daddr, udph->dest); if (!dest) goto unk; if (dest->tun_type == IP_VS_CONN_F_TUNNEL_TYPE_GUE) { struct guehdr _gueh, *gueh; gueh = skb_header_pointer(skb, offset, sizeof(_gueh), &_gueh); if (!gueh) goto unk; if (gueh->control != 0 || gueh->version != 0) goto unk; /* Later we can support also IPPROTO_IPV6 */ if (gueh->proto_ctype != IPPROTO_IPIP) goto unk; *proto = gueh->proto_ctype; return sizeof(struct udphdr) + sizeof(struct guehdr) + (gueh->hlen << 2); } unk: return 0; } /* Check the GRE tunnel and return its header length */ static int ipvs_gre_decap(struct netns_ipvs *ipvs, struct sk_buff *skb, unsigned int offset, __u16 af, const union nf_inet_addr *daddr, __u8 *proto) { struct gre_base_hdr _greh, *greh; struct ip_vs_dest *dest; greh = skb_header_pointer(skb, offset, sizeof(_greh), &_greh); if (!greh) goto unk; dest = ip_vs_find_tunnel(ipvs, af, daddr, 0); if (!dest) goto unk; if (dest->tun_type == IP_VS_CONN_F_TUNNEL_TYPE_GRE) { IP_TUNNEL_DECLARE_FLAGS(flags); __be16 type; /* Only support version 0 and C (csum) */ if ((greh->flags & ~GRE_CSUM) != 0) goto unk; type = greh->protocol; /* Later we can support also IPPROTO_IPV6 */ if (type != htons(ETH_P_IP)) goto unk; *proto = IPPROTO_IPIP; gre_flags_to_tnl_flags(flags, greh->flags); return gre_calc_hlen(flags); } unk: return 0; } /* * Handle ICMP messages in the outside-to-inside direction (incoming). * Find any that might be relevant, check against existing connections, * forward to the right destination host if relevant. * Currently handles error types - unreachable, quench, ttl exceeded. */ static int ip_vs_in_icmp(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum) { struct iphdr *iph; struct icmphdr _icmph, *ic; struct iphdr _ciph, *cih; /* The ip header contained within the ICMP */ struct ip_vs_iphdr ciph; struct ip_vs_conn *cp; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; unsigned int offset, offset2, ihl, verdict; bool tunnel, new_cp = false; union nf_inet_addr *raddr; char *outer_proto = "IPIP"; *related = 1; /* reassemble IP fragments */ if (ip_is_fragment(ip_hdr(skb))) { if (ip_vs_gather_frags(ipvs, skb, ip_vs_defrag_user(hooknum))) return NF_STOLEN; } iph = ip_hdr(skb); offset = ihl = iph->ihl * 4; ic = skb_header_pointer(skb, offset, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; IP_VS_DBG(12, "Incoming ICMP (%d,%d) %pI4->%pI4\n", ic->type, ntohs(icmp_id(ic)), &iph->saddr, &iph->daddr); /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if ((ic->type != ICMP_DEST_UNREACH) && (ic->type != ICMP_SOURCE_QUENCH) && (ic->type != ICMP_TIME_EXCEEDED)) { *related = 0; return NF_ACCEPT; } /* Now find the contained IP header */ offset += sizeof(_icmph); cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih == NULL) return NF_ACCEPT; /* The packet looks wrong, ignore */ raddr = (union nf_inet_addr *)&cih->daddr; /* Special case for errors for IPIP/UDP/GRE tunnel packets */ tunnel = false; if (cih->protocol == IPPROTO_IPIP) { struct ip_vs_dest *dest; if (unlikely(cih->frag_off & htons(IP_OFFSET))) return NF_ACCEPT; /* Error for our IPIP must arrive at LOCAL_IN */ if (!(skb_rtable(skb)->rt_flags & RTCF_LOCAL)) return NF_ACCEPT; dest = ip_vs_find_tunnel(ipvs, AF_INET, raddr, 0); /* Only for known tunnel */ if (!dest || dest->tun_type != IP_VS_CONN_F_TUNNEL_TYPE_IPIP) return NF_ACCEPT; offset += cih->ihl * 4; cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih == NULL) return NF_ACCEPT; /* The packet looks wrong, ignore */ tunnel = true; } else if ((cih->protocol == IPPROTO_UDP || /* Can be UDP encap */ cih->protocol == IPPROTO_GRE) && /* Can be GRE encap */ /* Error for our tunnel must arrive at LOCAL_IN */ (skb_rtable(skb)->rt_flags & RTCF_LOCAL)) { __u8 iproto; int ulen; /* Non-first fragment has no UDP/GRE header */ if (unlikely(cih->frag_off & htons(IP_OFFSET))) return NF_ACCEPT; offset2 = offset + cih->ihl * 4; if (cih->protocol == IPPROTO_UDP) { ulen = ipvs_udp_decap(ipvs, skb, offset2, AF_INET, raddr, &iproto); outer_proto = "UDP"; } else { ulen = ipvs_gre_decap(ipvs, skb, offset2, AF_INET, raddr, &iproto); outer_proto = "GRE"; } if (ulen > 0) { /* Skip IP and UDP/GRE tunnel headers */ offset = offset2 + ulen; /* Now we should be at the original IP header */ cih = skb_header_pointer(skb, offset, sizeof(_ciph), &_ciph); if (cih && cih->version == 4 && cih->ihl >= 5 && iproto == IPPROTO_IPIP) tunnel = true; else return NF_ACCEPT; } } pd = ip_vs_proto_data_get(ipvs, cih->protocol); if (!pd) return NF_ACCEPT; pp = pd->pp; /* Is the embedded protocol header present? */ if (unlikely(cih->frag_off & htons(IP_OFFSET) && pp->dont_defrag)) return NF_ACCEPT; IP_VS_DBG_PKT(11, AF_INET, pp, skb, offset, "Checking incoming ICMP for"); offset2 = offset; ip_vs_fill_iph_skb_icmp(AF_INET, skb, offset, !tunnel, &ciph); offset = ciph.len; /* The embedded headers contain source and dest in reverse order. * For IPIP/UDP/GRE tunnel this is error for request, not for reply. */ cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, ipvs, AF_INET, skb, &ciph); if (!cp) { int v; if (tunnel || !sysctl_schedule_icmp(ipvs)) return NF_ACCEPT; if (!ip_vs_try_to_schedule(ipvs, AF_INET, skb, pd, &v, &cp, &ciph)) return v; new_cp = true; } verdict = NF_DROP; /* Ensure the checksum is correct */ if (!skb_csum_unnecessary(skb) && ip_vs_checksum_complete(skb, ihl)) { /* Failed checksum! */ IP_VS_DBG(1, "Incoming ICMP: failed checksum from %pI4!\n", &iph->saddr); goto out; } if (tunnel) { __be32 info = ic->un.gateway; __u8 type = ic->type; __u8 code = ic->code; /* Update the MTU */ if (ic->type == ICMP_DEST_UNREACH && ic->code == ICMP_FRAG_NEEDED) { struct ip_vs_dest *dest = cp->dest; u32 mtu = ntohs(ic->un.frag.mtu); __be16 frag_off = cih->frag_off; /* Strip outer IP and ICMP, go to IPIP/UDP/GRE header */ if (pskb_pull(skb, ihl + sizeof(_icmph)) == NULL) goto ignore_tunnel; offset2 -= ihl + sizeof(_icmph); skb_reset_network_header(skb); IP_VS_DBG(12, "ICMP for %s %pI4->%pI4: mtu=%u\n", outer_proto, &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr, mtu); ipv4_update_pmtu(skb, ipvs->net, mtu, 0, 0); /* Client uses PMTUD? */ if (!(frag_off & htons(IP_DF))) goto ignore_tunnel; /* Prefer the resulting PMTU */ if (dest) { struct ip_vs_dest_dst *dest_dst; dest_dst = rcu_dereference(dest->dest_dst); if (dest_dst) mtu = dst_mtu(dest_dst->dst_cache); } if (mtu > 68 + sizeof(struct iphdr)) mtu -= sizeof(struct iphdr); info = htonl(mtu); } /* Strip outer IP, ICMP and IPIP/UDP/GRE, go to IP header of * original request. */ if (pskb_pull(skb, offset2) == NULL) goto ignore_tunnel; skb_reset_network_header(skb); IP_VS_DBG(12, "Sending ICMP for %pI4->%pI4: t=%u, c=%u, i=%u\n", &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr, type, code, ntohl(info)); icmp_send(skb, type, code, info); /* ICMP can be shorter but anyways, account it */ ip_vs_out_stats(cp, skb); ignore_tunnel: consume_skb(skb); verdict = NF_STOLEN; goto out; } /* do the statistics and put it back */ ip_vs_in_stats(cp, skb); if (IPPROTO_TCP == cih->protocol || IPPROTO_UDP == cih->protocol || IPPROTO_SCTP == cih->protocol) offset += 2 * sizeof(__u16); verdict = ip_vs_icmp_xmit(skb, cp, pp, offset, hooknum, &ciph); out: if (likely(!new_cp)) __ip_vs_conn_put(cp); else ip_vs_conn_put(cp); return verdict; } #ifdef CONFIG_IP_VS_IPV6 static int ip_vs_in_icmp_v6(struct netns_ipvs *ipvs, struct sk_buff *skb, int *related, unsigned int hooknum, struct ip_vs_iphdr *iph) { struct icmp6hdr _icmph, *ic; struct ip_vs_iphdr ciph = {.flags = 0, .fragoffs = 0};/*Contained IP */ struct ip_vs_conn *cp; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; unsigned int offset, verdict; bool new_cp = false; *related = 1; ic = frag_safe_skb_hp(skb, iph->len, sizeof(_icmph), &_icmph); if (ic == NULL) return NF_DROP; /* * Work through seeing if this is for us. * These checks are supposed to be in an order that means easy * things are checked first to speed up processing.... however * this means that some packets will manage to get a long way * down this stack and then be rejected, but that's life. */ if (ic->icmp6_type & ICMPV6_INFOMSG_MASK) { *related = 0; return NF_ACCEPT; } /* Fragment header that is before ICMP header tells us that: * it's not an error message since they can't be fragmented. */ if (iph->flags & IP6_FH_F_FRAG) return NF_DROP; IP_VS_DBG(8, "Incoming ICMPv6 (%d,%d) %pI6c->%pI6c\n", ic->icmp6_type, ntohs(icmpv6_id(ic)), &iph->saddr, &iph->daddr); offset = iph->len + sizeof(_icmph); if (!ip_vs_fill_iph_skb_icmp(AF_INET6, skb, offset, true, &ciph)) return NF_ACCEPT; pd = ip_vs_proto_data_get(ipvs, ciph.protocol); if (!pd) return NF_ACCEPT; pp = pd->pp; /* Cannot handle fragmented embedded protocol */ if (ciph.fragoffs) return NF_ACCEPT; IP_VS_DBG_PKT(11, AF_INET6, pp, skb, offset, "Checking incoming ICMPv6 for"); /* The embedded headers contain source and dest in reverse order * if not from localhost */ cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, ipvs, AF_INET6, skb, &ciph); if (!cp) { int v; if (!sysctl_schedule_icmp(ipvs)) return NF_ACCEPT; if (!ip_vs_try_to_schedule(ipvs, AF_INET6, skb, pd, &v, &cp, &ciph)) return v; new_cp = true; } /* VS/TUN, VS/DR and LOCALNODE just let it go */ if ((hooknum == NF_INET_LOCAL_OUT) && (IP_VS_FWD_METHOD(cp) != IP_VS_CONN_F_MASQ)) { verdict = NF_ACCEPT; goto out; } /* do the statistics and put it back */ ip_vs_in_stats(cp, skb); /* Need to mangle contained IPv6 header in ICMPv6 packet */ offset = ciph.len; if (IPPROTO_TCP == ciph.protocol || IPPROTO_UDP == ciph.protocol || IPPROTO_SCTP == ciph.protocol) offset += 2 * sizeof(__u16); /* Also mangle ports */ verdict = ip_vs_icmp_xmit_v6(skb, cp, pp, offset, hooknum, &ciph); out: if (likely(!new_cp)) __ip_vs_conn_put(cp); else ip_vs_conn_put(cp); return verdict; } #endif /* * Check if it's for virtual services, look it up, * and send it on its way... */ static unsigned int ip_vs_in_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct netns_ipvs *ipvs = net_ipvs(state->net); unsigned int hooknum = state->hook; struct ip_vs_iphdr iph; struct ip_vs_protocol *pp; struct ip_vs_proto_data *pd; struct ip_vs_conn *cp; int ret, pkts; struct sock *sk; int af = state->pf; /* Already marked as IPVS request or reply? */ if (skb->ipvs_property) return NF_ACCEPT; /* * Big tappo: * - remote client: only PACKET_HOST * - route: used for struct net when skb->dev is unset */ if (unlikely((skb->pkt_type != PACKET_HOST && hooknum != NF_INET_LOCAL_OUT) || !skb_dst(skb))) { ip_vs_fill_iph_skb(af, skb, false, &iph); IP_VS_DBG_BUF(12, "packet type=%d proto=%d daddr=%s" " ignored in hook %u\n", skb->pkt_type, iph.protocol, IP_VS_DBG_ADDR(af, &iph.daddr), hooknum); return NF_ACCEPT; } /* ipvs enabled in this netns ? */ if (unlikely(sysctl_backup_only(ipvs) || !ipvs->enable)) return NF_ACCEPT; ip_vs_fill_iph_skb(af, skb, false, &iph); /* Bad... Do not break raw sockets */ sk = skb_to_full_sk(skb); if (unlikely(sk && hooknum == NF_INET_LOCAL_OUT && af == AF_INET)) { if (sk->sk_family == PF_INET && inet_test_bit(NODEFRAG, sk)) return NF_ACCEPT; } #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) { if (unlikely(iph.protocol == IPPROTO_ICMPV6)) { int related; int verdict = ip_vs_in_icmp_v6(ipvs, skb, &related, hooknum, &iph); if (related) return verdict; } } else #endif if (unlikely(iph.protocol == IPPROTO_ICMP)) { int related; int verdict = ip_vs_in_icmp(ipvs, skb, &related, hooknum); if (related) return verdict; } /* Protocol supported? */ pd = ip_vs_proto_data_get(ipvs, iph.protocol); if (unlikely(!pd)) { /* The only way we'll see this packet again is if it's * encapsulated, so mark it with ipvs_property=1 so we * skip it if we're ignoring tunneled packets */ if (sysctl_ignore_tunneled(ipvs)) skb->ipvs_property = 1; return NF_ACCEPT; } pp = pd->pp; /* * Check if the packet belongs to an existing connection entry */ cp = INDIRECT_CALL_1(pp->conn_in_get, ip_vs_conn_in_get_proto, ipvs, af, skb, &iph); if (!iph.fragoffs && is_new_conn(skb, &iph) && cp) { int conn_reuse_mode = sysctl_conn_reuse_mode(ipvs); bool old_ct = false, resched = false; if (unlikely(sysctl_expire_nodest_conn(ipvs)) && cp->dest && unlikely(!atomic_read(&cp->dest->weight))) { resched = true; old_ct = ip_vs_conn_uses_old_conntrack(cp, skb); } else if (conn_reuse_mode && is_new_conn_expected(cp, conn_reuse_mode)) { old_ct = ip_vs_conn_uses_old_conntrack(cp, skb); if (!atomic_read(&cp->n_control)) { resched = true; } else { /* Do not reschedule controlling connection * that uses conntrack while it is still * referenced by controlled connection(s). */ resched = !old_ct; } } if (resched) { if (!old_ct) cp->flags &= ~IP_VS_CONN_F_NFCT; if (!atomic_read(&cp->n_control)) ip_vs_conn_expire_now(cp); __ip_vs_conn_put(cp); if (old_ct) return NF_DROP; cp = NULL; } } /* Check the server status */ if (cp && cp->dest && !(cp->dest->flags & IP_VS_DEST_F_AVAILABLE)) { /* the destination server is not available */ if (sysctl_expire_nodest_conn(ipvs)) { bool old_ct = ip_vs_conn_uses_old_conntrack(cp, skb); if (!old_ct) cp->flags &= ~IP_VS_CONN_F_NFCT; ip_vs_conn_expire_now(cp); __ip_vs_conn_put(cp); if (old_ct) return NF_DROP; cp = NULL; } else { __ip_vs_conn_put(cp); return NF_DROP; } } if (unlikely(!cp)) { int v; if (!ip_vs_try_to_schedule(ipvs, af, skb, pd, &v, &cp, &iph)) return v; } IP_VS_DBG_PKT(11, af, pp, skb, iph.off, "Incoming packet"); ip_vs_in_stats(cp, skb); ip_vs_set_state(cp, IP_VS_DIR_INPUT, skb, pd); if (cp->packet_xmit) ret = cp->packet_xmit(skb, cp, pp, &iph); /* do not touch skb anymore */ else { IP_VS_DBG_RL("warning: packet_xmit is null"); ret = NF_ACCEPT; } /* Increase its packet counter and check if it is needed * to be synchronized * * Sync connection if it is about to close to * encorage the standby servers to update the connections timeout * * For ONE_PKT let ip_vs_sync_conn() do the filter work. */ if (cp->flags & IP_VS_CONN_F_ONE_PACKET) pkts = sysctl_sync_threshold(ipvs); else pkts = atomic_inc_return(&cp->in_pkts); if (ipvs->sync_state & IP_VS_STATE_MASTER) ip_vs_sync_conn(ipvs, cp, pkts); else if ((cp->flags & IP_VS_CONN_F_ONE_PACKET) && cp->control) /* increment is done inside ip_vs_sync_conn too */ atomic_inc(&cp->control->in_pkts); ip_vs_conn_put(cp); return ret; } /* * It is hooked at the NF_INET_FORWARD chain, in order to catch ICMP * related packets destined for 0.0.0.0/0. * When fwmark-based virtual service is used, such as transparent * cache cluster, TCP packets can be marked and routed to ip_vs_in, * but ICMP destined for 0.0.0.0/0 cannot not be easily marked and * sent to ip_vs_in_icmp. So, catch them at the NF_INET_FORWARD chain * and send them to ip_vs_in_icmp. */ static unsigned int ip_vs_forward_icmp(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct netns_ipvs *ipvs = net_ipvs(state->net); int r; /* ipvs enabled in this netns ? */ if (unlikely(sysctl_backup_only(ipvs) || !ipvs->enable)) return NF_ACCEPT; if (state->pf == NFPROTO_IPV4) { if (ip_hdr(skb)->protocol != IPPROTO_ICMP) return NF_ACCEPT; #ifdef CONFIG_IP_VS_IPV6 } else { struct ip_vs_iphdr iphdr; ip_vs_fill_iph_skb(AF_INET6, skb, false, &iphdr); if (iphdr.protocol != IPPROTO_ICMPV6) return NF_ACCEPT; return ip_vs_in_icmp_v6(ipvs, skb, &r, state->hook, &iphdr); #endif } return ip_vs_in_icmp(ipvs, skb, &r, state->hook); } static const struct nf_hook_ops ip_vs_ops4[] = { /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP_PRI_NAT_SRC - 2, }, /* After packet filtering, forward packet through VS/DR, VS/TUN, * or VS/NAT(change destination), so that filtering rules can be * applied to IPVS. */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP_PRI_NAT_SRC - 1, }, /* Before ip_vs_in, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_NAT_DST + 1, }, /* After mangle, schedule and forward local requests */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_NAT_DST + 2, }, /* After packet filtering (but before ip_vs_out_icmp), catch icmp * destined for 0.0.0.0/0, which is for incoming IPVS connections */ { .hook = ip_vs_forward_icmp, .pf = NFPROTO_IPV4, .hooknum = NF_INET_FORWARD, .priority = 99, }, /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV4, .hooknum = NF_INET_FORWARD, .priority = 100, }, }; #ifdef CONFIG_IP_VS_IPV6 static const struct nf_hook_ops ip_vs_ops6[] = { /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP6_PRI_NAT_SRC - 2, }, /* After packet filtering, forward packet through VS/DR, VS/TUN, * or VS/NAT(change destination), so that filtering rules can be * applied to IPVS. */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP6_PRI_NAT_SRC - 1, }, /* Before ip_vs_in, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_NAT_DST + 1, }, /* After mangle, schedule and forward local requests */ { .hook = ip_vs_in_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_NAT_DST + 2, }, /* After packet filtering (but before ip_vs_out_icmp), catch icmp * destined for 0.0.0.0/0, which is for incoming IPVS connections */ { .hook = ip_vs_forward_icmp, .pf = NFPROTO_IPV6, .hooknum = NF_INET_FORWARD, .priority = 99, }, /* After packet filtering, change source only for VS/NAT */ { .hook = ip_vs_out_hook, .pf = NFPROTO_IPV6, .hooknum = NF_INET_FORWARD, .priority = 100, }, }; #endif int ip_vs_register_hooks(struct netns_ipvs *ipvs, unsigned int af) { const struct nf_hook_ops *ops; unsigned int count; unsigned int afmask; int ret = 0; if (af == AF_INET6) { #ifdef CONFIG_IP_VS_IPV6 ops = ip_vs_ops6; count = ARRAY_SIZE(ip_vs_ops6); afmask = 2; #else return -EINVAL; #endif } else { ops = ip_vs_ops4; count = ARRAY_SIZE(ip_vs_ops4); afmask = 1; } if (!(ipvs->hooks_afmask & afmask)) { ret = nf_register_net_hooks(ipvs->net, ops, count); if (ret >= 0) ipvs->hooks_afmask |= afmask; } return ret; } void ip_vs_unregister_hooks(struct netns_ipvs *ipvs, unsigned int af) { const struct nf_hook_ops *ops; unsigned int count; unsigned int afmask; if (af == AF_INET6) { #ifdef CONFIG_IP_VS_IPV6 ops = ip_vs_ops6; count = ARRAY_SIZE(ip_vs_ops6); afmask = 2; #else return; #endif } else { ops = ip_vs_ops4; count = ARRAY_SIZE(ip_vs_ops4); afmask = 1; } if (ipvs->hooks_afmask & afmask) { nf_unregister_net_hooks(ipvs->net, ops, count); ipvs->hooks_afmask &= ~afmask; } } /* * Initialize IP Virtual Server netns mem. */ static int __net_init __ip_vs_init(struct net *net) { struct netns_ipvs *ipvs; ipvs = net_generic(net, ip_vs_net_id); if (ipvs == NULL) return -ENOMEM; /* Hold the beast until a service is registered */ ipvs->enable = 0; ipvs->net = net; /* Counters used for creating unique names */ ipvs->gen = atomic_read(&ipvs_netns_cnt); atomic_inc(&ipvs_netns_cnt); net->ipvs = ipvs; if (ip_vs_estimator_net_init(ipvs) < 0) goto estimator_fail; if (ip_vs_control_net_init(ipvs) < 0) goto control_fail; if (ip_vs_protocol_net_init(ipvs) < 0) goto protocol_fail; if (ip_vs_app_net_init(ipvs) < 0) goto app_fail; if (ip_vs_conn_net_init(ipvs) < 0) goto conn_fail; if (ip_vs_sync_net_init(ipvs) < 0) goto sync_fail; return 0; /* * Error handling */ sync_fail: ip_vs_conn_net_cleanup(ipvs); conn_fail: ip_vs_app_net_cleanup(ipvs); app_fail: ip_vs_protocol_net_cleanup(ipvs); protocol_fail: ip_vs_control_net_cleanup(ipvs); control_fail: ip_vs_estimator_net_cleanup(ipvs); estimator_fail: net->ipvs = NULL; return -ENOMEM; } static void __net_exit __ip_vs_cleanup_batch(struct list_head *net_list) { struct netns_ipvs *ipvs; struct net *net; ip_vs_service_nets_cleanup(net_list); /* ip_vs_flush() with locks */ list_for_each_entry(net, net_list, exit_list) { ipvs = net_ipvs(net); ip_vs_conn_net_cleanup(ipvs); ip_vs_app_net_cleanup(ipvs); ip_vs_protocol_net_cleanup(ipvs); ip_vs_control_net_cleanup(ipvs); ip_vs_estimator_net_cleanup(ipvs); IP_VS_DBG(2, "ipvs netns %d released\n", ipvs->gen); net->ipvs = NULL; } } static void __net_exit __ip_vs_dev_cleanup_batch(struct list_head *net_list) { struct netns_ipvs *ipvs; struct net *net; list_for_each_entry(net, net_list, exit_list) { ipvs = net_ipvs(net); ip_vs_unregister_hooks(ipvs, AF_INET); ip_vs_unregister_hooks(ipvs, AF_INET6); ipvs->enable = 0; /* Disable packet reception */ smp_wmb(); ip_vs_sync_net_cleanup(ipvs); } } static struct pernet_operations ipvs_core_ops = { .init = __ip_vs_init, .exit_batch = __ip_vs_cleanup_batch, .id = &ip_vs_net_id, .size = sizeof(struct netns_ipvs), }; static struct pernet_operations ipvs_core_dev_ops = { .exit_batch = __ip_vs_dev_cleanup_batch, }; /* * Initialize IP Virtual Server */ static int __init ip_vs_init(void) { int ret; ret = ip_vs_control_init(); if (ret < 0) { pr_err("can't setup control.\n"); goto exit; } ip_vs_protocol_init(); ret = ip_vs_conn_init(); if (ret < 0) { pr_err("can't setup connection table.\n"); goto cleanup_protocol; } ret = register_pernet_subsys(&ipvs_core_ops); /* Alloc ip_vs struct */ if (ret < 0) goto cleanup_conn; ret = register_pernet_device(&ipvs_core_dev_ops); if (ret < 0) goto cleanup_sub; ret = ip_vs_register_nl_ioctl(); if (ret < 0) { pr_err("can't register netlink/ioctl.\n"); goto cleanup_dev; } pr_info("ipvs loaded.\n"); return ret; cleanup_dev: unregister_pernet_device(&ipvs_core_dev_ops); cleanup_sub: unregister_pernet_subsys(&ipvs_core_ops); cleanup_conn: ip_vs_conn_cleanup(); cleanup_protocol: ip_vs_protocol_cleanup(); ip_vs_control_cleanup(); exit: return ret; } static void __exit ip_vs_cleanup(void) { ip_vs_unregister_nl_ioctl(); unregister_pernet_device(&ipvs_core_dev_ops); unregister_pernet_subsys(&ipvs_core_ops); /* free ip_vs struct */ ip_vs_conn_cleanup(); ip_vs_protocol_cleanup(); ip_vs_control_cleanup(); /* common rcu_barrier() used by: * - ip_vs_control_cleanup() */ rcu_barrier(); pr_info("ipvs unloaded.\n"); } module_init(ip_vs_init); module_exit(ip_vs_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IP Virtual Server"); |
199 199 50 199 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rpm #if !defined(_TRACE_RUNTIME_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RUNTIME_POWER_H #include <linux/ktime.h> #include <linux/tracepoint.h> struct device; /* * The rpm_internal events are used for tracing some important * runtime pm internal functions. */ DECLARE_EVENT_CLASS(rpm_internal, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags), TP_STRUCT__entry( __string( name, dev_name(dev) ) __field( int, flags ) __field( int , usage_count ) __field( int , disable_depth ) __field( int , runtime_auto ) __field( int , request_pending ) __field( int , irq_safe ) __field( int , child_count ) ), TP_fast_assign( __assign_str(name); __entry->flags = flags; __entry->usage_count = atomic_read( &dev->power.usage_count); __entry->disable_depth = dev->power.disable_depth; __entry->runtime_auto = dev->power.runtime_auto; __entry->request_pending = dev->power.request_pending; __entry->irq_safe = dev->power.irq_safe; __entry->child_count = atomic_read( &dev->power.child_count); ), TP_printk("%s flags-%x cnt-%-2d dep-%-2d auto-%-1d p-%-1d" " irq-%-1d child-%d", __get_str(name), __entry->flags, __entry->usage_count, __entry->disable_depth, __entry->runtime_auto, __entry->request_pending, __entry->irq_safe, __entry->child_count ) ); DEFINE_EVENT(rpm_internal, rpm_suspend, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_resume, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_idle, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_usage, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); TRACE_EVENT(rpm_return_int, TP_PROTO(struct device *dev, unsigned long ip, int ret), TP_ARGS(dev, ip, ret), TP_STRUCT__entry( __string( name, dev_name(dev)) __field( unsigned long, ip ) __field( int, ret ) ), TP_fast_assign( __assign_str(name); __entry->ip = ip; __entry->ret = ret; ), TP_printk("%pS:%s ret=%d", (void *)__entry->ip, __get_str(name), __entry->ret) ); #define RPM_STATUS_STRINGS \ EM(RPM_INVALID, "RPM_INVALID") \ EM(RPM_ACTIVE, "RPM_ACTIVE") \ EM(RPM_RESUMING, "RPM_RESUMING") \ EM(RPM_SUSPENDED, "RPM_SUSPENDED") \ EMe(RPM_SUSPENDING, "RPM_SUSPENDING") /* Enums require being exported to userspace, for user tool parsing. */ #undef EM #undef EMe #define EM(a, b) TRACE_DEFINE_ENUM(a); #define EMe(a, b) TRACE_DEFINE_ENUM(a); RPM_STATUS_STRINGS /* * Now redefine the EM() and EMe() macros to map the enums to the strings that * will be printed in the output. */ #undef EM #undef EMe #define EM(a, b) { a, b }, #define EMe(a, b) { a, b } TRACE_EVENT(rpm_status, TP_PROTO(struct device *dev, enum rpm_status status), TP_ARGS(dev, status), TP_STRUCT__entry( __string(name, dev_name(dev)) __field(int, status) ), TP_fast_assign( __assign_str(name); __entry->status = status; ), TP_printk("%s status=%s", __get_str(name), __print_symbolic(__entry->status, RPM_STATUS_STRINGS)) ); #endif /* _TRACE_RUNTIME_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
7 6 1 2 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | // SPDX-License-Identifier: GPL-2.0-only /* * This module is used to copy security markings from packets * to connections, and restore security markings from connections * back to packets. This would normally be performed in conjunction * with the SECMARK target and state match. * * Based somewhat on CONNMARK: * Copyright (C) 2002,2004 MARA Systems AB <https://www.marasystems.com> * by Henrik Nordstrom <hno@marasystems.com> * * (C) 2006,2008 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_CONNSECMARK.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_ecache.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("James Morris <jmorris@redhat.com>"); MODULE_DESCRIPTION("Xtables: target for copying between connection and security mark"); MODULE_ALIAS("ipt_CONNSECMARK"); MODULE_ALIAS("ip6t_CONNSECMARK"); /* * If the packet has a security mark and the connection does not, copy * the security mark from the packet to the connection. */ static void secmark_save(const struct sk_buff *skb) { if (skb->secmark) { struct nf_conn *ct; enum ip_conntrack_info ctinfo; ct = nf_ct_get(skb, &ctinfo); if (ct && !ct->secmark) { ct->secmark = skb->secmark; nf_conntrack_event_cache(IPCT_SECMARK, ct); } } } /* * If packet has no security mark, and the connection does, restore the * security mark from the connection to the packet. */ static void secmark_restore(struct sk_buff *skb) { if (!skb->secmark) { const struct nf_conn *ct; enum ip_conntrack_info ctinfo; ct = nf_ct_get(skb, &ctinfo); if (ct && ct->secmark) skb->secmark = ct->secmark; } } static unsigned int connsecmark_tg(struct sk_buff *skb, const struct xt_action_param *par) { const struct xt_connsecmark_target_info *info = par->targinfo; switch (info->mode) { case CONNSECMARK_SAVE: secmark_save(skb); break; case CONNSECMARK_RESTORE: secmark_restore(skb); break; default: BUG(); } return XT_CONTINUE; } static int connsecmark_tg_check(const struct xt_tgchk_param *par) { const struct xt_connsecmark_target_info *info = par->targinfo; int ret; if (strcmp(par->table, "mangle") != 0 && strcmp(par->table, "security") != 0) { pr_info_ratelimited("only valid in \'mangle\' or \'security\' table, not \'%s\'\n", par->table); return -EINVAL; } switch (info->mode) { case CONNSECMARK_SAVE: case CONNSECMARK_RESTORE: break; default: pr_info_ratelimited("invalid mode: %hu\n", info->mode); return -EINVAL; } ret = nf_ct_netns_get(par->net, par->family); if (ret < 0) pr_info_ratelimited("cannot load conntrack support for proto=%u\n", par->family); return ret; } static void connsecmark_tg_destroy(const struct xt_tgdtor_param *par) { nf_ct_netns_put(par->net, par->family); } static struct xt_target connsecmark_tg_reg __read_mostly = { .name = "CONNSECMARK", .revision = 0, .family = NFPROTO_UNSPEC, .checkentry = connsecmark_tg_check, .destroy = connsecmark_tg_destroy, .target = connsecmark_tg, .targetsize = sizeof(struct xt_connsecmark_target_info), .me = THIS_MODULE, }; static int __init connsecmark_tg_init(void) { return xt_register_target(&connsecmark_tg_reg); } static void __exit connsecmark_tg_exit(void) { xt_unregister_target(&connsecmark_tg_reg); } module_init(connsecmark_tg_init); module_exit(connsecmark_tg_exit); |
11 41 1 13 109 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM mptcp #if !defined(_TRACE_MPTCP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MPTCP_H #include <linux/tracepoint.h> #define show_mapping_status(status) \ __print_symbolic(status, \ { 0, "MAPPING_OK" }, \ { 1, "MAPPING_INVALID" }, \ { 2, "MAPPING_EMPTY" }, \ { 3, "MAPPING_DATA_FIN" }, \ { 4, "MAPPING_DUMMY" }) TRACE_EVENT(mptcp_subflow_get_send, TP_PROTO(struct mptcp_subflow_context *subflow), TP_ARGS(subflow), TP_STRUCT__entry( __field(bool, active) __field(bool, free) __field(u32, snd_wnd) __field(u32, pace) __field(u8, backup) __field(u64, ratio) ), TP_fast_assign( struct sock *ssk; __entry->active = mptcp_subflow_active(subflow); __entry->backup = subflow->backup || subflow->request_bkup; if (subflow->tcp_sock && sk_fullsock(subflow->tcp_sock)) __entry->free = sk_stream_memory_free(subflow->tcp_sock); else __entry->free = 0; ssk = mptcp_subflow_tcp_sock(subflow); if (ssk && sk_fullsock(ssk)) { __entry->snd_wnd = tcp_sk(ssk)->snd_wnd; __entry->pace = READ_ONCE(ssk->sk_pacing_rate); } else { __entry->snd_wnd = 0; __entry->pace = 0; } if (ssk && sk_fullsock(ssk) && __entry->pace) __entry->ratio = div_u64((u64)ssk->sk_wmem_queued << 32, __entry->pace); else __entry->ratio = 0; ), TP_printk("active=%d free=%d snd_wnd=%u pace=%u backup=%u ratio=%llu", __entry->active, __entry->free, __entry->snd_wnd, __entry->pace, __entry->backup, __entry->ratio) ); DECLARE_EVENT_CLASS(mptcp_dump_mpext, TP_PROTO(struct mptcp_ext *mpext), TP_ARGS(mpext), TP_STRUCT__entry( __field(u64, data_ack) __field(u64, data_seq) __field(u32, subflow_seq) __field(u16, data_len) __field(u16, csum) __field(u8, use_map) __field(u8, dsn64) __field(u8, data_fin) __field(u8, use_ack) __field(u8, ack64) __field(u8, mpc_map) __field(u8, frozen) __field(u8, reset_transient) __field(u8, reset_reason) __field(u8, csum_reqd) __field(u8, infinite_map) ), TP_fast_assign( __entry->data_ack = mpext->ack64 ? mpext->data_ack : mpext->data_ack32; __entry->data_seq = mpext->data_seq; __entry->subflow_seq = mpext->subflow_seq; __entry->data_len = mpext->data_len; __entry->csum = (__force u16)mpext->csum; __entry->use_map = mpext->use_map; __entry->dsn64 = mpext->dsn64; __entry->data_fin = mpext->data_fin; __entry->use_ack = mpext->use_ack; __entry->ack64 = mpext->ack64; __entry->mpc_map = mpext->mpc_map; __entry->frozen = mpext->frozen; __entry->reset_transient = mpext->reset_transient; __entry->reset_reason = mpext->reset_reason; __entry->csum_reqd = mpext->csum_reqd; __entry->infinite_map = mpext->infinite_map; ), TP_printk("data_ack=%llu data_seq=%llu subflow_seq=%u data_len=%u csum=%x use_map=%u dsn64=%u data_fin=%u use_ack=%u ack64=%u mpc_map=%u frozen=%u reset_transient=%u reset_reason=%u csum_reqd=%u infinite_map=%u", __entry->data_ack, __entry->data_seq, __entry->subflow_seq, __entry->data_len, __entry->csum, __entry->use_map, __entry->dsn64, __entry->data_fin, __entry->use_ack, __entry->ack64, __entry->mpc_map, __entry->frozen, __entry->reset_transient, __entry->reset_reason, __entry->csum_reqd, __entry->infinite_map) ); DEFINE_EVENT(mptcp_dump_mpext, mptcp_sendmsg_frag, TP_PROTO(struct mptcp_ext *mpext), TP_ARGS(mpext)); DEFINE_EVENT(mptcp_dump_mpext, get_mapping_status, TP_PROTO(struct mptcp_ext *mpext), TP_ARGS(mpext)); TRACE_EVENT(ack_update_msk, TP_PROTO(u64 data_ack, u64 old_snd_una, u64 new_snd_una, u64 new_wnd_end, u64 msk_wnd_end), TP_ARGS(data_ack, old_snd_una, new_snd_una, new_wnd_end, msk_wnd_end), TP_STRUCT__entry( __field(u64, data_ack) __field(u64, old_snd_una) __field(u64, new_snd_una) __field(u64, new_wnd_end) __field(u64, msk_wnd_end) ), TP_fast_assign( __entry->data_ack = data_ack; __entry->old_snd_una = old_snd_una; __entry->new_snd_una = new_snd_una; __entry->new_wnd_end = new_wnd_end; __entry->msk_wnd_end = msk_wnd_end; ), TP_printk("data_ack=%llu old_snd_una=%llu new_snd_una=%llu new_wnd_end=%llu msk_wnd_end=%llu", __entry->data_ack, __entry->old_snd_una, __entry->new_snd_una, __entry->new_wnd_end, __entry->msk_wnd_end) ); TRACE_EVENT(subflow_check_data_avail, TP_PROTO(__u8 status, struct sk_buff *skb), TP_ARGS(status, skb), TP_STRUCT__entry( __field(u8, status) __field(const void *, skb) ), TP_fast_assign( __entry->status = status; __entry->skb = skb; ), TP_printk("mapping_status=%s, skb=%p", show_mapping_status(__entry->status), __entry->skb) ); #endif /* _TRACE_MPTCP_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
23 37 24 34 54 24 34 54 54 54 54 42 54 1 42 54 8 31 26 19 24 24 4 1 3 4 11 23 2 23 23 42 36 12 12 11 42 3 15 12 3 3 24 10 11 3 24 10 14 42 12 12 12 12 12 5 12 12 12 12 12 12 12 12 16 28 42 42 42 42 42 42 49 19 38 8 49 42 42 42 11 40 12 30 40 40 40 40 40 42 1 1 1 11 32 23 20 4 3 59 6 3 9 56 66 66 65 52 7 10 45 4 10 2 29 9 1 15 68 62 62 20 39 14 9 8 5 5 12 7 6 6 29 4 25 24 10 11 9 6 2 10 23 23 23 18 18 18 23 23 18 23 23 23 19 10 1 1 4 12 129 7 11 119 6 12 90 5 12 82 9 141 105 8 12 182 165 1 21 183 229 18 4 7 281 10 273 12 10 252 13 198 183 15 175 3 11 133 150 2 3 6 11 3 2 5 26 26 11 4 11 11 13 1 1 1 1 76 62 14 7 7 9 1 2 2 2 1 1 1 1 1 2 1 1 2 1 1 32 32 32 82 1 6 6 2 2 2 2 7 3 5 6 3 3 2 2 4 6 4 6 22 16 10 12 4 10 12 6 1 4 2 5 10 1 7 1 1 2 20 6 21 2 19 3 17 3 16 5 21 6 12 6 10 4 2 89 82 3 4 4 4 82 31 80 80 80 80 76 4 78 16 65 2 60 6 58 5 50 12 1 49 47 4 39 144 144 16 128 22 112 111 13 96 2 4 1 91 45 40 6 47 28 13 28 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 32 14 1 17 11 6 14 1 14 12 11 1 1 1 9 11 1 36 1 1 1 33 11 1 21 1 1 1 1 2 1 1 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 | /* Connection tracking via netlink socket. Allows for user space * protocol helpers and general trouble making from userspace. * * (C) 2001 by Jay Schulist <jschlst@samba.org> * (C) 2002-2006 by Harald Welte <laforge@gnumonks.org> * (C) 2003 by Patrick Mchardy <kaber@trash.net> * (C) 2005-2012 by Pablo Neira Ayuso <pablo@netfilter.org> * * Initial connection tracking via netlink development funded and * generally made possible by Network Robots, Inc. (www.networkrobots.com) * * Further development of this code funded by Astaro AG (http://www.astaro.com) * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. */ #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/rculist.h> #include <linux/rculist_nulls.h> #include <linux/types.h> #include <linux/timer.h> #include <linux/security.h> #include <linux/skbuff.h> #include <linux/errno.h> #include <linux/netlink.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/siphash.h> #include <linux/netfilter.h> #include <net/netlink.h> #include <net/sock.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_expect.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_seqadj.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_conntrack_tuple.h> #include <net/netfilter/nf_conntrack_acct.h> #include <net/netfilter/nf_conntrack_zones.h> #include <net/netfilter/nf_conntrack_timestamp.h> #include <net/netfilter/nf_conntrack_labels.h> #include <net/netfilter/nf_conntrack_synproxy.h> #if IS_ENABLED(CONFIG_NF_NAT) #include <net/netfilter/nf_nat.h> #include <net/netfilter/nf_nat_helper.h> #endif #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nfnetlink_conntrack.h> #include "nf_internals.h" MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("List and change connection tracking table"); struct ctnetlink_list_dump_ctx { struct nf_conn *last; unsigned int cpu; bool done; }; static int ctnetlink_dump_tuples_proto(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_l4proto *l4proto) { int ret = 0; struct nlattr *nest_parms; nest_parms = nla_nest_start(skb, CTA_TUPLE_PROTO); if (!nest_parms) goto nla_put_failure; if (nla_put_u8(skb, CTA_PROTO_NUM, tuple->dst.protonum)) goto nla_put_failure; if (likely(l4proto->tuple_to_nlattr)) ret = l4proto->tuple_to_nlattr(skb, tuple); nla_nest_end(skb, nest_parms); return ret; nla_put_failure: return -1; } static int ipv4_tuple_to_nlattr(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple) { if (nla_put_in_addr(skb, CTA_IP_V4_SRC, tuple->src.u3.ip) || nla_put_in_addr(skb, CTA_IP_V4_DST, tuple->dst.u3.ip)) return -EMSGSIZE; return 0; } static int ipv6_tuple_to_nlattr(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple) { if (nla_put_in6_addr(skb, CTA_IP_V6_SRC, &tuple->src.u3.in6) || nla_put_in6_addr(skb, CTA_IP_V6_DST, &tuple->dst.u3.in6)) return -EMSGSIZE; return 0; } static int ctnetlink_dump_tuples_ip(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple) { int ret = 0; struct nlattr *nest_parms; nest_parms = nla_nest_start(skb, CTA_TUPLE_IP); if (!nest_parms) goto nla_put_failure; switch (tuple->src.l3num) { case NFPROTO_IPV4: ret = ipv4_tuple_to_nlattr(skb, tuple); break; case NFPROTO_IPV6: ret = ipv6_tuple_to_nlattr(skb, tuple); break; } nla_nest_end(skb, nest_parms); return ret; nla_put_failure: return -1; } static int ctnetlink_dump_tuples(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple) { const struct nf_conntrack_l4proto *l4proto; int ret; rcu_read_lock(); ret = ctnetlink_dump_tuples_ip(skb, tuple); if (ret >= 0) { l4proto = nf_ct_l4proto_find(tuple->dst.protonum); ret = ctnetlink_dump_tuples_proto(skb, tuple, l4proto); } rcu_read_unlock(); return ret; } static int ctnetlink_dump_zone_id(struct sk_buff *skb, int attrtype, const struct nf_conntrack_zone *zone, int dir) { if (zone->id == NF_CT_DEFAULT_ZONE_ID || zone->dir != dir) return 0; if (nla_put_be16(skb, attrtype, htons(zone->id))) goto nla_put_failure; return 0; nla_put_failure: return -1; } static int ctnetlink_dump_status(struct sk_buff *skb, const struct nf_conn *ct) { if (nla_put_be32(skb, CTA_STATUS, htonl(ct->status))) goto nla_put_failure; return 0; nla_put_failure: return -1; } static int ctnetlink_dump_timeout(struct sk_buff *skb, const struct nf_conn *ct, bool skip_zero) { long timeout; if (nf_ct_is_confirmed(ct)) timeout = nf_ct_expires(ct) / HZ; else timeout = ct->timeout / HZ; if (skip_zero && timeout == 0) return 0; if (nla_put_be32(skb, CTA_TIMEOUT, htonl(timeout))) goto nla_put_failure; return 0; nla_put_failure: return -1; } static int ctnetlink_dump_protoinfo(struct sk_buff *skb, struct nf_conn *ct, bool destroy) { const struct nf_conntrack_l4proto *l4proto; struct nlattr *nest_proto; int ret; l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct)); if (!l4proto->to_nlattr) return 0; nest_proto = nla_nest_start(skb, CTA_PROTOINFO); if (!nest_proto) goto nla_put_failure; ret = l4proto->to_nlattr(skb, nest_proto, ct, destroy); nla_nest_end(skb, nest_proto); return ret; nla_put_failure: return -1; } static int ctnetlink_dump_helpinfo(struct sk_buff *skb, const struct nf_conn *ct) { struct nlattr *nest_helper; const struct nf_conn_help *help = nfct_help(ct); struct nf_conntrack_helper *helper; if (!help) return 0; rcu_read_lock(); helper = rcu_dereference(help->helper); if (!helper) goto out; nest_helper = nla_nest_start(skb, CTA_HELP); if (!nest_helper) goto nla_put_failure; if (nla_put_string(skb, CTA_HELP_NAME, helper->name)) goto nla_put_failure; if (helper->to_nlattr) helper->to_nlattr(skb, ct); nla_nest_end(skb, nest_helper); out: rcu_read_unlock(); return 0; nla_put_failure: rcu_read_unlock(); return -1; } static int dump_counters(struct sk_buff *skb, struct nf_conn_acct *acct, enum ip_conntrack_dir dir, int type) { enum ctattr_type attr = dir ? CTA_COUNTERS_REPLY: CTA_COUNTERS_ORIG; struct nf_conn_counter *counter = acct->counter; struct nlattr *nest_count; u64 pkts, bytes; if (type == IPCTNL_MSG_CT_GET_CTRZERO) { pkts = atomic64_xchg(&counter[dir].packets, 0); bytes = atomic64_xchg(&counter[dir].bytes, 0); } else { pkts = atomic64_read(&counter[dir].packets); bytes = atomic64_read(&counter[dir].bytes); } nest_count = nla_nest_start(skb, attr); if (!nest_count) goto nla_put_failure; if (nla_put_be64(skb, CTA_COUNTERS_PACKETS, cpu_to_be64(pkts), CTA_COUNTERS_PAD) || nla_put_be64(skb, CTA_COUNTERS_BYTES, cpu_to_be64(bytes), CTA_COUNTERS_PAD)) goto nla_put_failure; nla_nest_end(skb, nest_count); return 0; nla_put_failure: return -1; } static int ctnetlink_dump_acct(struct sk_buff *skb, const struct nf_conn *ct, int type) { struct nf_conn_acct *acct = nf_conn_acct_find(ct); if (!acct) return 0; if (dump_counters(skb, acct, IP_CT_DIR_ORIGINAL, type) < 0) return -1; if (dump_counters(skb, acct, IP_CT_DIR_REPLY, type) < 0) return -1; return 0; } static int ctnetlink_dump_timestamp(struct sk_buff *skb, const struct nf_conn *ct) { struct nlattr *nest_count; const struct nf_conn_tstamp *tstamp; tstamp = nf_conn_tstamp_find(ct); if (!tstamp) return 0; nest_count = nla_nest_start(skb, CTA_TIMESTAMP); if (!nest_count) goto nla_put_failure; if (nla_put_be64(skb, CTA_TIMESTAMP_START, cpu_to_be64(tstamp->start), CTA_TIMESTAMP_PAD) || (tstamp->stop != 0 && nla_put_be64(skb, CTA_TIMESTAMP_STOP, cpu_to_be64(tstamp->stop), CTA_TIMESTAMP_PAD))) goto nla_put_failure; nla_nest_end(skb, nest_count); return 0; nla_put_failure: return -1; } #ifdef CONFIG_NF_CONNTRACK_MARK static int ctnetlink_dump_mark(struct sk_buff *skb, const struct nf_conn *ct, bool dump) { u32 mark = READ_ONCE(ct->mark); if (!mark && !dump) return 0; if (nla_put_be32(skb, CTA_MARK, htonl(mark))) goto nla_put_failure; return 0; nla_put_failure: return -1; } #else #define ctnetlink_dump_mark(a, b, c) (0) #endif #ifdef CONFIG_NF_CONNTRACK_SECMARK static int ctnetlink_dump_secctx(struct sk_buff *skb, const struct nf_conn *ct) { struct nlattr *nest_secctx; int len, ret; char *secctx; ret = security_secid_to_secctx(ct->secmark, &secctx, &len); if (ret) return 0; ret = -1; nest_secctx = nla_nest_start(skb, CTA_SECCTX); if (!nest_secctx) goto nla_put_failure; if (nla_put_string(skb, CTA_SECCTX_NAME, secctx)) goto nla_put_failure; nla_nest_end(skb, nest_secctx); ret = 0; nla_put_failure: security_release_secctx(secctx, len); return ret; } #else #define ctnetlink_dump_secctx(a, b) (0) #endif #ifdef CONFIG_NF_CONNTRACK_LABELS static inline int ctnetlink_label_size(const struct nf_conn *ct) { struct nf_conn_labels *labels = nf_ct_labels_find(ct); if (!labels) return 0; return nla_total_size(sizeof(labels->bits)); } static int ctnetlink_dump_labels(struct sk_buff *skb, const struct nf_conn *ct) { struct nf_conn_labels *labels = nf_ct_labels_find(ct); unsigned int i; if (!labels) return 0; i = 0; do { if (labels->bits[i] != 0) return nla_put(skb, CTA_LABELS, sizeof(labels->bits), labels->bits); i++; } while (i < ARRAY_SIZE(labels->bits)); return 0; } #else #define ctnetlink_dump_labels(a, b) (0) #define ctnetlink_label_size(a) (0) #endif #define master_tuple(ct) &(ct->master->tuplehash[IP_CT_DIR_ORIGINAL].tuple) static int ctnetlink_dump_master(struct sk_buff *skb, const struct nf_conn *ct) { struct nlattr *nest_parms; if (!(ct->status & IPS_EXPECTED)) return 0; nest_parms = nla_nest_start(skb, CTA_TUPLE_MASTER); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, master_tuple(ct)) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); return 0; nla_put_failure: return -1; } static int dump_ct_seq_adj(struct sk_buff *skb, const struct nf_ct_seqadj *seq, int type) { struct nlattr *nest_parms; nest_parms = nla_nest_start(skb, type); if (!nest_parms) goto nla_put_failure; if (nla_put_be32(skb, CTA_SEQADJ_CORRECTION_POS, htonl(seq->correction_pos)) || nla_put_be32(skb, CTA_SEQADJ_OFFSET_BEFORE, htonl(seq->offset_before)) || nla_put_be32(skb, CTA_SEQADJ_OFFSET_AFTER, htonl(seq->offset_after))) goto nla_put_failure; nla_nest_end(skb, nest_parms); return 0; nla_put_failure: return -1; } static int ctnetlink_dump_ct_seq_adj(struct sk_buff *skb, struct nf_conn *ct) { struct nf_conn_seqadj *seqadj = nfct_seqadj(ct); struct nf_ct_seqadj *seq; if (!(ct->status & IPS_SEQ_ADJUST) || !seqadj) return 0; spin_lock_bh(&ct->lock); seq = &seqadj->seq[IP_CT_DIR_ORIGINAL]; if (dump_ct_seq_adj(skb, seq, CTA_SEQ_ADJ_ORIG) == -1) goto err; seq = &seqadj->seq[IP_CT_DIR_REPLY]; if (dump_ct_seq_adj(skb, seq, CTA_SEQ_ADJ_REPLY) == -1) goto err; spin_unlock_bh(&ct->lock); return 0; err: spin_unlock_bh(&ct->lock); return -1; } static int ctnetlink_dump_ct_synproxy(struct sk_buff *skb, struct nf_conn *ct) { struct nf_conn_synproxy *synproxy = nfct_synproxy(ct); struct nlattr *nest_parms; if (!synproxy) return 0; nest_parms = nla_nest_start(skb, CTA_SYNPROXY); if (!nest_parms) goto nla_put_failure; if (nla_put_be32(skb, CTA_SYNPROXY_ISN, htonl(synproxy->isn)) || nla_put_be32(skb, CTA_SYNPROXY_ITS, htonl(synproxy->its)) || nla_put_be32(skb, CTA_SYNPROXY_TSOFF, htonl(synproxy->tsoff))) goto nla_put_failure; nla_nest_end(skb, nest_parms); return 0; nla_put_failure: return -1; } static int ctnetlink_dump_id(struct sk_buff *skb, const struct nf_conn *ct) { __be32 id = (__force __be32)nf_ct_get_id(ct); if (nla_put_be32(skb, CTA_ID, id)) goto nla_put_failure; return 0; nla_put_failure: return -1; } static int ctnetlink_dump_use(struct sk_buff *skb, const struct nf_conn *ct) { if (nla_put_be32(skb, CTA_USE, htonl(refcount_read(&ct->ct_general.use)))) goto nla_put_failure; return 0; nla_put_failure: return -1; } /* all these functions access ct->ext. Caller must either hold a reference * on ct or prevent its deletion by holding either the bucket spinlock or * pcpu dying list lock. */ static int ctnetlink_dump_extinfo(struct sk_buff *skb, struct nf_conn *ct, u32 type) { if (ctnetlink_dump_acct(skb, ct, type) < 0 || ctnetlink_dump_timestamp(skb, ct) < 0 || ctnetlink_dump_helpinfo(skb, ct) < 0 || ctnetlink_dump_labels(skb, ct) < 0 || ctnetlink_dump_ct_seq_adj(skb, ct) < 0 || ctnetlink_dump_ct_synproxy(skb, ct) < 0) return -1; return 0; } static int ctnetlink_dump_info(struct sk_buff *skb, struct nf_conn *ct) { if (ctnetlink_dump_status(skb, ct) < 0 || ctnetlink_dump_mark(skb, ct, true) < 0 || ctnetlink_dump_secctx(skb, ct) < 0 || ctnetlink_dump_id(skb, ct) < 0 || ctnetlink_dump_use(skb, ct) < 0 || ctnetlink_dump_master(skb, ct) < 0) return -1; if (!test_bit(IPS_OFFLOAD_BIT, &ct->status) && (ctnetlink_dump_timeout(skb, ct, false) < 0 || ctnetlink_dump_protoinfo(skb, ct, false) < 0)) return -1; return 0; } static int ctnetlink_fill_info(struct sk_buff *skb, u32 portid, u32 seq, u32 type, struct nf_conn *ct, bool extinfo, unsigned int flags) { const struct nf_conntrack_zone *zone; struct nlmsghdr *nlh; struct nlattr *nest_parms; unsigned int event; if (portid) flags |= NLM_F_MULTI; event = nfnl_msg_type(NFNL_SUBSYS_CTNETLINK, IPCTNL_MSG_CT_NEW); nlh = nfnl_msg_put(skb, portid, seq, event, flags, nf_ct_l3num(ct), NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; zone = nf_ct_zone(ct); nest_parms = nla_nest_start(skb, CTA_TUPLE_ORIG); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, nf_ct_tuple(ct, IP_CT_DIR_ORIGINAL)) < 0) goto nla_put_failure; if (ctnetlink_dump_zone_id(skb, CTA_TUPLE_ZONE, zone, NF_CT_ZONE_DIR_ORIG) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); nest_parms = nla_nest_start(skb, CTA_TUPLE_REPLY); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, nf_ct_tuple(ct, IP_CT_DIR_REPLY)) < 0) goto nla_put_failure; if (ctnetlink_dump_zone_id(skb, CTA_TUPLE_ZONE, zone, NF_CT_ZONE_DIR_REPL) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); if (ctnetlink_dump_zone_id(skb, CTA_ZONE, zone, NF_CT_DEFAULT_ZONE_DIR) < 0) goto nla_put_failure; if (ctnetlink_dump_info(skb, ct) < 0) goto nla_put_failure; if (extinfo && ctnetlink_dump_extinfo(skb, ct, type) < 0) goto nla_put_failure; nlmsg_end(skb, nlh); return skb->len; nlmsg_failure: nla_put_failure: nlmsg_cancel(skb, nlh); return -1; } static const struct nla_policy cta_ip_nla_policy[CTA_IP_MAX + 1] = { [CTA_IP_V4_SRC] = { .type = NLA_U32 }, [CTA_IP_V4_DST] = { .type = NLA_U32 }, [CTA_IP_V6_SRC] = { .len = sizeof(__be32) * 4 }, [CTA_IP_V6_DST] = { .len = sizeof(__be32) * 4 }, }; #if defined(CONFIG_NETFILTER_NETLINK_GLUE_CT) || defined(CONFIG_NF_CONNTRACK_EVENTS) static size_t ctnetlink_proto_size(const struct nf_conn *ct) { const struct nf_conntrack_l4proto *l4proto; size_t len, len4 = 0; len = nla_policy_len(cta_ip_nla_policy, CTA_IP_MAX + 1); len *= 3u; /* ORIG, REPLY, MASTER */ l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct)); len += l4proto->nlattr_size; if (l4proto->nlattr_tuple_size) { len4 = l4proto->nlattr_tuple_size(); len4 *= 3u; /* ORIG, REPLY, MASTER */ } return len + len4; } #endif static inline size_t ctnetlink_acct_size(const struct nf_conn *ct) { if (!nf_ct_ext_exist(ct, NF_CT_EXT_ACCT)) return 0; return 2 * nla_total_size(0) /* CTA_COUNTERS_ORIG|REPL */ + 2 * nla_total_size_64bit(sizeof(uint64_t)) /* CTA_COUNTERS_PACKETS */ + 2 * nla_total_size_64bit(sizeof(uint64_t)) /* CTA_COUNTERS_BYTES */ ; } static inline int ctnetlink_secctx_size(const struct nf_conn *ct) { #ifdef CONFIG_NF_CONNTRACK_SECMARK int len, ret; ret = security_secid_to_secctx(ct->secmark, NULL, &len); if (ret) return 0; return nla_total_size(0) /* CTA_SECCTX */ + nla_total_size(sizeof(char) * len); /* CTA_SECCTX_NAME */ #else return 0; #endif } static inline size_t ctnetlink_timestamp_size(const struct nf_conn *ct) { #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP if (!nf_ct_ext_exist(ct, NF_CT_EXT_TSTAMP)) return 0; return nla_total_size(0) + 2 * nla_total_size_64bit(sizeof(uint64_t)); #else return 0; #endif } #ifdef CONFIG_NF_CONNTRACK_EVENTS static size_t ctnetlink_nlmsg_size(const struct nf_conn *ct) { return NLMSG_ALIGN(sizeof(struct nfgenmsg)) + 3 * nla_total_size(0) /* CTA_TUPLE_ORIG|REPL|MASTER */ + 3 * nla_total_size(0) /* CTA_TUPLE_IP */ + 3 * nla_total_size(0) /* CTA_TUPLE_PROTO */ + 3 * nla_total_size(sizeof(u_int8_t)) /* CTA_PROTO_NUM */ + nla_total_size(sizeof(u_int32_t)) /* CTA_ID */ + nla_total_size(sizeof(u_int32_t)) /* CTA_STATUS */ + ctnetlink_acct_size(ct) + ctnetlink_timestamp_size(ct) + nla_total_size(sizeof(u_int32_t)) /* CTA_TIMEOUT */ + nla_total_size(0) /* CTA_PROTOINFO */ + nla_total_size(0) /* CTA_HELP */ + nla_total_size(NF_CT_HELPER_NAME_LEN) /* CTA_HELP_NAME */ + ctnetlink_secctx_size(ct) #if IS_ENABLED(CONFIG_NF_NAT) + 2 * nla_total_size(0) /* CTA_NAT_SEQ_ADJ_ORIG|REPL */ + 6 * nla_total_size(sizeof(u_int32_t)) /* CTA_NAT_SEQ_OFFSET */ #endif #ifdef CONFIG_NF_CONNTRACK_MARK + nla_total_size(sizeof(u_int32_t)) /* CTA_MARK */ #endif #ifdef CONFIG_NF_CONNTRACK_ZONES + nla_total_size(sizeof(u_int16_t)) /* CTA_ZONE|CTA_TUPLE_ZONE */ #endif + ctnetlink_proto_size(ct) + ctnetlink_label_size(ct) ; } static int ctnetlink_conntrack_event(unsigned int events, const struct nf_ct_event *item) { const struct nf_conntrack_zone *zone; struct net *net; struct nlmsghdr *nlh; struct nlattr *nest_parms; struct nf_conn *ct = item->ct; struct sk_buff *skb; unsigned int type; unsigned int flags = 0, group; int err; if (events & (1 << IPCT_DESTROY)) { type = IPCTNL_MSG_CT_DELETE; group = NFNLGRP_CONNTRACK_DESTROY; } else if (events & ((1 << IPCT_NEW) | (1 << IPCT_RELATED))) { type = IPCTNL_MSG_CT_NEW; flags = NLM_F_CREATE|NLM_F_EXCL; group = NFNLGRP_CONNTRACK_NEW; } else if (events) { type = IPCTNL_MSG_CT_NEW; group = NFNLGRP_CONNTRACK_UPDATE; } else return 0; net = nf_ct_net(ct); if (!item->report && !nfnetlink_has_listeners(net, group)) return 0; skb = nlmsg_new(ctnetlink_nlmsg_size(ct), GFP_ATOMIC); if (skb == NULL) goto errout; type = nfnl_msg_type(NFNL_SUBSYS_CTNETLINK, type); nlh = nfnl_msg_put(skb, item->portid, 0, type, flags, nf_ct_l3num(ct), NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; zone = nf_ct_zone(ct); nest_parms = nla_nest_start(skb, CTA_TUPLE_ORIG); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, nf_ct_tuple(ct, IP_CT_DIR_ORIGINAL)) < 0) goto nla_put_failure; if (ctnetlink_dump_zone_id(skb, CTA_TUPLE_ZONE, zone, NF_CT_ZONE_DIR_ORIG) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); nest_parms = nla_nest_start(skb, CTA_TUPLE_REPLY); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, nf_ct_tuple(ct, IP_CT_DIR_REPLY)) < 0) goto nla_put_failure; if (ctnetlink_dump_zone_id(skb, CTA_TUPLE_ZONE, zone, NF_CT_ZONE_DIR_REPL) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); if (ctnetlink_dump_zone_id(skb, CTA_ZONE, zone, NF_CT_DEFAULT_ZONE_DIR) < 0) goto nla_put_failure; if (ctnetlink_dump_id(skb, ct) < 0) goto nla_put_failure; if (ctnetlink_dump_status(skb, ct) < 0) goto nla_put_failure; if (events & (1 << IPCT_DESTROY)) { if (ctnetlink_dump_timeout(skb, ct, true) < 0) goto nla_put_failure; if (ctnetlink_dump_acct(skb, ct, type) < 0 || ctnetlink_dump_timestamp(skb, ct) < 0 || ctnetlink_dump_protoinfo(skb, ct, true) < 0) goto nla_put_failure; } else { if (ctnetlink_dump_timeout(skb, ct, false) < 0) goto nla_put_failure; if (events & (1 << IPCT_PROTOINFO) && ctnetlink_dump_protoinfo(skb, ct, false) < 0) goto nla_put_failure; if ((events & (1 << IPCT_HELPER) || nfct_help(ct)) && ctnetlink_dump_helpinfo(skb, ct) < 0) goto nla_put_failure; #ifdef CONFIG_NF_CONNTRACK_SECMARK if ((events & (1 << IPCT_SECMARK) || ct->secmark) && ctnetlink_dump_secctx(skb, ct) < 0) goto nla_put_failure; #endif if (events & (1 << IPCT_LABEL) && ctnetlink_dump_labels(skb, ct) < 0) goto nla_put_failure; if (events & (1 << IPCT_RELATED) && ctnetlink_dump_master(skb, ct) < 0) goto nla_put_failure; if (events & (1 << IPCT_SEQADJ) && ctnetlink_dump_ct_seq_adj(skb, ct) < 0) goto nla_put_failure; if (events & (1 << IPCT_SYNPROXY) && ctnetlink_dump_ct_synproxy(skb, ct) < 0) goto nla_put_failure; } #ifdef CONFIG_NF_CONNTRACK_MARK if (ctnetlink_dump_mark(skb, ct, events & (1 << IPCT_MARK))) goto nla_put_failure; #endif nlmsg_end(skb, nlh); err = nfnetlink_send(skb, net, item->portid, group, item->report, GFP_ATOMIC); if (err == -ENOBUFS || err == -EAGAIN) return -ENOBUFS; return 0; nla_put_failure: nlmsg_cancel(skb, nlh); nlmsg_failure: kfree_skb(skb); errout: if (nfnetlink_set_err(net, 0, group, -ENOBUFS) > 0) return -ENOBUFS; return 0; } #endif /* CONFIG_NF_CONNTRACK_EVENTS */ static int ctnetlink_done(struct netlink_callback *cb) { if (cb->args[1]) nf_ct_put((struct nf_conn *)cb->args[1]); kfree(cb->data); return 0; } struct ctnetlink_filter_u32 { u32 val; u32 mask; }; struct ctnetlink_filter { u8 family; bool zone_filter; u_int32_t orig_flags; u_int32_t reply_flags; struct nf_conntrack_tuple orig; struct nf_conntrack_tuple reply; struct nf_conntrack_zone zone; struct ctnetlink_filter_u32 mark; struct ctnetlink_filter_u32 status; }; static const struct nla_policy cta_filter_nla_policy[CTA_FILTER_MAX + 1] = { [CTA_FILTER_ORIG_FLAGS] = { .type = NLA_U32 }, [CTA_FILTER_REPLY_FLAGS] = { .type = NLA_U32 }, }; static int ctnetlink_parse_filter(const struct nlattr *attr, struct ctnetlink_filter *filter) { struct nlattr *tb[CTA_FILTER_MAX + 1]; int ret = 0; ret = nla_parse_nested(tb, CTA_FILTER_MAX, attr, cta_filter_nla_policy, NULL); if (ret) return ret; if (tb[CTA_FILTER_ORIG_FLAGS]) { filter->orig_flags = nla_get_u32(tb[CTA_FILTER_ORIG_FLAGS]); if (filter->orig_flags & ~CTA_FILTER_F_ALL) return -EOPNOTSUPP; } if (tb[CTA_FILTER_REPLY_FLAGS]) { filter->reply_flags = nla_get_u32(tb[CTA_FILTER_REPLY_FLAGS]); if (filter->reply_flags & ~CTA_FILTER_F_ALL) return -EOPNOTSUPP; } return 0; } static int ctnetlink_parse_zone(const struct nlattr *attr, struct nf_conntrack_zone *zone); static int ctnetlink_parse_tuple_filter(const struct nlattr * const cda[], struct nf_conntrack_tuple *tuple, u32 type, u_int8_t l3num, struct nf_conntrack_zone *zone, u_int32_t flags); static int ctnetlink_filter_parse_mark(struct ctnetlink_filter_u32 *mark, const struct nlattr * const cda[]) { #ifdef CONFIG_NF_CONNTRACK_MARK if (cda[CTA_MARK]) { mark->val = ntohl(nla_get_be32(cda[CTA_MARK])); if (cda[CTA_MARK_MASK]) mark->mask = ntohl(nla_get_be32(cda[CTA_MARK_MASK])); else mark->mask = 0xffffffff; } else if (cda[CTA_MARK_MASK]) { return -EINVAL; } #endif return 0; } static int ctnetlink_filter_parse_status(struct ctnetlink_filter_u32 *status, const struct nlattr * const cda[]) { if (cda[CTA_STATUS]) { status->val = ntohl(nla_get_be32(cda[CTA_STATUS])); if (cda[CTA_STATUS_MASK]) status->mask = ntohl(nla_get_be32(cda[CTA_STATUS_MASK])); else status->mask = status->val; /* status->val == 0? always true, else always false. */ if (status->mask == 0) return -EINVAL; } else if (cda[CTA_STATUS_MASK]) { return -EINVAL; } /* CTA_STATUS is NLA_U32, if this fires UAPI needs to be extended */ BUILD_BUG_ON(__IPS_MAX_BIT >= 32); return 0; } static struct ctnetlink_filter * ctnetlink_alloc_filter(const struct nlattr * const cda[], u8 family) { struct ctnetlink_filter *filter; int err; #ifndef CONFIG_NF_CONNTRACK_MARK if (cda[CTA_MARK] || cda[CTA_MARK_MASK]) return ERR_PTR(-EOPNOTSUPP); #endif filter = kzalloc(sizeof(*filter), GFP_KERNEL); if (filter == NULL) return ERR_PTR(-ENOMEM); filter->family = family; err = ctnetlink_filter_parse_mark(&filter->mark, cda); if (err) goto err_filter; err = ctnetlink_filter_parse_status(&filter->status, cda); if (err) goto err_filter; if (cda[CTA_ZONE]) { err = ctnetlink_parse_zone(cda[CTA_ZONE], &filter->zone); if (err < 0) goto err_filter; filter->zone_filter = true; } if (!cda[CTA_FILTER]) return filter; err = ctnetlink_parse_filter(cda[CTA_FILTER], filter); if (err < 0) goto err_filter; if (filter->orig_flags) { if (!cda[CTA_TUPLE_ORIG]) { err = -EINVAL; goto err_filter; } err = ctnetlink_parse_tuple_filter(cda, &filter->orig, CTA_TUPLE_ORIG, filter->family, &filter->zone, filter->orig_flags); if (err < 0) goto err_filter; } if (filter->reply_flags) { if (!cda[CTA_TUPLE_REPLY]) { err = -EINVAL; goto err_filter; } err = ctnetlink_parse_tuple_filter(cda, &filter->reply, CTA_TUPLE_REPLY, filter->family, &filter->zone, filter->reply_flags); if (err < 0) goto err_filter; } return filter; err_filter: kfree(filter); return ERR_PTR(err); } static bool ctnetlink_needs_filter(u8 family, const struct nlattr * const *cda) { return family || cda[CTA_MARK] || cda[CTA_FILTER] || cda[CTA_STATUS] || cda[CTA_ZONE]; } static int ctnetlink_start(struct netlink_callback *cb) { const struct nlattr * const *cda = cb->data; struct ctnetlink_filter *filter = NULL; struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); u8 family = nfmsg->nfgen_family; if (ctnetlink_needs_filter(family, cda)) { filter = ctnetlink_alloc_filter(cda, family); if (IS_ERR(filter)) return PTR_ERR(filter); } cb->data = filter; return 0; } static int ctnetlink_filter_match_tuple(struct nf_conntrack_tuple *filter_tuple, struct nf_conntrack_tuple *ct_tuple, u_int32_t flags, int family) { switch (family) { case NFPROTO_IPV4: if ((flags & CTA_FILTER_FLAG(CTA_IP_SRC)) && filter_tuple->src.u3.ip != ct_tuple->src.u3.ip) return 0; if ((flags & CTA_FILTER_FLAG(CTA_IP_DST)) && filter_tuple->dst.u3.ip != ct_tuple->dst.u3.ip) return 0; break; case NFPROTO_IPV6: if ((flags & CTA_FILTER_FLAG(CTA_IP_SRC)) && !ipv6_addr_cmp(&filter_tuple->src.u3.in6, &ct_tuple->src.u3.in6)) return 0; if ((flags & CTA_FILTER_FLAG(CTA_IP_DST)) && !ipv6_addr_cmp(&filter_tuple->dst.u3.in6, &ct_tuple->dst.u3.in6)) return 0; break; } if ((flags & CTA_FILTER_FLAG(CTA_PROTO_NUM)) && filter_tuple->dst.protonum != ct_tuple->dst.protonum) return 0; switch (ct_tuple->dst.protonum) { case IPPROTO_TCP: case IPPROTO_UDP: if ((flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) && filter_tuple->src.u.tcp.port != ct_tuple->src.u.tcp.port) return 0; if ((flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) && filter_tuple->dst.u.tcp.port != ct_tuple->dst.u.tcp.port) return 0; break; case IPPROTO_ICMP: if ((flags & CTA_FILTER_FLAG(CTA_PROTO_ICMP_TYPE)) && filter_tuple->dst.u.icmp.type != ct_tuple->dst.u.icmp.type) return 0; if ((flags & CTA_FILTER_FLAG(CTA_PROTO_ICMP_CODE)) && filter_tuple->dst.u.icmp.code != ct_tuple->dst.u.icmp.code) return 0; if ((flags & CTA_FILTER_FLAG(CTA_PROTO_ICMP_ID)) && filter_tuple->src.u.icmp.id != ct_tuple->src.u.icmp.id) return 0; break; case IPPROTO_ICMPV6: if ((flags & CTA_FILTER_FLAG(CTA_PROTO_ICMPV6_TYPE)) && filter_tuple->dst.u.icmp.type != ct_tuple->dst.u.icmp.type) return 0; if ((flags & CTA_FILTER_FLAG(CTA_PROTO_ICMPV6_CODE)) && filter_tuple->dst.u.icmp.code != ct_tuple->dst.u.icmp.code) return 0; if ((flags & CTA_FILTER_FLAG(CTA_PROTO_ICMPV6_ID)) && filter_tuple->src.u.icmp.id != ct_tuple->src.u.icmp.id) return 0; break; } return 1; } static int ctnetlink_filter_match(struct nf_conn *ct, void *data) { struct ctnetlink_filter *filter = data; struct nf_conntrack_tuple *tuple; u32 status; if (filter == NULL) goto out; /* Match entries of a given L3 protocol number. * If it is not specified, ie. l3proto == 0, * then match everything. */ if (filter->family && nf_ct_l3num(ct) != filter->family) goto ignore_entry; if (filter->zone_filter && !nf_ct_zone_equal_any(ct, &filter->zone)) goto ignore_entry; if (filter->orig_flags) { tuple = nf_ct_tuple(ct, IP_CT_DIR_ORIGINAL); if (!ctnetlink_filter_match_tuple(&filter->orig, tuple, filter->orig_flags, filter->family)) goto ignore_entry; } if (filter->reply_flags) { tuple = nf_ct_tuple(ct, IP_CT_DIR_REPLY); if (!ctnetlink_filter_match_tuple(&filter->reply, tuple, filter->reply_flags, filter->family)) goto ignore_entry; } #ifdef CONFIG_NF_CONNTRACK_MARK if ((READ_ONCE(ct->mark) & filter->mark.mask) != filter->mark.val) goto ignore_entry; #endif status = (u32)READ_ONCE(ct->status); if ((status & filter->status.mask) != filter->status.val) goto ignore_entry; out: return 1; ignore_entry: return 0; } static int ctnetlink_dump_table(struct sk_buff *skb, struct netlink_callback *cb) { unsigned int flags = cb->data ? NLM_F_DUMP_FILTERED : 0; struct net *net = sock_net(skb->sk); struct nf_conn *ct, *last; struct nf_conntrack_tuple_hash *h; struct hlist_nulls_node *n; struct nf_conn *nf_ct_evict[8]; int res, i; spinlock_t *lockp; last = (struct nf_conn *)cb->args[1]; i = 0; local_bh_disable(); for (; cb->args[0] < nf_conntrack_htable_size; cb->args[0]++) { restart: while (i) { i--; if (nf_ct_should_gc(nf_ct_evict[i])) nf_ct_kill(nf_ct_evict[i]); nf_ct_put(nf_ct_evict[i]); } lockp = &nf_conntrack_locks[cb->args[0] % CONNTRACK_LOCKS]; nf_conntrack_lock(lockp); if (cb->args[0] >= nf_conntrack_htable_size) { spin_unlock(lockp); goto out; } hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[cb->args[0]], hnnode) { ct = nf_ct_tuplehash_to_ctrack(h); if (nf_ct_is_expired(ct)) { /* need to defer nf_ct_kill() until lock is released */ if (i < ARRAY_SIZE(nf_ct_evict) && refcount_inc_not_zero(&ct->ct_general.use)) nf_ct_evict[i++] = ct; continue; } if (!net_eq(net, nf_ct_net(ct))) continue; if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL) continue; if (cb->args[1]) { if (ct != last) continue; cb->args[1] = 0; } if (!ctnetlink_filter_match(ct, cb->data)) continue; res = ctnetlink_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFNL_MSG_TYPE(cb->nlh->nlmsg_type), ct, true, flags); if (res < 0) { nf_conntrack_get(&ct->ct_general); cb->args[1] = (unsigned long)ct; spin_unlock(lockp); goto out; } } spin_unlock(lockp); if (cb->args[1]) { cb->args[1] = 0; goto restart; } } out: local_bh_enable(); if (last) { /* nf ct hash resize happened, now clear the leftover. */ if ((struct nf_conn *)cb->args[1] == last) cb->args[1] = 0; nf_ct_put(last); } while (i) { i--; if (nf_ct_should_gc(nf_ct_evict[i])) nf_ct_kill(nf_ct_evict[i]); nf_ct_put(nf_ct_evict[i]); } return skb->len; } static int ipv4_nlattr_to_tuple(struct nlattr *tb[], struct nf_conntrack_tuple *t, u_int32_t flags) { if (flags & CTA_FILTER_FLAG(CTA_IP_SRC)) { if (!tb[CTA_IP_V4_SRC]) return -EINVAL; t->src.u3.ip = nla_get_in_addr(tb[CTA_IP_V4_SRC]); } if (flags & CTA_FILTER_FLAG(CTA_IP_DST)) { if (!tb[CTA_IP_V4_DST]) return -EINVAL; t->dst.u3.ip = nla_get_in_addr(tb[CTA_IP_V4_DST]); } return 0; } static int ipv6_nlattr_to_tuple(struct nlattr *tb[], struct nf_conntrack_tuple *t, u_int32_t flags) { if (flags & CTA_FILTER_FLAG(CTA_IP_SRC)) { if (!tb[CTA_IP_V6_SRC]) return -EINVAL; t->src.u3.in6 = nla_get_in6_addr(tb[CTA_IP_V6_SRC]); } if (flags & CTA_FILTER_FLAG(CTA_IP_DST)) { if (!tb[CTA_IP_V6_DST]) return -EINVAL; t->dst.u3.in6 = nla_get_in6_addr(tb[CTA_IP_V6_DST]); } return 0; } static int ctnetlink_parse_tuple_ip(struct nlattr *attr, struct nf_conntrack_tuple *tuple, u_int32_t flags) { struct nlattr *tb[CTA_IP_MAX+1]; int ret = 0; ret = nla_parse_nested_deprecated(tb, CTA_IP_MAX, attr, cta_ip_nla_policy, NULL); if (ret < 0) return ret; switch (tuple->src.l3num) { case NFPROTO_IPV4: ret = ipv4_nlattr_to_tuple(tb, tuple, flags); break; case NFPROTO_IPV6: ret = ipv6_nlattr_to_tuple(tb, tuple, flags); break; } return ret; } static const struct nla_policy proto_nla_policy[CTA_PROTO_MAX+1] = { [CTA_PROTO_NUM] = { .type = NLA_U8 }, }; static int ctnetlink_parse_tuple_proto(struct nlattr *attr, struct nf_conntrack_tuple *tuple, u_int32_t flags) { const struct nf_conntrack_l4proto *l4proto; struct nlattr *tb[CTA_PROTO_MAX+1]; int ret = 0; ret = nla_parse_nested_deprecated(tb, CTA_PROTO_MAX, attr, proto_nla_policy, NULL); if (ret < 0) return ret; if (!(flags & CTA_FILTER_FLAG(CTA_PROTO_NUM))) return 0; if (!tb[CTA_PROTO_NUM]) return -EINVAL; tuple->dst.protonum = nla_get_u8(tb[CTA_PROTO_NUM]); rcu_read_lock(); l4proto = nf_ct_l4proto_find(tuple->dst.protonum); if (likely(l4proto->nlattr_to_tuple)) { ret = nla_validate_nested_deprecated(attr, CTA_PROTO_MAX, l4proto->nla_policy, NULL); if (ret == 0) ret = l4proto->nlattr_to_tuple(tb, tuple, flags); } rcu_read_unlock(); return ret; } static int ctnetlink_parse_zone(const struct nlattr *attr, struct nf_conntrack_zone *zone) { nf_ct_zone_init(zone, NF_CT_DEFAULT_ZONE_ID, NF_CT_DEFAULT_ZONE_DIR, 0); #ifdef CONFIG_NF_CONNTRACK_ZONES if (attr) zone->id = ntohs(nla_get_be16(attr)); #else if (attr) return -EOPNOTSUPP; #endif return 0; } static int ctnetlink_parse_tuple_zone(struct nlattr *attr, enum ctattr_type type, struct nf_conntrack_zone *zone) { int ret; if (zone->id != NF_CT_DEFAULT_ZONE_ID) return -EINVAL; ret = ctnetlink_parse_zone(attr, zone); if (ret < 0) return ret; if (type == CTA_TUPLE_REPLY) zone->dir = NF_CT_ZONE_DIR_REPL; else zone->dir = NF_CT_ZONE_DIR_ORIG; return 0; } static const struct nla_policy tuple_nla_policy[CTA_TUPLE_MAX+1] = { [CTA_TUPLE_IP] = { .type = NLA_NESTED }, [CTA_TUPLE_PROTO] = { .type = NLA_NESTED }, [CTA_TUPLE_ZONE] = { .type = NLA_U16 }, }; #define CTA_FILTER_F_ALL_CTA_PROTO \ (CTA_FILTER_F_CTA_PROTO_SRC_PORT | \ CTA_FILTER_F_CTA_PROTO_DST_PORT | \ CTA_FILTER_F_CTA_PROTO_ICMP_TYPE | \ CTA_FILTER_F_CTA_PROTO_ICMP_CODE | \ CTA_FILTER_F_CTA_PROTO_ICMP_ID | \ CTA_FILTER_F_CTA_PROTO_ICMPV6_TYPE | \ CTA_FILTER_F_CTA_PROTO_ICMPV6_CODE | \ CTA_FILTER_F_CTA_PROTO_ICMPV6_ID) static int ctnetlink_parse_tuple_filter(const struct nlattr * const cda[], struct nf_conntrack_tuple *tuple, u32 type, u_int8_t l3num, struct nf_conntrack_zone *zone, u_int32_t flags) { struct nlattr *tb[CTA_TUPLE_MAX+1]; int err; memset(tuple, 0, sizeof(*tuple)); err = nla_parse_nested_deprecated(tb, CTA_TUPLE_MAX, cda[type], tuple_nla_policy, NULL); if (err < 0) return err; if (l3num != NFPROTO_IPV4 && l3num != NFPROTO_IPV6) return -EOPNOTSUPP; tuple->src.l3num = l3num; if (flags & CTA_FILTER_FLAG(CTA_IP_DST) || flags & CTA_FILTER_FLAG(CTA_IP_SRC)) { if (!tb[CTA_TUPLE_IP]) return -EINVAL; err = ctnetlink_parse_tuple_ip(tb[CTA_TUPLE_IP], tuple, flags); if (err < 0) return err; } if (flags & CTA_FILTER_FLAG(CTA_PROTO_NUM)) { if (!tb[CTA_TUPLE_PROTO]) return -EINVAL; err = ctnetlink_parse_tuple_proto(tb[CTA_TUPLE_PROTO], tuple, flags); if (err < 0) return err; } else if (flags & CTA_FILTER_FLAG(ALL_CTA_PROTO)) { /* Can't manage proto flags without a protonum */ return -EINVAL; } if ((flags & CTA_FILTER_FLAG(CTA_TUPLE_ZONE)) && tb[CTA_TUPLE_ZONE]) { if (!zone) return -EINVAL; err = ctnetlink_parse_tuple_zone(tb[CTA_TUPLE_ZONE], type, zone); if (err < 0) return err; } /* orig and expect tuples get DIR_ORIGINAL */ if (type == CTA_TUPLE_REPLY) tuple->dst.dir = IP_CT_DIR_REPLY; else tuple->dst.dir = IP_CT_DIR_ORIGINAL; return 0; } static int ctnetlink_parse_tuple(const struct nlattr * const cda[], struct nf_conntrack_tuple *tuple, u32 type, u_int8_t l3num, struct nf_conntrack_zone *zone) { return ctnetlink_parse_tuple_filter(cda, tuple, type, l3num, zone, CTA_FILTER_FLAG(ALL)); } static const struct nla_policy help_nla_policy[CTA_HELP_MAX+1] = { [CTA_HELP_NAME] = { .type = NLA_NUL_STRING, .len = NF_CT_HELPER_NAME_LEN - 1 }, }; static int ctnetlink_parse_help(const struct nlattr *attr, char **helper_name, struct nlattr **helpinfo) { int err; struct nlattr *tb[CTA_HELP_MAX+1]; err = nla_parse_nested_deprecated(tb, CTA_HELP_MAX, attr, help_nla_policy, NULL); if (err < 0) return err; if (!tb[CTA_HELP_NAME]) return -EINVAL; *helper_name = nla_data(tb[CTA_HELP_NAME]); if (tb[CTA_HELP_INFO]) *helpinfo = tb[CTA_HELP_INFO]; return 0; } static const struct nla_policy ct_nla_policy[CTA_MAX+1] = { [CTA_TUPLE_ORIG] = { .type = NLA_NESTED }, [CTA_TUPLE_REPLY] = { .type = NLA_NESTED }, [CTA_STATUS] = { .type = NLA_U32 }, [CTA_PROTOINFO] = { .type = NLA_NESTED }, [CTA_HELP] = { .type = NLA_NESTED }, [CTA_NAT_SRC] = { .type = NLA_NESTED }, [CTA_TIMEOUT] = { .type = NLA_U32 }, [CTA_MARK] = { .type = NLA_U32 }, [CTA_ID] = { .type = NLA_U32 }, [CTA_NAT_DST] = { .type = NLA_NESTED }, [CTA_TUPLE_MASTER] = { .type = NLA_NESTED }, [CTA_NAT_SEQ_ADJ_ORIG] = { .type = NLA_NESTED }, [CTA_NAT_SEQ_ADJ_REPLY] = { .type = NLA_NESTED }, [CTA_ZONE] = { .type = NLA_U16 }, [CTA_MARK_MASK] = { .type = NLA_U32 }, [CTA_LABELS] = { .type = NLA_BINARY, .len = NF_CT_LABELS_MAX_SIZE }, [CTA_LABELS_MASK] = { .type = NLA_BINARY, .len = NF_CT_LABELS_MAX_SIZE }, [CTA_FILTER] = { .type = NLA_NESTED }, [CTA_STATUS_MASK] = { .type = NLA_U32 }, }; static int ctnetlink_flush_iterate(struct nf_conn *ct, void *data) { return ctnetlink_filter_match(ct, data); } static int ctnetlink_flush_conntrack(struct net *net, const struct nlattr * const cda[], u32 portid, int report, u8 family) { struct ctnetlink_filter *filter = NULL; struct nf_ct_iter_data iter = { .net = net, .portid = portid, .report = report, }; if (ctnetlink_needs_filter(family, cda)) { if (cda[CTA_FILTER]) return -EOPNOTSUPP; filter = ctnetlink_alloc_filter(cda, family); if (IS_ERR(filter)) return PTR_ERR(filter); iter.data = filter; } nf_ct_iterate_cleanup_net(ctnetlink_flush_iterate, &iter); kfree(filter); return 0; } static int ctnetlink_del_conntrack(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { u8 family = info->nfmsg->nfgen_family; struct nf_conntrack_tuple_hash *h; struct nf_conntrack_tuple tuple; struct nf_conntrack_zone zone; struct nf_conn *ct; int err; err = ctnetlink_parse_zone(cda[CTA_ZONE], &zone); if (err < 0) return err; if (cda[CTA_TUPLE_ORIG]) err = ctnetlink_parse_tuple(cda, &tuple, CTA_TUPLE_ORIG, family, &zone); else if (cda[CTA_TUPLE_REPLY]) err = ctnetlink_parse_tuple(cda, &tuple, CTA_TUPLE_REPLY, family, &zone); else { u_int8_t u3 = info->nfmsg->version ? family : AF_UNSPEC; return ctnetlink_flush_conntrack(info->net, cda, NETLINK_CB(skb).portid, nlmsg_report(info->nlh), u3); } if (err < 0) return err; h = nf_conntrack_find_get(info->net, &zone, &tuple); if (!h) return -ENOENT; ct = nf_ct_tuplehash_to_ctrack(h); if (cda[CTA_ID]) { __be32 id = nla_get_be32(cda[CTA_ID]); if (id != (__force __be32)nf_ct_get_id(ct)) { nf_ct_put(ct); return -ENOENT; } } nf_ct_delete(ct, NETLINK_CB(skb).portid, nlmsg_report(info->nlh)); nf_ct_put(ct); return 0; } static int ctnetlink_get_conntrack(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { u_int8_t u3 = info->nfmsg->nfgen_family; struct nf_conntrack_tuple_hash *h; struct nf_conntrack_tuple tuple; struct nf_conntrack_zone zone; struct sk_buff *skb2; struct nf_conn *ct; int err; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = ctnetlink_start, .dump = ctnetlink_dump_table, .done = ctnetlink_done, .data = (void *)cda, }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } err = ctnetlink_parse_zone(cda[CTA_ZONE], &zone); if (err < 0) return err; if (cda[CTA_TUPLE_ORIG]) err = ctnetlink_parse_tuple(cda, &tuple, CTA_TUPLE_ORIG, u3, &zone); else if (cda[CTA_TUPLE_REPLY]) err = ctnetlink_parse_tuple(cda, &tuple, CTA_TUPLE_REPLY, u3, &zone); else return -EINVAL; if (err < 0) return err; h = nf_conntrack_find_get(info->net, &zone, &tuple); if (!h) return -ENOENT; ct = nf_ct_tuplehash_to_ctrack(h); skb2 = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb2) { nf_ct_put(ct); return -ENOMEM; } err = ctnetlink_fill_info(skb2, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFNL_MSG_TYPE(info->nlh->nlmsg_type), ct, true, 0); nf_ct_put(ct); if (err <= 0) { kfree_skb(skb2); return -ENOMEM; } return nfnetlink_unicast(skb2, info->net, NETLINK_CB(skb).portid); } static int ctnetlink_done_list(struct netlink_callback *cb) { struct ctnetlink_list_dump_ctx *ctx = (void *)cb->ctx; if (ctx->last) nf_ct_put(ctx->last); return 0; } #ifdef CONFIG_NF_CONNTRACK_EVENTS static int ctnetlink_dump_one_entry(struct sk_buff *skb, struct netlink_callback *cb, struct nf_conn *ct, bool dying) { struct ctnetlink_list_dump_ctx *ctx = (void *)cb->ctx; struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); u8 l3proto = nfmsg->nfgen_family; int res; if (l3proto && nf_ct_l3num(ct) != l3proto) return 0; if (ctx->last) { if (ct != ctx->last) return 0; ctx->last = NULL; } /* We can't dump extension info for the unconfirmed * list because unconfirmed conntracks can have * ct->ext reallocated (and thus freed). * * In the dying list case ct->ext can't be free'd * until after we drop pcpu->lock. */ res = ctnetlink_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFNL_MSG_TYPE(cb->nlh->nlmsg_type), ct, dying, 0); if (res < 0) { if (!refcount_inc_not_zero(&ct->ct_general.use)) return 0; ctx->last = ct; } return res; } #endif static int ctnetlink_dump_unconfirmed(struct sk_buff *skb, struct netlink_callback *cb) { return 0; } static int ctnetlink_dump_dying(struct sk_buff *skb, struct netlink_callback *cb) { struct ctnetlink_list_dump_ctx *ctx = (void *)cb->ctx; struct nf_conn *last = ctx->last; #ifdef CONFIG_NF_CONNTRACK_EVENTS const struct net *net = sock_net(skb->sk); struct nf_conntrack_net_ecache *ecache_net; struct nf_conntrack_tuple_hash *h; struct hlist_nulls_node *n; #endif if (ctx->done) return 0; ctx->last = NULL; #ifdef CONFIG_NF_CONNTRACK_EVENTS ecache_net = nf_conn_pernet_ecache(net); spin_lock_bh(&ecache_net->dying_lock); hlist_nulls_for_each_entry(h, n, &ecache_net->dying_list, hnnode) { struct nf_conn *ct; int res; ct = nf_ct_tuplehash_to_ctrack(h); if (last && last != ct) continue; res = ctnetlink_dump_one_entry(skb, cb, ct, true); if (res < 0) { spin_unlock_bh(&ecache_net->dying_lock); nf_ct_put(last); return skb->len; } nf_ct_put(last); last = NULL; } spin_unlock_bh(&ecache_net->dying_lock); #endif ctx->done = true; nf_ct_put(last); return skb->len; } static int ctnetlink_get_ct_dying(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = ctnetlink_dump_dying, .done = ctnetlink_done_list, }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } return -EOPNOTSUPP; } static int ctnetlink_get_ct_unconfirmed(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = ctnetlink_dump_unconfirmed, .done = ctnetlink_done_list, }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } return -EOPNOTSUPP; } #if IS_ENABLED(CONFIG_NF_NAT) static int ctnetlink_parse_nat_setup(struct nf_conn *ct, enum nf_nat_manip_type manip, const struct nlattr *attr) __must_hold(RCU) { const struct nf_nat_hook *nat_hook; int err; nat_hook = rcu_dereference(nf_nat_hook); if (!nat_hook) { #ifdef CONFIG_MODULES rcu_read_unlock(); nfnl_unlock(NFNL_SUBSYS_CTNETLINK); if (request_module("nf-nat") < 0) { nfnl_lock(NFNL_SUBSYS_CTNETLINK); rcu_read_lock(); return -EOPNOTSUPP; } nfnl_lock(NFNL_SUBSYS_CTNETLINK); rcu_read_lock(); nat_hook = rcu_dereference(nf_nat_hook); if (nat_hook) return -EAGAIN; #endif return -EOPNOTSUPP; } err = nat_hook->parse_nat_setup(ct, manip, attr); if (err == -EAGAIN) { #ifdef CONFIG_MODULES rcu_read_unlock(); nfnl_unlock(NFNL_SUBSYS_CTNETLINK); if (request_module("nf-nat-%u", nf_ct_l3num(ct)) < 0) { nfnl_lock(NFNL_SUBSYS_CTNETLINK); rcu_read_lock(); return -EOPNOTSUPP; } nfnl_lock(NFNL_SUBSYS_CTNETLINK); rcu_read_lock(); #else err = -EOPNOTSUPP; #endif } return err; } #endif static int ctnetlink_change_status(struct nf_conn *ct, const struct nlattr * const cda[]) { return nf_ct_change_status_common(ct, ntohl(nla_get_be32(cda[CTA_STATUS]))); } static int ctnetlink_setup_nat(struct nf_conn *ct, const struct nlattr * const cda[]) { #if IS_ENABLED(CONFIG_NF_NAT) int ret; if (!cda[CTA_NAT_DST] && !cda[CTA_NAT_SRC]) return 0; ret = ctnetlink_parse_nat_setup(ct, NF_NAT_MANIP_DST, cda[CTA_NAT_DST]); if (ret < 0) return ret; return ctnetlink_parse_nat_setup(ct, NF_NAT_MANIP_SRC, cda[CTA_NAT_SRC]); #else if (!cda[CTA_NAT_DST] && !cda[CTA_NAT_SRC]) return 0; return -EOPNOTSUPP; #endif } static int ctnetlink_change_helper(struct nf_conn *ct, const struct nlattr * const cda[]) { struct nf_conntrack_helper *helper; struct nf_conn_help *help = nfct_help(ct); char *helpname = NULL; struct nlattr *helpinfo = NULL; int err; err = ctnetlink_parse_help(cda[CTA_HELP], &helpname, &helpinfo); if (err < 0) return err; /* don't change helper of sibling connections */ if (ct->master) { /* If we try to change the helper to the same thing twice, * treat the second attempt as a no-op instead of returning * an error. */ err = -EBUSY; if (help) { rcu_read_lock(); helper = rcu_dereference(help->helper); if (helper && !strcmp(helper->name, helpname)) err = 0; rcu_read_unlock(); } return err; } if (!strcmp(helpname, "")) { if (help && help->helper) { /* we had a helper before ... */ nf_ct_remove_expectations(ct); RCU_INIT_POINTER(help->helper, NULL); } return 0; } rcu_read_lock(); helper = __nf_conntrack_helper_find(helpname, nf_ct_l3num(ct), nf_ct_protonum(ct)); if (helper == NULL) { rcu_read_unlock(); return -EOPNOTSUPP; } if (help) { if (rcu_access_pointer(help->helper) == helper) { /* update private helper data if allowed. */ if (helper->from_nlattr) helper->from_nlattr(helpinfo, ct); err = 0; } else err = -EBUSY; } else { /* we cannot set a helper for an existing conntrack */ err = -EOPNOTSUPP; } rcu_read_unlock(); return err; } static int ctnetlink_change_timeout(struct nf_conn *ct, const struct nlattr * const cda[]) { return __nf_ct_change_timeout(ct, (u64)ntohl(nla_get_be32(cda[CTA_TIMEOUT])) * HZ); } #if defined(CONFIG_NF_CONNTRACK_MARK) static void ctnetlink_change_mark(struct nf_conn *ct, const struct nlattr * const cda[]) { u32 mark, newmark, mask = 0; if (cda[CTA_MARK_MASK]) mask = ~ntohl(nla_get_be32(cda[CTA_MARK_MASK])); mark = ntohl(nla_get_be32(cda[CTA_MARK])); newmark = (READ_ONCE(ct->mark) & mask) ^ mark; if (newmark != READ_ONCE(ct->mark)) WRITE_ONCE(ct->mark, newmark); } #endif static const struct nla_policy protoinfo_policy[CTA_PROTOINFO_MAX+1] = { [CTA_PROTOINFO_TCP] = { .type = NLA_NESTED }, [CTA_PROTOINFO_DCCP] = { .type = NLA_NESTED }, [CTA_PROTOINFO_SCTP] = { .type = NLA_NESTED }, }; static int ctnetlink_change_protoinfo(struct nf_conn *ct, const struct nlattr * const cda[]) { const struct nlattr *attr = cda[CTA_PROTOINFO]; const struct nf_conntrack_l4proto *l4proto; struct nlattr *tb[CTA_PROTOINFO_MAX+1]; int err = 0; err = nla_parse_nested_deprecated(tb, CTA_PROTOINFO_MAX, attr, protoinfo_policy, NULL); if (err < 0) return err; l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct)); if (l4proto->from_nlattr) err = l4proto->from_nlattr(tb, ct); return err; } static const struct nla_policy seqadj_policy[CTA_SEQADJ_MAX+1] = { [CTA_SEQADJ_CORRECTION_POS] = { .type = NLA_U32 }, [CTA_SEQADJ_OFFSET_BEFORE] = { .type = NLA_U32 }, [CTA_SEQADJ_OFFSET_AFTER] = { .type = NLA_U32 }, }; static int change_seq_adj(struct nf_ct_seqadj *seq, const struct nlattr * const attr) { int err; struct nlattr *cda[CTA_SEQADJ_MAX+1]; err = nla_parse_nested_deprecated(cda, CTA_SEQADJ_MAX, attr, seqadj_policy, NULL); if (err < 0) return err; if (!cda[CTA_SEQADJ_CORRECTION_POS]) return -EINVAL; seq->correction_pos = ntohl(nla_get_be32(cda[CTA_SEQADJ_CORRECTION_POS])); if (!cda[CTA_SEQADJ_OFFSET_BEFORE]) return -EINVAL; seq->offset_before = ntohl(nla_get_be32(cda[CTA_SEQADJ_OFFSET_BEFORE])); if (!cda[CTA_SEQADJ_OFFSET_AFTER]) return -EINVAL; seq->offset_after = ntohl(nla_get_be32(cda[CTA_SEQADJ_OFFSET_AFTER])); return 0; } static int ctnetlink_change_seq_adj(struct nf_conn *ct, const struct nlattr * const cda[]) { struct nf_conn_seqadj *seqadj = nfct_seqadj(ct); int ret = 0; if (!seqadj) return 0; spin_lock_bh(&ct->lock); if (cda[CTA_SEQ_ADJ_ORIG]) { ret = change_seq_adj(&seqadj->seq[IP_CT_DIR_ORIGINAL], cda[CTA_SEQ_ADJ_ORIG]); if (ret < 0) goto err; set_bit(IPS_SEQ_ADJUST_BIT, &ct->status); } if (cda[CTA_SEQ_ADJ_REPLY]) { ret = change_seq_adj(&seqadj->seq[IP_CT_DIR_REPLY], cda[CTA_SEQ_ADJ_REPLY]); if (ret < 0) goto err; set_bit(IPS_SEQ_ADJUST_BIT, &ct->status); } spin_unlock_bh(&ct->lock); return 0; err: spin_unlock_bh(&ct->lock); return ret; } static const struct nla_policy synproxy_policy[CTA_SYNPROXY_MAX + 1] = { [CTA_SYNPROXY_ISN] = { .type = NLA_U32 }, [CTA_SYNPROXY_ITS] = { .type = NLA_U32 }, [CTA_SYNPROXY_TSOFF] = { .type = NLA_U32 }, }; static int ctnetlink_change_synproxy(struct nf_conn *ct, const struct nlattr * const cda[]) { struct nf_conn_synproxy *synproxy = nfct_synproxy(ct); struct nlattr *tb[CTA_SYNPROXY_MAX + 1]; int err; if (!synproxy) return 0; err = nla_parse_nested_deprecated(tb, CTA_SYNPROXY_MAX, cda[CTA_SYNPROXY], synproxy_policy, NULL); if (err < 0) return err; if (!tb[CTA_SYNPROXY_ISN] || !tb[CTA_SYNPROXY_ITS] || !tb[CTA_SYNPROXY_TSOFF]) return -EINVAL; synproxy->isn = ntohl(nla_get_be32(tb[CTA_SYNPROXY_ISN])); synproxy->its = ntohl(nla_get_be32(tb[CTA_SYNPROXY_ITS])); synproxy->tsoff = ntohl(nla_get_be32(tb[CTA_SYNPROXY_TSOFF])); return 0; } static int ctnetlink_attach_labels(struct nf_conn *ct, const struct nlattr * const cda[]) { #ifdef CONFIG_NF_CONNTRACK_LABELS size_t len = nla_len(cda[CTA_LABELS]); const void *mask = cda[CTA_LABELS_MASK]; if (len & (sizeof(u32)-1)) /* must be multiple of u32 */ return -EINVAL; if (mask) { if (nla_len(cda[CTA_LABELS_MASK]) == 0 || nla_len(cda[CTA_LABELS_MASK]) != len) return -EINVAL; mask = nla_data(cda[CTA_LABELS_MASK]); } len /= sizeof(u32); return nf_connlabels_replace(ct, nla_data(cda[CTA_LABELS]), mask, len); #else return -EOPNOTSUPP; #endif } static int ctnetlink_change_conntrack(struct nf_conn *ct, const struct nlattr * const cda[]) { int err; /* only allow NAT changes and master assignation for new conntracks */ if (cda[CTA_NAT_SRC] || cda[CTA_NAT_DST] || cda[CTA_TUPLE_MASTER]) return -EOPNOTSUPP; if (cda[CTA_HELP]) { err = ctnetlink_change_helper(ct, cda); if (err < 0) return err; } if (cda[CTA_TIMEOUT]) { err = ctnetlink_change_timeout(ct, cda); if (err < 0) return err; } if (cda[CTA_STATUS]) { err = ctnetlink_change_status(ct, cda); if (err < 0) return err; } if (cda[CTA_PROTOINFO]) { err = ctnetlink_change_protoinfo(ct, cda); if (err < 0) return err; } #if defined(CONFIG_NF_CONNTRACK_MARK) if (cda[CTA_MARK]) ctnetlink_change_mark(ct, cda); #endif if (cda[CTA_SEQ_ADJ_ORIG] || cda[CTA_SEQ_ADJ_REPLY]) { err = ctnetlink_change_seq_adj(ct, cda); if (err < 0) return err; } if (cda[CTA_SYNPROXY]) { err = ctnetlink_change_synproxy(ct, cda); if (err < 0) return err; } if (cda[CTA_LABELS]) { err = ctnetlink_attach_labels(ct, cda); if (err < 0) return err; } return 0; } static struct nf_conn * ctnetlink_create_conntrack(struct net *net, const struct nf_conntrack_zone *zone, const struct nlattr * const cda[], struct nf_conntrack_tuple *otuple, struct nf_conntrack_tuple *rtuple, u8 u3) { struct nf_conn *ct; int err = -EINVAL; struct nf_conntrack_helper *helper; struct nf_conn_tstamp *tstamp; u64 timeout; ct = nf_conntrack_alloc(net, zone, otuple, rtuple, GFP_ATOMIC); if (IS_ERR(ct)) return ERR_PTR(-ENOMEM); if (!cda[CTA_TIMEOUT]) goto err1; rcu_read_lock(); if (cda[CTA_HELP]) { char *helpname = NULL; struct nlattr *helpinfo = NULL; err = ctnetlink_parse_help(cda[CTA_HELP], &helpname, &helpinfo); if (err < 0) goto err2; helper = __nf_conntrack_helper_find(helpname, nf_ct_l3num(ct), nf_ct_protonum(ct)); if (helper == NULL) { rcu_read_unlock(); #ifdef CONFIG_MODULES if (request_module("nfct-helper-%s", helpname) < 0) { err = -EOPNOTSUPP; goto err1; } rcu_read_lock(); helper = __nf_conntrack_helper_find(helpname, nf_ct_l3num(ct), nf_ct_protonum(ct)); if (helper) { err = -EAGAIN; goto err2; } rcu_read_unlock(); #endif err = -EOPNOTSUPP; goto err1; } else { struct nf_conn_help *help; help = nf_ct_helper_ext_add(ct, GFP_ATOMIC); if (help == NULL) { err = -ENOMEM; goto err2; } /* set private helper data if allowed. */ if (helper->from_nlattr) helper->from_nlattr(helpinfo, ct); /* disable helper auto-assignment for this entry */ ct->status |= IPS_HELPER; RCU_INIT_POINTER(help->helper, helper); } } err = ctnetlink_setup_nat(ct, cda); if (err < 0) goto err2; nf_ct_acct_ext_add(ct, GFP_ATOMIC); nf_ct_tstamp_ext_add(ct, GFP_ATOMIC); nf_ct_ecache_ext_add(ct, 0, 0, GFP_ATOMIC); nf_ct_labels_ext_add(ct); nfct_seqadj_ext_add(ct); nfct_synproxy_ext_add(ct); /* we must add conntrack extensions before confirmation. */ ct->status |= IPS_CONFIRMED; timeout = (u64)ntohl(nla_get_be32(cda[CTA_TIMEOUT])) * HZ; __nf_ct_set_timeout(ct, timeout); if (cda[CTA_STATUS]) { err = ctnetlink_change_status(ct, cda); if (err < 0) goto err2; } if (cda[CTA_SEQ_ADJ_ORIG] || cda[CTA_SEQ_ADJ_REPLY]) { err = ctnetlink_change_seq_adj(ct, cda); if (err < 0) goto err2; } memset(&ct->proto, 0, sizeof(ct->proto)); if (cda[CTA_PROTOINFO]) { err = ctnetlink_change_protoinfo(ct, cda); if (err < 0) goto err2; } if (cda[CTA_SYNPROXY]) { err = ctnetlink_change_synproxy(ct, cda); if (err < 0) goto err2; } #if defined(CONFIG_NF_CONNTRACK_MARK) if (cda[CTA_MARK]) ctnetlink_change_mark(ct, cda); #endif /* setup master conntrack: this is a confirmed expectation */ if (cda[CTA_TUPLE_MASTER]) { struct nf_conntrack_tuple master; struct nf_conntrack_tuple_hash *master_h; struct nf_conn *master_ct; err = ctnetlink_parse_tuple(cda, &master, CTA_TUPLE_MASTER, u3, NULL); if (err < 0) goto err2; master_h = nf_conntrack_find_get(net, zone, &master); if (master_h == NULL) { err = -ENOENT; goto err2; } master_ct = nf_ct_tuplehash_to_ctrack(master_h); __set_bit(IPS_EXPECTED_BIT, &ct->status); ct->master = master_ct; } tstamp = nf_conn_tstamp_find(ct); if (tstamp) tstamp->start = ktime_get_real_ns(); err = nf_conntrack_hash_check_insert(ct); if (err < 0) goto err3; rcu_read_unlock(); return ct; err3: if (ct->master) nf_ct_put(ct->master); err2: rcu_read_unlock(); err1: nf_conntrack_free(ct); return ERR_PTR(err); } static int ctnetlink_new_conntrack(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { struct nf_conntrack_tuple otuple, rtuple; struct nf_conntrack_tuple_hash *h = NULL; u_int8_t u3 = info->nfmsg->nfgen_family; struct nf_conntrack_zone zone; struct nf_conn *ct; int err; err = ctnetlink_parse_zone(cda[CTA_ZONE], &zone); if (err < 0) return err; if (cda[CTA_TUPLE_ORIG]) { err = ctnetlink_parse_tuple(cda, &otuple, CTA_TUPLE_ORIG, u3, &zone); if (err < 0) return err; } if (cda[CTA_TUPLE_REPLY]) { err = ctnetlink_parse_tuple(cda, &rtuple, CTA_TUPLE_REPLY, u3, &zone); if (err < 0) return err; } if (cda[CTA_TUPLE_ORIG]) h = nf_conntrack_find_get(info->net, &zone, &otuple); else if (cda[CTA_TUPLE_REPLY]) h = nf_conntrack_find_get(info->net, &zone, &rtuple); if (h == NULL) { err = -ENOENT; if (info->nlh->nlmsg_flags & NLM_F_CREATE) { enum ip_conntrack_events events; if (!cda[CTA_TUPLE_ORIG] || !cda[CTA_TUPLE_REPLY]) return -EINVAL; if (otuple.dst.protonum != rtuple.dst.protonum) return -EINVAL; ct = ctnetlink_create_conntrack(info->net, &zone, cda, &otuple, &rtuple, u3); if (IS_ERR(ct)) return PTR_ERR(ct); err = 0; if (test_bit(IPS_EXPECTED_BIT, &ct->status)) events = 1 << IPCT_RELATED; else events = 1 << IPCT_NEW; if (cda[CTA_LABELS] && ctnetlink_attach_labels(ct, cda) == 0) events |= (1 << IPCT_LABEL); nf_conntrack_eventmask_report((1 << IPCT_REPLY) | (1 << IPCT_ASSURED) | (1 << IPCT_HELPER) | (1 << IPCT_PROTOINFO) | (1 << IPCT_SEQADJ) | (1 << IPCT_MARK) | (1 << IPCT_SYNPROXY) | events, ct, NETLINK_CB(skb).portid, nlmsg_report(info->nlh)); nf_ct_put(ct); } return err; } /* implicit 'else' */ err = -EEXIST; ct = nf_ct_tuplehash_to_ctrack(h); if (!(info->nlh->nlmsg_flags & NLM_F_EXCL)) { err = ctnetlink_change_conntrack(ct, cda); if (err == 0) { nf_conntrack_eventmask_report((1 << IPCT_REPLY) | (1 << IPCT_ASSURED) | (1 << IPCT_HELPER) | (1 << IPCT_LABEL) | (1 << IPCT_PROTOINFO) | (1 << IPCT_SEQADJ) | (1 << IPCT_MARK) | (1 << IPCT_SYNPROXY), ct, NETLINK_CB(skb).portid, nlmsg_report(info->nlh)); } } nf_ct_put(ct); return err; } static int ctnetlink_ct_stat_cpu_fill_info(struct sk_buff *skb, u32 portid, u32 seq, __u16 cpu, const struct ip_conntrack_stat *st) { struct nlmsghdr *nlh; unsigned int flags = portid ? NLM_F_MULTI : 0, event; event = nfnl_msg_type(NFNL_SUBSYS_CTNETLINK, IPCTNL_MSG_CT_GET_STATS_CPU); nlh = nfnl_msg_put(skb, portid, seq, event, flags, AF_UNSPEC, NFNETLINK_V0, htons(cpu)); if (!nlh) goto nlmsg_failure; if (nla_put_be32(skb, CTA_STATS_FOUND, htonl(st->found)) || nla_put_be32(skb, CTA_STATS_INVALID, htonl(st->invalid)) || nla_put_be32(skb, CTA_STATS_INSERT, htonl(st->insert)) || nla_put_be32(skb, CTA_STATS_INSERT_FAILED, htonl(st->insert_failed)) || nla_put_be32(skb, CTA_STATS_DROP, htonl(st->drop)) || nla_put_be32(skb, CTA_STATS_EARLY_DROP, htonl(st->early_drop)) || nla_put_be32(skb, CTA_STATS_ERROR, htonl(st->error)) || nla_put_be32(skb, CTA_STATS_SEARCH_RESTART, htonl(st->search_restart)) || nla_put_be32(skb, CTA_STATS_CLASH_RESOLVE, htonl(st->clash_resolve)) || nla_put_be32(skb, CTA_STATS_CHAIN_TOOLONG, htonl(st->chaintoolong))) goto nla_put_failure; nlmsg_end(skb, nlh); return skb->len; nla_put_failure: nlmsg_failure: nlmsg_cancel(skb, nlh); return -1; } static int ctnetlink_ct_stat_cpu_dump(struct sk_buff *skb, struct netlink_callback *cb) { int cpu; struct net *net = sock_net(skb->sk); if (cb->args[0] == nr_cpu_ids) return 0; for (cpu = cb->args[0]; cpu < nr_cpu_ids; cpu++) { const struct ip_conntrack_stat *st; if (!cpu_possible(cpu)) continue; st = per_cpu_ptr(net->ct.stat, cpu); if (ctnetlink_ct_stat_cpu_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, cpu, st) < 0) break; } cb->args[0] = cpu; return skb->len; } static int ctnetlink_stat_ct_cpu(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = ctnetlink_ct_stat_cpu_dump, }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } return 0; } static int ctnetlink_stat_ct_fill_info(struct sk_buff *skb, u32 portid, u32 seq, u32 type, struct net *net) { unsigned int flags = portid ? NLM_F_MULTI : 0, event; unsigned int nr_conntracks; struct nlmsghdr *nlh; event = nfnl_msg_type(NFNL_SUBSYS_CTNETLINK, IPCTNL_MSG_CT_GET_STATS); nlh = nfnl_msg_put(skb, portid, seq, event, flags, AF_UNSPEC, NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; nr_conntracks = nf_conntrack_count(net); if (nla_put_be32(skb, CTA_STATS_GLOBAL_ENTRIES, htonl(nr_conntracks))) goto nla_put_failure; if (nla_put_be32(skb, CTA_STATS_GLOBAL_MAX_ENTRIES, htonl(nf_conntrack_max))) goto nla_put_failure; nlmsg_end(skb, nlh); return skb->len; nla_put_failure: nlmsg_failure: nlmsg_cancel(skb, nlh); return -1; } static int ctnetlink_stat_ct(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { struct sk_buff *skb2; int err; skb2 = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (skb2 == NULL) return -ENOMEM; err = ctnetlink_stat_ct_fill_info(skb2, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFNL_MSG_TYPE(info->nlh->nlmsg_type), sock_net(skb->sk)); if (err <= 0) { kfree_skb(skb2); return -ENOMEM; } return nfnetlink_unicast(skb2, info->net, NETLINK_CB(skb).portid); } static const struct nla_policy exp_nla_policy[CTA_EXPECT_MAX+1] = { [CTA_EXPECT_MASTER] = { .type = NLA_NESTED }, [CTA_EXPECT_TUPLE] = { .type = NLA_NESTED }, [CTA_EXPECT_MASK] = { .type = NLA_NESTED }, [CTA_EXPECT_TIMEOUT] = { .type = NLA_U32 }, [CTA_EXPECT_ID] = { .type = NLA_U32 }, [CTA_EXPECT_HELP_NAME] = { .type = NLA_NUL_STRING, .len = NF_CT_HELPER_NAME_LEN - 1 }, [CTA_EXPECT_ZONE] = { .type = NLA_U16 }, [CTA_EXPECT_FLAGS] = { .type = NLA_U32 }, [CTA_EXPECT_CLASS] = { .type = NLA_U32 }, [CTA_EXPECT_NAT] = { .type = NLA_NESTED }, [CTA_EXPECT_FN] = { .type = NLA_NUL_STRING }, }; static struct nf_conntrack_expect * ctnetlink_alloc_expect(const struct nlattr *const cda[], struct nf_conn *ct, struct nf_conntrack_helper *helper, struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple *mask); #ifdef CONFIG_NETFILTER_NETLINK_GLUE_CT static size_t ctnetlink_glue_build_size(const struct nf_conn *ct) { return 3 * nla_total_size(0) /* CTA_TUPLE_ORIG|REPL|MASTER */ + 3 * nla_total_size(0) /* CTA_TUPLE_IP */ + 3 * nla_total_size(0) /* CTA_TUPLE_PROTO */ + 3 * nla_total_size(sizeof(u_int8_t)) /* CTA_PROTO_NUM */ + nla_total_size(sizeof(u_int32_t)) /* CTA_ID */ + nla_total_size(sizeof(u_int32_t)) /* CTA_STATUS */ + nla_total_size(sizeof(u_int32_t)) /* CTA_TIMEOUT */ + nla_total_size(0) /* CTA_PROTOINFO */ + nla_total_size(0) /* CTA_HELP */ + nla_total_size(NF_CT_HELPER_NAME_LEN) /* CTA_HELP_NAME */ + ctnetlink_secctx_size(ct) + ctnetlink_acct_size(ct) + ctnetlink_timestamp_size(ct) #if IS_ENABLED(CONFIG_NF_NAT) + 2 * nla_total_size(0) /* CTA_NAT_SEQ_ADJ_ORIG|REPL */ + 6 * nla_total_size(sizeof(u_int32_t)) /* CTA_NAT_SEQ_OFFSET */ #endif #ifdef CONFIG_NF_CONNTRACK_MARK + nla_total_size(sizeof(u_int32_t)) /* CTA_MARK */ #endif #ifdef CONFIG_NF_CONNTRACK_ZONES + nla_total_size(sizeof(u_int16_t)) /* CTA_ZONE|CTA_TUPLE_ZONE */ #endif + ctnetlink_proto_size(ct) ; } static int __ctnetlink_glue_build(struct sk_buff *skb, struct nf_conn *ct) { const struct nf_conntrack_zone *zone; struct nlattr *nest_parms; zone = nf_ct_zone(ct); nest_parms = nla_nest_start(skb, CTA_TUPLE_ORIG); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, nf_ct_tuple(ct, IP_CT_DIR_ORIGINAL)) < 0) goto nla_put_failure; if (ctnetlink_dump_zone_id(skb, CTA_TUPLE_ZONE, zone, NF_CT_ZONE_DIR_ORIG) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); nest_parms = nla_nest_start(skb, CTA_TUPLE_REPLY); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, nf_ct_tuple(ct, IP_CT_DIR_REPLY)) < 0) goto nla_put_failure; if (ctnetlink_dump_zone_id(skb, CTA_TUPLE_ZONE, zone, NF_CT_ZONE_DIR_REPL) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); if (ctnetlink_dump_zone_id(skb, CTA_ZONE, zone, NF_CT_DEFAULT_ZONE_DIR) < 0) goto nla_put_failure; if (ctnetlink_dump_id(skb, ct) < 0) goto nla_put_failure; if (ctnetlink_dump_status(skb, ct) < 0) goto nla_put_failure; if (ctnetlink_dump_timeout(skb, ct, false) < 0) goto nla_put_failure; if (ctnetlink_dump_protoinfo(skb, ct, false) < 0) goto nla_put_failure; if (ctnetlink_dump_acct(skb, ct, IPCTNL_MSG_CT_GET) < 0 || ctnetlink_dump_timestamp(skb, ct) < 0) goto nla_put_failure; if (ctnetlink_dump_helpinfo(skb, ct) < 0) goto nla_put_failure; #ifdef CONFIG_NF_CONNTRACK_SECMARK if (ct->secmark && ctnetlink_dump_secctx(skb, ct) < 0) goto nla_put_failure; #endif if (ct->master && ctnetlink_dump_master(skb, ct) < 0) goto nla_put_failure; if ((ct->status & IPS_SEQ_ADJUST) && ctnetlink_dump_ct_seq_adj(skb, ct) < 0) goto nla_put_failure; if (ctnetlink_dump_ct_synproxy(skb, ct) < 0) goto nla_put_failure; #ifdef CONFIG_NF_CONNTRACK_MARK if (ctnetlink_dump_mark(skb, ct, true) < 0) goto nla_put_failure; #endif if (ctnetlink_dump_labels(skb, ct) < 0) goto nla_put_failure; return 0; nla_put_failure: return -ENOSPC; } static int ctnetlink_glue_build(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, u_int16_t ct_attr, u_int16_t ct_info_attr) { struct nlattr *nest_parms; nest_parms = nla_nest_start(skb, ct_attr); if (!nest_parms) goto nla_put_failure; if (__ctnetlink_glue_build(skb, ct) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); if (nla_put_be32(skb, ct_info_attr, htonl(ctinfo))) goto nla_put_failure; return 0; nla_put_failure: return -ENOSPC; } static int ctnetlink_update_status(struct nf_conn *ct, const struct nlattr * const cda[]) { unsigned int status = ntohl(nla_get_be32(cda[CTA_STATUS])); unsigned long d = ct->status ^ status; if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY)) /* SEEN_REPLY bit can only be set */ return -EBUSY; if (d & IPS_ASSURED && !(status & IPS_ASSURED)) /* ASSURED bit can only be set */ return -EBUSY; /* This check is less strict than ctnetlink_change_status() * because callers often flip IPS_EXPECTED bits when sending * an NFQA_CT attribute to the kernel. So ignore the * unchangeable bits but do not error out. Also user programs * are allowed to clear the bits that they are allowed to change. */ __nf_ct_change_status(ct, status, ~status); return 0; } static int ctnetlink_glue_parse_ct(const struct nlattr *cda[], struct nf_conn *ct) { int err; if (cda[CTA_TIMEOUT]) { err = ctnetlink_change_timeout(ct, cda); if (err < 0) return err; } if (cda[CTA_STATUS]) { err = ctnetlink_update_status(ct, cda); if (err < 0) return err; } if (cda[CTA_HELP]) { err = ctnetlink_change_helper(ct, cda); if (err < 0) return err; } if (cda[CTA_LABELS]) { err = ctnetlink_attach_labels(ct, cda); if (err < 0) return err; } #if defined(CONFIG_NF_CONNTRACK_MARK) if (cda[CTA_MARK]) { ctnetlink_change_mark(ct, cda); } #endif return 0; } static int ctnetlink_glue_parse(const struct nlattr *attr, struct nf_conn *ct) { struct nlattr *cda[CTA_MAX+1]; int ret; ret = nla_parse_nested_deprecated(cda, CTA_MAX, attr, ct_nla_policy, NULL); if (ret < 0) return ret; return ctnetlink_glue_parse_ct((const struct nlattr **)cda, ct); } static int ctnetlink_glue_exp_parse(const struct nlattr * const *cda, const struct nf_conn *ct, struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple *mask) { int err; err = ctnetlink_parse_tuple(cda, tuple, CTA_EXPECT_TUPLE, nf_ct_l3num(ct), NULL); if (err < 0) return err; return ctnetlink_parse_tuple(cda, mask, CTA_EXPECT_MASK, nf_ct_l3num(ct), NULL); } static int ctnetlink_glue_attach_expect(const struct nlattr *attr, struct nf_conn *ct, u32 portid, u32 report) { struct nlattr *cda[CTA_EXPECT_MAX+1]; struct nf_conntrack_tuple tuple, mask; struct nf_conntrack_helper *helper = NULL; struct nf_conntrack_expect *exp; int err; err = nla_parse_nested_deprecated(cda, CTA_EXPECT_MAX, attr, exp_nla_policy, NULL); if (err < 0) return err; err = ctnetlink_glue_exp_parse((const struct nlattr * const *)cda, ct, &tuple, &mask); if (err < 0) return err; if (cda[CTA_EXPECT_HELP_NAME]) { const char *helpname = nla_data(cda[CTA_EXPECT_HELP_NAME]); helper = __nf_conntrack_helper_find(helpname, nf_ct_l3num(ct), nf_ct_protonum(ct)); if (helper == NULL) return -EOPNOTSUPP; } exp = ctnetlink_alloc_expect((const struct nlattr * const *)cda, ct, helper, &tuple, &mask); if (IS_ERR(exp)) return PTR_ERR(exp); err = nf_ct_expect_related_report(exp, portid, report, 0); nf_ct_expect_put(exp); return err; } static void ctnetlink_glue_seqadj(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, int diff) { if (!(ct->status & IPS_NAT_MASK)) return; nf_ct_tcp_seqadj_set(skb, ct, ctinfo, diff); } static const struct nfnl_ct_hook ctnetlink_glue_hook = { .build_size = ctnetlink_glue_build_size, .build = ctnetlink_glue_build, .parse = ctnetlink_glue_parse, .attach_expect = ctnetlink_glue_attach_expect, .seq_adjust = ctnetlink_glue_seqadj, }; #endif /* CONFIG_NETFILTER_NETLINK_GLUE_CT */ /*********************************************************************** * EXPECT ***********************************************************************/ static int ctnetlink_exp_dump_tuple(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple, u32 type) { struct nlattr *nest_parms; nest_parms = nla_nest_start(skb, type); if (!nest_parms) goto nla_put_failure; if (ctnetlink_dump_tuples(skb, tuple) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); return 0; nla_put_failure: return -1; } static int ctnetlink_exp_dump_mask(struct sk_buff *skb, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple_mask *mask) { const struct nf_conntrack_l4proto *l4proto; struct nf_conntrack_tuple m; struct nlattr *nest_parms; int ret; memset(&m, 0xFF, sizeof(m)); memcpy(&m.src.u3, &mask->src.u3, sizeof(m.src.u3)); m.src.u.all = mask->src.u.all; m.src.l3num = tuple->src.l3num; m.dst.protonum = tuple->dst.protonum; nest_parms = nla_nest_start(skb, CTA_EXPECT_MASK); if (!nest_parms) goto nla_put_failure; rcu_read_lock(); ret = ctnetlink_dump_tuples_ip(skb, &m); if (ret >= 0) { l4proto = nf_ct_l4proto_find(tuple->dst.protonum); ret = ctnetlink_dump_tuples_proto(skb, &m, l4proto); } rcu_read_unlock(); if (unlikely(ret < 0)) goto nla_put_failure; nla_nest_end(skb, nest_parms); return 0; nla_put_failure: return -1; } #if IS_ENABLED(CONFIG_NF_NAT) static const union nf_inet_addr any_addr; #endif static __be32 nf_expect_get_id(const struct nf_conntrack_expect *exp) { static siphash_aligned_key_t exp_id_seed; unsigned long a, b, c, d; net_get_random_once(&exp_id_seed, sizeof(exp_id_seed)); a = (unsigned long)exp; b = (unsigned long)exp->helper; c = (unsigned long)exp->master; d = (unsigned long)siphash(&exp->tuple, sizeof(exp->tuple), &exp_id_seed); #ifdef CONFIG_64BIT return (__force __be32)siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &exp_id_seed); #else return (__force __be32)siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &exp_id_seed); #endif } static int ctnetlink_exp_dump_expect(struct sk_buff *skb, const struct nf_conntrack_expect *exp) { struct nf_conn *master = exp->master; long timeout = ((long)exp->timeout.expires - (long)jiffies) / HZ; struct nf_conn_help *help; #if IS_ENABLED(CONFIG_NF_NAT) struct nlattr *nest_parms; struct nf_conntrack_tuple nat_tuple = {}; #endif struct nf_ct_helper_expectfn *expfn; if (timeout < 0) timeout = 0; if (ctnetlink_exp_dump_tuple(skb, &exp->tuple, CTA_EXPECT_TUPLE) < 0) goto nla_put_failure; if (ctnetlink_exp_dump_mask(skb, &exp->tuple, &exp->mask) < 0) goto nla_put_failure; if (ctnetlink_exp_dump_tuple(skb, &master->tuplehash[IP_CT_DIR_ORIGINAL].tuple, CTA_EXPECT_MASTER) < 0) goto nla_put_failure; #if IS_ENABLED(CONFIG_NF_NAT) if (!nf_inet_addr_cmp(&exp->saved_addr, &any_addr) || exp->saved_proto.all) { nest_parms = nla_nest_start(skb, CTA_EXPECT_NAT); if (!nest_parms) goto nla_put_failure; if (nla_put_be32(skb, CTA_EXPECT_NAT_DIR, htonl(exp->dir))) goto nla_put_failure; nat_tuple.src.l3num = nf_ct_l3num(master); nat_tuple.src.u3 = exp->saved_addr; nat_tuple.dst.protonum = nf_ct_protonum(master); nat_tuple.src.u = exp->saved_proto; if (ctnetlink_exp_dump_tuple(skb, &nat_tuple, CTA_EXPECT_NAT_TUPLE) < 0) goto nla_put_failure; nla_nest_end(skb, nest_parms); } #endif if (nla_put_be32(skb, CTA_EXPECT_TIMEOUT, htonl(timeout)) || nla_put_be32(skb, CTA_EXPECT_ID, nf_expect_get_id(exp)) || nla_put_be32(skb, CTA_EXPECT_FLAGS, htonl(exp->flags)) || nla_put_be32(skb, CTA_EXPECT_CLASS, htonl(exp->class))) goto nla_put_failure; help = nfct_help(master); if (help) { struct nf_conntrack_helper *helper; helper = rcu_dereference(help->helper); if (helper && nla_put_string(skb, CTA_EXPECT_HELP_NAME, helper->name)) goto nla_put_failure; } expfn = nf_ct_helper_expectfn_find_by_symbol(exp->expectfn); if (expfn != NULL && nla_put_string(skb, CTA_EXPECT_FN, expfn->name)) goto nla_put_failure; return 0; nla_put_failure: return -1; } static int ctnetlink_exp_fill_info(struct sk_buff *skb, u32 portid, u32 seq, int event, const struct nf_conntrack_expect *exp) { struct nlmsghdr *nlh; unsigned int flags = portid ? NLM_F_MULTI : 0; event = nfnl_msg_type(NFNL_SUBSYS_CTNETLINK_EXP, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, exp->tuple.src.l3num, NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; if (ctnetlink_exp_dump_expect(skb, exp) < 0) goto nla_put_failure; nlmsg_end(skb, nlh); return skb->len; nlmsg_failure: nla_put_failure: nlmsg_cancel(skb, nlh); return -1; } #ifdef CONFIG_NF_CONNTRACK_EVENTS static int ctnetlink_expect_event(unsigned int events, const struct nf_exp_event *item) { struct nf_conntrack_expect *exp = item->exp; struct net *net = nf_ct_exp_net(exp); struct nlmsghdr *nlh; struct sk_buff *skb; unsigned int type, group; int flags = 0; if (events & (1 << IPEXP_DESTROY)) { type = IPCTNL_MSG_EXP_DELETE; group = NFNLGRP_CONNTRACK_EXP_DESTROY; } else if (events & (1 << IPEXP_NEW)) { type = IPCTNL_MSG_EXP_NEW; flags = NLM_F_CREATE|NLM_F_EXCL; group = NFNLGRP_CONNTRACK_EXP_NEW; } else return 0; if (!item->report && !nfnetlink_has_listeners(net, group)) return 0; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (skb == NULL) goto errout; type = nfnl_msg_type(NFNL_SUBSYS_CTNETLINK_EXP, type); nlh = nfnl_msg_put(skb, item->portid, 0, type, flags, exp->tuple.src.l3num, NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; if (ctnetlink_exp_dump_expect(skb, exp) < 0) goto nla_put_failure; nlmsg_end(skb, nlh); nfnetlink_send(skb, net, item->portid, group, item->report, GFP_ATOMIC); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); nlmsg_failure: kfree_skb(skb); errout: nfnetlink_set_err(net, 0, 0, -ENOBUFS); return 0; } #endif static int ctnetlink_exp_done(struct netlink_callback *cb) { if (cb->args[1]) nf_ct_expect_put((struct nf_conntrack_expect *)cb->args[1]); return 0; } static int ctnetlink_exp_dump_table(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct nf_conntrack_expect *exp, *last; struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); u_int8_t l3proto = nfmsg->nfgen_family; rcu_read_lock(); last = (struct nf_conntrack_expect *)cb->args[1]; for (; cb->args[0] < nf_ct_expect_hsize; cb->args[0]++) { restart: hlist_for_each_entry_rcu(exp, &nf_ct_expect_hash[cb->args[0]], hnode) { if (l3proto && exp->tuple.src.l3num != l3proto) continue; if (!net_eq(nf_ct_net(exp->master), net)) continue; if (cb->args[1]) { if (exp != last) continue; cb->args[1] = 0; } if (ctnetlink_exp_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, IPCTNL_MSG_EXP_NEW, exp) < 0) { if (!refcount_inc_not_zero(&exp->use)) continue; cb->args[1] = (unsigned long)exp; goto out; } } if (cb->args[1]) { cb->args[1] = 0; goto restart; } } out: rcu_read_unlock(); if (last) nf_ct_expect_put(last); return skb->len; } static int ctnetlink_exp_ct_dump_table(struct sk_buff *skb, struct netlink_callback *cb) { struct nf_conntrack_expect *exp, *last; struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); struct nf_conn *ct = cb->data; struct nf_conn_help *help = nfct_help(ct); u_int8_t l3proto = nfmsg->nfgen_family; if (cb->args[0]) return 0; rcu_read_lock(); last = (struct nf_conntrack_expect *)cb->args[1]; restart: hlist_for_each_entry_rcu(exp, &help->expectations, lnode) { if (l3proto && exp->tuple.src.l3num != l3proto) continue; if (cb->args[1]) { if (exp != last) continue; cb->args[1] = 0; } if (ctnetlink_exp_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, IPCTNL_MSG_EXP_NEW, exp) < 0) { if (!refcount_inc_not_zero(&exp->use)) continue; cb->args[1] = (unsigned long)exp; goto out; } } if (cb->args[1]) { cb->args[1] = 0; goto restart; } cb->args[0] = 1; out: rcu_read_unlock(); if (last) nf_ct_expect_put(last); return skb->len; } static int ctnetlink_dump_exp_ct(struct net *net, struct sock *ctnl, struct sk_buff *skb, const struct nlmsghdr *nlh, const struct nlattr * const cda[], struct netlink_ext_ack *extack) { int err; struct nfgenmsg *nfmsg = nlmsg_data(nlh); u_int8_t u3 = nfmsg->nfgen_family; struct nf_conntrack_tuple tuple; struct nf_conntrack_tuple_hash *h; struct nf_conn *ct; struct nf_conntrack_zone zone; struct netlink_dump_control c = { .dump = ctnetlink_exp_ct_dump_table, .done = ctnetlink_exp_done, }; err = ctnetlink_parse_tuple(cda, &tuple, CTA_EXPECT_MASTER, u3, NULL); if (err < 0) return err; err = ctnetlink_parse_zone(cda[CTA_EXPECT_ZONE], &zone); if (err < 0) return err; h = nf_conntrack_find_get(net, &zone, &tuple); if (!h) return -ENOENT; ct = nf_ct_tuplehash_to_ctrack(h); /* No expectation linked to this connection tracking. */ if (!nfct_help(ct)) { nf_ct_put(ct); return 0; } c.data = ct; err = netlink_dump_start(ctnl, skb, nlh, &c); nf_ct_put(ct); return err; } static int ctnetlink_get_expect(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { u_int8_t u3 = info->nfmsg->nfgen_family; struct nf_conntrack_tuple tuple; struct nf_conntrack_expect *exp; struct nf_conntrack_zone zone; struct sk_buff *skb2; int err; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { if (cda[CTA_EXPECT_MASTER]) return ctnetlink_dump_exp_ct(info->net, info->sk, skb, info->nlh, cda, info->extack); else { struct netlink_dump_control c = { .dump = ctnetlink_exp_dump_table, .done = ctnetlink_exp_done, }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } } err = ctnetlink_parse_zone(cda[CTA_EXPECT_ZONE], &zone); if (err < 0) return err; if (cda[CTA_EXPECT_TUPLE]) err = ctnetlink_parse_tuple(cda, &tuple, CTA_EXPECT_TUPLE, u3, NULL); else if (cda[CTA_EXPECT_MASTER]) err = ctnetlink_parse_tuple(cda, &tuple, CTA_EXPECT_MASTER, u3, NULL); else return -EINVAL; if (err < 0) return err; exp = nf_ct_expect_find_get(info->net, &zone, &tuple); if (!exp) return -ENOENT; if (cda[CTA_EXPECT_ID]) { __be32 id = nla_get_be32(cda[CTA_EXPECT_ID]); if (id != nf_expect_get_id(exp)) { nf_ct_expect_put(exp); return -ENOENT; } } skb2 = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb2) { nf_ct_expect_put(exp); return -ENOMEM; } rcu_read_lock(); err = ctnetlink_exp_fill_info(skb2, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, IPCTNL_MSG_EXP_NEW, exp); rcu_read_unlock(); nf_ct_expect_put(exp); if (err <= 0) { kfree_skb(skb2); return -ENOMEM; } return nfnetlink_unicast(skb2, info->net, NETLINK_CB(skb).portid); } static bool expect_iter_name(struct nf_conntrack_expect *exp, void *data) { struct nf_conntrack_helper *helper; const struct nf_conn_help *m_help; const char *name = data; m_help = nfct_help(exp->master); helper = rcu_dereference(m_help->helper); if (!helper) return false; return strcmp(helper->name, name) == 0; } static bool expect_iter_all(struct nf_conntrack_expect *exp, void *data) { return true; } static int ctnetlink_del_expect(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { u_int8_t u3 = info->nfmsg->nfgen_family; struct nf_conntrack_expect *exp; struct nf_conntrack_tuple tuple; struct nf_conntrack_zone zone; int err; if (cda[CTA_EXPECT_TUPLE]) { /* delete a single expect by tuple */ err = ctnetlink_parse_zone(cda[CTA_EXPECT_ZONE], &zone); if (err < 0) return err; err = ctnetlink_parse_tuple(cda, &tuple, CTA_EXPECT_TUPLE, u3, NULL); if (err < 0) return err; /* bump usage count to 2 */ exp = nf_ct_expect_find_get(info->net, &zone, &tuple); if (!exp) return -ENOENT; if (cda[CTA_EXPECT_ID]) { __be32 id = nla_get_be32(cda[CTA_EXPECT_ID]); if (id != nf_expect_get_id(exp)) { nf_ct_expect_put(exp); return -ENOENT; } } /* after list removal, usage count == 1 */ spin_lock_bh(&nf_conntrack_expect_lock); if (del_timer(&exp->timeout)) { nf_ct_unlink_expect_report(exp, NETLINK_CB(skb).portid, nlmsg_report(info->nlh)); nf_ct_expect_put(exp); } spin_unlock_bh(&nf_conntrack_expect_lock); /* have to put what we 'get' above. * after this line usage count == 0 */ nf_ct_expect_put(exp); } else if (cda[CTA_EXPECT_HELP_NAME]) { char *name = nla_data(cda[CTA_EXPECT_HELP_NAME]); nf_ct_expect_iterate_net(info->net, expect_iter_name, name, NETLINK_CB(skb).portid, nlmsg_report(info->nlh)); } else { /* This basically means we have to flush everything*/ nf_ct_expect_iterate_net(info->net, expect_iter_all, NULL, NETLINK_CB(skb).portid, nlmsg_report(info->nlh)); } return 0; } static int ctnetlink_change_expect(struct nf_conntrack_expect *x, const struct nlattr * const cda[]) { if (cda[CTA_EXPECT_TIMEOUT]) { if (!del_timer(&x->timeout)) return -ETIME; x->timeout.expires = jiffies + ntohl(nla_get_be32(cda[CTA_EXPECT_TIMEOUT])) * HZ; add_timer(&x->timeout); } return 0; } #if IS_ENABLED(CONFIG_NF_NAT) static const struct nla_policy exp_nat_nla_policy[CTA_EXPECT_NAT_MAX+1] = { [CTA_EXPECT_NAT_DIR] = { .type = NLA_U32 }, [CTA_EXPECT_NAT_TUPLE] = { .type = NLA_NESTED }, }; #endif static int ctnetlink_parse_expect_nat(const struct nlattr *attr, struct nf_conntrack_expect *exp, u_int8_t u3) { #if IS_ENABLED(CONFIG_NF_NAT) struct nlattr *tb[CTA_EXPECT_NAT_MAX+1]; struct nf_conntrack_tuple nat_tuple = {}; int err; err = nla_parse_nested_deprecated(tb, CTA_EXPECT_NAT_MAX, attr, exp_nat_nla_policy, NULL); if (err < 0) return err; if (!tb[CTA_EXPECT_NAT_DIR] || !tb[CTA_EXPECT_NAT_TUPLE]) return -EINVAL; err = ctnetlink_parse_tuple((const struct nlattr * const *)tb, &nat_tuple, CTA_EXPECT_NAT_TUPLE, u3, NULL); if (err < 0) return err; exp->saved_addr = nat_tuple.src.u3; exp->saved_proto = nat_tuple.src.u; exp->dir = ntohl(nla_get_be32(tb[CTA_EXPECT_NAT_DIR])); return 0; #else return -EOPNOTSUPP; #endif } static struct nf_conntrack_expect * ctnetlink_alloc_expect(const struct nlattr * const cda[], struct nf_conn *ct, struct nf_conntrack_helper *helper, struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple *mask) { u_int32_t class = 0; struct nf_conntrack_expect *exp; struct nf_conn_help *help; int err; help = nfct_help(ct); if (!help) return ERR_PTR(-EOPNOTSUPP); if (cda[CTA_EXPECT_CLASS] && helper) { class = ntohl(nla_get_be32(cda[CTA_EXPECT_CLASS])); if (class > helper->expect_class_max) return ERR_PTR(-EINVAL); } exp = nf_ct_expect_alloc(ct); if (!exp) return ERR_PTR(-ENOMEM); if (cda[CTA_EXPECT_FLAGS]) { exp->flags = ntohl(nla_get_be32(cda[CTA_EXPECT_FLAGS])); exp->flags &= ~NF_CT_EXPECT_USERSPACE; } else { exp->flags = 0; } if (cda[CTA_EXPECT_FN]) { const char *name = nla_data(cda[CTA_EXPECT_FN]); struct nf_ct_helper_expectfn *expfn; expfn = nf_ct_helper_expectfn_find_by_name(name); if (expfn == NULL) { err = -EINVAL; goto err_out; } exp->expectfn = expfn->expectfn; } else exp->expectfn = NULL; exp->class = class; exp->master = ct; exp->helper = helper; exp->tuple = *tuple; exp->mask.src.u3 = mask->src.u3; exp->mask.src.u.all = mask->src.u.all; if (cda[CTA_EXPECT_NAT]) { err = ctnetlink_parse_expect_nat(cda[CTA_EXPECT_NAT], exp, nf_ct_l3num(ct)); if (err < 0) goto err_out; } return exp; err_out: nf_ct_expect_put(exp); return ERR_PTR(err); } static int ctnetlink_create_expect(struct net *net, const struct nf_conntrack_zone *zone, const struct nlattr * const cda[], u_int8_t u3, u32 portid, int report) { struct nf_conntrack_tuple tuple, mask, master_tuple; struct nf_conntrack_tuple_hash *h = NULL; struct nf_conntrack_helper *helper = NULL; struct nf_conntrack_expect *exp; struct nf_conn *ct; int err; /* caller guarantees that those three CTA_EXPECT_* exist */ err = ctnetlink_parse_tuple(cda, &tuple, CTA_EXPECT_TUPLE, u3, NULL); if (err < 0) return err; err = ctnetlink_parse_tuple(cda, &mask, CTA_EXPECT_MASK, u3, NULL); if (err < 0) return err; err = ctnetlink_parse_tuple(cda, &master_tuple, CTA_EXPECT_MASTER, u3, NULL); if (err < 0) return err; /* Look for master conntrack of this expectation */ h = nf_conntrack_find_get(net, zone, &master_tuple); if (!h) return -ENOENT; ct = nf_ct_tuplehash_to_ctrack(h); rcu_read_lock(); if (cda[CTA_EXPECT_HELP_NAME]) { const char *helpname = nla_data(cda[CTA_EXPECT_HELP_NAME]); helper = __nf_conntrack_helper_find(helpname, u3, nf_ct_protonum(ct)); if (helper == NULL) { rcu_read_unlock(); #ifdef CONFIG_MODULES if (request_module("nfct-helper-%s", helpname) < 0) { err = -EOPNOTSUPP; goto err_ct; } rcu_read_lock(); helper = __nf_conntrack_helper_find(helpname, u3, nf_ct_protonum(ct)); if (helper) { err = -EAGAIN; goto err_rcu; } rcu_read_unlock(); #endif err = -EOPNOTSUPP; goto err_ct; } } exp = ctnetlink_alloc_expect(cda, ct, helper, &tuple, &mask); if (IS_ERR(exp)) { err = PTR_ERR(exp); goto err_rcu; } err = nf_ct_expect_related_report(exp, portid, report, 0); nf_ct_expect_put(exp); err_rcu: rcu_read_unlock(); err_ct: nf_ct_put(ct); return err; } static int ctnetlink_new_expect(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { u_int8_t u3 = info->nfmsg->nfgen_family; struct nf_conntrack_tuple tuple; struct nf_conntrack_expect *exp; struct nf_conntrack_zone zone; int err; if (!cda[CTA_EXPECT_TUPLE] || !cda[CTA_EXPECT_MASK] || !cda[CTA_EXPECT_MASTER]) return -EINVAL; err = ctnetlink_parse_zone(cda[CTA_EXPECT_ZONE], &zone); if (err < 0) return err; err = ctnetlink_parse_tuple(cda, &tuple, CTA_EXPECT_TUPLE, u3, NULL); if (err < 0) return err; spin_lock_bh(&nf_conntrack_expect_lock); exp = __nf_ct_expect_find(info->net, &zone, &tuple); if (!exp) { spin_unlock_bh(&nf_conntrack_expect_lock); err = -ENOENT; if (info->nlh->nlmsg_flags & NLM_F_CREATE) { err = ctnetlink_create_expect(info->net, &zone, cda, u3, NETLINK_CB(skb).portid, nlmsg_report(info->nlh)); } return err; } err = -EEXIST; if (!(info->nlh->nlmsg_flags & NLM_F_EXCL)) err = ctnetlink_change_expect(exp, cda); spin_unlock_bh(&nf_conntrack_expect_lock); return err; } static int ctnetlink_exp_stat_fill_info(struct sk_buff *skb, u32 portid, u32 seq, int cpu, const struct ip_conntrack_stat *st) { struct nlmsghdr *nlh; unsigned int flags = portid ? NLM_F_MULTI : 0, event; event = nfnl_msg_type(NFNL_SUBSYS_CTNETLINK, IPCTNL_MSG_EXP_GET_STATS_CPU); nlh = nfnl_msg_put(skb, portid, seq, event, flags, AF_UNSPEC, NFNETLINK_V0, htons(cpu)); if (!nlh) goto nlmsg_failure; if (nla_put_be32(skb, CTA_STATS_EXP_NEW, htonl(st->expect_new)) || nla_put_be32(skb, CTA_STATS_EXP_CREATE, htonl(st->expect_create)) || nla_put_be32(skb, CTA_STATS_EXP_DELETE, htonl(st->expect_delete))) goto nla_put_failure; nlmsg_end(skb, nlh); return skb->len; nla_put_failure: nlmsg_failure: nlmsg_cancel(skb, nlh); return -1; } static int ctnetlink_exp_stat_cpu_dump(struct sk_buff *skb, struct netlink_callback *cb) { int cpu; struct net *net = sock_net(skb->sk); if (cb->args[0] == nr_cpu_ids) return 0; for (cpu = cb->args[0]; cpu < nr_cpu_ids; cpu++) { const struct ip_conntrack_stat *st; if (!cpu_possible(cpu)) continue; st = per_cpu_ptr(net->ct.stat, cpu); if (ctnetlink_exp_stat_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, cpu, st) < 0) break; } cb->args[0] = cpu; return skb->len; } static int ctnetlink_stat_exp_cpu(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const cda[]) { if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = ctnetlink_exp_stat_cpu_dump, }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } return 0; } #ifdef CONFIG_NF_CONNTRACK_EVENTS static struct nf_ct_event_notifier ctnl_notifier = { .ct_event = ctnetlink_conntrack_event, .exp_event = ctnetlink_expect_event, }; #endif static const struct nfnl_callback ctnl_cb[IPCTNL_MSG_MAX] = { [IPCTNL_MSG_CT_NEW] = { .call = ctnetlink_new_conntrack, .type = NFNL_CB_MUTEX, .attr_count = CTA_MAX, .policy = ct_nla_policy }, [IPCTNL_MSG_CT_GET] = { .call = ctnetlink_get_conntrack, .type = NFNL_CB_MUTEX, .attr_count = CTA_MAX, .policy = ct_nla_policy }, [IPCTNL_MSG_CT_DELETE] = { .call = ctnetlink_del_conntrack, .type = NFNL_CB_MUTEX, .attr_count = CTA_MAX, .policy = ct_nla_policy }, [IPCTNL_MSG_CT_GET_CTRZERO] = { .call = ctnetlink_get_conntrack, .type = NFNL_CB_MUTEX, .attr_count = CTA_MAX, .policy = ct_nla_policy }, [IPCTNL_MSG_CT_GET_STATS_CPU] = { .call = ctnetlink_stat_ct_cpu, .type = NFNL_CB_MUTEX, }, [IPCTNL_MSG_CT_GET_STATS] = { .call = ctnetlink_stat_ct, .type = NFNL_CB_MUTEX, }, [IPCTNL_MSG_CT_GET_DYING] = { .call = ctnetlink_get_ct_dying, .type = NFNL_CB_MUTEX, }, [IPCTNL_MSG_CT_GET_UNCONFIRMED] = { .call = ctnetlink_get_ct_unconfirmed, .type = NFNL_CB_MUTEX, }, }; static const struct nfnl_callback ctnl_exp_cb[IPCTNL_MSG_EXP_MAX] = { [IPCTNL_MSG_EXP_GET] = { .call = ctnetlink_get_expect, .type = NFNL_CB_MUTEX, .attr_count = CTA_EXPECT_MAX, .policy = exp_nla_policy }, [IPCTNL_MSG_EXP_NEW] = { .call = ctnetlink_new_expect, .type = NFNL_CB_MUTEX, .attr_count = CTA_EXPECT_MAX, .policy = exp_nla_policy }, [IPCTNL_MSG_EXP_DELETE] = { .call = ctnetlink_del_expect, .type = NFNL_CB_MUTEX, .attr_count = CTA_EXPECT_MAX, .policy = exp_nla_policy }, [IPCTNL_MSG_EXP_GET_STATS_CPU] = { .call = ctnetlink_stat_exp_cpu, .type = NFNL_CB_MUTEX, }, }; static const struct nfnetlink_subsystem ctnl_subsys = { .name = "conntrack", .subsys_id = NFNL_SUBSYS_CTNETLINK, .cb_count = IPCTNL_MSG_MAX, .cb = ctnl_cb, }; static const struct nfnetlink_subsystem ctnl_exp_subsys = { .name = "conntrack_expect", .subsys_id = NFNL_SUBSYS_CTNETLINK_EXP, .cb_count = IPCTNL_MSG_EXP_MAX, .cb = ctnl_exp_cb, }; MODULE_ALIAS("ip_conntrack_netlink"); MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_CTNETLINK); MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_CTNETLINK_EXP); static int __net_init ctnetlink_net_init(struct net *net) { #ifdef CONFIG_NF_CONNTRACK_EVENTS nf_conntrack_register_notifier(net, &ctnl_notifier); #endif return 0; } static void ctnetlink_net_pre_exit(struct net *net) { #ifdef CONFIG_NF_CONNTRACK_EVENTS nf_conntrack_unregister_notifier(net); #endif } static struct pernet_operations ctnetlink_net_ops = { .init = ctnetlink_net_init, .pre_exit = ctnetlink_net_pre_exit, }; static int __init ctnetlink_init(void) { int ret; NL_ASSERT_DUMP_CTX_FITS(struct ctnetlink_list_dump_ctx); ret = nfnetlink_subsys_register(&ctnl_subsys); if (ret < 0) { pr_err("ctnetlink_init: cannot register with nfnetlink.\n"); goto err_out; } ret = nfnetlink_subsys_register(&ctnl_exp_subsys); if (ret < 0) { pr_err("ctnetlink_init: cannot register exp with nfnetlink.\n"); goto err_unreg_subsys; } ret = register_pernet_subsys(&ctnetlink_net_ops); if (ret < 0) { pr_err("ctnetlink_init: cannot register pernet operations\n"); goto err_unreg_exp_subsys; } #ifdef CONFIG_NETFILTER_NETLINK_GLUE_CT /* setup interaction between nf_queue and nf_conntrack_netlink. */ RCU_INIT_POINTER(nfnl_ct_hook, &ctnetlink_glue_hook); #endif return 0; err_unreg_exp_subsys: nfnetlink_subsys_unregister(&ctnl_exp_subsys); err_unreg_subsys: nfnetlink_subsys_unregister(&ctnl_subsys); err_out: return ret; } static void __exit ctnetlink_exit(void) { unregister_pernet_subsys(&ctnetlink_net_ops); nfnetlink_subsys_unregister(&ctnl_exp_subsys); nfnetlink_subsys_unregister(&ctnl_subsys); #ifdef CONFIG_NETFILTER_NETLINK_GLUE_CT RCU_INIT_POINTER(nfnl_ct_hook, NULL); #endif synchronize_rcu(); } module_init(ctnetlink_init); module_exit(ctnetlink_exit); |
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 8 1 1 9 7 9 9 7 7 7 7 7 7 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 | // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/extents_status.c * * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> * Modified by * Allison Henderson <achender@linux.vnet.ibm.com> * Hugh Dickins <hughd@google.com> * Zheng Liu <wenqing.lz@taobao.com> * * Ext4 extents status tree core functions. */ #include <linux/list_sort.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include "ext4.h" #include <trace/events/ext4.h> /* * According to previous discussion in Ext4 Developer Workshop, we * will introduce a new structure called io tree to track all extent * status in order to solve some problems that we have met * (e.g. Reservation space warning), and provide extent-level locking. * Delay extent tree is the first step to achieve this goal. It is * original built by Yongqiang Yang. At that time it is called delay * extent tree, whose goal is only track delayed extents in memory to * simplify the implementation of fiemap and bigalloc, and introduce * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called * delay extent tree at the first commit. But for better understand * what it does, it has been rename to extent status tree. * * Step1: * Currently the first step has been done. All delayed extents are * tracked in the tree. It maintains the delayed extent when a delayed * allocation is issued, and the delayed extent is written out or * invalidated. Therefore the implementation of fiemap and bigalloc * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. * * The following comment describes the implemenmtation of extent * status tree and future works. * * Step2: * In this step all extent status are tracked by extent status tree. * Thus, we can first try to lookup a block mapping in this tree before * finding it in extent tree. Hence, single extent cache can be removed * because extent status tree can do a better job. Extents in status * tree are loaded on-demand. Therefore, the extent status tree may not * contain all of the extents in a file. Meanwhile we define a shrinker * to reclaim memory from extent status tree because fragmented extent * tree will make status tree cost too much memory. written/unwritten/- * hole extents in the tree will be reclaimed by this shrinker when we * are under high memory pressure. Delayed extents will not be * reclimed because fiemap, bigalloc, and seek_data/hole need it. */ /* * Extent status tree implementation for ext4. * * * ========================================================================== * Extent status tree tracks all extent status. * * 1. Why we need to implement extent status tree? * * Without extent status tree, ext4 identifies a delayed extent by looking * up page cache, this has several deficiencies - complicated, buggy, * and inefficient code. * * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a * block or a range of blocks are belonged to a delayed extent. * * Let us have a look at how they do without extent status tree. * -- FIEMAP * FIEMAP looks up page cache to identify delayed allocations from holes. * * -- SEEK_HOLE/DATA * SEEK_HOLE/DATA has the same problem as FIEMAP. * * -- bigalloc * bigalloc looks up page cache to figure out if a block is * already under delayed allocation or not to determine whether * quota reserving is needed for the cluster. * * -- writeout * Writeout looks up whole page cache to see if a buffer is * mapped, If there are not very many delayed buffers, then it is * time consuming. * * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, * bigalloc and writeout can figure out if a block or a range of * blocks is under delayed allocation(belonged to a delayed extent) or * not by searching the extent tree. * * * ========================================================================== * 2. Ext4 extent status tree impelmentation * * -- extent * A extent is a range of blocks which are contiguous logically and * physically. Unlike extent in extent tree, this extent in ext4 is * a in-memory struct, there is no corresponding on-disk data. There * is no limit on length of extent, so an extent can contain as many * blocks as they are contiguous logically and physically. * * -- extent status tree * Every inode has an extent status tree and all allocation blocks * are added to the tree with different status. The extent in the * tree are ordered by logical block no. * * -- operations on a extent status tree * There are three important operations on a delayed extent tree: find * next extent, adding a extent(a range of blocks) and removing a extent. * * -- race on a extent status tree * Extent status tree is protected by inode->i_es_lock. * * -- memory consumption * Fragmented extent tree will make extent status tree cost too much * memory. Hence, we will reclaim written/unwritten/hole extents from * the tree under a heavy memory pressure. * * * ========================================================================== * 3. Performance analysis * * -- overhead * 1. There is a cache extent for write access, so if writes are * not very random, adding space operaions are in O(1) time. * * -- gain * 2. Code is much simpler, more readable, more maintainable and * more efficient. * * * ========================================================================== * 4. TODO list * * -- Refactor delayed space reservation * * -- Extent-level locking */ static struct kmem_cache *ext4_es_cachep; static struct kmem_cache *ext4_pending_cachep; static int __es_insert_extent(struct inode *inode, struct extent_status *newes, struct extent_status *prealloc); static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end, int *reserved, struct extent_status *prealloc); static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei); static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, struct pending_reservation **prealloc); int __init ext4_init_es(void) { ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT); if (ext4_es_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_es(void) { kmem_cache_destroy(ext4_es_cachep); } void ext4_es_init_tree(struct ext4_es_tree *tree) { tree->root = RB_ROOT; tree->cache_es = NULL; } #ifdef ES_DEBUG__ static void ext4_es_print_tree(struct inode *inode) { struct ext4_es_tree *tree; struct rb_node *node; printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_es_tree; node = rb_first(&tree->root); while (node) { struct extent_status *es; es = rb_entry(node, struct extent_status, rb_node); printk(KERN_DEBUG " [%u/%u) %llu %x", es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_es_print_tree(inode) #endif static inline ext4_lblk_t ext4_es_end(struct extent_status *es) { BUG_ON(es->es_lblk + es->es_len < es->es_lblk); return es->es_lblk + es->es_len - 1; } /* * search through the tree for an delayed extent with a given offset. If * it can't be found, try to find next extent. */ static struct extent_status *__es_tree_search(struct rb_root *root, ext4_lblk_t lblk) { struct rb_node *node = root->rb_node; struct extent_status *es = NULL; while (node) { es = rb_entry(node, struct extent_status, rb_node); if (lblk < es->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es)) node = node->rb_right; else return es; } if (es && lblk < es->es_lblk) return es; if (es && lblk > ext4_es_end(es)) { node = rb_next(&es->rb_node); return node ? rb_entry(node, struct extent_status, rb_node) : NULL; } return NULL; } /* * ext4_es_find_extent_range - find extent with specified status within block * range or next extent following block range in * extents status tree * * @inode - file containing the range * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block defining start of range * @end - logical block defining end of range * @es - extent found, if any * * Find the first extent within the block range specified by @lblk and @end * in the extents status tree that satisfies @matching_fn. If a match * is found, it's returned in @es. If not, and a matching extent is found * beyond the block range, it's returned in @es. If no match is found, an * extent is returned in @es whose es_lblk, es_len, and es_pblk components * are 0. */ static void __es_find_extent_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es) { struct ext4_es_tree *tree = NULL; struct extent_status *es1 = NULL; struct rb_node *node; WARN_ON(es == NULL); WARN_ON(end < lblk); tree = &EXT4_I(inode)->i_es_tree; /* see if the extent has been cached */ es->es_lblk = es->es_len = es->es_pblk = 0; es1 = READ_ONCE(tree->cache_es); if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u) %llu %x\n", lblk, es1->es_lblk, es1->es_len, ext4_es_pblock(es1), ext4_es_status(es1)); goto out; } es1 = __es_tree_search(&tree->root, lblk); out: if (es1 && !matching_fn(es1)) { while ((node = rb_next(&es1->rb_node)) != NULL) { es1 = rb_entry(node, struct extent_status, rb_node); if (es1->es_lblk > end) { es1 = NULL; break; } if (matching_fn(es1)) break; } } if (es1 && matching_fn(es1)) { WRITE_ONCE(tree->cache_es, es1); es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; } } /* * Locking for __es_find_extent_range() for external use */ void ext4_es_find_extent_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es) { es->es_lblk = es->es_len = es->es_pblk = 0; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; trace_ext4_es_find_extent_range_enter(inode, lblk); read_lock(&EXT4_I(inode)->i_es_lock); __es_find_extent_range(inode, matching_fn, lblk, end, es); read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_find_extent_range_exit(inode, es); } /* * __es_scan_range - search block range for block with specified status * in extents status tree * * @inode - file containing the range * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block defining start of range * @end - logical block defining end of range * * Returns true if at least one block in the specified block range satisfies * the criterion specified by @matching_fn, and false if not. If at least * one extent has the specified status, then there is at least one block * in the cluster with that status. Should only be called by code that has * taken i_es_lock. */ static bool __es_scan_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t start, ext4_lblk_t end) { struct extent_status es; __es_find_extent_range(inode, matching_fn, start, end, &es); if (es.es_len == 0) return false; /* no matching extent in the tree */ else if (es.es_lblk <= start && start < es.es_lblk + es.es_len) return true; else if (start <= es.es_lblk && es.es_lblk <= end) return true; else return false; } /* * Locking for __es_scan_range() for external use */ bool ext4_es_scan_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end) { bool ret; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return false; read_lock(&EXT4_I(inode)->i_es_lock); ret = __es_scan_range(inode, matching_fn, lblk, end); read_unlock(&EXT4_I(inode)->i_es_lock); return ret; } /* * __es_scan_clu - search cluster for block with specified status in * extents status tree * * @inode - file containing the cluster * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block in cluster to be searched * * Returns true if at least one extent in the cluster containing @lblk * satisfies the criterion specified by @matching_fn, and false if not. If at * least one extent has the specified status, then there is at least one block * in the cluster with that status. Should only be called by code that has * taken i_es_lock. */ static bool __es_scan_clu(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t lblk_start, lblk_end; lblk_start = EXT4_LBLK_CMASK(sbi, lblk); lblk_end = lblk_start + sbi->s_cluster_ratio - 1; return __es_scan_range(inode, matching_fn, lblk_start, lblk_end); } /* * Locking for __es_scan_clu() for external use */ bool ext4_es_scan_clu(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk) { bool ret; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return false; read_lock(&EXT4_I(inode)->i_es_lock); ret = __es_scan_clu(inode, matching_fn, lblk); read_unlock(&EXT4_I(inode)->i_es_lock); return ret; } static void ext4_es_list_add(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); if (!list_empty(&ei->i_es_list)) return; spin_lock(&sbi->s_es_lock); if (list_empty(&ei->i_es_list)) { list_add_tail(&ei->i_es_list, &sbi->s_es_list); sbi->s_es_nr_inode++; } spin_unlock(&sbi->s_es_lock); } static void ext4_es_list_del(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); spin_lock(&sbi->s_es_lock); if (!list_empty(&ei->i_es_list)) { list_del_init(&ei->i_es_list); sbi->s_es_nr_inode--; WARN_ON_ONCE(sbi->s_es_nr_inode < 0); } spin_unlock(&sbi->s_es_lock); } static inline struct pending_reservation *__alloc_pending(bool nofail) { if (!nofail) return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC); return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL); } static inline void __free_pending(struct pending_reservation *pr) { kmem_cache_free(ext4_pending_cachep, pr); } /* * Returns true if we cannot fail to allocate memory for this extent_status * entry and cannot reclaim it until its status changes. */ static inline bool ext4_es_must_keep(struct extent_status *es) { /* fiemap, bigalloc, and seek_data/hole need to use it. */ if (ext4_es_is_delayed(es)) return true; return false; } static inline struct extent_status *__es_alloc_extent(bool nofail) { if (!nofail) return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL); } static void ext4_es_init_extent(struct inode *inode, struct extent_status *es, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk) { es->es_lblk = lblk; es->es_len = len; es->es_pblk = pblk; /* We never try to reclaim a must kept extent, so we don't count it. */ if (!ext4_es_must_keep(es)) { if (!EXT4_I(inode)->i_es_shk_nr++) ext4_es_list_add(inode); percpu_counter_inc(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_shk_cnt); } EXT4_I(inode)->i_es_all_nr++; percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); } static inline void __es_free_extent(struct extent_status *es) { kmem_cache_free(ext4_es_cachep, es); } static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) { EXT4_I(inode)->i_es_all_nr--; percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); /* Decrease the shrink counter when we can reclaim the extent. */ if (!ext4_es_must_keep(es)) { BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); if (!--EXT4_I(inode)->i_es_shk_nr) ext4_es_list_del(inode); percpu_counter_dec(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_shk_cnt); } __es_free_extent(es); } /* * Check whether or not two extents can be merged * Condition: * - logical block number is contiguous * - physical block number is contiguous * - status is equal */ static int ext4_es_can_be_merged(struct extent_status *es1, struct extent_status *es2) { if (ext4_es_type(es1) != ext4_es_type(es2)) return 0; if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { pr_warn("ES assertion failed when merging extents. " "The sum of lengths of es1 (%d) and es2 (%d) " "is bigger than allowed file size (%d)\n", es1->es_len, es2->es_len, EXT_MAX_BLOCKS); WARN_ON(1); return 0; } if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) return 0; if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) return 1; if (ext4_es_is_hole(es1)) return 1; /* we need to check delayed extent is without unwritten status */ if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) return 1; return 0; } static struct extent_status * ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_prev(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es1, es)) { es1->es_len += es->es_len; if (ext4_es_is_referenced(es)) ext4_es_set_referenced(es1); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); es = es1; } return es; } static struct extent_status * ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_next(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es, es1)) { es->es_len += es1->es_len; if (ext4_es_is_referenced(es1)) ext4_es_set_referenced(es); rb_erase(node, &tree->root); ext4_es_free_extent(inode, es1); } return es; } #ifdef ES_AGGRESSIVE_TEST #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ static void ext4_es_insert_extent_ext_check(struct inode *inode, struct extent_status *es) { struct ext4_ext_path *path = NULL; struct ext4_extent *ex; ext4_lblk_t ee_block; ext4_fsblk_t ee_start; unsigned short ee_len; int depth, ee_status, es_status; path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); if (IS_ERR(path)) return; depth = ext_depth(inode); ex = path[depth].p_ext; if (ex) { ee_block = le32_to_cpu(ex->ee_block); ee_start = ext4_ext_pblock(ex); ee_len = ext4_ext_get_actual_len(ex); ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; es_status = ext4_es_is_unwritten(es) ? 1 : 0; /* * Make sure ex and es are not overlap when we try to insert * a delayed/hole extent. */ if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { if (in_range(es->es_lblk, ee_block, ee_len)) { pr_warn("ES insert assertion failed for " "inode: %lu we can find an extent " "at block [%d/%d/%llu/%c], but we " "want to add a delayed/hole extent " "[%d/%d/%llu/%x]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } goto out; } /* * We don't check ee_block == es->es_lblk, etc. because es * might be a part of whole extent, vice versa. */ if (es->es_lblk < ee_block || ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); goto out; } if (ee_status ^ es_status) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); } } else { /* * We can't find an extent on disk. So we need to make sure * that we don't want to add an written/unwritten extent. */ if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { pr_warn("ES insert assertion failed for inode: %lu " "can't find an extent at block %d but we want " "to add a written/unwritten extent " "[%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } } out: ext4_free_ext_path(path); } static void ext4_es_insert_extent_ind_check(struct inode *inode, struct extent_status *es) { struct ext4_map_blocks map; int retval; /* * Here we call ext4_ind_map_blocks to lookup a block mapping because * 'Indirect' structure is defined in indirect.c. So we couldn't * access direct/indirect tree from outside. It is too dirty to define * this function in indirect.c file. */ map.m_lblk = es->es_lblk; map.m_len = es->es_len; retval = ext4_ind_map_blocks(NULL, inode, &map, 0); if (retval > 0) { if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { /* * We want to add a delayed/hole extent but this * block has been allocated. */ pr_warn("ES insert assertion failed for inode: %lu " "We can find blocks but we want to add a " "delayed/hole extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } else if (ext4_es_is_written(es)) { if (retval != es->es_len) { pr_warn("ES insert assertion failed for " "inode: %lu retval %d != es_len %d\n", inode->i_ino, retval, es->es_len); return; } if (map.m_pblk != ext4_es_pblock(es)) { pr_warn("ES insert assertion failed for " "inode: %lu m_pblk %llu != " "es_pblk %llu\n", inode->i_ino, map.m_pblk, ext4_es_pblock(es)); return; } } else { /* * We don't need to check unwritten extent because * indirect-based file doesn't have it. */ BUG(); } } else if (retval == 0) { if (ext4_es_is_written(es)) { pr_warn("ES insert assertion failed for inode: %lu " "We can't find the block but we want to add " "a written extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } } } static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { /* * We don't need to worry about the race condition because * caller takes i_data_sem locking. */ BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) ext4_es_insert_extent_ext_check(inode, es); else ext4_es_insert_extent_ind_check(inode, es); } #else static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { } #endif static int __es_insert_extent(struct inode *inode, struct extent_status *newes, struct extent_status *prealloc) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct extent_status *es; while (*p) { parent = *p; es = rb_entry(parent, struct extent_status, rb_node); if (newes->es_lblk < es->es_lblk) { if (ext4_es_can_be_merged(newes, es)) { /* * Here we can modify es_lblk directly * because it isn't overlapped. */ es->es_lblk = newes->es_lblk; es->es_len += newes->es_len; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) ext4_es_store_pblock(es, newes->es_pblk); es = ext4_es_try_to_merge_left(inode, es); goto out; } p = &(*p)->rb_left; } else if (newes->es_lblk > ext4_es_end(es)) { if (ext4_es_can_be_merged(es, newes)) { es->es_len += newes->es_len; es = ext4_es_try_to_merge_right(inode, es); goto out; } p = &(*p)->rb_right; } else { BUG(); return -EINVAL; } } if (prealloc) es = prealloc; else es = __es_alloc_extent(false); if (!es) return -ENOMEM; ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len, newes->es_pblk); rb_link_node(&es->rb_node, parent, p); rb_insert_color(&es->rb_node, &tree->root); out: tree->cache_es = es; return 0; } /* * ext4_es_insert_extent() adds information to an inode's extent * status tree. */ void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status newes; ext4_lblk_t end = lblk + len - 1; int err1 = 0, err2 = 0, err3 = 0; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct extent_status *es1 = NULL; struct extent_status *es2 = NULL; struct pending_reservation *pr = NULL; bool revise_pending = false; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", lblk, len, pblk, status, inode->i_ino); if (!len) return; BUG_ON(end < lblk); if ((status & EXTENT_STATUS_DELAYED) && (status & EXTENT_STATUS_WRITTEN)) { ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as " " delayed and written which can potentially " " cause data loss.", lblk, len); WARN_ON(1); } newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_insert_extent(inode, &newes); ext4_es_insert_extent_check(inode, &newes); revise_pending = sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) && (status & (EXTENT_STATUS_WRITTEN | EXTENT_STATUS_UNWRITTEN)); retry: if (err1 && !es1) es1 = __es_alloc_extent(true); if ((err1 || err2) && !es2) es2 = __es_alloc_extent(true); if ((err1 || err2 || err3) && revise_pending && !pr) pr = __alloc_pending(true); write_lock(&EXT4_I(inode)->i_es_lock); err1 = __es_remove_extent(inode, lblk, end, NULL, es1); if (err1 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es1) { if (!es1->es_len) __es_free_extent(es1); es1 = NULL; } err2 = __es_insert_extent(inode, &newes, es2); if (err2 == -ENOMEM && !ext4_es_must_keep(&newes)) err2 = 0; if (err2 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es2) { if (!es2->es_len) __es_free_extent(es2); es2 = NULL; } if (revise_pending) { err3 = __revise_pending(inode, lblk, len, &pr); if (err3 != 0) goto error; if (pr) { __free_pending(pr); pr = NULL; } } error: write_unlock(&EXT4_I(inode)->i_es_lock); if (err1 || err2 || err3) goto retry; ext4_es_print_tree(inode); return; } /* * ext4_es_cache_extent() inserts information into the extent status * tree if and only if there isn't information about the range in * question already. */ void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status *es; struct extent_status newes; ext4_lblk_t end = lblk + len - 1; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_cache_extent(inode, &newes); if (!len) return; BUG_ON(end < lblk); write_lock(&EXT4_I(inode)->i_es_lock); es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); if (!es || es->es_lblk > end) __es_insert_extent(inode, &newes, NULL); write_unlock(&EXT4_I(inode)->i_es_lock); } /* * ext4_es_lookup_extent() looks up an extent in extent status tree. * * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. * * Return: 1 on found, 0 on not */ int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t *next_lblk, struct extent_status *es) { struct ext4_es_tree *tree; struct ext4_es_stats *stats; struct extent_status *es1 = NULL; struct rb_node *node; int found = 0; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; trace_ext4_es_lookup_extent_enter(inode, lblk); es_debug("lookup extent in block %u\n", lblk); tree = &EXT4_I(inode)->i_es_tree; read_lock(&EXT4_I(inode)->i_es_lock); /* find extent in cache firstly */ es->es_lblk = es->es_len = es->es_pblk = 0; es1 = READ_ONCE(tree->cache_es); if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u)\n", lblk, es1->es_lblk, es1->es_len); found = 1; goto out; } node = tree->root.rb_node; while (node) { es1 = rb_entry(node, struct extent_status, rb_node); if (lblk < es1->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es1)) node = node->rb_right; else { found = 1; break; } } out: stats = &EXT4_SB(inode->i_sb)->s_es_stats; if (found) { BUG_ON(!es1); es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; if (!ext4_es_is_referenced(es1)) ext4_es_set_referenced(es1); percpu_counter_inc(&stats->es_stats_cache_hits); if (next_lblk) { node = rb_next(&es1->rb_node); if (node) { es1 = rb_entry(node, struct extent_status, rb_node); *next_lblk = es1->es_lblk; } else *next_lblk = 0; } } else { percpu_counter_inc(&stats->es_stats_cache_misses); } read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_lookup_extent_exit(inode, es, found); return found; } struct rsvd_count { int ndelonly; bool first_do_lblk_found; ext4_lblk_t first_do_lblk; ext4_lblk_t last_do_lblk; struct extent_status *left_es; bool partial; ext4_lblk_t lclu; }; /* * init_rsvd - initialize reserved count data before removing block range * in file from extent status tree * * @inode - file containing range * @lblk - first block in range * @es - pointer to first extent in range * @rc - pointer to reserved count data * * Assumes es is not NULL */ static void init_rsvd(struct inode *inode, ext4_lblk_t lblk, struct extent_status *es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct rb_node *node; rc->ndelonly = 0; /* * for bigalloc, note the first delonly block in the range has not * been found, record the extent containing the block to the left of * the region to be removed, if any, and note that there's no partial * cluster to track */ if (sbi->s_cluster_ratio > 1) { rc->first_do_lblk_found = false; if (lblk > es->es_lblk) { rc->left_es = es; } else { node = rb_prev(&es->rb_node); rc->left_es = node ? rb_entry(node, struct extent_status, rb_node) : NULL; } rc->partial = false; } } /* * count_rsvd - count the clusters containing delayed and not unwritten * (delonly) blocks in a range within an extent and add to * the running tally in rsvd_count * * @inode - file containing extent * @lblk - first block in range * @len - length of range in blocks * @es - pointer to extent containing clusters to be counted * @rc - pointer to reserved count data * * Tracks partial clusters found at the beginning and end of extents so * they aren't overcounted when they span adjacent extents */ static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len, struct extent_status *es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t i, end, nclu; if (!ext4_es_is_delonly(es)) return; WARN_ON(len <= 0); if (sbi->s_cluster_ratio == 1) { rc->ndelonly += (int) len; return; } /* bigalloc */ i = (lblk < es->es_lblk) ? es->es_lblk : lblk; end = lblk + (ext4_lblk_t) len - 1; end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end; /* record the first block of the first delonly extent seen */ if (!rc->first_do_lblk_found) { rc->first_do_lblk = i; rc->first_do_lblk_found = true; } /* update the last lblk in the region seen so far */ rc->last_do_lblk = end; /* * if we're tracking a partial cluster and the current extent * doesn't start with it, count it and stop tracking */ if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) { rc->ndelonly++; rc->partial = false; } /* * if the first cluster doesn't start on a cluster boundary but * ends on one, count it */ if (EXT4_LBLK_COFF(sbi, i) != 0) { if (end >= EXT4_LBLK_CFILL(sbi, i)) { rc->ndelonly++; rc->partial = false; i = EXT4_LBLK_CFILL(sbi, i) + 1; } } /* * if the current cluster starts on a cluster boundary, count the * number of whole delonly clusters in the extent */ if ((i + sbi->s_cluster_ratio - 1) <= end) { nclu = (end - i + 1) >> sbi->s_cluster_bits; rc->ndelonly += nclu; i += nclu << sbi->s_cluster_bits; } /* * start tracking a partial cluster if there's a partial at the end * of the current extent and we're not already tracking one */ if (!rc->partial && i <= end) { rc->partial = true; rc->lclu = EXT4_B2C(sbi, i); } } /* * __pr_tree_search - search for a pending cluster reservation * * @root - root of pending reservation tree * @lclu - logical cluster to search for * * Returns the pending reservation for the cluster identified by @lclu * if found. If not, returns a reservation for the next cluster if any, * and if not, returns NULL. */ static struct pending_reservation *__pr_tree_search(struct rb_root *root, ext4_lblk_t lclu) { struct rb_node *node = root->rb_node; struct pending_reservation *pr = NULL; while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); if (lclu < pr->lclu) node = node->rb_left; else if (lclu > pr->lclu) node = node->rb_right; else return pr; } if (pr && lclu < pr->lclu) return pr; if (pr && lclu > pr->lclu) { node = rb_next(&pr->rb_node); return node ? rb_entry(node, struct pending_reservation, rb_node) : NULL; } return NULL; } /* * get_rsvd - calculates and returns the number of cluster reservations to be * released when removing a block range from the extent status tree * and releases any pending reservations within the range * * @inode - file containing block range * @end - last block in range * @right_es - pointer to extent containing next block beyond end or NULL * @rc - pointer to reserved count data * * The number of reservations to be released is equal to the number of * clusters containing delayed and not unwritten (delonly) blocks within * the range, minus the number of clusters still containing delonly blocks * at the ends of the range, and minus the number of pending reservations * within the range. */ static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end, struct extent_status *right_es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct pending_reservation *pr; struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; struct rb_node *node; ext4_lblk_t first_lclu, last_lclu; bool left_delonly, right_delonly, count_pending; struct extent_status *es; if (sbi->s_cluster_ratio > 1) { /* count any remaining partial cluster */ if (rc->partial) rc->ndelonly++; if (rc->ndelonly == 0) return 0; first_lclu = EXT4_B2C(sbi, rc->first_do_lblk); last_lclu = EXT4_B2C(sbi, rc->last_do_lblk); /* * decrease the delonly count by the number of clusters at the * ends of the range that still contain delonly blocks - * these clusters still need to be reserved */ left_delonly = right_delonly = false; es = rc->left_es; while (es && ext4_es_end(es) >= EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) { if (ext4_es_is_delonly(es)) { rc->ndelonly--; left_delonly = true; break; } node = rb_prev(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } if (right_es && (!left_delonly || first_lclu != last_lclu)) { if (end < ext4_es_end(right_es)) { es = right_es; } else { node = rb_next(&right_es->rb_node); es = node ? rb_entry(node, struct extent_status, rb_node) : NULL; } while (es && es->es_lblk <= EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) { if (ext4_es_is_delonly(es)) { rc->ndelonly--; right_delonly = true; break; } node = rb_next(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } } /* * Determine the block range that should be searched for * pending reservations, if any. Clusters on the ends of the * original removed range containing delonly blocks are * excluded. They've already been accounted for and it's not * possible to determine if an associated pending reservation * should be released with the information available in the * extents status tree. */ if (first_lclu == last_lclu) { if (left_delonly | right_delonly) count_pending = false; else count_pending = true; } else { if (left_delonly) first_lclu++; if (right_delonly) last_lclu--; if (first_lclu <= last_lclu) count_pending = true; else count_pending = false; } /* * a pending reservation found between first_lclu and last_lclu * represents an allocated cluster that contained at least one * delonly block, so the delonly total must be reduced by one * for each pending reservation found and released */ if (count_pending) { pr = __pr_tree_search(&tree->root, first_lclu); while (pr && pr->lclu <= last_lclu) { rc->ndelonly--; node = rb_next(&pr->rb_node); rb_erase(&pr->rb_node, &tree->root); __free_pending(pr); if (!node) break; pr = rb_entry(node, struct pending_reservation, rb_node); } } } return rc->ndelonly; } /* * __es_remove_extent - removes block range from extent status tree * * @inode - file containing range * @lblk - first block in range * @end - last block in range * @reserved - number of cluster reservations released * @prealloc - pre-allocated es to avoid memory allocation failures * * If @reserved is not NULL and delayed allocation is enabled, counts * block/cluster reservations freed by removing range and if bigalloc * enabled cancels pending reservations as needed. Returns 0 on success, * error code on failure. */ static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end, int *reserved, struct extent_status *prealloc) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node *node; struct extent_status *es; struct extent_status orig_es; ext4_lblk_t len1, len2; ext4_fsblk_t block; int err = 0; bool count_reserved = true; struct rsvd_count rc; if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC)) count_reserved = false; es = __es_tree_search(&tree->root, lblk); if (!es) goto out; if (es->es_lblk > end) goto out; /* Simply invalidate cache_es. */ tree->cache_es = NULL; if (count_reserved) init_rsvd(inode, lblk, es, &rc); orig_es.es_lblk = es->es_lblk; orig_es.es_len = es->es_len; orig_es.es_pblk = es->es_pblk; len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; if (len1 > 0) es->es_len = len1; if (len2 > 0) { if (len1 > 0) { struct extent_status newes; newes.es_lblk = end + 1; newes.es_len = len2; block = 0x7FDEADBEEFULL; if (ext4_es_is_written(&orig_es) || ext4_es_is_unwritten(&orig_es)) block = ext4_es_pblock(&orig_es) + orig_es.es_len - len2; ext4_es_store_pblock_status(&newes, block, ext4_es_status(&orig_es)); err = __es_insert_extent(inode, &newes, prealloc); if (err) { if (!ext4_es_must_keep(&newes)) return 0; es->es_lblk = orig_es.es_lblk; es->es_len = orig_es.es_len; goto out; } } else { es->es_lblk = end + 1; es->es_len = len2; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = orig_es.es_pblk + orig_es.es_len - len2; ext4_es_store_pblock(es, block); } } if (count_reserved) count_rsvd(inode, orig_es.es_lblk + len1, orig_es.es_len - len1 - len2, &orig_es, &rc); goto out_get_reserved; } if (len1 > 0) { if (count_reserved) count_rsvd(inode, lblk, orig_es.es_len - len1, &orig_es, &rc); node = rb_next(&es->rb_node); if (node) es = rb_entry(node, struct extent_status, rb_node); else es = NULL; } while (es && ext4_es_end(es) <= end) { if (count_reserved) count_rsvd(inode, es->es_lblk, es->es_len, es, &rc); node = rb_next(&es->rb_node); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); if (!node) { es = NULL; break; } es = rb_entry(node, struct extent_status, rb_node); } if (es && es->es_lblk < end + 1) { ext4_lblk_t orig_len = es->es_len; len1 = ext4_es_end(es) - end; if (count_reserved) count_rsvd(inode, es->es_lblk, orig_len - len1, es, &rc); es->es_lblk = end + 1; es->es_len = len1; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = es->es_pblk + orig_len - len1; ext4_es_store_pblock(es, block); } } out_get_reserved: if (count_reserved) *reserved = get_rsvd(inode, end, es, &rc); out: return err; } /* * ext4_es_remove_extent - removes block range from extent status tree * * @inode - file containing range * @lblk - first block in range * @len - number of blocks to remove * * Reduces block/cluster reservation count and for bigalloc cancels pending * reservations as needed. */ void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { ext4_lblk_t end; int err = 0; int reserved = 0; struct extent_status *es = NULL; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; trace_ext4_es_remove_extent(inode, lblk, len); es_debug("remove [%u/%u) from extent status tree of inode %lu\n", lblk, len, inode->i_ino); if (!len) return; end = lblk + len - 1; BUG_ON(end < lblk); retry: if (err && !es) es = __es_alloc_extent(true); /* * ext4_clear_inode() depends on us taking i_es_lock unconditionally * so that we are sure __es_shrink() is done with the inode before it * is reclaimed. */ write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end, &reserved, es); /* Free preallocated extent if it didn't get used. */ if (es) { if (!es->es_len) __es_free_extent(es); es = NULL; } write_unlock(&EXT4_I(inode)->i_es_lock); if (err) goto retry; ext4_es_print_tree(inode); ext4_da_release_space(inode, reserved); return; } static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei) { struct ext4_inode_info *ei; struct ext4_es_stats *es_stats; ktime_t start_time; u64 scan_time; int nr_to_walk; int nr_shrunk = 0; int retried = 0, nr_skipped = 0; es_stats = &sbi->s_es_stats; start_time = ktime_get(); retry: spin_lock(&sbi->s_es_lock); nr_to_walk = sbi->s_es_nr_inode; while (nr_to_walk-- > 0) { if (list_empty(&sbi->s_es_list)) { spin_unlock(&sbi->s_es_lock); goto out; } ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, i_es_list); /* Move the inode to the tail */ list_move_tail(&ei->i_es_list, &sbi->s_es_list); /* * Normally we try hard to avoid shrinking precached inodes, * but we will as a last resort. */ if (!retried && ext4_test_inode_state(&ei->vfs_inode, EXT4_STATE_EXT_PRECACHED)) { nr_skipped++; continue; } if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { nr_skipped++; continue; } /* * Now we hold i_es_lock which protects us from inode reclaim * freeing inode under us */ spin_unlock(&sbi->s_es_lock); nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); write_unlock(&ei->i_es_lock); if (nr_to_scan <= 0) goto out; spin_lock(&sbi->s_es_lock); } spin_unlock(&sbi->s_es_lock); /* * If we skipped any inodes, and we weren't able to make any * forward progress, try again to scan precached inodes. */ if ((nr_shrunk == 0) && nr_skipped && !retried) { retried++; goto retry; } if (locked_ei && nr_shrunk == 0) nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); out: scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); if (likely(es_stats->es_stats_scan_time)) es_stats->es_stats_scan_time = (scan_time + es_stats->es_stats_scan_time*3) / 4; else es_stats->es_stats_scan_time = scan_time; if (scan_time > es_stats->es_stats_max_scan_time) es_stats->es_stats_max_scan_time = scan_time; if (likely(es_stats->es_stats_shrunk)) es_stats->es_stats_shrunk = (nr_shrunk + es_stats->es_stats_shrunk*3) / 4; else es_stats->es_stats_shrunk = nr_shrunk; trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, nr_skipped, retried); return nr_shrunk; } static unsigned long ext4_es_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long nr; struct ext4_sb_info *sbi; sbi = shrink->private_data; nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); return nr; } static unsigned long ext4_es_scan(struct shrinker *shrink, struct shrink_control *sc) { struct ext4_sb_info *sbi = shrink->private_data; int nr_to_scan = sc->nr_to_scan; int ret, nr_shrunk; ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); return nr_shrunk; } int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) { struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); struct ext4_es_stats *es_stats = &sbi->s_es_stats; struct ext4_inode_info *ei, *max = NULL; unsigned int inode_cnt = 0; if (v != SEQ_START_TOKEN) return 0; /* here we just find an inode that has the max nr. of objects */ spin_lock(&sbi->s_es_lock); list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { inode_cnt++; if (max && max->i_es_all_nr < ei->i_es_all_nr) max = ei; else if (!max) max = ei; } spin_unlock(&sbi->s_es_lock); seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); seq_printf(seq, " %lld/%lld cache hits/misses\n", percpu_counter_sum_positive(&es_stats->es_stats_cache_hits), percpu_counter_sum_positive(&es_stats->es_stats_cache_misses)); if (inode_cnt) seq_printf(seq, " %d inodes on list\n", inode_cnt); seq_printf(seq, "average:\n %llu us scan time\n", div_u64(es_stats->es_stats_scan_time, 1000)); seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); if (inode_cnt) seq_printf(seq, "maximum:\n %lu inode (%u objects, %u reclaimable)\n" " %llu us max scan time\n", max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, div_u64(es_stats->es_stats_max_scan_time, 1000)); return 0; } int ext4_es_register_shrinker(struct ext4_sb_info *sbi) { int err; /* Make sure we have enough bits for physical block number */ BUILD_BUG_ON(ES_SHIFT < 48); INIT_LIST_HEAD(&sbi->s_es_list); sbi->s_es_nr_inode = 0; spin_lock_init(&sbi->s_es_lock); sbi->s_es_stats.es_stats_shrunk = 0; err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0, GFP_KERNEL); if (err) return err; err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0, GFP_KERNEL); if (err) goto err1; sbi->s_es_stats.es_stats_scan_time = 0; sbi->s_es_stats.es_stats_max_scan_time = 0; err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); if (err) goto err2; err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); if (err) goto err3; sbi->s_es_shrinker = shrinker_alloc(0, "ext4-es:%s", sbi->s_sb->s_id); if (!sbi->s_es_shrinker) { err = -ENOMEM; goto err4; } sbi->s_es_shrinker->scan_objects = ext4_es_scan; sbi->s_es_shrinker->count_objects = ext4_es_count; sbi->s_es_shrinker->private_data = sbi; shrinker_register(sbi->s_es_shrinker); return 0; err4: percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); err3: percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); err2: percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); err1: percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); return err; } void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) { percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); shrinker_free(sbi->s_es_shrinker); } /* * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at * most *nr_to_scan extents, update *nr_to_scan accordingly. * * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. * Increment *nr_shrunk by the number of reclaimed extents. Also update * ei->i_es_shrink_lblk to where we should continue scanning. */ static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, int *nr_to_scan, int *nr_shrunk) { struct inode *inode = &ei->vfs_inode; struct ext4_es_tree *tree = &ei->i_es_tree; struct extent_status *es; struct rb_node *node; es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); if (!es) goto out_wrap; while (*nr_to_scan > 0) { if (es->es_lblk > end) { ei->i_es_shrink_lblk = end + 1; return 0; } (*nr_to_scan)--; node = rb_next(&es->rb_node); if (ext4_es_must_keep(es)) goto next; if (ext4_es_is_referenced(es)) { ext4_es_clear_referenced(es); goto next; } rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); (*nr_shrunk)++; next: if (!node) goto out_wrap; es = rb_entry(node, struct extent_status, rb_node); } ei->i_es_shrink_lblk = es->es_lblk; return 1; out_wrap: ei->i_es_shrink_lblk = 0; return 0; } static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) { struct inode *inode = &ei->vfs_inode; int nr_shrunk = 0; ext4_lblk_t start = ei->i_es_shrink_lblk; static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); if (ei->i_es_shk_nr == 0) return 0; if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && __ratelimit(&_rs)) ext4_warning(inode->i_sb, "forced shrink of precached extents"); if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && start != 0) es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); ei->i_es_tree.cache_es = NULL; return nr_shrunk; } /* * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove * discretionary entries from the extent status cache. (Some entries * must be present for proper operations.) */ void ext4_clear_inode_es(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct extent_status *es; struct ext4_es_tree *tree; struct rb_node *node; write_lock(&ei->i_es_lock); tree = &EXT4_I(inode)->i_es_tree; tree->cache_es = NULL; node = rb_first(&tree->root); while (node) { es = rb_entry(node, struct extent_status, rb_node); node = rb_next(node); if (!ext4_es_must_keep(es)) { rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); } } ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED); write_unlock(&ei->i_es_lock); } #ifdef ES_DEBUG__ static void ext4_print_pending_tree(struct inode *inode) { struct ext4_pending_tree *tree; struct rb_node *node; struct pending_reservation *pr; printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_pending_tree; node = rb_first(&tree->root); while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); printk(KERN_DEBUG " %u", pr->lclu); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_print_pending_tree(inode) #endif int __init ext4_init_pending(void) { ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT); if (ext4_pending_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_pending(void) { kmem_cache_destroy(ext4_pending_cachep); } void ext4_init_pending_tree(struct ext4_pending_tree *tree) { tree->root = RB_ROOT; } /* * __get_pending - retrieve a pointer to a pending reservation * * @inode - file containing the pending cluster reservation * @lclu - logical cluster of interest * * Returns a pointer to a pending reservation if it's a member of * the set, and NULL if not. Must be called holding i_es_lock. */ static struct pending_reservation *__get_pending(struct inode *inode, ext4_lblk_t lclu) { struct ext4_pending_tree *tree; struct rb_node *node; struct pending_reservation *pr = NULL; tree = &EXT4_I(inode)->i_pending_tree; node = (&tree->root)->rb_node; while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); if (lclu < pr->lclu) node = node->rb_left; else if (lclu > pr->lclu) node = node->rb_right; else if (lclu == pr->lclu) return pr; } return NULL; } /* * __insert_pending - adds a pending cluster reservation to the set of * pending reservations * * @inode - file containing the cluster * @lblk - logical block in the cluster to be added * @prealloc - preallocated pending entry * * Returns 0 on successful insertion and -ENOMEM on failure. If the * pending reservation is already in the set, returns successfully. */ static int __insert_pending(struct inode *inode, ext4_lblk_t lblk, struct pending_reservation **prealloc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct pending_reservation *pr; ext4_lblk_t lclu; int ret = 0; lclu = EXT4_B2C(sbi, lblk); /* search to find parent for insertion */ while (*p) { parent = *p; pr = rb_entry(parent, struct pending_reservation, rb_node); if (lclu < pr->lclu) { p = &(*p)->rb_left; } else if (lclu > pr->lclu) { p = &(*p)->rb_right; } else { /* pending reservation already inserted */ goto out; } } if (likely(*prealloc == NULL)) { pr = __alloc_pending(false); if (!pr) { ret = -ENOMEM; goto out; } } else { pr = *prealloc; *prealloc = NULL; } pr->lclu = lclu; rb_link_node(&pr->rb_node, parent, p); rb_insert_color(&pr->rb_node, &tree->root); out: return ret; } /* * __remove_pending - removes a pending cluster reservation from the set * of pending reservations * * @inode - file containing the cluster * @lblk - logical block in the pending cluster reservation to be removed * * Returns successfully if pending reservation is not a member of the set. */ static void __remove_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct pending_reservation *pr; struct ext4_pending_tree *tree; pr = __get_pending(inode, EXT4_B2C(sbi, lblk)); if (pr != NULL) { tree = &EXT4_I(inode)->i_pending_tree; rb_erase(&pr->rb_node, &tree->root); __free_pending(pr); } } /* * ext4_remove_pending - removes a pending cluster reservation from the set * of pending reservations * * @inode - file containing the cluster * @lblk - logical block in the pending cluster reservation to be removed * * Locking for external use of __remove_pending. */ void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_inode_info *ei = EXT4_I(inode); write_lock(&ei->i_es_lock); __remove_pending(inode, lblk); write_unlock(&ei->i_es_lock); } /* * ext4_is_pending - determine whether a cluster has a pending reservation * on it * * @inode - file containing the cluster * @lblk - logical block in the cluster * * Returns true if there's a pending reservation for the cluster in the * set of pending reservations, and false if not. */ bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct ext4_inode_info *ei = EXT4_I(inode); bool ret; read_lock(&ei->i_es_lock); ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL); read_unlock(&ei->i_es_lock); return ret; } /* * ext4_es_insert_delayed_extent - adds some delayed blocks to the extents * status tree, adding a pending reservation * where needed * * @inode - file containing the newly added block * @lblk - start logical block to be added * @len - length of blocks to be added * @lclu_allocated/end_allocated - indicates whether a physical cluster has * been allocated for the logical cluster * that contains the start/end block. Note that * end_allocated should always be set to false * if the start and the end block are in the * same cluster */ void ext4_es_insert_delayed_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, bool lclu_allocated, bool end_allocated) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct extent_status newes; ext4_lblk_t end = lblk + len - 1; int err1 = 0, err2 = 0, err3 = 0; struct extent_status *es1 = NULL; struct extent_status *es2 = NULL; struct pending_reservation *pr1 = NULL; struct pending_reservation *pr2 = NULL; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; es_debug("add [%u/%u) delayed to extent status tree of inode %lu\n", lblk, len, inode->i_ino); if (!len) return; WARN_ON_ONCE((EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) && end_allocated); newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED); trace_ext4_es_insert_delayed_extent(inode, &newes, lclu_allocated, end_allocated); ext4_es_insert_extent_check(inode, &newes); retry: if (err1 && !es1) es1 = __es_alloc_extent(true); if ((err1 || err2) && !es2) es2 = __es_alloc_extent(true); if (err1 || err2 || err3) { if (lclu_allocated && !pr1) pr1 = __alloc_pending(true); if (end_allocated && !pr2) pr2 = __alloc_pending(true); } write_lock(&EXT4_I(inode)->i_es_lock); err1 = __es_remove_extent(inode, lblk, end, NULL, es1); if (err1 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es1) { if (!es1->es_len) __es_free_extent(es1); es1 = NULL; } err2 = __es_insert_extent(inode, &newes, es2); if (err2 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es2) { if (!es2->es_len) __es_free_extent(es2); es2 = NULL; } if (lclu_allocated) { err3 = __insert_pending(inode, lblk, &pr1); if (err3 != 0) goto error; if (pr1) { __free_pending(pr1); pr1 = NULL; } } if (end_allocated) { err3 = __insert_pending(inode, end, &pr2); if (err3 != 0) goto error; if (pr2) { __free_pending(pr2); pr2 = NULL; } } error: write_unlock(&EXT4_I(inode)->i_es_lock); if (err1 || err2 || err3) goto retry; ext4_es_print_tree(inode); ext4_print_pending_tree(inode); return; } /* * __es_delayed_clu - count number of clusters containing blocks that * are delayed only * * @inode - file containing block range * @start - logical block defining start of range * @end - logical block defining end of range * * Returns the number of clusters containing only delayed (not delayed * and unwritten) blocks in the range specified by @start and @end. Any * cluster or part of a cluster within the range and containing a delayed * and not unwritten block within the range is counted as a whole cluster. */ static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start, ext4_lblk_t end) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct rb_node *node; ext4_lblk_t first_lclu, last_lclu; unsigned long long last_counted_lclu; unsigned int n = 0; /* guaranteed to be unequal to any ext4_lblk_t value */ last_counted_lclu = ~0ULL; es = __es_tree_search(&tree->root, start); while (es && (es->es_lblk <= end)) { if (ext4_es_is_delonly(es)) { if (es->es_lblk <= start) first_lclu = EXT4_B2C(sbi, start); else first_lclu = EXT4_B2C(sbi, es->es_lblk); if (ext4_es_end(es) >= end) last_lclu = EXT4_B2C(sbi, end); else last_lclu = EXT4_B2C(sbi, ext4_es_end(es)); if (first_lclu == last_counted_lclu) n += last_lclu - first_lclu; else n += last_lclu - first_lclu + 1; last_counted_lclu = last_lclu; } node = rb_next(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } return n; } /* * ext4_es_delayed_clu - count number of clusters containing blocks that * are both delayed and unwritten * * @inode - file containing block range * @lblk - logical block defining start of range * @len - number of blocks in range * * Locking for external use of __es_delayed_clu(). */ unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { struct ext4_inode_info *ei = EXT4_I(inode); ext4_lblk_t end; unsigned int n; if (len == 0) return 0; end = lblk + len - 1; WARN_ON(end < lblk); read_lock(&ei->i_es_lock); n = __es_delayed_clu(inode, lblk, end); read_unlock(&ei->i_es_lock); return n; } /* * __revise_pending - makes, cancels, or leaves unchanged pending cluster * reservations for a specified block range depending * upon the presence or absence of delayed blocks * outside the range within clusters at the ends of the * range * * @inode - file containing the range * @lblk - logical block defining the start of range * @len - length of range in blocks * @prealloc - preallocated pending entry * * Used after a newly allocated extent is added to the extents status tree. * Requires that the extents in the range have either written or unwritten * status. Must be called while holding i_es_lock. */ static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, struct pending_reservation **prealloc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t end = lblk + len - 1; ext4_lblk_t first, last; bool f_del = false, l_del = false; int ret = 0; if (len == 0) return 0; /* * Two cases - block range within single cluster and block range * spanning two or more clusters. Note that a cluster belonging * to a range starting and/or ending on a cluster boundary is treated * as if it does not contain a delayed extent. The new range may * have allocated space for previously delayed blocks out to the * cluster boundary, requiring that any pre-existing pending * reservation be canceled. Because this code only looks at blocks * outside the range, it should revise pending reservations * correctly even if the extent represented by the range can't be * inserted in the extents status tree due to ENOSPC. */ if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) { first = EXT4_LBLK_CMASK(sbi, lblk); if (first != lblk) f_del = __es_scan_range(inode, &ext4_es_is_delonly, first, lblk - 1); if (f_del) { ret = __insert_pending(inode, first, prealloc); if (ret < 0) goto out; } else { last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; if (last != end) l_del = __es_scan_range(inode, &ext4_es_is_delonly, end + 1, last); if (l_del) { ret = __insert_pending(inode, last, prealloc); if (ret < 0) goto out; } else __remove_pending(inode, last); } } else { first = EXT4_LBLK_CMASK(sbi, lblk); if (first != lblk) f_del = __es_scan_range(inode, &ext4_es_is_delonly, first, lblk - 1); if (f_del) { ret = __insert_pending(inode, first, prealloc); if (ret < 0) goto out; } else __remove_pending(inode, first); last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; if (last != end) l_del = __es_scan_range(inode, &ext4_es_is_delonly, end + 1, last); if (l_del) { ret = __insert_pending(inode, last, prealloc); if (ret < 0) goto out; } else __remove_pending(inode, last); } out: return ret; } |
2655 1108 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Kernel Electric-Fence (KFENCE). For more info please see * Documentation/dev-tools/kfence.rst. * * Copyright (C) 2020, Google LLC. */ #ifndef MM_KFENCE_KFENCE_H #define MM_KFENCE_KFENCE_H #include <linux/mm.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include "../slab.h" /* for struct kmem_cache */ /* * Get the canary byte pattern for @addr. Use a pattern that varies based on the * lower 3 bits of the address, to detect memory corruptions with higher * probability, where similar constants are used. */ #define KFENCE_CANARY_PATTERN_U8(addr) ((u8)0xaa ^ (u8)((unsigned long)(addr) & 0x7)) /* * Define a continuous 8-byte canary starting from a multiple of 8. The canary * of each byte is only related to the lowest three bits of its address, so the * canary of every 8 bytes is the same. 64-bit memory can be filled and checked * at a time instead of byte by byte to improve performance. */ #define KFENCE_CANARY_PATTERN_U64 ((u64)0xaaaaaaaaaaaaaaaa ^ (u64)(le64_to_cpu(0x0706050403020100))) /* Maximum stack depth for reports. */ #define KFENCE_STACK_DEPTH 64 /* KFENCE object states. */ enum kfence_object_state { KFENCE_OBJECT_UNUSED, /* Object is unused. */ KFENCE_OBJECT_ALLOCATED, /* Object is currently allocated. */ KFENCE_OBJECT_FREED, /* Object was allocated, and then freed. */ }; /* Alloc/free tracking information. */ struct kfence_track { pid_t pid; int cpu; u64 ts_nsec; int num_stack_entries; unsigned long stack_entries[KFENCE_STACK_DEPTH]; }; /* KFENCE metadata per guarded allocation. */ struct kfence_metadata { struct list_head list; /* Freelist node; access under kfence_freelist_lock. */ struct rcu_head rcu_head; /* For delayed freeing. */ /* * Lock protecting below data; to ensure consistency of the below data, * since the following may execute concurrently: __kfence_alloc(), * __kfence_free(), kfence_handle_page_fault(). However, note that we * cannot grab the same metadata off the freelist twice, and multiple * __kfence_alloc() cannot run concurrently on the same metadata. */ raw_spinlock_t lock; /* The current state of the object; see above. */ enum kfence_object_state state; /* * Allocated object address; cannot be calculated from size, because of * alignment requirements. * * Invariant: ALIGN_DOWN(addr, PAGE_SIZE) is constant. */ unsigned long addr; /* * The size of the original allocation. */ size_t size; /* * The kmem_cache cache of the last allocation; NULL if never allocated * or the cache has already been destroyed. */ struct kmem_cache *cache; /* * In case of an invalid access, the page that was unprotected; we * optimistically only store one address. */ unsigned long unprotected_page; /* Allocation and free stack information. */ struct kfence_track alloc_track; struct kfence_track free_track; /* For updating alloc_covered on frees. */ u32 alloc_stack_hash; #ifdef CONFIG_MEMCG struct slabobj_ext obj_exts; #endif }; #define KFENCE_METADATA_SIZE PAGE_ALIGN(sizeof(struct kfence_metadata) * \ CONFIG_KFENCE_NUM_OBJECTS) extern struct kfence_metadata *kfence_metadata; static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) { long index; /* The checks do not affect performance; only called from slow-paths. */ if (!is_kfence_address((void *)addr)) return NULL; /* * May be an invalid index if called with an address at the edge of * __kfence_pool, in which case we would report an "invalid access" * error. */ index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) return NULL; return &kfence_metadata[index]; } /* KFENCE error types for report generation. */ enum kfence_error_type { KFENCE_ERROR_OOB, /* Detected a out-of-bounds access. */ KFENCE_ERROR_UAF, /* Detected a use-after-free access. */ KFENCE_ERROR_CORRUPTION, /* Detected a memory corruption on free. */ KFENCE_ERROR_INVALID, /* Invalid access of unknown type. */ KFENCE_ERROR_INVALID_FREE, /* Invalid free. */ }; void kfence_report_error(unsigned long address, bool is_write, struct pt_regs *regs, const struct kfence_metadata *meta, enum kfence_error_type type); void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta); #endif /* MM_KFENCE_KFENCE_H */ |
4642 6 142 27 4521 386 16 9 235 191 192 2041 2041 94 2092 1500 180 1344 1500 37 1269 379 81 353 235 23 14 206 294 30 30 7 7 158 992 1289 338 991 143 338 85 42 15385 14992 15388 15427 350 370 19 19 6 107 106 10 4 10 3 11 60 48 104 6 9 9 9 108 21 24 40 5 44 2 31 15 46 46 46 46 520 2510 2409 2509 2514 63 23 41 63 57 6 125 125 2 123 992 993 954 39 18 41 41 1472 822 30 3 427 250 2061 2 209 156 226 99 13 25 46 46 2 2 5 2 2 11 1478 60 60 405 404 15 374 22 19 57 992 993 8 1 7 112 71 12 22 26 1893 2 1 1886 5 1879 20 1890 1890 20 140 1782 159 20 10 445 144 1306 1 1410 1410 1410 143 1306 1410 136 1 8 18 85 137 1058 1064 9 3 1058 1059 1061 201 204 5 201 201 202 174 1 86 71 6 11 2 2 102 73 182 5 169 168 118 66 2 1166 1173 10 3 1168 1108 1174 65 5 5 57 61 65 65 6 30 33 59 62 1616 1 13 351 4 1297 1506 1611 751 1 8 720 13 733 750 4235 2 4239 4021 268 2 4022 4250 4239 40 4178 4247 2161 2163 196 1 1976 2131 2167 21 2160 2129 2174 181 5 181 179 188 188 16 14685 260 13502 1693 13702 265 1616 64 14734 14731 15 14766 13514 5 12961 413 471 5 865 13369 191 13202 597 42 12716 811 392 12901 465 12430 12430 82 13501 12420 2 100 12449 12126 12421 1468 1 26 1115 1465 894 1123 21 1345 1471 504 1685 522 1684 496 1339 274 9 504 76 495 505 1 37 505 465 505 1223 1225 77 110 1103 2 1011 67 1205 463 1015 933 5 79 9 261 100 167 1113 1 1117 62 80 1227 1 1213 3 3 1041 9 103 945 163 413 250 217 5 72 81 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 | // SPDX-License-Identifier: GPL-2.0-or-later /* * NET An implementation of the SOCKET network access protocol. * * Version: @(#)socket.c 1.1.93 18/02/95 * * Authors: Orest Zborowski, <obz@Kodak.COM> * Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Fixes: * Anonymous : NOTSOCK/BADF cleanup. Error fix in * shutdown() * Alan Cox : verify_area() fixes * Alan Cox : Removed DDI * Jonathan Kamens : SOCK_DGRAM reconnect bug * Alan Cox : Moved a load of checks to the very * top level. * Alan Cox : Move address structures to/from user * mode above the protocol layers. * Rob Janssen : Allow 0 length sends. * Alan Cox : Asynchronous I/O support (cribbed from the * tty drivers). * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) * Jeff Uphoff : Made max number of sockets command-line * configurable. * Matti Aarnio : Made the number of sockets dynamic, * to be allocated when needed, and mr. * Uphoff's max is used as max to be * allowed to allocate. * Linus : Argh. removed all the socket allocation * altogether: it's in the inode now. * Alan Cox : Made sock_alloc()/sock_release() public * for NetROM and future kernel nfsd type * stuff. * Alan Cox : sendmsg/recvmsg basics. * Tom Dyas : Export net symbols. * Marcin Dalecki : Fixed problems with CONFIG_NET="n". * Alan Cox : Added thread locking to sys_* calls * for sockets. May have errors at the * moment. * Kevin Buhr : Fixed the dumb errors in the above. * Andi Kleen : Some small cleanups, optimizations, * and fixed a copy_from_user() bug. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) * Tigran Aivazian : Made listen(2) backlog sanity checks * protocol-independent * * This module is effectively the top level interface to the BSD socket * paradigm. * * Based upon Swansea University Computer Society NET3.039 */ #include <linux/bpf-cgroup.h> #include <linux/ethtool.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/file.h> #include <linux/splice.h> #include <linux/net.h> #include <linux/interrupt.h> #include <linux/thread_info.h> #include <linux/rcupdate.h> #include <linux/netdevice.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/mutex.h> #include <linux/if_bridge.h> #include <linux/if_vlan.h> #include <linux/ptp_classify.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/cache.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/compat.h> #include <linux/kmod.h> #include <linux/audit.h> #include <linux/wireless.h> #include <linux/nsproxy.h> #include <linux/magic.h> #include <linux/slab.h> #include <linux/xattr.h> #include <linux/nospec.h> #include <linux/indirect_call_wrapper.h> #include <linux/io_uring/net.h> #include <linux/uaccess.h> #include <asm/unistd.h> #include <net/compat.h> #include <net/wext.h> #include <net/cls_cgroup.h> #include <net/sock.h> #include <linux/netfilter.h> #include <linux/if_tun.h> #include <linux/ipv6_route.h> #include <linux/route.h> #include <linux/termios.h> #include <linux/sockios.h> #include <net/busy_poll.h> #include <linux/errqueue.h> #include <linux/ptp_clock_kernel.h> #include <trace/events/sock.h> #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sysctl_net_busy_read __read_mostly; unsigned int sysctl_net_busy_poll __read_mostly; #endif static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); static int sock_mmap(struct file *file, struct vm_area_struct *vma); static int sock_close(struct inode *inode, struct file *file); static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait); static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #endif static int sock_fasync(int fd, struct file *filp, int on); static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); static void sock_splice_eof(struct file *file); #ifdef CONFIG_PROC_FS static void sock_show_fdinfo(struct seq_file *m, struct file *f) { struct socket *sock = f->private_data; const struct proto_ops *ops = READ_ONCE(sock->ops); if (ops->show_fdinfo) ops->show_fdinfo(m, sock); } #else #define sock_show_fdinfo NULL #endif /* * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear * in the operation structures but are done directly via the socketcall() multiplexor. */ static const struct file_operations socket_file_ops = { .owner = THIS_MODULE, .llseek = no_llseek, .read_iter = sock_read_iter, .write_iter = sock_write_iter, .poll = sock_poll, .unlocked_ioctl = sock_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_sock_ioctl, #endif .uring_cmd = io_uring_cmd_sock, .mmap = sock_mmap, .release = sock_close, .fasync = sock_fasync, .splice_write = splice_to_socket, .splice_read = sock_splice_read, .splice_eof = sock_splice_eof, .show_fdinfo = sock_show_fdinfo, }; static const char * const pf_family_names[] = { [PF_UNSPEC] = "PF_UNSPEC", [PF_UNIX] = "PF_UNIX/PF_LOCAL", [PF_INET] = "PF_INET", [PF_AX25] = "PF_AX25", [PF_IPX] = "PF_IPX", [PF_APPLETALK] = "PF_APPLETALK", [PF_NETROM] = "PF_NETROM", [PF_BRIDGE] = "PF_BRIDGE", [PF_ATMPVC] = "PF_ATMPVC", [PF_X25] = "PF_X25", [PF_INET6] = "PF_INET6", [PF_ROSE] = "PF_ROSE", [PF_DECnet] = "PF_DECnet", [PF_NETBEUI] = "PF_NETBEUI", [PF_SECURITY] = "PF_SECURITY", [PF_KEY] = "PF_KEY", [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", [PF_PACKET] = "PF_PACKET", [PF_ASH] = "PF_ASH", [PF_ECONET] = "PF_ECONET", [PF_ATMSVC] = "PF_ATMSVC", [PF_RDS] = "PF_RDS", [PF_SNA] = "PF_SNA", [PF_IRDA] = "PF_IRDA", [PF_PPPOX] = "PF_PPPOX", [PF_WANPIPE] = "PF_WANPIPE", [PF_LLC] = "PF_LLC", [PF_IB] = "PF_IB", [PF_MPLS] = "PF_MPLS", [PF_CAN] = "PF_CAN", [PF_TIPC] = "PF_TIPC", [PF_BLUETOOTH] = "PF_BLUETOOTH", [PF_IUCV] = "PF_IUCV", [PF_RXRPC] = "PF_RXRPC", [PF_ISDN] = "PF_ISDN", [PF_PHONET] = "PF_PHONET", [PF_IEEE802154] = "PF_IEEE802154", [PF_CAIF] = "PF_CAIF", [PF_ALG] = "PF_ALG", [PF_NFC] = "PF_NFC", [PF_VSOCK] = "PF_VSOCK", [PF_KCM] = "PF_KCM", [PF_QIPCRTR] = "PF_QIPCRTR", [PF_SMC] = "PF_SMC", [PF_XDP] = "PF_XDP", [PF_MCTP] = "PF_MCTP", }; /* * The protocol list. Each protocol is registered in here. */ static DEFINE_SPINLOCK(net_family_lock); static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; /* * Support routines. * Move socket addresses back and forth across the kernel/user * divide and look after the messy bits. */ /** * move_addr_to_kernel - copy a socket address into kernel space * @uaddr: Address in user space * @kaddr: Address in kernel space * @ulen: Length in user space * * The address is copied into kernel space. If the provided address is * too long an error code of -EINVAL is returned. If the copy gives * invalid addresses -EFAULT is returned. On a success 0 is returned. */ int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) { if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) return -EINVAL; if (ulen == 0) return 0; if (copy_from_user(kaddr, uaddr, ulen)) return -EFAULT; return audit_sockaddr(ulen, kaddr); } /** * move_addr_to_user - copy an address to user space * @kaddr: kernel space address * @klen: length of address in kernel * @uaddr: user space address * @ulen: pointer to user length field * * The value pointed to by ulen on entry is the buffer length available. * This is overwritten with the buffer space used. -EINVAL is returned * if an overlong buffer is specified or a negative buffer size. -EFAULT * is returned if either the buffer or the length field are not * accessible. * After copying the data up to the limit the user specifies, the true * length of the data is written over the length limit the user * specified. Zero is returned for a success. */ static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, void __user *uaddr, int __user *ulen) { int err; int len; BUG_ON(klen > sizeof(struct sockaddr_storage)); err = get_user(len, ulen); if (err) return err; if (len > klen) len = klen; if (len < 0) return -EINVAL; if (len) { if (audit_sockaddr(klen, kaddr)) return -ENOMEM; if (copy_to_user(uaddr, kaddr, len)) return -EFAULT; } /* * "fromlen shall refer to the value before truncation.." * 1003.1g */ return __put_user(klen, ulen); } static struct kmem_cache *sock_inode_cachep __ro_after_init; static struct inode *sock_alloc_inode(struct super_block *sb) { struct socket_alloc *ei; ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); if (!ei) return NULL; init_waitqueue_head(&ei->socket.wq.wait); ei->socket.wq.fasync_list = NULL; ei->socket.wq.flags = 0; ei->socket.state = SS_UNCONNECTED; ei->socket.flags = 0; ei->socket.ops = NULL; ei->socket.sk = NULL; ei->socket.file = NULL; return &ei->vfs_inode; } static void sock_free_inode(struct inode *inode) { struct socket_alloc *ei; ei = container_of(inode, struct socket_alloc, vfs_inode); kmem_cache_free(sock_inode_cachep, ei); } static void init_once(void *foo) { struct socket_alloc *ei = (struct socket_alloc *)foo; inode_init_once(&ei->vfs_inode); } static void init_inodecache(void) { sock_inode_cachep = kmem_cache_create("sock_inode_cache", sizeof(struct socket_alloc), 0, (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT), init_once); BUG_ON(sock_inode_cachep == NULL); } static const struct super_operations sockfs_ops = { .alloc_inode = sock_alloc_inode, .free_inode = sock_free_inode, .statfs = simple_statfs, }; /* * sockfs_dname() is called from d_path(). */ static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(buffer, buflen, "socket:[%lu]", d_inode(dentry)->i_ino); } static const struct dentry_operations sockfs_dentry_operations = { .d_dname = sockfs_dname, }; static int sockfs_xattr_get(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, void *value, size_t size) { if (value) { if (dentry->d_name.len + 1 > size) return -ERANGE; memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); } return dentry->d_name.len + 1; } #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) static const struct xattr_handler sockfs_xattr_handler = { .name = XATTR_NAME_SOCKPROTONAME, .get = sockfs_xattr_get, }; static int sockfs_security_xattr_set(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *dentry, struct inode *inode, const char *suffix, const void *value, size_t size, int flags) { /* Handled by LSM. */ return -EAGAIN; } static const struct xattr_handler sockfs_security_xattr_handler = { .prefix = XATTR_SECURITY_PREFIX, .set = sockfs_security_xattr_set, }; static const struct xattr_handler * const sockfs_xattr_handlers[] = { &sockfs_xattr_handler, &sockfs_security_xattr_handler, NULL }; static int sockfs_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); if (!ctx) return -ENOMEM; ctx->ops = &sockfs_ops; ctx->dops = &sockfs_dentry_operations; ctx->xattr = sockfs_xattr_handlers; return 0; } static struct vfsmount *sock_mnt __read_mostly; static struct file_system_type sock_fs_type = { .name = "sockfs", .init_fs_context = sockfs_init_fs_context, .kill_sb = kill_anon_super, }; /* * Obtains the first available file descriptor and sets it up for use. * * These functions create file structures and maps them to fd space * of the current process. On success it returns file descriptor * and file struct implicitly stored in sock->file. * Note that another thread may close file descriptor before we return * from this function. We use the fact that now we do not refer * to socket after mapping. If one day we will need it, this * function will increment ref. count on file by 1. * * In any case returned fd MAY BE not valid! * This race condition is unavoidable * with shared fd spaces, we cannot solve it inside kernel, * but we take care of internal coherence yet. */ /** * sock_alloc_file - Bind a &socket to a &file * @sock: socket * @flags: file status flags * @dname: protocol name * * Returns the &file bound with @sock, implicitly storing it * in sock->file. If dname is %NULL, sets to "". * * On failure @sock is released, and an ERR pointer is returned. * * This function uses GFP_KERNEL internally. */ struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) { struct file *file; if (!dname) dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, O_RDWR | (flags & O_NONBLOCK), &socket_file_ops); if (IS_ERR(file)) { sock_release(sock); return file; } file->f_mode |= FMODE_NOWAIT; sock->file = file; file->private_data = sock; stream_open(SOCK_INODE(sock), file); return file; } EXPORT_SYMBOL(sock_alloc_file); static int sock_map_fd(struct socket *sock, int flags) { struct file *newfile; int fd = get_unused_fd_flags(flags); if (unlikely(fd < 0)) { sock_release(sock); return fd; } newfile = sock_alloc_file(sock, flags, NULL); if (!IS_ERR(newfile)) { fd_install(fd, newfile); return fd; } put_unused_fd(fd); return PTR_ERR(newfile); } /** * sock_from_file - Return the &socket bounded to @file. * @file: file * * On failure returns %NULL. */ struct socket *sock_from_file(struct file *file) { if (file->f_op == &socket_file_ops) return file->private_data; /* set in sock_alloc_file */ return NULL; } EXPORT_SYMBOL(sock_from_file); /** * sockfd_lookup - Go from a file number to its socket slot * @fd: file handle * @err: pointer to an error code return * * The file handle passed in is locked and the socket it is bound * to is returned. If an error occurs the err pointer is overwritten * with a negative errno code and NULL is returned. The function checks * for both invalid handles and passing a handle which is not a socket. * * On a success the socket object pointer is returned. */ struct socket *sockfd_lookup(int fd, int *err) { struct file *file; struct socket *sock; file = fget(fd); if (!file) { *err = -EBADF; return NULL; } sock = sock_from_file(file); if (!sock) { *err = -ENOTSOCK; fput(file); } return sock; } EXPORT_SYMBOL(sockfd_lookup); static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) { struct fd f = fdget(fd); struct socket *sock; *err = -EBADF; if (f.file) { sock = sock_from_file(f.file); if (likely(sock)) { *fput_needed = f.flags & FDPUT_FPUT; return sock; } *err = -ENOTSOCK; fdput(f); } return NULL; } static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, size_t size) { ssize_t len; ssize_t used = 0; len = security_inode_listsecurity(d_inode(dentry), buffer, size); if (len < 0) return len; used += len; if (buffer) { if (size < used) return -ERANGE; buffer += len; } len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); used += len; if (buffer) { if (size < used) return -ERANGE; memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); buffer += len; } return used; } static int sockfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *iattr) { int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); if (!err && (iattr->ia_valid & ATTR_UID)) { struct socket *sock = SOCKET_I(d_inode(dentry)); if (sock->sk) sock->sk->sk_uid = iattr->ia_uid; else err = -ENOENT; } return err; } static const struct inode_operations sockfs_inode_ops = { .listxattr = sockfs_listxattr, .setattr = sockfs_setattr, }; /** * sock_alloc - allocate a socket * * Allocate a new inode and socket object. The two are bound together * and initialised. The socket is then returned. If we are out of inodes * NULL is returned. This functions uses GFP_KERNEL internally. */ struct socket *sock_alloc(void) { struct inode *inode; struct socket *sock; inode = new_inode_pseudo(sock_mnt->mnt_sb); if (!inode) return NULL; sock = SOCKET_I(inode); inode->i_ino = get_next_ino(); inode->i_mode = S_IFSOCK | S_IRWXUGO; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_op = &sockfs_inode_ops; return sock; } EXPORT_SYMBOL(sock_alloc); static void __sock_release(struct socket *sock, struct inode *inode) { const struct proto_ops *ops = READ_ONCE(sock->ops); if (ops) { struct module *owner = ops->owner; if (inode) inode_lock(inode); ops->release(sock); sock->sk = NULL; if (inode) inode_unlock(inode); sock->ops = NULL; module_put(owner); } if (sock->wq.fasync_list) pr_err("%s: fasync list not empty!\n", __func__); if (!sock->file) { iput(SOCK_INODE(sock)); return; } sock->file = NULL; } /** * sock_release - close a socket * @sock: socket to close * * The socket is released from the protocol stack if it has a release * callback, and the inode is then released if the socket is bound to * an inode not a file. */ void sock_release(struct socket *sock) { __sock_release(sock, NULL); } EXPORT_SYMBOL(sock_release); void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) { u8 flags = *tx_flags; if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { flags |= SKBTX_HW_TSTAMP; /* PTP hardware clocks can provide a free running cycle counter * as a time base for virtual clocks. Tell driver to use the * free running cycle counter for timestamp if socket is bound * to virtual clock. */ if (tsflags & SOF_TIMESTAMPING_BIND_PHC) flags |= SKBTX_HW_TSTAMP_USE_CYCLES; } if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) flags |= SKBTX_SW_TSTAMP; if (tsflags & SOF_TIMESTAMPING_TX_SCHED) flags |= SKBTX_SCHED_TSTAMP; *tx_flags = flags; } EXPORT_SYMBOL(__sock_tx_timestamp); INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, size_t)); INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, size_t)); static noinline void call_trace_sock_send_length(struct sock *sk, int ret, int flags) { trace_sock_send_length(sk, ret, 0); } static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) { int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, inet_sendmsg, sock, msg, msg_data_left(msg)); BUG_ON(ret == -EIOCBQUEUED); if (trace_sock_send_length_enabled()) call_trace_sock_send_length(sock->sk, ret, 0); return ret; } static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) { int err = security_socket_sendmsg(sock, msg, msg_data_left(msg)); return err ?: sock_sendmsg_nosec(sock, msg); } /** * sock_sendmsg - send a message through @sock * @sock: socket * @msg: message to send * * Sends @msg through @sock, passing through LSM. * Returns the number of bytes sent, or an error code. */ int sock_sendmsg(struct socket *sock, struct msghdr *msg) { struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; struct sockaddr_storage address; int save_len = msg->msg_namelen; int ret; if (msg->msg_name) { memcpy(&address, msg->msg_name, msg->msg_namelen); msg->msg_name = &address; } ret = __sock_sendmsg(sock, msg); msg->msg_name = save_addr; msg->msg_namelen = save_len; return ret; } EXPORT_SYMBOL(sock_sendmsg); /** * kernel_sendmsg - send a message through @sock (kernel-space) * @sock: socket * @msg: message header * @vec: kernel vec * @num: vec array length * @size: total message data size * * Builds the message data with @vec and sends it through @sock. * Returns the number of bytes sent, or an error code. */ int kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size) { iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); return sock_sendmsg(sock, msg); } EXPORT_SYMBOL(kernel_sendmsg); /** * kernel_sendmsg_locked - send a message through @sock (kernel-space) * @sk: sock * @msg: message header * @vec: output s/g array * @num: output s/g array length * @size: total message data size * * Builds the message data with @vec and sends it through @sock. * Returns the number of bytes sent, or an error code. * Caller must hold @sk. */ int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, struct kvec *vec, size_t num, size_t size) { struct socket *sock = sk->sk_socket; const struct proto_ops *ops = READ_ONCE(sock->ops); if (!ops->sendmsg_locked) return sock_no_sendmsg_locked(sk, msg, size); iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); } EXPORT_SYMBOL(kernel_sendmsg_locked); static bool skb_is_err_queue(const struct sk_buff *skb) { /* pkt_type of skbs enqueued on the error queue are set to * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do * in recvmsg, since skbs received on a local socket will never * have a pkt_type of PACKET_OUTGOING. */ return skb->pkt_type == PACKET_OUTGOING; } /* On transmit, software and hardware timestamps are returned independently. * As the two skb clones share the hardware timestamp, which may be updated * before the software timestamp is received, a hardware TX timestamp may be * returned only if there is no software TX timestamp. Ignore false software * timestamps, which may be made in the __sock_recv_timestamp() call when the * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a * hardware timestamp. */ static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) { return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); } static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) { bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); struct net_device *orig_dev; ktime_t hwtstamp; rcu_read_lock(); orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); if (orig_dev) { *if_index = orig_dev->ifindex; hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); } else { hwtstamp = shhwtstamps->hwtstamp; } rcu_read_unlock(); return hwtstamp; } static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, int if_index) { struct scm_ts_pktinfo ts_pktinfo; struct net_device *orig_dev; if (!skb_mac_header_was_set(skb)) return; memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); if (!if_index) { rcu_read_lock(); orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); if (orig_dev) if_index = orig_dev->ifindex; rcu_read_unlock(); } ts_pktinfo.if_index = if_index; ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, sizeof(ts_pktinfo), &ts_pktinfo); } /* * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) */ void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); struct scm_timestamping_internal tss; int empty = 1, false_tstamp = 0; struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); int if_index; ktime_t hwtstamp; u32 tsflags; /* Race occurred between timestamp enabling and packet receiving. Fill in the current time for now. */ if (need_software_tstamp && skb->tstamp == 0) { __net_timestamp(skb); false_tstamp = 1; } if (need_software_tstamp) { if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { if (new_tstamp) { struct __kernel_sock_timeval tv; skb_get_new_timestamp(skb, &tv); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(tv), &tv); } else { struct __kernel_old_timeval tv; skb_get_timestamp(skb, &tv); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } } else { if (new_tstamp) { struct __kernel_timespec ts; skb_get_new_timestampns(skb, &ts); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, sizeof(ts), &ts); } else { struct __kernel_old_timespec ts; skb_get_timestampns(skb, &ts); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, sizeof(ts), &ts); } } } memset(&tss, 0, sizeof(tss)); tsflags = READ_ONCE(sk->sk_tsflags); if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) empty = 0; if (shhwtstamps && (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && !skb_is_swtx_tstamp(skb, false_tstamp)) { if_index = 0; if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) hwtstamp = get_timestamp(sk, skb, &if_index); else hwtstamp = shhwtstamps->hwtstamp; if (tsflags & SOF_TIMESTAMPING_BIND_PHC) hwtstamp = ptp_convert_timestamp(&hwtstamp, READ_ONCE(sk->sk_bind_phc)); if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { empty = 0; if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && !skb_is_err_queue(skb)) put_ts_pktinfo(msg, skb, if_index); } } if (!empty) { if (sock_flag(sk, SOCK_TSTAMP_NEW)) put_cmsg_scm_timestamping64(msg, &tss); else put_cmsg_scm_timestamping(msg, &tss); if (skb_is_err_queue(skb) && skb->len && SKB_EXT_ERR(skb)->opt_stats) put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, skb->len, skb->data); } } EXPORT_SYMBOL_GPL(__sock_recv_timestamp); #ifdef CONFIG_WIRELESS void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int ack; if (!sock_flag(sk, SOCK_WIFI_STATUS)) return; if (!skb->wifi_acked_valid) return; ack = skb->wifi_acked; put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); } EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); #endif static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); } static void sock_recv_mark(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { if (sock_flag(sk, SOCK_RCVMARK) && skb) { /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ __u32 mark = skb->mark; put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); } } void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { sock_recv_timestamp(msg, sk, skb); sock_recv_drops(msg, sk, skb); sock_recv_mark(msg, sk, skb); } EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, size_t, int)); INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, size_t, int)); static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) { trace_sock_recv_length(sk, ret, flags); } static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, int flags) { int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, inet6_recvmsg, inet_recvmsg, sock, msg, msg_data_left(msg), flags); if (trace_sock_recv_length_enabled()) call_trace_sock_recv_length(sock->sk, ret, flags); return ret; } /** * sock_recvmsg - receive a message from @sock * @sock: socket * @msg: message to receive * @flags: message flags * * Receives @msg from @sock, passing through LSM. Returns the total number * of bytes received, or an error. */ int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) { int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); return err ?: sock_recvmsg_nosec(sock, msg, flags); } EXPORT_SYMBOL(sock_recvmsg); /** * kernel_recvmsg - Receive a message from a socket (kernel space) * @sock: The socket to receive the message from * @msg: Received message * @vec: Input s/g array for message data * @num: Size of input s/g array * @size: Number of bytes to read * @flags: Message flags (MSG_DONTWAIT, etc...) * * On return the msg structure contains the scatter/gather array passed in the * vec argument. The array is modified so that it consists of the unfilled * portion of the original array. * * The returned value is the total number of bytes received, or an error. */ int kernel_recvmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size, int flags) { msg->msg_control_is_user = false; iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); return sock_recvmsg(sock, msg, flags); } EXPORT_SYMBOL(kernel_recvmsg); static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct socket *sock = file->private_data; const struct proto_ops *ops; ops = READ_ONCE(sock->ops); if (unlikely(!ops->splice_read)) return copy_splice_read(file, ppos, pipe, len, flags); return ops->splice_read(sock, ppos, pipe, len, flags); } static void sock_splice_eof(struct file *file) { struct socket *sock = file->private_data; const struct proto_ops *ops; ops = READ_ONCE(sock->ops); if (ops->splice_eof) ops->splice_eof(sock); } static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *to, .msg_iocb = iocb}; ssize_t res; if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) msg.msg_flags = MSG_DONTWAIT; if (iocb->ki_pos != 0) return -ESPIPE; if (!iov_iter_count(to)) /* Match SYS5 behaviour */ return 0; res = sock_recvmsg(sock, &msg, msg.msg_flags); *to = msg.msg_iter; return res; } static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *from, .msg_iocb = iocb}; ssize_t res; if (iocb->ki_pos != 0) return -ESPIPE; if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) msg.msg_flags = MSG_DONTWAIT; if (sock->type == SOCK_SEQPACKET) msg.msg_flags |= MSG_EOR; res = __sock_sendmsg(sock, &msg); *from = msg.msg_iter; return res; } /* * Atomic setting of ioctl hooks to avoid race * with module unload. */ static DEFINE_MUTEX(br_ioctl_mutex); static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, unsigned int cmd, struct ifreq *ifr, void __user *uarg); void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, unsigned int cmd, struct ifreq *ifr, void __user *uarg)) { mutex_lock(&br_ioctl_mutex); br_ioctl_hook = hook; mutex_unlock(&br_ioctl_mutex); } EXPORT_SYMBOL(brioctl_set); int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, struct ifreq *ifr, void __user *uarg) { int err = -ENOPKG; if (!br_ioctl_hook) request_module("bridge"); mutex_lock(&br_ioctl_mutex); if (br_ioctl_hook) err = br_ioctl_hook(net, br, cmd, ifr, uarg); mutex_unlock(&br_ioctl_mutex); return err; } static DEFINE_MUTEX(vlan_ioctl_mutex); static int (*vlan_ioctl_hook) (struct net *, void __user *arg); void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) { mutex_lock(&vlan_ioctl_mutex); vlan_ioctl_hook = hook; mutex_unlock(&vlan_ioctl_mutex); } EXPORT_SYMBOL(vlan_ioctl_set); static long sock_do_ioctl(struct net *net, struct socket *sock, unsigned int cmd, unsigned long arg) { const struct proto_ops *ops = READ_ONCE(sock->ops); struct ifreq ifr; bool need_copyout; int err; void __user *argp = (void __user *)arg; void __user *data; err = ops->ioctl(sock, cmd, arg); /* * If this ioctl is unknown try to hand it down * to the NIC driver. */ if (err != -ENOIOCTLCMD) return err; if (!is_socket_ioctl_cmd(cmd)) return -ENOTTY; if (get_user_ifreq(&ifr, &data, argp)) return -EFAULT; err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); if (!err && need_copyout) if (put_user_ifreq(&ifr, argp)) return -EFAULT; return err; } /* * With an ioctl, arg may well be a user mode pointer, but we don't know * what to do with it - that's up to the protocol still. */ static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) { const struct proto_ops *ops; struct socket *sock; struct sock *sk; void __user *argp = (void __user *)arg; int pid, err; struct net *net; sock = file->private_data; ops = READ_ONCE(sock->ops); sk = sock->sk; net = sock_net(sk); if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { struct ifreq ifr; void __user *data; bool need_copyout; if (get_user_ifreq(&ifr, &data, argp)) return -EFAULT; err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); if (!err && need_copyout) if (put_user_ifreq(&ifr, argp)) return -EFAULT; } else #ifdef CONFIG_WEXT_CORE if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { err = wext_handle_ioctl(net, cmd, argp); } else #endif switch (cmd) { case FIOSETOWN: case SIOCSPGRP: err = -EFAULT; if (get_user(pid, (int __user *)argp)) break; err = f_setown(sock->file, pid, 1); break; case FIOGETOWN: case SIOCGPGRP: err = put_user(f_getown(sock->file), (int __user *)argp); break; case SIOCGIFBR: case SIOCSIFBR: case SIOCBRADDBR: case SIOCBRDELBR: err = br_ioctl_call(net, NULL, cmd, NULL, argp); break; case SIOCGIFVLAN: case SIOCSIFVLAN: err = -ENOPKG; if (!vlan_ioctl_hook) request_module("8021q"); mutex_lock(&vlan_ioctl_mutex); if (vlan_ioctl_hook) err = vlan_ioctl_hook(net, argp); mutex_unlock(&vlan_ioctl_mutex); break; case SIOCGSKNS: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = open_related_ns(&net->ns, get_net_ns); break; case SIOCGSTAMP_OLD: case SIOCGSTAMPNS_OLD: if (!ops->gettstamp) { err = -ENOIOCTLCMD; break; } err = ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, !IS_ENABLED(CONFIG_64BIT)); break; case SIOCGSTAMP_NEW: case SIOCGSTAMPNS_NEW: if (!ops->gettstamp) { err = -ENOIOCTLCMD; break; } err = ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_NEW, false); break; case SIOCGIFCONF: err = dev_ifconf(net, argp); break; default: err = sock_do_ioctl(net, sock, cmd, arg); break; } return err; } /** * sock_create_lite - creates a socket * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * Creates a new socket and assigns it to @res, passing through LSM. * The new socket initialization is not complete, see kernel_accept(). * Returns 0 or an error. On failure @res is set to %NULL. * This function internally uses GFP_KERNEL. */ int sock_create_lite(int family, int type, int protocol, struct socket **res) { int err; struct socket *sock = NULL; err = security_socket_create(family, type, protocol, 1); if (err) goto out; sock = sock_alloc(); if (!sock) { err = -ENOMEM; goto out; } sock->type = type; err = security_socket_post_create(sock, family, type, protocol, 1); if (err) goto out_release; out: *res = sock; return err; out_release: sock_release(sock); sock = NULL; goto out; } EXPORT_SYMBOL(sock_create_lite); /* No kernel lock held - perfect */ static __poll_t sock_poll(struct file *file, poll_table *wait) { struct socket *sock = file->private_data; const struct proto_ops *ops = READ_ONCE(sock->ops); __poll_t events = poll_requested_events(wait), flag = 0; if (!ops->poll) return 0; if (sk_can_busy_loop(sock->sk)) { /* poll once if requested by the syscall */ if (events & POLL_BUSY_LOOP) sk_busy_loop(sock->sk, 1); /* if this socket can poll_ll, tell the system call */ flag = POLL_BUSY_LOOP; } return ops->poll(file, sock, wait) | flag; } static int sock_mmap(struct file *file, struct vm_area_struct *vma) { struct socket *sock = file->private_data; return READ_ONCE(sock->ops)->mmap(file, sock, vma); } static int sock_close(struct inode *inode, struct file *filp) { __sock_release(SOCKET_I(inode), inode); return 0; } /* * Update the socket async list * * Fasync_list locking strategy. * * 1. fasync_list is modified only under process context socket lock * i.e. under semaphore. * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) * or under socket lock */ static int sock_fasync(int fd, struct file *filp, int on) { struct socket *sock = filp->private_data; struct sock *sk = sock->sk; struct socket_wq *wq = &sock->wq; if (sk == NULL) return -EINVAL; lock_sock(sk); fasync_helper(fd, filp, on, &wq->fasync_list); if (!wq->fasync_list) sock_reset_flag(sk, SOCK_FASYNC); else sock_set_flag(sk, SOCK_FASYNC); release_sock(sk); return 0; } /* This function may be called only under rcu_lock */ int sock_wake_async(struct socket_wq *wq, int how, int band) { if (!wq || !wq->fasync_list) return -1; switch (how) { case SOCK_WAKE_WAITD: if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) break; goto call_kill; case SOCK_WAKE_SPACE: if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) break; fallthrough; case SOCK_WAKE_IO: call_kill: kill_fasync(&wq->fasync_list, SIGIO, band); break; case SOCK_WAKE_URG: kill_fasync(&wq->fasync_list, SIGURG, band); } return 0; } EXPORT_SYMBOL(sock_wake_async); /** * __sock_create - creates a socket * @net: net namespace * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * @kern: boolean for kernel space sockets * * Creates a new socket and assigns it to @res, passing through LSM. * Returns 0 or an error. On failure @res is set to %NULL. @kern must * be set to true if the socket resides in kernel space. * This function internally uses GFP_KERNEL. */ int __sock_create(struct net *net, int family, int type, int protocol, struct socket **res, int kern) { int err; struct socket *sock; const struct net_proto_family *pf; /* * Check protocol is in range */ if (family < 0 || family >= NPROTO) return -EAFNOSUPPORT; if (type < 0 || type >= SOCK_MAX) return -EINVAL; /* Compatibility. This uglymoron is moved from INET layer to here to avoid deadlock in module load. */ if (family == PF_INET && type == SOCK_PACKET) { pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); family = PF_PACKET; } err = security_socket_create(family, type, protocol, kern); if (err) return err; /* * Allocate the socket and allow the family to set things up. if * the protocol is 0, the family is instructed to select an appropriate * default. */ sock = sock_alloc(); if (!sock) { net_warn_ratelimited("socket: no more sockets\n"); return -ENFILE; /* Not exactly a match, but its the closest posix thing */ } sock->type = type; #ifdef CONFIG_MODULES /* Attempt to load a protocol module if the find failed. * * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user * requested real, full-featured networking support upon configuration. * Otherwise module support will break! */ if (rcu_access_pointer(net_families[family]) == NULL) request_module("net-pf-%d", family); #endif rcu_read_lock(); pf = rcu_dereference(net_families[family]); err = -EAFNOSUPPORT; if (!pf) goto out_release; /* * We will call the ->create function, that possibly is in a loadable * module, so we have to bump that loadable module refcnt first. */ if (!try_module_get(pf->owner)) goto out_release; /* Now protected by module ref count */ rcu_read_unlock(); err = pf->create(net, sock, protocol, kern); if (err < 0) goto out_module_put; /* * Now to bump the refcnt of the [loadable] module that owns this * socket at sock_release time we decrement its refcnt. */ if (!try_module_get(sock->ops->owner)) goto out_module_busy; /* * Now that we're done with the ->create function, the [loadable] * module can have its refcnt decremented */ module_put(pf->owner); err = security_socket_post_create(sock, family, type, protocol, kern); if (err) goto out_sock_release; *res = sock; return 0; out_module_busy: err = -EAFNOSUPPORT; out_module_put: sock->ops = NULL; module_put(pf->owner); out_sock_release: sock_release(sock); return err; out_release: rcu_read_unlock(); goto out_sock_release; } EXPORT_SYMBOL(__sock_create); /** * sock_create - creates a socket * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * A wrapper around __sock_create(). * Returns 0 or an error. This function internally uses GFP_KERNEL. */ int sock_create(int family, int type, int protocol, struct socket **res) { return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); } EXPORT_SYMBOL(sock_create); /** * sock_create_kern - creates a socket (kernel space) * @net: net namespace * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * A wrapper around __sock_create(). * Returns 0 or an error. This function internally uses GFP_KERNEL. */ int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) { return __sock_create(net, family, type, protocol, res, 1); } EXPORT_SYMBOL(sock_create_kern); static struct socket *__sys_socket_create(int family, int type, int protocol) { struct socket *sock; int retval; /* Check the SOCK_* constants for consistency. */ BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return ERR_PTR(-EINVAL); type &= SOCK_TYPE_MASK; retval = sock_create(family, type, protocol, &sock); if (retval < 0) return ERR_PTR(retval); return sock; } struct file *__sys_socket_file(int family, int type, int protocol) { struct socket *sock; int flags; sock = __sys_socket_create(family, type, protocol); if (IS_ERR(sock)) return ERR_CAST(sock); flags = type & ~SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; return sock_alloc_file(sock, flags, NULL); } /* A hook for bpf progs to attach to and update socket protocol. * * A static noinline declaration here could cause the compiler to * optimize away the function. A global noinline declaration will * keep the definition, but may optimize away the callsite. * Therefore, __weak is needed to ensure that the call is still * emitted, by telling the compiler that we don't know what the * function might eventually be. */ __bpf_hook_start(); __weak noinline int update_socket_protocol(int family, int type, int protocol) { return protocol; } __bpf_hook_end(); int __sys_socket(int family, int type, int protocol) { struct socket *sock; int flags; sock = __sys_socket_create(family, type, update_socket_protocol(family, type, protocol)); if (IS_ERR(sock)) return PTR_ERR(sock); flags = type & ~SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); } SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) { return __sys_socket(family, type, protocol); } /* * Create a pair of connected sockets. */ int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) { struct socket *sock1, *sock2; int fd1, fd2, err; struct file *newfile1, *newfile2; int flags; flags = type & ~SOCK_TYPE_MASK; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; type &= SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; /* * reserve descriptors and make sure we won't fail * to return them to userland. */ fd1 = get_unused_fd_flags(flags); if (unlikely(fd1 < 0)) return fd1; fd2 = get_unused_fd_flags(flags); if (unlikely(fd2 < 0)) { put_unused_fd(fd1); return fd2; } err = put_user(fd1, &usockvec[0]); if (err) goto out; err = put_user(fd2, &usockvec[1]); if (err) goto out; /* * Obtain the first socket and check if the underlying protocol * supports the socketpair call. */ err = sock_create(family, type, protocol, &sock1); if (unlikely(err < 0)) goto out; err = sock_create(family, type, protocol, &sock2); if (unlikely(err < 0)) { sock_release(sock1); goto out; } err = security_socket_socketpair(sock1, sock2); if (unlikely(err)) { sock_release(sock2); sock_release(sock1); goto out; } err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); if (unlikely(err < 0)) { sock_release(sock2); sock_release(sock1); goto out; } newfile1 = sock_alloc_file(sock1, flags, NULL); if (IS_ERR(newfile1)) { err = PTR_ERR(newfile1); sock_release(sock2); goto out; } newfile2 = sock_alloc_file(sock2, flags, NULL); if (IS_ERR(newfile2)) { err = PTR_ERR(newfile2); fput(newfile1); goto out; } audit_fd_pair(fd1, fd2); fd_install(fd1, newfile1); fd_install(fd2, newfile2); return 0; out: put_unused_fd(fd2); put_unused_fd(fd1); return err; } SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, int __user *, usockvec) { return __sys_socketpair(family, type, protocol, usockvec); } int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, int addrlen) { int err; err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); if (!err) err = READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)address, addrlen); return err; } /* * Bind a name to a socket. Nothing much to do here since it's * the protocol's responsibility to handle the local address. * * We move the socket address to kernel space before we call * the protocol layer (having also checked the address is ok). */ int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock) { err = move_addr_to_kernel(umyaddr, addrlen, &address); if (!err) err = __sys_bind_socket(sock, &address, addrlen); fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) { return __sys_bind(fd, umyaddr, addrlen); } /* * Perform a listen. Basically, we allow the protocol to do anything * necessary for a listen, and if that works, we mark the socket as * ready for listening. */ int __sys_listen_socket(struct socket *sock, int backlog) { int somaxconn, err; somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); if ((unsigned int)backlog > somaxconn) backlog = somaxconn; err = security_socket_listen(sock, backlog); if (!err) err = READ_ONCE(sock->ops)->listen(sock, backlog); return err; } int __sys_listen(int fd, int backlog) { struct socket *sock; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock) { err = __sys_listen_socket(sock, backlog); fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE2(listen, int, fd, int, backlog) { return __sys_listen(fd, backlog); } struct file *do_accept(struct file *file, struct proto_accept_arg *arg, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { struct socket *sock, *newsock; struct file *newfile; int err, len; struct sockaddr_storage address; const struct proto_ops *ops; sock = sock_from_file(file); if (!sock) return ERR_PTR(-ENOTSOCK); newsock = sock_alloc(); if (!newsock) return ERR_PTR(-ENFILE); ops = READ_ONCE(sock->ops); newsock->type = sock->type; newsock->ops = ops; /* * We don't need try_module_get here, as the listening socket (sock) * has the protocol module (sock->ops->owner) held. */ __module_get(ops->owner); newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); if (IS_ERR(newfile)) return newfile; err = security_socket_accept(sock, newsock); if (err) goto out_fd; arg->flags |= sock->file->f_flags; err = ops->accept(sock, newsock, arg); if (err < 0) goto out_fd; if (upeer_sockaddr) { len = ops->getname(newsock, (struct sockaddr *)&address, 2); if (len < 0) { err = -ECONNABORTED; goto out_fd; } err = move_addr_to_user(&address, len, upeer_sockaddr, upeer_addrlen); if (err < 0) goto out_fd; } /* File flags are not inherited via accept() unlike another OSes. */ return newfile; out_fd: fput(newfile); return ERR_PTR(err); } static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { struct proto_accept_arg arg = { }; struct file *newfile; int newfd; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; newfd = get_unused_fd_flags(flags); if (unlikely(newfd < 0)) return newfd; newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags); if (IS_ERR(newfile)) { put_unused_fd(newfd); return PTR_ERR(newfile); } fd_install(newfd, newfile); return newfd; } /* * For accept, we attempt to create a new socket, set up the link * with the client, wake up the client, then return the new * connected fd. We collect the address of the connector in kernel * space and move it to user at the very end. This is unclean because * we open the socket then return an error. * * 1003.1g adds the ability to recvmsg() to query connection pending * status to recvmsg. We need to add that support in a way thats * clean when we restructure accept also. */ int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { int ret = -EBADF; struct fd f; f = fdget(fd); if (f.file) { ret = __sys_accept4_file(f.file, upeer_sockaddr, upeer_addrlen, flags); fdput(f); } return ret; } SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen, int, flags) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); } SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); } /* * Attempt to connect to a socket with the server address. The address * is in user space so we verify it is OK and move it to kernel space. * * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to * break bindings * * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and * other SEQPACKET protocols that take time to connect() as it doesn't * include the -EINPROGRESS status for such sockets. */ int __sys_connect_file(struct file *file, struct sockaddr_storage *address, int addrlen, int file_flags) { struct socket *sock; int err; sock = sock_from_file(file); if (!sock) { err = -ENOTSOCK; goto out; } err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); if (err) goto out; err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, addrlen, sock->file->f_flags | file_flags); out: return err; } int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) { int ret = -EBADF; struct fd f; f = fdget(fd); if (f.file) { struct sockaddr_storage address; ret = move_addr_to_kernel(uservaddr, addrlen, &address); if (!ret) ret = __sys_connect_file(f.file, &address, addrlen, 0); fdput(f); } return ret; } SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, int, addrlen) { return __sys_connect(fd, uservaddr, addrlen); } /* * Get the local address ('name') of a socket object. Move the obtained * name to user space. */ int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = security_socket_getsockname(sock); if (err) goto out_put; err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); if (err < 0) goto out_put; /* "err" is actually length in this case */ err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); out_put: fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { return __sys_getsockname(fd, usockaddr, usockaddr_len); } /* * Get the remote address ('name') of a socket object. Move the obtained * name to user space. */ int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { const struct proto_ops *ops = READ_ONCE(sock->ops); err = security_socket_getpeername(sock); if (err) { fput_light(sock->file, fput_needed); return err; } err = ops->getname(sock, (struct sockaddr *)&address, 1); if (err >= 0) /* "err" is actually length in this case */ err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { return __sys_getpeername(fd, usockaddr, usockaddr_len); } /* * Send a datagram to a given address. We move the address into kernel * space and check the user space data area is readable before invoking * the protocol. */ int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, struct sockaddr __user *addr, int addr_len) { struct socket *sock; struct sockaddr_storage address; int err; struct msghdr msg; int fput_needed; err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); if (unlikely(err)) return err; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; msg.msg_name = NULL; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_namelen = 0; msg.msg_ubuf = NULL; if (addr) { err = move_addr_to_kernel(addr, addr_len, &address); if (err < 0) goto out_put; msg.msg_name = (struct sockaddr *)&address; msg.msg_namelen = addr_len; } flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; msg.msg_flags = flags; err = __sock_sendmsg(sock, &msg); out_put: fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, unsigned int, flags, struct sockaddr __user *, addr, int, addr_len) { return __sys_sendto(fd, buff, len, flags, addr, addr_len); } /* * Send a datagram down a socket. */ SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, unsigned int, flags) { return __sys_sendto(fd, buff, len, flags, NULL, 0); } /* * Receive a frame from the socket and optionally record the address of the * sender. We verify the buffers are writable and if needed move the * sender address from kernel to user space. */ int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, struct sockaddr __user *addr, int __user *addr_len) { struct sockaddr_storage address; struct msghdr msg = { /* Save some cycles and don't copy the address if not needed */ .msg_name = addr ? (struct sockaddr *)&address : NULL, }; struct socket *sock; int err, err2; int fput_needed; err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); if (unlikely(err)) return err; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &msg, flags); if (err >= 0 && addr != NULL) { err2 = move_addr_to_user(&address, msg.msg_namelen, addr, addr_len); if (err2 < 0) err = err2; } fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags, struct sockaddr __user *, addr, int __user *, addr_len) { return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); } /* * Receive a datagram from a socket. */ SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags) { return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); } static bool sock_use_custom_sol_socket(const struct socket *sock) { return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); } int do_sock_setsockopt(struct socket *sock, bool compat, int level, int optname, sockptr_t optval, int optlen) { const struct proto_ops *ops; char *kernel_optval = NULL; int err; if (optlen < 0) return -EINVAL; err = security_socket_setsockopt(sock, level, optname); if (err) goto out_put; if (!compat) err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, optval, &optlen, &kernel_optval); if (err < 0) goto out_put; if (err > 0) { err = 0; goto out_put; } if (kernel_optval) optval = KERNEL_SOCKPTR(kernel_optval); ops = READ_ONCE(sock->ops); if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) err = sock_setsockopt(sock, level, optname, optval, optlen); else if (unlikely(!ops->setsockopt)) err = -EOPNOTSUPP; else err = ops->setsockopt(sock, level, optname, optval, optlen); kfree(kernel_optval); out_put: return err; } EXPORT_SYMBOL(do_sock_setsockopt); /* Set a socket option. Because we don't know the option lengths we have * to pass the user mode parameter for the protocols to sort out. */ int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, int optlen) { sockptr_t optval = USER_SOCKPTR(user_optval); bool compat = in_compat_syscall(); int err, fput_needed; struct socket *sock; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen); fput_light(sock->file, fput_needed); return err; } SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, char __user *, optval, int, optlen) { return __sys_setsockopt(fd, level, optname, optval, optlen); } INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, int optname)); int do_sock_getsockopt(struct socket *sock, bool compat, int level, int optname, sockptr_t optval, sockptr_t optlen) { int max_optlen __maybe_unused; const struct proto_ops *ops; int err; err = security_socket_getsockopt(sock, level, optname); if (err) return err; if (!compat) max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); ops = READ_ONCE(sock->ops); if (level == SOL_SOCKET) { err = sk_getsockopt(sock->sk, level, optname, optval, optlen); } else if (unlikely(!ops->getsockopt)) { err = -EOPNOTSUPP; } else { if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, "Invalid argument type")) return -EOPNOTSUPP; err = ops->getsockopt(sock, level, optname, optval.user, optlen.user); } if (!compat) err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, optval, optlen, max_optlen, err); return err; } EXPORT_SYMBOL(do_sock_getsockopt); /* * Get a socket option. Because we don't know the option lengths we have * to pass a user mode parameter for the protocols to sort out. */ int __sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) { int err, fput_needed; struct socket *sock; bool compat; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; compat = in_compat_syscall(); err = do_sock_getsockopt(sock, compat, level, optname, USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); fput_light(sock->file, fput_needed); return err; } SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, char __user *, optval, int __user *, optlen) { return __sys_getsockopt(fd, level, optname, optval, optlen); } /* * Shutdown a socket. */ int __sys_shutdown_sock(struct socket *sock, int how) { int err; err = security_socket_shutdown(sock, how); if (!err) err = READ_ONCE(sock->ops)->shutdown(sock, how); return err; } int __sys_shutdown(int fd, int how) { int err, fput_needed; struct socket *sock; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { err = __sys_shutdown_sock(sock, how); fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE2(shutdown, int, fd, int, how) { return __sys_shutdown(fd, how); } /* A couple of helpful macros for getting the address of the 32/64 bit * fields which are the same type (int / unsigned) on our platforms. */ #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) struct used_address { struct sockaddr_storage name; unsigned int name_len; }; int __copy_msghdr(struct msghdr *kmsg, struct user_msghdr *msg, struct sockaddr __user **save_addr) { ssize_t err; kmsg->msg_control_is_user = true; kmsg->msg_get_inq = 0; kmsg->msg_control_user = msg->msg_control; kmsg->msg_controllen = msg->msg_controllen; kmsg->msg_flags = msg->msg_flags; kmsg->msg_namelen = msg->msg_namelen; if (!msg->msg_name) kmsg->msg_namelen = 0; if (kmsg->msg_namelen < 0) return -EINVAL; if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) kmsg->msg_namelen = sizeof(struct sockaddr_storage); if (save_addr) *save_addr = msg->msg_name; if (msg->msg_name && kmsg->msg_namelen) { if (!save_addr) { err = move_addr_to_kernel(msg->msg_name, kmsg->msg_namelen, kmsg->msg_name); if (err < 0) return err; } } else { kmsg->msg_name = NULL; kmsg->msg_namelen = 0; } if (msg->msg_iovlen > UIO_MAXIOV) return -EMSGSIZE; kmsg->msg_iocb = NULL; kmsg->msg_ubuf = NULL; return 0; } static int copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec **iov) { struct user_msghdr msg; ssize_t err; if (copy_from_user(&msg, umsg, sizeof(*umsg))) return -EFAULT; err = __copy_msghdr(kmsg, &msg, save_addr); if (err) return err; err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, msg.msg_iov, msg.msg_iovlen, UIO_FASTIOV, iov, &kmsg->msg_iter); return err < 0 ? err : 0; } static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags) { unsigned char ctl[sizeof(struct cmsghdr) + 20] __aligned(sizeof(__kernel_size_t)); /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; int ctl_len; ssize_t err; err = -ENOBUFS; if (msg_sys->msg_controllen > INT_MAX) goto out; flags |= (msg_sys->msg_flags & allowed_msghdr_flags); ctl_len = msg_sys->msg_controllen; if ((MSG_CMSG_COMPAT & flags) && ctl_len) { err = cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, sizeof(ctl)); if (err) goto out; ctl_buf = msg_sys->msg_control; ctl_len = msg_sys->msg_controllen; } else if (ctl_len) { BUILD_BUG_ON(sizeof(struct cmsghdr) != CMSG_ALIGN(sizeof(struct cmsghdr))); if (ctl_len > sizeof(ctl)) { ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out; } err = -EFAULT; if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) goto out_freectl; msg_sys->msg_control = ctl_buf; msg_sys->msg_control_is_user = false; } flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; msg_sys->msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys->msg_flags |= MSG_DONTWAIT; /* * If this is sendmmsg() and current destination address is same as * previously succeeded address, omit asking LSM's decision. * used_address->name_len is initialized to UINT_MAX so that the first * destination address never matches. */ if (used_address && msg_sys->msg_name && used_address->name_len == msg_sys->msg_namelen && !memcmp(&used_address->name, msg_sys->msg_name, used_address->name_len)) { err = sock_sendmsg_nosec(sock, msg_sys); goto out_freectl; } err = __sock_sendmsg(sock, msg_sys); /* * If this is sendmmsg() and sending to current destination address was * successful, remember it. */ if (used_address && err >= 0) { used_address->name_len = msg_sys->msg_namelen; if (msg_sys->msg_name) memcpy(&used_address->name, msg_sys->msg_name, used_address->name_len); } out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out: return err; } static int sendmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct iovec **iov) { int err; if (flags & MSG_CMSG_COMPAT) { struct compat_msghdr __user *msg_compat; msg_compat = (struct compat_msghdr __user *) umsg; err = get_compat_msghdr(msg, msg_compat, NULL, iov); } else { err = copy_msghdr_from_user(msg, umsg, NULL, iov); } if (err < 0) return err; return 0; } static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags) { struct sockaddr_storage address; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; ssize_t err; msg_sys->msg_name = &address; err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); if (err < 0) return err; err = ____sys_sendmsg(sock, msg_sys, flags, used_address, allowed_msghdr_flags); kfree(iov); return err; } /* * BSD sendmsg interface */ long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, unsigned int flags) { return ____sys_sendmsg(sock, msg, flags, NULL, 0); } long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat) { int fput_needed, err; struct msghdr msg_sys; struct socket *sock; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { return __sys_sendmsg(fd, msg, flags, true); } /* * Linux sendmmsg interface */ int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, bool forbid_cmsg_compat) { int fput_needed, err, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct used_address used_address; unsigned int oflags = flags; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; if (vlen > UIO_MAXIOV) vlen = UIO_MAXIOV; datagrams = 0; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; used_address.name_len = UINT_MAX; entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; err = 0; flags |= MSG_BATCH; while (datagrams < vlen) { if (datagrams == vlen - 1) flags = oflags; if (MSG_CMSG_COMPAT & flags) { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; if (msg_data_left(&msg_sys)) break; cond_resched(); } fput_light(sock->file, fput_needed); /* We only return an error if no datagrams were able to be sent */ if (datagrams != 0) return datagrams; return err; } SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags) { return __sys_sendmmsg(fd, mmsg, vlen, flags, true); } static int recvmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct sockaddr __user **uaddr, struct iovec **iov) { ssize_t err; if (MSG_CMSG_COMPAT & flags) { struct compat_msghdr __user *msg_compat; msg_compat = (struct compat_msghdr __user *) umsg; err = get_compat_msghdr(msg, msg_compat, uaddr, iov); } else { err = copy_msghdr_from_user(msg, umsg, uaddr, iov); } if (err < 0) return err; return 0; } static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, struct user_msghdr __user *msg, struct sockaddr __user *uaddr, unsigned int flags, int nosec) { struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *) msg; int __user *uaddr_len = COMPAT_NAMELEN(msg); struct sockaddr_storage addr; unsigned long cmsg_ptr; int len; ssize_t err; msg_sys->msg_name = &addr; cmsg_ptr = (unsigned long)msg_sys->msg_control; msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); /* We assume all kernel code knows the size of sockaddr_storage */ msg_sys->msg_namelen = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; if (unlikely(nosec)) err = sock_recvmsg_nosec(sock, msg_sys, flags); else err = sock_recvmsg(sock, msg_sys, flags); if (err < 0) goto out; len = err; if (uaddr != NULL) { err = move_addr_to_user(&addr, msg_sys->msg_namelen, uaddr, uaddr_len); if (err < 0) goto out; } err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), COMPAT_FLAGS(msg)); if (err) goto out; if (MSG_CMSG_COMPAT & flags) err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg_compat->msg_controllen); else err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg->msg_controllen); if (err) goto out; err = len; out: return err; } static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, int nosec) { struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; /* user mode address pointers */ struct sockaddr __user *uaddr; ssize_t err; err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); if (err < 0) return err; err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); kfree(iov); return err; } /* * BSD recvmsg interface */ long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, struct user_msghdr __user *umsg, struct sockaddr __user *uaddr, unsigned int flags) { return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); } long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat) { int fput_needed, err; struct msghdr msg_sys; struct socket *sock; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { return __sys_recvmsg(fd, msg, flags, true); } /* * Linux recvmmsg interface */ static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct timespec64 *timeout) { int fput_needed, err, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct timespec64 end_time; struct timespec64 timeout64; if (timeout && poll_select_set_timeout(&end_time, timeout->tv_sec, timeout->tv_nsec)) return -EINVAL; datagrams = 0; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; if (likely(!(flags & MSG_ERRQUEUE))) { err = sock_error(sock->sk); if (err) { datagrams = err; goto out_put; } } entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; while (datagrams < vlen) { /* * No need to ask LSM for more than the first datagram. */ if (MSG_CMSG_COMPAT & flags) { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ if (flags & MSG_WAITFORONE) flags |= MSG_DONTWAIT; if (timeout) { ktime_get_ts64(&timeout64); *timeout = timespec64_sub(end_time, timeout64); if (timeout->tv_sec < 0) { timeout->tv_sec = timeout->tv_nsec = 0; break; } /* Timeout, return less than vlen datagrams */ if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) break; } /* Out of band data, return right away */ if (msg_sys.msg_flags & MSG_OOB) break; cond_resched(); } if (err == 0) goto out_put; if (datagrams == 0) { datagrams = err; goto out_put; } /* * We may return less entries than requested (vlen) if the * sock is non block and there aren't enough datagrams... */ if (err != -EAGAIN) { /* * ... or if recvmsg returns an error after we * received some datagrams, where we record the * error to return on the next call or if the * app asks about it using getsockopt(SO_ERROR). */ WRITE_ONCE(sock->sk->sk_err, -err); } out_put: fput_light(sock->file, fput_needed); return datagrams; } int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct __kernel_timespec __user *timeout, struct old_timespec32 __user *timeout32) { int datagrams; struct timespec64 timeout_sys; if (timeout && get_timespec64(&timeout_sys, timeout)) return -EFAULT; if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) return -EFAULT; if (!timeout && !timeout32) return do_recvmmsg(fd, mmsg, vlen, flags, NULL); datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); if (datagrams <= 0) return datagrams; if (timeout && put_timespec64(&timeout_sys, timeout)) datagrams = -EFAULT; if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) datagrams = -EFAULT; return datagrams; } SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct __kernel_timespec __user *, timeout) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct old_timespec32 __user *, timeout) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); } #endif #ifdef __ARCH_WANT_SYS_SOCKETCALL /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(unsigned long)) static const unsigned char nargs[21] = { AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), AL(4), AL(5), AL(4) }; #undef AL /* * System call vectors. * * Argument checking cleaned up. Saved 20% in size. * This function doesn't need to set the kernel lock because * it is set by the callees. */ SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) { unsigned long a[AUDITSC_ARGS]; unsigned long a0, a1; int err; unsigned int len; if (call < 1 || call > SYS_SENDMMSG) return -EINVAL; call = array_index_nospec(call, SYS_SENDMMSG + 1); len = nargs[call]; if (len > sizeof(a)) return -EINVAL; /* copy_from_user should be SMP safe. */ if (copy_from_user(a, args, len)) return -EFAULT; err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); if (err) return err; a0 = a[0]; a1 = a[1]; switch (call) { case SYS_SOCKET: err = __sys_socket(a0, a1, a[2]); break; case SYS_BIND: err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_CONNECT: err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_LISTEN: err = __sys_listen(a0, a1); break; case SYS_ACCEPT: err = __sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], 0); break; case SYS_GETSOCKNAME: err = __sys_getsockname(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_GETPEERNAME: err = __sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_SOCKETPAIR: err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); break; case SYS_SEND: err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], NULL, 0); break; case SYS_SENDTO: err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], a[5]); break; case SYS_RECV: err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], NULL, NULL); break; case SYS_RECVFROM: err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], (int __user *)a[5]); break; case SYS_SHUTDOWN: err = __sys_shutdown(a0, a1); break; case SYS_SETSOCKOPT: err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); break; case SYS_GETSOCKOPT: err = __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); break; case SYS_SENDMSG: err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2], true); break; case SYS_SENDMMSG: err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], true); break; case SYS_RECVMSG: err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2], true); break; case SYS_RECVMMSG: if (IS_ENABLED(CONFIG_64BIT)) err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], (struct __kernel_timespec __user *)a[4], NULL); else err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], NULL, (struct old_timespec32 __user *)a[4]); break; case SYS_ACCEPT4: err = __sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], a[3]); break; default: err = -EINVAL; break; } return err; } #endif /* __ARCH_WANT_SYS_SOCKETCALL */ /** * sock_register - add a socket protocol handler * @ops: description of protocol * * This function is called by a protocol handler that wants to * advertise its address family, and have it linked into the * socket interface. The value ops->family corresponds to the * socket system call protocol family. */ int sock_register(const struct net_proto_family *ops) { int err; if (ops->family >= NPROTO) { pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); return -ENOBUFS; } spin_lock(&net_family_lock); if (rcu_dereference_protected(net_families[ops->family], lockdep_is_held(&net_family_lock))) err = -EEXIST; else { rcu_assign_pointer(net_families[ops->family], ops); err = 0; } spin_unlock(&net_family_lock); pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); return err; } EXPORT_SYMBOL(sock_register); /** * sock_unregister - remove a protocol handler * @family: protocol family to remove * * This function is called by a protocol handler that wants to * remove its address family, and have it unlinked from the * new socket creation. * * If protocol handler is a module, then it can use module reference * counts to protect against new references. If protocol handler is not * a module then it needs to provide its own protection in * the ops->create routine. */ void sock_unregister(int family) { BUG_ON(family < 0 || family >= NPROTO); spin_lock(&net_family_lock); RCU_INIT_POINTER(net_families[family], NULL); spin_unlock(&net_family_lock); synchronize_rcu(); pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); } EXPORT_SYMBOL(sock_unregister); bool sock_is_registered(int family) { return family < NPROTO && rcu_access_pointer(net_families[family]); } static int __init sock_init(void) { int err; /* * Initialize the network sysctl infrastructure. */ err = net_sysctl_init(); if (err) goto out; /* * Initialize skbuff SLAB cache */ skb_init(); /* * Initialize the protocols module. */ init_inodecache(); err = register_filesystem(&sock_fs_type); if (err) goto out; sock_mnt = kern_mount(&sock_fs_type); if (IS_ERR(sock_mnt)) { err = PTR_ERR(sock_mnt); goto out_mount; } /* The real protocol initialization is performed in later initcalls. */ #ifdef CONFIG_NETFILTER err = netfilter_init(); if (err) goto out; #endif ptp_classifier_init(); out: return err; out_mount: unregister_filesystem(&sock_fs_type); goto out; } core_initcall(sock_init); /* early initcall */ #ifdef CONFIG_PROC_FS void socket_seq_show(struct seq_file *seq) { seq_printf(seq, "sockets: used %d\n", sock_inuse_get(seq->private)); } #endif /* CONFIG_PROC_FS */ /* Handle the fact that while struct ifreq has the same *layout* on * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, * which are handled elsewhere, it still has different *size* due to * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, * resulting in struct ifreq being 32 and 40 bytes respectively). * As a result, if the struct happens to be at the end of a page and * the next page isn't readable/writable, we get a fault. To prevent * that, copy back and forth to the full size. */ int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) { if (in_compat_syscall()) { struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; memset(ifr, 0, sizeof(*ifr)); if (copy_from_user(ifr32, arg, sizeof(*ifr32))) return -EFAULT; if (ifrdata) *ifrdata = compat_ptr(ifr32->ifr_data); return 0; } if (copy_from_user(ifr, arg, sizeof(*ifr))) return -EFAULT; if (ifrdata) *ifrdata = ifr->ifr_data; return 0; } EXPORT_SYMBOL(get_user_ifreq); int put_user_ifreq(struct ifreq *ifr, void __user *arg) { size_t size = sizeof(*ifr); if (in_compat_syscall()) size = sizeof(struct compat_ifreq); if (copy_to_user(arg, ifr, size)) return -EFAULT; return 0; } EXPORT_SYMBOL(put_user_ifreq); #ifdef CONFIG_COMPAT static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) { compat_uptr_t uptr32; struct ifreq ifr; void __user *saved; int err; if (get_user_ifreq(&ifr, NULL, uifr32)) return -EFAULT; if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) return -EFAULT; saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); if (!err) { ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; if (put_user_ifreq(&ifr, uifr32)) err = -EFAULT; } return err; } /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, struct compat_ifreq __user *u_ifreq32) { struct ifreq ifreq; void __user *data; if (!is_socket_ioctl_cmd(cmd)) return -ENOTTY; if (get_user_ifreq(&ifreq, &data, u_ifreq32)) return -EFAULT; ifreq.ifr_data = data; return dev_ioctl(net, cmd, &ifreq, data, NULL); } static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); struct sock *sk = sock->sk; struct net *net = sock_net(sk); const struct proto_ops *ops; if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) return sock_ioctl(file, cmd, (unsigned long)argp); switch (cmd) { case SIOCWANDEV: return compat_siocwandev(net, argp); case SIOCGSTAMP_OLD: case SIOCGSTAMPNS_OLD: ops = READ_ONCE(sock->ops); if (!ops->gettstamp) return -ENOIOCTLCMD; return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, !COMPAT_USE_64BIT_TIME); case SIOCETHTOOL: case SIOCBONDSLAVEINFOQUERY: case SIOCBONDINFOQUERY: case SIOCSHWTSTAMP: case SIOCGHWTSTAMP: return compat_ifr_data_ioctl(net, cmd, argp); case FIOSETOWN: case SIOCSPGRP: case FIOGETOWN: case SIOCGPGRP: case SIOCBRADDBR: case SIOCBRDELBR: case SIOCGIFVLAN: case SIOCSIFVLAN: case SIOCGSKNS: case SIOCGSTAMP_NEW: case SIOCGSTAMPNS_NEW: case SIOCGIFCONF: case SIOCSIFBR: case SIOCGIFBR: return sock_ioctl(file, cmd, arg); case SIOCGIFFLAGS: case SIOCSIFFLAGS: case SIOCGIFMAP: case SIOCSIFMAP: case SIOCGIFMETRIC: case SIOCSIFMETRIC: case SIOCGIFMTU: case SIOCSIFMTU: case SIOCGIFMEM: case SIOCSIFMEM: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCGIFINDEX: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCSIFHWBROADCAST: case SIOCDIFADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCSIFPFLAGS: case SIOCGIFPFLAGS: case SIOCGIFTXQLEN: case SIOCSIFTXQLEN: case SIOCBRADDIF: case SIOCBRDELIF: case SIOCGIFNAME: case SIOCSIFNAME: case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: case SIOCBONDENSLAVE: case SIOCBONDRELEASE: case SIOCBONDSETHWADDR: case SIOCBONDCHANGEACTIVE: case SIOCSARP: case SIOCGARP: case SIOCDARP: case SIOCOUTQ: case SIOCOUTQNSD: case SIOCATMARK: return sock_do_ioctl(net, sock, cmd, arg); } return -ENOIOCTLCMD; } static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct socket *sock = file->private_data; const struct proto_ops *ops = READ_ONCE(sock->ops); int ret = -ENOIOCTLCMD; struct sock *sk; struct net *net; sk = sock->sk; net = sock_net(sk); if (ops->compat_ioctl) ret = ops->compat_ioctl(sock, cmd, arg); if (ret == -ENOIOCTLCMD && (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) ret = compat_wext_handle_ioctl(net, cmd, arg); if (ret == -ENOIOCTLCMD) ret = compat_sock_ioctl_trans(file, sock, cmd, arg); return ret; } #endif /** * kernel_bind - bind an address to a socket (kernel space) * @sock: socket * @addr: address * @addrlen: length of address * * Returns 0 or an error. */ int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) { struct sockaddr_storage address; memcpy(&address, addr, addrlen); return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, addrlen); } EXPORT_SYMBOL(kernel_bind); /** * kernel_listen - move socket to listening state (kernel space) * @sock: socket * @backlog: pending connections queue size * * Returns 0 or an error. */ int kernel_listen(struct socket *sock, int backlog) { return READ_ONCE(sock->ops)->listen(sock, backlog); } EXPORT_SYMBOL(kernel_listen); /** * kernel_accept - accept a connection (kernel space) * @sock: listening socket * @newsock: new connected socket * @flags: flags * * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. * If it fails, @newsock is guaranteed to be %NULL. * Returns 0 or an error. */ int kernel_accept(struct socket *sock, struct socket **newsock, int flags) { struct sock *sk = sock->sk; const struct proto_ops *ops = READ_ONCE(sock->ops); struct proto_accept_arg arg = { .flags = flags, .kern = true, }; int err; err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, newsock); if (err < 0) goto done; err = ops->accept(sock, *newsock, &arg); if (err < 0) { sock_release(*newsock); *newsock = NULL; goto done; } (*newsock)->ops = ops; __module_get(ops->owner); done: return err; } EXPORT_SYMBOL(kernel_accept); /** * kernel_connect - connect a socket (kernel space) * @sock: socket * @addr: address * @addrlen: address length * @flags: flags (O_NONBLOCK, ...) * * For datagram sockets, @addr is the address to which datagrams are sent * by default, and the only address from which datagrams are received. * For stream sockets, attempts to connect to @addr. * Returns 0 or an error code. */ int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, int flags) { struct sockaddr_storage address; memcpy(&address, addr, addrlen); return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, addrlen, flags); } EXPORT_SYMBOL(kernel_connect); /** * kernel_getsockname - get the address which the socket is bound (kernel space) * @sock: socket * @addr: address holder * * Fills the @addr pointer with the address which the socket is bound. * Returns the length of the address in bytes or an error code. */ int kernel_getsockname(struct socket *sock, struct sockaddr *addr) { return READ_ONCE(sock->ops)->getname(sock, addr, 0); } EXPORT_SYMBOL(kernel_getsockname); /** * kernel_getpeername - get the address which the socket is connected (kernel space) * @sock: socket * @addr: address holder * * Fills the @addr pointer with the address which the socket is connected. * Returns the length of the address in bytes or an error code. */ int kernel_getpeername(struct socket *sock, struct sockaddr *addr) { return READ_ONCE(sock->ops)->getname(sock, addr, 1); } EXPORT_SYMBOL(kernel_getpeername); /** * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) * @sock: socket * @how: connection part * * Returns 0 or an error. */ int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) { return READ_ONCE(sock->ops)->shutdown(sock, how); } EXPORT_SYMBOL(kernel_sock_shutdown); /** * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket * @sk: socket * * This routine returns the IP overhead imposed by a socket i.e. * the length of the underlying IP header, depending on whether * this is an IPv4 or IPv6 socket and the length from IP options turned * on at the socket. Assumes that the caller has a lock on the socket. */ u32 kernel_sock_ip_overhead(struct sock *sk) { struct inet_sock *inet; struct ip_options_rcu *opt; u32 overhead = 0; #if IS_ENABLED(CONFIG_IPV6) struct ipv6_pinfo *np; struct ipv6_txoptions *optv6 = NULL; #endif /* IS_ENABLED(CONFIG_IPV6) */ if (!sk) return overhead; switch (sk->sk_family) { case AF_INET: inet = inet_sk(sk); overhead += sizeof(struct iphdr); opt = rcu_dereference_protected(inet->inet_opt, sock_owned_by_user(sk)); if (opt) overhead += opt->opt.optlen; return overhead; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: np = inet6_sk(sk); overhead += sizeof(struct ipv6hdr); if (np) optv6 = rcu_dereference_protected(np->opt, sock_owned_by_user(sk)); if (optv6) overhead += (optv6->opt_flen + optv6->opt_nflen); return overhead; #endif /* IS_ENABLED(CONFIG_IPV6) */ default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ return overhead; } } EXPORT_SYMBOL(kernel_sock_ip_overhead); |
8 8 8 1 11 8 2 9 4 6 9 6 6 5 1 6 4 4 4 4 4 1 1 40 39 1 1 1 3 103 100 2 2 2 1 1 7 2 5 15 15 15 22 7 15 40 40 40 340 303 40 40 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/fcntl.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/syscalls.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/sched/task.h> #include <linux/fs.h> #include <linux/filelock.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/capability.h> #include <linux/dnotify.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/pipe_fs_i.h> #include <linux/security.h> #include <linux/ptrace.h> #include <linux/signal.h> #include <linux/rcupdate.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <linux/memfd.h> #include <linux/compat.h> #include <linux/mount.h> #include <linux/rw_hint.h> #include <linux/poll.h> #include <asm/siginfo.h> #include <linux/uaccess.h> #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) static int setfl(int fd, struct file * filp, unsigned int arg) { struct inode * inode = file_inode(filp); int error = 0; /* * O_APPEND cannot be cleared if the file is marked as append-only * and the file is open for write. */ if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) return -EPERM; /* O_NOATIME can only be set by the owner or superuser */ if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) if (!inode_owner_or_capable(file_mnt_idmap(filp), inode)) return -EPERM; /* required for strict SunOS emulation */ if (O_NONBLOCK != O_NDELAY) if (arg & O_NDELAY) arg |= O_NONBLOCK; /* Pipe packetized mode is controlled by O_DIRECT flag */ if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT) && !(filp->f_mode & FMODE_CAN_ODIRECT)) return -EINVAL; if (filp->f_op->check_flags) error = filp->f_op->check_flags(arg); if (error) return error; /* * ->fasync() is responsible for setting the FASYNC bit. */ if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); if (error < 0) goto out; if (error > 0) error = 0; } spin_lock(&filp->f_lock); filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); filp->f_iocb_flags = iocb_flags(filp); spin_unlock(&filp->f_lock); out: return error; } static void f_modown(struct file *filp, struct pid *pid, enum pid_type type, int force) { write_lock_irq(&filp->f_owner.lock); if (force || !filp->f_owner.pid) { put_pid(filp->f_owner.pid); filp->f_owner.pid = get_pid(pid); filp->f_owner.pid_type = type; if (pid) { const struct cred *cred = current_cred(); filp->f_owner.uid = cred->uid; filp->f_owner.euid = cred->euid; } } write_unlock_irq(&filp->f_owner.lock); } void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, int force) { security_file_set_fowner(filp); f_modown(filp, pid, type, force); } EXPORT_SYMBOL(__f_setown); int f_setown(struct file *filp, int who, int force) { enum pid_type type; struct pid *pid = NULL; int ret = 0; type = PIDTYPE_TGID; if (who < 0) { /* avoid overflow below */ if (who == INT_MIN) return -EINVAL; type = PIDTYPE_PGID; who = -who; } rcu_read_lock(); if (who) { pid = find_vpid(who); if (!pid) ret = -ESRCH; } if (!ret) __f_setown(filp, pid, type, force); rcu_read_unlock(); return ret; } EXPORT_SYMBOL(f_setown); void f_delown(struct file *filp) { f_modown(filp, NULL, PIDTYPE_TGID, 1); } pid_t f_getown(struct file *filp) { pid_t pid = 0; read_lock_irq(&filp->f_owner.lock); rcu_read_lock(); if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) { pid = pid_vnr(filp->f_owner.pid); if (filp->f_owner.pid_type == PIDTYPE_PGID) pid = -pid; } rcu_read_unlock(); read_unlock_irq(&filp->f_owner.lock); return pid; } static int f_setown_ex(struct file *filp, unsigned long arg) { struct f_owner_ex __user *owner_p = (void __user *)arg; struct f_owner_ex owner; struct pid *pid; int type; int ret; ret = copy_from_user(&owner, owner_p, sizeof(owner)); if (ret) return -EFAULT; switch (owner.type) { case F_OWNER_TID: type = PIDTYPE_PID; break; case F_OWNER_PID: type = PIDTYPE_TGID; break; case F_OWNER_PGRP: type = PIDTYPE_PGID; break; default: return -EINVAL; } rcu_read_lock(); pid = find_vpid(owner.pid); if (owner.pid && !pid) ret = -ESRCH; else __f_setown(filp, pid, type, 1); rcu_read_unlock(); return ret; } static int f_getown_ex(struct file *filp, unsigned long arg) { struct f_owner_ex __user *owner_p = (void __user *)arg; struct f_owner_ex owner = {}; int ret = 0; read_lock_irq(&filp->f_owner.lock); rcu_read_lock(); if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) owner.pid = pid_vnr(filp->f_owner.pid); rcu_read_unlock(); switch (filp->f_owner.pid_type) { case PIDTYPE_PID: owner.type = F_OWNER_TID; break; case PIDTYPE_TGID: owner.type = F_OWNER_PID; break; case PIDTYPE_PGID: owner.type = F_OWNER_PGRP; break; default: WARN_ON(1); ret = -EINVAL; break; } read_unlock_irq(&filp->f_owner.lock); if (!ret) { ret = copy_to_user(owner_p, &owner, sizeof(owner)); if (ret) ret = -EFAULT; } return ret; } #ifdef CONFIG_CHECKPOINT_RESTORE static int f_getowner_uids(struct file *filp, unsigned long arg) { struct user_namespace *user_ns = current_user_ns(); uid_t __user *dst = (void __user *)arg; uid_t src[2]; int err; read_lock_irq(&filp->f_owner.lock); src[0] = from_kuid(user_ns, filp->f_owner.uid); src[1] = from_kuid(user_ns, filp->f_owner.euid); read_unlock_irq(&filp->f_owner.lock); err = put_user(src[0], &dst[0]); err |= put_user(src[1], &dst[1]); return err; } #else static int f_getowner_uids(struct file *filp, unsigned long arg) { return -EINVAL; } #endif static bool rw_hint_valid(u64 hint) { BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET); BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE); BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT); BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM); BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG); BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME); switch (hint) { case RWH_WRITE_LIFE_NOT_SET: case RWH_WRITE_LIFE_NONE: case RWH_WRITE_LIFE_SHORT: case RWH_WRITE_LIFE_MEDIUM: case RWH_WRITE_LIFE_LONG: case RWH_WRITE_LIFE_EXTREME: return true; default: return false; } } static long fcntl_get_rw_hint(struct file *file, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(file); u64 __user *argp = (u64 __user *)arg; u64 hint = READ_ONCE(inode->i_write_hint); if (copy_to_user(argp, &hint, sizeof(*argp))) return -EFAULT; return 0; } static long fcntl_set_rw_hint(struct file *file, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(file); u64 __user *argp = (u64 __user *)arg; u64 hint; if (copy_from_user(&hint, argp, sizeof(hint))) return -EFAULT; if (!rw_hint_valid(hint)) return -EINVAL; WRITE_ONCE(inode->i_write_hint, hint); /* * file->f_mapping->host may differ from inode. As an example, * blkdev_open() modifies file->f_mapping. */ if (file->f_mapping->host != inode) WRITE_ONCE(file->f_mapping->host->i_write_hint, hint); return 0; } /* Is the file descriptor a dup of the file? */ static long f_dupfd_query(int fd, struct file *filp) { CLASS(fd_raw, f)(fd); /* * We can do the 'fdput()' immediately, as the only thing that * matters is the pointer value which isn't changed by the fdput. * * Technically we didn't need a ref at all, and 'fdget()' was * overkill, but given our lockless file pointer lookup, the * alternatives are complicated. */ return f.file == filp; } static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, struct file *filp) { void __user *argp = (void __user *)arg; int argi = (int)arg; struct flock flock; long err = -EINVAL; switch (cmd) { case F_DUPFD: err = f_dupfd(argi, filp, 0); break; case F_DUPFD_CLOEXEC: err = f_dupfd(argi, filp, O_CLOEXEC); break; case F_DUPFD_QUERY: err = f_dupfd_query(argi, filp); break; case F_GETFD: err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; break; case F_SETFD: err = 0; set_close_on_exec(fd, argi & FD_CLOEXEC); break; case F_GETFL: err = filp->f_flags; break; case F_SETFL: err = setfl(fd, filp, argi); break; #if BITS_PER_LONG != 32 /* 32-bit arches must use fcntl64() */ case F_OFD_GETLK: #endif case F_GETLK: if (copy_from_user(&flock, argp, sizeof(flock))) return -EFAULT; err = fcntl_getlk(filp, cmd, &flock); if (!err && copy_to_user(argp, &flock, sizeof(flock))) return -EFAULT; break; #if BITS_PER_LONG != 32 /* 32-bit arches must use fcntl64() */ case F_OFD_SETLK: case F_OFD_SETLKW: fallthrough; #endif case F_SETLK: case F_SETLKW: if (copy_from_user(&flock, argp, sizeof(flock))) return -EFAULT; err = fcntl_setlk(fd, filp, cmd, &flock); break; case F_GETOWN: /* * XXX If f_owner is a process group, the * negative return value will get converted * into an error. Oops. If we keep the * current syscall conventions, the only way * to fix this will be in libc. */ err = f_getown(filp); force_successful_syscall_return(); break; case F_SETOWN: err = f_setown(filp, argi, 1); break; case F_GETOWN_EX: err = f_getown_ex(filp, arg); break; case F_SETOWN_EX: err = f_setown_ex(filp, arg); break; case F_GETOWNER_UIDS: err = f_getowner_uids(filp, arg); break; case F_GETSIG: err = filp->f_owner.signum; break; case F_SETSIG: /* arg == 0 restores default behaviour. */ if (!valid_signal(argi)) { break; } err = 0; filp->f_owner.signum = argi; break; case F_GETLEASE: err = fcntl_getlease(filp); break; case F_SETLEASE: err = fcntl_setlease(fd, filp, argi); break; case F_NOTIFY: err = fcntl_dirnotify(fd, filp, argi); break; case F_SETPIPE_SZ: case F_GETPIPE_SZ: err = pipe_fcntl(filp, cmd, argi); break; case F_ADD_SEALS: case F_GET_SEALS: err = memfd_fcntl(filp, cmd, argi); break; case F_GET_RW_HINT: err = fcntl_get_rw_hint(filp, cmd, arg); break; case F_SET_RW_HINT: err = fcntl_set_rw_hint(filp, cmd, arg); break; default: break; } return err; } static int check_fcntl_cmd(unsigned cmd) { switch (cmd) { case F_DUPFD: case F_DUPFD_CLOEXEC: case F_DUPFD_QUERY: case F_GETFD: case F_SETFD: case F_GETFL: return 1; } return 0; } SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) { struct fd f = fdget_raw(fd); long err = -EBADF; if (!f.file) goto out; if (unlikely(f.file->f_mode & FMODE_PATH)) { if (!check_fcntl_cmd(cmd)) goto out1; } err = security_file_fcntl(f.file, cmd, arg); if (!err) err = do_fcntl(fd, cmd, arg, f.file); out1: fdput(f); out: return err; } #if BITS_PER_LONG == 32 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, unsigned long, arg) { void __user *argp = (void __user *)arg; struct fd f = fdget_raw(fd); struct flock64 flock; long err = -EBADF; if (!f.file) goto out; if (unlikely(f.file->f_mode & FMODE_PATH)) { if (!check_fcntl_cmd(cmd)) goto out1; } err = security_file_fcntl(f.file, cmd, arg); if (err) goto out1; switch (cmd) { case F_GETLK64: case F_OFD_GETLK: err = -EFAULT; if (copy_from_user(&flock, argp, sizeof(flock))) break; err = fcntl_getlk64(f.file, cmd, &flock); if (!err && copy_to_user(argp, &flock, sizeof(flock))) err = -EFAULT; break; case F_SETLK64: case F_SETLKW64: case F_OFD_SETLK: case F_OFD_SETLKW: err = -EFAULT; if (copy_from_user(&flock, argp, sizeof(flock))) break; err = fcntl_setlk64(fd, f.file, cmd, &flock); break; default: err = do_fcntl(fd, cmd, arg, f.file); break; } out1: fdput(f); out: return err; } #endif #ifdef CONFIG_COMPAT /* careful - don't use anywhere else */ #define copy_flock_fields(dst, src) \ (dst)->l_type = (src)->l_type; \ (dst)->l_whence = (src)->l_whence; \ (dst)->l_start = (src)->l_start; \ (dst)->l_len = (src)->l_len; \ (dst)->l_pid = (src)->l_pid; static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl) { struct compat_flock fl; if (copy_from_user(&fl, ufl, sizeof(struct compat_flock))) return -EFAULT; copy_flock_fields(kfl, &fl); return 0; } static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl) { struct compat_flock64 fl; if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64))) return -EFAULT; copy_flock_fields(kfl, &fl); return 0; } static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl) { struct compat_flock fl; memset(&fl, 0, sizeof(struct compat_flock)); copy_flock_fields(&fl, kfl); if (copy_to_user(ufl, &fl, sizeof(struct compat_flock))) return -EFAULT; return 0; } static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl) { struct compat_flock64 fl; BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start)); BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len)); memset(&fl, 0, sizeof(struct compat_flock64)); copy_flock_fields(&fl, kfl); if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64))) return -EFAULT; return 0; } #undef copy_flock_fields static unsigned int convert_fcntl_cmd(unsigned int cmd) { switch (cmd) { case F_GETLK64: return F_GETLK; case F_SETLK64: return F_SETLK; case F_SETLKW64: return F_SETLKW; } return cmd; } /* * GETLK was successful and we need to return the data, but it needs to fit in * the compat structure. * l_start shouldn't be too big, unless the original start + end is greater than * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return * -EOVERFLOW in that case. l_len could be too big, in which case we just * truncate it, and only allow the app to see that part of the conflicting lock * that might make sense to it anyway */ static int fixup_compat_flock(struct flock *flock) { if (flock->l_start > COMPAT_OFF_T_MAX) return -EOVERFLOW; if (flock->l_len > COMPAT_OFF_T_MAX) flock->l_len = COMPAT_OFF_T_MAX; return 0; } static long do_compat_fcntl64(unsigned int fd, unsigned int cmd, compat_ulong_t arg) { struct fd f = fdget_raw(fd); struct flock flock; long err = -EBADF; if (!f.file) return err; if (unlikely(f.file->f_mode & FMODE_PATH)) { if (!check_fcntl_cmd(cmd)) goto out_put; } err = security_file_fcntl(f.file, cmd, arg); if (err) goto out_put; switch (cmd) { case F_GETLK: err = get_compat_flock(&flock, compat_ptr(arg)); if (err) break; err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock); if (err) break; err = fixup_compat_flock(&flock); if (!err) err = put_compat_flock(&flock, compat_ptr(arg)); break; case F_GETLK64: case F_OFD_GETLK: err = get_compat_flock64(&flock, compat_ptr(arg)); if (err) break; err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock); if (!err) err = put_compat_flock64(&flock, compat_ptr(arg)); break; case F_SETLK: case F_SETLKW: err = get_compat_flock(&flock, compat_ptr(arg)); if (err) break; err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock); break; case F_SETLK64: case F_SETLKW64: case F_OFD_SETLK: case F_OFD_SETLKW: err = get_compat_flock64(&flock, compat_ptr(arg)); if (err) break; err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock); break; default: err = do_fcntl(fd, cmd, arg, f.file); break; } out_put: fdput(f); return err; } COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, compat_ulong_t, arg) { return do_compat_fcntl64(fd, cmd, arg); } COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, compat_ulong_t, arg) { switch (cmd) { case F_GETLK64: case F_SETLK64: case F_SETLKW64: case F_OFD_GETLK: case F_OFD_SETLK: case F_OFD_SETLKW: return -EINVAL; } return do_compat_fcntl64(fd, cmd, arg); } #endif /* Table to convert sigio signal codes into poll band bitmaps */ static const __poll_t band_table[NSIGPOLL] = { EPOLLIN | EPOLLRDNORM, /* POLL_IN */ EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */ EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */ EPOLLERR, /* POLL_ERR */ EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */ EPOLLHUP | EPOLLERR /* POLL_HUP */ }; static inline int sigio_perm(struct task_struct *p, struct fown_struct *fown, int sig) { const struct cred *cred; int ret; rcu_read_lock(); cred = __task_cred(p); ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && !security_file_send_sigiotask(p, fown, sig)); rcu_read_unlock(); return ret; } static void send_sigio_to_task(struct task_struct *p, struct fown_struct *fown, int fd, int reason, enum pid_type type) { /* * F_SETSIG can change ->signum lockless in parallel, make * sure we read it once and use the same value throughout. */ int signum = READ_ONCE(fown->signum); if (!sigio_perm(p, fown, signum)) return; switch (signum) { default: { kernel_siginfo_t si; /* Queue a rt signal with the appropriate fd as its value. We use SI_SIGIO as the source, not SI_KERNEL, since kernel signals always get delivered even if we can't queue. Failure to queue in this case _should_ be reported; we fall back to SIGIO in that case. --sct */ clear_siginfo(&si); si.si_signo = signum; si.si_errno = 0; si.si_code = reason; /* * Posix definies POLL_IN and friends to be signal * specific si_codes for SIG_POLL. Linux extended * these si_codes to other signals in a way that is * ambiguous if other signals also have signal * specific si_codes. In that case use SI_SIGIO instead * to remove the ambiguity. */ if ((signum != SIGPOLL) && sig_specific_sicodes(signum)) si.si_code = SI_SIGIO; /* Make sure we are called with one of the POLL_* reasons, otherwise we could leak kernel stack into userspace. */ BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL)); if (reason - POLL_IN >= NSIGPOLL) si.si_band = ~0L; else si.si_band = mangle_poll(band_table[reason - POLL_IN]); si.si_fd = fd; if (!do_send_sig_info(signum, &si, p, type)) break; } fallthrough; /* fall back on the old plain SIGIO signal */ case 0: do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type); } } void send_sigio(struct fown_struct *fown, int fd, int band) { struct task_struct *p; enum pid_type type; unsigned long flags; struct pid *pid; read_lock_irqsave(&fown->lock, flags); type = fown->pid_type; pid = fown->pid; if (!pid) goto out_unlock_fown; if (type <= PIDTYPE_TGID) { rcu_read_lock(); p = pid_task(pid, PIDTYPE_PID); if (p) send_sigio_to_task(p, fown, fd, band, type); rcu_read_unlock(); } else { read_lock(&tasklist_lock); do_each_pid_task(pid, type, p) { send_sigio_to_task(p, fown, fd, band, type); } while_each_pid_task(pid, type, p); read_unlock(&tasklist_lock); } out_unlock_fown: read_unlock_irqrestore(&fown->lock, flags); } static void send_sigurg_to_task(struct task_struct *p, struct fown_struct *fown, enum pid_type type) { if (sigio_perm(p, fown, SIGURG)) do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type); } int send_sigurg(struct fown_struct *fown) { struct task_struct *p; enum pid_type type; struct pid *pid; unsigned long flags; int ret = 0; read_lock_irqsave(&fown->lock, flags); type = fown->pid_type; pid = fown->pid; if (!pid) goto out_unlock_fown; ret = 1; if (type <= PIDTYPE_TGID) { rcu_read_lock(); p = pid_task(pid, PIDTYPE_PID); if (p) send_sigurg_to_task(p, fown, type); rcu_read_unlock(); } else { read_lock(&tasklist_lock); do_each_pid_task(pid, type, p) { send_sigurg_to_task(p, fown, type); } while_each_pid_task(pid, type, p); read_unlock(&tasklist_lock); } out_unlock_fown: read_unlock_irqrestore(&fown->lock, flags); return ret; } static DEFINE_SPINLOCK(fasync_lock); static struct kmem_cache *fasync_cache __ro_after_init; /* * Remove a fasync entry. If successfully removed, return * positive and clear the FASYNC flag. If no entry exists, * do nothing and return 0. * * NOTE! It is very important that the FASYNC flag always * match the state "is the filp on a fasync list". * */ int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) { struct fasync_struct *fa, **fp; int result = 0; spin_lock(&filp->f_lock); spin_lock(&fasync_lock); for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { if (fa->fa_file != filp) continue; write_lock_irq(&fa->fa_lock); fa->fa_file = NULL; write_unlock_irq(&fa->fa_lock); *fp = fa->fa_next; kfree_rcu(fa, fa_rcu); filp->f_flags &= ~FASYNC; result = 1; break; } spin_unlock(&fasync_lock); spin_unlock(&filp->f_lock); return result; } struct fasync_struct *fasync_alloc(void) { return kmem_cache_alloc(fasync_cache, GFP_KERNEL); } /* * NOTE! This can be used only for unused fasync entries: * entries that actually got inserted on the fasync list * need to be released by rcu - see fasync_remove_entry. */ void fasync_free(struct fasync_struct *new) { kmem_cache_free(fasync_cache, new); } /* * Insert a new entry into the fasync list. Return the pointer to the * old one if we didn't use the new one. * * NOTE! It is very important that the FASYNC flag always * match the state "is the filp on a fasync list". */ struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) { struct fasync_struct *fa, **fp; spin_lock(&filp->f_lock); spin_lock(&fasync_lock); for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { if (fa->fa_file != filp) continue; write_lock_irq(&fa->fa_lock); fa->fa_fd = fd; write_unlock_irq(&fa->fa_lock); goto out; } rwlock_init(&new->fa_lock); new->magic = FASYNC_MAGIC; new->fa_file = filp; new->fa_fd = fd; new->fa_next = *fapp; rcu_assign_pointer(*fapp, new); filp->f_flags |= FASYNC; out: spin_unlock(&fasync_lock); spin_unlock(&filp->f_lock); return fa; } /* * Add a fasync entry. Return negative on error, positive if * added, and zero if did nothing but change an existing one. */ static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) { struct fasync_struct *new; new = fasync_alloc(); if (!new) return -ENOMEM; /* * fasync_insert_entry() returns the old (update) entry if * it existed. * * So free the (unused) new entry and return 0 to let the * caller know that we didn't add any new fasync entries. */ if (fasync_insert_entry(fd, filp, fapp, new)) { fasync_free(new); return 0; } return 1; } /* * fasync_helper() is used by almost all character device drivers * to set up the fasync queue, and for regular files by the file * lease code. It returns negative on error, 0 if it did no changes * and positive if it added/deleted the entry. */ int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) { if (!on) return fasync_remove_entry(filp, fapp); return fasync_add_entry(fd, filp, fapp); } EXPORT_SYMBOL(fasync_helper); /* * rcu_read_lock() is held */ static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) { while (fa) { struct fown_struct *fown; unsigned long flags; if (fa->magic != FASYNC_MAGIC) { printk(KERN_ERR "kill_fasync: bad magic number in " "fasync_struct!\n"); return; } read_lock_irqsave(&fa->fa_lock, flags); if (fa->fa_file) { fown = &fa->fa_file->f_owner; /* Don't send SIGURG to processes which have not set a queued signum: SIGURG has its own default signalling mechanism. */ if (!(sig == SIGURG && fown->signum == 0)) send_sigio(fown, fa->fa_fd, band); } read_unlock_irqrestore(&fa->fa_lock, flags); fa = rcu_dereference(fa->fa_next); } } void kill_fasync(struct fasync_struct **fp, int sig, int band) { /* First a quick test without locking: usually * the list is empty. */ if (*fp) { rcu_read_lock(); kill_fasync_rcu(rcu_dereference(*fp), sig, band); rcu_read_unlock(); } } EXPORT_SYMBOL(kill_fasync); static int __init fcntl_init(void) { /* * Please add new bits here to ensure allocation uniqueness. * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY * is defined as O_NONBLOCK on some platforms and not on others. */ BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) | __FMODE_EXEC | __FMODE_NONOTIFY)); fasync_cache = kmem_cache_create("fasync_cache", sizeof(struct fasync_struct), 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); return 0; } module_init(fcntl_init) |
116 116 8 111 116 116 82 39 38 39 38 39 39 39 39 39 119 116 4 92 40 81 7 78 2 5 5 12 31 39 81 115 1 18 92 92 110 21 39 56 29 41 46 117 7 111 33 111 111 41 1 1 111 117 117 6 112 112 11 112 6 117 1 117 91 33 117 116 2 117 117 2 116 116 2 81 39 91 31 116 91 30 31 116 116 116 115 116 116 24 2 119 117 2 82 41 119 82 41 82 41 93 32 20 2 97 39 63 30 19 30 20 20 20 20 20 20 20 20 20 16 10 6 6 93 93 93 93 93 3 2 43 2 43 2 43 42 42 42 42 42 42 42 3 3 116 116 117 20 20 97 96 96 1 1 97 97 96 97 119 119 119 116 116 5 116 116 115 116 116 116 116 119 119 115 5 19 97 120 102 21 95 120 7 120 29 119 113 7 119 24 24 20 5 1 1 1 24 24 24 2 2 2 23 2 22 22 22 22 20 20 3 17 20 7 2 18 19 20 19 1 18 27 26 27 1 1 25 25 25 25 25 25 25 3 23 4 23 27 2 6 6 6 6 113 113 113 20 113 90 90 3 2 2 2 2 2 2 2 2 2 2 2 2 24 23 24 2 2 2 2 2 2 2 2 2 2 20 20 20 20 20 19 2 20 2 2 19 19 20 20 20 2 19 2 19 2 20 20 20 20 20 19 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 24 24 24 24 24 24 2 2 20 4 20 24 24 19 19 1 21 3 19 26 26 26 6 6 99 99 72 72 72 72 72 72 4 4 1 3 3 3 1 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2018-2024 Intel Corporation * * Transmit and frame generation functions. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/etherdevice.h> #include <linux/bitmap.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/ieee80211_radiotap.h> #include <net/cfg80211.h> #include <net/mac80211.h> #include <net/codel.h> #include <net/codel_impl.h> #include <asm/unaligned.h> #include <net/fq_impl.h> #include <net/gso.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "led.h" #include "mesh.h" #include "wep.h" #include "wpa.h" #include "wme.h" #include "rate.h" /* misc utils */ static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, struct sk_buff *skb, int group_addr, int next_frag_len) { int rate, mrate, erp, dur, i; struct ieee80211_rate *txrate; struct ieee80211_local *local = tx->local; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_chanctx_conf *chanctx_conf; u32 rate_flags = 0; /* assume HW handles this */ if (tx->rate.flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS)) return 0; rcu_read_lock(); chanctx_conf = rcu_dereference(tx->sdata->vif.bss_conf.chanctx_conf); if (chanctx_conf) rate_flags = ieee80211_chandef_rate_flags(&chanctx_conf->def); rcu_read_unlock(); /* uh huh? */ if (WARN_ON_ONCE(tx->rate.idx < 0)) return 0; sband = local->hw.wiphy->bands[info->band]; txrate = &sband->bitrates[tx->rate.idx]; erp = txrate->flags & IEEE80211_RATE_ERP_G; /* device is expected to do this */ if (sband->band == NL80211_BAND_S1GHZ) return 0; /* * data and mgmt (except PS Poll): * - during CFP: 32768 * - during contention period: * if addr1 is group address: 0 * if more fragments = 0 and addr1 is individual address: time to * transmit one ACK plus SIFS * if more fragments = 1 and addr1 is individual address: time to * transmit next fragment plus 2 x ACK plus 3 x SIFS * * IEEE 802.11, 9.6: * - control response frame (CTS or ACK) shall be transmitted using the * same rate as the immediately previous frame in the frame exchange * sequence, if this rate belongs to the PHY mandatory rates, or else * at the highest possible rate belonging to the PHY rates in the * BSSBasicRateSet */ hdr = (struct ieee80211_hdr *)skb->data; if (ieee80211_is_ctl(hdr->frame_control)) { /* TODO: These control frames are not currently sent by * mac80211, but should they be implemented, this function * needs to be updated to support duration field calculation. * * RTS: time needed to transmit pending data/mgmt frame plus * one CTS frame plus one ACK frame plus 3 x SIFS * CTS: duration of immediately previous RTS minus time * required to transmit CTS and its SIFS * ACK: 0 if immediately previous directed data/mgmt had * more=0, with more=1 duration in ACK frame is duration * from previous frame minus time needed to transmit ACK * and its SIFS * PS Poll: BIT(15) | BIT(14) | aid */ return 0; } /* data/mgmt */ if (0 /* FIX: data/mgmt during CFP */) return cpu_to_le16(32768); if (group_addr) /* Group address as the destination - no ACK */ return 0; /* Individual destination address: * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) * CTS and ACK frames shall be transmitted using the highest rate in * basic rate set that is less than or equal to the rate of the * immediately previous frame and that is using the same modulation * (CCK or OFDM). If no basic rate set matches with these requirements, * the highest mandatory rate of the PHY that is less than or equal to * the rate of the previous frame is used. * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps */ rate = -1; /* use lowest available if everything fails */ mrate = sband->bitrates[0].bitrate; for (i = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *r = &sband->bitrates[i]; u32 flag; if (r->bitrate > txrate->bitrate) break; if ((rate_flags & r->flags) != rate_flags) continue; if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) rate = r->bitrate; switch (sband->band) { case NL80211_BAND_2GHZ: case NL80211_BAND_LC: if (tx->sdata->deflink.operating_11g_mode) flag = IEEE80211_RATE_MANDATORY_G; else flag = IEEE80211_RATE_MANDATORY_B; break; case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: flag = IEEE80211_RATE_MANDATORY_A; break; default: flag = 0; WARN_ON(1); break; } if (r->flags & flag) mrate = r->bitrate; } if (rate == -1) { /* No matching basic rate found; use highest suitable mandatory * PHY rate */ rate = mrate; } /* Don't calculate ACKs for QoS Frames with NoAck Policy set */ if (ieee80211_is_data_qos(hdr->frame_control) && *(ieee80211_get_qos_ctl(hdr)) & IEEE80211_QOS_CTL_ACK_POLICY_NOACK) dur = 0; else /* Time needed to transmit ACK * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up * to closest integer */ dur = ieee80211_frame_duration(sband->band, 10, rate, erp, tx->sdata->vif.bss_conf.use_short_preamble); if (next_frag_len) { /* Frame is fragmented: duration increases with time needed to * transmit next fragment plus ACK and 2 x SIFS. */ dur *= 2; /* ACK + SIFS */ /* next fragment */ dur += ieee80211_frame_duration(sband->band, next_frag_len, txrate->bitrate, erp, tx->sdata->vif.bss_conf.use_short_preamble); } return cpu_to_le16(dur); } /* tx handlers */ static ieee80211_tx_result debug_noinline ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) { struct ieee80211_local *local = tx->local; struct ieee80211_if_managed *ifmgd; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); /* driver doesn't support power save */ if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS)) return TX_CONTINUE; /* hardware does dynamic power save */ if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) return TX_CONTINUE; /* dynamic power save disabled */ if (local->hw.conf.dynamic_ps_timeout <= 0) return TX_CONTINUE; /* we are scanning, don't enable power save */ if (local->scanning) return TX_CONTINUE; if (!local->ps_sdata) return TX_CONTINUE; /* No point if we're going to suspend */ if (local->quiescing) return TX_CONTINUE; /* dynamic ps is supported only in managed mode */ if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) return TX_CONTINUE; if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) return TX_CONTINUE; ifmgd = &tx->sdata->u.mgd; /* * Don't wakeup from power save if u-apsd is enabled, voip ac has * u-apsd enabled and the frame is in voip class. This effectively * means that even if all access categories have u-apsd enabled, in * practise u-apsd is only used with the voip ac. This is a * workaround for the case when received voip class packets do not * have correct qos tag for some reason, due the network or the * peer application. * * Note: ifmgd->uapsd_queues access is racy here. If the value is * changed via debugfs, user needs to reassociate manually to have * everything in sync. */ if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) && (ifmgd->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) && skb_get_queue_mapping(tx->skb) == IEEE80211_AC_VO) return TX_CONTINUE; if (local->hw.conf.flags & IEEE80211_CONF_PS) { ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_PS, false); ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; wiphy_work_queue(local->hw.wiphy, &local->dynamic_ps_disable_work); } /* Don't restart the timer if we're not disassociated */ if (!ifmgd->associated) return TX_CONTINUE; mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); bool assoc = false; if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) return TX_CONTINUE; if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && !ieee80211_is_probe_req(hdr->frame_control) && !ieee80211_is_any_nullfunc(hdr->frame_control)) /* * When software scanning only nullfunc frames (to notify * the sleep state to the AP) and probe requests (for the * active scan) are allowed, all other frames should not be * sent and we should not get here, but if we do * nonetheless, drop them to avoid sending them * off-channel. See the link below and * ieee80211_start_scan() for more. * * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 */ return TX_DROP; if (tx->sdata->vif.type == NL80211_IFTYPE_OCB) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_PS_BUFFERED) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); if (likely(tx->flags & IEEE80211_TX_UNICAST)) { if (unlikely(!assoc && ieee80211_is_data(hdr->frame_control))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG sdata_info(tx->sdata, "dropped data frame to not associated station %pM\n", hdr->addr1); #endif I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); return TX_DROP; } } else if (unlikely(ieee80211_is_data(hdr->frame_control) && ieee80211_vif_get_num_mcast_if(tx->sdata) == 0)) { /* * No associated STAs - no need to send multicast * frames. */ return TX_DROP; } return TX_CONTINUE; } /* This function is called whenever the AP is about to exceed the maximum limit * of buffered frames for power saving STAs. This situation should not really * happen often during normal operation, so dropping the oldest buffered packet * from each queue should be OK to make some room for new frames. */ static void purge_old_ps_buffers(struct ieee80211_local *local) { int total = 0, purged = 0; struct sk_buff *skb; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; list_for_each_entry_rcu(sdata, &local->interfaces, list) { struct ps_data *ps; if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->u.ap.ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else continue; skb = skb_dequeue(&ps->bc_buf); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); } total += skb_queue_len(&ps->bc_buf); } /* * Drop one frame from each station from the lowest-priority * AC that has frames at all. */ list_for_each_entry_rcu(sta, &local->sta_list, list) { int ac; for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) { skb = skb_dequeue(&sta->ps_tx_buf[ac]); total += skb_queue_len(&sta->ps_tx_buf[ac]); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); break; } } } local->total_ps_buffered = total; ps_dbg_hw(&local->hw, "PS buffers full - purged %d frames\n", purged); } static ieee80211_tx_result ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ps_data *ps; /* * broadcast/multicast frame * * If any of the associated/peer stations is in power save mode, * the frame is buffered to be sent after DTIM beacon frame. * This is done either by the hardware or us. */ /* powersaving STAs currently only in AP/VLAN/mesh mode */ if (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!tx->sdata->bss) return TX_CONTINUE; ps = &tx->sdata->bss->ps; } else if (ieee80211_vif_is_mesh(&tx->sdata->vif)) { ps = &tx->sdata->u.mesh.ps; } else { return TX_CONTINUE; } /* no buffering for ordered frames */ if (ieee80211_has_order(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_is_probe_req(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, QUEUE_CONTROL)) info->hw_queue = tx->sdata->vif.cab_queue; /* no stations in PS mode and no buffered packets */ if (!atomic_read(&ps->num_sta_ps) && skb_queue_empty(&ps->bc_buf)) return TX_CONTINUE; info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; /* device releases frame after DTIM beacon */ if (!ieee80211_hw_check(&tx->local->hw, HOST_BROADCAST_PS_BUFFERING)) return TX_CONTINUE; /* buffered in mac80211 */ if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&ps->bc_buf) >= AP_MAX_BC_BUFFER) { ps_dbg(tx->sdata, "BC TX buffer full - dropping the oldest frame\n"); ieee80211_free_txskb(&tx->local->hw, skb_dequeue(&ps->bc_buf)); } else tx->local->total_ps_buffered++; skb_queue_tail(&ps->bc_buf, tx->skb); return TX_QUEUED; } static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, struct sk_buff *skb) { if (!ieee80211_is_mgmt(fc)) return 0; if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP)) return 0; if (!ieee80211_is_robust_mgmt_frame(skb)) return 0; return 1; } static ieee80211_tx_result ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) { struct sta_info *sta = tx->sta; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_local *local = tx->local; if (unlikely(!sta)) return TX_CONTINUE; if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER)) && !(info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER))) { int ac = skb_get_queue_mapping(tx->skb); if (ieee80211_is_mgmt(hdr->frame_control) && !ieee80211_is_bufferable_mmpdu(tx->skb)) { info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; return TX_CONTINUE; } ps_dbg(sta->sdata, "STA %pM aid %d: PS buffer for AC %d\n", sta->sta.addr, sta->sta.aid, ac); if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); /* sync with ieee80211_sta_ps_deliver_wakeup */ spin_lock(&sta->ps_lock); /* * STA woke up the meantime and all the frames on ps_tx_buf have * been queued to pending queue. No reordering can happen, go * ahead and Tx the packet. */ if (!test_sta_flag(sta, WLAN_STA_PS_STA) && !test_sta_flag(sta, WLAN_STA_PS_DRIVER) && !test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { spin_unlock(&sta->ps_lock); return TX_CONTINUE; } if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) { struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]); ps_dbg(tx->sdata, "STA %pM TX buffer for AC %d full - dropping oldest frame\n", sta->sta.addr, ac); ieee80211_free_txskb(&local->hw, old); } else tx->local->total_ps_buffered++; info->control.jiffies = jiffies; info->control.vif = &tx->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb); spin_unlock(&sta->ps_lock); if (!timer_pending(&local->sta_cleanup)) mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); /* * We queued up some frames, so the TIM bit might * need to be set, recalculate it. */ sta_info_recalc_tim(sta); return TX_QUEUED; } else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) { ps_dbg(tx->sdata, "STA %pM in PS mode, but polling/in SP -> send frame\n", sta->sta.addr); } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) { if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_UNICAST) return ieee80211_tx_h_unicast_ps_buf(tx); else return ieee80211_tx_h_multicast_ps_buf(tx); } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol)) { if (tx->sdata->control_port_no_encrypt) info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->control.flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO; info->flags |= IEEE80211_TX_CTL_USE_MINRATE; } return TX_CONTINUE; } static struct ieee80211_key * ieee80211_select_link_key(struct ieee80211_tx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_link_data *link; unsigned int link_id; link_id = u32_get_bits(info->control.flags, IEEE80211_TX_CTRL_MLO_LINK); if (link_id == IEEE80211_LINK_UNSPECIFIED) { link = &tx->sdata->deflink; } else { link = rcu_dereference(tx->sdata->link[link_id]); if (!link) return NULL; } if (ieee80211_is_group_privacy_action(tx->skb)) return rcu_dereference(link->default_multicast_key); else if (ieee80211_is_mgmt(hdr->frame_control) && is_multicast_ether_addr(hdr->addr1) && ieee80211_is_robust_mgmt_frame(tx->skb)) return rcu_dereference(link->default_mgmt_key); else if (is_multicast_ether_addr(hdr->addr1)) return rcu_dereference(link->default_multicast_key); return NULL; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) { struct ieee80211_key *key; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) { tx->key = NULL; return TX_CONTINUE; } if (tx->sta && (key = rcu_dereference(tx->sta->ptk[tx->sta->ptk_idx]))) tx->key = key; else if ((key = ieee80211_select_link_key(tx))) tx->key = key; else if (!is_multicast_ether_addr(hdr->addr1) && (key = rcu_dereference(tx->sdata->default_unicast_key))) tx->key = key; else tx->key = NULL; if (tx->key) { bool skip_hw = false; /* TODO: add threshold stuff again */ switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: if (!ieee80211_is_data_present(hdr->frame_control)) tx->key = NULL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (!ieee80211_is_data_present(hdr->frame_control) && !ieee80211_use_mfp(hdr->frame_control, tx->sta, tx->skb) && !ieee80211_is_group_privacy_action(tx->skb)) tx->key = NULL; else skip_hw = (tx->key->conf.flags & IEEE80211_KEY_FLAG_SW_MGMT_TX) && ieee80211_is_mgmt(hdr->frame_control); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (!ieee80211_is_mgmt(hdr->frame_control)) tx->key = NULL; break; } if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED && !ieee80211_is_deauth(hdr->frame_control)) && tx->skb->protocol != tx->sdata->control_port_protocol) return TX_DROP; if (!skip_hw && tx->key && tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) info->control.hw_key = &tx->key->conf; } else if (ieee80211_is_data_present(hdr->frame_control) && tx->sta && test_sta_flag(tx->sta, WLAN_STA_USES_ENCRYPTION)) { return TX_DROP; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (void *)tx->skb->data; struct ieee80211_supported_band *sband; u32 len; struct ieee80211_tx_rate_control txrc; struct ieee80211_sta_rates *ratetbl = NULL; bool encap = info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP; bool assoc = false; memset(&txrc, 0, sizeof(txrc)); sband = tx->local->hw.wiphy->bands[info->band]; len = min_t(u32, tx->skb->len + FCS_LEN, tx->local->hw.wiphy->frag_threshold); /* set up the tx rate control struct we give the RC algo */ txrc.hw = &tx->local->hw; txrc.sband = sband; txrc.bss_conf = &tx->sdata->vif.bss_conf; txrc.skb = tx->skb; txrc.reported_rate.idx = -1; if (unlikely(info->control.flags & IEEE80211_TX_CTRL_SCAN_TX)) { txrc.rate_idx_mask = ~0; } else { txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[info->band]; if (tx->sdata->rc_has_mcs_mask[info->band]) txrc.rate_idx_mcs_mask = tx->sdata->rc_rateidx_mcs_mask[info->band]; } txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT || tx->sdata->vif.type == NL80211_IFTYPE_ADHOC || tx->sdata->vif.type == NL80211_IFTYPE_OCB); /* set up RTS protection if desired */ if (len > tx->local->hw.wiphy->rts_threshold) { txrc.rts = true; } info->control.use_rts = txrc.rts; info->control.use_cts_prot = tx->sdata->vif.bss_conf.use_cts_prot; /* * Use short preamble if the BSS can handle it, but not for * management frames unless we know the receiver can handle * that -- the management frame might be to a station that * just wants a probe response. */ if (tx->sdata->vif.bss_conf.use_short_preamble && (ieee80211_is_tx_data(tx->skb) || (tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) txrc.short_preamble = true; info->control.short_preamble = txrc.short_preamble; /* don't ask rate control when rate already injected via radiotap */ if (info->control.flags & IEEE80211_TX_CTRL_RATE_INJECT) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); /* * Lets not bother rate control if we're associated and cannot * talk to the sta. This should not happen. */ if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc && !rate_usable_index_exists(sband, &tx->sta->sta), "%s: Dropped data frame as no usable bitrate found while " "scanning and associated. Target station: " "%pM on %d GHz band\n", tx->sdata->name, encap ? ((struct ethhdr *)hdr)->h_dest : hdr->addr1, info->band ? 5 : 2)) return TX_DROP; /* * If we're associated with the sta at this point we know we can at * least send the frame at the lowest bit rate. */ rate_control_get_rate(tx->sdata, tx->sta, &txrc); if (tx->sta && !info->control.skip_table) ratetbl = rcu_dereference(tx->sta->sta.rates); if (unlikely(info->control.rates[0].idx < 0)) { if (ratetbl) { struct ieee80211_tx_rate rate = { .idx = ratetbl->rate[0].idx, .flags = ratetbl->rate[0].flags, .count = ratetbl->rate[0].count }; if (ratetbl->rate[0].idx < 0) return TX_DROP; tx->rate = rate; } else { return TX_DROP; } } else { tx->rate = info->control.rates[0]; } if (txrc.reported_rate.idx < 0) { txrc.reported_rate = tx->rate; if (tx->sta && ieee80211_is_tx_data(tx->skb)) tx->sta->deflink.tx_stats.last_rate = txrc.reported_rate; } else if (tx->sta) tx->sta->deflink.tx_stats.last_rate = txrc.reported_rate; if (ratetbl) return TX_CONTINUE; if (unlikely(!info->control.rates[0].count)) info->control.rates[0].count = 1; if (WARN_ON_ONCE((info->control.rates[0].count > 1) && (info->flags & IEEE80211_TX_CTL_NO_ACK))) info->control.rates[0].count = 1; return TX_CONTINUE; } static __le16 ieee80211_tx_next_seq(struct sta_info *sta, int tid) { u16 *seq = &sta->tid_seq[tid]; __le16 ret = cpu_to_le16(*seq); /* Increase the sequence number. */ *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; return ret; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; int tid; /* * Packet injection may want to control the sequence * number, if we have no matching interface then we * neither assign one ourselves nor ask the driver to. */ if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) return TX_CONTINUE; if (unlikely(ieee80211_is_ctl(hdr->frame_control))) return TX_CONTINUE; if (ieee80211_hdrlen(hdr->frame_control) < 24) return TX_CONTINUE; if (ieee80211_is_qos_nullfunc(hdr->frame_control)) return TX_CONTINUE; if (info->control.flags & IEEE80211_TX_CTRL_NO_SEQNO) return TX_CONTINUE; /* SNS11 from 802.11be 10.3.2.14 */ if (unlikely(is_multicast_ether_addr(hdr->addr1) && ieee80211_vif_is_mld(info->control.vif) && info->control.vif->type == NL80211_IFTYPE_AP)) { if (info->control.flags & IEEE80211_TX_CTRL_MCAST_MLO_FIRST_TX) tx->sdata->mld_mcast_seq += 0x10; hdr->seq_ctrl = cpu_to_le16(tx->sdata->mld_mcast_seq); return TX_CONTINUE; } /* * Anything but QoS data that has a sequence number field * (is long enough) gets a sequence number from the global * counter. QoS data frames with a multicast destination * also use the global counter (802.11-2012 9.3.2.10). */ if (!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) { /* driver should assign sequence number */ info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; /* for pure STA mode without beacons, we can do it */ hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); tx->sdata->sequence_number += 0x10; if (tx->sta) tx->sta->deflink.tx_stats.msdu[IEEE80211_NUM_TIDS]++; return TX_CONTINUE; } /* * This should be true for injected/management frames only, for * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ * above since they are not QoS-data frames. */ if (!tx->sta) return TX_CONTINUE; /* include per-STA, per-TID sequence counter */ tid = ieee80211_get_tid(hdr); tx->sta->deflink.tx_stats.msdu[tid]++; hdr->seq_ctrl = ieee80211_tx_next_seq(tx->sta, tid); return TX_CONTINUE; } static int ieee80211_fragment(struct ieee80211_tx_data *tx, struct sk_buff *skb, int hdrlen, int frag_threshold) { struct ieee80211_local *local = tx->local; struct ieee80211_tx_info *info; struct sk_buff *tmp; int per_fragm = frag_threshold - hdrlen - FCS_LEN; int pos = hdrlen + per_fragm; int rem = skb->len - hdrlen - per_fragm; if (WARN_ON(rem < 0)) return -EINVAL; /* first fragment was already added to queue by caller */ while (rem) { int fraglen = per_fragm; if (fraglen > rem) fraglen = rem; rem -= fraglen; tmp = dev_alloc_skb(local->tx_headroom + frag_threshold + IEEE80211_ENCRYPT_HEADROOM + IEEE80211_ENCRYPT_TAILROOM); if (!tmp) return -ENOMEM; __skb_queue_tail(&tx->skbs, tmp); skb_reserve(tmp, local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM); /* copy control information */ memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); info = IEEE80211_SKB_CB(tmp); info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT); if (rem) info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; skb_copy_queue_mapping(tmp, skb); tmp->priority = skb->priority; tmp->dev = skb->dev; /* copy header and data */ skb_put_data(tmp, skb->data, hdrlen); skb_put_data(tmp, skb->data + pos, fraglen); pos += fraglen; } /* adjust first fragment's length */ skb_trim(skb, hdrlen + per_fragm); return 0; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) { struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; int frag_threshold = tx->local->hw.wiphy->frag_threshold; int hdrlen; int fragnum; /* no matter what happens, tx->skb moves to tx->skbs */ __skb_queue_tail(&tx->skbs, skb); tx->skb = NULL; if (info->flags & IEEE80211_TX_CTL_DONTFRAG) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) return TX_CONTINUE; /* * Warn when submitting a fragmented A-MPDU frame and drop it. * This scenario is handled in ieee80211_tx_prepare but extra * caution taken here as fragmented ampdu may cause Tx stop. */ if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) return TX_DROP; hdrlen = ieee80211_hdrlen(hdr->frame_control); /* internal error, why isn't DONTFRAG set? */ if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) return TX_DROP; /* * Now fragment the frame. This will allocate all the fragments and * chain them (using skb as the first fragment) to skb->next. * During transmission, we will remove the successfully transmitted * fragments from this list. When the low-level driver rejects one * of the fragments then we will simply pretend to accept the skb * but store it away as pending. */ if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold)) return TX_DROP; /* update duration/seq/flags of fragments */ fragnum = 0; skb_queue_walk(&tx->skbs, skb) { const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); hdr = (void *)skb->data; info = IEEE80211_SKB_CB(skb); if (!skb_queue_is_last(&tx->skbs, skb)) { hdr->frame_control |= morefrags; /* * No multi-rate retries for fragmented frames, that * would completely throw off the NAV at other STAs. */ info->control.rates[1].idx = -1; info->control.rates[2].idx = -1; info->control.rates[3].idx = -1; BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 4); info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; } else { hdr->frame_control &= ~morefrags; } hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); fragnum++; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) { struct sk_buff *skb; int ac = -1; if (!tx->sta) return TX_CONTINUE; skb_queue_walk(&tx->skbs, skb) { ac = skb_get_queue_mapping(skb); tx->sta->deflink.tx_stats.bytes[ac] += skb->len; } if (ac >= 0) tx->sta->deflink.tx_stats.packets[ac]++; return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) { if (!tx->key) return TX_CONTINUE; switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: return ieee80211_crypto_wep_encrypt(tx); case WLAN_CIPHER_SUITE_TKIP: return ieee80211_crypto_tkip_encrypt(tx); case WLAN_CIPHER_SUITE_CCMP: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_MIC_LEN); case WLAN_CIPHER_SUITE_CCMP_256: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_256_MIC_LEN); case WLAN_CIPHER_SUITE_AES_CMAC: return ieee80211_crypto_aes_cmac_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_CMAC_256: return ieee80211_crypto_aes_cmac_256_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: return ieee80211_crypto_aes_gmac_encrypt(tx); case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: return ieee80211_crypto_gcmp_encrypt(tx); } return TX_DROP; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_hdr *hdr; int next_len; bool group_addr; skb_queue_walk(&tx->skbs, skb) { hdr = (void *) skb->data; if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) break; /* must not overwrite AID */ if (!skb_queue_is_last(&tx->skbs, skb)) { struct sk_buff *next = skb_queue_next(&tx->skbs, skb); next_len = next->len; } else next_len = 0; group_addr = is_multicast_ether_addr(hdr->addr1); hdr->duration_id = ieee80211_duration(tx, skb, group_addr, next_len); } return TX_CONTINUE; } /* actual transmit path */ static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, struct sk_buff *skb, struct ieee80211_tx_info *info, struct tid_ampdu_tx *tid_tx, int tid) { bool queued = false; bool reset_agg_timer = false; struct sk_buff *purge_skb = NULL; if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { reset_agg_timer = true; } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { /* * nothing -- this aggregation session is being started * but that might still fail with the driver */ } else if (!tx->sta->sta.txq[tid]) { spin_lock(&tx->sta->lock); /* * Need to re-check now, because we may get here * * 1) in the window during which the setup is actually * already done, but not marked yet because not all * packets are spliced over to the driver pending * queue yet -- if this happened we acquire the lock * either before or after the splice happens, but * need to recheck which of these cases happened. * * 2) during session teardown, if the OPERATIONAL bit * was cleared due to the teardown but the pointer * hasn't been assigned NULL yet (or we loaded it * before it was assigned) -- in this case it may * now be NULL which means we should just let the * packet pass through because splicing the frames * back is already done. */ tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); if (!tid_tx) { /* do nothing, let packet pass through */ } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { reset_agg_timer = true; } else { queued = true; if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER) { clear_sta_flag(tx->sta, WLAN_STA_SP); ps_dbg(tx->sta->sdata, "STA %pM aid %d: SP frame queued, close the SP w/o telling the peer\n", tx->sta->sta.addr, tx->sta->sta.aid); } info->control.vif = &tx->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; __skb_queue_tail(&tid_tx->pending, skb); if (skb_queue_len(&tid_tx->pending) > STA_MAX_TX_BUFFER) purge_skb = __skb_dequeue(&tid_tx->pending); } spin_unlock(&tx->sta->lock); if (purge_skb) ieee80211_free_txskb(&tx->local->hw, purge_skb); } /* reset session timer */ if (reset_agg_timer) tid_tx->last_tx = jiffies; return queued; } void ieee80211_aggr_check(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct rate_control_ref *ref = sdata->local->rate_ctrl; u16 tid; if (!ref || !(ref->ops->capa & RATE_CTRL_CAPA_AMPDU_TRIGGER)) return; if (!sta || !sta->sta.deflink.ht_cap.ht_supported || !sta->sta.wme || skb_get_queue_mapping(skb) == IEEE80211_AC_VO || skb->protocol == sdata->control_port_protocol) return; tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; if (likely(sta->ampdu_mlme.tid_tx[tid])) return; ieee80211_start_tx_ba_session(&sta->sta, tid, 0); } /* * initialises @tx * pass %NULL for the station if unknown, a valid pointer if known * or an ERR_PTR() if the station is known not to exist */ static ieee80211_tx_result ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_data *tx, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool aggr_check = false; int tid; memset(tx, 0, sizeof(*tx)); tx->skb = skb; tx->local = local; tx->sdata = sdata; __skb_queue_head_init(&tx->skbs); /* * If this flag is set to true anywhere, and we get here, * we are doing the needed processing, so remove the flag * now. */ info->control.flags &= ~IEEE80211_TX_INTCFL_NEED_TXPROCESSING; hdr = (struct ieee80211_hdr *) skb->data; if (likely(sta)) { if (!IS_ERR(sta)) tx->sta = sta; } else { if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { tx->sta = rcu_dereference(sdata->u.vlan.sta); if (!tx->sta && sdata->wdev.use_4addr) return TX_DROP; } else if (tx->sdata->control_port_protocol == tx->skb->protocol) { tx->sta = sta_info_get_bss(sdata, hdr->addr1); } if (!tx->sta && !is_multicast_ether_addr(hdr->addr1)) { tx->sta = sta_info_get(sdata, hdr->addr1); aggr_check = true; } } if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && !ieee80211_is_qos_nullfunc(hdr->frame_control) && ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && !ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) { struct tid_ampdu_tx *tid_tx; tid = ieee80211_get_tid(hdr); tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx && aggr_check) { ieee80211_aggr_check(sdata, tx->sta, skb); tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); } if (tid_tx) { bool queued; queued = ieee80211_tx_prep_agg(tx, skb, info, tid_tx, tid); if (unlikely(queued)) return TX_QUEUED; } } if (is_multicast_ether_addr(hdr->addr1)) { tx->flags &= ~IEEE80211_TX_UNICAST; info->flags |= IEEE80211_TX_CTL_NO_ACK; } else tx->flags |= IEEE80211_TX_UNICAST; if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) { if (!(tx->flags & IEEE80211_TX_UNICAST) || skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold || info->flags & IEEE80211_TX_CTL_AMPDU) info->flags |= IEEE80211_TX_CTL_DONTFRAG; } if (!tx->sta) info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) { info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; ieee80211_check_fast_xmit(tx->sta); } info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; return TX_CONTINUE; } static struct txq_info *ieee80211_get_txq(struct ieee80211_local *local, struct ieee80211_vif *vif, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_txq *txq = NULL; if ((info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) || (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE)) return NULL; if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) && unlikely(!ieee80211_is_data_present(hdr->frame_control))) { if ((!ieee80211_is_mgmt(hdr->frame_control) || ieee80211_is_bufferable_mmpdu(skb) || vif->type == NL80211_IFTYPE_STATION) && sta && sta->uploaded) { /* * This will be NULL if the driver didn't set the * opt-in hardware flag. */ txq = sta->sta.txq[IEEE80211_NUM_TIDS]; } } else if (sta) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; if (!sta->uploaded) return NULL; txq = sta->sta.txq[tid]; } else { txq = vif->txq; } if (!txq) return NULL; return to_txq_info(txq); } static void ieee80211_set_skb_enqueue_time(struct sk_buff *skb) { struct sk_buff *next; codel_time_t now = codel_get_time(); skb_list_walk_safe(skb, skb, next) IEEE80211_SKB_CB(skb)->control.enqueue_time = now; } static u32 codel_skb_len_func(const struct sk_buff *skb) { return skb->len; } static codel_time_t codel_skb_time_func(const struct sk_buff *skb) { const struct ieee80211_tx_info *info; info = (const struct ieee80211_tx_info *)skb->cb; return info->control.enqueue_time; } static struct sk_buff *codel_dequeue_func(struct codel_vars *cvars, void *ctx) { struct ieee80211_local *local; struct txq_info *txqi; struct fq *fq; struct fq_flow *flow; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; fq = &local->fq; if (cvars == &txqi->def_cvars) flow = &txqi->tin.default_flow; else flow = &fq->flows[cvars - local->cvars]; return fq_flow_dequeue(fq, flow); } static void codel_drop_func(struct sk_buff *skb, void *ctx) { struct ieee80211_local *local; struct ieee80211_hw *hw; struct txq_info *txqi; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; hw = &local->hw; ieee80211_free_txskb(hw, skb); } static struct sk_buff *fq_tin_dequeue_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct ieee80211_local *local; struct txq_info *txqi; struct codel_vars *cvars; struct codel_params *cparams; struct codel_stats *cstats; local = container_of(fq, struct ieee80211_local, fq); txqi = container_of(tin, struct txq_info, tin); cstats = &txqi->cstats; if (txqi->txq.sta) { struct sta_info *sta = container_of(txqi->txq.sta, struct sta_info, sta); cparams = &sta->cparams; } else { cparams = &local->cparams; } if (flow == &tin->default_flow) cvars = &txqi->def_cvars; else cvars = &local->cvars[flow - fq->flows]; return codel_dequeue(txqi, &flow->backlog, cparams, cvars, cstats, codel_skb_len_func, codel_skb_time_func, codel_drop_func, codel_dequeue_func); } static void fq_skb_free_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow, struct sk_buff *skb) { struct ieee80211_local *local; local = container_of(fq, struct ieee80211_local, fq); ieee80211_free_txskb(&local->hw, skb); } static void ieee80211_txq_enqueue(struct ieee80211_local *local, struct txq_info *txqi, struct sk_buff *skb) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; u32 flow_idx = fq_flow_idx(fq, skb); ieee80211_set_skb_enqueue_time(skb); spin_lock_bh(&fq->lock); /* * For management frames, don't really apply codel etc., * we don't want to apply any shaping or anything we just * want to simplify the driver API by having them on the * txqi. */ if (unlikely(txqi->txq.tid == IEEE80211_NUM_TIDS)) { IEEE80211_SKB_CB(skb)->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; __skb_queue_tail(&txqi->frags, skb); } else { fq_tin_enqueue(fq, tin, flow_idx, skb, fq_skb_free_func); } spin_unlock_bh(&fq->lock); } static bool fq_vlan_filter_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow, struct sk_buff *skb, void *data) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); return info->control.vif == data; } void ieee80211_txq_remove_vlan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct fq *fq = &local->fq; struct txq_info *txqi; struct fq_tin *tin; struct ieee80211_sub_if_data *ap; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) return; ap = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); if (!ap->vif.txq) return; txqi = to_txq_info(ap->vif.txq); tin = &txqi->tin; spin_lock_bh(&fq->lock); fq_tin_filter(fq, tin, fq_vlan_filter_func, &sdata->vif, fq_skb_free_func); spin_unlock_bh(&fq->lock); } void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct txq_info *txqi, int tid) { fq_tin_init(&txqi->tin); codel_vars_init(&txqi->def_cvars); codel_stats_init(&txqi->cstats); __skb_queue_head_init(&txqi->frags); INIT_LIST_HEAD(&txqi->schedule_order); txqi->txq.vif = &sdata->vif; if (!sta) { sdata->vif.txq = &txqi->txq; txqi->txq.tid = 0; txqi->txq.ac = IEEE80211_AC_BE; return; } if (tid == IEEE80211_NUM_TIDS) { if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* Drivers need to opt in to the management MPDU TXQ */ if (!ieee80211_hw_check(&sdata->local->hw, STA_MMPDU_TXQ)) return; } else if (!ieee80211_hw_check(&sdata->local->hw, BUFF_MMPDU_TXQ)) { /* Drivers need to opt in to the bufferable MMPDU TXQ */ return; } txqi->txq.ac = IEEE80211_AC_VO; } else { txqi->txq.ac = ieee80211_ac_from_tid(tid); } txqi->txq.sta = &sta->sta; txqi->txq.tid = tid; sta->sta.txq[tid] = &txqi->txq; } void ieee80211_txq_purge(struct ieee80211_local *local, struct txq_info *txqi) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; spin_lock_bh(&fq->lock); fq_tin_reset(fq, tin, fq_skb_free_func); ieee80211_purge_tx_queue(&local->hw, &txqi->frags); spin_unlock_bh(&fq->lock); spin_lock_bh(&local->active_txq_lock[txqi->txq.ac]); list_del_init(&txqi->schedule_order); spin_unlock_bh(&local->active_txq_lock[txqi->txq.ac]); } void ieee80211_txq_set_params(struct ieee80211_local *local) { if (local->hw.wiphy->txq_limit) local->fq.limit = local->hw.wiphy->txq_limit; else local->hw.wiphy->txq_limit = local->fq.limit; if (local->hw.wiphy->txq_memory_limit) local->fq.memory_limit = local->hw.wiphy->txq_memory_limit; else local->hw.wiphy->txq_memory_limit = local->fq.memory_limit; if (local->hw.wiphy->txq_quantum) local->fq.quantum = local->hw.wiphy->txq_quantum; else local->hw.wiphy->txq_quantum = local->fq.quantum; } int ieee80211_txq_setup_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; int ret; int i; bool supp_vht = false; enum nl80211_band band; ret = fq_init(fq, 4096); if (ret) return ret; /* * If the hardware doesn't support VHT, it is safe to limit the maximum * queue size. 4 Mbytes is 64 max-size aggregates in 802.11n. */ for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[band]; if (!sband) continue; supp_vht = supp_vht || sband->vht_cap.vht_supported; } if (!supp_vht) fq->memory_limit = 4 << 20; /* 4 Mbytes */ codel_params_init(&local->cparams); local->cparams.interval = MS2TIME(100); local->cparams.target = MS2TIME(20); local->cparams.ecn = true; local->cvars = kvcalloc(fq->flows_cnt, sizeof(local->cvars[0]), GFP_KERNEL); if (!local->cvars) { spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); return -ENOMEM; } for (i = 0; i < fq->flows_cnt; i++) codel_vars_init(&local->cvars[i]); ieee80211_txq_set_params(local); return 0; } void ieee80211_txq_teardown_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; kvfree(local->cvars); local->cvars = NULL; spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); } static bool ieee80211_queue_skb(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_vif *vif; struct txq_info *txqi; if (sdata->vif.type == NL80211_IFTYPE_MONITOR) return false; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); vif = &sdata->vif; txqi = ieee80211_get_txq(local, vif, sta, skb); if (!txqi) return false; ieee80211_txq_enqueue(local, txqi, skb); schedule_and_wake_txq(local, txqi); return true; } static bool ieee80211_tx_frags(struct ieee80211_local *local, struct ieee80211_vif *vif, struct sta_info *sta, struct sk_buff_head *skbs, bool txpending) { struct ieee80211_tx_control control = {}; struct sk_buff *skb, *tmp; unsigned long flags; skb_queue_walk_safe(skbs, skb, tmp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int q = info->hw_queue; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG if (WARN_ON_ONCE(q >= local->hw.queues)) { __skb_unlink(skb, skbs); ieee80211_free_txskb(&local->hw, skb); continue; } #endif spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (local->queue_stop_reasons[q] || (!txpending && !skb_queue_empty(&local->pending[q]))) { if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) { if (local->queue_stop_reasons[q] & ~BIT(IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL)) { /* * Drop off-channel frames if queues * are stopped for any reason other * than off-channel operation. Never * queue them. */ spin_unlock_irqrestore( &local->queue_stop_reason_lock, flags); ieee80211_purge_tx_queue(&local->hw, skbs); return true; } } else { /* * Since queue is stopped, queue up frames for * later transmission from the tx-pending * tasklet when the queue is woken again. */ if (txpending) skb_queue_splice_init(skbs, &local->pending[q]); else skb_queue_splice_tail_init(skbs, &local->pending[q]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return false; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); info->control.vif = vif; control.sta = sta ? &sta->sta : NULL; __skb_unlink(skb, skbs); drv_tx(local, &control, skb); } return true; } /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff_head *skbs, struct sta_info *sta, bool txpending) { struct ieee80211_tx_info *info; struct ieee80211_sub_if_data *sdata; struct ieee80211_vif *vif; struct sk_buff *skb; bool result; if (WARN_ON(skb_queue_empty(skbs))) return true; skb = skb_peek(skbs); info = IEEE80211_SKB_CB(skb); sdata = vif_to_sdata(info->control.vif); if (sta && !sta->uploaded) sta = NULL; switch (sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) { vif = &sdata->vif; break; } sdata = rcu_dereference(local->monitor_sdata); if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { vif = &sdata->vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { ieee80211_purge_tx_queue(&local->hw, skbs); return true; } else vif = NULL; break; case NL80211_IFTYPE_AP_VLAN: sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); fallthrough; default: vif = &sdata->vif; break; } result = ieee80211_tx_frags(local, vif, sta, skbs, txpending); WARN_ON_ONCE(!skb_queue_empty(skbs)); return result; } /* * Invoke TX handlers, return 0 on success and non-zero if the * frame was dropped or queued. * * The handlers are split into an early and late part. The latter is everything * that can be sensitive to reordering, and will be deferred to after packets * are dequeued from the intermediate queues (when they are enabled). */ static int invoke_tx_handlers_early(struct ieee80211_tx_data *tx) { ieee80211_tx_result res = TX_DROP; #define CALL_TXH(txh) \ do { \ res = txh(tx); \ if (res != TX_CONTINUE) \ goto txh_done; \ } while (0) CALL_TXH(ieee80211_tx_h_dynamic_ps); CALL_TXH(ieee80211_tx_h_check_assoc); CALL_TXH(ieee80211_tx_h_ps_buf); CALL_TXH(ieee80211_tx_h_check_control_port_protocol); CALL_TXH(ieee80211_tx_h_select_key); txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } /* * Late handlers can be called while the sta lock is held. Handlers that can * cause packets to be generated will cause deadlock! */ static int invoke_tx_handlers_late(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); ieee80211_tx_result res = TX_CONTINUE; if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_rate_ctrl); if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) { __skb_queue_tail(&tx->skbs, tx->skb); tx->skb = NULL; goto txh_done; } CALL_TXH(ieee80211_tx_h_michael_mic_add); CALL_TXH(ieee80211_tx_h_sequence); CALL_TXH(ieee80211_tx_h_fragment); /* handlers after fragment must be aware of tx info fragmentation! */ CALL_TXH(ieee80211_tx_h_stats); CALL_TXH(ieee80211_tx_h_encrypt); if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_calculate_duration); #undef CALL_TXH txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } static int invoke_tx_handlers(struct ieee80211_tx_data *tx) { int r = invoke_tx_handlers_early(tx); if (r) return r; return invoke_tx_handlers_late(tx); } bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb, int band, struct ieee80211_sta **sta) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_data tx; struct sk_buff *skb2; if (ieee80211_tx_prepare(sdata, &tx, NULL, skb) == TX_DROP) return false; info->band = band; info->control.vif = vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers(&tx)) return false; if (sta) { if (tx.sta) *sta = &tx.sta->sta; else *sta = NULL; } /* this function isn't suitable for fragmented data frames */ skb2 = __skb_dequeue(&tx.skbs); if (WARN_ON(skb2 != skb || !skb_queue_empty(&tx.skbs))) { ieee80211_free_txskb(hw, skb2); ieee80211_purge_tx_queue(hw, &tx.skbs); return false; } return true; } EXPORT_SYMBOL(ieee80211_tx_prepare_skb); /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb, bool txpending) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_data tx; ieee80211_tx_result res_prepare; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool result = true; if (unlikely(skb->len < 10)) { dev_kfree_skb(skb); return true; } /* initialises tx */ res_prepare = ieee80211_tx_prepare(sdata, &tx, sta, skb); if (unlikely(res_prepare == TX_DROP)) { ieee80211_free_txskb(&local->hw, skb); return true; } else if (unlikely(res_prepare == TX_QUEUED)) { return true; } /* set up hw_queue value early */ if (!(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers_early(&tx)) return true; if (ieee80211_queue_skb(local, sdata, tx.sta, tx.skb)) return true; if (!invoke_tx_handlers_late(&tx)) result = __ieee80211_tx(local, &tx.skbs, tx.sta, txpending); return result; } /* device xmit handlers */ enum ieee80211_encrypt { ENCRYPT_NO, ENCRYPT_MGMT, ENCRYPT_DATA, }; static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int head_need, enum ieee80211_encrypt encrypt) { struct ieee80211_local *local = sdata->local; bool enc_tailroom; int tail_need = 0; enc_tailroom = encrypt == ENCRYPT_MGMT || (encrypt == ENCRYPT_DATA && sdata->crypto_tx_tailroom_needed_cnt); if (enc_tailroom) { tail_need = IEEE80211_ENCRYPT_TAILROOM; tail_need -= skb_tailroom(skb); tail_need = max_t(int, tail_need, 0); } if (skb_cloned(skb) && (!ieee80211_hw_check(&local->hw, SUPPORTS_CLONED_SKBS) || !skb_clone_writable(skb, ETH_HLEN) || enc_tailroom)) I802_DEBUG_INC(local->tx_expand_skb_head_cloned); else if (head_need || tail_need) I802_DEBUG_INC(local->tx_expand_skb_head); else return 0; if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return -ENOMEM; } return 0; } void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; int headroom; enum ieee80211_encrypt encrypt; if (info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT) encrypt = ENCRYPT_NO; else if (ieee80211_is_mgmt(hdr->frame_control)) encrypt = ENCRYPT_MGMT; else encrypt = ENCRYPT_DATA; headroom = local->tx_headroom; if (encrypt != ENCRYPT_NO) headroom += IEEE80211_ENCRYPT_HEADROOM; headroom -= skb_headroom(skb); headroom = max_t(int, 0, headroom); if (ieee80211_skb_resize(sdata, skb, headroom, encrypt)) { ieee80211_free_txskb(&local->hw, skb); return; } /* reload after potential resize */ hdr = (struct ieee80211_hdr *) skb->data; info->control.vif = &sdata->vif; if (ieee80211_vif_is_mesh(&sdata->vif)) { if (ieee80211_is_data(hdr->frame_control) && is_unicast_ether_addr(hdr->addr1)) { if (mesh_nexthop_resolve(sdata, skb)) return; /* skb queued: don't free */ } else { ieee80211_mps_set_frame_flags(sdata, NULL, hdr); } } ieee80211_set_qos_hdr(sdata, skb); ieee80211_tx(sdata, sta, skb, false); } static bool ieee80211_validate_radiotap_len(struct sk_buff *skb) { struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *)skb->data; /* check for not even having the fixed radiotap header part */ if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) return false; /* too short to be possibly valid */ /* is it a header version we can trust to find length from? */ if (unlikely(rthdr->it_version)) return false; /* only version 0 is supported */ /* does the skb contain enough to deliver on the alleged length? */ if (unlikely(skb->len < ieee80211_get_radiotap_len(skb->data))) return false; /* skb too short for claimed rt header extent */ return true; } bool ieee80211_parse_tx_radiotap(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_radiotap_iterator iterator; struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, NULL); u16 txflags; u16 rate = 0; bool rate_found = false; u8 rate_retries = 0; u16 rate_flags = 0; u8 mcs_known, mcs_flags, mcs_bw; u16 vht_known; u8 vht_mcs = 0, vht_nss = 0; int i; if (!ieee80211_validate_radiotap_len(skb)) return false; info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_DONTFRAG; /* * for every radiotap entry that is present * (ieee80211_radiotap_iterator_next returns -ENOENT when no more * entries present, or -EINVAL on error) */ while (!ret) { ret = ieee80211_radiotap_iterator_next(&iterator); if (ret) continue; /* see if this argument is something we can use */ switch (iterator.this_arg_index) { /* * You must take care when dereferencing iterator.this_arg * for multibyte types... the pointer is not aligned. Use * get_unaligned((type *)iterator.this_arg) to dereference * iterator.this_arg for type "type" safely on all arches. */ case IEEE80211_RADIOTAP_FLAGS: if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { /* * this indicates that the skb we have been * handed has the 32-bit FCS CRC at the end... * we should react to that by snipping it off * because it will be recomputed and added * on transmission */ if (skb->len < (iterator._max_length + FCS_LEN)) return false; skb_trim(skb, skb->len - FCS_LEN); } if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) info->flags &= ~IEEE80211_TX_CTL_DONTFRAG; break; case IEEE80211_RADIOTAP_TX_FLAGS: txflags = get_unaligned_le16(iterator.this_arg); if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK) info->flags |= IEEE80211_TX_CTL_NO_ACK; if (txflags & IEEE80211_RADIOTAP_F_TX_NOSEQNO) info->control.flags |= IEEE80211_TX_CTRL_NO_SEQNO; if (txflags & IEEE80211_RADIOTAP_F_TX_ORDER) info->control.flags |= IEEE80211_TX_CTRL_DONT_REORDER; break; case IEEE80211_RADIOTAP_RATE: rate = *iterator.this_arg; rate_flags = 0; rate_found = true; break; case IEEE80211_RADIOTAP_ANTENNA: /* this can appear multiple times, keep a bitmap */ info->control.antennas |= BIT(*iterator.this_arg); break; case IEEE80211_RADIOTAP_DATA_RETRIES: rate_retries = *iterator.this_arg; break; case IEEE80211_RADIOTAP_MCS: mcs_known = iterator.this_arg[0]; mcs_flags = iterator.this_arg[1]; if (!(mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS)) break; rate_found = true; rate = iterator.this_arg[2]; rate_flags = IEEE80211_TX_RC_MCS; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI && mcs_flags & IEEE80211_RADIOTAP_MCS_SGI) rate_flags |= IEEE80211_TX_RC_SHORT_GI; mcs_bw = mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW && mcs_bw == IEEE80211_RADIOTAP_MCS_BW_40) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_FEC && mcs_flags & IEEE80211_RADIOTAP_MCS_FEC_LDPC) info->flags |= IEEE80211_TX_CTL_LDPC; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_STBC) { u8 stbc = u8_get_bits(mcs_flags, IEEE80211_RADIOTAP_MCS_STBC_MASK); info->flags |= u32_encode_bits(stbc, IEEE80211_TX_CTL_STBC); } break; case IEEE80211_RADIOTAP_VHT: vht_known = get_unaligned_le16(iterator.this_arg); rate_found = true; rate_flags = IEEE80211_TX_RC_VHT_MCS; if ((vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_GI) && (iterator.this_arg[2] & IEEE80211_RADIOTAP_VHT_FLAG_SGI)) rate_flags |= IEEE80211_TX_RC_SHORT_GI; if (vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH) { if (iterator.this_arg[3] == 1) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; else if (iterator.this_arg[3] == 4) rate_flags |= IEEE80211_TX_RC_80_MHZ_WIDTH; else if (iterator.this_arg[3] == 11) rate_flags |= IEEE80211_TX_RC_160_MHZ_WIDTH; } vht_mcs = iterator.this_arg[4] >> 4; if (vht_mcs > 11) vht_mcs = 0; vht_nss = iterator.this_arg[4] & 0xF; if (!vht_nss || vht_nss > 8) vht_nss = 1; break; /* * Please update the file * Documentation/networking/mac80211-injection.rst * when parsing new fields here. */ default: break; } } if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ return false; if (rate_found) { struct ieee80211_supported_band *sband = local->hw.wiphy->bands[info->band]; info->control.flags |= IEEE80211_TX_CTRL_RATE_INJECT; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { info->control.rates[i].idx = -1; info->control.rates[i].flags = 0; info->control.rates[i].count = 0; } if (rate_flags & IEEE80211_TX_RC_MCS) { /* reset antennas if not enough */ if (IEEE80211_HT_MCS_CHAINS(rate) > hweight8(info->control.antennas)) info->control.antennas = 0; info->control.rates[0].idx = rate; } else if (rate_flags & IEEE80211_TX_RC_VHT_MCS) { /* reset antennas if not enough */ if (vht_nss > hweight8(info->control.antennas)) info->control.antennas = 0; ieee80211_rate_set_vht(info->control.rates, vht_mcs, vht_nss); } else if (sband) { for (i = 0; i < sband->n_bitrates; i++) { if (rate * 5 != sband->bitrates[i].bitrate) continue; info->control.rates[0].idx = i; break; } } if (info->control.rates[0].idx < 0) info->control.flags &= ~IEEE80211_TX_CTRL_RATE_INJECT; info->control.rates[0].flags = rate_flags; info->control.rates[0].count = min_t(u8, rate_retries + 1, local->hw.max_rate_tries); } return true; } netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *tmp_sdata, *sdata; struct cfg80211_chan_def *chandef; u16 len_rthdr; int hdrlen; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (unlikely(!ieee80211_sdata_running(sdata))) goto fail; memset(info, 0, sizeof(*info)); info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_CTL_INJECTED; /* Sanity-check the length of the radiotap header */ if (!ieee80211_validate_radiotap_len(skb)) goto fail; /* we now know there is a radiotap header with a length we can use */ len_rthdr = ieee80211_get_radiotap_len(skb->data); /* * fix up the pointers accounting for the radiotap * header still being in there. We are being given * a precooked IEEE80211 header so no need for * normal processing */ skb_set_mac_header(skb, len_rthdr); /* * these are just fixed to the end of the rt area since we * don't have any better information and at this point, nobody cares */ skb_set_network_header(skb, len_rthdr); skb_set_transport_header(skb, len_rthdr); if (skb->len < len_rthdr + 2) goto fail; hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < len_rthdr + hdrlen) goto fail; /* * Initialize skb->protocol if the injected frame is a data frame * carrying a rfc1042 header */ if (ieee80211_is_data(hdr->frame_control) && skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) { u8 *payload = (u8 *)hdr + hdrlen; if (ether_addr_equal(payload, rfc1042_header)) skb->protocol = cpu_to_be16((payload[6] << 8) | payload[7]); } rcu_read_lock(); /* * We process outgoing injected frames that have a local address * we handle as though they are non-injected frames. * This code here isn't entirely correct, the local MAC address * isn't always enough to find the interface to use; for proper * VLAN support we have an nl80211-based mechanism. * * This is necessary, for example, for old hostapd versions that * don't use nl80211-based management TX/RX. */ list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(tmp_sdata)) continue; if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR || tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN) continue; if (ether_addr_equal(tmp_sdata->vif.addr, hdr->addr2)) { sdata = tmp_sdata; break; } } chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { tmp_sdata = rcu_dereference(local->monitor_sdata); if (tmp_sdata) chanctx_conf = rcu_dereference(tmp_sdata->vif.bss_conf.chanctx_conf); } if (chanctx_conf) chandef = &chanctx_conf->def; else goto fail_rcu; /* * If driver/HW supports IEEE80211_CHAN_CAN_MONITOR we still * shouldn't transmit on disabled channels. */ if (!cfg80211_chandef_usable(local->hw.wiphy, chandef, IEEE80211_CHAN_DISABLED)) goto fail_rcu; /* * Frame injection is not allowed if beaconing is not allowed * or if we need radar detection. Beaconing is usually not allowed when * the mode or operation (Adhoc, AP, Mesh) does not support DFS. * Passive scan is also used in world regulatory domains where * your country is not known and as such it should be treated as * NO TX unless the channel is explicitly allowed in which case * your current regulatory domain would not have the passive scan * flag. * * Since AP mode uses monitor interfaces to inject/TX management * frames we can make AP mode the exception to this rule once it * supports radar detection as its implementation can deal with * radar detection by itself. We can do that later by adding a * monitor flag interfaces used for AP support. */ if (!cfg80211_reg_can_beacon(local->hw.wiphy, chandef, sdata->vif.type)) goto fail_rcu; info->band = chandef->chan->band; /* Initialize skb->priority according to frame type and TID class, * with respect to the sub interface that the frame will actually * be transmitted on. If the DONT_REORDER flag is set, the original * skb-priority is preserved to assure frames injected with this * flag are not reordered relative to each other. */ ieee80211_select_queue_80211(sdata, skb, hdr); skb_set_queue_mapping(skb, ieee80211_ac_from_tid(skb->priority)); /* * Process the radiotap header. This will now take into account the * selected chandef above to accurately set injection rates and * retransmissions. */ if (!ieee80211_parse_tx_radiotap(skb, dev)) goto fail_rcu; /* remove the injection radiotap header */ skb_pull(skb, len_rthdr); ieee80211_xmit(sdata, NULL, skb); rcu_read_unlock(); return NETDEV_TX_OK; fail_rcu: rcu_read_unlock(); fail: dev_kfree_skb(skb); return NETDEV_TX_OK; /* meaning, we dealt with the skb */ } static inline bool ieee80211_is_tdls_setup(struct sk_buff *skb) { u16 ethertype = (skb->data[12] << 8) | skb->data[13]; return ethertype == ETH_P_TDLS && skb->len > 14 && skb->data[14] == WLAN_TDLS_SNAP_RFTYPE; } int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info **sta_out) { struct sta_info *sta; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: sta = rcu_dereference(sdata->u.vlan.sta); if (sta) { *sta_out = sta; return 0; } else if (sdata->wdev.use_4addr) { return -ENOLINK; } fallthrough; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_ADHOC: if (is_multicast_ether_addr(skb->data)) { *sta_out = ERR_PTR(-ENOENT); return 0; } sta = sta_info_get_bss(sdata, skb->data); break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: /* determined much later */ *sta_out = NULL; return 0; #endif case NL80211_IFTYPE_STATION: if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) { sta = sta_info_get(sdata, skb->data); if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { if (test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH)) { *sta_out = sta; return 0; } /* * TDLS link during setup - throw out frames to * peer. Allow TDLS-setup frames to unauthorized * peers for the special case of a link teardown * after a TDLS sta is removed due to being * unreachable. */ if (!ieee80211_is_tdls_setup(skb)) return -EINVAL; } } sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (!sta) return -ENOLINK; break; default: return -EINVAL; } *sta_out = sta ?: ERR_PTR(-ENOENT); return 0; } static u16 ieee80211_store_ack_skb(struct ieee80211_local *local, struct sk_buff *skb, u32 *info_flags, u64 *cookie) { struct sk_buff *ack_skb; u16 info_id = 0; if (skb->sk) ack_skb = skb_clone_sk(skb); else ack_skb = skb_clone(skb, GFP_ATOMIC); if (ack_skb) { unsigned long flags; int id; spin_lock_irqsave(&local->ack_status_lock, flags); id = idr_alloc(&local->ack_status_frames, ack_skb, 1, 0x2000, GFP_ATOMIC); spin_unlock_irqrestore(&local->ack_status_lock, flags); if (id >= 0) { info_id = id; *info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; if (cookie) { *cookie = ieee80211_mgmt_tx_cookie(local); IEEE80211_SKB_CB(ack_skb)->ack.cookie = *cookie; } } else { kfree_skb(ack_skb); } } return info_id; } /** * ieee80211_build_hdr - build 802.11 header in the given frame * @sdata: virtual interface to build the header for * @skb: the skb to build the header in * @info_flags: skb flags to set * @sta: the station pointer * @ctrl_flags: info control flags to set * @cookie: cookie pointer to fill (if not %NULL) * * This function takes the skb with 802.3 header and reformats the header to * the appropriate IEEE 802.11 header based on which interface the packet is * being transmitted on. * * Note that this function also takes care of the TX status request and * potential unsharing of the SKB - this needs to be interleaved with the * header building. * * The function requires the read-side RCU lock held * * Returns: the (possibly reallocated) skb or an ERR_PTR() code */ static struct sk_buff *ieee80211_build_hdr(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags, struct sta_info *sta, u32 ctrl_flags, u64 *cookie) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info; int head_need; u16 ethertype, hdrlen, meshhdrlen = 0; __le16 fc; struct ieee80211_hdr hdr; struct ieee80211s_hdr mesh_hdr __maybe_unused; struct mesh_path __maybe_unused *mppath = NULL, *mpath = NULL; const u8 *encaps_data; int encaps_len, skip_header_bytes; bool wme_sta = false, authorized = false; bool tdls_peer; bool multicast; u16 info_id = 0; struct ieee80211_chanctx_conf *chanctx_conf = NULL; enum nl80211_band band; int ret; u8 link_id = u32_get_bits(ctrl_flags, IEEE80211_TX_CTRL_MLO_LINK); if (IS_ERR(sta)) sta = NULL; #ifdef CONFIG_MAC80211_DEBUGFS if (local->force_tx_status) info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; #endif /* convert Ethernet header to proper 802.11 header (based on * operation mode) */ ethertype = (skb->data[12] << 8) | skb->data[13]; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); if (!ieee80211_vif_is_mld(&sdata->vif)) chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } if (!ieee80211_vif_is_mld(&sdata->vif)) { struct ieee80211_sub_if_data *ap_sdata; /* override chanctx_conf from AP (we don't have one) */ ap_sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); chanctx_conf = rcu_dereference(ap_sdata->vif.bss_conf.chanctx_conf); } if (sdata->wdev.use_4addr) break; fallthrough; case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ memcpy(hdr.addr1, skb->data, ETH_ALEN); if (ieee80211_vif_is_mld(&sdata->vif) && sta && !sta->sta.mlo) { struct ieee80211_link_data *link; link_id = sta->deflink.link_id; link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { ret = -ENOLINK; goto free; } memcpy(hdr.addr2, link->conf->addr, ETH_ALEN); } else if (link_id == IEEE80211_LINK_UNSPECIFIED || (sta && sta->sta.mlo)) { memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_bss_conf *conf; conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (unlikely(!conf)) { ret = -ENOLINK; goto free; } memcpy(hdr.addr2, conf->addr, ETH_ALEN); } memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 24; break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: if (!is_multicast_ether_addr(skb->data)) { struct sta_info *next_hop; bool mpp_lookup = true; mpath = mesh_path_lookup(sdata, skb->data); if (mpath) { mpp_lookup = false; next_hop = rcu_dereference(mpath->next_hop); if (!next_hop || !(mpath->flags & (MESH_PATH_ACTIVE | MESH_PATH_RESOLVING))) mpp_lookup = true; } if (mpp_lookup) { mppath = mpp_path_lookup(sdata, skb->data); if (mppath) mppath->exp_time = jiffies; } if (mppath && mpath) mesh_path_del(sdata, mpath->dst); } /* * Use address extension if it is a packet from * another interface or if we know the destination * is being proxied by a portal (i.e. portal address * differs from proxied address) */ if (ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN) && !(mppath && !ether_addr_equal(mppath->mpp, skb->data))) { hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, skb->data, skb->data + ETH_ALEN); meshhdrlen = ieee80211_new_mesh_header(sdata, &mesh_hdr, NULL, NULL); } else { /* DS -> MBSS (802.11-2012 13.11.3.3). * For unicast with unknown forwarding information, * destination might be in the MBSS or if that fails * forwarded to another mesh gate. In either case * resolution will be handled in ieee80211_xmit(), so * leave the original DA. This also works for mcast */ const u8 *mesh_da = skb->data; if (mppath) mesh_da = mppath->mpp; else if (mpath) mesh_da = mpath->dst; hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, mesh_da, sdata->vif.addr); if (is_multicast_ether_addr(mesh_da)) /* DA TA mSA AE:SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data + ETH_ALEN, NULL); else /* RA TA mDA mSA AE:DA SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data, skb->data + ETH_ALEN); } /* For injected frames, fill RA right away as nexthop lookup * will be skipped. */ if ((ctrl_flags & IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP) && is_zero_ether_addr(hdr.addr1)) memcpy(hdr.addr1, skb->data, ETH_ALEN); break; #endif case NL80211_IFTYPE_STATION: /* we already did checks when looking up the RA STA */ tdls_peer = test_sta_flag(sta, WLAN_STA_TDLS_PEER); if (tdls_peer) { /* For TDLS only one link can be valid with peer STA */ int tdls_link_id = ieee80211_tdls_sta_link_id(sta); struct ieee80211_link_data *link; /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); link = rcu_dereference(sdata->link[tdls_link_id]); if (WARN_ON_ONCE(!link)) { ret = -EINVAL; goto free; } memcpy(hdr.addr3, link->u.mgd.bssid, ETH_ALEN); hdrlen = 24; } else if (sdata->u.mgd.use_4addr && cpu_to_be16(ethertype) != sdata->control_port_protocol) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; } else { fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr.addr1, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); hdrlen = 24; } break; case NL80211_IFTYPE_OCB: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); eth_broadcast_addr(hdr.addr3); hdrlen = 24; break; case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); hdrlen = 24; break; default: ret = -EINVAL; goto free; } if (!chanctx_conf) { if (!ieee80211_vif_is_mld(&sdata->vif)) { ret = -ENOTCONN; goto free; } /* MLD transmissions must not rely on the band */ band = 0; } else { band = chanctx_conf->def.chan->band; } multicast = is_multicast_ether_addr(hdr.addr1); /* sta is always NULL for mesh */ if (sta) { authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { /* For mesh, the use of the QoS header is mandatory */ wme_sta = true; } /* receiver does QoS (which also means we do) use it */ if (wme_sta) { fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); hdrlen += 2; } /* * Drop unicast frames to unauthorised stations unless they are * EAPOL frames from the local station. */ if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) && (sdata->vif.type != NL80211_IFTYPE_OCB) && !multicast && !authorized && (cpu_to_be16(ethertype) != sdata->control_port_protocol || !ieee80211_is_our_addr(sdata, skb->data + ETH_ALEN, NULL)))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG net_info_ratelimited("%s: dropped frame to %pM (unauthorized port)\n", sdata->name, hdr.addr1); #endif I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); ret = -EPERM; goto free; } if (unlikely(!multicast && ((skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) || ctrl_flags & IEEE80211_TX_CTL_REQ_TX_STATUS))) info_id = ieee80211_store_ack_skb(local, skb, &info_flags, cookie); /* * If the skb is shared we need to obtain our own copy. */ skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) { ret = -ENOMEM; goto free; } hdr.frame_control = fc; hdr.duration_id = 0; hdr.seq_ctrl = 0; skip_header_bytes = ETH_HLEN; if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { encaps_data = bridge_tunnel_header; encaps_len = sizeof(bridge_tunnel_header); skip_header_bytes -= 2; } else if (ethertype >= ETH_P_802_3_MIN) { encaps_data = rfc1042_header; encaps_len = sizeof(rfc1042_header); skip_header_bytes -= 2; } else { encaps_data = NULL; encaps_len = 0; } skb_pull(skb, skip_header_bytes); head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); /* * So we need to modify the skb header and hence need a copy of * that. The head_need variable above doesn't, so far, include * the needed header space that we don't need right away. If we * can, then we don't reallocate right now but only after the * frame arrives at the master device (if it does...) * * If we cannot, however, then we will reallocate to include all * the ever needed space. Also, if we need to reallocate it anyway, * make it big enough for everything we may ever need. */ if (head_need > 0 || skb_cloned(skb)) { head_need += IEEE80211_ENCRYPT_HEADROOM; head_need += local->tx_headroom; head_need = max_t(int, 0, head_need); if (ieee80211_skb_resize(sdata, skb, head_need, ENCRYPT_DATA)) { ieee80211_free_txskb(&local->hw, skb); skb = NULL; return ERR_PTR(-ENOMEM); } } if (encaps_data) memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); #ifdef CONFIG_MAC80211_MESH if (meshhdrlen > 0) memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); #endif if (ieee80211_is_data_qos(fc)) { __le16 *qos_control; qos_control = skb_push(skb, 2); memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); /* * Maybe we could actually set some fields here, for now just * initialise to zero to indicate no special operation. */ *qos_control = 0; } else memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); skb_reset_mac_header(skb); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->flags = info_flags; if (info_id) { info->status_data = info_id; info->status_data_idr = 1; } info->band = band; if (likely(!cookie)) { ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); } else { unsigned int pre_conf_link_id; /* * ctrl_flags already have been set by * ieee80211_tx_control_port(), here * we just sanity check that */ pre_conf_link_id = u32_get_bits(ctrl_flags, IEEE80211_TX_CTRL_MLO_LINK); if (pre_conf_link_id != link_id && link_id != IEEE80211_LINK_UNSPECIFIED) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG net_info_ratelimited("%s: dropped frame to %pM with bad link ID request (%d vs. %d)\n", sdata->name, hdr.addr1, pre_conf_link_id, link_id); #endif ret = -EINVAL; goto free; } } info->control.flags = ctrl_flags; return skb; free: kfree_skb(skb); return ERR_PTR(ret); } /* * fast-xmit overview * * The core idea of this fast-xmit is to remove per-packet checks by checking * them out of band. ieee80211_check_fast_xmit() implements the out-of-band * checks that are needed to get the sta->fast_tx pointer assigned, after which * much less work can be done per packet. For example, fragmentation must be * disabled or the fast_tx pointer will not be set. All the conditions are seen * in the code here. * * Once assigned, the fast_tx data structure also caches the per-packet 802.11 * header and other data to aid packet processing in ieee80211_xmit_fast(). * * The most difficult part of this is that when any of these assumptions * change, an external trigger (i.e. a call to ieee80211_clear_fast_xmit(), * ieee80211_check_fast_xmit() or friends) is required to reset the data, * since the per-packet code no longer checks the conditions. This is reflected * by the calls to these functions throughout the rest of the code, and must be * maintained if any of the TX path checks change. */ void ieee80211_check_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx build = {}, *fast_tx = NULL, *old; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_hdr *hdr = (void *)build.hdr; struct ieee80211_chanctx_conf *chanctx_conf; __le16 fc; if (!ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT)) return; if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_fast_tx_flush_sta(sdata, sta); /* Locking here protects both the pointer itself, and against concurrent * invocations winning data access races to, e.g., the key pointer that * is used. * Without it, the invocation of this function right after the key * pointer changes wouldn't be sufficient, as another CPU could access * the pointer, then stall, and then do the cache update after the CPU * that invalidated the key. * With the locking, such scenarios cannot happen as the check for the * key and the fast-tx assignment are done atomically, so the CPU that * modifies the key will either wait or other one will see the key * cleared/changed already. */ spin_lock_bh(&sta->lock); if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && sdata->vif.type == NL80211_IFTYPE_STATION) goto out; if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED) || !sta->uploaded) goto out; if (test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER) || test_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT)) goto out; if (sdata->noack_map) goto out; /* fast-xmit doesn't handle fragmentation at all */ if (local->hw.wiphy->frag_threshold != (u32)-1 && !ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG)) goto out; if (!ieee80211_vif_is_mld(&sdata->vif)) { rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); goto out; } build.band = chanctx_conf->def.chan->band; rcu_read_unlock(); } else { /* MLD transmissions must not rely on the band */ build.band = 0; } fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (sdata->vif.type) { case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); memcpy(hdr->addr3, sdata->u.ibss.bssid, ETH_ALEN); build.hdr_len = 24; break; case NL80211_IFTYPE_STATION: if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { /* For TDLS only one link can be valid with peer STA */ int tdls_link_id = ieee80211_tdls_sta_link_id(sta); struct ieee80211_link_data *link; /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); rcu_read_lock(); link = rcu_dereference(sdata->link[tdls_link_id]); if (!WARN_ON_ONCE(!link)) memcpy(hdr->addr3, link->u.mgd.bssid, ETH_ALEN); rcu_read_unlock(); build.hdr_len = 24; break; } if (sdata->u.mgd.use_4addr) { /* non-regular ethertype cannot use the fastpath */ fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr->addr1, sdata->vif.cfg.ap_addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); build.hdr_len = 24; break; case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } fallthrough; case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); if (sta->sta.mlo || !ieee80211_vif_is_mld(&sdata->vif)) { memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); } else { unsigned int link_id = sta->deflink.link_id; struct ieee80211_link_data *link; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { rcu_read_unlock(); goto out; } memcpy(hdr->addr2, link->conf->addr, ETH_ALEN); rcu_read_unlock(); } build.sa_offs = offsetof(struct ieee80211_hdr, addr3); build.hdr_len = 24; break; default: /* not handled on fast-xmit */ goto out; } if (sta->sta.wme) { build.hdr_len += 2; fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); } /* We store the key here so there's no point in using rcu_dereference() * but that's fine because the code that changes the pointers will call * this function after doing so. For a single CPU that would be enough, * for multiple see the comment above. */ build.key = rcu_access_pointer(sta->ptk[sta->ptk_idx]); if (!build.key) build.key = rcu_access_pointer(sdata->default_unicast_key); if (build.key) { bool gen_iv, iv_spc, mmic; gen_iv = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV; iv_spc = build.key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE; mmic = build.key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | IEEE80211_KEY_FLAG_PUT_MIC_SPACE); /* don't handle software crypto */ if (!(build.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) goto out; /* Key is being removed */ if (build.key->flags & KEY_FLAG_TAINTED) goto out; switch (build.key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (gen_iv) build.pn_offs = build.hdr_len; if (gen_iv || iv_spc) build.hdr_len += IEEE80211_CCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (gen_iv) build.pn_offs = build.hdr_len; if (gen_iv || iv_spc) build.hdr_len += IEEE80211_GCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_TKIP: /* cannot handle MMIC or IV generation in xmit-fast */ if (mmic || gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_TKIP_IV_LEN; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* cannot handle IV generation in fast-xmit */ if (gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_WEP_IV_LEN; break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: WARN(1, "management cipher suite 0x%x enabled for data\n", build.key->conf.cipher); goto out; default: /* we don't know how to generate IVs for this at all */ if (WARN_ON(gen_iv)) goto out; } fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } hdr->frame_control = fc; memcpy(build.hdr + build.hdr_len, rfc1042_header, sizeof(rfc1042_header)); build.hdr_len += sizeof(rfc1042_header); fast_tx = kmemdup(&build, sizeof(build), GFP_ATOMIC); /* if the kmemdup fails, continue w/o fast_tx */ out: /* we might have raced against another call to this function */ old = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); rcu_assign_pointer(sta->fast_tx, fast_tx); if (old) kfree_rcu(old, rcu_head); spin_unlock_bh(&sta->lock); } void ieee80211_check_fast_xmit_all(struct ieee80211_local *local) { struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) ieee80211_check_fast_xmit(sta); rcu_read_unlock(); } void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata && (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) continue; ieee80211_check_fast_xmit(sta); } rcu_read_unlock(); } void ieee80211_clear_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx *fast_tx; spin_lock_bh(&sta->lock); fast_tx = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); RCU_INIT_POINTER(sta->fast_tx, NULL); spin_unlock_bh(&sta->lock); if (fast_tx) kfree_rcu(fast_tx, rcu_head); } static bool ieee80211_amsdu_realloc_pad(struct ieee80211_local *local, struct sk_buff *skb, int headroom) { if (skb_headroom(skb) < headroom) { I802_DEBUG_INC(local->tx_expand_skb_head); if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return false; } } return true; } static bool ieee80211_amsdu_prepare_head(struct ieee80211_sub_if_data *sdata, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ethhdr *amsdu_hdr; int hdr_len = fast_tx->hdr_len - sizeof(rfc1042_header); int subframe_len = skb->len - hdr_len; void *data; u8 *qc, *h_80211_src, *h_80211_dst; const u8 *bssid; if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) return false; if (info->control.flags & IEEE80211_TX_CTRL_AMSDU) return true; if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(*amsdu_hdr) + local->hw.extra_tx_headroom)) return false; data = skb_push(skb, sizeof(*amsdu_hdr)); memmove(data, data + sizeof(*amsdu_hdr), hdr_len); hdr = data; amsdu_hdr = data + hdr_len; /* h_80211_src/dst is addr* field within hdr */ h_80211_src = data + fast_tx->sa_offs; h_80211_dst = data + fast_tx->da_offs; amsdu_hdr->h_proto = cpu_to_be16(subframe_len); ether_addr_copy(amsdu_hdr->h_source, h_80211_src); ether_addr_copy(amsdu_hdr->h_dest, h_80211_dst); /* according to IEEE 802.11-2012 8.3.2 table 8-19, the outer SA/DA * fields needs to be changed to BSSID for A-MSDU frames depending * on FromDS/ToDS values. */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: bssid = sdata->vif.cfg.ap_addr; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: bssid = sdata->vif.addr; break; default: bssid = NULL; } if (bssid && ieee80211_has_fromds(hdr->frame_control)) ether_addr_copy(h_80211_src, bssid); if (bssid && ieee80211_has_tods(hdr->frame_control)) ether_addr_copy(h_80211_dst, bssid); qc = ieee80211_get_qos_ctl(hdr); *qc |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; info->control.flags |= IEEE80211_TX_CTRL_AMSDU; return true; } static bool ieee80211_amsdu_aggregate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb, const u8 *da, const u8 *sa) { struct ieee80211_local *local = sdata->local; struct fq *fq = &local->fq; struct fq_tin *tin; struct fq_flow *flow; u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi; struct sk_buff **frag_tail, *head; int subframe_len = skb->len - ETH_ALEN; u8 max_subframes = sta->sta.max_amsdu_subframes; int max_frags = local->hw.max_tx_fragments; int max_amsdu_len = sta->sta.cur->max_amsdu_len; int orig_truesize; u32 flow_idx; __be16 len; void *data; bool ret = false; unsigned int orig_len; int n = 2, nfrags, pad = 0; u16 hdrlen; if (!ieee80211_hw_check(&local->hw, TX_AMSDU)) return false; if (sdata->vif.offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED) return false; if (ieee80211_vif_is_mesh(&sdata->vif)) return false; if (skb_is_gso(skb)) return false; if (!txq) return false; txqi = to_txq_info(txq); if (test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags)) return false; if (sta->sta.cur->max_rc_amsdu_len) max_amsdu_len = min_t(int, max_amsdu_len, sta->sta.cur->max_rc_amsdu_len); if (sta->sta.cur->max_tid_amsdu_len[tid]) max_amsdu_len = min_t(int, max_amsdu_len, sta->sta.cur->max_tid_amsdu_len[tid]); flow_idx = fq_flow_idx(fq, skb); spin_lock_bh(&fq->lock); /* TODO: Ideally aggregation should be done on dequeue to remain * responsive to environment changes. */ tin = &txqi->tin; flow = fq_flow_classify(fq, tin, flow_idx, skb); head = skb_peek_tail(&flow->queue); if (!head || skb_is_gso(head)) goto out; orig_truesize = head->truesize; orig_len = head->len; if (skb->len + head->len > max_amsdu_len) goto out; nfrags = 1 + skb_shinfo(skb)->nr_frags; nfrags += 1 + skb_shinfo(head)->nr_frags; frag_tail = &skb_shinfo(head)->frag_list; while (*frag_tail) { nfrags += 1 + skb_shinfo(*frag_tail)->nr_frags; frag_tail = &(*frag_tail)->next; n++; } if (max_subframes && n > max_subframes) goto out; if (max_frags && nfrags > max_frags) goto out; if (!drv_can_aggregate_in_amsdu(local, head, skb)) goto out; if (!ieee80211_amsdu_prepare_head(sdata, fast_tx, head)) goto out; /* If n == 2, the "while (*frag_tail)" loop above didn't execute * and frag_tail should be &skb_shinfo(head)->frag_list. * However, ieee80211_amsdu_prepare_head() can reallocate it. * Reload frag_tail to have it pointing to the correct place. */ if (n == 2) frag_tail = &skb_shinfo(head)->frag_list; /* * Pad out the previous subframe to a multiple of 4 by adding the * padding to the next one, that's being added. Note that head->len * is the length of the full A-MSDU, but that works since each time * we add a new subframe we pad out the previous one to a multiple * of 4 and thus it no longer matters in the next round. */ hdrlen = fast_tx->hdr_len - sizeof(rfc1042_header); if ((head->len - hdrlen) & 3) pad = 4 - ((head->len - hdrlen) & 3); if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(rfc1042_header) + 2 + pad)) goto out_recalc; ret = true; data = skb_push(skb, ETH_ALEN + 2); ether_addr_copy(data, da); ether_addr_copy(data + ETH_ALEN, sa); data += 2 * ETH_ALEN; len = cpu_to_be16(subframe_len); memcpy(data, &len, 2); memcpy(data + 2, rfc1042_header, sizeof(rfc1042_header)); memset(skb_push(skb, pad), 0, pad); head->len += skb->len; head->data_len += skb->len; *frag_tail = skb; out_recalc: fq->memory_usage += head->truesize - orig_truesize; if (head->len != orig_len) { flow->backlog += head->len - orig_len; tin->backlog_bytes += head->len - orig_len; } out: spin_unlock_bh(&fq->lock); return ret; } /* * Can be called while the sta lock is held. Anything that can cause packets to * be generated will cause deadlock! */ static ieee80211_tx_result ieee80211_xmit_fast_finish(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 pn_offs, struct ieee80211_key *key, struct ieee80211_tx_data *tx) { struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; u8 tid = IEEE80211_NUM_TIDS; if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL) && ieee80211_tx_h_rate_ctrl(tx) != TX_CONTINUE) return TX_DROP; if (key) info->control.hw_key = &key->conf; dev_sw_netstats_tx_add(skb->dev, 1, skb->len); if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; hdr->seq_ctrl = ieee80211_tx_next_seq(sta, tid); } else { info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; hdr->seq_ctrl = cpu_to_le16(sdata->sequence_number); sdata->sequence_number += 0x10; } if (skb_shinfo(skb)->gso_size) sta->deflink.tx_stats.msdu[tid] += DIV_ROUND_UP(skb->len, skb_shinfo(skb)->gso_size); else sta->deflink.tx_stats.msdu[tid]++; info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; /* statistics normally done by ieee80211_tx_h_stats (but that * has to consider fragmentation, so is more complex) */ sta->deflink.tx_stats.bytes[skb_get_queue_mapping(skb)] += skb->len; sta->deflink.tx_stats.packets[skb_get_queue_mapping(skb)]++; if (pn_offs) { u64 pn; u8 *crypto_hdr = skb->data + pn_offs; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: pn = atomic64_inc_return(&key->conf.tx_pn); crypto_hdr[0] = pn; crypto_hdr[1] = pn >> 8; crypto_hdr[3] = 0x20 | (key->conf.keyidx << 6); crypto_hdr[4] = pn >> 16; crypto_hdr[5] = pn >> 24; crypto_hdr[6] = pn >> 32; crypto_hdr[7] = pn >> 40; break; } } return TX_CONTINUE; } static netdev_features_t ieee80211_sdata_netdev_features(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) return sdata->vif.netdev_features; if (!sdata->bss) return 0; sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); return sdata->vif.netdev_features; } static struct sk_buff * ieee80211_tx_skb_fixup(struct sk_buff *skb, netdev_features_t features) { if (skb_is_gso(skb)) { struct sk_buff *segs; segs = skb_gso_segment(skb, features); if (!segs) return skb; if (IS_ERR(segs)) goto free; consume_skb(skb); return segs; } if (skb_needs_linearize(skb, features) && __skb_linearize(skb)) goto free; if (skb->ip_summed == CHECKSUM_PARTIAL) { int ofs = skb_checksum_start_offset(skb); if (skb->encapsulation) skb_set_inner_transport_header(skb, ofs); else skb_set_transport_header(skb, ofs); if (skb_csum_hwoffload_help(skb, features)) goto free; } skb_mark_not_on_list(skb); return skb; free: kfree_skb(skb); return NULL; } void __ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb, bool ampdu, const u8 *da, const u8 *sa) { struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *hdr = (void *)fast_tx->hdr; struct ieee80211_tx_info *info; struct ieee80211_tx_data tx; ieee80211_tx_result r; int hw_headroom = sdata->local->hw.extra_tx_headroom; int extra_head = fast_tx->hdr_len - (ETH_HLEN - 2); skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return; if ((hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) && ieee80211_amsdu_aggregate(sdata, sta, fast_tx, skb, da, sa)) return; /* will not be crypto-handled beyond what we do here, so use false * as the may-encrypt argument for the resize to not account for * more room than we already have in 'extra_head' */ if (unlikely(ieee80211_skb_resize(sdata, skb, max_t(int, extra_head + hw_headroom - skb_headroom(skb), 0), ENCRYPT_NO))) goto free; hdr = skb_push(skb, extra_head); memcpy(skb->data, fast_tx->hdr, fast_tx->hdr_len); memcpy(skb->data + fast_tx->da_offs, da, ETH_ALEN); memcpy(skb->data + fast_tx->sa_offs, sa, ETH_ALEN); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->band = fast_tx->band; info->control.vif = &sdata->vif; info->flags = IEEE80211_TX_CTL_FIRST_FRAGMENT | IEEE80211_TX_CTL_DONTFRAG; info->control.flags = IEEE80211_TX_CTRL_FAST_XMIT | u32_encode_bits(IEEE80211_LINK_UNSPECIFIED, IEEE80211_TX_CTRL_MLO_LINK); #ifdef CONFIG_MAC80211_DEBUGFS if (local->force_tx_status) info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; #endif if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; *ieee80211_get_qos_ctl(hdr) = tid; } __skb_queue_head_init(&tx.skbs); tx.flags = IEEE80211_TX_UNICAST; tx.local = local; tx.sdata = sdata; tx.sta = sta; tx.key = fast_tx->key; if (ieee80211_queue_skb(local, sdata, sta, skb)) return; tx.skb = skb; r = ieee80211_xmit_fast_finish(sdata, sta, fast_tx->pn_offs, fast_tx->key, &tx); tx.skb = NULL; if (r == TX_DROP) goto free; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); __skb_queue_tail(&tx.skbs, skb); ieee80211_tx_frags(local, &sdata->vif, sta, &tx.skbs, false); return; free: kfree_skb(skb); } static bool ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { u16 ethertype = (skb->data[12] << 8) | skb->data[13]; struct ieee80211_hdr *hdr = (void *)fast_tx->hdr; struct tid_ampdu_tx *tid_tx = NULL; struct sk_buff *next; struct ethhdr eth; u8 tid = IEEE80211_NUM_TIDS; /* control port protocol needs a lot of special handling */ if (cpu_to_be16(ethertype) == sdata->control_port_protocol) return false; /* only RFC 1042 SNAP */ if (ethertype < ETH_P_802_3_MIN) return false; /* don't handle TX status request here either */ if (skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) return false; if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) return false; if (tid_tx->timeout) tid_tx->last_tx = jiffies; } } memcpy(ð, skb->data, ETH_HLEN - 2); /* after this point (skb is modified) we cannot return false */ skb = ieee80211_tx_skb_fixup(skb, ieee80211_sdata_netdev_features(sdata)); if (!skb) return true; skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); __ieee80211_xmit_fast(sdata, sta, fast_tx, skb, tid_tx, eth.h_dest, eth.h_source); } return true; } struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *txqi = container_of(txq, struct txq_info, txq); struct ieee80211_hdr *hdr; struct sk_buff *skb = NULL; struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; struct ieee80211_tx_info *info; struct ieee80211_tx_data tx; ieee80211_tx_result r; struct ieee80211_vif *vif = txq->vif; int q = vif->hw_queue[txq->ac]; unsigned long flags; bool q_stopped; WARN_ON_ONCE(softirq_count() == 0); if (!ieee80211_txq_airtime_check(hw, txq)) return NULL; begin: spin_lock_irqsave(&local->queue_stop_reason_lock, flags); q_stopped = local->queue_stop_reasons[q]; spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); if (unlikely(q_stopped)) { /* mark for waking later */ set_bit(IEEE80211_TXQ_DIRTY, &txqi->flags); return NULL; } spin_lock_bh(&fq->lock); /* Make sure fragments stay together. */ skb = __skb_dequeue(&txqi->frags); if (unlikely(skb)) { if (!(IEEE80211_SKB_CB(skb)->control.flags & IEEE80211_TX_INTCFL_NEED_TXPROCESSING)) goto out; IEEE80211_SKB_CB(skb)->control.flags &= ~IEEE80211_TX_INTCFL_NEED_TXPROCESSING; } else { if (unlikely(test_bit(IEEE80211_TXQ_STOP, &txqi->flags))) goto out; skb = fq_tin_dequeue(fq, tin, fq_tin_dequeue_func); } if (!skb) goto out; spin_unlock_bh(&fq->lock); hdr = (struct ieee80211_hdr *)skb->data; info = IEEE80211_SKB_CB(skb); memset(&tx, 0, sizeof(tx)); __skb_queue_head_init(&tx.skbs); tx.local = local; tx.skb = skb; tx.sdata = vif_to_sdata(info->control.vif); if (txq->sta) { tx.sta = container_of(txq->sta, struct sta_info, sta); /* * Drop unicast frames to unauthorised stations unless they are * injected frames or EAPOL frames from the local station. */ if (unlikely(!(info->flags & IEEE80211_TX_CTL_INJECTED) && ieee80211_is_data(hdr->frame_control) && !ieee80211_vif_is_mesh(&tx.sdata->vif) && tx.sdata->vif.type != NL80211_IFTYPE_OCB && !is_multicast_ether_addr(hdr->addr1) && !test_sta_flag(tx.sta, WLAN_STA_AUTHORIZED) && (!(info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO) || !ieee80211_is_our_addr(tx.sdata, hdr->addr2, NULL)))) { I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); ieee80211_free_txskb(&local->hw, skb); goto begin; } } /* * The key can be removed while the packet was queued, so need to call * this here to get the current key. */ r = ieee80211_tx_h_select_key(&tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } if (test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags)) info->flags |= (IEEE80211_TX_CTL_AMPDU | IEEE80211_TX_CTL_DONTFRAG); if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { if (!ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) { r = ieee80211_tx_h_rate_ctrl(&tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } goto encap_out; } if (info->control.flags & IEEE80211_TX_CTRL_FAST_XMIT) { struct sta_info *sta = container_of(txq->sta, struct sta_info, sta); u8 pn_offs = 0; if (tx.key && (tx.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) pn_offs = ieee80211_hdrlen(hdr->frame_control); r = ieee80211_xmit_fast_finish(sta->sdata, sta, pn_offs, tx.key, &tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } else { if (invoke_tx_handlers_late(&tx)) goto begin; skb = __skb_dequeue(&tx.skbs); info = IEEE80211_SKB_CB(skb); if (!skb_queue_empty(&tx.skbs)) { spin_lock_bh(&fq->lock); skb_queue_splice_tail(&tx.skbs, &txqi->frags); spin_unlock_bh(&fq->lock); } } if (skb_has_frag_list(skb) && !ieee80211_hw_check(&local->hw, TX_FRAG_LIST)) { if (skb_linearize(skb)) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } switch (tx.sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (tx.sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) { vif = &tx.sdata->vif; break; } tx.sdata = rcu_dereference(local->monitor_sdata); if (tx.sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { vif = &tx.sdata->vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { ieee80211_free_txskb(&local->hw, skb); goto begin; } else { info->control.vif = NULL; return skb; } break; case NL80211_IFTYPE_AP_VLAN: tx.sdata = container_of(tx.sdata->bss, struct ieee80211_sub_if_data, u.ap); fallthrough; default: vif = &tx.sdata->vif; break; } encap_out: info->control.vif = vif; if (tx.sta && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) { bool ampdu = txq->ac != IEEE80211_AC_VO; u32 airtime; airtime = ieee80211_calc_expected_tx_airtime(hw, vif, txq->sta, skb->len, ampdu); if (airtime) { airtime = ieee80211_info_set_tx_time_est(info, airtime); ieee80211_sta_update_pending_airtime(local, tx.sta, txq->ac, airtime, false); } } return skb; out: spin_unlock_bh(&fq->lock); return skb; } EXPORT_SYMBOL(ieee80211_tx_dequeue); static inline s32 ieee80211_sta_deficit(struct sta_info *sta, u8 ac) { struct airtime_info *air_info = &sta->airtime[ac]; return air_info->deficit - atomic_read(&air_info->aql_tx_pending); } static void ieee80211_txq_set_active(struct txq_info *txqi) { struct sta_info *sta; if (!txqi->txq.sta) return; sta = container_of(txqi->txq.sta, struct sta_info, sta); sta->airtime[txqi->txq.ac].last_active = jiffies; } static bool ieee80211_txq_keep_active(struct txq_info *txqi) { struct sta_info *sta; if (!txqi->txq.sta) return false; sta = container_of(txqi->txq.sta, struct sta_info, sta); if (ieee80211_sta_deficit(sta, txqi->txq.ac) >= 0) return false; return ieee80211_sta_keep_active(sta, txqi->txq.ac); } struct ieee80211_txq *ieee80211_next_txq(struct ieee80211_hw *hw, u8 ac) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_txq *ret = NULL; struct txq_info *txqi = NULL, *head = NULL; bool found_eligible_txq = false; spin_lock_bh(&local->active_txq_lock[ac]); if (!local->schedule_round[ac]) goto out; begin: txqi = list_first_entry_or_null(&local->active_txqs[ac], struct txq_info, schedule_order); if (!txqi) goto out; if (txqi == head) { if (!found_eligible_txq) goto out; else found_eligible_txq = false; } if (!head) head = txqi; if (txqi->txq.sta) { struct sta_info *sta = container_of(txqi->txq.sta, struct sta_info, sta); bool aql_check = ieee80211_txq_airtime_check(hw, &txqi->txq); s32 deficit = ieee80211_sta_deficit(sta, txqi->txq.ac); if (aql_check) found_eligible_txq = true; if (deficit < 0) sta->airtime[txqi->txq.ac].deficit += sta->airtime_weight; if (deficit < 0 || !aql_check) { list_move_tail(&txqi->schedule_order, &local->active_txqs[txqi->txq.ac]); goto begin; } } if (txqi->schedule_round == local->schedule_round[ac]) goto out; list_del_init(&txqi->schedule_order); txqi->schedule_round = local->schedule_round[ac]; ret = &txqi->txq; out: spin_unlock_bh(&local->active_txq_lock[ac]); return ret; } EXPORT_SYMBOL(ieee80211_next_txq); void __ieee80211_schedule_txq(struct ieee80211_hw *hw, struct ieee80211_txq *txq, bool force) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *txqi = to_txq_info(txq); bool has_queue; spin_lock_bh(&local->active_txq_lock[txq->ac]); has_queue = force || txq_has_queue(txq); if (list_empty(&txqi->schedule_order) && (has_queue || ieee80211_txq_keep_active(txqi))) { /* If airtime accounting is active, always enqueue STAs at the * head of the list to ensure that they only get moved to the * back by the airtime DRR scheduler once they have a negative * deficit. A station that already has a negative deficit will * get immediately moved to the back of the list on the next * call to ieee80211_next_txq(). */ if (txqi->txq.sta && local->airtime_flags && has_queue && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS)) list_add(&txqi->schedule_order, &local->active_txqs[txq->ac]); else list_add_tail(&txqi->schedule_order, &local->active_txqs[txq->ac]); if (has_queue) ieee80211_txq_set_active(txqi); } spin_unlock_bh(&local->active_txq_lock[txq->ac]); } EXPORT_SYMBOL(__ieee80211_schedule_txq); DEFINE_STATIC_KEY_FALSE(aql_disable); bool ieee80211_txq_airtime_check(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct sta_info *sta; struct ieee80211_local *local = hw_to_local(hw); if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return true; if (static_branch_unlikely(&aql_disable)) return true; if (!txq->sta) return true; if (unlikely(txq->tid == IEEE80211_NUM_TIDS)) return true; sta = container_of(txq->sta, struct sta_info, sta); if (atomic_read(&sta->airtime[txq->ac].aql_tx_pending) < sta->airtime[txq->ac].aql_limit_low) return true; if (atomic_read(&local->aql_total_pending_airtime) < local->aql_threshold && atomic_read(&sta->airtime[txq->ac].aql_tx_pending) < sta->airtime[txq->ac].aql_limit_high) return true; return false; } EXPORT_SYMBOL(ieee80211_txq_airtime_check); static bool ieee80211_txq_schedule_airtime_check(struct ieee80211_local *local, u8 ac) { unsigned int num_txq = 0; struct txq_info *txq; u32 aql_limit; if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return true; list_for_each_entry(txq, &local->active_txqs[ac], schedule_order) num_txq++; aql_limit = (num_txq - 1) * local->aql_txq_limit_low[ac] / 2 + local->aql_txq_limit_high[ac]; return atomic_read(&local->aql_ac_pending_airtime[ac]) < aql_limit; } bool ieee80211_txq_may_transmit(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *iter, *tmp, *txqi = to_txq_info(txq); struct sta_info *sta; u8 ac = txq->ac; spin_lock_bh(&local->active_txq_lock[ac]); if (!txqi->txq.sta) goto out; if (list_empty(&txqi->schedule_order)) goto out; if (!ieee80211_txq_schedule_airtime_check(local, ac)) goto out; list_for_each_entry_safe(iter, tmp, &local->active_txqs[ac], schedule_order) { if (iter == txqi) break; if (!iter->txq.sta) { list_move_tail(&iter->schedule_order, &local->active_txqs[ac]); continue; } sta = container_of(iter->txq.sta, struct sta_info, sta); if (ieee80211_sta_deficit(sta, ac) < 0) sta->airtime[ac].deficit += sta->airtime_weight; list_move_tail(&iter->schedule_order, &local->active_txqs[ac]); } sta = container_of(txqi->txq.sta, struct sta_info, sta); if (sta->airtime[ac].deficit >= 0) goto out; sta->airtime[ac].deficit += sta->airtime_weight; list_move_tail(&txqi->schedule_order, &local->active_txqs[ac]); spin_unlock_bh(&local->active_txq_lock[ac]); return false; out: if (!list_empty(&txqi->schedule_order)) list_del_init(&txqi->schedule_order); spin_unlock_bh(&local->active_txq_lock[ac]); return true; } EXPORT_SYMBOL(ieee80211_txq_may_transmit); void ieee80211_txq_schedule_start(struct ieee80211_hw *hw, u8 ac) { struct ieee80211_local *local = hw_to_local(hw); spin_lock_bh(&local->active_txq_lock[ac]); if (ieee80211_txq_schedule_airtime_check(local, ac)) { local->schedule_round[ac]++; if (!local->schedule_round[ac]) local->schedule_round[ac]++; } else { local->schedule_round[ac] = 0; } spin_unlock_bh(&local->active_txq_lock[ac]); } EXPORT_SYMBOL(ieee80211_txq_schedule_start); void __ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev, u32 info_flags, u32 ctrl_flags, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct sk_buff *next; int len = skb->len; if (unlikely(!ieee80211_sdata_running(sdata) || skb->len < ETH_HLEN)) { kfree_skb(skb); return; } sk_pacing_shift_update(skb->sk, sdata->local->hw.tx_sk_pacing_shift); rcu_read_lock(); if (ieee80211_vif_is_mesh(&sdata->vif) && ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT) && ieee80211_mesh_xmit_fast(sdata, skb, ctrl_flags)) goto out; if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) goto out_free; if (IS_ERR(sta)) sta = NULL; skb_set_queue_mapping(skb, ieee80211_select_queue(sdata, sta, skb)); ieee80211_aggr_check(sdata, sta, skb); if (sta) { struct ieee80211_fast_tx *fast_tx; fast_tx = rcu_dereference(sta->fast_tx); if (fast_tx && ieee80211_xmit_fast(sdata, sta, fast_tx, skb)) goto out; } /* the frame could be fragmented, software-encrypted, and other * things so we cannot really handle checksum or GSO offload. * fix it up in software before we handle anything else. */ skb = ieee80211_tx_skb_fixup(skb, 0); if (!skb) { len = 0; goto out; } skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); if (skb->protocol == sdata->control_port_protocol) ctrl_flags |= IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP; skb = ieee80211_build_hdr(sdata, skb, info_flags, sta, ctrl_flags, cookie); if (IS_ERR(skb)) { kfree_skb_list(next); goto out; } dev_sw_netstats_tx_add(dev, 1, skb->len); ieee80211_xmit(sdata, sta, skb); } goto out; out_free: kfree_skb(skb); len = 0; out: if (len) ieee80211_tpt_led_trig_tx(local, len); rcu_read_unlock(); } static int ieee80211_change_da(struct sk_buff *skb, struct sta_info *sta) { struct ethhdr *eth; int err; err = skb_ensure_writable(skb, ETH_HLEN); if (unlikely(err)) return err; eth = (void *)skb->data; ether_addr_copy(eth->h_dest, sta->sta.addr); return 0; } static bool ieee80211_multicast_to_unicast(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); const struct ethhdr *eth = (void *)skb->data; const struct vlan_ethhdr *ethvlan = (void *)skb->data; __be16 ethertype; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->u.vlan.sta) return false; if (sdata->wdev.use_4addr) return false; fallthrough; case NL80211_IFTYPE_AP: /* check runtime toggle for this bss */ if (!sdata->bss->multicast_to_unicast) return false; break; default: return false; } /* multicast to unicast conversion only for some payload */ ethertype = eth->h_proto; if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN) ethertype = ethvlan->h_vlan_encapsulated_proto; switch (ethertype) { case htons(ETH_P_ARP): case htons(ETH_P_IP): case htons(ETH_P_IPV6): break; default: return false; } return true; } static void ieee80211_convert_to_unicast(struct sk_buff *skb, struct net_device *dev, struct sk_buff_head *queue) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; const struct ethhdr *eth = (struct ethhdr *)skb->data; struct sta_info *sta, *first = NULL; struct sk_buff *cloned_skb; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) /* AP-VLAN mismatch */ continue; if (unlikely(ether_addr_equal(eth->h_source, sta->sta.addr))) /* do not send back to source */ continue; if (!first) { first = sta; continue; } cloned_skb = skb_clone(skb, GFP_ATOMIC); if (!cloned_skb) goto multicast; if (unlikely(ieee80211_change_da(cloned_skb, sta))) { dev_kfree_skb(cloned_skb); goto multicast; } __skb_queue_tail(queue, cloned_skb); } if (likely(first)) { if (unlikely(ieee80211_change_da(skb, first))) goto multicast; __skb_queue_tail(queue, skb); } else { /* no STA connected, drop */ kfree_skb(skb); skb = NULL; } goto out; multicast: __skb_queue_purge(queue); __skb_queue_tail(queue, skb); out: rcu_read_unlock(); } static void ieee80211_mlo_multicast_tx_one(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 ctrl_flags, unsigned int link_id) { struct sk_buff *out; out = skb_copy(skb, GFP_ATOMIC); if (!out) return; ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); __ieee80211_subif_start_xmit(out, sdata->dev, 0, ctrl_flags, NULL); } static void ieee80211_mlo_multicast_tx(struct net_device *dev, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); unsigned long links = sdata->vif.active_links; unsigned int link; u32 ctrl_flags = IEEE80211_TX_CTRL_MCAST_MLO_FIRST_TX; if (hweight16(links) == 1) { ctrl_flags |= u32_encode_bits(__ffs(links), IEEE80211_TX_CTRL_MLO_LINK); __ieee80211_subif_start_xmit(skb, sdata->dev, 0, ctrl_flags, NULL); return; } for_each_set_bit(link, &links, IEEE80211_MLD_MAX_NUM_LINKS) { ieee80211_mlo_multicast_tx_one(sdata, skb, ctrl_flags, link); ctrl_flags = 0; } kfree_skb(skb); } /** * ieee80211_subif_start_xmit - netif start_xmit function for 802.3 vifs * @skb: packet to be sent * @dev: incoming interface * * On failure skb will be freed. * * Returns: the netdev TX status (but really only %NETDEV_TX_OK) */ netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); const struct ethhdr *eth = (void *)skb->data; if (likely(!is_multicast_ether_addr(eth->h_dest))) goto normal; if (unlikely(!ieee80211_sdata_running(sdata))) { kfree_skb(skb); return NETDEV_TX_OK; } if (unlikely(ieee80211_multicast_to_unicast(skb, dev))) { struct sk_buff_head queue; __skb_queue_head_init(&queue); ieee80211_convert_to_unicast(skb, dev, &queue); while ((skb = __skb_dequeue(&queue))) __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); } else if (ieee80211_vif_is_mld(&sdata->vif) && sdata->vif.type == NL80211_IFTYPE_AP && !ieee80211_hw_check(&sdata->local->hw, MLO_MCAST_MULTI_LINK_TX)) { ieee80211_mlo_multicast_tx(dev, skb); } else { normal: __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); } return NETDEV_TX_OK; } static bool __ieee80211_tx_8023(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info *sta, bool txpending) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_control control = {}; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sta *pubsta = NULL; unsigned long flags; int q = info->hw_queue; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (local->queue_stop_reasons[q] || (!txpending && !skb_queue_empty(&local->pending[q]))) { if (txpending) skb_queue_head(&local->pending[q], skb); else skb_queue_tail(&local->pending[q], skb); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return false; } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); if (sta && sta->uploaded) pubsta = &sta->sta; control.sta = pubsta; drv_tx(local, &control, skb); return true; } static bool ieee80211_tx_8023(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info *sta, bool txpending) { struct ieee80211_local *local = sdata->local; struct sk_buff *next; bool ret = true; if (ieee80211_queue_skb(local, sdata, sta, skb)) return true; skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); if (!__ieee80211_tx_8023(sdata, skb, sta, txpending)) ret = false; } return ret; } static void ieee80211_8023_xmit(struct ieee80211_sub_if_data *sdata, struct net_device *dev, struct sta_info *sta, struct ieee80211_key *key, struct sk_buff *skb) { struct ieee80211_tx_info *info; struct ieee80211_local *local = sdata->local; struct tid_ampdu_tx *tid_tx; struct sk_buff *seg, *next; unsigned int skbs = 0, len = 0; u16 queue; u8 tid; queue = ieee80211_select_queue(sdata, sta, skb); skb_set_queue_mapping(skb, queue); if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning)) && test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)) goto out_free; skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return; ieee80211_aggr_check(sdata, sta, skb); tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { /* fall back to non-offload slow path */ __ieee80211_subif_start_xmit(skb, dev, 0, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); return; } if (tid_tx->timeout) tid_tx->last_tx = jiffies; } skb = ieee80211_tx_skb_fixup(skb, ieee80211_sdata_netdev_features(sdata)); if (!skb) return; info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->hw_queue = sdata->vif.hw_queue[queue]; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); info->flags |= IEEE80211_TX_CTL_HW_80211_ENCAP; info->control.vif = &sdata->vif; if (key) info->control.hw_key = &key->conf; skb_list_walk_safe(skb, seg, next) { skbs++; len += seg->len; if (seg != skb) memcpy(IEEE80211_SKB_CB(seg), info, sizeof(*info)); } if (unlikely(skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) { info->status_data = ieee80211_store_ack_skb(local, skb, &info->flags, NULL); if (info->status_data) info->status_data_idr = 1; } dev_sw_netstats_tx_add(dev, skbs, len); sta->deflink.tx_stats.packets[queue] += skbs; sta->deflink.tx_stats.bytes[queue] += len; ieee80211_tpt_led_trig_tx(local, len); ieee80211_tx_8023(sdata, skb, sta, false); return; out_free: kfree_skb(skb); } netdev_tx_t ieee80211_subif_start_xmit_8023(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ethhdr *ehdr = (struct ethhdr *)skb->data; struct ieee80211_key *key; struct sta_info *sta; if (unlikely(!ieee80211_sdata_running(sdata) || skb->len < ETH_HLEN)) { kfree_skb(skb); return NETDEV_TX_OK; } rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { kfree_skb(skb); goto out; } if (unlikely(IS_ERR_OR_NULL(sta) || !sta->uploaded || !test_sta_flag(sta, WLAN_STA_AUTHORIZED) || sdata->control_port_protocol == ehdr->h_proto)) goto skip_offload; key = rcu_dereference(sta->ptk[sta->ptk_idx]); if (!key) key = rcu_dereference(sdata->default_unicast_key); if (key && (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) || key->conf.cipher == WLAN_CIPHER_SUITE_TKIP)) goto skip_offload; sk_pacing_shift_update(skb->sk, sdata->local->hw.tx_sk_pacing_shift); ieee80211_8023_xmit(sdata, dev, sta, key, skb); goto out; skip_offload: ieee80211_subif_start_xmit(skb, dev); out: rcu_read_unlock(); return NETDEV_TX_OK; } struct sk_buff * ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags) { struct ieee80211_hdr *hdr; struct ieee80211_tx_data tx = { .local = sdata->local, .sdata = sdata, }; struct sta_info *sta; rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { kfree_skb(skb); skb = ERR_PTR(-EINVAL); goto out; } skb = ieee80211_build_hdr(sdata, skb, info_flags, sta, IEEE80211_TX_CTRL_MLO_LINK_UNSPEC, NULL); if (IS_ERR(skb)) goto out; hdr = (void *)skb->data; tx.sta = sta_info_get(sdata, hdr->addr1); tx.skb = skb; if (ieee80211_tx_h_select_key(&tx) != TX_CONTINUE) { rcu_read_unlock(); kfree_skb(skb); return ERR_PTR(-EINVAL); } out: rcu_read_unlock(); return skb; } /* * ieee80211_clear_tx_pending may not be called in a context where * it is possible that it packets could come in again. */ void ieee80211_clear_tx_pending(struct ieee80211_local *local) { struct sk_buff *skb; int i; for (i = 0; i < local->hw.queues; i++) { while ((skb = skb_dequeue(&local->pending[i])) != NULL) ieee80211_free_txskb(&local->hw, skb); } } /* * Returns false if the frame couldn't be transmitted but was queued instead, * which in this case means re-queued -- take as an indication to stop sending * more pending frames. */ static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_hdr *hdr; bool result; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(info->control.vif); if (info->control.flags & IEEE80211_TX_INTCFL_NEED_TXPROCESSING) { /* update band only for non-MLD */ if (!ieee80211_vif_is_mld(&sdata->vif)) { chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (unlikely(!chanctx_conf)) { dev_kfree_skb(skb); return true; } info->band = chanctx_conf->def.chan->band; } result = ieee80211_tx(sdata, NULL, skb, true); } else if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { dev_kfree_skb(skb); return true; } if (IS_ERR(sta) || (sta && !sta->uploaded)) sta = NULL; result = ieee80211_tx_8023(sdata, skb, sta, true); } else { struct sk_buff_head skbs; __skb_queue_head_init(&skbs); __skb_queue_tail(&skbs, skb); hdr = (struct ieee80211_hdr *)skb->data; sta = sta_info_get(sdata, hdr->addr1); result = __ieee80211_tx(local, &skbs, sta, true); } return result; } /* * Transmit all pending packets. Called from tasklet. */ void ieee80211_tx_pending(struct tasklet_struct *t) { struct ieee80211_local *local = from_tasklet(local, t, tx_pending_tasklet); unsigned long flags; int i; bool txok; rcu_read_lock(); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (i = 0; i < local->hw.queues; i++) { /* * If queue is stopped by something other than due to pending * frames, or we have no pending frames, proceed to next queue. */ if (local->queue_stop_reasons[i] || skb_queue_empty(&local->pending[i])) continue; while (!skb_queue_empty(&local->pending[i])) { struct sk_buff *skb = __skb_dequeue(&local->pending[i]); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); continue; } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); txok = ieee80211_tx_pending_skb(local, skb); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (!txok) break; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); rcu_read_unlock(); } /* functions for drivers to get certain frames */ static void __ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ps_data *ps, struct sk_buff *skb, bool is_template) { u8 *pos, *tim; int aid0 = 0; int i, have_bits = 0, n1, n2; struct ieee80211_bss_conf *link_conf = link->conf; /* Generate bitmap for TIM only if there are any STAs in power save * mode. */ if (atomic_read(&ps->num_sta_ps) > 0) /* in the hope that this is faster than * checking byte-for-byte */ have_bits = !bitmap_empty((unsigned long *)ps->tim, IEEE80211_MAX_AID+1); if (!is_template) { if (ps->dtim_count == 0) ps->dtim_count = link_conf->dtim_period - 1; else ps->dtim_count--; } tim = pos = skb_put(skb, 5); *pos++ = WLAN_EID_TIM; *pos++ = 3; *pos++ = ps->dtim_count; *pos++ = link_conf->dtim_period; if (ps->dtim_count == 0 && !skb_queue_empty(&ps->bc_buf)) aid0 = 1; ps->dtim_bc_mc = aid0 == 1; if (have_bits) { /* Find largest even number N1 so that bits numbered 1 through * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits * (N2 + 1) x 8 through 2007 are 0. */ n1 = 0; for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { if (ps->tim[i]) { n1 = i & 0xfe; break; } } n2 = n1; for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { if (ps->tim[i]) { n2 = i; break; } } /* Bitmap control */ *pos++ = n1 | aid0; /* Part Virt Bitmap */ skb_put_data(skb, ps->tim + n1, n2 - n1 + 1); tim[1] = n2 - n1 + 4; } else { *pos++ = aid0; /* Bitmap control */ if (ieee80211_get_link_sband(link)->band != NL80211_BAND_S1GHZ) { tim[1] = 4; /* Part Virt Bitmap */ skb_put_u8(skb, 0); } } } static int ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct ps_data *ps, struct sk_buff *skb, bool is_template) { struct ieee80211_local *local = sdata->local; /* * Not very nice, but we want to allow the driver to call * ieee80211_beacon_get() as a response to the set_tim() * callback. That, however, is already invoked under the * sta_lock to guarantee consistent and race-free update * of the tim bitmap in mac80211 and the driver. */ if (local->tim_in_locked_section) { __ieee80211_beacon_add_tim(sdata, link, ps, skb, is_template); } else { spin_lock_bh(&local->tim_lock); __ieee80211_beacon_add_tim(sdata, link, ps, skb, is_template); spin_unlock_bh(&local->tim_lock); } return 0; } static void ieee80211_set_beacon_cntdwn(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon, struct ieee80211_link_data *link) { u8 *beacon_data, count, max_count = 1; struct probe_resp *resp; size_t beacon_data_len; u16 *bcn_offsets; int i; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; break; case NL80211_IFTYPE_ADHOC: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; case NL80211_IFTYPE_MESH_POINT: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; default: return; } resp = rcu_dereference(link->u.ap.probe_resp); bcn_offsets = beacon->cntdwn_counter_offsets; count = beacon->cntdwn_current_counter; if (link->conf->csa_active) max_count = IEEE80211_MAX_CNTDWN_COUNTERS_NUM; for (i = 0; i < max_count; ++i) { if (bcn_offsets[i]) { if (WARN_ON_ONCE(bcn_offsets[i] >= beacon_data_len)) return; beacon_data[bcn_offsets[i]] = count; } if (sdata->vif.type == NL80211_IFTYPE_AP && resp) { u16 *resp_offsets = resp->cntdwn_counter_offsets; resp->data[resp_offsets[i]] = count; } } } static u8 __ieee80211_beacon_update_cntdwn(struct beacon_data *beacon) { beacon->cntdwn_current_counter--; /* the counter should never reach 0 */ WARN_ON_ONCE(!beacon->cntdwn_current_counter); return beacon->cntdwn_current_counter; } u8 ieee80211_beacon_update_cntdwn(struct ieee80211_vif *vif, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_link_data *link; struct beacon_data *beacon = NULL; u8 count = 0; if (WARN_ON(link_id >= IEEE80211_MLD_MAX_NUM_LINKS)) return 0; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (!link) goto unlock; if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(link->u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (!beacon) goto unlock; count = __ieee80211_beacon_update_cntdwn(beacon); unlock: rcu_read_unlock(); return count; } EXPORT_SYMBOL(ieee80211_beacon_update_cntdwn); void ieee80211_beacon_set_cntdwn(struct ieee80211_vif *vif, u8 counter) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct beacon_data *beacon = NULL; rcu_read_lock(); if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(sdata->deflink.u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (!beacon) goto unlock; if (counter < beacon->cntdwn_current_counter) beacon->cntdwn_current_counter = counter; unlock: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_beacon_set_cntdwn); bool ieee80211_beacon_cntdwn_is_complete(struct ieee80211_vif *vif, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_link_data *link; struct beacon_data *beacon = NULL; u8 *beacon_data; size_t beacon_data_len; int ret = false; if (!ieee80211_sdata_running(sdata)) return false; if (WARN_ON(link_id >= IEEE80211_MLD_MAX_NUM_LINKS)) return 0; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (!link) goto out; if (vif->type == NL80211_IFTYPE_AP) { beacon = rcu_dereference(link->u.ap.beacon); if (WARN_ON(!beacon || !beacon->tail)) goto out; beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; } else if (vif->type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else if (vif->type == NL80211_IFTYPE_MESH_POINT) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else { WARN_ON(1); goto out; } if (!beacon->cntdwn_counter_offsets[0]) goto out; if (WARN_ON_ONCE(beacon->cntdwn_counter_offsets[0] > beacon_data_len)) goto out; if (beacon_data[beacon->cntdwn_counter_offsets[0]] == 1) ret = true; out: rcu_read_unlock(); return ret; } EXPORT_SYMBOL(ieee80211_beacon_cntdwn_is_complete); static int ieee80211_beacon_protect(struct sk_buff *skb, struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link) { ieee80211_tx_result res; struct ieee80211_tx_data tx; struct sk_buff *check_skb; memset(&tx, 0, sizeof(tx)); tx.key = rcu_dereference(link->default_beacon_key); if (!tx.key) return 0; if (unlikely(tx.key->flags & KEY_FLAG_TAINTED)) { tx.key = NULL; return -EINVAL; } if (!(tx.key->conf.flags & IEEE80211_KEY_FLAG_SW_MGMT_TX) && tx.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) IEEE80211_SKB_CB(skb)->control.hw_key = &tx.key->conf; tx.local = local; tx.sdata = sdata; __skb_queue_head_init(&tx.skbs); __skb_queue_tail(&tx.skbs, skb); res = ieee80211_tx_h_encrypt(&tx); check_skb = __skb_dequeue(&tx.skbs); /* we may crash after this, but it'd be a bug in crypto */ WARN_ON(check_skb != skb); if (WARN_ON_ONCE(res != TX_CONTINUE)) return -EINVAL; return 0; } static void ieee80211_beacon_get_finish(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, struct beacon_data *beacon, struct sk_buff *skb, struct ieee80211_chanctx_conf *chanctx_conf, u16 csa_off_base) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_tx_info *info; enum nl80211_band band; struct ieee80211_tx_rate_control txrc; /* CSA offsets */ if (offs && beacon) { u16 i; for (i = 0; i < IEEE80211_MAX_CNTDWN_COUNTERS_NUM; i++) { u16 csa_off = beacon->cntdwn_counter_offsets[i]; if (!csa_off) continue; offs->cntdwn_counter_offs[i] = csa_off_base + csa_off; } } band = chanctx_conf->def.chan->band; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->flags |= IEEE80211_TX_CTL_NO_ACK; info->band = band; memset(&txrc, 0, sizeof(txrc)); txrc.hw = hw; txrc.sband = local->hw.wiphy->bands[band]; txrc.bss_conf = link->conf; txrc.skb = skb; txrc.reported_rate.idx = -1; if (sdata->beacon_rate_set && sdata->beacon_rateidx_mask[band]) txrc.rate_idx_mask = sdata->beacon_rateidx_mask[band]; else txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; txrc.bss = true; rate_control_get_rate(sdata, NULL, &txrc); info->control.vif = vif; info->control.flags |= u32_encode_bits(link->link_id, IEEE80211_TX_CTRL_MLO_LINK); info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_ASSIGN_SEQ | IEEE80211_TX_CTL_FIRST_FRAGMENT; } static void ieee80211_beacon_add_mbssid(struct sk_buff *skb, struct beacon_data *beacon, u8 i) { if (!beacon->mbssid_ies || !beacon->mbssid_ies->cnt || i > beacon->mbssid_ies->cnt) return; if (i < beacon->mbssid_ies->cnt) { skb_put_data(skb, beacon->mbssid_ies->elem[i].data, beacon->mbssid_ies->elem[i].len); if (beacon->rnr_ies && beacon->rnr_ies->cnt) { skb_put_data(skb, beacon->rnr_ies->elem[i].data, beacon->rnr_ies->elem[i].len); for (i = beacon->mbssid_ies->cnt; i < beacon->rnr_ies->cnt; i++) skb_put_data(skb, beacon->rnr_ies->elem[i].data, beacon->rnr_ies->elem[i].len); } return; } /* i == beacon->mbssid_ies->cnt, include all MBSSID elements */ for (i = 0; i < beacon->mbssid_ies->cnt; i++) skb_put_data(skb, beacon->mbssid_ies->elem[i].data, beacon->mbssid_ies->elem[i].len); } static struct sk_buff * ieee80211_beacon_get_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, bool is_template, struct beacon_data *beacon, struct ieee80211_chanctx_conf *chanctx_conf, u8 ema_index) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_ap *ap = &sdata->u.ap; struct sk_buff *skb = NULL; u16 csa_off_base = 0; int mbssid_len; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) ieee80211_beacon_update_cntdwn(vif, link->link_id); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } /* headroom, head length, * tail length, maximum TIM length and multiple BSSID length */ mbssid_len = ieee80211_get_mbssid_beacon_len(beacon->mbssid_ies, beacon->rnr_ies, ema_index); skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + beacon->tail_len + 256 + local->hw.extra_beacon_tailroom + mbssid_len); if (!skb) return NULL; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, link, &ap->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; offs->cntdwn_counter_offs[0] = beacon->cntdwn_counter_offsets[0]; if (mbssid_len) { ieee80211_beacon_add_mbssid(skb, beacon, ema_index); offs->mbssid_off = skb->len - mbssid_len; } /* for AP the csa offsets are from tail */ csa_off_base = skb->len; } if (beacon->tail) skb_put_data(skb, beacon->tail, beacon->tail_len); if (ieee80211_beacon_protect(skb, local, sdata, link) < 0) return NULL; ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, csa_off_base); return skb; } static struct ieee80211_ema_beacons * ieee80211_beacon_get_ap_ema_list(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_link_data *link, struct ieee80211_mutable_offsets *offs, bool is_template, struct beacon_data *beacon, struct ieee80211_chanctx_conf *chanctx_conf) { struct ieee80211_ema_beacons *ema = NULL; if (!beacon->mbssid_ies || !beacon->mbssid_ies->cnt) return NULL; ema = kzalloc(struct_size(ema, bcn, beacon->mbssid_ies->cnt), GFP_ATOMIC); if (!ema) return NULL; for (ema->cnt = 0; ema->cnt < beacon->mbssid_ies->cnt; ema->cnt++) { ema->bcn[ema->cnt].skb = ieee80211_beacon_get_ap(hw, vif, link, &ema->bcn[ema->cnt].offs, is_template, beacon, chanctx_conf, ema->cnt); if (!ema->bcn[ema->cnt].skb) break; } if (ema->cnt == beacon->mbssid_ies->cnt) return ema; ieee80211_beacon_free_ema_list(ema); return NULL; } #define IEEE80211_INCLUDE_ALL_MBSSID_ELEMS -1 static struct sk_buff * __ieee80211_beacon_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, bool is_template, unsigned int link_id, int ema_index, struct ieee80211_ema_beacons **ema_beacons) { struct ieee80211_local *local = hw_to_local(hw); struct beacon_data *beacon = NULL; struct sk_buff *skb = NULL; struct ieee80211_sub_if_data *sdata = NULL; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_link_data *link; rcu_read_lock(); sdata = vif_to_sdata(vif); link = rcu_dereference(sdata->link[link_id]); if (!link) goto out; chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (!ieee80211_sdata_running(sdata) || !chanctx_conf) goto out; if (offs) memset(offs, 0, sizeof(*offs)); if (sdata->vif.type == NL80211_IFTYPE_AP) { beacon = rcu_dereference(link->u.ap.beacon); if (!beacon) goto out; if (ema_beacons) { *ema_beacons = ieee80211_beacon_get_ap_ema_list(hw, vif, link, offs, is_template, beacon, chanctx_conf); } else { if (beacon->mbssid_ies && beacon->mbssid_ies->cnt) { if (ema_index >= beacon->mbssid_ies->cnt) goto out; /* End of MBSSID elements */ if (ema_index <= IEEE80211_INCLUDE_ALL_MBSSID_ELEMS) ema_index = beacon->mbssid_ies->cnt; } else { ema_index = 0; } skb = ieee80211_beacon_get_ap(hw, vif, link, offs, is_template, beacon, chanctx_conf, ema_index); } } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_hdr *hdr; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) __ieee80211_beacon_update_cntdwn(beacon); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); hdr = (struct ieee80211_hdr *) skb->data; hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, 0); } else if (ieee80211_vif_is_mesh(&sdata->vif)) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; if (beacon->cntdwn_counter_offsets[0]) { if (!is_template) /* TODO: For mesh csa_counter is in TU, so * decrementing it by one isn't correct, but * for now we leave it consistent with overall * mac80211's behavior. */ __ieee80211_beacon_update_cntdwn(beacon); ieee80211_set_beacon_cntdwn(sdata, beacon, link); } if (ifmsh->sync_ops) ifmsh->sync_ops->adjust_tsf(sdata, beacon); skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + 256 + /* TIM IE */ beacon->tail_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, link, &ifmsh->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; } skb_put_data(skb, beacon->tail, beacon->tail_len); ieee80211_beacon_get_finish(hw, vif, link, offs, beacon, skb, chanctx_conf, 0); } else { WARN_ON(1); goto out; } out: rcu_read_unlock(); return skb; } struct sk_buff * ieee80211_beacon_get_template(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, unsigned int link_id) { return __ieee80211_beacon_get(hw, vif, offs, true, link_id, IEEE80211_INCLUDE_ALL_MBSSID_ELEMS, NULL); } EXPORT_SYMBOL(ieee80211_beacon_get_template); struct sk_buff * ieee80211_beacon_get_template_ema_index(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, unsigned int link_id, u8 ema_index) { return __ieee80211_beacon_get(hw, vif, offs, true, link_id, ema_index, NULL); } EXPORT_SYMBOL(ieee80211_beacon_get_template_ema_index); void ieee80211_beacon_free_ema_list(struct ieee80211_ema_beacons *ema_beacons) { u8 i; if (!ema_beacons) return; for (i = 0; i < ema_beacons->cnt; i++) kfree_skb(ema_beacons->bcn[i].skb); kfree(ema_beacons); } EXPORT_SYMBOL(ieee80211_beacon_free_ema_list); struct ieee80211_ema_beacons * ieee80211_beacon_get_template_ema_list(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id) { struct ieee80211_ema_beacons *ema_beacons = NULL; WARN_ON(__ieee80211_beacon_get(hw, vif, NULL, true, link_id, 0, &ema_beacons)); return ema_beacons; } EXPORT_SYMBOL(ieee80211_beacon_get_template_ema_list); struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 *tim_offset, u16 *tim_length, unsigned int link_id) { struct ieee80211_mutable_offsets offs = {}; struct sk_buff *bcn = __ieee80211_beacon_get(hw, vif, &offs, false, link_id, IEEE80211_INCLUDE_ALL_MBSSID_ELEMS, NULL); struct sk_buff *copy; if (!bcn) return bcn; if (tim_offset) *tim_offset = offs.tim_offset; if (tim_length) *tim_length = offs.tim_length; if (ieee80211_hw_check(hw, BEACON_TX_STATUS) || !hw_to_local(hw)->monitors) return bcn; /* send a copy to monitor interfaces */ copy = skb_copy(bcn, GFP_ATOMIC); if (!copy) return bcn; ieee80211_tx_monitor(hw_to_local(hw), copy, 1, false, NULL); return bcn; } EXPORT_SYMBOL(ieee80211_beacon_get_tim); struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct probe_resp *presp = NULL; struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); presp = rcu_dereference(sdata->deflink.u.ap.probe_resp); if (!presp) goto out; skb = dev_alloc_skb(presp->len); if (!skb) goto out; skb_put_data(skb, presp->data, presp->len); hdr = (struct ieee80211_hdr *) skb->data; memset(hdr->addr1, 0, sizeof(hdr->addr1)); out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_proberesp_get); struct sk_buff *ieee80211_get_fils_discovery_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct fils_discovery_data *tmpl = NULL; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); tmpl = rcu_dereference(sdata->deflink.u.ap.fils_discovery); if (!tmpl) { rcu_read_unlock(); return NULL; } skb = dev_alloc_skb(sdata->local->hw.extra_tx_headroom + tmpl->len); if (skb) { skb_reserve(skb, sdata->local->hw.extra_tx_headroom); skb_put_data(skb, tmpl->data, tmpl->len); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_fils_discovery_tmpl); struct sk_buff * ieee80211_get_unsol_bcast_probe_resp_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct sk_buff *skb = NULL; struct unsol_bcast_probe_resp_data *tmpl = NULL; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); tmpl = rcu_dereference(sdata->deflink.u.ap.unsol_bcast_probe_resp); if (!tmpl) { rcu_read_unlock(); return NULL; } skb = dev_alloc_skb(sdata->local->hw.extra_tx_headroom + tmpl->len); if (skb) { skb_reserve(skb, sdata->local->hw.extra_tx_headroom); skb_put_data(skb, tmpl->data, tmpl->len); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_unsol_bcast_probe_resp_tmpl); struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; struct ieee80211_pspoll *pspoll; struct ieee80211_local *local; struct sk_buff *skb; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; sdata = vif_to_sdata(vif); local = sdata->local; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); pspoll = skb_put_zero(skb, sizeof(*pspoll)); pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); pspoll->aid = cpu_to_le16(sdata->vif.cfg.aid); /* aid in PS-Poll has its two MSBs each set to 1 */ pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); memcpy(pspoll->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(pspoll->ta, vif->addr, ETH_ALEN); return skb; } EXPORT_SYMBOL(ieee80211_pspoll_get); struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int link_id, bool qos_ok) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct ieee80211_link_data *link = NULL; struct ieee80211_hdr_3addr *nullfunc; struct sk_buff *skb; bool qos = false; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc) + 2); if (!skb) return NULL; rcu_read_lock(); if (qos_ok) { struct sta_info *sta; sta = sta_info_get(sdata, vif->cfg.ap_addr); qos = sta && sta->sta.wme; } if (link_id >= 0) { link = rcu_dereference(sdata->link[link_id]); if (WARN_ON_ONCE(!link)) { rcu_read_unlock(); kfree_skb(skb); return NULL; } } skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put_zero(skb, sizeof(*nullfunc)); nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_TODS); if (qos) { __le16 qoshdr = cpu_to_le16(7); BUILD_BUG_ON((IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_STYPE_NULLFUNC) != IEEE80211_STYPE_QOS_NULLFUNC); nullfunc->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_NULLFUNC); skb->priority = 7; skb_set_queue_mapping(skb, IEEE80211_AC_VO); skb_put_data(skb, &qoshdr, sizeof(qoshdr)); } if (link) { memcpy(nullfunc->addr1, link->conf->bssid, ETH_ALEN); memcpy(nullfunc->addr2, link->conf->addr, ETH_ALEN); memcpy(nullfunc->addr3, link->conf->bssid, ETH_ALEN); } else { memcpy(nullfunc->addr1, vif->cfg.ap_addr, ETH_ALEN); memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); memcpy(nullfunc->addr3, vif->cfg.ap_addr, ETH_ALEN); } rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_nullfunc_get); struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, const u8 *src_addr, const u8 *ssid, size_t ssid_len, size_t tailroom) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_hdr_3addr *hdr; struct sk_buff *skb; size_t ie_ssid_len; u8 *pos; ie_ssid_len = 2 + ssid_len; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + ie_ssid_len + tailroom); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); hdr = skb_put_zero(skb, sizeof(*hdr)); hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); eth_broadcast_addr(hdr->addr1); memcpy(hdr->addr2, src_addr, ETH_ALEN); eth_broadcast_addr(hdr->addr3); pos = skb_put(skb, ie_ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ssid_len; if (ssid_len) memcpy(pos, ssid, ssid_len); pos += ssid_len; return skb; } EXPORT_SYMBOL(ieee80211_probereq_get); void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_rts *rts) { const struct ieee80211_hdr *hdr = frame; rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); rts->duration = ieee80211_rts_duration(hw, vif, frame_len, frame_txctl); memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); } EXPORT_SYMBOL(ieee80211_rts_get); void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_cts *cts) { const struct ieee80211_hdr *hdr = frame; cts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); cts->duration = ieee80211_ctstoself_duration(hw, vif, frame_len, frame_txctl); memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); } EXPORT_SYMBOL(ieee80211_ctstoself_get); struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_local *local = hw_to_local(hw); struct sk_buff *skb = NULL; struct ieee80211_tx_data tx; struct ieee80211_sub_if_data *sdata; struct ps_data *ps; struct ieee80211_tx_info *info; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(vif); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) goto out; if (sdata->vif.type == NL80211_IFTYPE_AP) { struct beacon_data *beacon = rcu_dereference(sdata->deflink.u.ap.beacon); if (!beacon || !beacon->head) goto out; ps = &sdata->u.ap.ps; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { ps = &sdata->u.mesh.ps; } else { goto out; } if (ps->dtim_count != 0 || !ps->dtim_bc_mc) goto out; /* send buffered bc/mc only after DTIM beacon */ while (1) { skb = skb_dequeue(&ps->bc_buf); if (!skb) goto out; local->total_ps_buffered--; if (!skb_queue_empty(&ps->bc_buf) && skb->len >= 2) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* more buffered multicast/broadcast frames ==> set * MoreData flag in IEEE 802.11 header to inform PS * STAs */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } if (sdata->vif.type == NL80211_IFTYPE_AP) sdata = IEEE80211_DEV_TO_SUB_IF(skb->dev); if (!ieee80211_tx_prepare(sdata, &tx, NULL, skb)) break; ieee80211_free_txskb(hw, skb); } info = IEEE80211_SKB_CB(skb); tx.flags |= IEEE80211_TX_PS_BUFFERED; info->band = chanctx_conf->def.chan->band; if (invoke_tx_handlers(&tx)) skb = NULL; out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_buffered_bc); int ieee80211_reserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; int ret; u32 queues; lockdep_assert_wiphy(local->hw.wiphy); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return -EINVAL; } if (WARN_ON(tid >= IEEE80211_NUM_UPS)) return -EINVAL; if (sta->reserved_tid == tid) { ret = 0; goto out; } if (sta->reserved_tid != IEEE80211_TID_UNRESERVED) { sdata_err(sdata, "TID reservation already active\n"); ret = -EALREADY; goto out; } ieee80211_stop_vif_queues(sdata->local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); synchronize_net(); /* Tear down BA sessions so we stop aggregating on this TID */ if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { set_sta_flag(sta, WLAN_STA_BLOCK_BA); __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_LOCAL_REQUEST); } queues = BIT(sdata->vif.hw_queue[ieee802_1d_to_ac[tid]]); __ieee80211_flush_queues(local, sdata, queues, false); sta->reserved_tid = tid; ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ret = 0; out: return ret; } EXPORT_SYMBOL(ieee80211_reserve_tid); void ieee80211_unreserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return; } if (tid != sta->reserved_tid) { sdata_err(sdata, "TID to unreserve (%d) isn't reserved\n", tid); return; } sta->reserved_tid = IEEE80211_TID_UNRESERVED; } EXPORT_SYMBOL(ieee80211_unreserve_tid); void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id, enum nl80211_band band) { const struct ieee80211_hdr *hdr = (void *)skb->data; int ac = ieee80211_ac_from_tid(tid); unsigned int link; skb_reset_mac_header(skb); skb_set_queue_mapping(skb, ac); skb->priority = tid; skb->dev = sdata->dev; BUILD_BUG_ON(IEEE80211_LINK_UNSPECIFIED < IEEE80211_MLD_MAX_NUM_LINKS); BUILD_BUG_ON(!FIELD_FIT(IEEE80211_TX_CTRL_MLO_LINK, IEEE80211_LINK_UNSPECIFIED)); if (!ieee80211_vif_is_mld(&sdata->vif)) { link = 0; } else if (link_id >= 0) { link = link_id; } else if (memcmp(sdata->vif.addr, hdr->addr2, ETH_ALEN) == 0) { /* address from the MLD */ link = IEEE80211_LINK_UNSPECIFIED; } else { /* otherwise must be addressed from a link */ rcu_read_lock(); for (link = 0; link < ARRAY_SIZE(sdata->vif.link_conf); link++) { struct ieee80211_bss_conf *link_conf; link_conf = rcu_dereference(sdata->vif.link_conf[link]); if (!link_conf) continue; if (memcmp(link_conf->addr, hdr->addr2, ETH_ALEN) == 0) break; } rcu_read_unlock(); if (WARN_ON_ONCE(link == ARRAY_SIZE(sdata->vif.link_conf))) link = ffs(sdata->vif.active_links) - 1; } IEEE80211_SKB_CB(skb)->control.flags |= u32_encode_bits(link, IEEE80211_TX_CTRL_MLO_LINK); /* * The other path calling ieee80211_xmit is from the tasklet, * and while we can handle concurrent transmissions locking * requirements are that we do not come into tx with bhs on. */ local_bh_disable(); IEEE80211_SKB_CB(skb)->band = band; ieee80211_xmit(sdata, NULL, skb); local_bh_enable(); } void ieee80211_tx_skb_tid(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, int link_id) { struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; rcu_read_lock(); if (!ieee80211_vif_is_mld(&sdata->vif)) { WARN_ON(link_id >= 0); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } band = chanctx_conf->def.chan->band; } else { WARN_ON(link_id >= 0 && !(sdata->vif.active_links & BIT(link_id))); /* MLD transmissions must not rely on the band */ band = 0; } __ieee80211_tx_skb_tid_band(sdata, skb, tid, link_id, band); rcu_read_unlock(); } int ieee80211_tx_control_port(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len, const u8 *dest, __be16 proto, bool unencrypted, int link_id, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct sk_buff *skb; struct ethhdr *ehdr; u32 ctrl_flags = 0; u32 flags = 0; int err; /* mutex lock is only needed for incrementing the cookie counter */ lockdep_assert_wiphy(local->hw.wiphy); /* Only accept CONTROL_PORT_PROTOCOL configured in CONNECT/ASSOCIATE * or Pre-Authentication */ if (proto != sdata->control_port_protocol && proto != cpu_to_be16(ETH_P_PREAUTH)) return -EINVAL; if (proto == sdata->control_port_protocol) ctrl_flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO | IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP; if (unencrypted) flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; if (cookie) ctrl_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; flags |= IEEE80211_TX_INTFL_NL80211_FRAME_TX; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(struct ethhdr) + len); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom + sizeof(struct ethhdr)); skb_put_data(skb, buf, len); ehdr = skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr->h_dest, dest, ETH_ALEN); /* we may override the SA for MLO STA later */ if (link_id < 0) { ctrl_flags |= u32_encode_bits(IEEE80211_LINK_UNSPECIFIED, IEEE80211_TX_CTRL_MLO_LINK); memcpy(ehdr->h_source, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_bss_conf *link_conf; ctrl_flags |= u32_encode_bits(link_id, IEEE80211_TX_CTRL_MLO_LINK); rcu_read_lock(); link_conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (!link_conf) { dev_kfree_skb(skb); rcu_read_unlock(); return -ENOLINK; } memcpy(ehdr->h_source, link_conf->addr, ETH_ALEN); rcu_read_unlock(); } ehdr->h_proto = proto; skb->dev = dev; skb->protocol = proto; skb_reset_network_header(skb); skb_reset_mac_header(skb); if (local->hw.queues < IEEE80211_NUM_ACS) goto start_xmit; /* update QoS header to prioritize control port frames if possible, * priorization also happens for control port frames send over * AF_PACKET */ rcu_read_lock(); err = ieee80211_lookup_ra_sta(sdata, skb, &sta); if (err) { dev_kfree_skb(skb); rcu_read_unlock(); return err; } if (!IS_ERR(sta)) { u16 queue = ieee80211_select_queue(sdata, sta, skb); skb_set_queue_mapping(skb, queue); /* * for MLO STA, the SA should be the AP MLD address, but * the link ID has been selected already */ if (sta && sta->sta.mlo) memcpy(ehdr->h_source, sdata->vif.addr, ETH_ALEN); } rcu_read_unlock(); start_xmit: local_bh_disable(); __ieee80211_subif_start_xmit(skb, skb->dev, flags, ctrl_flags, cookie); local_bh_enable(); return 0; } int ieee80211_probe_mesh_link(struct wiphy *wiphy, struct net_device *dev, const u8 *buf, size_t len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; skb = dev_alloc_skb(local->hw.extra_tx_headroom + len + 30 + /* header size */ 18); /* 11s header size */ if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); skb_put_data(skb, buf, len); skb->dev = dev; skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(skb); skb_reset_mac_header(skb); local_bh_disable(); __ieee80211_subif_start_xmit(skb, skb->dev, 0, IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP, NULL); local_bh_enable(); return 0; } |
23 8 8 7 2 8 19 20 20 20 20 26 21 2 20 2 21 30 1 29 29 30 2 30 30 30 30 29 12 11 26 26 19 19 30 8 1 8 8 8 2 2 8 8 8 8 8 8 8 8 8 8 2 8 8 8 8 8 8 8 7 8 8 8 8 2 14 14 8 8 8 8 8 8 8 8 8 8 8 7 8 8 8 8 2 6 8 8 2 6 3 20 9 9 9 9 8 8 8 1 1 47 21 21 21 9 9 8 4 9 9 9 9 9 9 9 2 17 11 8 2 9 9 1 1 1 3 10 6 4 1 9 9 1 7 3 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 7 1 4 20 20 10 10 2 1 1 2 1 2 1 4 4 1 3 60 61 32 29 4 1 1 1 1 9 1 1 1 1 1 1 2 1 3 3 35 35 35 34 1 35 35 35 1 34 34 34 34 3 7592 1092 7172 1 3 3 3 2 2 2 2 4 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 | /* * kernel/cpuset.c * * Processor and Memory placement constraints for sets of tasks. * * Copyright (C) 2003 BULL SA. * Copyright (C) 2004-2007 Silicon Graphics, Inc. * Copyright (C) 2006 Google, Inc * * Portions derived from Patrick Mochel's sysfs code. * sysfs is Copyright (c) 2001-3 Patrick Mochel * * 2003-10-10 Written by Simon Derr. * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * 2006 Rework by Paul Menage to use generic cgroups * 2008 Rework of the scheduler domains and CPU hotplug handling * by Max Krasnyansky * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #include "cgroup-internal.h" #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/cpuset.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mempolicy.h> #include <linux/mm.h> #include <linux/memory.h> #include <linux/export.h> #include <linux/rcupdate.h> #include <linux/sched.h> #include <linux/sched/deadline.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/security.h> #include <linux/spinlock.h> #include <linux/oom.h> #include <linux/sched/isolation.h> #include <linux/cgroup.h> #include <linux/wait.h> #include <linux/workqueue.h> DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); /* * There could be abnormal cpuset configurations for cpu or memory * node binding, add this key to provide a quick low-cost judgment * of the situation. */ DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); /* See "Frequency meter" comments, below. */ struct fmeter { int cnt; /* unprocessed events count */ int val; /* most recent output value */ time64_t time; /* clock (secs) when val computed */ spinlock_t lock; /* guards read or write of above */ }; /* * Invalid partition error code */ enum prs_errcode { PERR_NONE = 0, PERR_INVCPUS, PERR_INVPARENT, PERR_NOTPART, PERR_NOTEXCL, PERR_NOCPUS, PERR_HOTPLUG, PERR_CPUSEMPTY, PERR_HKEEPING, }; static const char * const perr_strings[] = { [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", [PERR_INVPARENT] = "Parent is an invalid partition root", [PERR_NOTPART] = "Parent is not a partition root", [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", [PERR_HOTPLUG] = "No cpu available due to hotplug", [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", }; struct cpuset { struct cgroup_subsys_state css; unsigned long flags; /* "unsigned long" so bitops work */ /* * On default hierarchy: * * The user-configured masks can only be changed by writing to * cpuset.cpus and cpuset.mems, and won't be limited by the * parent masks. * * The effective masks is the real masks that apply to the tasks * in the cpuset. They may be changed if the configured masks are * changed or hotplug happens. * * effective_mask == configured_mask & parent's effective_mask, * and if it ends up empty, it will inherit the parent's mask. * * * On legacy hierarchy: * * The user-configured masks are always the same with effective masks. */ /* user-configured CPUs and Memory Nodes allow to tasks */ cpumask_var_t cpus_allowed; nodemask_t mems_allowed; /* effective CPUs and Memory Nodes allow to tasks */ cpumask_var_t effective_cpus; nodemask_t effective_mems; /* * Exclusive CPUs dedicated to current cgroup (default hierarchy only) * * The effective_cpus of a valid partition root comes solely from its * effective_xcpus and some of the effective_xcpus may be distributed * to sub-partitions below & hence excluded from its effective_cpus. * For a valid partition root, its effective_cpus have no relationship * with cpus_allowed unless its exclusive_cpus isn't set. * * This value will only be set if either exclusive_cpus is set or * when this cpuset becomes a local partition root. */ cpumask_var_t effective_xcpus; /* * Exclusive CPUs as requested by the user (default hierarchy only) * * Its value is independent of cpus_allowed and designates the set of * CPUs that can be granted to the current cpuset or its children when * it becomes a valid partition root. The effective set of exclusive * CPUs granted (effective_xcpus) depends on whether those exclusive * CPUs are passed down by its ancestors and not yet taken up by * another sibling partition root along the way. * * If its value isn't set, it defaults to cpus_allowed. */ cpumask_var_t exclusive_cpus; /* * This is old Memory Nodes tasks took on. * * - top_cpuset.old_mems_allowed is initialized to mems_allowed. * - A new cpuset's old_mems_allowed is initialized when some * task is moved into it. * - old_mems_allowed is used in cpuset_migrate_mm() when we change * cpuset.mems_allowed and have tasks' nodemask updated, and * then old_mems_allowed is updated to mems_allowed. */ nodemask_t old_mems_allowed; struct fmeter fmeter; /* memory_pressure filter */ /* * Tasks are being attached to this cpuset. Used to prevent * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). */ int attach_in_progress; /* partition number for rebuild_sched_domains() */ int pn; /* for custom sched domain */ int relax_domain_level; /* number of valid local child partitions */ int nr_subparts; /* partition root state */ int partition_root_state; /* * Default hierarchy only: * use_parent_ecpus - set if using parent's effective_cpus * child_ecpus_count - # of children with use_parent_ecpus set */ int use_parent_ecpus; int child_ecpus_count; /* * number of SCHED_DEADLINE tasks attached to this cpuset, so that we * know when to rebuild associated root domain bandwidth information. */ int nr_deadline_tasks; int nr_migrate_dl_tasks; u64 sum_migrate_dl_bw; /* Invalid partition error code, not lock protected */ enum prs_errcode prs_err; /* Handle for cpuset.cpus.partition */ struct cgroup_file partition_file; /* Remote partition silbling list anchored at remote_children */ struct list_head remote_sibling; }; /* * Legacy hierarchy call to cgroup_transfer_tasks() is handled asynchrously */ struct cpuset_remove_tasks_struct { struct work_struct work; struct cpuset *cs; }; /* * Exclusive CPUs distributed out to sub-partitions of top_cpuset */ static cpumask_var_t subpartitions_cpus; /* * Exclusive CPUs in isolated partitions */ static cpumask_var_t isolated_cpus; /* List of remote partition root children */ static struct list_head remote_children; /* * Partition root states: * * 0 - member (not a partition root) * 1 - partition root * 2 - partition root without load balancing (isolated) * -1 - invalid partition root * -2 - invalid isolated partition root * * There are 2 types of partitions - local or remote. Local partitions are * those whose parents are partition root themselves. Setting of * cpuset.cpus.exclusive are optional in setting up local partitions. * Remote partitions are those whose parents are not partition roots. Passing * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor * nodes are mandatory in creating a remote partition. * * For simplicity, a local partition can be created under a local or remote * partition but a remote partition cannot have any partition root in its * ancestor chain except the cgroup root. */ #define PRS_MEMBER 0 #define PRS_ROOT 1 #define PRS_ISOLATED 2 #define PRS_INVALID_ROOT -1 #define PRS_INVALID_ISOLATED -2 static inline bool is_prs_invalid(int prs_state) { return prs_state < 0; } /* * Temporary cpumasks for working with partitions that are passed among * functions to avoid memory allocation in inner functions. */ struct tmpmasks { cpumask_var_t addmask, delmask; /* For partition root */ cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ }; static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) { return css ? container_of(css, struct cpuset, css) : NULL; } /* Retrieve the cpuset for a task */ static inline struct cpuset *task_cs(struct task_struct *task) { return css_cs(task_css(task, cpuset_cgrp_id)); } static inline struct cpuset *parent_cs(struct cpuset *cs) { return css_cs(cs->css.parent); } void inc_dl_tasks_cs(struct task_struct *p) { struct cpuset *cs = task_cs(p); cs->nr_deadline_tasks++; } void dec_dl_tasks_cs(struct task_struct *p) { struct cpuset *cs = task_cs(p); cs->nr_deadline_tasks--; } /* bits in struct cpuset flags field */ typedef enum { CS_ONLINE, CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, CS_MEM_HARDWALL, CS_MEMORY_MIGRATE, CS_SCHED_LOAD_BALANCE, CS_SPREAD_PAGE, CS_SPREAD_SLAB, } cpuset_flagbits_t; /* convenient tests for these bits */ static inline bool is_cpuset_online(struct cpuset *cs) { return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); } static inline int is_cpu_exclusive(const struct cpuset *cs) { return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); } static inline int is_mem_exclusive(const struct cpuset *cs) { return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); } static inline int is_mem_hardwall(const struct cpuset *cs) { return test_bit(CS_MEM_HARDWALL, &cs->flags); } static inline int is_sched_load_balance(const struct cpuset *cs) { return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); } static inline int is_memory_migrate(const struct cpuset *cs) { return test_bit(CS_MEMORY_MIGRATE, &cs->flags); } static inline int is_spread_page(const struct cpuset *cs) { return test_bit(CS_SPREAD_PAGE, &cs->flags); } static inline int is_spread_slab(const struct cpuset *cs) { return test_bit(CS_SPREAD_SLAB, &cs->flags); } static inline int is_partition_valid(const struct cpuset *cs) { return cs->partition_root_state > 0; } static inline int is_partition_invalid(const struct cpuset *cs) { return cs->partition_root_state < 0; } /* * Callers should hold callback_lock to modify partition_root_state. */ static inline void make_partition_invalid(struct cpuset *cs) { if (cs->partition_root_state > 0) cs->partition_root_state = -cs->partition_root_state; } /* * Send notification event of whenever partition_root_state changes. */ static inline void notify_partition_change(struct cpuset *cs, int old_prs) { if (old_prs == cs->partition_root_state) return; cgroup_file_notify(&cs->partition_file); /* Reset prs_err if not invalid */ if (is_partition_valid(cs)) WRITE_ONCE(cs->prs_err, PERR_NONE); } static struct cpuset top_cpuset = { .flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) | BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), .partition_root_state = PRS_ROOT, .relax_domain_level = -1, .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), }; /** * cpuset_for_each_child - traverse online children of a cpuset * @child_cs: loop cursor pointing to the current child * @pos_css: used for iteration * @parent_cs: target cpuset to walk children of * * Walk @child_cs through the online children of @parent_cs. Must be used * with RCU read locked. */ #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ css_for_each_child((pos_css), &(parent_cs)->css) \ if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) /** * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants * @des_cs: loop cursor pointing to the current descendant * @pos_css: used for iteration * @root_cs: target cpuset to walk ancestor of * * Walk @des_cs through the online descendants of @root_cs. Must be used * with RCU read locked. The caller may modify @pos_css by calling * css_rightmost_descendant() to skip subtree. @root_cs is included in the * iteration and the first node to be visited. */ #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) /* * There are two global locks guarding cpuset structures - cpuset_mutex and * callback_lock. We also require taking task_lock() when dereferencing a * task's cpuset pointer. See "The task_lock() exception", at the end of this * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset * structures. Note that cpuset_mutex needs to be a mutex as it is used in * paths that rely on priority inheritance (e.g. scheduler - on RT) for * correctness. * * A task must hold both locks to modify cpusets. If a task holds * cpuset_mutex, it blocks others, ensuring that it is the only task able to * also acquire callback_lock and be able to modify cpusets. It can perform * various checks on the cpuset structure first, knowing nothing will change. * It can also allocate memory while just holding cpuset_mutex. While it is * performing these checks, various callback routines can briefly acquire * callback_lock to query cpusets. Once it is ready to make the changes, it * takes callback_lock, blocking everyone else. * * Calls to the kernel memory allocator can not be made while holding * callback_lock, as that would risk double tripping on callback_lock * from one of the callbacks into the cpuset code from within * __alloc_pages(). * * If a task is only holding callback_lock, then it has read-only * access to cpusets. * * Now, the task_struct fields mems_allowed and mempolicy may be changed * by other task, we use alloc_lock in the task_struct fields to protect * them. * * The cpuset_common_seq_show() handlers only hold callback_lock across * small pieces of code, such as when reading out possibly multi-word * cpumasks and nodemasks. * * Accessing a task's cpuset should be done in accordance with the * guidelines for accessing subsystem state in kernel/cgroup.c */ static DEFINE_MUTEX(cpuset_mutex); void cpuset_lock(void) { mutex_lock(&cpuset_mutex); } void cpuset_unlock(void) { mutex_unlock(&cpuset_mutex); } static DEFINE_SPINLOCK(callback_lock); static struct workqueue_struct *cpuset_migrate_mm_wq; static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); static inline void check_insane_mems_config(nodemask_t *nodes) { if (!cpusets_insane_config() && movable_only_nodes(nodes)) { static_branch_enable(&cpusets_insane_config_key); pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" "Cpuset allocations might fail even with a lot of memory available.\n", nodemask_pr_args(nodes)); } } /* * Cgroup v2 behavior is used on the "cpus" and "mems" control files when * on default hierarchy or when the cpuset_v2_mode flag is set by mounting * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. * With v2 behavior, "cpus" and "mems" are always what the users have * requested and won't be changed by hotplug events. Only the effective * cpus or mems will be affected. */ static inline bool is_in_v2_mode(void) { return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); } /** * partition_is_populated - check if partition has tasks * @cs: partition root to be checked * @excluded_child: a child cpuset to be excluded in task checking * Return: true if there are tasks, false otherwise * * It is assumed that @cs is a valid partition root. @excluded_child should * be non-NULL when this cpuset is going to become a partition itself. */ static inline bool partition_is_populated(struct cpuset *cs, struct cpuset *excluded_child) { struct cgroup_subsys_state *css; struct cpuset *child; if (cs->css.cgroup->nr_populated_csets) return true; if (!excluded_child && !cs->nr_subparts) return cgroup_is_populated(cs->css.cgroup); rcu_read_lock(); cpuset_for_each_child(child, css, cs) { if (child == excluded_child) continue; if (is_partition_valid(child)) continue; if (cgroup_is_populated(child->css.cgroup)) { rcu_read_unlock(); return true; } } rcu_read_unlock(); return false; } /* * Return in pmask the portion of a task's cpusets's cpus_allowed that * are online and are capable of running the task. If none are found, * walk up the cpuset hierarchy until we find one that does have some * appropriate cpus. * * One way or another, we guarantee to return some non-empty subset * of cpu_online_mask. * * Call with callback_lock or cpuset_mutex held. */ static void guarantee_online_cpus(struct task_struct *tsk, struct cpumask *pmask) { const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); struct cpuset *cs; if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) cpumask_copy(pmask, cpu_online_mask); rcu_read_lock(); cs = task_cs(tsk); while (!cpumask_intersects(cs->effective_cpus, pmask)) cs = parent_cs(cs); cpumask_and(pmask, pmask, cs->effective_cpus); rcu_read_unlock(); } /* * Return in *pmask the portion of a cpusets's mems_allowed that * are online, with memory. If none are online with memory, walk * up the cpuset hierarchy until we find one that does have some * online mems. The top cpuset always has some mems online. * * One way or another, we guarantee to return some non-empty subset * of node_states[N_MEMORY]. * * Call with callback_lock or cpuset_mutex held. */ static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) { while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) cs = parent_cs(cs); nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); } /* * update task's spread flag if cpuset's page/slab spread flag is set * * Call with callback_lock or cpuset_mutex held. The check can be skipped * if on default hierarchy. */ static void cpuset_update_task_spread_flags(struct cpuset *cs, struct task_struct *tsk) { if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) return; if (is_spread_page(cs)) task_set_spread_page(tsk); else task_clear_spread_page(tsk); if (is_spread_slab(cs)) task_set_spread_slab(tsk); else task_clear_spread_slab(tsk); } /* * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? * * One cpuset is a subset of another if all its allowed CPUs and * Memory Nodes are a subset of the other, and its exclusive flags * are only set if the other's are set. Call holding cpuset_mutex. */ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) { return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && nodes_subset(p->mems_allowed, q->mems_allowed) && is_cpu_exclusive(p) <= is_cpu_exclusive(q) && is_mem_exclusive(p) <= is_mem_exclusive(q); } /** * alloc_cpumasks - allocate three cpumasks for cpuset * @cs: the cpuset that have cpumasks to be allocated. * @tmp: the tmpmasks structure pointer * Return: 0 if successful, -ENOMEM otherwise. * * Only one of the two input arguments should be non-NULL. */ static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) { cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4; if (cs) { pmask1 = &cs->cpus_allowed; pmask2 = &cs->effective_cpus; pmask3 = &cs->effective_xcpus; pmask4 = &cs->exclusive_cpus; } else { pmask1 = &tmp->new_cpus; pmask2 = &tmp->addmask; pmask3 = &tmp->delmask; pmask4 = NULL; } if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) return -ENOMEM; if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) goto free_one; if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) goto free_two; if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL)) goto free_three; return 0; free_three: free_cpumask_var(*pmask3); free_two: free_cpumask_var(*pmask2); free_one: free_cpumask_var(*pmask1); return -ENOMEM; } /** * free_cpumasks - free cpumasks in a tmpmasks structure * @cs: the cpuset that have cpumasks to be free. * @tmp: the tmpmasks structure pointer */ static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) { if (cs) { free_cpumask_var(cs->cpus_allowed); free_cpumask_var(cs->effective_cpus); free_cpumask_var(cs->effective_xcpus); free_cpumask_var(cs->exclusive_cpus); } if (tmp) { free_cpumask_var(tmp->new_cpus); free_cpumask_var(tmp->addmask); free_cpumask_var(tmp->delmask); } } /** * alloc_trial_cpuset - allocate a trial cpuset * @cs: the cpuset that the trial cpuset duplicates */ static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) { struct cpuset *trial; trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); if (!trial) return NULL; if (alloc_cpumasks(trial, NULL)) { kfree(trial); return NULL; } cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); cpumask_copy(trial->effective_cpus, cs->effective_cpus); cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); return trial; } /** * free_cpuset - free the cpuset * @cs: the cpuset to be freed */ static inline void free_cpuset(struct cpuset *cs) { free_cpumasks(cs, NULL); kfree(cs); } /* Return user specified exclusive CPUs */ static inline struct cpumask *user_xcpus(struct cpuset *cs) { return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed : cs->exclusive_cpus; } static inline bool xcpus_empty(struct cpuset *cs) { return cpumask_empty(cs->cpus_allowed) && cpumask_empty(cs->exclusive_cpus); } static inline struct cpumask *fetch_xcpus(struct cpuset *cs) { return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus : cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed : cs->effective_xcpus; } /* * cpusets_are_exclusive() - check if two cpusets are exclusive * * Return true if exclusive, false if not */ static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) { struct cpumask *xcpus1 = fetch_xcpus(cs1); struct cpumask *xcpus2 = fetch_xcpus(cs2); if (cpumask_intersects(xcpus1, xcpus2)) return false; return true; } /* * validate_change_legacy() - Validate conditions specific to legacy (v1) * behavior. */ static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) { struct cgroup_subsys_state *css; struct cpuset *c, *par; int ret; WARN_ON_ONCE(!rcu_read_lock_held()); /* Each of our child cpusets must be a subset of us */ ret = -EBUSY; cpuset_for_each_child(c, css, cur) if (!is_cpuset_subset(c, trial)) goto out; /* On legacy hierarchy, we must be a subset of our parent cpuset. */ ret = -EACCES; par = parent_cs(cur); if (par && !is_cpuset_subset(trial, par)) goto out; ret = 0; out: return ret; } /* * validate_change() - Used to validate that any proposed cpuset change * follows the structural rules for cpusets. * * If we replaced the flag and mask values of the current cpuset * (cur) with those values in the trial cpuset (trial), would * our various subset and exclusive rules still be valid? Presumes * cpuset_mutex held. * * 'cur' is the address of an actual, in-use cpuset. Operations * such as list traversal that depend on the actual address of the * cpuset in the list must use cur below, not trial. * * 'trial' is the address of bulk structure copy of cur, with * perhaps one or more of the fields cpus_allowed, mems_allowed, * or flags changed to new, trial values. * * Return 0 if valid, -errno if not. */ static int validate_change(struct cpuset *cur, struct cpuset *trial) { struct cgroup_subsys_state *css; struct cpuset *c, *par; int ret = 0; rcu_read_lock(); if (!is_in_v2_mode()) ret = validate_change_legacy(cur, trial); if (ret) goto out; /* Remaining checks don't apply to root cpuset */ if (cur == &top_cpuset) goto out; par = parent_cs(cur); /* * Cpusets with tasks - existing or newly being attached - can't * be changed to have empty cpus_allowed or mems_allowed. */ ret = -ENOSPC; if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { if (!cpumask_empty(cur->cpus_allowed) && cpumask_empty(trial->cpus_allowed)) goto out; if (!nodes_empty(cur->mems_allowed) && nodes_empty(trial->mems_allowed)) goto out; } /* * We can't shrink if we won't have enough room for SCHED_DEADLINE * tasks. */ ret = -EBUSY; if (is_cpu_exclusive(cur) && !cpuset_cpumask_can_shrink(cur->cpus_allowed, trial->cpus_allowed)) goto out; /* * If either I or some sibling (!= me) is exclusive, we can't * overlap. exclusive_cpus cannot overlap with each other if set. */ ret = -EINVAL; cpuset_for_each_child(c, css, par) { bool txset, cxset; /* Are exclusive_cpus set? */ if (c == cur) continue; txset = !cpumask_empty(trial->exclusive_cpus); cxset = !cpumask_empty(c->exclusive_cpus); if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) || (txset && cxset)) { if (!cpusets_are_exclusive(trial, c)) goto out; } else if (txset || cxset) { struct cpumask *xcpus, *acpus; /* * When just one of the exclusive_cpus's is set, * cpus_allowed of the other cpuset, if set, cannot be * a subset of it or none of those CPUs will be * available if these exclusive CPUs are activated. */ if (txset) { xcpus = trial->exclusive_cpus; acpus = c->cpus_allowed; } else { xcpus = c->exclusive_cpus; acpus = trial->cpus_allowed; } if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus)) goto out; } if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && nodes_intersects(trial->mems_allowed, c->mems_allowed)) goto out; } ret = 0; out: rcu_read_unlock(); return ret; } #ifdef CONFIG_SMP /* * Helper routine for generate_sched_domains(). * Do cpusets a, b have overlapping effective cpus_allowed masks? */ static int cpusets_overlap(struct cpuset *a, struct cpuset *b) { return cpumask_intersects(a->effective_cpus, b->effective_cpus); } static void update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) { if (dattr->relax_domain_level < c->relax_domain_level) dattr->relax_domain_level = c->relax_domain_level; return; } static void update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *root_cs) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { /* skip the whole subtree if @cp doesn't have any CPU */ if (cpumask_empty(cp->cpus_allowed)) { pos_css = css_rightmost_descendant(pos_css); continue; } if (is_sched_load_balance(cp)) update_domain_attr(dattr, cp); } rcu_read_unlock(); } /* Must be called with cpuset_mutex held. */ static inline int nr_cpusets(void) { /* jump label reference count + the top-level cpuset */ return static_key_count(&cpusets_enabled_key.key) + 1; } /* * generate_sched_domains() * * This function builds a partial partition of the systems CPUs * A 'partial partition' is a set of non-overlapping subsets whose * union is a subset of that set. * The output of this function needs to be passed to kernel/sched/core.c * partition_sched_domains() routine, which will rebuild the scheduler's * load balancing domains (sched domains) as specified by that partial * partition. * * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst * for a background explanation of this. * * Does not return errors, on the theory that the callers of this * routine would rather not worry about failures to rebuild sched * domains when operating in the severe memory shortage situations * that could cause allocation failures below. * * Must be called with cpuset_mutex held. * * The three key local variables below are: * cp - cpuset pointer, used (together with pos_css) to perform a * top-down scan of all cpusets. For our purposes, rebuilding * the schedulers sched domains, we can ignore !is_sched_load_ * balance cpusets. * csa - (for CpuSet Array) Array of pointers to all the cpusets * that need to be load balanced, for convenient iterative * access by the subsequent code that finds the best partition, * i.e the set of domains (subsets) of CPUs such that the * cpus_allowed of every cpuset marked is_sched_load_balance * is a subset of one of these domains, while there are as * many such domains as possible, each as small as possible. * doms - Conversion of 'csa' to an array of cpumasks, for passing to * the kernel/sched/core.c routine partition_sched_domains() in a * convenient format, that can be easily compared to the prior * value to determine what partition elements (sched domains) * were changed (added or removed.) * * Finding the best partition (set of domains): * The triple nested loops below over i, j, k scan over the * load balanced cpusets (using the array of cpuset pointers in * csa[]) looking for pairs of cpusets that have overlapping * cpus_allowed, but which don't have the same 'pn' partition * number and gives them in the same partition number. It keeps * looping on the 'restart' label until it can no longer find * any such pairs. * * The union of the cpus_allowed masks from the set of * all cpusets having the same 'pn' value then form the one * element of the partition (one sched domain) to be passed to * partition_sched_domains(). */ static int generate_sched_domains(cpumask_var_t **domains, struct sched_domain_attr **attributes) { struct cpuset *cp; /* top-down scan of cpusets */ struct cpuset **csa; /* array of all cpuset ptrs */ int csn; /* how many cpuset ptrs in csa so far */ int i, j, k; /* indices for partition finding loops */ cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ struct sched_domain_attr *dattr; /* attributes for custom domains */ int ndoms = 0; /* number of sched domains in result */ int nslot; /* next empty doms[] struct cpumask slot */ struct cgroup_subsys_state *pos_css; bool root_load_balance = is_sched_load_balance(&top_cpuset); bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys); doms = NULL; dattr = NULL; csa = NULL; /* Special case for the 99% of systems with one, full, sched domain */ if (root_load_balance && cpumask_empty(subpartitions_cpus)) { single_root_domain: ndoms = 1; doms = alloc_sched_domains(ndoms); if (!doms) goto done; dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); if (dattr) { *dattr = SD_ATTR_INIT; update_domain_attr_tree(dattr, &top_cpuset); } cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); goto done; } csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); if (!csa) goto done; csn = 0; rcu_read_lock(); if (root_load_balance) csa[csn++] = &top_cpuset; cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { if (cp == &top_cpuset) continue; if (cgrpv2) goto v2; /* * v1: * Continue traversing beyond @cp iff @cp has some CPUs and * isn't load balancing. The former is obvious. The * latter: All child cpusets contain a subset of the * parent's cpus, so just skip them, and then we call * update_domain_attr_tree() to calc relax_domain_level of * the corresponding sched domain. */ if (!cpumask_empty(cp->cpus_allowed) && !(is_sched_load_balance(cp) && cpumask_intersects(cp->cpus_allowed, housekeeping_cpumask(HK_TYPE_DOMAIN)))) continue; if (is_sched_load_balance(cp) && !cpumask_empty(cp->effective_cpus)) csa[csn++] = cp; /* skip @cp's subtree */ pos_css = css_rightmost_descendant(pos_css); continue; v2: /* * Only valid partition roots that are not isolated and with * non-empty effective_cpus will be saved into csn[]. */ if ((cp->partition_root_state == PRS_ROOT) && !cpumask_empty(cp->effective_cpus)) csa[csn++] = cp; /* * Skip @cp's subtree if not a partition root and has no * exclusive CPUs to be granted to child cpusets. */ if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) pos_css = css_rightmost_descendant(pos_css); } rcu_read_unlock(); /* * If there are only isolated partitions underneath the cgroup root, * we can optimize out unneeded sched domains scanning. */ if (root_load_balance && (csn == 1)) goto single_root_domain; for (i = 0; i < csn; i++) csa[i]->pn = i; ndoms = csn; restart: /* Find the best partition (set of sched domains) */ for (i = 0; i < csn; i++) { struct cpuset *a = csa[i]; int apn = a->pn; for (j = 0; j < csn; j++) { struct cpuset *b = csa[j]; int bpn = b->pn; if (apn != bpn && cpusets_overlap(a, b)) { for (k = 0; k < csn; k++) { struct cpuset *c = csa[k]; if (c->pn == bpn) c->pn = apn; } ndoms--; /* one less element */ goto restart; } } } /* * Now we know how many domains to create. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. */ doms = alloc_sched_domains(ndoms); if (!doms) goto done; /* * The rest of the code, including the scheduler, can deal with * dattr==NULL case. No need to abort if alloc fails. */ dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), GFP_KERNEL); /* * Cgroup v2 doesn't support domain attributes, just set all of them * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a * subset of HK_TYPE_DOMAIN housekeeping CPUs. */ if (cgrpv2) { for (i = 0; i < ndoms; i++) { cpumask_copy(doms[i], csa[i]->effective_cpus); if (dattr) dattr[i] = SD_ATTR_INIT; } goto done; } for (nslot = 0, i = 0; i < csn; i++) { struct cpuset *a = csa[i]; struct cpumask *dp; int apn = a->pn; if (apn < 0) { /* Skip completed partitions */ continue; } dp = doms[nslot]; if (nslot == ndoms) { static int warnings = 10; if (warnings) { pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", nslot, ndoms, csn, i, apn); warnings--; } continue; } cpumask_clear(dp); if (dattr) *(dattr + nslot) = SD_ATTR_INIT; for (j = i; j < csn; j++) { struct cpuset *b = csa[j]; if (apn == b->pn) { cpumask_or(dp, dp, b->effective_cpus); cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); if (dattr) update_domain_attr_tree(dattr + nslot, b); /* Done with this partition */ b->pn = -1; } } nslot++; } BUG_ON(nslot != ndoms); done: kfree(csa); /* * Fallback to the default domain if kmalloc() failed. * See comments in partition_sched_domains(). */ if (doms == NULL) ndoms = 1; *domains = doms; *attributes = dattr; return ndoms; } static void dl_update_tasks_root_domain(struct cpuset *cs) { struct css_task_iter it; struct task_struct *task; if (cs->nr_deadline_tasks == 0) return; css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) dl_add_task_root_domain(task); css_task_iter_end(&it); } static void dl_rebuild_rd_accounting(void) { struct cpuset *cs = NULL; struct cgroup_subsys_state *pos_css; lockdep_assert_held(&cpuset_mutex); lockdep_assert_cpus_held(); lockdep_assert_held(&sched_domains_mutex); rcu_read_lock(); /* * Clear default root domain DL accounting, it will be computed again * if a task belongs to it. */ dl_clear_root_domain(&def_root_domain); cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { if (cpumask_empty(cs->effective_cpus)) { pos_css = css_rightmost_descendant(pos_css); continue; } css_get(&cs->css); rcu_read_unlock(); dl_update_tasks_root_domain(cs); rcu_read_lock(); css_put(&cs->css); } rcu_read_unlock(); } static void partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new) { mutex_lock(&sched_domains_mutex); partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); dl_rebuild_rd_accounting(); mutex_unlock(&sched_domains_mutex); } /* * Rebuild scheduler domains. * * If the flag 'sched_load_balance' of any cpuset with non-empty * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset * which has that flag enabled, or if any cpuset with a non-empty * 'cpus' is removed, then call this routine to rebuild the * scheduler's dynamic sched domains. * * Call with cpuset_mutex held. Takes cpus_read_lock(). */ static void rebuild_sched_domains_locked(void) { struct cgroup_subsys_state *pos_css; struct sched_domain_attr *attr; cpumask_var_t *doms; struct cpuset *cs; int ndoms; lockdep_assert_cpus_held(); lockdep_assert_held(&cpuset_mutex); /* * If we have raced with CPU hotplug, return early to avoid * passing doms with offlined cpu to partition_sched_domains(). * Anyways, cpuset_handle_hotplug() will rebuild sched domains. * * With no CPUs in any subpartitions, top_cpuset's effective CPUs * should be the same as the active CPUs, so checking only top_cpuset * is enough to detect racing CPU offlines. */ if (cpumask_empty(subpartitions_cpus) && !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) return; /* * With subpartition CPUs, however, the effective CPUs of a partition * root should be only a subset of the active CPUs. Since a CPU in any * partition root could be offlined, all must be checked. */ if (!cpumask_empty(subpartitions_cpus)) { rcu_read_lock(); cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { if (!is_partition_valid(cs)) { pos_css = css_rightmost_descendant(pos_css); continue; } if (!cpumask_subset(cs->effective_cpus, cpu_active_mask)) { rcu_read_unlock(); return; } } rcu_read_unlock(); } /* Generate domain masks and attrs */ ndoms = generate_sched_domains(&doms, &attr); /* Have scheduler rebuild the domains */ partition_and_rebuild_sched_domains(ndoms, doms, attr); } #else /* !CONFIG_SMP */ static void rebuild_sched_domains_locked(void) { } #endif /* CONFIG_SMP */ static void rebuild_sched_domains_cpuslocked(void) { mutex_lock(&cpuset_mutex); rebuild_sched_domains_locked(); mutex_unlock(&cpuset_mutex); } void rebuild_sched_domains(void) { cpus_read_lock(); rebuild_sched_domains_cpuslocked(); cpus_read_unlock(); } /** * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed * @new_cpus: the temp variable for the new effective_cpus mask * * Iterate through each task of @cs updating its cpus_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() * is used instead of effective_cpus to make sure all offline CPUs are also * included as hotplug code won't update cpumasks for tasks in top_cpuset. */ static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) { struct css_task_iter it; struct task_struct *task; bool top_cs = cs == &top_cpuset; css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) { const struct cpumask *possible_mask = task_cpu_possible_mask(task); if (top_cs) { /* * Percpu kthreads in top_cpuset are ignored */ if (kthread_is_per_cpu(task)) continue; cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); } else { cpumask_and(new_cpus, possible_mask, cs->effective_cpus); } set_cpus_allowed_ptr(task, new_cpus); } css_task_iter_end(&it); } /** * compute_effective_cpumask - Compute the effective cpumask of the cpuset * @new_cpus: the temp variable for the new effective_cpus mask * @cs: the cpuset the need to recompute the new effective_cpus mask * @parent: the parent cpuset * * The result is valid only if the given cpuset isn't a partition root. */ static void compute_effective_cpumask(struct cpumask *new_cpus, struct cpuset *cs, struct cpuset *parent) { cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); } /* * Commands for update_parent_effective_cpumask */ enum partition_cmd { partcmd_enable, /* Enable partition root */ partcmd_enablei, /* Enable isolated partition root */ partcmd_disable, /* Disable partition root */ partcmd_update, /* Update parent's effective_cpus */ partcmd_invalidate, /* Make partition invalid */ }; static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on); static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, struct tmpmasks *tmp); /* * Update partition exclusive flag * * Return: 0 if successful, an error code otherwise */ static int update_partition_exclusive(struct cpuset *cs, int new_prs) { bool exclusive = (new_prs > PRS_MEMBER); if (exclusive && !is_cpu_exclusive(cs)) { if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) return PERR_NOTEXCL; } else if (!exclusive && is_cpu_exclusive(cs)) { /* Turning off CS_CPU_EXCLUSIVE will not return error */ update_flag(CS_CPU_EXCLUSIVE, cs, 0); } return 0; } /* * Update partition load balance flag and/or rebuild sched domain * * Changing load balance flag will automatically call * rebuild_sched_domains_locked(). * This function is for cgroup v2 only. */ static void update_partition_sd_lb(struct cpuset *cs, int old_prs) { int new_prs = cs->partition_root_state; bool rebuild_domains = (new_prs > 0) || (old_prs > 0); bool new_lb; /* * If cs is not a valid partition root, the load balance state * will follow its parent. */ if (new_prs > 0) { new_lb = (new_prs != PRS_ISOLATED); } else { new_lb = is_sched_load_balance(parent_cs(cs)); } if (new_lb != !!is_sched_load_balance(cs)) { rebuild_domains = true; if (new_lb) set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); else clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); } if (rebuild_domains) rebuild_sched_domains_locked(); } /* * tasks_nocpu_error - Return true if tasks will have no effective_cpus */ static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, struct cpumask *xcpus) { /* * A populated partition (cs or parent) can't have empty effective_cpus */ return (cpumask_subset(parent->effective_cpus, xcpus) && partition_is_populated(parent, cs)) || (!cpumask_intersects(xcpus, cpu_active_mask) && partition_is_populated(cs, NULL)); } static void reset_partition_data(struct cpuset *cs) { struct cpuset *parent = parent_cs(cs); if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) return; lockdep_assert_held(&callback_lock); cs->nr_subparts = 0; if (cpumask_empty(cs->exclusive_cpus)) { cpumask_clear(cs->effective_xcpus); if (is_cpu_exclusive(cs)) clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); } if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) { cs->use_parent_ecpus = true; parent->child_ecpus_count++; cpumask_copy(cs->effective_cpus, parent->effective_cpus); } } /* * partition_xcpus_newstate - Exclusive CPUs state change * @old_prs: old partition_root_state * @new_prs: new partition_root_state * @xcpus: exclusive CPUs with state change */ static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus) { WARN_ON_ONCE(old_prs == new_prs); if (new_prs == PRS_ISOLATED) cpumask_or(isolated_cpus, isolated_cpus, xcpus); else cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); } /* * partition_xcpus_add - Add new exclusive CPUs to partition * @new_prs: new partition_root_state * @parent: parent cpuset * @xcpus: exclusive CPUs to be added * Return: true if isolated_cpus modified, false otherwise * * Remote partition if parent == NULL */ static bool partition_xcpus_add(int new_prs, struct cpuset *parent, struct cpumask *xcpus) { bool isolcpus_updated; WARN_ON_ONCE(new_prs < 0); lockdep_assert_held(&callback_lock); if (!parent) parent = &top_cpuset; if (parent == &top_cpuset) cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); isolcpus_updated = (new_prs != parent->partition_root_state); if (isolcpus_updated) partition_xcpus_newstate(parent->partition_root_state, new_prs, xcpus); cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); return isolcpus_updated; } /* * partition_xcpus_del - Remove exclusive CPUs from partition * @old_prs: old partition_root_state * @parent: parent cpuset * @xcpus: exclusive CPUs to be removed * Return: true if isolated_cpus modified, false otherwise * * Remote partition if parent == NULL */ static bool partition_xcpus_del(int old_prs, struct cpuset *parent, struct cpumask *xcpus) { bool isolcpus_updated; WARN_ON_ONCE(old_prs < 0); lockdep_assert_held(&callback_lock); if (!parent) parent = &top_cpuset; if (parent == &top_cpuset) cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); isolcpus_updated = (old_prs != parent->partition_root_state); if (isolcpus_updated) partition_xcpus_newstate(old_prs, parent->partition_root_state, xcpus); cpumask_and(xcpus, xcpus, cpu_active_mask); cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); return isolcpus_updated; } static void update_unbound_workqueue_cpumask(bool isolcpus_updated) { int ret; lockdep_assert_cpus_held(); if (!isolcpus_updated) return; ret = workqueue_unbound_exclude_cpumask(isolated_cpus); WARN_ON_ONCE(ret < 0); } /** * cpuset_cpu_is_isolated - Check if the given CPU is isolated * @cpu: the CPU number to be checked * Return: true if CPU is used in an isolated partition, false otherwise */ bool cpuset_cpu_is_isolated(int cpu) { return cpumask_test_cpu(cpu, isolated_cpus); } EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); /* * compute_effective_exclusive_cpumask - compute effective exclusive CPUs * @cs: cpuset * @xcpus: effective exclusive CPUs value to be set * Return: true if xcpus is not empty, false otherwise. * * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set), * it must be a subset of parent's effective_xcpus. */ static bool compute_effective_exclusive_cpumask(struct cpuset *cs, struct cpumask *xcpus) { struct cpuset *parent = parent_cs(cs); if (!xcpus) xcpus = cs->effective_xcpus; return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus); } static inline bool is_remote_partition(struct cpuset *cs) { return !list_empty(&cs->remote_sibling); } static inline bool is_local_partition(struct cpuset *cs) { return is_partition_valid(cs) && !is_remote_partition(cs); } /* * remote_partition_enable - Enable current cpuset as a remote partition root * @cs: the cpuset to update * @new_prs: new partition_root_state * @tmp: temparary masks * Return: 1 if successful, 0 if error * * Enable the current cpuset to become a remote partition root taking CPUs * directly from the top cpuset. cpuset_mutex must be held by the caller. */ static int remote_partition_enable(struct cpuset *cs, int new_prs, struct tmpmasks *tmp) { bool isolcpus_updated; /* * The user must have sysadmin privilege. */ if (!capable(CAP_SYS_ADMIN)) return 0; /* * The requested exclusive_cpus must not be allocated to other * partitions and it can't use up all the root's effective_cpus. * * Note that if there is any local partition root above it or * remote partition root underneath it, its exclusive_cpus must * have overlapped with subpartitions_cpus. */ compute_effective_exclusive_cpumask(cs, tmp->new_cpus); if (cpumask_empty(tmp->new_cpus) || cpumask_intersects(tmp->new_cpus, subpartitions_cpus) || cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) return 0; spin_lock_irq(&callback_lock); isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); list_add(&cs->remote_sibling, &remote_children); if (cs->use_parent_ecpus) { struct cpuset *parent = parent_cs(cs); cs->use_parent_ecpus = false; parent->child_ecpus_count--; } spin_unlock_irq(&callback_lock); update_unbound_workqueue_cpumask(isolcpus_updated); /* * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. */ update_tasks_cpumask(&top_cpuset, tmp->new_cpus); update_sibling_cpumasks(&top_cpuset, NULL, tmp); return 1; } /* * remote_partition_disable - Remove current cpuset from remote partition list * @cs: the cpuset to update * @tmp: temparary masks * * The effective_cpus is also updated. * * cpuset_mutex must be held by the caller. */ static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) { bool isolcpus_updated; compute_effective_exclusive_cpumask(cs, tmp->new_cpus); WARN_ON_ONCE(!is_remote_partition(cs)); WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus)); spin_lock_irq(&callback_lock); list_del_init(&cs->remote_sibling); isolcpus_updated = partition_xcpus_del(cs->partition_root_state, NULL, tmp->new_cpus); cs->partition_root_state = -cs->partition_root_state; if (!cs->prs_err) cs->prs_err = PERR_INVCPUS; reset_partition_data(cs); spin_unlock_irq(&callback_lock); update_unbound_workqueue_cpumask(isolcpus_updated); /* * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. */ update_tasks_cpumask(&top_cpuset, tmp->new_cpus); update_sibling_cpumasks(&top_cpuset, NULL, tmp); } /* * remote_cpus_update - cpus_exclusive change of remote partition * @cs: the cpuset to be updated * @newmask: the new effective_xcpus mask * @tmp: temparary masks * * top_cpuset and subpartitions_cpus will be updated or partition can be * invalidated. */ static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask, struct tmpmasks *tmp) { bool adding, deleting; int prs = cs->partition_root_state; int isolcpus_updated = 0; if (WARN_ON_ONCE(!is_remote_partition(cs))) return; WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); if (cpumask_empty(newmask)) goto invalidate; adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus); deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask); /* * Additions of remote CPUs is only allowed if those CPUs are * not allocated to other partitions and there are effective_cpus * left in the top cpuset. */ if (adding && (!capable(CAP_SYS_ADMIN) || cpumask_intersects(tmp->addmask, subpartitions_cpus) || cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))) goto invalidate; spin_lock_irq(&callback_lock); if (adding) isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); if (deleting) isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); spin_unlock_irq(&callback_lock); update_unbound_workqueue_cpumask(isolcpus_updated); /* * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. */ update_tasks_cpumask(&top_cpuset, tmp->new_cpus); update_sibling_cpumasks(&top_cpuset, NULL, tmp); return; invalidate: remote_partition_disable(cs, tmp); } /* * remote_partition_check - check if a child remote partition needs update * @cs: the cpuset to be updated * @newmask: the new effective_xcpus mask * @delmask: temporary mask for deletion (not in tmp) * @tmp: temparary masks * * This should be called before the given cs has updated its cpus_allowed * and/or effective_xcpus. */ static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask, struct cpumask *delmask, struct tmpmasks *tmp) { struct cpuset *child, *next; int disable_cnt = 0; /* * Compute the effective exclusive CPUs that will be deleted. */ if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) || !cpumask_intersects(delmask, subpartitions_cpus)) return; /* No deletion of exclusive CPUs in partitions */ /* * Searching the remote children list to look for those that will * be impacted by the deletion of exclusive CPUs. * * Since a cpuset must be removed from the remote children list * before it can go offline and holding cpuset_mutex will prevent * any change in cpuset status. RCU read lock isn't needed. */ lockdep_assert_held(&cpuset_mutex); list_for_each_entry_safe(child, next, &remote_children, remote_sibling) if (cpumask_intersects(child->effective_cpus, delmask)) { remote_partition_disable(child, tmp); disable_cnt++; } if (disable_cnt) rebuild_sched_domains_locked(); } /* * prstate_housekeeping_conflict - check for partition & housekeeping conflicts * @prstate: partition root state to be checked * @new_cpus: cpu mask * Return: true if there is conflict, false otherwise * * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in * an isolated partition. */ static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) { const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN); bool all_in_hk = cpumask_subset(new_cpus, hk_domain); if (!all_in_hk && (prstate != PRS_ISOLATED)) return true; return false; } /** * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset * @cs: The cpuset that requests change in partition root state * @cmd: Partition root state change command * @newmask: Optional new cpumask for partcmd_update * @tmp: Temporary addmask and delmask * Return: 0 or a partition root state error code * * For partcmd_enable*, the cpuset is being transformed from a non-partition * root to a partition root. The effective_xcpus (cpus_allowed if * effective_xcpus not set) mask of the given cpuset will be taken away from * parent's effective_cpus. The function will return 0 if all the CPUs listed * in effective_xcpus can be granted or an error code will be returned. * * For partcmd_disable, the cpuset is being transformed from a partition * root back to a non-partition root. Any CPUs in effective_xcpus will be * given back to parent's effective_cpus. 0 will always be returned. * * For partcmd_update, if the optional newmask is specified, the cpu list is * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is * assumed to remain the same. The cpuset should either be a valid or invalid * partition root. The partition root state may change from valid to invalid * or vice versa. An error code will be returned if transitioning from * invalid to valid violates the exclusivity rule. * * For partcmd_invalidate, the current partition will be made invalid. * * The partcmd_enable* and partcmd_disable commands are used by * update_prstate(). An error code may be returned and the caller will check * for error. * * The partcmd_update command is used by update_cpumasks_hier() with newmask * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used * by update_cpumask() with NULL newmask. In both cases, the callers won't * check for error and so partition_root_state and prs_error will be updated * directly. */ static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, struct cpumask *newmask, struct tmpmasks *tmp) { struct cpuset *parent = parent_cs(cs); int adding; /* Adding cpus to parent's effective_cpus */ int deleting; /* Deleting cpus from parent's effective_cpus */ int old_prs, new_prs; int part_error = PERR_NONE; /* Partition error? */ int subparts_delta = 0; struct cpumask *xcpus; /* cs effective_xcpus */ int isolcpus_updated = 0; bool nocpu; lockdep_assert_held(&cpuset_mutex); /* * new_prs will only be changed for the partcmd_update and * partcmd_invalidate commands. */ adding = deleting = false; old_prs = new_prs = cs->partition_root_state; xcpus = user_xcpus(cs); if (cmd == partcmd_invalidate) { if (is_prs_invalid(old_prs)) return 0; /* * Make the current partition invalid. */ if (is_partition_valid(parent)) adding = cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); if (old_prs > 0) { new_prs = -old_prs; subparts_delta--; } goto write_error; } /* * The parent must be a partition root. * The new cpumask, if present, or the current cpus_allowed must * not be empty. */ if (!is_partition_valid(parent)) { return is_partition_invalid(parent) ? PERR_INVPARENT : PERR_NOTPART; } if (!newmask && xcpus_empty(cs)) return PERR_CPUSEMPTY; nocpu = tasks_nocpu_error(parent, cs, xcpus); if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { /* * Enabling partition root is not allowed if its * effective_xcpus is empty or doesn't overlap with * parent's effective_xcpus. */ if (cpumask_empty(xcpus) || !cpumask_intersects(xcpus, parent->effective_xcpus)) return PERR_INVCPUS; if (prstate_housekeeping_conflict(new_prs, xcpus)) return PERR_HKEEPING; /* * A parent can be left with no CPU as long as there is no * task directly associated with the parent partition. */ if (nocpu) return PERR_NOCPUS; cpumask_copy(tmp->delmask, xcpus); deleting = true; subparts_delta++; new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; } else if (cmd == partcmd_disable) { /* * May need to add cpus to parent's effective_cpus for * valid partition root. */ adding = !is_prs_invalid(old_prs) && cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); if (adding) subparts_delta--; new_prs = PRS_MEMBER; } else if (newmask) { /* * Empty cpumask is not allowed */ if (cpumask_empty(newmask)) { part_error = PERR_CPUSEMPTY; goto write_error; } /* * partcmd_update with newmask: * * Compute add/delete mask to/from effective_cpus * * For valid partition: * addmask = exclusive_cpus & ~newmask * & parent->effective_xcpus * delmask = newmask & ~exclusive_cpus * & parent->effective_xcpus * * For invalid partition: * delmask = newmask & parent->effective_xcpus */ if (is_prs_invalid(old_prs)) { adding = false; deleting = cpumask_and(tmp->delmask, newmask, parent->effective_xcpus); } else { cpumask_andnot(tmp->addmask, xcpus, newmask); adding = cpumask_and(tmp->addmask, tmp->addmask, parent->effective_xcpus); cpumask_andnot(tmp->delmask, newmask, xcpus); deleting = cpumask_and(tmp->delmask, tmp->delmask, parent->effective_xcpus); } /* * Make partition invalid if parent's effective_cpus could * become empty and there are tasks in the parent. */ if (nocpu && (!adding || !cpumask_intersects(tmp->addmask, cpu_active_mask))) { part_error = PERR_NOCPUS; deleting = false; adding = cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); } } else { /* * partcmd_update w/o newmask * * delmask = effective_xcpus & parent->effective_cpus * * This can be called from: * 1) update_cpumasks_hier() * 2) cpuset_hotplug_update_tasks() * * Check to see if it can be transitioned from valid to * invalid partition or vice versa. * * A partition error happens when parent has tasks and all * its effective CPUs will have to be distributed out. */ WARN_ON_ONCE(!is_partition_valid(parent)); if (nocpu) { part_error = PERR_NOCPUS; if (is_partition_valid(cs)) adding = cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); } else if (is_partition_invalid(cs) && cpumask_subset(xcpus, parent->effective_xcpus)) { struct cgroup_subsys_state *css; struct cpuset *child; bool exclusive = true; /* * Convert invalid partition to valid has to * pass the cpu exclusivity test. */ rcu_read_lock(); cpuset_for_each_child(child, css, parent) { if (child == cs) continue; if (!cpusets_are_exclusive(cs, child)) { exclusive = false; break; } } rcu_read_unlock(); if (exclusive) deleting = cpumask_and(tmp->delmask, xcpus, parent->effective_cpus); else part_error = PERR_NOTEXCL; } } write_error: if (part_error) WRITE_ONCE(cs->prs_err, part_error); if (cmd == partcmd_update) { /* * Check for possible transition between valid and invalid * partition root. */ switch (cs->partition_root_state) { case PRS_ROOT: case PRS_ISOLATED: if (part_error) { new_prs = -old_prs; subparts_delta--; } break; case PRS_INVALID_ROOT: case PRS_INVALID_ISOLATED: if (!part_error) { new_prs = -old_prs; subparts_delta++; } break; } } if (!adding && !deleting && (new_prs == old_prs)) return 0; /* * Transitioning between invalid to valid or vice versa may require * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, * validate_change() has already been successfully called and * CPU lists in cs haven't been updated yet. So defer it to later. */ if ((old_prs != new_prs) && (cmd != partcmd_update)) { int err = update_partition_exclusive(cs, new_prs); if (err) return err; } /* * Change the parent's effective_cpus & effective_xcpus (top cpuset * only). * * Newly added CPUs will be removed from effective_cpus and * newly deleted ones will be added back to effective_cpus. */ spin_lock_irq(&callback_lock); if (old_prs != new_prs) { cs->partition_root_state = new_prs; if (new_prs <= 0) cs->nr_subparts = 0; } /* * Adding to parent's effective_cpus means deletion CPUs from cs * and vice versa. */ if (adding) isolcpus_updated += partition_xcpus_del(old_prs, parent, tmp->addmask); if (deleting) isolcpus_updated += partition_xcpus_add(new_prs, parent, tmp->delmask); if (is_partition_valid(parent)) { parent->nr_subparts += subparts_delta; WARN_ON_ONCE(parent->nr_subparts < 0); } spin_unlock_irq(&callback_lock); update_unbound_workqueue_cpumask(isolcpus_updated); if ((old_prs != new_prs) && (cmd == partcmd_update)) update_partition_exclusive(cs, new_prs); if (adding || deleting) { update_tasks_cpumask(parent, tmp->addmask); update_sibling_cpumasks(parent, cs, tmp); } /* * For partcmd_update without newmask, it is being called from * cpuset_handle_hotplug(). Update the load balance flag and * scheduling domain accordingly. */ if ((cmd == partcmd_update) && !newmask) update_partition_sd_lb(cs, old_prs); notify_partition_change(cs, old_prs); return 0; } /** * compute_partition_effective_cpumask - compute effective_cpus for partition * @cs: partition root cpuset * @new_ecpus: previously computed effective_cpus to be updated * * Compute the effective_cpus of a partition root by scanning effective_xcpus * of child partition roots and excluding their effective_xcpus. * * This has the side effect of invalidating valid child partition roots, * if necessary. Since it is called from either cpuset_hotplug_update_tasks() * or update_cpumasks_hier() where parent and children are modified * successively, we don't need to call update_parent_effective_cpumask() * and the child's effective_cpus will be updated in later iterations. * * Note that rcu_read_lock() is assumed to be held. */ static void compute_partition_effective_cpumask(struct cpuset *cs, struct cpumask *new_ecpus) { struct cgroup_subsys_state *css; struct cpuset *child; bool populated = partition_is_populated(cs, NULL); /* * Check child partition roots to see if they should be * invalidated when * 1) child effective_xcpus not a subset of new * excluisve_cpus * 2) All the effective_cpus will be used up and cp * has tasks */ compute_effective_exclusive_cpumask(cs, new_ecpus); cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); rcu_read_lock(); cpuset_for_each_child(child, css, cs) { if (!is_partition_valid(child)) continue; child->prs_err = 0; if (!cpumask_subset(child->effective_xcpus, cs->effective_xcpus)) child->prs_err = PERR_INVCPUS; else if (populated && cpumask_subset(new_ecpus, child->effective_xcpus)) child->prs_err = PERR_NOCPUS; if (child->prs_err) { int old_prs = child->partition_root_state; /* * Invalidate child partition */ spin_lock_irq(&callback_lock); make_partition_invalid(child); cs->nr_subparts--; child->nr_subparts = 0; spin_unlock_irq(&callback_lock); notify_partition_change(child, old_prs); continue; } cpumask_andnot(new_ecpus, new_ecpus, child->effective_xcpus); } rcu_read_unlock(); } /* * update_cpumasks_hier() flags */ #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ /* * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree * @cs: the cpuset to consider * @tmp: temp variables for calculating effective_cpus & partition setup * @force: don't skip any descendant cpusets if set * * When configured cpumask is changed, the effective cpumasks of this cpuset * and all its descendants need to be updated. * * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. * * Called with cpuset_mutex held */ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, int flags) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; bool need_rebuild_sched_domains = false; int old_prs, new_prs; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, cs) { struct cpuset *parent = parent_cs(cp); bool remote = is_remote_partition(cp); bool update_parent = false; /* * Skip descendent remote partition that acquires CPUs * directly from top cpuset unless it is cs. */ if (remote && (cp != cs)) { pos_css = css_rightmost_descendant(pos_css); continue; } /* * Update effective_xcpus if exclusive_cpus set. * The case when exclusive_cpus isn't set is handled later. */ if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) { spin_lock_irq(&callback_lock); compute_effective_exclusive_cpumask(cp, NULL); spin_unlock_irq(&callback_lock); } old_prs = new_prs = cp->partition_root_state; if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) compute_partition_effective_cpumask(cp, tmp->new_cpus); else compute_effective_cpumask(tmp->new_cpus, cp, parent); /* * A partition with no effective_cpus is allowed as long as * there is no task associated with it. Call * update_parent_effective_cpumask() to check it. */ if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { update_parent = true; goto update_parent_effective; } /* * If it becomes empty, inherit the effective mask of the * parent, which is guaranteed to have some CPUs unless * it is a partition root that has explicitly distributed * out all its CPUs. */ if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) { cpumask_copy(tmp->new_cpus, parent->effective_cpus); if (!cp->use_parent_ecpus) { cp->use_parent_ecpus = true; parent->child_ecpus_count++; } } else if (cp->use_parent_ecpus) { cp->use_parent_ecpus = false; WARN_ON_ONCE(!parent->child_ecpus_count); parent->child_ecpus_count--; } if (remote) goto get_css; /* * Skip the whole subtree if * 1) the cpumask remains the same, * 2) has no partition root state, * 3) HIER_CHECKALL flag not set, and * 4) for v2 load balance state same as its parent. */ if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && cpumask_equal(tmp->new_cpus, cp->effective_cpus) && (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { pos_css = css_rightmost_descendant(pos_css); continue; } update_parent_effective: /* * update_parent_effective_cpumask() should have been called * for cs already in update_cpumask(). We should also call * update_tasks_cpumask() again for tasks in the parent * cpuset if the parent's effective_cpus changes. */ if ((cp != cs) && old_prs) { switch (parent->partition_root_state) { case PRS_ROOT: case PRS_ISOLATED: update_parent = true; break; default: /* * When parent is not a partition root or is * invalid, child partition roots become * invalid too. */ if (is_partition_valid(cp)) new_prs = -cp->partition_root_state; WRITE_ONCE(cp->prs_err, is_partition_invalid(parent) ? PERR_INVPARENT : PERR_NOTPART); break; } } get_css: if (!css_tryget_online(&cp->css)) continue; rcu_read_unlock(); if (update_parent) { update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); /* * The cpuset partition_root_state may become * invalid. Capture it. */ new_prs = cp->partition_root_state; } spin_lock_irq(&callback_lock); cpumask_copy(cp->effective_cpus, tmp->new_cpus); cp->partition_root_state = new_prs; /* * Make sure effective_xcpus is properly set for a valid * partition root. */ if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) cpumask_and(cp->effective_xcpus, cp->cpus_allowed, parent->effective_xcpus); else if (new_prs < 0) reset_partition_data(cp); spin_unlock_irq(&callback_lock); notify_partition_change(cp, old_prs); WARN_ON(!is_in_v2_mode() && !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); update_tasks_cpumask(cp, cp->effective_cpus); /* * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE * from parent if current cpuset isn't a valid partition root * and their load balance states differ. */ if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && !is_partition_valid(cp) && (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { if (is_sched_load_balance(parent)) set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); else clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); } /* * On legacy hierarchy, if the effective cpumask of any non- * empty cpuset is changed, we need to rebuild sched domains. * On default hierarchy, the cpuset needs to be a partition * root as well. */ if (!cpumask_empty(cp->cpus_allowed) && is_sched_load_balance(cp) && (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || is_partition_valid(cp))) need_rebuild_sched_domains = true; rcu_read_lock(); css_put(&cp->css); } rcu_read_unlock(); if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) rebuild_sched_domains_locked(); } /** * update_sibling_cpumasks - Update siblings cpumasks * @parent: Parent cpuset * @cs: Current cpuset * @tmp: Temp variables */ static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, struct tmpmasks *tmp) { struct cpuset *sibling; struct cgroup_subsys_state *pos_css; lockdep_assert_held(&cpuset_mutex); /* * Check all its siblings and call update_cpumasks_hier() * if their effective_cpus will need to be changed. * * With the addition of effective_xcpus which is a subset of * cpus_allowed. It is possible a change in parent's effective_cpus * due to a change in a child partition's effective_xcpus will impact * its siblings even if they do not inherit parent's effective_cpus * directly. * * The update_cpumasks_hier() function may sleep. So we have to * release the RCU read lock before calling it. HIER_NO_SD_REBUILD * flag is used to suppress rebuild of sched domains as the callers * will take care of that. */ rcu_read_lock(); cpuset_for_each_child(sibling, pos_css, parent) { if (sibling == cs) continue; if (!sibling->use_parent_ecpus && !is_partition_valid(sibling)) { compute_effective_cpumask(tmp->new_cpus, sibling, parent); if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) continue; } if (!css_tryget_online(&sibling->css)) continue; rcu_read_unlock(); update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); rcu_read_lock(); css_put(&sibling->css); } rcu_read_unlock(); } /** * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it * @cs: the cpuset to consider * @trialcs: trial cpuset * @buf: buffer of cpu numbers written to this cpuset */ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, const char *buf) { int retval; struct tmpmasks tmp; struct cpuset *parent = parent_cs(cs); bool invalidate = false; int hier_flags = 0; int old_prs = cs->partition_root_state; /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ if (cs == &top_cpuset) return -EACCES; /* * An empty cpus_allowed is ok only if the cpuset has no tasks. * Since cpulist_parse() fails on an empty mask, we special case * that parsing. The validate_change() call ensures that cpusets * with tasks have cpus. */ if (!*buf) { cpumask_clear(trialcs->cpus_allowed); cpumask_clear(trialcs->effective_xcpus); } else { retval = cpulist_parse(buf, trialcs->cpus_allowed); if (retval < 0) return retval; if (!cpumask_subset(trialcs->cpus_allowed, top_cpuset.cpus_allowed)) return -EINVAL; /* * When exclusive_cpus isn't explicitly set, it is constrainted * by cpus_allowed and parent's effective_xcpus. Otherwise, * trialcs->effective_xcpus is used as a temporary cpumask * for checking validity of the partition root. */ if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs)) compute_effective_exclusive_cpumask(trialcs, NULL); } /* Nothing to do if the cpus didn't change */ if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) return 0; if (alloc_cpumasks(NULL, &tmp)) return -ENOMEM; if (old_prs) { if (is_partition_valid(cs) && cpumask_empty(trialcs->effective_xcpus)) { invalidate = true; cs->prs_err = PERR_INVCPUS; } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { invalidate = true; cs->prs_err = PERR_HKEEPING; } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { invalidate = true; cs->prs_err = PERR_NOCPUS; } } /* * Check all the descendants in update_cpumasks_hier() if * effective_xcpus is to be changed. */ if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) hier_flags = HIER_CHECKALL; retval = validate_change(cs, trialcs); if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { struct cgroup_subsys_state *css; struct cpuset *cp; /* * The -EINVAL error code indicates that partition sibling * CPU exclusivity rule has been violated. We still allow * the cpumask change to proceed while invalidating the * partition. However, any conflicting sibling partitions * have to be marked as invalid too. */ invalidate = true; rcu_read_lock(); cpuset_for_each_child(cp, css, parent) { struct cpumask *xcpus = fetch_xcpus(trialcs); if (is_partition_valid(cp) && cpumask_intersects(xcpus, cp->effective_xcpus)) { rcu_read_unlock(); update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp); rcu_read_lock(); } } rcu_read_unlock(); retval = 0; } if (retval < 0) goto out_free; if (is_partition_valid(cs) || (is_partition_invalid(cs) && !invalidate)) { struct cpumask *xcpus = trialcs->effective_xcpus; if (cpumask_empty(xcpus) && is_partition_invalid(cs)) xcpus = trialcs->cpus_allowed; /* * Call remote_cpus_update() to handle valid remote partition */ if (is_remote_partition(cs)) remote_cpus_update(cs, xcpus, &tmp); else if (invalidate) update_parent_effective_cpumask(cs, partcmd_invalidate, NULL, &tmp); else update_parent_effective_cpumask(cs, partcmd_update, xcpus, &tmp); } else if (!cpumask_empty(cs->exclusive_cpus)) { /* * Use trialcs->effective_cpus as a temp cpumask */ remote_partition_check(cs, trialcs->effective_xcpus, trialcs->effective_cpus, &tmp); } spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); if ((old_prs > 0) && !is_partition_valid(cs)) reset_partition_data(cs); spin_unlock_irq(&callback_lock); /* effective_cpus/effective_xcpus will be updated here */ update_cpumasks_hier(cs, &tmp, hier_flags); /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ if (cs->partition_root_state) update_partition_sd_lb(cs, old_prs); out_free: free_cpumasks(NULL, &tmp); return retval; } /** * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset * @cs: the cpuset to consider * @trialcs: trial cpuset * @buf: buffer of cpu numbers written to this cpuset * * The tasks' cpumask will be updated if cs is a valid partition root. */ static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, const char *buf) { int retval; struct tmpmasks tmp; struct cpuset *parent = parent_cs(cs); bool invalidate = false; int hier_flags = 0; int old_prs = cs->partition_root_state; if (!*buf) { cpumask_clear(trialcs->exclusive_cpus); cpumask_clear(trialcs->effective_xcpus); } else { retval = cpulist_parse(buf, trialcs->exclusive_cpus); if (retval < 0) return retval; } /* Nothing to do if the CPUs didn't change */ if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) return 0; if (*buf) compute_effective_exclusive_cpumask(trialcs, NULL); /* * Check all the descendants in update_cpumasks_hier() if * effective_xcpus is to be changed. */ if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) hier_flags = HIER_CHECKALL; retval = validate_change(cs, trialcs); if (retval) return retval; if (alloc_cpumasks(NULL, &tmp)) return -ENOMEM; if (old_prs) { if (cpumask_empty(trialcs->effective_xcpus)) { invalidate = true; cs->prs_err = PERR_INVCPUS; } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { invalidate = true; cs->prs_err = PERR_HKEEPING; } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { invalidate = true; cs->prs_err = PERR_NOCPUS; } if (is_remote_partition(cs)) { if (invalidate) remote_partition_disable(cs, &tmp); else remote_cpus_update(cs, trialcs->effective_xcpus, &tmp); } else if (invalidate) { update_parent_effective_cpumask(cs, partcmd_invalidate, NULL, &tmp); } else { update_parent_effective_cpumask(cs, partcmd_update, trialcs->effective_xcpus, &tmp); } } else if (!cpumask_empty(trialcs->exclusive_cpus)) { /* * Use trialcs->effective_cpus as a temp cpumask */ remote_partition_check(cs, trialcs->effective_xcpus, trialcs->effective_cpus, &tmp); } spin_lock_irq(&callback_lock); cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); if ((old_prs > 0) && !is_partition_valid(cs)) reset_partition_data(cs); spin_unlock_irq(&callback_lock); /* * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus * of the subtree when it is a valid partition root or effective_xcpus * is updated. */ if (is_partition_valid(cs) || hier_flags) update_cpumasks_hier(cs, &tmp, hier_flags); /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ if (cs->partition_root_state) update_partition_sd_lb(cs, old_prs); free_cpumasks(NULL, &tmp); return 0; } /* * Migrate memory region from one set of nodes to another. This is * performed asynchronously as it can be called from process migration path * holding locks involved in process management. All mm migrations are * performed in the queued order and can be waited for by flushing * cpuset_migrate_mm_wq. */ struct cpuset_migrate_mm_work { struct work_struct work; struct mm_struct *mm; nodemask_t from; nodemask_t to; }; static void cpuset_migrate_mm_workfn(struct work_struct *work) { struct cpuset_migrate_mm_work *mwork = container_of(work, struct cpuset_migrate_mm_work, work); /* on a wq worker, no need to worry about %current's mems_allowed */ do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); mmput(mwork->mm); kfree(mwork); } static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to) { struct cpuset_migrate_mm_work *mwork; if (nodes_equal(*from, *to)) { mmput(mm); return; } mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); if (mwork) { mwork->mm = mm; mwork->from = *from; mwork->to = *to; INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); queue_work(cpuset_migrate_mm_wq, &mwork->work); } else { mmput(mm); } } static void cpuset_post_attach(void) { flush_workqueue(cpuset_migrate_mm_wq); } /* * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy * @tsk: the task to change * @newmems: new nodes that the task will be set * * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed * and rebind an eventual tasks' mempolicy. If the task is allocating in * parallel, it might temporarily see an empty intersection, which results in * a seqlock check and retry before OOM or allocation failure. */ static void cpuset_change_task_nodemask(struct task_struct *tsk, nodemask_t *newmems) { task_lock(tsk); local_irq_disable(); write_seqcount_begin(&tsk->mems_allowed_seq); nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); mpol_rebind_task(tsk, newmems); tsk->mems_allowed = *newmems; write_seqcount_end(&tsk->mems_allowed_seq); local_irq_enable(); task_unlock(tsk); } static void *cpuset_being_rebound; /** * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed * * Iterate through each task of @cs updating its mems_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, * cpuset membership stays stable. */ static void update_tasks_nodemask(struct cpuset *cs) { static nodemask_t newmems; /* protected by cpuset_mutex */ struct css_task_iter it; struct task_struct *task; cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ guarantee_online_mems(cs, &newmems); /* * The mpol_rebind_mm() call takes mmap_lock, which we couldn't * take while holding tasklist_lock. Forks can happen - the * mpol_dup() cpuset_being_rebound check will catch such forks, * and rebind their vma mempolicies too. Because we still hold * the global cpuset_mutex, we know that no other rebind effort * will be contending for the global variable cpuset_being_rebound. * It's ok if we rebind the same mm twice; mpol_rebind_mm() * is idempotent. Also migrate pages in each mm to new nodes. */ css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) { struct mm_struct *mm; bool migrate; cpuset_change_task_nodemask(task, &newmems); mm = get_task_mm(task); if (!mm) continue; migrate = is_memory_migrate(cs); mpol_rebind_mm(mm, &cs->mems_allowed); if (migrate) cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); else mmput(mm); } css_task_iter_end(&it); /* * All the tasks' nodemasks have been updated, update * cs->old_mems_allowed. */ cs->old_mems_allowed = newmems; /* We're done rebinding vmas to this cpuset's new mems_allowed. */ cpuset_being_rebound = NULL; } /* * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree * @cs: the cpuset to consider * @new_mems: a temp variable for calculating new effective_mems * * When configured nodemask is changed, the effective nodemasks of this cpuset * and all its descendants need to be updated. * * On legacy hierarchy, effective_mems will be the same with mems_allowed. * * Called with cpuset_mutex held */ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, cs) { struct cpuset *parent = parent_cs(cp); nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); /* * If it becomes empty, inherit the effective mask of the * parent, which is guaranteed to have some MEMs. */ if (is_in_v2_mode() && nodes_empty(*new_mems)) *new_mems = parent->effective_mems; /* Skip the whole subtree if the nodemask remains the same. */ if (nodes_equal(*new_mems, cp->effective_mems)) { pos_css = css_rightmost_descendant(pos_css); continue; } if (!css_tryget_online(&cp->css)) continue; rcu_read_unlock(); spin_lock_irq(&callback_lock); cp->effective_mems = *new_mems; spin_unlock_irq(&callback_lock); WARN_ON(!is_in_v2_mode() && !nodes_equal(cp->mems_allowed, cp->effective_mems)); update_tasks_nodemask(cp); rcu_read_lock(); css_put(&cp->css); } rcu_read_unlock(); } /* * Handle user request to change the 'mems' memory placement * of a cpuset. Needs to validate the request, update the * cpusets mems_allowed, and for each task in the cpuset, * update mems_allowed and rebind task's mempolicy and any vma * mempolicies and if the cpuset is marked 'memory_migrate', * migrate the tasks pages to the new memory. * * Call with cpuset_mutex held. May take callback_lock during call. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, * lock each such tasks mm->mmap_lock, scan its vma's and rebind * their mempolicies to the cpusets new mems_allowed. */ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, const char *buf) { int retval; /* * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; * it's read-only */ if (cs == &top_cpuset) { retval = -EACCES; goto done; } /* * An empty mems_allowed is ok iff there are no tasks in the cpuset. * Since nodelist_parse() fails on an empty mask, we special case * that parsing. The validate_change() call ensures that cpusets * with tasks have memory. */ if (!*buf) { nodes_clear(trialcs->mems_allowed); } else { retval = nodelist_parse(buf, trialcs->mems_allowed); if (retval < 0) goto done; if (!nodes_subset(trialcs->mems_allowed, top_cpuset.mems_allowed)) { retval = -EINVAL; goto done; } } if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { retval = 0; /* Too easy - nothing to do */ goto done; } retval = validate_change(cs, trialcs); if (retval < 0) goto done; check_insane_mems_config(&trialcs->mems_allowed); spin_lock_irq(&callback_lock); cs->mems_allowed = trialcs->mems_allowed; spin_unlock_irq(&callback_lock); /* use trialcs->mems_allowed as a temp variable */ update_nodemasks_hier(cs, &trialcs->mems_allowed); done: return retval; } bool current_cpuset_is_being_rebound(void) { bool ret; rcu_read_lock(); ret = task_cs(current) == cpuset_being_rebound; rcu_read_unlock(); return ret; } static int update_relax_domain_level(struct cpuset *cs, s64 val) { #ifdef CONFIG_SMP if (val < -1 || val > sched_domain_level_max + 1) return -EINVAL; #endif if (val != cs->relax_domain_level) { cs->relax_domain_level = val; if (!cpumask_empty(cs->cpus_allowed) && is_sched_load_balance(cs)) rebuild_sched_domains_locked(); } return 0; } /** * update_tasks_flags - update the spread flags of tasks in the cpuset. * @cs: the cpuset in which each task's spread flags needs to be changed * * Iterate through each task of @cs updating its spread flags. As this * function is called with cpuset_mutex held, cpuset membership stays * stable. */ static void update_tasks_flags(struct cpuset *cs) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) cpuset_update_task_spread_flags(cs, task); css_task_iter_end(&it); } /* * update_flag - read a 0 or a 1 in a file and update associated flag * bit: the bit to update (see cpuset_flagbits_t) * cs: the cpuset to update * turning_on: whether the flag is being set or cleared * * Call with cpuset_mutex held. */ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on) { struct cpuset *trialcs; int balance_flag_changed; int spread_flag_changed; int err; trialcs = alloc_trial_cpuset(cs); if (!trialcs) return -ENOMEM; if (turning_on) set_bit(bit, &trialcs->flags); else clear_bit(bit, &trialcs->flags); err = validate_change(cs, trialcs); if (err < 0) goto out; balance_flag_changed = (is_sched_load_balance(cs) != is_sched_load_balance(trialcs)); spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) || (is_spread_page(cs) != is_spread_page(trialcs))); spin_lock_irq(&callback_lock); cs->flags = trialcs->flags; spin_unlock_irq(&callback_lock); if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) rebuild_sched_domains_locked(); if (spread_flag_changed) update_tasks_flags(cs); out: free_cpuset(trialcs); return err; } /** * update_prstate - update partition_root_state * @cs: the cpuset to update * @new_prs: new partition root state * Return: 0 if successful, != 0 if error * * Call with cpuset_mutex held. */ static int update_prstate(struct cpuset *cs, int new_prs) { int err = PERR_NONE, old_prs = cs->partition_root_state; struct cpuset *parent = parent_cs(cs); struct tmpmasks tmpmask; bool new_xcpus_state = false; if (old_prs == new_prs) return 0; /* * Treat a previously invalid partition root as if it is a "member". */ if (new_prs && is_prs_invalid(old_prs)) old_prs = PRS_MEMBER; if (alloc_cpumasks(NULL, &tmpmask)) return -ENOMEM; /* * Setup effective_xcpus if not properly set yet, it will be cleared * later if partition becomes invalid. */ if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) { spin_lock_irq(&callback_lock); cpumask_and(cs->effective_xcpus, cs->cpus_allowed, parent->effective_xcpus); spin_unlock_irq(&callback_lock); } err = update_partition_exclusive(cs, new_prs); if (err) goto out; if (!old_prs) { enum partition_cmd cmd = (new_prs == PRS_ROOT) ? partcmd_enable : partcmd_enablei; /* * cpus_allowed and exclusive_cpus cannot be both empty. */ if (xcpus_empty(cs)) { err = PERR_CPUSEMPTY; goto out; } err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); /* * If an attempt to become local partition root fails, * try to become a remote partition root instead. */ if (err && remote_partition_enable(cs, new_prs, &tmpmask)) err = 0; } else if (old_prs && new_prs) { /* * A change in load balance state only, no change in cpumasks. */ new_xcpus_state = true; } else { /* * Switching back to member is always allowed even if it * disables child partitions. */ if (is_remote_partition(cs)) remote_partition_disable(cs, &tmpmask); else update_parent_effective_cpumask(cs, partcmd_disable, NULL, &tmpmask); /* * Invalidation of child partitions will be done in * update_cpumasks_hier(). */ } out: /* * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error * happens. */ if (err) { new_prs = -new_prs; update_partition_exclusive(cs, new_prs); } spin_lock_irq(&callback_lock); cs->partition_root_state = new_prs; WRITE_ONCE(cs->prs_err, err); if (!is_partition_valid(cs)) reset_partition_data(cs); else if (new_xcpus_state) partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus); spin_unlock_irq(&callback_lock); update_unbound_workqueue_cpumask(new_xcpus_state); /* Force update if switching back to member */ update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); /* Update sched domains and load balance flag */ update_partition_sd_lb(cs, old_prs); notify_partition_change(cs, old_prs); free_cpumasks(NULL, &tmpmask); return 0; } /* * Frequency meter - How fast is some event occurring? * * These routines manage a digitally filtered, constant time based, * event frequency meter. There are four routines: * fmeter_init() - initialize a frequency meter. * fmeter_markevent() - called each time the event happens. * fmeter_getrate() - returns the recent rate of such events. * fmeter_update() - internal routine used to update fmeter. * * A common data structure is passed to each of these routines, * which is used to keep track of the state required to manage the * frequency meter and its digital filter. * * The filter works on the number of events marked per unit time. * The filter is single-pole low-pass recursive (IIR). The time unit * is 1 second. Arithmetic is done using 32-bit integers scaled to * simulate 3 decimal digits of precision (multiplied by 1000). * * With an FM_COEF of 933, and a time base of 1 second, the filter * has a half-life of 10 seconds, meaning that if the events quit * happening, then the rate returned from the fmeter_getrate() * will be cut in half each 10 seconds, until it converges to zero. * * It is not worth doing a real infinitely recursive filter. If more * than FM_MAXTICKS ticks have elapsed since the last filter event, * just compute FM_MAXTICKS ticks worth, by which point the level * will be stable. * * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid * arithmetic overflow in the fmeter_update() routine. * * Given the simple 32 bit integer arithmetic used, this meter works * best for reporting rates between one per millisecond (msec) and * one per 32 (approx) seconds. At constant rates faster than one * per msec it maxes out at values just under 1,000,000. At constant * rates between one per msec, and one per second it will stabilize * to a value N*1000, where N is the rate of events per second. * At constant rates between one per second and one per 32 seconds, * it will be choppy, moving up on the seconds that have an event, * and then decaying until the next event. At rates slower than * about one in 32 seconds, it decays all the way back to zero between * each event. */ #define FM_COEF 933 /* coefficient for half-life of 10 secs */ #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ #define FM_SCALE 1000 /* faux fixed point scale */ /* Initialize a frequency meter */ static void fmeter_init(struct fmeter *fmp) { fmp->cnt = 0; fmp->val = 0; fmp->time = 0; spin_lock_init(&fmp->lock); } /* Internal meter update - process cnt events and update value */ static void fmeter_update(struct fmeter *fmp) { time64_t now; u32 ticks; now = ktime_get_seconds(); ticks = now - fmp->time; if (ticks == 0) return; ticks = min(FM_MAXTICKS, ticks); while (ticks-- > 0) fmp->val = (FM_COEF * fmp->val) / FM_SCALE; fmp->time = now; fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; fmp->cnt = 0; } /* Process any previous ticks, then bump cnt by one (times scale). */ static void fmeter_markevent(struct fmeter *fmp) { spin_lock(&fmp->lock); fmeter_update(fmp); fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); spin_unlock(&fmp->lock); } /* Process any previous ticks, then return current value. */ static int fmeter_getrate(struct fmeter *fmp) { int val; spin_lock(&fmp->lock); fmeter_update(fmp); val = fmp->val; spin_unlock(&fmp->lock); return val; } static struct cpuset *cpuset_attach_old_cs; /* * Check to see if a cpuset can accept a new task * For v1, cpus_allowed and mems_allowed can't be empty. * For v2, effective_cpus can't be empty. * Note that in v1, effective_cpus = cpus_allowed. */ static int cpuset_can_attach_check(struct cpuset *cs) { if (cpumask_empty(cs->effective_cpus) || (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) return -ENOSPC; return 0; } static void reset_migrate_dl_data(struct cpuset *cs) { cs->nr_migrate_dl_tasks = 0; cs->sum_migrate_dl_bw = 0; } /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ static int cpuset_can_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; struct cpuset *cs, *oldcs; struct task_struct *task; bool cpus_updated, mems_updated; int ret; /* used later by cpuset_attach() */ cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); oldcs = cpuset_attach_old_cs; cs = css_cs(css); mutex_lock(&cpuset_mutex); /* Check to see if task is allowed in the cpuset */ ret = cpuset_can_attach_check(cs); if (ret) goto out_unlock; cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); cgroup_taskset_for_each(task, css, tset) { ret = task_can_attach(task); if (ret) goto out_unlock; /* * Skip rights over task check in v2 when nothing changes, * migration permission derives from hierarchy ownership in * cgroup_procs_write_permission()). */ if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || (cpus_updated || mems_updated)) { ret = security_task_setscheduler(task); if (ret) goto out_unlock; } if (dl_task(task)) { cs->nr_migrate_dl_tasks++; cs->sum_migrate_dl_bw += task->dl.dl_bw; } } if (!cs->nr_migrate_dl_tasks) goto out_success; if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); if (unlikely(cpu >= nr_cpu_ids)) { reset_migrate_dl_data(cs); ret = -EINVAL; goto out_unlock; } ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); if (ret) { reset_migrate_dl_data(cs); goto out_unlock; } } out_success: /* * Mark attach is in progress. This makes validate_change() fail * changes which zero cpus/mems_allowed. */ cs->attach_in_progress++; out_unlock: mutex_unlock(&cpuset_mutex); return ret; } static void cpuset_cancel_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; struct cpuset *cs; cgroup_taskset_first(tset, &css); cs = css_cs(css); mutex_lock(&cpuset_mutex); cs->attach_in_progress--; if (!cs->attach_in_progress) wake_up(&cpuset_attach_wq); if (cs->nr_migrate_dl_tasks) { int cpu = cpumask_any(cs->effective_cpus); dl_bw_free(cpu, cs->sum_migrate_dl_bw); reset_migrate_dl_data(cs); } mutex_unlock(&cpuset_mutex); } /* * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() * but we can't allocate it dynamically there. Define it global and * allocate from cpuset_init(). */ static cpumask_var_t cpus_attach; static nodemask_t cpuset_attach_nodemask_to; static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) { lockdep_assert_held(&cpuset_mutex); if (cs != &top_cpuset) guarantee_online_cpus(task, cpus_attach); else cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), subpartitions_cpus); /* * can_attach beforehand should guarantee that this doesn't * fail. TODO: have a better way to handle failure here */ WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); cpuset_update_task_spread_flags(cs, task); } static void cpuset_attach(struct cgroup_taskset *tset) { struct task_struct *task; struct task_struct *leader; struct cgroup_subsys_state *css; struct cpuset *cs; struct cpuset *oldcs = cpuset_attach_old_cs; bool cpus_updated, mems_updated; cgroup_taskset_first(tset, &css); cs = css_cs(css); lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ mutex_lock(&cpuset_mutex); cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); /* * In the default hierarchy, enabling cpuset in the child cgroups * will trigger a number of cpuset_attach() calls with no change * in effective cpus and mems. In that case, we can optimize out * by skipping the task iteration and update. */ if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && !cpus_updated && !mems_updated) { cpuset_attach_nodemask_to = cs->effective_mems; goto out; } guarantee_online_mems(cs, &cpuset_attach_nodemask_to); cgroup_taskset_for_each(task, css, tset) cpuset_attach_task(cs, task); /* * Change mm for all threadgroup leaders. This is expensive and may * sleep and should be moved outside migration path proper. Skip it * if there is no change in effective_mems and CS_MEMORY_MIGRATE is * not set. */ cpuset_attach_nodemask_to = cs->effective_mems; if (!is_memory_migrate(cs) && !mems_updated) goto out; cgroup_taskset_for_each_leader(leader, css, tset) { struct mm_struct *mm = get_task_mm(leader); if (mm) { mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); /* * old_mems_allowed is the same with mems_allowed * here, except if this task is being moved * automatically due to hotplug. In that case * @mems_allowed has been updated and is empty, so * @old_mems_allowed is the right nodesets that we * migrate mm from. */ if (is_memory_migrate(cs)) cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, &cpuset_attach_nodemask_to); else mmput(mm); } } out: cs->old_mems_allowed = cpuset_attach_nodemask_to; if (cs->nr_migrate_dl_tasks) { cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; reset_migrate_dl_data(cs); } cs->attach_in_progress--; if (!cs->attach_in_progress) wake_up(&cpuset_attach_wq); mutex_unlock(&cpuset_mutex); } /* The various types of files and directories in a cpuset file system */ typedef enum { FILE_MEMORY_MIGRATE, FILE_CPULIST, FILE_MEMLIST, FILE_EFFECTIVE_CPULIST, FILE_EFFECTIVE_MEMLIST, FILE_SUBPARTS_CPULIST, FILE_EXCLUSIVE_CPULIST, FILE_EFFECTIVE_XCPULIST, FILE_ISOLATED_CPULIST, FILE_CPU_EXCLUSIVE, FILE_MEM_EXCLUSIVE, FILE_MEM_HARDWALL, FILE_SCHED_LOAD_BALANCE, FILE_PARTITION_ROOT, FILE_SCHED_RELAX_DOMAIN_LEVEL, FILE_MEMORY_PRESSURE_ENABLED, FILE_MEMORY_PRESSURE, FILE_SPREAD_PAGE, FILE_SPREAD_SLAB, } cpuset_filetype_t; static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; int retval = 0; cpus_read_lock(); mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) { retval = -ENODEV; goto out_unlock; } switch (type) { case FILE_CPU_EXCLUSIVE: retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); break; case FILE_MEM_EXCLUSIVE: retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); break; case FILE_MEM_HARDWALL: retval = update_flag(CS_MEM_HARDWALL, cs, val); break; case FILE_SCHED_LOAD_BALANCE: retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); break; case FILE_MEMORY_MIGRATE: retval = update_flag(CS_MEMORY_MIGRATE, cs, val); break; case FILE_MEMORY_PRESSURE_ENABLED: cpuset_memory_pressure_enabled = !!val; break; case FILE_SPREAD_PAGE: retval = update_flag(CS_SPREAD_PAGE, cs, val); break; case FILE_SPREAD_SLAB: retval = update_flag(CS_SPREAD_SLAB, cs, val); break; default: retval = -EINVAL; break; } out_unlock: mutex_unlock(&cpuset_mutex); cpus_read_unlock(); return retval; } static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, s64 val) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; int retval = -ENODEV; cpus_read_lock(); mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) goto out_unlock; switch (type) { case FILE_SCHED_RELAX_DOMAIN_LEVEL: retval = update_relax_domain_level(cs, val); break; default: retval = -EINVAL; break; } out_unlock: mutex_unlock(&cpuset_mutex); cpus_read_unlock(); return retval; } /* * Common handling for a write to a "cpus" or "mems" file. */ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cpuset *cs = css_cs(of_css(of)); struct cpuset *trialcs; int retval = -ENODEV; buf = strstrip(buf); /* * CPU or memory hotunplug may leave @cs w/o any execution * resources, in which case the hotplug code asynchronously updates * configuration and transfers all tasks to the nearest ancestor * which can execute. * * As writes to "cpus" or "mems" may restore @cs's execution * resources, wait for the previously scheduled operations before * proceeding, so that we don't end up keep removing tasks added * after execution capability is restored. * * cpuset_handle_hotplug may call back into cgroup core asynchronously * via cgroup_transfer_tasks() and waiting for it from a cgroupfs * operation like this one can lead to a deadlock through kernfs * active_ref protection. Let's break the protection. Losing the * protection is okay as we check whether @cs is online after * grabbing cpuset_mutex anyway. This only happens on the legacy * hierarchies. */ css_get(&cs->css); kernfs_break_active_protection(of->kn); cpus_read_lock(); mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) goto out_unlock; trialcs = alloc_trial_cpuset(cs); if (!trialcs) { retval = -ENOMEM; goto out_unlock; } switch (of_cft(of)->private) { case FILE_CPULIST: retval = update_cpumask(cs, trialcs, buf); break; case FILE_EXCLUSIVE_CPULIST: retval = update_exclusive_cpumask(cs, trialcs, buf); break; case FILE_MEMLIST: retval = update_nodemask(cs, trialcs, buf); break; default: retval = -EINVAL; break; } free_cpuset(trialcs); out_unlock: mutex_unlock(&cpuset_mutex); cpus_read_unlock(); kernfs_unbreak_active_protection(of->kn); css_put(&cs->css); flush_workqueue(cpuset_migrate_mm_wq); return retval ?: nbytes; } /* * These ascii lists should be read in a single call, by using a user * buffer large enough to hold the entire map. If read in smaller * chunks, there is no guarantee of atomicity. Since the display format * used, list of ranges of sequential numbers, is variable length, * and since these maps can change value dynamically, one could read * gibberish by doing partial reads while a list was changing. */ static int cpuset_common_seq_show(struct seq_file *sf, void *v) { struct cpuset *cs = css_cs(seq_css(sf)); cpuset_filetype_t type = seq_cft(sf)->private; int ret = 0; spin_lock_irq(&callback_lock); switch (type) { case FILE_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); break; case FILE_MEMLIST: seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); break; case FILE_EFFECTIVE_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); break; case FILE_EFFECTIVE_MEMLIST: seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); break; case FILE_EXCLUSIVE_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); break; case FILE_EFFECTIVE_XCPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); break; case FILE_SUBPARTS_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); break; case FILE_ISOLATED_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); break; default: ret = -EINVAL; } spin_unlock_irq(&callback_lock); return ret; } static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; switch (type) { case FILE_CPU_EXCLUSIVE: return is_cpu_exclusive(cs); case FILE_MEM_EXCLUSIVE: return is_mem_exclusive(cs); case FILE_MEM_HARDWALL: return is_mem_hardwall(cs); case FILE_SCHED_LOAD_BALANCE: return is_sched_load_balance(cs); case FILE_MEMORY_MIGRATE: return is_memory_migrate(cs); case FILE_MEMORY_PRESSURE_ENABLED: return cpuset_memory_pressure_enabled; case FILE_MEMORY_PRESSURE: return fmeter_getrate(&cs->fmeter); case FILE_SPREAD_PAGE: return is_spread_page(cs); case FILE_SPREAD_SLAB: return is_spread_slab(cs); default: BUG(); } /* Unreachable but makes gcc happy */ return 0; } static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; switch (type) { case FILE_SCHED_RELAX_DOMAIN_LEVEL: return cs->relax_domain_level; default: BUG(); } /* Unreachable but makes gcc happy */ return 0; } static int sched_partition_show(struct seq_file *seq, void *v) { struct cpuset *cs = css_cs(seq_css(seq)); const char *err, *type = NULL; switch (cs->partition_root_state) { case PRS_ROOT: seq_puts(seq, "root\n"); break; case PRS_ISOLATED: seq_puts(seq, "isolated\n"); break; case PRS_MEMBER: seq_puts(seq, "member\n"); break; case PRS_INVALID_ROOT: type = "root"; fallthrough; case PRS_INVALID_ISOLATED: if (!type) type = "isolated"; err = perr_strings[READ_ONCE(cs->prs_err)]; if (err) seq_printf(seq, "%s invalid (%s)\n", type, err); else seq_printf(seq, "%s invalid\n", type); break; } return 0; } static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cpuset *cs = css_cs(of_css(of)); int val; int retval = -ENODEV; buf = strstrip(buf); if (!strcmp(buf, "root")) val = PRS_ROOT; else if (!strcmp(buf, "member")) val = PRS_MEMBER; else if (!strcmp(buf, "isolated")) val = PRS_ISOLATED; else return -EINVAL; css_get(&cs->css); cpus_read_lock(); mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) goto out_unlock; retval = update_prstate(cs, val); out_unlock: mutex_unlock(&cpuset_mutex); cpus_read_unlock(); css_put(&cs->css); return retval ?: nbytes; } /* * for the common functions, 'private' gives the type of file */ static struct cftype legacy_files[] = { { .name = "cpus", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_CPULIST, }, { .name = "mems", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * MAX_NUMNODES), .private = FILE_MEMLIST, }, { .name = "effective_cpus", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_CPULIST, }, { .name = "effective_mems", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_MEMLIST, }, { .name = "cpu_exclusive", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_CPU_EXCLUSIVE, }, { .name = "mem_exclusive", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEM_EXCLUSIVE, }, { .name = "mem_hardwall", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEM_HARDWALL, }, { .name = "sched_load_balance", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_SCHED_LOAD_BALANCE, }, { .name = "sched_relax_domain_level", .read_s64 = cpuset_read_s64, .write_s64 = cpuset_write_s64, .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, }, { .name = "memory_migrate", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEMORY_MIGRATE, }, { .name = "memory_pressure", .read_u64 = cpuset_read_u64, .private = FILE_MEMORY_PRESSURE, }, { .name = "memory_spread_page", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_SPREAD_PAGE, }, { /* obsolete, may be removed in the future */ .name = "memory_spread_slab", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_SPREAD_SLAB, }, { .name = "memory_pressure_enabled", .flags = CFTYPE_ONLY_ON_ROOT, .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEMORY_PRESSURE_ENABLED, }, { } /* terminate */ }; /* * This is currently a minimal set for the default hierarchy. It can be * expanded later on by migrating more features and control files from v1. */ static struct cftype dfl_files[] = { { .name = "cpus", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_CPULIST, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "mems", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * MAX_NUMNODES), .private = FILE_MEMLIST, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "cpus.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_CPULIST, }, { .name = "mems.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_MEMLIST, }, { .name = "cpus.partition", .seq_show = sched_partition_show, .write = sched_partition_write, .private = FILE_PARTITION_ROOT, .flags = CFTYPE_NOT_ON_ROOT, .file_offset = offsetof(struct cpuset, partition_file), }, { .name = "cpus.exclusive", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_EXCLUSIVE_CPULIST, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "cpus.exclusive.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_XCPULIST, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "cpus.subpartitions", .seq_show = cpuset_common_seq_show, .private = FILE_SUBPARTS_CPULIST, .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, }, { .name = "cpus.isolated", .seq_show = cpuset_common_seq_show, .private = FILE_ISOLATED_CPULIST, .flags = CFTYPE_ONLY_ON_ROOT, }, { } /* terminate */ }; /** * cpuset_css_alloc - Allocate a cpuset css * @parent_css: Parent css of the control group that the new cpuset will be * part of * Return: cpuset css on success, -ENOMEM on failure. * * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return * top cpuset css otherwise. */ static struct cgroup_subsys_state * cpuset_css_alloc(struct cgroup_subsys_state *parent_css) { struct cpuset *cs; if (!parent_css) return &top_cpuset.css; cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return ERR_PTR(-ENOMEM); if (alloc_cpumasks(cs, NULL)) { kfree(cs); return ERR_PTR(-ENOMEM); } __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); fmeter_init(&cs->fmeter); cs->relax_domain_level = -1; INIT_LIST_HEAD(&cs->remote_sibling); /* Set CS_MEMORY_MIGRATE for default hierarchy */ if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) __set_bit(CS_MEMORY_MIGRATE, &cs->flags); return &cs->css; } static int cpuset_css_online(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); struct cpuset *parent = parent_cs(cs); struct cpuset *tmp_cs; struct cgroup_subsys_state *pos_css; if (!parent) return 0; cpus_read_lock(); mutex_lock(&cpuset_mutex); set_bit(CS_ONLINE, &cs->flags); if (is_spread_page(parent)) set_bit(CS_SPREAD_PAGE, &cs->flags); if (is_spread_slab(parent)) set_bit(CS_SPREAD_SLAB, &cs->flags); /* * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated */ if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && !is_sched_load_balance(parent)) clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); cpuset_inc(); spin_lock_irq(&callback_lock); if (is_in_v2_mode()) { cpumask_copy(cs->effective_cpus, parent->effective_cpus); cs->effective_mems = parent->effective_mems; cs->use_parent_ecpus = true; parent->child_ecpus_count++; } spin_unlock_irq(&callback_lock); if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) goto out_unlock; /* * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is * set. This flag handling is implemented in cgroup core for * historical reasons - the flag may be specified during mount. * * Currently, if any sibling cpusets have exclusive cpus or mem, we * refuse to clone the configuration - thereby refusing the task to * be entered, and as a result refusing the sys_unshare() or * clone() which initiated it. If this becomes a problem for some * users who wish to allow that scenario, then this could be * changed to grant parent->cpus_allowed-sibling_cpus_exclusive * (and likewise for mems) to the new cgroup. */ rcu_read_lock(); cpuset_for_each_child(tmp_cs, pos_css, parent) { if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { rcu_read_unlock(); goto out_unlock; } } rcu_read_unlock(); spin_lock_irq(&callback_lock); cs->mems_allowed = parent->mems_allowed; cs->effective_mems = parent->mems_allowed; cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); cpumask_copy(cs->effective_cpus, parent->cpus_allowed); spin_unlock_irq(&callback_lock); out_unlock: mutex_unlock(&cpuset_mutex); cpus_read_unlock(); return 0; } /* * If the cpuset being removed has its flag 'sched_load_balance' * enabled, then simulate turning sched_load_balance off, which * will call rebuild_sched_domains_locked(). That is not needed * in the default hierarchy where only changes in partition * will cause repartitioning. * * If the cpuset has the 'sched.partition' flag enabled, simulate * turning 'sched.partition" off. */ static void cpuset_css_offline(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); cpus_read_lock(); mutex_lock(&cpuset_mutex); if (is_partition_valid(cs)) update_prstate(cs, 0); if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && is_sched_load_balance(cs)) update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); if (cs->use_parent_ecpus) { struct cpuset *parent = parent_cs(cs); cs->use_parent_ecpus = false; parent->child_ecpus_count--; } cpuset_dec(); clear_bit(CS_ONLINE, &cs->flags); mutex_unlock(&cpuset_mutex); cpus_read_unlock(); } static void cpuset_css_free(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); free_cpuset(cs); } static void cpuset_bind(struct cgroup_subsys_state *root_css) { mutex_lock(&cpuset_mutex); spin_lock_irq(&callback_lock); if (is_in_v2_mode()) { cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); top_cpuset.mems_allowed = node_possible_map; } else { cpumask_copy(top_cpuset.cpus_allowed, top_cpuset.effective_cpus); top_cpuset.mems_allowed = top_cpuset.effective_mems; } spin_unlock_irq(&callback_lock); mutex_unlock(&cpuset_mutex); } /* * In case the child is cloned into a cpuset different from its parent, * additional checks are done to see if the move is allowed. */ static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) { struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); bool same_cs; int ret; rcu_read_lock(); same_cs = (cs == task_cs(current)); rcu_read_unlock(); if (same_cs) return 0; lockdep_assert_held(&cgroup_mutex); mutex_lock(&cpuset_mutex); /* Check to see if task is allowed in the cpuset */ ret = cpuset_can_attach_check(cs); if (ret) goto out_unlock; ret = task_can_attach(task); if (ret) goto out_unlock; ret = security_task_setscheduler(task); if (ret) goto out_unlock; /* * Mark attach is in progress. This makes validate_change() fail * changes which zero cpus/mems_allowed. */ cs->attach_in_progress++; out_unlock: mutex_unlock(&cpuset_mutex); return ret; } static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) { struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); bool same_cs; rcu_read_lock(); same_cs = (cs == task_cs(current)); rcu_read_unlock(); if (same_cs) return; mutex_lock(&cpuset_mutex); cs->attach_in_progress--; if (!cs->attach_in_progress) wake_up(&cpuset_attach_wq); mutex_unlock(&cpuset_mutex); } /* * Make sure the new task conform to the current state of its parent, * which could have been changed by cpuset just after it inherits the * state from the parent and before it sits on the cgroup's task list. */ static void cpuset_fork(struct task_struct *task) { struct cpuset *cs; bool same_cs; rcu_read_lock(); cs = task_cs(task); same_cs = (cs == task_cs(current)); rcu_read_unlock(); if (same_cs) { if (cs == &top_cpuset) return; set_cpus_allowed_ptr(task, current->cpus_ptr); task->mems_allowed = current->mems_allowed; return; } /* CLONE_INTO_CGROUP */ mutex_lock(&cpuset_mutex); guarantee_online_mems(cs, &cpuset_attach_nodemask_to); cpuset_attach_task(cs, task); cs->attach_in_progress--; if (!cs->attach_in_progress) wake_up(&cpuset_attach_wq); mutex_unlock(&cpuset_mutex); } struct cgroup_subsys cpuset_cgrp_subsys = { .css_alloc = cpuset_css_alloc, .css_online = cpuset_css_online, .css_offline = cpuset_css_offline, .css_free = cpuset_css_free, .can_attach = cpuset_can_attach, .cancel_attach = cpuset_cancel_attach, .attach = cpuset_attach, .post_attach = cpuset_post_attach, .bind = cpuset_bind, .can_fork = cpuset_can_fork, .cancel_fork = cpuset_cancel_fork, .fork = cpuset_fork, .legacy_cftypes = legacy_files, .dfl_cftypes = dfl_files, .early_init = true, .threaded = true, }; /** * cpuset_init - initialize cpusets at system boot * * Description: Initialize top_cpuset **/ int __init cpuset_init(void) { BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); cpumask_setall(top_cpuset.cpus_allowed); nodes_setall(top_cpuset.mems_allowed); cpumask_setall(top_cpuset.effective_cpus); cpumask_setall(top_cpuset.effective_xcpus); cpumask_setall(top_cpuset.exclusive_cpus); nodes_setall(top_cpuset.effective_mems); fmeter_init(&top_cpuset.fmeter); INIT_LIST_HEAD(&remote_children); BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); return 0; } /* * If CPU and/or memory hotplug handlers, below, unplug any CPUs * or memory nodes, we need to walk over the cpuset hierarchy, * removing that CPU or node from all cpusets. If this removes the * last CPU or node from a cpuset, then move the tasks in the empty * cpuset to its next-highest non-empty parent. */ static void remove_tasks_in_empty_cpuset(struct cpuset *cs) { struct cpuset *parent; /* * Find its next-highest non-empty parent, (top cpuset * has online cpus, so can't be empty). */ parent = parent_cs(cs); while (cpumask_empty(parent->cpus_allowed) || nodes_empty(parent->mems_allowed)) parent = parent_cs(parent); if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { pr_err("cpuset: failed to transfer tasks out of empty cpuset "); pr_cont_cgroup_name(cs->css.cgroup); pr_cont("\n"); } } static void cpuset_migrate_tasks_workfn(struct work_struct *work) { struct cpuset_remove_tasks_struct *s; s = container_of(work, struct cpuset_remove_tasks_struct, work); remove_tasks_in_empty_cpuset(s->cs); css_put(&s->cs->css); kfree(s); } static void hotplug_update_tasks_legacy(struct cpuset *cs, struct cpumask *new_cpus, nodemask_t *new_mems, bool cpus_updated, bool mems_updated) { bool is_empty; spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, new_cpus); cpumask_copy(cs->effective_cpus, new_cpus); cs->mems_allowed = *new_mems; cs->effective_mems = *new_mems; spin_unlock_irq(&callback_lock); /* * Don't call update_tasks_cpumask() if the cpuset becomes empty, * as the tasks will be migrated to an ancestor. */ if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) update_tasks_cpumask(cs, new_cpus); if (mems_updated && !nodes_empty(cs->mems_allowed)) update_tasks_nodemask(cs); is_empty = cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed); /* * Move tasks to the nearest ancestor with execution resources, * This is full cgroup operation which will also call back into * cpuset. Execute it asynchronously using workqueue. */ if (is_empty && cs->css.cgroup->nr_populated_csets && css_tryget_online(&cs->css)) { struct cpuset_remove_tasks_struct *s; s = kzalloc(sizeof(*s), GFP_KERNEL); if (WARN_ON_ONCE(!s)) { css_put(&cs->css); return; } s->cs = cs; INIT_WORK(&s->work, cpuset_migrate_tasks_workfn); schedule_work(&s->work); } } static void hotplug_update_tasks(struct cpuset *cs, struct cpumask *new_cpus, nodemask_t *new_mems, bool cpus_updated, bool mems_updated) { /* A partition root is allowed to have empty effective cpus */ if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); if (nodes_empty(*new_mems)) *new_mems = parent_cs(cs)->effective_mems; spin_lock_irq(&callback_lock); cpumask_copy(cs->effective_cpus, new_cpus); cs->effective_mems = *new_mems; spin_unlock_irq(&callback_lock); if (cpus_updated) update_tasks_cpumask(cs, new_cpus); if (mems_updated) update_tasks_nodemask(cs); } static bool force_rebuild; void cpuset_force_rebuild(void) { force_rebuild = true; } /** * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug * @cs: cpuset in interest * @tmp: the tmpmasks structure pointer * * Compare @cs's cpu and mem masks against top_cpuset and if some have gone * offline, update @cs accordingly. If @cs ends up with no CPU or memory, * all its tasks are moved to the nearest ancestor with both resources. */ static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) { static cpumask_t new_cpus; static nodemask_t new_mems; bool cpus_updated; bool mems_updated; bool remote; int partcmd = -1; struct cpuset *parent; retry: wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); mutex_lock(&cpuset_mutex); /* * We have raced with task attaching. We wait until attaching * is finished, so we won't attach a task to an empty cpuset. */ if (cs->attach_in_progress) { mutex_unlock(&cpuset_mutex); goto retry; } parent = parent_cs(cs); compute_effective_cpumask(&new_cpus, cs, parent); nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); if (!tmp || !cs->partition_root_state) goto update_tasks; /* * Compute effective_cpus for valid partition root, may invalidate * child partition roots if necessary. */ remote = is_remote_partition(cs); if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) compute_partition_effective_cpumask(cs, &new_cpus); if (remote && cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { remote_partition_disable(cs, tmp); compute_effective_cpumask(&new_cpus, cs, parent); remote = false; cpuset_force_rebuild(); } /* * Force the partition to become invalid if either one of * the following conditions hold: * 1) empty effective cpus but not valid empty partition. * 2) parent is invalid or doesn't grant any cpus to child * partitions. */ if (is_local_partition(cs) && (!is_partition_valid(parent) || tasks_nocpu_error(parent, cs, &new_cpus))) partcmd = partcmd_invalidate; /* * On the other hand, an invalid partition root may be transitioned * back to a regular one. */ else if (is_partition_valid(parent) && is_partition_invalid(cs)) partcmd = partcmd_update; if (partcmd >= 0) { update_parent_effective_cpumask(cs, partcmd, NULL, tmp); if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { compute_partition_effective_cpumask(cs, &new_cpus); cpuset_force_rebuild(); } } update_tasks: cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); mems_updated = !nodes_equal(new_mems, cs->effective_mems); if (!cpus_updated && !mems_updated) goto unlock; /* Hotplug doesn't affect this cpuset */ if (mems_updated) check_insane_mems_config(&new_mems); if (is_in_v2_mode()) hotplug_update_tasks(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); else hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); unlock: mutex_unlock(&cpuset_mutex); } /** * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset * * This function is called after either CPU or memory configuration has * changed and updates cpuset accordingly. The top_cpuset is always * synchronized to cpu_active_mask and N_MEMORY, which is necessary in * order to make cpusets transparent (of no affect) on systems that are * actively using CPU hotplug but making no active use of cpusets. * * Non-root cpusets are only affected by offlining. If any CPUs or memory * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on * all descendants. * * Note that CPU offlining during suspend is ignored. We don't modify * cpusets across suspend/resume cycles at all. * * CPU / memory hotplug is handled synchronously. */ static void cpuset_handle_hotplug(void) { static cpumask_t new_cpus; static nodemask_t new_mems; bool cpus_updated, mems_updated; bool on_dfl = is_in_v2_mode(); struct tmpmasks tmp, *ptmp = NULL; if (on_dfl && !alloc_cpumasks(NULL, &tmp)) ptmp = &tmp; lockdep_assert_cpus_held(); mutex_lock(&cpuset_mutex); /* fetch the available cpus/mems and find out which changed how */ cpumask_copy(&new_cpus, cpu_active_mask); new_mems = node_states[N_MEMORY]; /* * If subpartitions_cpus is populated, it is likely that the check * below will produce a false positive on cpus_updated when the cpu * list isn't changed. It is extra work, but it is better to be safe. */ cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || !cpumask_empty(subpartitions_cpus); mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); /* * In the rare case that hotplug removes all the cpus in * subpartitions_cpus, we assumed that cpus are updated. */ if (!cpus_updated && !cpumask_empty(subpartitions_cpus)) cpus_updated = true; /* For v1, synchronize cpus_allowed to cpu_active_mask */ if (cpus_updated) { spin_lock_irq(&callback_lock); if (!on_dfl) cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); /* * Make sure that CPUs allocated to child partitions * do not show up in effective_cpus. If no CPU is left, * we clear the subpartitions_cpus & let the child partitions * fight for the CPUs again. */ if (!cpumask_empty(subpartitions_cpus)) { if (cpumask_subset(&new_cpus, subpartitions_cpus)) { top_cpuset.nr_subparts = 0; cpumask_clear(subpartitions_cpus); } else { cpumask_andnot(&new_cpus, &new_cpus, subpartitions_cpus); } } cpumask_copy(top_cpuset.effective_cpus, &new_cpus); spin_unlock_irq(&callback_lock); /* we don't mess with cpumasks of tasks in top_cpuset */ } /* synchronize mems_allowed to N_MEMORY */ if (mems_updated) { spin_lock_irq(&callback_lock); if (!on_dfl) top_cpuset.mems_allowed = new_mems; top_cpuset.effective_mems = new_mems; spin_unlock_irq(&callback_lock); update_tasks_nodemask(&top_cpuset); } mutex_unlock(&cpuset_mutex); /* if cpus or mems changed, we need to propagate to descendants */ if (cpus_updated || mems_updated) { struct cpuset *cs; struct cgroup_subsys_state *pos_css; rcu_read_lock(); cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { if (cs == &top_cpuset || !css_tryget_online(&cs->css)) continue; rcu_read_unlock(); cpuset_hotplug_update_tasks(cs, ptmp); rcu_read_lock(); css_put(&cs->css); } rcu_read_unlock(); } /* rebuild sched domains if cpus_allowed has changed */ if (cpus_updated || force_rebuild) { force_rebuild = false; rebuild_sched_domains_cpuslocked(); } free_cpumasks(NULL, ptmp); } void cpuset_update_active_cpus(void) { /* * We're inside cpu hotplug critical region which usually nests * inside cgroup synchronization. Bounce actual hotplug processing * to a work item to avoid reverse locking order. */ cpuset_handle_hotplug(); } /* * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. * Call this routine anytime after node_states[N_MEMORY] changes. * See cpuset_update_active_cpus() for CPU hotplug handling. */ static int cpuset_track_online_nodes(struct notifier_block *self, unsigned long action, void *arg) { cpuset_handle_hotplug(); return NOTIFY_OK; } /** * cpuset_init_smp - initialize cpus_allowed * * Description: Finish top cpuset after cpu, node maps are initialized */ void __init cpuset_init_smp(void) { /* * cpus_allowd/mems_allowed set to v2 values in the initial * cpuset_bind() call will be reset to v1 values in another * cpuset_bind() call when v1 cpuset is mounted. */ top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); top_cpuset.effective_mems = node_states[N_MEMORY]; hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); BUG_ON(!cpuset_migrate_mm_wq); } /** * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. * * Description: Returns the cpumask_var_t cpus_allowed of the cpuset * attached to the specified @tsk. Guaranteed to return some non-empty * subset of cpu_online_mask, even if this means going outside the * tasks cpuset, except when the task is in the top cpuset. **/ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) { unsigned long flags; struct cpuset *cs; spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); cs = task_cs(tsk); if (cs != &top_cpuset) guarantee_online_cpus(tsk, pmask); /* * Tasks in the top cpuset won't get update to their cpumasks * when a hotplug online/offline event happens. So we include all * offline cpus in the allowed cpu list. */ if ((cs == &top_cpuset) || cpumask_empty(pmask)) { const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); /* * We first exclude cpus allocated to partitions. If there is no * allowable online cpu left, we fall back to all possible cpus. */ cpumask_andnot(pmask, possible_mask, subpartitions_cpus); if (!cpumask_intersects(pmask, cpu_online_mask)) cpumask_copy(pmask, possible_mask); } rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); } /** * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. * @tsk: pointer to task_struct with which the scheduler is struggling * * Description: In the case that the scheduler cannot find an allowed cpu in * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy * mode however, this value is the same as task_cs(tsk)->effective_cpus, * which will not contain a sane cpumask during cases such as cpu hotplugging. * This is the absolute last resort for the scheduler and it is only used if * _every_ other avenue has been traveled. * * Returns true if the affinity of @tsk was changed, false otherwise. **/ bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) { const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); const struct cpumask *cs_mask; bool changed = false; rcu_read_lock(); cs_mask = task_cs(tsk)->cpus_allowed; if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { do_set_cpus_allowed(tsk, cs_mask); changed = true; } rcu_read_unlock(); /* * We own tsk->cpus_allowed, nobody can change it under us. * * But we used cs && cs->cpus_allowed lockless and thus can * race with cgroup_attach_task() or update_cpumask() and get * the wrong tsk->cpus_allowed. However, both cases imply the * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() * which takes task_rq_lock(). * * If we are called after it dropped the lock we must see all * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary * set any mask even if it is not right from task_cs() pov, * the pending set_cpus_allowed_ptr() will fix things. * * select_fallback_rq() will fix things ups and set cpu_possible_mask * if required. */ return changed; } void __init cpuset_init_current_mems_allowed(void) { nodes_setall(current->mems_allowed); } /** * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. * * Description: Returns the nodemask_t mems_allowed of the cpuset * attached to the specified @tsk. Guaranteed to return some non-empty * subset of node_states[N_MEMORY], even if this means going outside the * tasks cpuset. **/ nodemask_t cpuset_mems_allowed(struct task_struct *tsk) { nodemask_t mask; unsigned long flags; spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); guarantee_online_mems(task_cs(tsk), &mask); rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return mask; } /** * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed * @nodemask: the nodemask to be checked * * Are any of the nodes in the nodemask allowed in current->mems_allowed? */ int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) { return nodes_intersects(*nodemask, current->mems_allowed); } /* * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or * mem_hardwall ancestor to the specified cpuset. Call holding * callback_lock. If no ancestor is mem_exclusive or mem_hardwall * (an unusual configuration), then returns the root cpuset. */ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) { while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) cs = parent_cs(cs); return cs; } /* * cpuset_node_allowed - Can we allocate on a memory node? * @node: is this an allowed node? * @gfp_mask: memory allocation flags * * If we're in interrupt, yes, we can always allocate. If @node is set in * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, * yes. If current has access to memory reserves as an oom victim, yes. * Otherwise, no. * * GFP_USER allocations are marked with the __GFP_HARDWALL bit, * and do not allow allocations outside the current tasks cpuset * unless the task has been OOM killed. * GFP_KERNEL allocations are not so marked, so can escape to the * nearest enclosing hardwalled ancestor cpuset. * * Scanning up parent cpusets requires callback_lock. The * __alloc_pages() routine only calls here with __GFP_HARDWALL bit * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the * current tasks mems_allowed came up empty on the first pass over * the zonelist. So only GFP_KERNEL allocations, if all nodes in the * cpuset are short of memory, might require taking the callback_lock. * * The first call here from mm/page_alloc:get_page_from_freelist() * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, * so no allocation on a node outside the cpuset is allowed (unless * in interrupt, of course). * * The second pass through get_page_from_freelist() doesn't even call * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set * in alloc_flags. That logic and the checks below have the combined * affect that: * in_interrupt - any node ok (current task context irrelevant) * GFP_ATOMIC - any node ok * tsk_is_oom_victim - any node ok * GFP_KERNEL - any node in enclosing hardwalled cpuset ok * GFP_USER - only nodes in current tasks mems allowed ok. */ bool cpuset_node_allowed(int node, gfp_t gfp_mask) { struct cpuset *cs; /* current cpuset ancestors */ bool allowed; /* is allocation in zone z allowed? */ unsigned long flags; if (in_interrupt()) return true; if (node_isset(node, current->mems_allowed)) return true; /* * Allow tasks that have access to memory reserves because they have * been OOM killed to get memory anywhere. */ if (unlikely(tsk_is_oom_victim(current))) return true; if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ return false; if (current->flags & PF_EXITING) /* Let dying task have memory */ return true; /* Not hardwall and node outside mems_allowed: scan up cpusets */ spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); cs = nearest_hardwall_ancestor(task_cs(current)); allowed = node_isset(node, cs->mems_allowed); rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return allowed; } /** * cpuset_spread_node() - On which node to begin search for a page * @rotor: round robin rotor * * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for * tasks in a cpuset with is_spread_page or is_spread_slab set), * and if the memory allocation used cpuset_mem_spread_node() * to determine on which node to start looking, as it will for * certain page cache or slab cache pages such as used for file * system buffers and inode caches, then instead of starting on the * local node to look for a free page, rather spread the starting * node around the tasks mems_allowed nodes. * * We don't have to worry about the returned node being offline * because "it can't happen", and even if it did, it would be ok. * * The routines calling guarantee_online_mems() are careful to * only set nodes in task->mems_allowed that are online. So it * should not be possible for the following code to return an * offline node. But if it did, that would be ok, as this routine * is not returning the node where the allocation must be, only * the node where the search should start. The zonelist passed to * __alloc_pages() will include all nodes. If the slab allocator * is passed an offline node, it will fall back to the local node. * See kmem_cache_alloc_node(). */ static int cpuset_spread_node(int *rotor) { return *rotor = next_node_in(*rotor, current->mems_allowed); } /** * cpuset_mem_spread_node() - On which node to begin search for a file page */ int cpuset_mem_spread_node(void) { if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) current->cpuset_mem_spread_rotor = node_random(¤t->mems_allowed); return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); } /** * cpuset_slab_spread_node() - On which node to begin search for a slab page */ int cpuset_slab_spread_node(void) { if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) current->cpuset_slab_spread_rotor = node_random(¤t->mems_allowed); return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); } EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); /** * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? * @tsk1: pointer to task_struct of some task. * @tsk2: pointer to task_struct of some other task. * * Description: Return true if @tsk1's mems_allowed intersects the * mems_allowed of @tsk2. Used by the OOM killer to determine if * one of the task's memory usage might impact the memory available * to the other. **/ int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, const struct task_struct *tsk2) { return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); } /** * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed * * Description: Prints current's name, cpuset name, and cached copy of its * mems_allowed to the kernel log. */ void cpuset_print_current_mems_allowed(void) { struct cgroup *cgrp; rcu_read_lock(); cgrp = task_cs(current)->css.cgroup; pr_cont(",cpuset="); pr_cont_cgroup_name(cgrp); pr_cont(",mems_allowed=%*pbl", nodemask_pr_args(¤t->mems_allowed)); rcu_read_unlock(); } /* * Collection of memory_pressure is suppressed unless * this flag is enabled by writing "1" to the special * cpuset file 'memory_pressure_enabled' in the root cpuset. */ int cpuset_memory_pressure_enabled __read_mostly; /* * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. * * Keep a running average of the rate of synchronous (direct) * page reclaim efforts initiated by tasks in each cpuset. * * This represents the rate at which some task in the cpuset * ran low on memory on all nodes it was allowed to use, and * had to enter the kernels page reclaim code in an effort to * create more free memory by tossing clean pages or swapping * or writing dirty pages. * * Display to user space in the per-cpuset read-only file * "memory_pressure". Value displayed is an integer * representing the recent rate of entry into the synchronous * (direct) page reclaim by any task attached to the cpuset. */ void __cpuset_memory_pressure_bump(void) { rcu_read_lock(); fmeter_markevent(&task_cs(current)->fmeter); rcu_read_unlock(); } #ifdef CONFIG_PROC_PID_CPUSET /* * proc_cpuset_show() * - Print tasks cpuset path into seq_file. * - Used for /proc/<pid>/cpuset. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it * doesn't really matter if tsk->cpuset changes after we read it, * and we take cpuset_mutex, keeping cpuset_attach() from changing it * anyway. */ int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk) { char *buf; struct cgroup_subsys_state *css; int retval; retval = -ENOMEM; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; rcu_read_lock(); spin_lock_irq(&css_set_lock); css = task_css(tsk, cpuset_cgrp_id); retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX, current->nsproxy->cgroup_ns); spin_unlock_irq(&css_set_lock); rcu_read_unlock(); if (retval == -E2BIG) retval = -ENAMETOOLONG; if (retval < 0) goto out_free; seq_puts(m, buf); seq_putc(m, '\n'); retval = 0; out_free: kfree(buf); out: return retval; } #endif /* CONFIG_PROC_PID_CPUSET */ /* Display task mems_allowed in /proc/<pid>/status file. */ void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) { seq_printf(m, "Mems_allowed:\t%*pb\n", nodemask_pr_args(&task->mems_allowed)); seq_printf(m, "Mems_allowed_list:\t%*pbl\n", nodemask_pr_args(&task->mems_allowed)); } |
24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM smc #if !defined(_TRACE_SMC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SMC_H #include <linux/ipv6.h> #include <linux/tcp.h> #include <linux/tracepoint.h> #include <net/ipv6.h> #include "smc.h" #include "smc_core.h" TRACE_EVENT(smc_switch_to_fallback, TP_PROTO(const struct smc_sock *smc, int fallback_rsn), TP_ARGS(smc, fallback_rsn), TP_STRUCT__entry( __field(const void *, sk) __field(const void *, clcsk) __field(u64, net_cookie) __field(int, fallback_rsn) ), TP_fast_assign( const struct sock *sk = &smc->sk; const struct sock *clcsk = smc->clcsock->sk; __entry->sk = sk; __entry->clcsk = clcsk; __entry->net_cookie = sock_net(sk)->net_cookie; __entry->fallback_rsn = fallback_rsn; ), TP_printk("sk=%p clcsk=%p net=%llu fallback_rsn=%d", __entry->sk, __entry->clcsk, __entry->net_cookie, __entry->fallback_rsn) ); DECLARE_EVENT_CLASS(smc_msg_event, TP_PROTO(const struct smc_sock *smc, size_t len), TP_ARGS(smc, len), TP_STRUCT__entry( __field(const void *, smc) __field(u64, net_cookie) __field(size_t, len) __string(name, smc->conn.lnk->ibname) ), TP_fast_assign( const struct sock *sk = &smc->sk; __entry->smc = smc; __entry->net_cookie = sock_net(sk)->net_cookie; __entry->len = len; __assign_str(name); ), TP_printk("smc=%p net=%llu len=%zu dev=%s", __entry->smc, __entry->net_cookie, __entry->len, __get_str(name)) ); DEFINE_EVENT(smc_msg_event, smc_tx_sendmsg, TP_PROTO(const struct smc_sock *smc, size_t len), TP_ARGS(smc, len) ); DEFINE_EVENT(smc_msg_event, smc_rx_recvmsg, TP_PROTO(const struct smc_sock *smc, size_t len), TP_ARGS(smc, len) ); TRACE_EVENT(smcr_link_down, TP_PROTO(const struct smc_link *lnk, void *location), TP_ARGS(lnk, location), TP_STRUCT__entry( __field(const void *, lnk) __field(const void *, lgr) __field(u64, net_cookie) __field(int, state) __string(name, lnk->ibname) __field(void *, location) ), TP_fast_assign( const struct smc_link_group *lgr = lnk->lgr; __entry->lnk = lnk; __entry->lgr = lgr; __entry->net_cookie = lgr->net->net_cookie; __entry->state = lnk->state; __assign_str(name); __entry->location = location; ), TP_printk("lnk=%p lgr=%p net=%llu state=%d dev=%s location=%pS", __entry->lnk, __entry->lgr, __entry->net_cookie, __entry->state, __get_str(name), __entry->location) ); #endif /* _TRACE_SMC_H */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE smc_tracepoint #include <trace/define_trace.h> |
6593 8 318 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_MM_H #define _LINUX_SCHED_MM_H #include <linux/kernel.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/mm_types.h> #include <linux/gfp.h> #include <linux/sync_core.h> #include <linux/sched/coredump.h> /* * Routines for handling mm_structs */ extern struct mm_struct *mm_alloc(void); /** * mmgrab() - Pin a &struct mm_struct. * @mm: The &struct mm_struct to pin. * * Make sure that @mm will not get freed even after the owning task * exits. This doesn't guarantee that the associated address space * will still exist later on and mmget_not_zero() has to be used before * accessing it. * * This is a preferred way to pin @mm for a longer/unbounded amount * of time. * * Use mmdrop() to release the reference acquired by mmgrab(). * * See also <Documentation/mm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) { atomic_inc(&mm->mm_count); } static inline void smp_mb__after_mmgrab(void) { smp_mb__after_atomic(); } extern void __mmdrop(struct mm_struct *mm); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } #ifdef CONFIG_PREEMPT_RT /* * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is * by far the least expensive way to do that. */ static inline void __mmdrop_delayed(struct rcu_head *rhp) { struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); __mmdrop(mm); } /* * Invoked from finish_task_switch(). Delegates the heavy lifting on RT * kernels via RCU. */ static inline void mmdrop_sched(struct mm_struct *mm) { /* Provides a full memory barrier. See mmdrop() */ if (atomic_dec_and_test(&mm->mm_count)) call_rcu(&mm->delayed_drop, __mmdrop_delayed); } #else static inline void mmdrop_sched(struct mm_struct *mm) { mmdrop(mm); } #endif /* Helpers for lazy TLB mm refcounting */ static inline void mmgrab_lazy_tlb(struct mm_struct *mm) { if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) mmgrab(mm); } static inline void mmdrop_lazy_tlb(struct mm_struct *mm) { if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) { mmdrop(mm); } else { /* * mmdrop_lazy_tlb must provide a full memory barrier, see the * membarrier comment finish_task_switch which relies on this. */ smp_mb(); } } static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm) { if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) mmdrop_sched(mm); else smp_mb(); /* see mmdrop_lazy_tlb() above */ } /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. * * Make sure that the address space of the given &struct mm_struct doesn't * go away. This does not protect against parts of the address space being * modified or freed, however. * * Never use this function to pin this address space for an * unbounded/indefinite amount of time. * * Use mmput() to release the reference acquired by mmget(). * * See also <Documentation/mm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) { atomic_inc(&mm->mm_users); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); #ifdef CONFIG_MMU /* same as above but performs the slow path from the async context. Can * be called from the atomic context as well */ void mmput_async(struct mm_struct *); #endif /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct on exit() */ extern void exit_mm_release(struct task_struct *, struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct on exec() */ extern void exec_mm_release(struct task_struct *, struct mm_struct *); #ifdef CONFIG_MEMCG extern void mm_update_next_owner(struct mm_struct *mm); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } #endif /* CONFIG_MEMCG */ #ifdef CONFIG_MMU #ifndef arch_get_mmap_end #define arch_get_mmap_end(addr, len, flags) (TASK_SIZE) #endif #ifndef arch_get_mmap_base #define arch_get_mmap_base(addr, base) (base) #endif extern void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); unsigned long arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); unsigned long arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t); unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); unsigned long generic_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); unsigned long generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) {} #endif static inline bool in_vfork(struct task_struct *tsk) { bool ret; /* * need RCU to access ->real_parent if CLONE_VM was used along with * CLONE_PARENT. * * We check real_parent->mm == tsk->mm because CLONE_VFORK does not * imply CLONE_VM * * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus * ->real_parent is not necessarily the task doing vfork(), so in * theory we can't rely on task_lock() if we want to dereference it. * * And in this case we can't trust the real_parent->mm == tsk->mm * check, it can be false negative. But we do not care, if init or * another oom-unkillable task does this it should blame itself. */ rcu_read_lock(); ret = tsk->vfork_done && rcu_dereference(tsk->real_parent)->mm == tsk->mm; rcu_read_unlock(); return ret; } /* * Applies per-task gfp context to the given allocation flags. * PF_MEMALLOC_NOIO implies GFP_NOIO * PF_MEMALLOC_NOFS implies GFP_NOFS * PF_MEMALLOC_PIN implies !GFP_MOVABLE */ static inline gfp_t current_gfp_context(gfp_t flags) { unsigned int pflags = READ_ONCE(current->flags); if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NORECLAIM | PF_MEMALLOC_NOWARN | PF_MEMALLOC_PIN))) { /* * Stronger flags before weaker flags: * NORECLAIM implies NOIO, which in turn implies NOFS */ if (pflags & PF_MEMALLOC_NORECLAIM) flags &= ~__GFP_DIRECT_RECLAIM; else if (pflags & PF_MEMALLOC_NOIO) flags &= ~(__GFP_IO | __GFP_FS); else if (pflags & PF_MEMALLOC_NOFS) flags &= ~__GFP_FS; if (pflags & PF_MEMALLOC_NOWARN) flags |= __GFP_NOWARN; if (pflags & PF_MEMALLOC_PIN) flags &= ~__GFP_MOVABLE; } return flags; } #ifdef CONFIG_LOCKDEP extern void __fs_reclaim_acquire(unsigned long ip); extern void __fs_reclaim_release(unsigned long ip); extern void fs_reclaim_acquire(gfp_t gfp_mask); extern void fs_reclaim_release(gfp_t gfp_mask); #else static inline void __fs_reclaim_acquire(unsigned long ip) { } static inline void __fs_reclaim_release(unsigned long ip) { } static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif /* Any memory-allocation retry loop should use * memalloc_retry_wait(), and pass the flags for the most * constrained allocation attempt that might have failed. * This provides useful documentation of where loops are, * and a central place to fine tune the waiting as the MM * implementation changes. */ static inline void memalloc_retry_wait(gfp_t gfp_flags) { /* We use io_schedule_timeout because waiting for memory * typically included waiting for dirty pages to be * written out, which requires IO. */ __set_current_state(TASK_UNINTERRUPTIBLE); gfp_flags = current_gfp_context(gfp_flags); if (gfpflags_allow_blocking(gfp_flags) && !(gfp_flags & __GFP_NORETRY)) /* Probably waited already, no need for much more */ io_schedule_timeout(1); else /* Probably didn't wait, and has now released a lock, * so now is a good time to wait */ io_schedule_timeout(HZ/50); } /** * might_alloc - Mark possible allocation sites * @gfp_mask: gfp_t flags that would be used to allocate * * Similar to might_sleep() and other annotations, this can be used in functions * that might allocate, but often don't. Compiles to nothing without * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking. */ static inline void might_alloc(gfp_t gfp_mask) { fs_reclaim_acquire(gfp_mask); fs_reclaim_release(gfp_mask); might_sleep_if(gfpflags_allow_blocking(gfp_mask)); } /** * memalloc_flags_save - Add a PF_* flag to current->flags, save old value * * This allows PF_* flags to be conveniently added, irrespective of current * value, and then the old version restored with memalloc_flags_restore(). */ static inline unsigned memalloc_flags_save(unsigned flags) { unsigned oldflags = ~current->flags & flags; current->flags |= flags; return oldflags; } static inline void memalloc_flags_restore(unsigned flags) { current->flags &= ~flags; } /** * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. * * This functions marks the beginning of the GFP_NOIO allocation scope. * All further allocations will implicitly drop __GFP_IO flag and so * they are safe for the IO critical section from the allocation recursion * point of view. Use memalloc_noio_restore to end the scope with flags * returned by this function. * * Context: This function is safe to be used from any context. * Return: The saved flags to be passed to memalloc_noio_restore. */ static inline unsigned int memalloc_noio_save(void) { return memalloc_flags_save(PF_MEMALLOC_NOIO); } /** * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_noio_save call. */ static inline void memalloc_noio_restore(unsigned int flags) { memalloc_flags_restore(flags); } /** * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. * * This functions marks the beginning of the GFP_NOFS allocation scope. * All further allocations will implicitly drop __GFP_FS flag and so * they are safe for the FS critical section from the allocation recursion * point of view. Use memalloc_nofs_restore to end the scope with flags * returned by this function. * * Context: This function is safe to be used from any context. * Return: The saved flags to be passed to memalloc_nofs_restore. */ static inline unsigned int memalloc_nofs_save(void) { return memalloc_flags_save(PF_MEMALLOC_NOFS); } /** * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_nofs_save call. */ static inline void memalloc_nofs_restore(unsigned int flags) { memalloc_flags_restore(flags); } /** * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope. * * This function marks the beginning of the __GFP_MEMALLOC allocation scope. * All further allocations will implicitly add the __GFP_MEMALLOC flag, which * prevents entering reclaim and allows access to all memory reserves. This * should only be used when the caller guarantees the allocation will allow more * memory to be freed very shortly, i.e. it needs to allocate some memory in * the process of freeing memory, and cannot reclaim due to potential recursion. * * Users of this scope have to be extremely careful to not deplete the reserves * completely and implement a throttling mechanism which controls the * consumption of the reserve based on the amount of freed memory. Usage of a * pre-allocated pool (e.g. mempool) should be always considered before using * this scope. * * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC * * Context: This function should not be used in an interrupt context as that one * does not give PF_MEMALLOC access to reserves. * See __gfp_pfmemalloc_flags(). * Return: The saved flags to be passed to memalloc_noreclaim_restore. */ static inline unsigned int memalloc_noreclaim_save(void) { return memalloc_flags_save(PF_MEMALLOC); } /** * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope. * @flags: Flags to restore. * * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save * function. Always make sure that the given flags is the return value from the * pairing memalloc_noreclaim_save call. */ static inline void memalloc_noreclaim_restore(unsigned int flags) { memalloc_flags_restore(flags); } /** * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope. * * This function marks the beginning of the ~__GFP_MOVABLE allocation scope. * All further allocations will implicitly remove the __GFP_MOVABLE flag, which * will constraint the allocations to zones that allow long term pinning, i.e. * not ZONE_MOVABLE zones. * * Return: The saved flags to be passed to memalloc_pin_restore. */ static inline unsigned int memalloc_pin_save(void) { return memalloc_flags_save(PF_MEMALLOC_PIN); } /** * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope. * @flags: Flags to restore. * * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function. * Always make sure that the given flags is the return value from the pairing * memalloc_pin_save call. */ static inline void memalloc_pin_restore(unsigned int flags) { memalloc_flags_restore(flags); } #ifdef CONFIG_MEMCG DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); /** * set_active_memcg - Starts the remote memcg charging scope. * @memcg: memcg to charge. * * This function marks the beginning of the remote memcg charging scope. All the * __GFP_ACCOUNT allocations till the end of the scope will be charged to the * given memcg. * * Please, make sure that caller has a reference to the passed memcg structure, * so its lifetime is guaranteed to exceed the scope between two * set_active_memcg() calls. * * NOTE: This function can nest. Users must save the return value and * reset the previous value after their own charging scope is over. */ static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { struct mem_cgroup *old; if (!in_task()) { old = this_cpu_read(int_active_memcg); this_cpu_write(int_active_memcg, memcg); } else { old = current->active_memcg; current->active_memcg = memcg; } return old; } #else static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { return NULL; } #endif #ifdef CONFIG_MEMBARRIER enum { MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), }; enum { MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), MEMBARRIER_FLAG_RSEQ = (1U << 1), }; #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS #include <asm/membarrier.h> #endif static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { if (current->mm != mm) return; if (likely(!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) return; sync_core_before_usermode(); } extern void membarrier_exec_mmap(struct mm_struct *mm); extern void membarrier_update_current_mm(struct mm_struct *next_mm); #else #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS static inline void membarrier_arch_switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { } #endif static inline void membarrier_exec_mmap(struct mm_struct *mm) { } static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { } static inline void membarrier_update_current_mm(struct mm_struct *next_mm) { } #endif #endif /* _LINUX_SCHED_MM_H */ |
83 83 10 1 1 8 1 2 1 1 1 4 2 4 3 2 3 2 5 2 2 2 2 2 2 2 6 1 1 3 1 8 6 1 1 2 2 5 2 1 2 2 1 1 1 1 1 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 | // SPDX-License-Identifier: GPL-2.0-or-later /* * (C) 2011 Pablo Neira Ayuso <pablo@netfilter.org> * (C) 2011 Intra2net AG <https://www.intra2net.com> */ #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/errno.h> #include <net/netlink.h> #include <net/sock.h> #include <net/netns/generic.h> #include <linux/netfilter.h> #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nfnetlink_acct.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Pablo Neira Ayuso <pablo@netfilter.org>"); MODULE_DESCRIPTION("nfacct: Extended Netfilter accounting infrastructure"); struct nf_acct { atomic64_t pkts; atomic64_t bytes; unsigned long flags; struct list_head head; refcount_t refcnt; char name[NFACCT_NAME_MAX]; struct rcu_head rcu_head; char data[]; }; struct nfacct_filter { u32 value; u32 mask; }; struct nfnl_acct_net { struct list_head nfnl_acct_list; }; static unsigned int nfnl_acct_net_id __read_mostly; static inline struct nfnl_acct_net *nfnl_acct_pernet(struct net *net) { return net_generic(net, nfnl_acct_net_id); } #define NFACCT_F_QUOTA (NFACCT_F_QUOTA_PKTS | NFACCT_F_QUOTA_BYTES) #define NFACCT_OVERQUOTA_BIT 2 /* NFACCT_F_OVERQUOTA */ static int nfnl_acct_new(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const tb[]) { struct nfnl_acct_net *nfnl_acct_net = nfnl_acct_pernet(info->net); struct nf_acct *nfacct, *matching = NULL; unsigned int size = 0; char *acct_name; u32 flags = 0; if (!tb[NFACCT_NAME]) return -EINVAL; acct_name = nla_data(tb[NFACCT_NAME]); if (strlen(acct_name) == 0) return -EINVAL; list_for_each_entry(nfacct, &nfnl_acct_net->nfnl_acct_list, head) { if (strncmp(nfacct->name, acct_name, NFACCT_NAME_MAX) != 0) continue; if (info->nlh->nlmsg_flags & NLM_F_EXCL) return -EEXIST; matching = nfacct; break; } if (matching) { if (info->nlh->nlmsg_flags & NLM_F_REPLACE) { /* reset counters if you request a replacement. */ atomic64_set(&matching->pkts, 0); atomic64_set(&matching->bytes, 0); smp_mb__before_atomic(); /* reset overquota flag if quota is enabled. */ if ((matching->flags & NFACCT_F_QUOTA)) clear_bit(NFACCT_OVERQUOTA_BIT, &matching->flags); return 0; } return -EBUSY; } if (tb[NFACCT_FLAGS]) { flags = ntohl(nla_get_be32(tb[NFACCT_FLAGS])); if (flags & ~NFACCT_F_QUOTA) return -EOPNOTSUPP; if ((flags & NFACCT_F_QUOTA) == NFACCT_F_QUOTA) return -EINVAL; if (flags & NFACCT_F_OVERQUOTA) return -EINVAL; if ((flags & NFACCT_F_QUOTA) && !tb[NFACCT_QUOTA]) return -EINVAL; size += sizeof(u64); } nfacct = kzalloc(sizeof(struct nf_acct) + size, GFP_KERNEL); if (nfacct == NULL) return -ENOMEM; if (flags & NFACCT_F_QUOTA) { u64 *quota = (u64 *)nfacct->data; *quota = be64_to_cpu(nla_get_be64(tb[NFACCT_QUOTA])); nfacct->flags = flags; } nla_strscpy(nfacct->name, tb[NFACCT_NAME], NFACCT_NAME_MAX); if (tb[NFACCT_BYTES]) { atomic64_set(&nfacct->bytes, be64_to_cpu(nla_get_be64(tb[NFACCT_BYTES]))); } if (tb[NFACCT_PKTS]) { atomic64_set(&nfacct->pkts, be64_to_cpu(nla_get_be64(tb[NFACCT_PKTS]))); } refcount_set(&nfacct->refcnt, 1); list_add_tail_rcu(&nfacct->head, &nfnl_acct_net->nfnl_acct_list); return 0; } static int nfnl_acct_fill_info(struct sk_buff *skb, u32 portid, u32 seq, u32 type, int event, struct nf_acct *acct) { struct nlmsghdr *nlh; unsigned int flags = portid ? NLM_F_MULTI : 0; u64 pkts, bytes; u32 old_flags; event = nfnl_msg_type(NFNL_SUBSYS_ACCT, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, AF_UNSPEC, NFNETLINK_V0, 0); if (!nlh) goto nlmsg_failure; if (nla_put_string(skb, NFACCT_NAME, acct->name)) goto nla_put_failure; old_flags = acct->flags; if (type == NFNL_MSG_ACCT_GET_CTRZERO) { pkts = atomic64_xchg(&acct->pkts, 0); bytes = atomic64_xchg(&acct->bytes, 0); smp_mb__before_atomic(); if (acct->flags & NFACCT_F_QUOTA) clear_bit(NFACCT_OVERQUOTA_BIT, &acct->flags); } else { pkts = atomic64_read(&acct->pkts); bytes = atomic64_read(&acct->bytes); } if (nla_put_be64(skb, NFACCT_PKTS, cpu_to_be64(pkts), NFACCT_PAD) || nla_put_be64(skb, NFACCT_BYTES, cpu_to_be64(bytes), NFACCT_PAD) || nla_put_be32(skb, NFACCT_USE, htonl(refcount_read(&acct->refcnt)))) goto nla_put_failure; if (acct->flags & NFACCT_F_QUOTA) { u64 *quota = (u64 *)acct->data; if (nla_put_be32(skb, NFACCT_FLAGS, htonl(old_flags)) || nla_put_be64(skb, NFACCT_QUOTA, cpu_to_be64(*quota), NFACCT_PAD)) goto nla_put_failure; } nlmsg_end(skb, nlh); return skb->len; nlmsg_failure: nla_put_failure: nlmsg_cancel(skb, nlh); return -1; } static int nfnl_acct_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct nfnl_acct_net *nfnl_acct_net = nfnl_acct_pernet(net); struct nf_acct *cur, *last; const struct nfacct_filter *filter = cb->data; if (cb->args[2]) return 0; last = (struct nf_acct *)cb->args[1]; if (cb->args[1]) cb->args[1] = 0; rcu_read_lock(); list_for_each_entry_rcu(cur, &nfnl_acct_net->nfnl_acct_list, head) { if (last) { if (cur != last) continue; last = NULL; } if (filter && (cur->flags & filter->mask) != filter->value) continue; if (nfnl_acct_fill_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFNL_MSG_TYPE(cb->nlh->nlmsg_type), NFNL_MSG_ACCT_NEW, cur) < 0) { cb->args[1] = (unsigned long)cur; break; } } if (!cb->args[1]) cb->args[2] = 1; rcu_read_unlock(); return skb->len; } static int nfnl_acct_done(struct netlink_callback *cb) { kfree(cb->data); return 0; } static const struct nla_policy filter_policy[NFACCT_FILTER_MAX + 1] = { [NFACCT_FILTER_MASK] = { .type = NLA_U32 }, [NFACCT_FILTER_VALUE] = { .type = NLA_U32 }, }; static int nfnl_acct_start(struct netlink_callback *cb) { const struct nlattr *const attr = cb->data; struct nlattr *tb[NFACCT_FILTER_MAX + 1]; struct nfacct_filter *filter; int err; if (!attr) return 0; err = nla_parse_nested_deprecated(tb, NFACCT_FILTER_MAX, attr, filter_policy, NULL); if (err < 0) return err; if (!tb[NFACCT_FILTER_MASK] || !tb[NFACCT_FILTER_VALUE]) return -EINVAL; filter = kzalloc(sizeof(struct nfacct_filter), GFP_KERNEL); if (!filter) return -ENOMEM; filter->mask = ntohl(nla_get_be32(tb[NFACCT_FILTER_MASK])); filter->value = ntohl(nla_get_be32(tb[NFACCT_FILTER_VALUE])); cb->data = filter; return 0; } static int nfnl_acct_get(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const tb[]) { struct nfnl_acct_net *nfnl_acct_net = nfnl_acct_pernet(info->net); int ret = -ENOENT; struct nf_acct *cur; char *acct_name; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = nfnl_acct_dump, .start = nfnl_acct_start, .done = nfnl_acct_done, .data = (void *)tb[NFACCT_FILTER], }; return netlink_dump_start(info->sk, skb, info->nlh, &c); } if (!tb[NFACCT_NAME]) return -EINVAL; acct_name = nla_data(tb[NFACCT_NAME]); list_for_each_entry(cur, &nfnl_acct_net->nfnl_acct_list, head) { struct sk_buff *skb2; if (strncmp(cur->name, acct_name, NFACCT_NAME_MAX)!= 0) continue; skb2 = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (skb2 == NULL) { ret = -ENOMEM; break; } ret = nfnl_acct_fill_info(skb2, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFNL_MSG_TYPE(info->nlh->nlmsg_type), NFNL_MSG_ACCT_NEW, cur); if (ret <= 0) { kfree_skb(skb2); break; } ret = nfnetlink_unicast(skb2, info->net, NETLINK_CB(skb).portid); break; } return ret; } /* try to delete object, fail if it is still in use. */ static int nfnl_acct_try_del(struct nf_acct *cur) { int ret = 0; /* We want to avoid races with nfnl_acct_put. So only when the current * refcnt is 1, we decrease it to 0. */ if (refcount_dec_if_one(&cur->refcnt)) { /* We are protected by nfnl mutex. */ list_del_rcu(&cur->head); kfree_rcu(cur, rcu_head); } else { ret = -EBUSY; } return ret; } static int nfnl_acct_del(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const tb[]) { struct nfnl_acct_net *nfnl_acct_net = nfnl_acct_pernet(info->net); struct nf_acct *cur, *tmp; int ret = -ENOENT; char *acct_name; if (!tb[NFACCT_NAME]) { list_for_each_entry_safe(cur, tmp, &nfnl_acct_net->nfnl_acct_list, head) nfnl_acct_try_del(cur); return 0; } acct_name = nla_data(tb[NFACCT_NAME]); list_for_each_entry(cur, &nfnl_acct_net->nfnl_acct_list, head) { if (strncmp(cur->name, acct_name, NFACCT_NAME_MAX) != 0) continue; ret = nfnl_acct_try_del(cur); if (ret < 0) return ret; break; } return ret; } static const struct nla_policy nfnl_acct_policy[NFACCT_MAX+1] = { [NFACCT_NAME] = { .type = NLA_NUL_STRING, .len = NFACCT_NAME_MAX-1 }, [NFACCT_BYTES] = { .type = NLA_U64 }, [NFACCT_PKTS] = { .type = NLA_U64 }, [NFACCT_FLAGS] = { .type = NLA_U32 }, [NFACCT_QUOTA] = { .type = NLA_U64 }, [NFACCT_FILTER] = {.type = NLA_NESTED }, }; static const struct nfnl_callback nfnl_acct_cb[NFNL_MSG_ACCT_MAX] = { [NFNL_MSG_ACCT_NEW] = { .call = nfnl_acct_new, .type = NFNL_CB_MUTEX, .attr_count = NFACCT_MAX, .policy = nfnl_acct_policy }, [NFNL_MSG_ACCT_GET] = { .call = nfnl_acct_get, .type = NFNL_CB_MUTEX, .attr_count = NFACCT_MAX, .policy = nfnl_acct_policy }, [NFNL_MSG_ACCT_GET_CTRZERO] = { .call = nfnl_acct_get, .type = NFNL_CB_MUTEX, .attr_count = NFACCT_MAX, .policy = nfnl_acct_policy }, [NFNL_MSG_ACCT_DEL] = { .call = nfnl_acct_del, .type = NFNL_CB_MUTEX, .attr_count = NFACCT_MAX, .policy = nfnl_acct_policy }, }; static const struct nfnetlink_subsystem nfnl_acct_subsys = { .name = "acct", .subsys_id = NFNL_SUBSYS_ACCT, .cb_count = NFNL_MSG_ACCT_MAX, .cb = nfnl_acct_cb, }; MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_ACCT); struct nf_acct *nfnl_acct_find_get(struct net *net, const char *acct_name) { struct nfnl_acct_net *nfnl_acct_net = nfnl_acct_pernet(net); struct nf_acct *cur, *acct = NULL; rcu_read_lock(); list_for_each_entry_rcu(cur, &nfnl_acct_net->nfnl_acct_list, head) { if (strncmp(cur->name, acct_name, NFACCT_NAME_MAX)!= 0) continue; if (!try_module_get(THIS_MODULE)) goto err; if (!refcount_inc_not_zero(&cur->refcnt)) { module_put(THIS_MODULE); goto err; } acct = cur; break; } err: rcu_read_unlock(); return acct; } EXPORT_SYMBOL_GPL(nfnl_acct_find_get); void nfnl_acct_put(struct nf_acct *acct) { if (refcount_dec_and_test(&acct->refcnt)) kfree_rcu(acct, rcu_head); module_put(THIS_MODULE); } EXPORT_SYMBOL_GPL(nfnl_acct_put); void nfnl_acct_update(const struct sk_buff *skb, struct nf_acct *nfacct) { atomic64_inc(&nfacct->pkts); atomic64_add(skb->len, &nfacct->bytes); } EXPORT_SYMBOL_GPL(nfnl_acct_update); static void nfnl_overquota_report(struct net *net, struct nf_acct *nfacct) { int ret; struct sk_buff *skb; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (skb == NULL) return; ret = nfnl_acct_fill_info(skb, 0, 0, NFNL_MSG_ACCT_OVERQUOTA, 0, nfacct); if (ret <= 0) { kfree_skb(skb); return; } nfnetlink_broadcast(net, skb, 0, NFNLGRP_ACCT_QUOTA, GFP_ATOMIC); } int nfnl_acct_overquota(struct net *net, struct nf_acct *nfacct) { u64 now; u64 *quota; int ret = NFACCT_UNDERQUOTA; /* no place here if we don't have a quota */ if (!(nfacct->flags & NFACCT_F_QUOTA)) return NFACCT_NO_QUOTA; quota = (u64 *)nfacct->data; now = (nfacct->flags & NFACCT_F_QUOTA_PKTS) ? atomic64_read(&nfacct->pkts) : atomic64_read(&nfacct->bytes); ret = now > *quota; if (now >= *quota && !test_and_set_bit(NFACCT_OVERQUOTA_BIT, &nfacct->flags)) { nfnl_overquota_report(net, nfacct); } return ret; } EXPORT_SYMBOL_GPL(nfnl_acct_overquota); static int __net_init nfnl_acct_net_init(struct net *net) { INIT_LIST_HEAD(&nfnl_acct_pernet(net)->nfnl_acct_list); return 0; } static void __net_exit nfnl_acct_net_exit(struct net *net) { struct nfnl_acct_net *nfnl_acct_net = nfnl_acct_pernet(net); struct nf_acct *cur, *tmp; list_for_each_entry_safe(cur, tmp, &nfnl_acct_net->nfnl_acct_list, head) { list_del_rcu(&cur->head); if (refcount_dec_and_test(&cur->refcnt)) kfree_rcu(cur, rcu_head); } } static struct pernet_operations nfnl_acct_ops = { .init = nfnl_acct_net_init, .exit = nfnl_acct_net_exit, .id = &nfnl_acct_net_id, .size = sizeof(struct nfnl_acct_net), }; static int __init nfnl_acct_init(void) { int ret; ret = register_pernet_subsys(&nfnl_acct_ops); if (ret < 0) { pr_err("nfnl_acct_init: failed to register pernet ops\n"); goto err_out; } ret = nfnetlink_subsys_register(&nfnl_acct_subsys); if (ret < 0) { pr_err("nfnl_acct_init: cannot register with nfnetlink.\n"); goto cleanup_pernet; } return 0; cleanup_pernet: unregister_pernet_subsys(&nfnl_acct_ops); err_out: return ret; } static void __exit nfnl_acct_exit(void) { nfnetlink_subsys_unregister(&nfnl_acct_subsys); unregister_pernet_subsys(&nfnl_acct_ops); } module_init(nfnl_acct_init); module_exit(nfnl_acct_exit); |
2 2 1 1 21 22 1 1 2 1 2 3 1 2 1 1 4 1 1 21 6 6 1 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | /* CMTP implementation for Linux Bluetooth stack (BlueZ). Copyright (C) 2002-2003 Marcel Holtmann <marcel@holtmann.org> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #include <linux/export.h> #include <linux/types.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/poll.h> #include <linux/fcntl.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/ioctl.h> #include <linux/file.h> #include <linux/compat.h> #include <linux/gfp.h> #include <linux/uaccess.h> #include <net/sock.h> #include <linux/isdn/capilli.h> #include "cmtp.h" static struct bt_sock_list cmtp_sk_list = { .lock = __RW_LOCK_UNLOCKED(cmtp_sk_list.lock) }; static int cmtp_sock_release(struct socket *sock) { struct sock *sk = sock->sk; BT_DBG("sock %p sk %p", sock, sk); if (!sk) return 0; bt_sock_unlink(&cmtp_sk_list, sk); sock_orphan(sk); sock_put(sk); return 0; } static int do_cmtp_sock_ioctl(struct socket *sock, unsigned int cmd, void __user *argp) { struct cmtp_connadd_req ca; struct cmtp_conndel_req cd; struct cmtp_connlist_req cl; struct cmtp_conninfo ci; struct socket *nsock; int err; BT_DBG("cmd %x arg %p", cmd, argp); switch (cmd) { case CMTPCONNADD: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&ca, argp, sizeof(ca))) return -EFAULT; nsock = sockfd_lookup(ca.sock, &err); if (!nsock) return err; if (nsock->sk->sk_state != BT_CONNECTED) { sockfd_put(nsock); return -EBADFD; } err = cmtp_add_connection(&ca, nsock); if (!err) { if (copy_to_user(argp, &ca, sizeof(ca))) err = -EFAULT; } else sockfd_put(nsock); return err; case CMTPCONNDEL: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&cd, argp, sizeof(cd))) return -EFAULT; return cmtp_del_connection(&cd); case CMTPGETCONNLIST: if (copy_from_user(&cl, argp, sizeof(cl))) return -EFAULT; if (cl.cnum <= 0) return -EINVAL; err = cmtp_get_connlist(&cl); if (!err && copy_to_user(argp, &cl, sizeof(cl))) return -EFAULT; return err; case CMTPGETCONNINFO: if (copy_from_user(&ci, argp, sizeof(ci))) return -EFAULT; err = cmtp_get_conninfo(&ci); if (!err && copy_to_user(argp, &ci, sizeof(ci))) return -EFAULT; return err; } return -EINVAL; } static int cmtp_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { return do_cmtp_sock_ioctl(sock, cmd, (void __user *)arg); } #ifdef CONFIG_COMPAT static int cmtp_sock_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); if (cmd == CMTPGETCONNLIST) { struct cmtp_connlist_req cl; u32 __user *p = argp; u32 uci; int err; if (get_user(cl.cnum, p) || get_user(uci, p + 1)) return -EFAULT; cl.ci = compat_ptr(uci); if (cl.cnum <= 0) return -EINVAL; err = cmtp_get_connlist(&cl); if (!err && put_user(cl.cnum, p)) err = -EFAULT; return err; } return do_cmtp_sock_ioctl(sock, cmd, argp); } #endif static const struct proto_ops cmtp_sock_ops = { .family = PF_BLUETOOTH, .owner = THIS_MODULE, .release = cmtp_sock_release, .ioctl = cmtp_sock_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = cmtp_sock_compat_ioctl, #endif .bind = sock_no_bind, .getname = sock_no_getname, .sendmsg = sock_no_sendmsg, .recvmsg = sock_no_recvmsg, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .mmap = sock_no_mmap }; static struct proto cmtp_proto = { .name = "CMTP", .owner = THIS_MODULE, .obj_size = sizeof(struct bt_sock) }; static int cmtp_sock_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; BT_DBG("sock %p", sock); if (sock->type != SOCK_RAW) return -ESOCKTNOSUPPORT; sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &cmtp_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); sock->ops = &cmtp_sock_ops; sock->state = SS_UNCONNECTED; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = protocol; sk->sk_state = BT_OPEN; bt_sock_link(&cmtp_sk_list, sk); return 0; } static const struct net_proto_family cmtp_sock_family_ops = { .family = PF_BLUETOOTH, .owner = THIS_MODULE, .create = cmtp_sock_create }; int cmtp_init_sockets(void) { int err; err = proto_register(&cmtp_proto, 0); if (err < 0) return err; err = bt_sock_register(BTPROTO_CMTP, &cmtp_sock_family_ops); if (err < 0) { BT_ERR("Can't register CMTP socket"); goto error; } err = bt_procfs_init(&init_net, "cmtp", &cmtp_sk_list, NULL); if (err < 0) { BT_ERR("Failed to create CMTP proc file"); bt_sock_unregister(BTPROTO_HIDP); goto error; } BT_INFO("CMTP socket layer initialized"); return 0; error: proto_unregister(&cmtp_proto); return err; } void cmtp_cleanup_sockets(void) { bt_procfs_cleanup(&init_net, "cmtp"); bt_sock_unregister(BTPROTO_CMTP); proto_unregister(&cmtp_proto); } |
6 42 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_SCHED_H #define BLK_MQ_SCHED_H #include "elevator.h" #include "blk-mq.h" #define MAX_SCHED_RQ (16 * BLKDEV_DEFAULT_RQ) bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request); bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs); bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, struct list_head *free); void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx); void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx); void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx); int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e); void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e); void blk_mq_sched_free_rqs(struct request_queue *q); static inline void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) { if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) __blk_mq_sched_restart(hctx); } static inline bool bio_mergeable(struct bio *bio) { return !(bio->bi_opf & REQ_NOMERGE_FLAGS); } static inline bool blk_mq_sched_allow_merge(struct request_queue *q, struct request *rq, struct bio *bio) { if (rq->rq_flags & RQF_USE_SCHED) { struct elevator_queue *e = q->elevator; if (e->type->ops.allow_merge) return e->type->ops.allow_merge(q, rq, bio); } return true; } static inline void blk_mq_sched_completed_request(struct request *rq, u64 now) { if (rq->rq_flags & RQF_USE_SCHED) { struct elevator_queue *e = rq->q->elevator; if (e->type->ops.completed_request) e->type->ops.completed_request(rq, now); } } static inline void blk_mq_sched_requeue_request(struct request *rq) { if (rq->rq_flags & RQF_USE_SCHED) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; if (e->type->ops.requeue_request) e->type->ops.requeue_request(rq); } } static inline bool blk_mq_sched_has_work(struct blk_mq_hw_ctx *hctx) { struct elevator_queue *e = hctx->queue->elevator; if (e && e->type->ops.has_work) return e->type->ops.has_work(hctx); return false; } static inline bool blk_mq_sched_needs_restart(struct blk_mq_hw_ctx *hctx) { return test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); } #endif |
36 37 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | // SPDX-License-Identifier: GPL-2.0-only /* * ksyms_common.c: A split of kernel/kallsyms.c * Contains a few generic function definations independent of config KALLSYMS. */ #include <linux/kallsyms.h> #include <linux/security.h> static inline int kallsyms_for_perf(void) { #ifdef CONFIG_PERF_EVENTS extern int sysctl_perf_event_paranoid; if (sysctl_perf_event_paranoid <= 1) return 1; #endif return 0; } /* * We show kallsyms information even to normal users if we've enabled * kernel profiling and are explicitly not paranoid (so kptr_restrict * is clear, and sysctl_perf_event_paranoid isn't set). * * Otherwise, require CAP_SYSLOG (assuming kptr_restrict isn't set to * block even that). */ bool kallsyms_show_value(const struct cred *cred) { switch (kptr_restrict) { case 0: if (kallsyms_for_perf()) return true; fallthrough; case 1: if (security_capable(cred, &init_user_ns, CAP_SYSLOG, CAP_OPT_NOAUDIT) == 0) return true; fallthrough; default: return false; } } |
21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/bad_inode.c * * Copyright (C) 1997, Stephen Tweedie * * Provide stub functions for unreadable inodes * * Fabian Frederick : August 2003 - All file operations assigned to EIO */ #include <linux/fs.h> #include <linux/export.h> #include <linux/stat.h> #include <linux/time.h> #include <linux/namei.h> #include <linux/poll.h> #include <linux/fiemap.h> static int bad_file_open(struct inode *inode, struct file *filp) { return -EIO; } static const struct file_operations bad_file_ops = { .open = bad_file_open, }; static int bad_inode_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { return -EIO; } static struct dentry *bad_inode_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { return ERR_PTR(-EIO); } static int bad_inode_link (struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { return -EIO; } static int bad_inode_unlink(struct inode *dir, struct dentry *dentry) { return -EIO; } static int bad_inode_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *symname) { return -EIO; } static int bad_inode_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { return -EIO; } static int bad_inode_rmdir (struct inode *dir, struct dentry *dentry) { return -EIO; } static int bad_inode_mknod(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { return -EIO; } static int bad_inode_rename2(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { return -EIO; } static int bad_inode_readlink(struct dentry *dentry, char __user *buffer, int buflen) { return -EIO; } static int bad_inode_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { return -EIO; } static int bad_inode_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { return -EIO; } static int bad_inode_setattr(struct mnt_idmap *idmap, struct dentry *direntry, struct iattr *attrs) { return -EIO; } static ssize_t bad_inode_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) { return -EIO; } static const char *bad_inode_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { return ERR_PTR(-EIO); } static struct posix_acl *bad_inode_get_acl(struct inode *inode, int type, bool rcu) { return ERR_PTR(-EIO); } static int bad_inode_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len) { return -EIO; } static int bad_inode_update_time(struct inode *inode, int flags) { return -EIO; } static int bad_inode_atomic_open(struct inode *inode, struct dentry *dentry, struct file *file, unsigned int open_flag, umode_t create_mode) { return -EIO; } static int bad_inode_tmpfile(struct mnt_idmap *idmap, struct inode *inode, struct file *file, umode_t mode) { return -EIO; } static int bad_inode_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, struct posix_acl *acl, int type) { return -EIO; } static const struct inode_operations bad_inode_ops = { .create = bad_inode_create, .lookup = bad_inode_lookup, .link = bad_inode_link, .unlink = bad_inode_unlink, .symlink = bad_inode_symlink, .mkdir = bad_inode_mkdir, .rmdir = bad_inode_rmdir, .mknod = bad_inode_mknod, .rename = bad_inode_rename2, .readlink = bad_inode_readlink, .permission = bad_inode_permission, .getattr = bad_inode_getattr, .setattr = bad_inode_setattr, .listxattr = bad_inode_listxattr, .get_link = bad_inode_get_link, .get_inode_acl = bad_inode_get_acl, .fiemap = bad_inode_fiemap, .update_time = bad_inode_update_time, .atomic_open = bad_inode_atomic_open, .tmpfile = bad_inode_tmpfile, .set_acl = bad_inode_set_acl, }; /* * When a filesystem is unable to read an inode due to an I/O error in * its read_inode() function, it can call make_bad_inode() to return a * set of stubs which will return EIO errors as required. * * We only need to do limited initialisation: all other fields are * preinitialised to zero automatically. */ /** * make_bad_inode - mark an inode bad due to an I/O error * @inode: Inode to mark bad * * When an inode cannot be read due to a media or remote network * failure this function makes the inode "bad" and causes I/O operations * on it to fail from this point on. */ void make_bad_inode(struct inode *inode) { remove_inode_hash(inode); inode->i_mode = S_IFREG; simple_inode_init_ts(inode); inode->i_op = &bad_inode_ops; inode->i_opflags &= ~IOP_XATTR; inode->i_fop = &bad_file_ops; } EXPORT_SYMBOL(make_bad_inode); /* * This tests whether an inode has been flagged as bad. The test uses * &bad_inode_ops to cover the case of invalidated inodes as well as * those created by make_bad_inode() above. */ /** * is_bad_inode - is an inode errored * @inode: inode to test * * Returns true if the inode in question has been marked as bad. */ bool is_bad_inode(struct inode *inode) { return (inode->i_op == &bad_inode_ops); } EXPORT_SYMBOL(is_bad_inode); /** * iget_failed - Mark an under-construction inode as dead and release it * @inode: The inode to discard * * Mark an under-construction inode as dead and release it. */ void iget_failed(struct inode *inode) { make_bad_inode(inode); unlock_new_inode(inode); iput(inode); } EXPORT_SYMBOL(iget_failed); |
61 36 1005 152 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Integer base 2 logarithm calculation * * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_LOG2_H #define _LINUX_LOG2_H #include <linux/types.h> #include <linux/bitops.h> /* * non-constant log of base 2 calculators * - the arch may override these in asm/bitops.h if they can be implemented * more efficiently than using fls() and fls64() * - the arch is not required to handle n==0 if implementing the fallback */ #ifndef CONFIG_ARCH_HAS_ILOG2_U32 static __always_inline __attribute__((const)) int __ilog2_u32(u32 n) { return fls(n) - 1; } #endif #ifndef CONFIG_ARCH_HAS_ILOG2_U64 static __always_inline __attribute__((const)) int __ilog2_u64(u64 n) { return fls64(n) - 1; } #endif /** * is_power_of_2() - check if a value is a power of two * @n: the value to check * * Determine whether some value is a power of two, where zero is * *not* considered a power of two. * Return: true if @n is a power of 2, otherwise false. */ static inline __attribute__((const)) bool is_power_of_2(unsigned long n) { return (n != 0 && ((n & (n - 1)) == 0)); } /** * __roundup_pow_of_two() - round up to nearest power of two * @n: value to round up */ static inline __attribute__((const)) unsigned long __roundup_pow_of_two(unsigned long n) { return 1UL << fls_long(n - 1); } /** * __rounddown_pow_of_two() - round down to nearest power of two * @n: value to round down */ static inline __attribute__((const)) unsigned long __rounddown_pow_of_two(unsigned long n) { return 1UL << (fls_long(n) - 1); } /** * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value * @n: parameter * * Use this where sparse expects a true constant expression, e.g. for array * indices. */ #define const_ilog2(n) \ ( \ __builtin_constant_p(n) ? ( \ (n) < 2 ? 0 : \ (n) & (1ULL << 63) ? 63 : \ (n) & (1ULL << 62) ? 62 : \ (n) & (1ULL << 61) ? 61 : \ (n) & (1ULL << 60) ? 60 : \ (n) & (1ULL << 59) ? 59 : \ (n) & (1ULL << 58) ? 58 : \ (n) & (1ULL << 57) ? 57 : \ (n) & (1ULL << 56) ? 56 : \ (n) & (1ULL << 55) ? 55 : \ (n) & (1ULL << 54) ? 54 : \ (n) & (1ULL << 53) ? 53 : \ (n) & (1ULL << 52) ? 52 : \ (n) & (1ULL << 51) ? 51 : \ (n) & (1ULL << 50) ? 50 : \ (n) & (1ULL << 49) ? 49 : \ (n) & (1ULL << 48) ? 48 : \ (n) & (1ULL << 47) ? 47 : \ (n) & (1ULL << 46) ? 46 : \ (n) & (1ULL << 45) ? 45 : \ (n) & (1ULL << 44) ? 44 : \ (n) & (1ULL << 43) ? 43 : \ (n) & (1ULL << 42) ? 42 : \ (n) & (1ULL << 41) ? 41 : \ (n) & (1ULL << 40) ? 40 : \ (n) & (1ULL << 39) ? 39 : \ (n) & (1ULL << 38) ? 38 : \ (n) & (1ULL << 37) ? 37 : \ (n) & (1ULL << 36) ? 36 : \ (n) & (1ULL << 35) ? 35 : \ (n) & (1ULL << 34) ? 34 : \ (n) & (1ULL << 33) ? 33 : \ (n) & (1ULL << 32) ? 32 : \ (n) & (1ULL << 31) ? 31 : \ (n) & (1ULL << 30) ? 30 : \ (n) & (1ULL << 29) ? 29 : \ (n) & (1ULL << 28) ? 28 : \ (n) & (1ULL << 27) ? 27 : \ (n) & (1ULL << 26) ? 26 : \ (n) & (1ULL << 25) ? 25 : \ (n) & (1ULL << 24) ? 24 : \ (n) & (1ULL << 23) ? 23 : \ (n) & (1ULL << 22) ? 22 : \ (n) & (1ULL << 21) ? 21 : \ (n) & (1ULL << 20) ? 20 : \ (n) & (1ULL << 19) ? 19 : \ (n) & (1ULL << 18) ? 18 : \ (n) & (1ULL << 17) ? 17 : \ (n) & (1ULL << 16) ? 16 : \ (n) & (1ULL << 15) ? 15 : \ (n) & (1ULL << 14) ? 14 : \ (n) & (1ULL << 13) ? 13 : \ (n) & (1ULL << 12) ? 12 : \ (n) & (1ULL << 11) ? 11 : \ (n) & (1ULL << 10) ? 10 : \ (n) & (1ULL << 9) ? 9 : \ (n) & (1ULL << 8) ? 8 : \ (n) & (1ULL << 7) ? 7 : \ (n) & (1ULL << 6) ? 6 : \ (n) & (1ULL << 5) ? 5 : \ (n) & (1ULL << 4) ? 4 : \ (n) & (1ULL << 3) ? 3 : \ (n) & (1ULL << 2) ? 2 : \ 1) : \ -1) /** * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value * @n: parameter * * constant-capable log of base 2 calculation * - this can be used to initialise global variables from constant data, hence * the massive ternary operator construction * * selects the appropriately-sized optimised version depending on sizeof(n) */ #define ilog2(n) \ ( \ __builtin_constant_p(n) ? \ ((n) < 2 ? 0 : \ 63 - __builtin_clzll(n)) : \ (sizeof(n) <= 4) ? \ __ilog2_u32(n) : \ __ilog2_u64(n) \ ) /** * roundup_pow_of_two - round the given value up to nearest power of two * @n: parameter * * round the given value up to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define roundup_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 1) ? 1 : \ (1UL << (ilog2((n) - 1) + 1)) \ ) : \ __roundup_pow_of_two(n) \ ) /** * rounddown_pow_of_two - round the given value down to nearest power of two * @n: parameter * * round the given value down to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define rounddown_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ (1UL << ilog2(n))) : \ __rounddown_pow_of_two(n) \ ) static inline __attribute_const__ int __order_base_2(unsigned long n) { return n > 1 ? ilog2(n - 1) + 1 : 0; } /** * order_base_2 - calculate the (rounded up) base 2 order of the argument * @n: parameter * * The first few values calculated by this routine: * ob2(0) = 0 * ob2(1) = 0 * ob2(2) = 1 * ob2(3) = 2 * ob2(4) = 2 * ob2(5) = 3 * ... and so on. */ #define order_base_2(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) ? 0 : \ ilog2((n) - 1) + 1) : \ __order_base_2(n) \ ) static inline __attribute__((const)) int __bits_per(unsigned long n) { if (n < 2) return 1; if (is_power_of_2(n)) return order_base_2(n) + 1; return order_base_2(n); } /** * bits_per - calculate the number of bits required for the argument * @n: parameter * * This is constant-capable and can be used for compile time * initializations, e.g bitfields. * * The first few values calculated by this routine: * bf(0) = 1 * bf(1) = 1 * bf(2) = 2 * bf(3) = 2 * bf(4) = 3 * ... and so on. */ #define bits_per(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) \ ? 1 : ilog2(n) + 1 \ ) : \ __bits_per(n) \ ) #endif /* _LINUX_LOG2_H */ |
91 200 200 200 200 200 200 468 124 121 1 3 2 2 1 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_GRE_H #define __LINUX_GRE_H #include <linux/skbuff.h> #include <net/ip_tunnels.h> struct gre_base_hdr { __be16 flags; __be16 protocol; } __packed; struct gre_full_hdr { struct gre_base_hdr fixed_header; __be16 csum; __be16 reserved1; __be32 key; __be32 seq; } __packed; #define GRE_HEADER_SECTION 4 #define GREPROTO_CISCO 0 #define GREPROTO_PPTP 1 #define GREPROTO_MAX 2 #define GRE_IP_PROTO_MAX 2 struct gre_protocol { int (*handler)(struct sk_buff *skb); void (*err_handler)(struct sk_buff *skb, u32 info); }; int gre_add_protocol(const struct gre_protocol *proto, u8 version); int gre_del_protocol(const struct gre_protocol *proto, u8 version); struct net_device *gretap_fb_dev_create(struct net *net, const char *name, u8 name_assign_type); int gre_parse_header(struct sk_buff *skb, struct tnl_ptk_info *tpi, bool *csum_err, __be16 proto, int nhs); static inline bool netif_is_gretap(const struct net_device *dev) { return dev->rtnl_link_ops && !strcmp(dev->rtnl_link_ops->kind, "gretap"); } static inline bool netif_is_ip6gretap(const struct net_device *dev) { return dev->rtnl_link_ops && !strcmp(dev->rtnl_link_ops->kind, "ip6gretap"); } static inline int gre_calc_hlen(const unsigned long *o_flags) { int addend = 4; if (test_bit(IP_TUNNEL_CSUM_BIT, o_flags)) addend += 4; if (test_bit(IP_TUNNEL_KEY_BIT, o_flags)) addend += 4; if (test_bit(IP_TUNNEL_SEQ_BIT, o_flags)) addend += 4; return addend; } static inline void gre_flags_to_tnl_flags(unsigned long *dst, __be16 flags) { IP_TUNNEL_DECLARE_FLAGS(res) = { }; __assign_bit(IP_TUNNEL_CSUM_BIT, res, flags & GRE_CSUM); __assign_bit(IP_TUNNEL_ROUTING_BIT, res, flags & GRE_ROUTING); __assign_bit(IP_TUNNEL_KEY_BIT, res, flags & GRE_KEY); __assign_bit(IP_TUNNEL_SEQ_BIT, res, flags & GRE_SEQ); __assign_bit(IP_TUNNEL_STRICT_BIT, res, flags & GRE_STRICT); __assign_bit(IP_TUNNEL_REC_BIT, res, flags & GRE_REC); __assign_bit(IP_TUNNEL_VERSION_BIT, res, flags & GRE_VERSION); ip_tunnel_flags_copy(dst, res); } static inline __be16 gre_tnl_flags_to_gre_flags(const unsigned long *tflags) { __be16 flags = 0; if (test_bit(IP_TUNNEL_CSUM_BIT, tflags)) flags |= GRE_CSUM; if (test_bit(IP_TUNNEL_ROUTING_BIT, tflags)) flags |= GRE_ROUTING; if (test_bit(IP_TUNNEL_KEY_BIT, tflags)) flags |= GRE_KEY; if (test_bit(IP_TUNNEL_SEQ_BIT, tflags)) flags |= GRE_SEQ; if (test_bit(IP_TUNNEL_STRICT_BIT, tflags)) flags |= GRE_STRICT; if (test_bit(IP_TUNNEL_REC_BIT, tflags)) flags |= GRE_REC; if (test_bit(IP_TUNNEL_VERSION_BIT, tflags)) flags |= GRE_VERSION; return flags; } static inline void gre_build_header(struct sk_buff *skb, int hdr_len, const unsigned long *flags, __be16 proto, __be32 key, __be32 seq) { IP_TUNNEL_DECLARE_FLAGS(cond) = { }; struct gre_base_hdr *greh; skb_push(skb, hdr_len); skb_set_inner_protocol(skb, proto); skb_reset_transport_header(skb); greh = (struct gre_base_hdr *)skb->data; greh->flags = gre_tnl_flags_to_gre_flags(flags); greh->protocol = proto; __set_bit(IP_TUNNEL_KEY_BIT, cond); __set_bit(IP_TUNNEL_CSUM_BIT, cond); __set_bit(IP_TUNNEL_SEQ_BIT, cond); if (ip_tunnel_flags_intersect(flags, cond)) { __be32 *ptr = (__be32 *)(((u8 *)greh) + hdr_len - 4); if (test_bit(IP_TUNNEL_SEQ_BIT, flags)) { *ptr = seq; ptr--; } if (test_bit(IP_TUNNEL_KEY_BIT, flags)) { *ptr = key; ptr--; } if (test_bit(IP_TUNNEL_CSUM_BIT, flags) && !(skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | SKB_GSO_GRE_CSUM))) { *ptr = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) { *(__sum16 *)ptr = csum_fold(lco_csum(skb)); } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = sizeof(*greh); } } } } #endif |
10 5 6 7 7 7 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SM3 Secure Hash Algorithm, AVX assembler accelerated. * specified in: https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3-02 * * Copyright (C) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <crypto/internal/hash.h> #include <crypto/internal/simd.h> #include <linux/init.h> #include <linux/module.h> #include <linux/types.h> #include <crypto/sm3.h> #include <crypto/sm3_base.h> #include <asm/simd.h> asmlinkage void sm3_transform_avx(struct sm3_state *state, const u8 *data, int nblocks); static int sm3_avx_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sm3_state *sctx = shash_desc_ctx(desc); if (!crypto_simd_usable() || (sctx->count % SM3_BLOCK_SIZE) + len < SM3_BLOCK_SIZE) { sm3_update(sctx, data, len); return 0; } /* * Make sure struct sm3_state begins directly with the SM3 * 256-bit internal state, as this is what the asm functions expect. */ BUILD_BUG_ON(offsetof(struct sm3_state, state) != 0); kernel_fpu_begin(); sm3_base_do_update(desc, data, len, sm3_transform_avx); kernel_fpu_end(); return 0; } static int sm3_avx_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { if (!crypto_simd_usable()) { struct sm3_state *sctx = shash_desc_ctx(desc); if (len) sm3_update(sctx, data, len); sm3_final(sctx, out); return 0; } kernel_fpu_begin(); if (len) sm3_base_do_update(desc, data, len, sm3_transform_avx); sm3_base_do_finalize(desc, sm3_transform_avx); kernel_fpu_end(); return sm3_base_finish(desc, out); } static int sm3_avx_final(struct shash_desc *desc, u8 *out) { if (!crypto_simd_usable()) { sm3_final(shash_desc_ctx(desc), out); return 0; } kernel_fpu_begin(); sm3_base_do_finalize(desc, sm3_transform_avx); kernel_fpu_end(); return sm3_base_finish(desc, out); } static struct shash_alg sm3_avx_alg = { .digestsize = SM3_DIGEST_SIZE, .init = sm3_base_init, .update = sm3_avx_update, .final = sm3_avx_final, .finup = sm3_avx_finup, .descsize = sizeof(struct sm3_state), .base = { .cra_name = "sm3", .cra_driver_name = "sm3-avx", .cra_priority = 300, .cra_blocksize = SM3_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int __init sm3_avx_mod_init(void) { const char *feature_name; if (!boot_cpu_has(X86_FEATURE_AVX)) { pr_info("AVX instruction are not detected.\n"); return -ENODEV; } if (!boot_cpu_has(X86_FEATURE_BMI2)) { pr_info("BMI2 instruction are not detected.\n"); return -ENODEV; } if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, &feature_name)) { pr_info("CPU feature '%s' is not supported.\n", feature_name); return -ENODEV; } return crypto_register_shash(&sm3_avx_alg); } static void __exit sm3_avx_mod_exit(void) { crypto_unregister_shash(&sm3_avx_alg); } module_init(sm3_avx_mod_init); module_exit(sm3_avx_mod_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Tianjia Zhang <tianjia.zhang@linux.alibaba.com>"); MODULE_DESCRIPTION("SM3 Secure Hash Algorithm, AVX assembler accelerated"); MODULE_ALIAS_CRYPTO("sm3"); MODULE_ALIAS_CRYPTO("sm3-avx"); |
134 133 132 133 133 133 134 545 88 544 545 38 4 32 621 622 304 298 36 649 481 265 215 62 265 579 578 209 20 20 19 1 20 20 20 20 20 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2002 International Business Machines, Corp. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel implementation * * This abstraction represents an SCTP endpoint. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Jon Grimm <jgrimm@austin.ibm.com> * Daisy Chang <daisyc@us.ibm.com> * Dajiang Zhang <dajiang.zhang@nokia.com> */ #include <linux/types.h> #include <linux/slab.h> #include <linux/in.h> #include <linux/random.h> /* get_random_bytes() */ #include <net/sock.h> #include <net/ipv6.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> /* Forward declarations for internal helpers. */ static void sctp_endpoint_bh_rcv(struct work_struct *work); /* * Initialize the base fields of the endpoint structure. */ static struct sctp_endpoint *sctp_endpoint_init(struct sctp_endpoint *ep, struct sock *sk, gfp_t gfp) { struct net *net = sock_net(sk); struct sctp_shared_key *null_key; ep->digest = kzalloc(SCTP_SIGNATURE_SIZE, gfp); if (!ep->digest) return NULL; ep->asconf_enable = net->sctp.addip_enable; ep->auth_enable = net->sctp.auth_enable; if (ep->auth_enable) { if (sctp_auth_init(ep, gfp)) goto nomem; if (ep->asconf_enable) { sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); } } /* Initialize the base structure. */ /* What type of endpoint are we? */ ep->base.type = SCTP_EP_TYPE_SOCKET; /* Initialize the basic object fields. */ refcount_set(&ep->base.refcnt, 1); ep->base.dead = false; /* Create an input queue. */ sctp_inq_init(&ep->base.inqueue); /* Set its top-half handler */ sctp_inq_set_th_handler(&ep->base.inqueue, sctp_endpoint_bh_rcv); /* Initialize the bind addr area */ sctp_bind_addr_init(&ep->base.bind_addr, 0); /* Create the lists of associations. */ INIT_LIST_HEAD(&ep->asocs); /* Use SCTP specific send buffer space queues. */ ep->sndbuf_policy = net->sctp.sndbuf_policy; sk->sk_data_ready = sctp_data_ready; sk->sk_write_space = sctp_write_space; sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); /* Get the receive buffer policy for this endpoint */ ep->rcvbuf_policy = net->sctp.rcvbuf_policy; /* Initialize the secret key used with cookie. */ get_random_bytes(ep->secret_key, sizeof(ep->secret_key)); /* SCTP-AUTH extensions*/ INIT_LIST_HEAD(&ep->endpoint_shared_keys); null_key = sctp_auth_shkey_create(0, gfp); if (!null_key) goto nomem_shkey; list_add(&null_key->key_list, &ep->endpoint_shared_keys); /* Add the null key to the endpoint shared keys list and * set the hmcas and chunks pointers. */ ep->prsctp_enable = net->sctp.prsctp_enable; ep->reconf_enable = net->sctp.reconf_enable; ep->ecn_enable = net->sctp.ecn_enable; /* Remember who we are attached to. */ ep->base.sk = sk; ep->base.net = sock_net(sk); sock_hold(ep->base.sk); return ep; nomem_shkey: sctp_auth_free(ep); nomem: kfree(ep->digest); return NULL; } /* Create a sctp_endpoint with all that boring stuff initialized. * Returns NULL if there isn't enough memory. */ struct sctp_endpoint *sctp_endpoint_new(struct sock *sk, gfp_t gfp) { struct sctp_endpoint *ep; /* Build a local endpoint. */ ep = kzalloc(sizeof(*ep), gfp); if (!ep) goto fail; if (!sctp_endpoint_init(ep, sk, gfp)) goto fail_init; SCTP_DBG_OBJCNT_INC(ep); return ep; fail_init: kfree(ep); fail: return NULL; } /* Add an association to an endpoint. */ void sctp_endpoint_add_asoc(struct sctp_endpoint *ep, struct sctp_association *asoc) { struct sock *sk = ep->base.sk; /* If this is a temporary association, don't bother * since we'll be removing it shortly and don't * want anyone to find it anyway. */ if (asoc->temp) return; /* Now just add it to our list of asocs */ list_add_tail(&asoc->asocs, &ep->asocs); /* Increment the backlog value for a TCP-style listening socket. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) sk_acceptq_added(sk); } /* Free the endpoint structure. Delay cleanup until * all users have released their reference count on this structure. */ void sctp_endpoint_free(struct sctp_endpoint *ep) { ep->base.dead = true; inet_sk_set_state(ep->base.sk, SCTP_SS_CLOSED); /* Unlink this endpoint, so we can't find it again! */ sctp_unhash_endpoint(ep); sctp_endpoint_put(ep); } /* Final destructor for endpoint. */ static void sctp_endpoint_destroy_rcu(struct rcu_head *head) { struct sctp_endpoint *ep = container_of(head, struct sctp_endpoint, rcu); struct sock *sk = ep->base.sk; sctp_sk(sk)->ep = NULL; sock_put(sk); kfree(ep); SCTP_DBG_OBJCNT_DEC(ep); } static void sctp_endpoint_destroy(struct sctp_endpoint *ep) { struct sock *sk; if (unlikely(!ep->base.dead)) { WARN(1, "Attempt to destroy undead endpoint %p!\n", ep); return; } /* Free the digest buffer */ kfree(ep->digest); /* SCTP-AUTH: Free up AUTH releated data such as shared keys * chunks and hmacs arrays that were allocated */ sctp_auth_destroy_keys(&ep->endpoint_shared_keys); sctp_auth_free(ep); /* Cleanup. */ sctp_inq_free(&ep->base.inqueue); sctp_bind_addr_free(&ep->base.bind_addr); memset(ep->secret_key, 0, sizeof(ep->secret_key)); sk = ep->base.sk; /* Remove and free the port */ if (sctp_sk(sk)->bind_hash) sctp_put_port(sk); call_rcu(&ep->rcu, sctp_endpoint_destroy_rcu); } /* Hold a reference to an endpoint. */ int sctp_endpoint_hold(struct sctp_endpoint *ep) { return refcount_inc_not_zero(&ep->base.refcnt); } /* Release a reference to an endpoint and clean up if there are * no more references. */ void sctp_endpoint_put(struct sctp_endpoint *ep) { if (refcount_dec_and_test(&ep->base.refcnt)) sctp_endpoint_destroy(ep); } /* Is this the endpoint we are looking for? */ struct sctp_endpoint *sctp_endpoint_is_match(struct sctp_endpoint *ep, struct net *net, const union sctp_addr *laddr, int dif, int sdif) { int bound_dev_if = READ_ONCE(ep->base.sk->sk_bound_dev_if); struct sctp_endpoint *retval = NULL; if (net_eq(ep->base.net, net) && sctp_sk_bound_dev_eq(net, bound_dev_if, dif, sdif) && (htons(ep->base.bind_addr.port) == laddr->v4.sin_port)) { if (sctp_bind_addr_match(&ep->base.bind_addr, laddr, sctp_sk(ep->base.sk))) retval = ep; } return retval; } /* Find the association that goes with this chunk. * We lookup the transport from hashtable at first, then get association * through t->assoc. */ struct sctp_association *sctp_endpoint_lookup_assoc( const struct sctp_endpoint *ep, const union sctp_addr *paddr, struct sctp_transport **transport) { struct sctp_association *asoc = NULL; struct sctp_transport *t; *transport = NULL; /* If the local port is not set, there can't be any associations * on this endpoint. */ if (!ep->base.bind_addr.port) return NULL; rcu_read_lock(); t = sctp_epaddr_lookup_transport(ep, paddr); if (!t) goto out; *transport = t; asoc = t->asoc; out: rcu_read_unlock(); return asoc; } /* Look for any peeled off association from the endpoint that matches the * given peer address. */ bool sctp_endpoint_is_peeled_off(struct sctp_endpoint *ep, const union sctp_addr *paddr) { int bound_dev_if = READ_ONCE(ep->base.sk->sk_bound_dev_if); struct sctp_sockaddr_entry *addr; struct net *net = ep->base.net; struct sctp_bind_addr *bp; bp = &ep->base.bind_addr; /* This function is called with the socket lock held, * so the address_list can not change. */ list_for_each_entry(addr, &bp->address_list, list) { if (sctp_has_association(net, &addr->a, paddr, bound_dev_if, bound_dev_if)) return true; } return false; } /* Do delayed input processing. This is scheduled by sctp_rcv(). * This may be called on BH or task time. */ static void sctp_endpoint_bh_rcv(struct work_struct *work) { struct sctp_endpoint *ep = container_of(work, struct sctp_endpoint, base.inqueue.immediate); struct sctp_association *asoc; struct sock *sk; struct net *net; struct sctp_transport *transport; struct sctp_chunk *chunk; struct sctp_inq *inqueue; union sctp_subtype subtype; enum sctp_state state; int error = 0; int first_time = 1; /* is this the first time through the loop */ if (ep->base.dead) return; asoc = NULL; inqueue = &ep->base.inqueue; sk = ep->base.sk; net = sock_net(sk); while (NULL != (chunk = sctp_inq_pop(inqueue))) { subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); /* If the first chunk in the packet is AUTH, do special * processing specified in Section 6.3 of SCTP-AUTH spec */ if (first_time && (subtype.chunk == SCTP_CID_AUTH)) { struct sctp_chunkhdr *next_hdr; next_hdr = sctp_inq_peek(inqueue); if (!next_hdr) goto normal; /* If the next chunk is COOKIE-ECHO, skip the AUTH * chunk while saving a pointer to it so we can do * Authentication later (during cookie-echo * processing). */ if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { chunk->auth_chunk = skb_clone(chunk->skb, GFP_ATOMIC); chunk->auth = 1; continue; } } normal: /* We might have grown an association since last we * looked, so try again. * * This happens when we've just processed our * COOKIE-ECHO chunk. */ if (NULL == chunk->asoc) { asoc = sctp_endpoint_lookup_assoc(ep, sctp_source(chunk), &transport); chunk->asoc = asoc; chunk->transport = transport; } state = asoc ? asoc->state : SCTP_STATE_CLOSED; if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) continue; /* Remember where the last DATA chunk came from so we * know where to send the SACK. */ if (asoc && sctp_chunk_is_data(chunk)) asoc->peer.last_data_from = chunk->transport; else { SCTP_INC_STATS(ep->base.net, SCTP_MIB_INCTRLCHUNKS); if (asoc) asoc->stats.ictrlchunks++; } if (chunk->transport) chunk->transport->last_time_heard = ktime_get(); error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, state, ep, asoc, chunk, GFP_ATOMIC); if (error && chunk) chunk->pdiscard = 1; /* Check to see if the endpoint is freed in response to * the incoming chunk. If so, get out of the while loop. */ if (!sctp_sk(sk)->ep) break; if (first_time) first_time = 0; } } |
4 2 2 6 6 6 2 2 12 6 3 5 2 6 6 7 8 5 2 35 15 5 16 27 5 29 4 24 8 28 4 12 12 10 13 3 6 18 3 8 15 3 12 12 3 9 9 3 2 4 4 2 2 3 9 3 4 3 4 3 1 7 3 3 3 4 4 11 13 2 11 22 23 23 22 1 1 1 1 1 17 17 17 3 11 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/module.h> #include <linux/errno.h> #include <linux/socket.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/icmp.h> #include <linux/udp.h> #include <linux/types.h> #include <linux/kernel.h> #include <net/genetlink.h> #include <net/gro.h> #include <net/gue.h> #include <net/fou.h> #include <net/ip.h> #include <net/protocol.h> #include <net/udp.h> #include <net/udp_tunnel.h> #include <uapi/linux/fou.h> #include <uapi/linux/genetlink.h> #include "fou_nl.h" struct fou { struct socket *sock; u8 protocol; u8 flags; __be16 port; u8 family; u16 type; struct list_head list; struct rcu_head rcu; }; #define FOU_F_REMCSUM_NOPARTIAL BIT(0) struct fou_cfg { u16 type; u8 protocol; u8 flags; struct udp_port_cfg udp_config; }; static unsigned int fou_net_id; struct fou_net { struct list_head fou_list; struct mutex fou_lock; }; static inline struct fou *fou_from_sock(struct sock *sk) { return sk->sk_user_data; } static int fou_recv_pull(struct sk_buff *skb, struct fou *fou, size_t len) { /* Remove 'len' bytes from the packet (UDP header and * FOU header if present). */ if (fou->family == AF_INET) ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(skb)->tot_len) - len); else ipv6_hdr(skb)->payload_len = htons(ntohs(ipv6_hdr(skb)->payload_len) - len); __skb_pull(skb, len); skb_postpull_rcsum(skb, udp_hdr(skb), len); skb_reset_transport_header(skb); return iptunnel_pull_offloads(skb); } static int fou_udp_recv(struct sock *sk, struct sk_buff *skb) { struct fou *fou = fou_from_sock(sk); if (!fou) return 1; if (fou_recv_pull(skb, fou, sizeof(struct udphdr))) goto drop; return -fou->protocol; drop: kfree_skb(skb); return 0; } static struct guehdr *gue_remcsum(struct sk_buff *skb, struct guehdr *guehdr, void *data, size_t hdrlen, u8 ipproto, bool nopartial) { __be16 *pd = data; size_t start = ntohs(pd[0]); size_t offset = ntohs(pd[1]); size_t plen = sizeof(struct udphdr) + hdrlen + max_t(size_t, offset + sizeof(u16), start); if (skb->remcsum_offload) return guehdr; if (!pskb_may_pull(skb, plen)) return NULL; guehdr = (struct guehdr *)&udp_hdr(skb)[1]; skb_remcsum_process(skb, (void *)guehdr + hdrlen, start, offset, nopartial); return guehdr; } static int gue_control_message(struct sk_buff *skb, struct guehdr *guehdr) { /* No support yet */ kfree_skb(skb); return 0; } static int gue_udp_recv(struct sock *sk, struct sk_buff *skb) { struct fou *fou = fou_from_sock(sk); size_t len, optlen, hdrlen; struct guehdr *guehdr; void *data; u16 doffset = 0; u8 proto_ctype; if (!fou) return 1; len = sizeof(struct udphdr) + sizeof(struct guehdr); if (!pskb_may_pull(skb, len)) goto drop; guehdr = (struct guehdr *)&udp_hdr(skb)[1]; switch (guehdr->version) { case 0: /* Full GUE header present */ break; case 1: { /* Direct encapsulation of IPv4 or IPv6 */ int prot; switch (((struct iphdr *)guehdr)->version) { case 4: prot = IPPROTO_IPIP; break; case 6: prot = IPPROTO_IPV6; break; default: goto drop; } if (fou_recv_pull(skb, fou, sizeof(struct udphdr))) goto drop; return -prot; } default: /* Undefined version */ goto drop; } optlen = guehdr->hlen << 2; len += optlen; if (!pskb_may_pull(skb, len)) goto drop; /* guehdr may change after pull */ guehdr = (struct guehdr *)&udp_hdr(skb)[1]; if (validate_gue_flags(guehdr, optlen)) goto drop; hdrlen = sizeof(struct guehdr) + optlen; if (fou->family == AF_INET) ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(skb)->tot_len) - len); else ipv6_hdr(skb)->payload_len = htons(ntohs(ipv6_hdr(skb)->payload_len) - len); /* Pull csum through the guehdr now . This can be used if * there is a remote checksum offload. */ skb_postpull_rcsum(skb, udp_hdr(skb), len); data = &guehdr[1]; if (guehdr->flags & GUE_FLAG_PRIV) { __be32 flags = *(__be32 *)(data + doffset); doffset += GUE_LEN_PRIV; if (flags & GUE_PFLAG_REMCSUM) { guehdr = gue_remcsum(skb, guehdr, data + doffset, hdrlen, guehdr->proto_ctype, !!(fou->flags & FOU_F_REMCSUM_NOPARTIAL)); if (!guehdr) goto drop; data = &guehdr[1]; doffset += GUE_PLEN_REMCSUM; } } if (unlikely(guehdr->control)) return gue_control_message(skb, guehdr); proto_ctype = guehdr->proto_ctype; __skb_pull(skb, sizeof(struct udphdr) + hdrlen); skb_reset_transport_header(skb); if (iptunnel_pull_offloads(skb)) goto drop; return -proto_ctype; drop: kfree_skb(skb); return 0; } static struct sk_buff *fou_gro_receive(struct sock *sk, struct list_head *head, struct sk_buff *skb) { const struct net_offload __rcu **offloads; u8 proto = fou_from_sock(sk)->protocol; const struct net_offload *ops; struct sk_buff *pp = NULL; /* We can clear the encap_mark for FOU as we are essentially doing * one of two possible things. We are either adding an L4 tunnel * header to the outer L3 tunnel header, or we are simply * treating the GRE tunnel header as though it is a UDP protocol * specific header such as VXLAN or GENEVE. */ NAPI_GRO_CB(skb)->encap_mark = 0; /* Flag this frame as already having an outer encap header */ NAPI_GRO_CB(skb)->is_fou = 1; offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads; ops = rcu_dereference(offloads[proto]); if (!ops || !ops->callbacks.gro_receive) goto out; pp = call_gro_receive(ops->callbacks.gro_receive, head, skb); out: return pp; } static int fou_gro_complete(struct sock *sk, struct sk_buff *skb, int nhoff) { const struct net_offload __rcu **offloads; u8 proto = fou_from_sock(sk)->protocol; const struct net_offload *ops; int err = -ENOSYS; offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads; ops = rcu_dereference(offloads[proto]); if (WARN_ON(!ops || !ops->callbacks.gro_complete)) goto out; err = ops->callbacks.gro_complete(skb, nhoff); skb_set_inner_mac_header(skb, nhoff); out: return err; } static struct guehdr *gue_gro_remcsum(struct sk_buff *skb, unsigned int off, struct guehdr *guehdr, void *data, size_t hdrlen, struct gro_remcsum *grc, bool nopartial) { __be16 *pd = data; size_t start = ntohs(pd[0]); size_t offset = ntohs(pd[1]); if (skb->remcsum_offload) return guehdr; if (!NAPI_GRO_CB(skb)->csum_valid) return NULL; guehdr = skb_gro_remcsum_process(skb, (void *)guehdr, off, hdrlen, start, offset, grc, nopartial); skb->remcsum_offload = 1; return guehdr; } static struct sk_buff *gue_gro_receive(struct sock *sk, struct list_head *head, struct sk_buff *skb) { const struct net_offload __rcu **offloads; const struct net_offload *ops; struct sk_buff *pp = NULL; struct sk_buff *p; struct guehdr *guehdr; size_t len, optlen, hdrlen, off; void *data; u16 doffset = 0; int flush = 1; struct fou *fou = fou_from_sock(sk); struct gro_remcsum grc; u8 proto; skb_gro_remcsum_init(&grc); off = skb_gro_offset(skb); len = off + sizeof(*guehdr); guehdr = skb_gro_header(skb, len, off); if (unlikely(!guehdr)) goto out; switch (guehdr->version) { case 0: break; case 1: switch (((struct iphdr *)guehdr)->version) { case 4: proto = IPPROTO_IPIP; break; case 6: proto = IPPROTO_IPV6; break; default: goto out; } goto next_proto; default: goto out; } optlen = guehdr->hlen << 2; len += optlen; if (!skb_gro_may_pull(skb, len)) { guehdr = skb_gro_header_slow(skb, len, off); if (unlikely(!guehdr)) goto out; } if (unlikely(guehdr->control) || guehdr->version != 0 || validate_gue_flags(guehdr, optlen)) goto out; hdrlen = sizeof(*guehdr) + optlen; /* Adjust NAPI_GRO_CB(skb)->csum to account for guehdr, * this is needed if there is a remote checkcsum offload. */ skb_gro_postpull_rcsum(skb, guehdr, hdrlen); data = &guehdr[1]; if (guehdr->flags & GUE_FLAG_PRIV) { __be32 flags = *(__be32 *)(data + doffset); doffset += GUE_LEN_PRIV; if (flags & GUE_PFLAG_REMCSUM) { guehdr = gue_gro_remcsum(skb, off, guehdr, data + doffset, hdrlen, &grc, !!(fou->flags & FOU_F_REMCSUM_NOPARTIAL)); if (!guehdr) goto out; data = &guehdr[1]; doffset += GUE_PLEN_REMCSUM; } } skb_gro_pull(skb, hdrlen); list_for_each_entry(p, head, list) { const struct guehdr *guehdr2; if (!NAPI_GRO_CB(p)->same_flow) continue; guehdr2 = (struct guehdr *)(p->data + off); /* Compare base GUE header to be equal (covers * hlen, version, proto_ctype, and flags. */ if (guehdr->word != guehdr2->word) { NAPI_GRO_CB(p)->same_flow = 0; continue; } /* Compare optional fields are the same. */ if (guehdr->hlen && memcmp(&guehdr[1], &guehdr2[1], guehdr->hlen << 2)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } proto = guehdr->proto_ctype; next_proto: /* We can clear the encap_mark for GUE as we are essentially doing * one of two possible things. We are either adding an L4 tunnel * header to the outer L3 tunnel header, or we are simply * treating the GRE tunnel header as though it is a UDP protocol * specific header such as VXLAN or GENEVE. */ NAPI_GRO_CB(skb)->encap_mark = 0; /* Flag this frame as already having an outer encap header */ NAPI_GRO_CB(skb)->is_fou = 1; offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads; ops = rcu_dereference(offloads[proto]); if (!ops || !ops->callbacks.gro_receive) goto out; pp = call_gro_receive(ops->callbacks.gro_receive, head, skb); flush = 0; out: skb_gro_flush_final_remcsum(skb, pp, flush, &grc); return pp; } static int gue_gro_complete(struct sock *sk, struct sk_buff *skb, int nhoff) { struct guehdr *guehdr = (struct guehdr *)(skb->data + nhoff); const struct net_offload __rcu **offloads; const struct net_offload *ops; unsigned int guehlen = 0; u8 proto; int err = -ENOENT; switch (guehdr->version) { case 0: proto = guehdr->proto_ctype; guehlen = sizeof(*guehdr) + (guehdr->hlen << 2); break; case 1: switch (((struct iphdr *)guehdr)->version) { case 4: proto = IPPROTO_IPIP; break; case 6: proto = IPPROTO_IPV6; break; default: return err; } break; default: return err; } offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads; ops = rcu_dereference(offloads[proto]); if (WARN_ON(!ops || !ops->callbacks.gro_complete)) goto out; err = ops->callbacks.gro_complete(skb, nhoff + guehlen); skb_set_inner_mac_header(skb, nhoff + guehlen); out: return err; } static bool fou_cfg_cmp(struct fou *fou, struct fou_cfg *cfg) { struct sock *sk = fou->sock->sk; struct udp_port_cfg *udp_cfg = &cfg->udp_config; if (fou->family != udp_cfg->family || fou->port != udp_cfg->local_udp_port || sk->sk_dport != udp_cfg->peer_udp_port || sk->sk_bound_dev_if != udp_cfg->bind_ifindex) return false; if (fou->family == AF_INET) { if (sk->sk_rcv_saddr != udp_cfg->local_ip.s_addr || sk->sk_daddr != udp_cfg->peer_ip.s_addr) return false; else return true; #if IS_ENABLED(CONFIG_IPV6) } else { if (ipv6_addr_cmp(&sk->sk_v6_rcv_saddr, &udp_cfg->local_ip6) || ipv6_addr_cmp(&sk->sk_v6_daddr, &udp_cfg->peer_ip6)) return false; else return true; #endif } return false; } static int fou_add_to_port_list(struct net *net, struct fou *fou, struct fou_cfg *cfg) { struct fou_net *fn = net_generic(net, fou_net_id); struct fou *fout; mutex_lock(&fn->fou_lock); list_for_each_entry(fout, &fn->fou_list, list) { if (fou_cfg_cmp(fout, cfg)) { mutex_unlock(&fn->fou_lock); return -EALREADY; } } list_add(&fou->list, &fn->fou_list); mutex_unlock(&fn->fou_lock); return 0; } static void fou_release(struct fou *fou) { struct socket *sock = fou->sock; list_del(&fou->list); udp_tunnel_sock_release(sock); kfree_rcu(fou, rcu); } static int fou_create(struct net *net, struct fou_cfg *cfg, struct socket **sockp) { struct socket *sock = NULL; struct fou *fou = NULL; struct sock *sk; struct udp_tunnel_sock_cfg tunnel_cfg; int err; /* Open UDP socket */ err = udp_sock_create(net, &cfg->udp_config, &sock); if (err < 0) goto error; /* Allocate FOU port structure */ fou = kzalloc(sizeof(*fou), GFP_KERNEL); if (!fou) { err = -ENOMEM; goto error; } sk = sock->sk; fou->port = cfg->udp_config.local_udp_port; fou->family = cfg->udp_config.family; fou->flags = cfg->flags; fou->type = cfg->type; fou->sock = sock; memset(&tunnel_cfg, 0, sizeof(tunnel_cfg)); tunnel_cfg.encap_type = 1; tunnel_cfg.sk_user_data = fou; tunnel_cfg.encap_destroy = NULL; /* Initial for fou type */ switch (cfg->type) { case FOU_ENCAP_DIRECT: tunnel_cfg.encap_rcv = fou_udp_recv; tunnel_cfg.gro_receive = fou_gro_receive; tunnel_cfg.gro_complete = fou_gro_complete; fou->protocol = cfg->protocol; break; case FOU_ENCAP_GUE: tunnel_cfg.encap_rcv = gue_udp_recv; tunnel_cfg.gro_receive = gue_gro_receive; tunnel_cfg.gro_complete = gue_gro_complete; break; default: err = -EINVAL; goto error; } setup_udp_tunnel_sock(net, sock, &tunnel_cfg); sk->sk_allocation = GFP_ATOMIC; err = fou_add_to_port_list(net, fou, cfg); if (err) goto error; if (sockp) *sockp = sock; return 0; error: kfree(fou); if (sock) udp_tunnel_sock_release(sock); return err; } static int fou_destroy(struct net *net, struct fou_cfg *cfg) { struct fou_net *fn = net_generic(net, fou_net_id); int err = -EINVAL; struct fou *fou; mutex_lock(&fn->fou_lock); list_for_each_entry(fou, &fn->fou_list, list) { if (fou_cfg_cmp(fou, cfg)) { fou_release(fou); err = 0; break; } } mutex_unlock(&fn->fou_lock); return err; } static struct genl_family fou_nl_family; static int parse_nl_config(struct genl_info *info, struct fou_cfg *cfg) { bool has_local = false, has_peer = false; struct nlattr *attr; int ifindex; __be16 port; memset(cfg, 0, sizeof(*cfg)); cfg->udp_config.family = AF_INET; if (info->attrs[FOU_ATTR_AF]) { u8 family = nla_get_u8(info->attrs[FOU_ATTR_AF]); switch (family) { case AF_INET: break; case AF_INET6: cfg->udp_config.ipv6_v6only = 1; break; default: return -EAFNOSUPPORT; } cfg->udp_config.family = family; } if (info->attrs[FOU_ATTR_PORT]) { port = nla_get_be16(info->attrs[FOU_ATTR_PORT]); cfg->udp_config.local_udp_port = port; } if (info->attrs[FOU_ATTR_IPPROTO]) cfg->protocol = nla_get_u8(info->attrs[FOU_ATTR_IPPROTO]); if (info->attrs[FOU_ATTR_TYPE]) cfg->type = nla_get_u8(info->attrs[FOU_ATTR_TYPE]); if (info->attrs[FOU_ATTR_REMCSUM_NOPARTIAL]) cfg->flags |= FOU_F_REMCSUM_NOPARTIAL; if (cfg->udp_config.family == AF_INET) { if (info->attrs[FOU_ATTR_LOCAL_V4]) { attr = info->attrs[FOU_ATTR_LOCAL_V4]; cfg->udp_config.local_ip.s_addr = nla_get_in_addr(attr); has_local = true; } if (info->attrs[FOU_ATTR_PEER_V4]) { attr = info->attrs[FOU_ATTR_PEER_V4]; cfg->udp_config.peer_ip.s_addr = nla_get_in_addr(attr); has_peer = true; } #if IS_ENABLED(CONFIG_IPV6) } else { if (info->attrs[FOU_ATTR_LOCAL_V6]) { attr = info->attrs[FOU_ATTR_LOCAL_V6]; cfg->udp_config.local_ip6 = nla_get_in6_addr(attr); has_local = true; } if (info->attrs[FOU_ATTR_PEER_V6]) { attr = info->attrs[FOU_ATTR_PEER_V6]; cfg->udp_config.peer_ip6 = nla_get_in6_addr(attr); has_peer = true; } #endif } if (has_peer) { if (info->attrs[FOU_ATTR_PEER_PORT]) { port = nla_get_be16(info->attrs[FOU_ATTR_PEER_PORT]); cfg->udp_config.peer_udp_port = port; } else { return -EINVAL; } } if (info->attrs[FOU_ATTR_IFINDEX]) { if (!has_local) return -EINVAL; ifindex = nla_get_s32(info->attrs[FOU_ATTR_IFINDEX]); cfg->udp_config.bind_ifindex = ifindex; } return 0; } int fou_nl_add_doit(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct fou_cfg cfg; int err; err = parse_nl_config(info, &cfg); if (err) return err; return fou_create(net, &cfg, NULL); } int fou_nl_del_doit(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct fou_cfg cfg; int err; err = parse_nl_config(info, &cfg); if (err) return err; return fou_destroy(net, &cfg); } static int fou_fill_info(struct fou *fou, struct sk_buff *msg) { struct sock *sk = fou->sock->sk; if (nla_put_u8(msg, FOU_ATTR_AF, fou->sock->sk->sk_family) || nla_put_be16(msg, FOU_ATTR_PORT, fou->port) || nla_put_be16(msg, FOU_ATTR_PEER_PORT, sk->sk_dport) || nla_put_u8(msg, FOU_ATTR_IPPROTO, fou->protocol) || nla_put_u8(msg, FOU_ATTR_TYPE, fou->type) || nla_put_s32(msg, FOU_ATTR_IFINDEX, sk->sk_bound_dev_if)) return -1; if (fou->flags & FOU_F_REMCSUM_NOPARTIAL) if (nla_put_flag(msg, FOU_ATTR_REMCSUM_NOPARTIAL)) return -1; if (fou->sock->sk->sk_family == AF_INET) { if (nla_put_in_addr(msg, FOU_ATTR_LOCAL_V4, sk->sk_rcv_saddr)) return -1; if (nla_put_in_addr(msg, FOU_ATTR_PEER_V4, sk->sk_daddr)) return -1; #if IS_ENABLED(CONFIG_IPV6) } else { if (nla_put_in6_addr(msg, FOU_ATTR_LOCAL_V6, &sk->sk_v6_rcv_saddr)) return -1; if (nla_put_in6_addr(msg, FOU_ATTR_PEER_V6, &sk->sk_v6_daddr)) return -1; #endif } return 0; } static int fou_dump_info(struct fou *fou, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { void *hdr; hdr = genlmsg_put(skb, portid, seq, &fou_nl_family, flags, cmd); if (!hdr) return -ENOMEM; if (fou_fill_info(fou, skb) < 0) goto nla_put_failure; genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } int fou_nl_get_doit(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct fou_net *fn = net_generic(net, fou_net_id); struct sk_buff *msg; struct fou_cfg cfg; struct fou *fout; __be16 port; u8 family; int ret; ret = parse_nl_config(info, &cfg); if (ret) return ret; port = cfg.udp_config.local_udp_port; if (port == 0) return -EINVAL; family = cfg.udp_config.family; if (family != AF_INET && family != AF_INET6) return -EINVAL; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = -ESRCH; mutex_lock(&fn->fou_lock); list_for_each_entry(fout, &fn->fou_list, list) { if (fou_cfg_cmp(fout, &cfg)) { ret = fou_dump_info(fout, info->snd_portid, info->snd_seq, 0, msg, info->genlhdr->cmd); break; } } mutex_unlock(&fn->fou_lock); if (ret < 0) goto out_free; return genlmsg_reply(msg, info); out_free: nlmsg_free(msg); return ret; } int fou_nl_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct fou_net *fn = net_generic(net, fou_net_id); struct fou *fout; int idx = 0, ret; mutex_lock(&fn->fou_lock); list_for_each_entry(fout, &fn->fou_list, list) { if (idx++ < cb->args[0]) continue; ret = fou_dump_info(fout, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, FOU_CMD_GET); if (ret) break; } mutex_unlock(&fn->fou_lock); cb->args[0] = idx; return skb->len; } static struct genl_family fou_nl_family __ro_after_init = { .hdrsize = 0, .name = FOU_GENL_NAME, .version = FOU_GENL_VERSION, .maxattr = FOU_ATTR_MAX, .policy = fou_nl_policy, .netnsok = true, .module = THIS_MODULE, .small_ops = fou_nl_ops, .n_small_ops = ARRAY_SIZE(fou_nl_ops), .resv_start_op = FOU_CMD_GET + 1, }; size_t fou_encap_hlen(struct ip_tunnel_encap *e) { return sizeof(struct udphdr); } EXPORT_SYMBOL(fou_encap_hlen); size_t gue_encap_hlen(struct ip_tunnel_encap *e) { size_t len; bool need_priv = false; len = sizeof(struct udphdr) + sizeof(struct guehdr); if (e->flags & TUNNEL_ENCAP_FLAG_REMCSUM) { len += GUE_PLEN_REMCSUM; need_priv = true; } len += need_priv ? GUE_LEN_PRIV : 0; return len; } EXPORT_SYMBOL(gue_encap_hlen); int __fou_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, u8 *protocol, __be16 *sport, int type) { int err; err = iptunnel_handle_offloads(skb, type); if (err) return err; *sport = e->sport ? : udp_flow_src_port(dev_net(skb->dev), skb, 0, 0, false); return 0; } EXPORT_SYMBOL(__fou_build_header); int __gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, u8 *protocol, __be16 *sport, int type) { struct guehdr *guehdr; size_t hdrlen, optlen = 0; void *data; bool need_priv = false; int err; if ((e->flags & TUNNEL_ENCAP_FLAG_REMCSUM) && skb->ip_summed == CHECKSUM_PARTIAL) { optlen += GUE_PLEN_REMCSUM; type |= SKB_GSO_TUNNEL_REMCSUM; need_priv = true; } optlen += need_priv ? GUE_LEN_PRIV : 0; err = iptunnel_handle_offloads(skb, type); if (err) return err; /* Get source port (based on flow hash) before skb_push */ *sport = e->sport ? : udp_flow_src_port(dev_net(skb->dev), skb, 0, 0, false); hdrlen = sizeof(struct guehdr) + optlen; skb_push(skb, hdrlen); guehdr = (struct guehdr *)skb->data; guehdr->control = 0; guehdr->version = 0; guehdr->hlen = optlen >> 2; guehdr->flags = 0; guehdr->proto_ctype = *protocol; data = &guehdr[1]; if (need_priv) { __be32 *flags = data; guehdr->flags |= GUE_FLAG_PRIV; *flags = 0; data += GUE_LEN_PRIV; if (type & SKB_GSO_TUNNEL_REMCSUM) { u16 csum_start = skb_checksum_start_offset(skb); __be16 *pd = data; if (csum_start < hdrlen) return -EINVAL; csum_start -= hdrlen; pd[0] = htons(csum_start); pd[1] = htons(csum_start + skb->csum_offset); if (!skb_is_gso(skb)) { skb->ip_summed = CHECKSUM_NONE; skb->encapsulation = 0; } *flags |= GUE_PFLAG_REMCSUM; data += GUE_PLEN_REMCSUM; } } return 0; } EXPORT_SYMBOL(__gue_build_header); #ifdef CONFIG_NET_FOU_IP_TUNNELS static void fou_build_udp(struct sk_buff *skb, struct ip_tunnel_encap *e, struct flowi4 *fl4, u8 *protocol, __be16 sport) { struct udphdr *uh; skb_push(skb, sizeof(struct udphdr)); skb_reset_transport_header(skb); uh = udp_hdr(skb); uh->dest = e->dport; uh->source = sport; uh->len = htons(skb->len); udp_set_csum(!(e->flags & TUNNEL_ENCAP_FLAG_CSUM), skb, fl4->saddr, fl4->daddr, skb->len); *protocol = IPPROTO_UDP; } static int fou_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, u8 *protocol, struct flowi4 *fl4) { int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; __be16 sport; int err; err = __fou_build_header(skb, e, protocol, &sport, type); if (err) return err; fou_build_udp(skb, e, fl4, protocol, sport); return 0; } static int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, u8 *protocol, struct flowi4 *fl4) { int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; __be16 sport; int err; err = __gue_build_header(skb, e, protocol, &sport, type); if (err) return err; fou_build_udp(skb, e, fl4, protocol, sport); return 0; } static int gue_err_proto_handler(int proto, struct sk_buff *skb, u32 info) { const struct net_protocol *ipprot = rcu_dereference(inet_protos[proto]); if (ipprot && ipprot->err_handler) { if (!ipprot->err_handler(skb, info)) return 0; } return -ENOENT; } static int gue_err(struct sk_buff *skb, u32 info) { int transport_offset = skb_transport_offset(skb); struct guehdr *guehdr; size_t len, optlen; int ret; len = sizeof(struct udphdr) + sizeof(struct guehdr); if (!pskb_may_pull(skb, transport_offset + len)) return -EINVAL; guehdr = (struct guehdr *)&udp_hdr(skb)[1]; switch (guehdr->version) { case 0: /* Full GUE header present */ break; case 1: { /* Direct encapsulation of IPv4 or IPv6 */ skb_set_transport_header(skb, -(int)sizeof(struct icmphdr)); switch (((struct iphdr *)guehdr)->version) { case 4: ret = gue_err_proto_handler(IPPROTO_IPIP, skb, info); goto out; #if IS_ENABLED(CONFIG_IPV6) case 6: ret = gue_err_proto_handler(IPPROTO_IPV6, skb, info); goto out; #endif default: ret = -EOPNOTSUPP; goto out; } } default: /* Undefined version */ return -EOPNOTSUPP; } if (guehdr->control) return -ENOENT; optlen = guehdr->hlen << 2; if (!pskb_may_pull(skb, transport_offset + len + optlen)) return -EINVAL; guehdr = (struct guehdr *)&udp_hdr(skb)[1]; if (validate_gue_flags(guehdr, optlen)) return -EINVAL; /* Handling exceptions for direct UDP encapsulation in GUE would lead to * recursion. Besides, this kind of encapsulation can't even be * configured currently. Discard this. */ if (guehdr->proto_ctype == IPPROTO_UDP || guehdr->proto_ctype == IPPROTO_UDPLITE) return -EOPNOTSUPP; skb_set_transport_header(skb, -(int)sizeof(struct icmphdr)); ret = gue_err_proto_handler(guehdr->proto_ctype, skb, info); out: skb_set_transport_header(skb, transport_offset); return ret; } static const struct ip_tunnel_encap_ops fou_iptun_ops = { .encap_hlen = fou_encap_hlen, .build_header = fou_build_header, .err_handler = gue_err, }; static const struct ip_tunnel_encap_ops gue_iptun_ops = { .encap_hlen = gue_encap_hlen, .build_header = gue_build_header, .err_handler = gue_err, }; static int ip_tunnel_encap_add_fou_ops(void) { int ret; ret = ip_tunnel_encap_add_ops(&fou_iptun_ops, TUNNEL_ENCAP_FOU); if (ret < 0) { pr_err("can't add fou ops\n"); return ret; } ret = ip_tunnel_encap_add_ops(&gue_iptun_ops, TUNNEL_ENCAP_GUE); if (ret < 0) { pr_err("can't add gue ops\n"); ip_tunnel_encap_del_ops(&fou_iptun_ops, TUNNEL_ENCAP_FOU); return ret; } return 0; } static void ip_tunnel_encap_del_fou_ops(void) { ip_tunnel_encap_del_ops(&fou_iptun_ops, TUNNEL_ENCAP_FOU); ip_tunnel_encap_del_ops(&gue_iptun_ops, TUNNEL_ENCAP_GUE); } #else static int ip_tunnel_encap_add_fou_ops(void) { return 0; } static void ip_tunnel_encap_del_fou_ops(void) { } #endif static __net_init int fou_init_net(struct net *net) { struct fou_net *fn = net_generic(net, fou_net_id); INIT_LIST_HEAD(&fn->fou_list); mutex_init(&fn->fou_lock); return 0; } static __net_exit void fou_exit_net(struct net *net) { struct fou_net *fn = net_generic(net, fou_net_id); struct fou *fou, *next; /* Close all the FOU sockets */ mutex_lock(&fn->fou_lock); list_for_each_entry_safe(fou, next, &fn->fou_list, list) fou_release(fou); mutex_unlock(&fn->fou_lock); } static struct pernet_operations fou_net_ops = { .init = fou_init_net, .exit = fou_exit_net, .id = &fou_net_id, .size = sizeof(struct fou_net), }; static int __init fou_init(void) { int ret; ret = register_pernet_device(&fou_net_ops); if (ret) goto exit; ret = genl_register_family(&fou_nl_family); if (ret < 0) goto unregister; ret = register_fou_bpf(); if (ret < 0) goto kfunc_failed; ret = ip_tunnel_encap_add_fou_ops(); if (ret == 0) return 0; kfunc_failed: genl_unregister_family(&fou_nl_family); unregister: unregister_pernet_device(&fou_net_ops); exit: return ret; } static void __exit fou_fini(void) { ip_tunnel_encap_del_fou_ops(); genl_unregister_family(&fou_nl_family); unregister_pernet_device(&fou_net_ops); } module_init(fou_init); module_exit(fou_fini); MODULE_AUTHOR("Tom Herbert <therbert@google.com>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Foo over UDP"); |
19 19 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | /* * llc_s_ac.c - actions performed during sap state transition. * * Description : * Functions in this module are implementation of sap component actions. * Details of actions can be found in IEEE-802.2 standard document. * All functions have one sap and one event as input argument. All of * them return 0 On success and 1 otherwise. * * Copyright (c) 1997 by Procom Technology, Inc. * 2001-2003 by Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * This program can be redistributed or modified under the terms of the * GNU General Public License as published by the Free Software Foundation. * This program is distributed without any warranty or implied warranty * of merchantability or fitness for a particular purpose. * * See the GNU General Public License for more details. */ #include <linux/netdevice.h> #include <net/llc.h> #include <net/llc_pdu.h> #include <net/llc_s_ac.h> #include <net/llc_s_ev.h> #include <net/llc_sap.h> /** * llc_sap_action_unitdata_ind - forward UI PDU to network layer * @sap: SAP * @skb: the event to forward * * Received a UI PDU from MAC layer; forward to network layer as a * UNITDATA INDICATION; verify our event is the kind we expect */ int llc_sap_action_unitdata_ind(struct llc_sap *sap, struct sk_buff *skb) { llc_sap_rtn_pdu(sap, skb); return 0; } /** * llc_sap_action_send_ui - sends UI PDU resp to UNITDATA REQ to MAC layer * @sap: SAP * @skb: the event to send * * Sends a UI PDU to the MAC layer in response to a UNITDATA REQUEST * primitive from the network layer. Verifies event is a primitive type of * event. Verify the primitive is a UNITDATA REQUEST. */ int llc_sap_action_send_ui(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); int rc; llc_pdu_header_init(skb, LLC_PDU_TYPE_U, ev->saddr.lsap, ev->daddr.lsap, LLC_PDU_CMD); llc_pdu_init_as_ui_cmd(skb); rc = llc_mac_hdr_init(skb, ev->saddr.mac, ev->daddr.mac); if (likely(!rc)) { skb_get(skb); rc = dev_queue_xmit(skb); } return rc; } /** * llc_sap_action_send_xid_c - send XID PDU as response to XID REQ * @sap: SAP * @skb: the event to send * * Send a XID command PDU to MAC layer in response to a XID REQUEST * primitive from the network layer. Verify event is a primitive type * event. Verify the primitive is a XID REQUEST. */ int llc_sap_action_send_xid_c(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); int rc; llc_pdu_header_init(skb, LLC_PDU_TYPE_U_XID, ev->saddr.lsap, ev->daddr.lsap, LLC_PDU_CMD); llc_pdu_init_as_xid_cmd(skb, LLC_XID_NULL_CLASS_2, 0); rc = llc_mac_hdr_init(skb, ev->saddr.mac, ev->daddr.mac); if (likely(!rc)) { skb_get(skb); rc = dev_queue_xmit(skb); } return rc; } /** * llc_sap_action_send_xid_r - send XID PDU resp to MAC for received XID * @sap: SAP * @skb: the event to send * * Send XID response PDU to MAC in response to an earlier received XID * command PDU. Verify event is a PDU type event */ int llc_sap_action_send_xid_r(struct llc_sap *sap, struct sk_buff *skb) { u8 mac_da[ETH_ALEN], mac_sa[ETH_ALEN], dsap; int rc = 1; struct sk_buff *nskb; llc_pdu_decode_sa(skb, mac_da); llc_pdu_decode_da(skb, mac_sa); llc_pdu_decode_ssap(skb, &dsap); nskb = llc_alloc_frame(NULL, skb->dev, LLC_PDU_TYPE_U, sizeof(struct llc_xid_info)); if (!nskb) goto out; llc_pdu_header_init(nskb, LLC_PDU_TYPE_U, sap->laddr.lsap, dsap, LLC_PDU_RSP); llc_pdu_init_as_xid_rsp(nskb, LLC_XID_NULL_CLASS_2, 0); rc = llc_mac_hdr_init(nskb, mac_sa, mac_da); if (likely(!rc)) rc = dev_queue_xmit(nskb); out: return rc; } /** * llc_sap_action_send_test_c - send TEST PDU to MAC in resp to TEST REQ * @sap: SAP * @skb: the event to send * * Send a TEST command PDU to the MAC layer in response to a TEST REQUEST * primitive from the network layer. Verify event is a primitive type * event; verify the primitive is a TEST REQUEST. */ int llc_sap_action_send_test_c(struct llc_sap *sap, struct sk_buff *skb) { struct llc_sap_state_ev *ev = llc_sap_ev(skb); int rc; llc_pdu_header_init(skb, LLC_PDU_TYPE_U, ev->saddr.lsap, ev->daddr.lsap, LLC_PDU_CMD); llc_pdu_init_as_test_cmd(skb); rc = llc_mac_hdr_init(skb, ev->saddr.mac, ev->daddr.mac); if (likely(!rc)) { skb_get(skb); rc = dev_queue_xmit(skb); } return rc; } int llc_sap_action_send_test_r(struct llc_sap *sap, struct sk_buff *skb) { u8 mac_da[ETH_ALEN], mac_sa[ETH_ALEN], dsap; struct sk_buff *nskb; int rc = 1; u32 data_size; if (skb->mac_len < ETH_HLEN) return 1; llc_pdu_decode_sa(skb, mac_da); llc_pdu_decode_da(skb, mac_sa); llc_pdu_decode_ssap(skb, &dsap); /* The test request command is type U (llc_len = 3) */ data_size = ntohs(eth_hdr(skb)->h_proto) - 3; nskb = llc_alloc_frame(NULL, skb->dev, LLC_PDU_TYPE_U, data_size); if (!nskb) goto out; llc_pdu_header_init(nskb, LLC_PDU_TYPE_U, sap->laddr.lsap, dsap, LLC_PDU_RSP); llc_pdu_init_as_test_rsp(nskb, skb); rc = llc_mac_hdr_init(nskb, mac_sa, mac_da); if (likely(!rc)) rc = dev_queue_xmit(nskb); out: return rc; } /** * llc_sap_action_report_status - report data link status to layer mgmt * @sap: SAP * @skb: the event to send * * Report data link status to layer management. Verify our event is the * kind we expect. */ int llc_sap_action_report_status(struct llc_sap *sap, struct sk_buff *skb) { return 0; } /** * llc_sap_action_xid_ind - send XID PDU resp to net layer via XID IND * @sap: SAP * @skb: the event to send * * Send a XID response PDU to the network layer via a XID INDICATION * primitive. */ int llc_sap_action_xid_ind(struct llc_sap *sap, struct sk_buff *skb) { llc_sap_rtn_pdu(sap, skb); return 0; } /** * llc_sap_action_test_ind - send TEST PDU to net layer via TEST IND * @sap: SAP * @skb: the event to send * * Send a TEST response PDU to the network layer via a TEST INDICATION * primitive. Verify our event is a PDU type event. */ int llc_sap_action_test_ind(struct llc_sap *sap, struct sk_buff *skb) { llc_sap_rtn_pdu(sap, skb); return 0; } |
22 15 15 2 2 8 2 72 72 7 7 79 7 2 2 3 3 2 4 4 74 72 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2017-2018 Mellanox Technologies. All rights reserved. */ #include <rdma/rdma_cm.h> #include <rdma/ib_verbs.h> #include <rdma/restrack.h> #include <rdma/rdma_counter.h> #include <linux/mutex.h> #include <linux/sched/task.h> #include <linux/pid_namespace.h> #include "cma_priv.h" #include "restrack.h" /** * rdma_restrack_init() - initialize and allocate resource tracking * @dev: IB device * * Return: 0 on success */ int rdma_restrack_init(struct ib_device *dev) { struct rdma_restrack_root *rt; int i; dev->res = kcalloc(RDMA_RESTRACK_MAX, sizeof(*rt), GFP_KERNEL); if (!dev->res) return -ENOMEM; rt = dev->res; for (i = 0; i < RDMA_RESTRACK_MAX; i++) xa_init_flags(&rt[i].xa, XA_FLAGS_ALLOC); return 0; } /** * rdma_restrack_clean() - clean resource tracking * @dev: IB device */ void rdma_restrack_clean(struct ib_device *dev) { struct rdma_restrack_root *rt = dev->res; int i; for (i = 0 ; i < RDMA_RESTRACK_MAX; i++) { struct xarray *xa = &dev->res[i].xa; WARN_ON(!xa_empty(xa)); xa_destroy(xa); } kfree(rt); } /** * rdma_restrack_count() - the current usage of specific object * @dev: IB device * @type: actual type of object to operate * @show_details: count driver specific objects */ int rdma_restrack_count(struct ib_device *dev, enum rdma_restrack_type type, bool show_details) { struct rdma_restrack_root *rt = &dev->res[type]; struct rdma_restrack_entry *e; XA_STATE(xas, &rt->xa, 0); u32 cnt = 0; xa_lock(&rt->xa); xas_for_each(&xas, e, U32_MAX) { if (xa_get_mark(&rt->xa, e->id, RESTRACK_DD) && !show_details) continue; cnt++; } xa_unlock(&rt->xa); return cnt; } EXPORT_SYMBOL(rdma_restrack_count); static struct ib_device *res_to_dev(struct rdma_restrack_entry *res) { switch (res->type) { case RDMA_RESTRACK_PD: return container_of(res, struct ib_pd, res)->device; case RDMA_RESTRACK_CQ: return container_of(res, struct ib_cq, res)->device; case RDMA_RESTRACK_QP: return container_of(res, struct ib_qp, res)->device; case RDMA_RESTRACK_CM_ID: return container_of(res, struct rdma_id_private, res)->id.device; case RDMA_RESTRACK_MR: return container_of(res, struct ib_mr, res)->device; case RDMA_RESTRACK_CTX: return container_of(res, struct ib_ucontext, res)->device; case RDMA_RESTRACK_COUNTER: return container_of(res, struct rdma_counter, res)->device; case RDMA_RESTRACK_SRQ: return container_of(res, struct ib_srq, res)->device; default: WARN_ONCE(true, "Wrong resource tracking type %u\n", res->type); return NULL; } } /** * rdma_restrack_attach_task() - attach the task onto this resource, * valid for user space restrack entries. * @res: resource entry * @task: the task to attach */ static void rdma_restrack_attach_task(struct rdma_restrack_entry *res, struct task_struct *task) { if (WARN_ON_ONCE(!task)) return; if (res->task) put_task_struct(res->task); get_task_struct(task); res->task = task; res->user = true; } /** * rdma_restrack_set_name() - set the task for this resource * @res: resource entry * @caller: kernel name, the current task will be used if the caller is NULL. */ void rdma_restrack_set_name(struct rdma_restrack_entry *res, const char *caller) { if (caller) { res->kern_name = caller; return; } rdma_restrack_attach_task(res, current); } EXPORT_SYMBOL(rdma_restrack_set_name); /** * rdma_restrack_parent_name() - set the restrack name properties based * on parent restrack * @dst: destination resource entry * @parent: parent resource entry */ void rdma_restrack_parent_name(struct rdma_restrack_entry *dst, const struct rdma_restrack_entry *parent) { if (rdma_is_kernel_res(parent)) dst->kern_name = parent->kern_name; else rdma_restrack_attach_task(dst, parent->task); } EXPORT_SYMBOL(rdma_restrack_parent_name); /** * rdma_restrack_new() - Initializes new restrack entry to allow _put() interface * to release memory in fully automatic way. * @res: Entry to initialize * @type: REstrack type */ void rdma_restrack_new(struct rdma_restrack_entry *res, enum rdma_restrack_type type) { kref_init(&res->kref); init_completion(&res->comp); res->type = type; } EXPORT_SYMBOL(rdma_restrack_new); /** * rdma_restrack_add() - add object to the reource tracking database * @res: resource entry */ void rdma_restrack_add(struct rdma_restrack_entry *res) { struct ib_device *dev = res_to_dev(res); struct rdma_restrack_root *rt; int ret = 0; if (!dev) return; if (res->no_track) goto out; rt = &dev->res[res->type]; if (res->type == RDMA_RESTRACK_QP) { /* Special case to ensure that LQPN points to right QP */ struct ib_qp *qp = container_of(res, struct ib_qp, res); WARN_ONCE(qp->qp_num >> 24 || qp->port >> 8, "QP number 0x%0X and port 0x%0X", qp->qp_num, qp->port); res->id = qp->qp_num; if (qp->qp_type == IB_QPT_SMI || qp->qp_type == IB_QPT_GSI) res->id |= qp->port << 24; ret = xa_insert(&rt->xa, res->id, res, GFP_KERNEL); if (ret) res->id = 0; if (qp->qp_type >= IB_QPT_DRIVER) xa_set_mark(&rt->xa, res->id, RESTRACK_DD); } else if (res->type == RDMA_RESTRACK_COUNTER) { /* Special case to ensure that cntn points to right counter */ struct rdma_counter *counter; counter = container_of(res, struct rdma_counter, res); ret = xa_insert(&rt->xa, counter->id, res, GFP_KERNEL); res->id = ret ? 0 : counter->id; } else { ret = xa_alloc_cyclic(&rt->xa, &res->id, res, xa_limit_32b, &rt->next_id, GFP_KERNEL); ret = (ret < 0) ? ret : 0; } out: if (!ret) res->valid = true; } EXPORT_SYMBOL(rdma_restrack_add); int __must_check rdma_restrack_get(struct rdma_restrack_entry *res) { return kref_get_unless_zero(&res->kref); } EXPORT_SYMBOL(rdma_restrack_get); /** * rdma_restrack_get_byid() - translate from ID to restrack object * @dev: IB device * @type: resource track type * @id: ID to take a look * * Return: Pointer to restrack entry or -ENOENT in case of error. */ struct rdma_restrack_entry * rdma_restrack_get_byid(struct ib_device *dev, enum rdma_restrack_type type, u32 id) { struct rdma_restrack_root *rt = &dev->res[type]; struct rdma_restrack_entry *res; xa_lock(&rt->xa); res = xa_load(&rt->xa, id); if (!res || !rdma_restrack_get(res)) res = ERR_PTR(-ENOENT); xa_unlock(&rt->xa); return res; } EXPORT_SYMBOL(rdma_restrack_get_byid); static void restrack_release(struct kref *kref) { struct rdma_restrack_entry *res; res = container_of(kref, struct rdma_restrack_entry, kref); if (res->task) { put_task_struct(res->task); res->task = NULL; } complete(&res->comp); } int rdma_restrack_put(struct rdma_restrack_entry *res) { return kref_put(&res->kref, restrack_release); } EXPORT_SYMBOL(rdma_restrack_put); /** * rdma_restrack_del() - delete object from the reource tracking database * @res: resource entry */ void rdma_restrack_del(struct rdma_restrack_entry *res) { struct rdma_restrack_entry *old; struct rdma_restrack_root *rt; struct ib_device *dev; if (!res->valid) { if (res->task) { put_task_struct(res->task); res->task = NULL; } return; } if (res->no_track) goto out; dev = res_to_dev(res); if (WARN_ON(!dev)) return; rt = &dev->res[res->type]; old = xa_erase(&rt->xa, res->id); WARN_ON(old != res); out: res->valid = false; rdma_restrack_put(res); wait_for_completion(&res->comp); } EXPORT_SYMBOL(rdma_restrack_del); |
1 1 183 174 55 128 121 7 121 7 347 381 353 183 347 353 348 5 353 352 1 1 348 2 9 279 2 353 94 352 1 348 347 348 9 4 126 9 126 6 1 12 2 105 127 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * (C) Copyright IBM Corp. 2003, 2004 * * This file is part of the SCTP kernel implementation * * This file contains the code relating the chunk abstraction. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * Jon Grimm <jgrimm@us.ibm.com> * Sridhar Samudrala <sri@us.ibm.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/kernel.h> #include <linux/net.h> #include <linux/inet.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/sock.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> /* This file is mostly in anticipation of future work, but initially * populate with fragment tracking for an outbound message. */ /* Initialize datamsg from memory. */ static void sctp_datamsg_init(struct sctp_datamsg *msg) { refcount_set(&msg->refcnt, 1); msg->send_failed = 0; msg->send_error = 0; msg->can_delay = 1; msg->abandoned = 0; msg->expires_at = 0; INIT_LIST_HEAD(&msg->chunks); } /* Allocate and initialize datamsg. */ static struct sctp_datamsg *sctp_datamsg_new(gfp_t gfp) { struct sctp_datamsg *msg; msg = kmalloc(sizeof(struct sctp_datamsg), gfp); if (msg) { sctp_datamsg_init(msg); SCTP_DBG_OBJCNT_INC(datamsg); } return msg; } void sctp_datamsg_free(struct sctp_datamsg *msg) { struct sctp_chunk *chunk; /* This doesn't have to be a _safe vairant because * sctp_chunk_free() only drops the refs. */ list_for_each_entry(chunk, &msg->chunks, frag_list) sctp_chunk_free(chunk); sctp_datamsg_put(msg); } /* Final destructruction of datamsg memory. */ static void sctp_datamsg_destroy(struct sctp_datamsg *msg) { struct sctp_association *asoc = NULL; struct list_head *pos, *temp; struct sctp_chunk *chunk; struct sctp_ulpevent *ev; int error, sent; /* Release all references. */ list_for_each_safe(pos, temp, &msg->chunks) { list_del_init(pos); chunk = list_entry(pos, struct sctp_chunk, frag_list); if (!msg->send_failed) { sctp_chunk_put(chunk); continue; } asoc = chunk->asoc; error = msg->send_error ?: asoc->outqueue.error; sent = chunk->has_tsn ? SCTP_DATA_SENT : SCTP_DATA_UNSENT; if (sctp_ulpevent_type_enabled(asoc->subscribe, SCTP_SEND_FAILED)) { ev = sctp_ulpevent_make_send_failed(asoc, chunk, sent, error, GFP_ATOMIC); if (ev) asoc->stream.si->enqueue_event(&asoc->ulpq, ev); } if (sctp_ulpevent_type_enabled(asoc->subscribe, SCTP_SEND_FAILED_EVENT)) { ev = sctp_ulpevent_make_send_failed_event(asoc, chunk, sent, error, GFP_ATOMIC); if (ev) asoc->stream.si->enqueue_event(&asoc->ulpq, ev); } sctp_chunk_put(chunk); } SCTP_DBG_OBJCNT_DEC(datamsg); kfree(msg); } /* Hold a reference. */ static void sctp_datamsg_hold(struct sctp_datamsg *msg) { refcount_inc(&msg->refcnt); } /* Release a reference. */ void sctp_datamsg_put(struct sctp_datamsg *msg) { if (refcount_dec_and_test(&msg->refcnt)) sctp_datamsg_destroy(msg); } /* Assign a chunk to this datamsg. */ static void sctp_datamsg_assign(struct sctp_datamsg *msg, struct sctp_chunk *chunk) { sctp_datamsg_hold(msg); chunk->msg = msg; } /* A data chunk can have a maximum payload of (2^16 - 20). Break * down any such message into smaller chunks. Opportunistically, fragment * the chunks down to the current MTU constraints. We may get refragmented * later if the PMTU changes, but it is _much better_ to fragment immediately * with a reasonable guess than always doing our fragmentation on the * soft-interrupt. */ struct sctp_datamsg *sctp_datamsg_from_user(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, struct iov_iter *from) { size_t len, first_len, max_data, remaining; size_t msg_len = iov_iter_count(from); struct sctp_shared_key *shkey = NULL; struct list_head *pos, *temp; struct sctp_chunk *chunk; struct sctp_datamsg *msg; int err; msg = sctp_datamsg_new(GFP_KERNEL); if (!msg) return ERR_PTR(-ENOMEM); /* Note: Calculate this outside of the loop, so that all fragments * have the same expiration. */ if (asoc->peer.prsctp_capable && sinfo->sinfo_timetolive && (SCTP_PR_TTL_ENABLED(sinfo->sinfo_flags) || !SCTP_PR_POLICY(sinfo->sinfo_flags))) msg->expires_at = jiffies + msecs_to_jiffies(sinfo->sinfo_timetolive); /* This is the biggest possible DATA chunk that can fit into * the packet */ max_data = asoc->frag_point; if (unlikely(!max_data)) { max_data = sctp_min_frag_point(sctp_sk(asoc->base.sk), sctp_datachk_len(&asoc->stream)); pr_warn_ratelimited("%s: asoc:%p frag_point is zero, forcing max_data to default minimum (%zu)", __func__, asoc, max_data); } /* If the peer requested that we authenticate DATA chunks * we need to account for bundling of the AUTH chunks along with * DATA. */ if (sctp_auth_send_cid(SCTP_CID_DATA, asoc)) { struct sctp_hmac *hmac_desc = sctp_auth_asoc_get_hmac(asoc); if (hmac_desc) max_data -= SCTP_PAD4(sizeof(struct sctp_auth_chunk) + hmac_desc->hmac_len); if (sinfo->sinfo_tsn && sinfo->sinfo_ssn != asoc->active_key_id) { shkey = sctp_auth_get_shkey(asoc, sinfo->sinfo_ssn); if (!shkey) { err = -EINVAL; goto errout; } } else { shkey = asoc->shkey; } } /* Set first_len and then account for possible bundles on first frag */ first_len = max_data; /* Check to see if we have a pending SACK and try to let it be bundled * with this message. Do this if we don't have any data queued already. * To check that, look at out_qlen and retransmit list. * NOTE: we will not reduce to account for SACK, if the message would * not have been fragmented. */ if (timer_pending(&asoc->timers[SCTP_EVENT_TIMEOUT_SACK]) && asoc->outqueue.out_qlen == 0 && list_empty(&asoc->outqueue.retransmit) && msg_len > max_data) first_len -= SCTP_PAD4(sizeof(struct sctp_sack_chunk)); /* Encourage Cookie-ECHO bundling. */ if (asoc->state < SCTP_STATE_COOKIE_ECHOED) first_len -= SCTP_ARBITRARY_COOKIE_ECHO_LEN; /* Account for a different sized first fragment */ if (msg_len >= first_len) { msg->can_delay = 0; if (msg_len > first_len) SCTP_INC_STATS(asoc->base.net, SCTP_MIB_FRAGUSRMSGS); } else { /* Which may be the only one... */ first_len = msg_len; } /* Create chunks for all DATA chunks. */ for (remaining = msg_len; remaining; remaining -= len) { u8 frag = SCTP_DATA_MIDDLE_FRAG; if (remaining == msg_len) { /* First frag, which may also be the last */ frag |= SCTP_DATA_FIRST_FRAG; len = first_len; } else { /* Middle frags */ len = max_data; } if (len >= remaining) { /* Last frag, which may also be the first */ len = remaining; frag |= SCTP_DATA_LAST_FRAG; /* The application requests to set the I-bit of the * last DATA chunk of a user message when providing * the user message to the SCTP implementation. */ if ((sinfo->sinfo_flags & SCTP_EOF) || (sinfo->sinfo_flags & SCTP_SACK_IMMEDIATELY)) frag |= SCTP_DATA_SACK_IMM; } chunk = asoc->stream.si->make_datafrag(asoc, sinfo, len, frag, GFP_KERNEL); if (!chunk) { err = -ENOMEM; goto errout; } err = sctp_user_addto_chunk(chunk, len, from); if (err < 0) goto errout_chunk_free; chunk->shkey = shkey; /* Put the chunk->skb back into the form expected by send. */ __skb_pull(chunk->skb, (__u8 *)chunk->chunk_hdr - chunk->skb->data); sctp_datamsg_assign(msg, chunk); list_add_tail(&chunk->frag_list, &msg->chunks); } return msg; errout_chunk_free: sctp_chunk_free(chunk); errout: list_for_each_safe(pos, temp, &msg->chunks) { list_del_init(pos); chunk = list_entry(pos, struct sctp_chunk, frag_list); sctp_chunk_free(chunk); } sctp_datamsg_put(msg); return ERR_PTR(err); } /* Check whether this message has expired. */ int sctp_chunk_abandoned(struct sctp_chunk *chunk) { if (!chunk->asoc->peer.prsctp_capable) return 0; if (chunk->msg->abandoned) return 1; if (!chunk->has_tsn && !(chunk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG)) return 0; if (SCTP_PR_TTL_ENABLED(chunk->sinfo.sinfo_flags) && time_after(jiffies, chunk->msg->expires_at)) { struct sctp_stream_out *streamout = SCTP_SO(&chunk->asoc->stream, chunk->sinfo.sinfo_stream); if (chunk->sent_count) { chunk->asoc->abandoned_sent[SCTP_PR_INDEX(TTL)]++; streamout->ext->abandoned_sent[SCTP_PR_INDEX(TTL)]++; } else { chunk->asoc->abandoned_unsent[SCTP_PR_INDEX(TTL)]++; streamout->ext->abandoned_unsent[SCTP_PR_INDEX(TTL)]++; } chunk->msg->abandoned = 1; return 1; } else if (SCTP_PR_RTX_ENABLED(chunk->sinfo.sinfo_flags) && chunk->sent_count > chunk->sinfo.sinfo_timetolive) { struct sctp_stream_out *streamout = SCTP_SO(&chunk->asoc->stream, chunk->sinfo.sinfo_stream); chunk->asoc->abandoned_sent[SCTP_PR_INDEX(RTX)]++; streamout->ext->abandoned_sent[SCTP_PR_INDEX(RTX)]++; chunk->msg->abandoned = 1; return 1; } else if (!SCTP_PR_POLICY(chunk->sinfo.sinfo_flags) && chunk->msg->expires_at && time_after(jiffies, chunk->msg->expires_at)) { chunk->msg->abandoned = 1; return 1; } /* PRIO policy is processed by sendmsg, not here */ return 0; } /* This chunk (and consequently entire message) has failed in its sending. */ void sctp_chunk_fail(struct sctp_chunk *chunk, int error) { chunk->msg->send_failed = 1; chunk->msg->send_error = error; } |
1338 1338 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PAGE_H #define _ASM_X86_PAGE_H #include <linux/types.h> #ifdef __KERNEL__ #include <asm/page_types.h> #ifdef CONFIG_X86_64 #include <asm/page_64.h> #else #include <asm/page_32.h> #endif /* CONFIG_X86_64 */ #ifndef __ASSEMBLY__ struct page; #include <linux/range.h> extern struct range pfn_mapped[]; extern int nr_pfn_mapped; static inline void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); } static inline void copy_user_page(void *to, void *from, unsigned long vaddr, struct page *topage) { copy_page(to, from); } #define vma_alloc_zeroed_movable_folio(vma, vaddr) \ vma_alloc_folio(GFP_HIGHUSER_MOVABLE | __GFP_ZERO, 0, vma, vaddr, false) #ifndef __pa #define __pa(x) __phys_addr((unsigned long)(x)) #endif #define __pa_nodebug(x) __phys_addr_nodebug((unsigned long)(x)) /* __pa_symbol should be used for C visible symbols. This seems to be the official gcc blessed way to do such arithmetic. */ /* * We need __phys_reloc_hide() here because gcc may assume that there is no * overflow during __pa() calculation and can optimize it unexpectedly. * Newer versions of gcc provide -fno-strict-overflow switch to handle this * case properly. Once all supported versions of gcc understand it, we can * remove this Voodoo magic stuff. (i.e. once gcc3.x is deprecated) */ #define __pa_symbol(x) \ __phys_addr_symbol(__phys_reloc_hide((unsigned long)(x))) #ifndef __va #define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET)) #endif #define __boot_va(x) __va(x) #define __boot_pa(x) __pa(x) /* * virt_to_page(kaddr) returns a valid pointer if and only if * virt_addr_valid(kaddr) returns true. */ #define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT) extern bool __virt_addr_valid(unsigned long kaddr); #define virt_addr_valid(kaddr) __virt_addr_valid((unsigned long) (kaddr)) static __always_inline void *pfn_to_kaddr(unsigned long pfn) { return __va(pfn << PAGE_SHIFT); } static __always_inline u64 __canonical_address(u64 vaddr, u8 vaddr_bits) { return ((s64)vaddr << (64 - vaddr_bits)) >> (64 - vaddr_bits); } static __always_inline u64 __is_canonical_address(u64 vaddr, u8 vaddr_bits) { return __canonical_address(vaddr, vaddr_bits) == vaddr; } #endif /* __ASSEMBLY__ */ #include <asm-generic/memory_model.h> #include <asm-generic/getorder.h> #define HAVE_ARCH_HUGETLB_UNMAPPED_AREA #endif /* __KERNEL__ */ #endif /* _ASM_X86_PAGE_H */ |
2 2 2 2 2 2 1 1 1 3 3 2 1 3 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 6 2 6 53 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2011 Instituto Nokia de Tecnologia * * Authors: * Lauro Ramos Venancio <lauro.venancio@openbossa.org> * Aloisio Almeida Jr <aloisio.almeida@openbossa.org> */ #define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__ #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/rfkill.h> #include <linux/nfc.h> #include <net/genetlink.h> #include "nfc.h" #define VERSION "0.1" #define NFC_CHECK_PRES_FREQ_MS 2000 int nfc_devlist_generation; DEFINE_MUTEX(nfc_devlist_mutex); /* NFC device ID bitmap */ static DEFINE_IDA(nfc_index_ida); int nfc_fw_download(struct nfc_dev *dev, const char *firmware_name) { int rc = 0; pr_debug("%s do firmware %s\n", dev_name(&dev->dev), firmware_name); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (dev->dev_up) { rc = -EBUSY; goto error; } if (!dev->ops->fw_download) { rc = -EOPNOTSUPP; goto error; } dev->fw_download_in_progress = true; rc = dev->ops->fw_download(dev, firmware_name); if (rc) dev->fw_download_in_progress = false; error: device_unlock(&dev->dev); return rc; } /** * nfc_fw_download_done - inform that a firmware download was completed * * @dev: The nfc device to which firmware was downloaded * @firmware_name: The firmware filename * @result: The positive value of a standard errno value */ int nfc_fw_download_done(struct nfc_dev *dev, const char *firmware_name, u32 result) { dev->fw_download_in_progress = false; return nfc_genl_fw_download_done(dev, firmware_name, result); } EXPORT_SYMBOL(nfc_fw_download_done); /** * nfc_dev_up - turn on the NFC device * * @dev: The nfc device to be turned on * * The device remains up until the nfc_dev_down function is called. */ int nfc_dev_up(struct nfc_dev *dev) { int rc = 0; pr_debug("dev_name=%s\n", dev_name(&dev->dev)); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (dev->rfkill && rfkill_blocked(dev->rfkill)) { rc = -ERFKILL; goto error; } if (dev->fw_download_in_progress) { rc = -EBUSY; goto error; } if (dev->dev_up) { rc = -EALREADY; goto error; } if (dev->ops->dev_up) rc = dev->ops->dev_up(dev); if (!rc) dev->dev_up = true; /* We have to enable the device before discovering SEs */ if (dev->ops->discover_se && dev->ops->discover_se(dev)) pr_err("SE discovery failed\n"); error: device_unlock(&dev->dev); return rc; } /** * nfc_dev_down - turn off the NFC device * * @dev: The nfc device to be turned off */ int nfc_dev_down(struct nfc_dev *dev) { int rc = 0; pr_debug("dev_name=%s\n", dev_name(&dev->dev)); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (!dev->dev_up) { rc = -EALREADY; goto error; } if (dev->polling || dev->active_target) { rc = -EBUSY; goto error; } if (dev->ops->dev_down) dev->ops->dev_down(dev); dev->dev_up = false; error: device_unlock(&dev->dev); return rc; } static int nfc_rfkill_set_block(void *data, bool blocked) { struct nfc_dev *dev = data; pr_debug("%s blocked %d", dev_name(&dev->dev), blocked); if (!blocked) return 0; nfc_dev_down(dev); return 0; } static const struct rfkill_ops nfc_rfkill_ops = { .set_block = nfc_rfkill_set_block, }; /** * nfc_start_poll - start polling for nfc targets * * @dev: The nfc device that must start polling * @im_protocols: bitset of nfc initiator protocols to be used for polling * @tm_protocols: bitset of nfc transport protocols to be used for polling * * The device remains polling for targets until a target is found or * the nfc_stop_poll function is called. */ int nfc_start_poll(struct nfc_dev *dev, u32 im_protocols, u32 tm_protocols) { int rc; pr_debug("dev_name %s initiator protocols 0x%x target protocols 0x%x\n", dev_name(&dev->dev), im_protocols, tm_protocols); if (!im_protocols && !tm_protocols) return -EINVAL; device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (!dev->dev_up) { rc = -ENODEV; goto error; } if (dev->polling) { rc = -EBUSY; goto error; } rc = dev->ops->start_poll(dev, im_protocols, tm_protocols); if (!rc) { dev->polling = true; dev->rf_mode = NFC_RF_NONE; } error: device_unlock(&dev->dev); return rc; } /** * nfc_stop_poll - stop polling for nfc targets * * @dev: The nfc device that must stop polling */ int nfc_stop_poll(struct nfc_dev *dev) { int rc = 0; pr_debug("dev_name=%s\n", dev_name(&dev->dev)); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (!dev->polling) { rc = -EINVAL; goto error; } dev->ops->stop_poll(dev); dev->polling = false; dev->rf_mode = NFC_RF_NONE; error: device_unlock(&dev->dev); return rc; } static struct nfc_target *nfc_find_target(struct nfc_dev *dev, u32 target_idx) { int i; for (i = 0; i < dev->n_targets; i++) { if (dev->targets[i].idx == target_idx) return &dev->targets[i]; } return NULL; } int nfc_dep_link_up(struct nfc_dev *dev, int target_index, u8 comm_mode) { int rc = 0; u8 *gb; size_t gb_len; struct nfc_target *target; pr_debug("dev_name=%s comm %d\n", dev_name(&dev->dev), comm_mode); if (!dev->ops->dep_link_up) return -EOPNOTSUPP; device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (dev->dep_link_up == true) { rc = -EALREADY; goto error; } gb = nfc_llcp_general_bytes(dev, &gb_len); if (gb_len > NFC_MAX_GT_LEN) { rc = -EINVAL; goto error; } target = nfc_find_target(dev, target_index); if (target == NULL) { rc = -ENOTCONN; goto error; } rc = dev->ops->dep_link_up(dev, target, comm_mode, gb, gb_len); if (!rc) { dev->active_target = target; dev->rf_mode = NFC_RF_INITIATOR; } error: device_unlock(&dev->dev); return rc; } int nfc_dep_link_down(struct nfc_dev *dev) { int rc = 0; pr_debug("dev_name=%s\n", dev_name(&dev->dev)); if (!dev->ops->dep_link_down) return -EOPNOTSUPP; device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (dev->dep_link_up == false) { rc = -EALREADY; goto error; } rc = dev->ops->dep_link_down(dev); if (!rc) { dev->dep_link_up = false; dev->active_target = NULL; dev->rf_mode = NFC_RF_NONE; nfc_llcp_mac_is_down(dev); nfc_genl_dep_link_down_event(dev); } error: device_unlock(&dev->dev); return rc; } int nfc_dep_link_is_up(struct nfc_dev *dev, u32 target_idx, u8 comm_mode, u8 rf_mode) { dev->dep_link_up = true; if (!dev->active_target && rf_mode == NFC_RF_INITIATOR) { struct nfc_target *target; target = nfc_find_target(dev, target_idx); if (target == NULL) return -ENOTCONN; dev->active_target = target; } dev->polling = false; dev->rf_mode = rf_mode; nfc_llcp_mac_is_up(dev, target_idx, comm_mode, rf_mode); return nfc_genl_dep_link_up_event(dev, target_idx, comm_mode, rf_mode); } EXPORT_SYMBOL(nfc_dep_link_is_up); /** * nfc_activate_target - prepare the target for data exchange * * @dev: The nfc device that found the target * @target_idx: index of the target that must be activated * @protocol: nfc protocol that will be used for data exchange */ int nfc_activate_target(struct nfc_dev *dev, u32 target_idx, u32 protocol) { int rc; struct nfc_target *target; pr_debug("dev_name=%s target_idx=%u protocol=%u\n", dev_name(&dev->dev), target_idx, protocol); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (dev->active_target) { rc = -EBUSY; goto error; } target = nfc_find_target(dev, target_idx); if (target == NULL) { rc = -ENOTCONN; goto error; } rc = dev->ops->activate_target(dev, target, protocol); if (!rc) { dev->active_target = target; dev->rf_mode = NFC_RF_INITIATOR; if (dev->ops->check_presence && !dev->shutting_down) mod_timer(&dev->check_pres_timer, jiffies + msecs_to_jiffies(NFC_CHECK_PRES_FREQ_MS)); } error: device_unlock(&dev->dev); return rc; } /** * nfc_deactivate_target - deactivate a nfc target * * @dev: The nfc device that found the target * @target_idx: index of the target that must be deactivated * @mode: idle or sleep? */ int nfc_deactivate_target(struct nfc_dev *dev, u32 target_idx, u8 mode) { int rc = 0; pr_debug("dev_name=%s target_idx=%u\n", dev_name(&dev->dev), target_idx); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (dev->active_target == NULL) { rc = -ENOTCONN; goto error; } if (dev->active_target->idx != target_idx) { rc = -ENOTCONN; goto error; } if (dev->ops->check_presence) del_timer_sync(&dev->check_pres_timer); dev->ops->deactivate_target(dev, dev->active_target, mode); dev->active_target = NULL; error: device_unlock(&dev->dev); return rc; } /** * nfc_data_exchange - transceive data * * @dev: The nfc device that found the target * @target_idx: index of the target * @skb: data to be sent * @cb: callback called when the response is received * @cb_context: parameter for the callback function * * The user must wait for the callback before calling this function again. */ int nfc_data_exchange(struct nfc_dev *dev, u32 target_idx, struct sk_buff *skb, data_exchange_cb_t cb, void *cb_context) { int rc; pr_debug("dev_name=%s target_idx=%u skb->len=%u\n", dev_name(&dev->dev), target_idx, skb->len); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; kfree_skb(skb); goto error; } if (dev->rf_mode == NFC_RF_INITIATOR && dev->active_target != NULL) { if (dev->active_target->idx != target_idx) { rc = -EADDRNOTAVAIL; kfree_skb(skb); goto error; } if (dev->ops->check_presence) del_timer_sync(&dev->check_pres_timer); rc = dev->ops->im_transceive(dev, dev->active_target, skb, cb, cb_context); if (!rc && dev->ops->check_presence && !dev->shutting_down) mod_timer(&dev->check_pres_timer, jiffies + msecs_to_jiffies(NFC_CHECK_PRES_FREQ_MS)); } else if (dev->rf_mode == NFC_RF_TARGET && dev->ops->tm_send != NULL) { rc = dev->ops->tm_send(dev, skb); } else { rc = -ENOTCONN; kfree_skb(skb); goto error; } error: device_unlock(&dev->dev); return rc; } struct nfc_se *nfc_find_se(struct nfc_dev *dev, u32 se_idx) { struct nfc_se *se; list_for_each_entry(se, &dev->secure_elements, list) if (se->idx == se_idx) return se; return NULL; } EXPORT_SYMBOL(nfc_find_se); int nfc_enable_se(struct nfc_dev *dev, u32 se_idx) { struct nfc_se *se; int rc; pr_debug("%s se index %d\n", dev_name(&dev->dev), se_idx); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (!dev->dev_up) { rc = -ENODEV; goto error; } if (dev->polling) { rc = -EBUSY; goto error; } if (!dev->ops->enable_se || !dev->ops->disable_se) { rc = -EOPNOTSUPP; goto error; } se = nfc_find_se(dev, se_idx); if (!se) { rc = -EINVAL; goto error; } if (se->state == NFC_SE_ENABLED) { rc = -EALREADY; goto error; } rc = dev->ops->enable_se(dev, se_idx); if (rc >= 0) se->state = NFC_SE_ENABLED; error: device_unlock(&dev->dev); return rc; } int nfc_disable_se(struct nfc_dev *dev, u32 se_idx) { struct nfc_se *se; int rc; pr_debug("%s se index %d\n", dev_name(&dev->dev), se_idx); device_lock(&dev->dev); if (dev->shutting_down) { rc = -ENODEV; goto error; } if (!dev->dev_up) { rc = -ENODEV; goto error; } if (!dev->ops->enable_se || !dev->ops->disable_se) { rc = -EOPNOTSUPP; goto error; } se = nfc_find_se(dev, se_idx); if (!se) { rc = -EINVAL; goto error; } if (se->state == NFC_SE_DISABLED) { rc = -EALREADY; goto error; } rc = dev->ops->disable_se(dev, se_idx); if (rc >= 0) se->state = NFC_SE_DISABLED; error: device_unlock(&dev->dev); return rc; } int nfc_set_remote_general_bytes(struct nfc_dev *dev, const u8 *gb, u8 gb_len) { pr_debug("dev_name=%s gb_len=%d\n", dev_name(&dev->dev), gb_len); return nfc_llcp_set_remote_gb(dev, gb, gb_len); } EXPORT_SYMBOL(nfc_set_remote_general_bytes); u8 *nfc_get_local_general_bytes(struct nfc_dev *dev, size_t *gb_len) { pr_debug("dev_name=%s\n", dev_name(&dev->dev)); return nfc_llcp_general_bytes(dev, gb_len); } EXPORT_SYMBOL(nfc_get_local_general_bytes); int nfc_tm_data_received(struct nfc_dev *dev, struct sk_buff *skb) { /* Only LLCP target mode for now */ if (dev->dep_link_up == false) { kfree_skb(skb); return -ENOLINK; } return nfc_llcp_data_received(dev, skb); } EXPORT_SYMBOL(nfc_tm_data_received); int nfc_tm_activated(struct nfc_dev *dev, u32 protocol, u8 comm_mode, const u8 *gb, size_t gb_len) { int rc; device_lock(&dev->dev); dev->polling = false; if (gb != NULL) { rc = nfc_set_remote_general_bytes(dev, gb, gb_len); if (rc < 0) goto out; } dev->rf_mode = NFC_RF_TARGET; if (protocol == NFC_PROTO_NFC_DEP_MASK) nfc_dep_link_is_up(dev, 0, comm_mode, NFC_RF_TARGET); rc = nfc_genl_tm_activated(dev, protocol); out: device_unlock(&dev->dev); return rc; } EXPORT_SYMBOL(nfc_tm_activated); int nfc_tm_deactivated(struct nfc_dev *dev) { dev->dep_link_up = false; dev->rf_mode = NFC_RF_NONE; return nfc_genl_tm_deactivated(dev); } EXPORT_SYMBOL(nfc_tm_deactivated); /** * nfc_alloc_send_skb - allocate a skb for data exchange responses * * @dev: device sending the response * @sk: socket sending the response * @flags: MSG_DONTWAIT flag * @size: size to allocate * @err: pointer to memory to store the error code */ struct sk_buff *nfc_alloc_send_skb(struct nfc_dev *dev, struct sock *sk, unsigned int flags, unsigned int size, unsigned int *err) { struct sk_buff *skb; unsigned int total_size; total_size = size + dev->tx_headroom + dev->tx_tailroom + NFC_HEADER_SIZE; skb = sock_alloc_send_skb(sk, total_size, flags & MSG_DONTWAIT, err); if (skb) skb_reserve(skb, dev->tx_headroom + NFC_HEADER_SIZE); return skb; } /** * nfc_alloc_recv_skb - allocate a skb for data exchange responses * * @size: size to allocate * @gfp: gfp flags */ struct sk_buff *nfc_alloc_recv_skb(unsigned int size, gfp_t gfp) { struct sk_buff *skb; unsigned int total_size; total_size = size + 1; skb = alloc_skb(total_size, gfp); if (skb) skb_reserve(skb, 1); return skb; } EXPORT_SYMBOL(nfc_alloc_recv_skb); /** * nfc_targets_found - inform that targets were found * * @dev: The nfc device that found the targets * @targets: array of nfc targets found * @n_targets: targets array size * * The device driver must call this function when one or many nfc targets * are found. After calling this function, the device driver must stop * polling for targets. * NOTE: This function can be called with targets=NULL and n_targets=0 to * notify a driver error, meaning that the polling operation cannot complete. * IMPORTANT: this function must not be called from an atomic context. * In addition, it must also not be called from a context that would prevent * the NFC Core to call other nfc ops entry point concurrently. */ int nfc_targets_found(struct nfc_dev *dev, struct nfc_target *targets, int n_targets) { int i; pr_debug("dev_name=%s n_targets=%d\n", dev_name(&dev->dev), n_targets); for (i = 0; i < n_targets; i++) targets[i].idx = dev->target_next_idx++; device_lock(&dev->dev); if (dev->polling == false) { device_unlock(&dev->dev); return 0; } dev->polling = false; dev->targets_generation++; kfree(dev->targets); dev->targets = NULL; if (targets) { dev->targets = kmemdup(targets, n_targets * sizeof(struct nfc_target), GFP_ATOMIC); if (!dev->targets) { dev->n_targets = 0; device_unlock(&dev->dev); return -ENOMEM; } } dev->n_targets = n_targets; device_unlock(&dev->dev); nfc_genl_targets_found(dev); return 0; } EXPORT_SYMBOL(nfc_targets_found); /** * nfc_target_lost - inform that an activated target went out of field * * @dev: The nfc device that had the activated target in field * @target_idx: the nfc index of the target * * The device driver must call this function when the activated target * goes out of the field. * IMPORTANT: this function must not be called from an atomic context. * In addition, it must also not be called from a context that would prevent * the NFC Core to call other nfc ops entry point concurrently. */ int nfc_target_lost(struct nfc_dev *dev, u32 target_idx) { const struct nfc_target *tg; int i; pr_debug("dev_name %s n_target %d\n", dev_name(&dev->dev), target_idx); device_lock(&dev->dev); for (i = 0; i < dev->n_targets; i++) { tg = &dev->targets[i]; if (tg->idx == target_idx) break; } if (i == dev->n_targets) { device_unlock(&dev->dev); return -EINVAL; } dev->targets_generation++; dev->n_targets--; dev->active_target = NULL; if (dev->n_targets) { memcpy(&dev->targets[i], &dev->targets[i + 1], (dev->n_targets - i) * sizeof(struct nfc_target)); } else { kfree(dev->targets); dev->targets = NULL; } device_unlock(&dev->dev); nfc_genl_target_lost(dev, target_idx); return 0; } EXPORT_SYMBOL(nfc_target_lost); inline void nfc_driver_failure(struct nfc_dev *dev, int err) { nfc_targets_found(dev, NULL, 0); } EXPORT_SYMBOL(nfc_driver_failure); int nfc_add_se(struct nfc_dev *dev, u32 se_idx, u16 type) { struct nfc_se *se; int rc; pr_debug("%s se index %d\n", dev_name(&dev->dev), se_idx); se = nfc_find_se(dev, se_idx); if (se) return -EALREADY; se = kzalloc(sizeof(struct nfc_se), GFP_KERNEL); if (!se) return -ENOMEM; se->idx = se_idx; se->type = type; se->state = NFC_SE_DISABLED; INIT_LIST_HEAD(&se->list); list_add(&se->list, &dev->secure_elements); rc = nfc_genl_se_added(dev, se_idx, type); if (rc < 0) { list_del(&se->list); kfree(se); return rc; } return 0; } EXPORT_SYMBOL(nfc_add_se); int nfc_remove_se(struct nfc_dev *dev, u32 se_idx) { struct nfc_se *se, *n; int rc; pr_debug("%s se index %d\n", dev_name(&dev->dev), se_idx); list_for_each_entry_safe(se, n, &dev->secure_elements, list) if (se->idx == se_idx) { rc = nfc_genl_se_removed(dev, se_idx); if (rc < 0) return rc; list_del(&se->list); kfree(se); return 0; } return -EINVAL; } EXPORT_SYMBOL(nfc_remove_se); int nfc_se_transaction(struct nfc_dev *dev, u8 se_idx, struct nfc_evt_transaction *evt_transaction) { int rc; pr_debug("transaction: %x\n", se_idx); device_lock(&dev->dev); if (!evt_transaction) { rc = -EPROTO; goto out; } rc = nfc_genl_se_transaction(dev, se_idx, evt_transaction); out: device_unlock(&dev->dev); return rc; } EXPORT_SYMBOL(nfc_se_transaction); int nfc_se_connectivity(struct nfc_dev *dev, u8 se_idx) { int rc; pr_debug("connectivity: %x\n", se_idx); device_lock(&dev->dev); rc = nfc_genl_se_connectivity(dev, se_idx); device_unlock(&dev->dev); return rc; } EXPORT_SYMBOL(nfc_se_connectivity); static void nfc_release(struct device *d) { struct nfc_dev *dev = to_nfc_dev(d); struct nfc_se *se, *n; pr_debug("dev_name=%s\n", dev_name(&dev->dev)); nfc_genl_data_exit(&dev->genl_data); kfree(dev->targets); list_for_each_entry_safe(se, n, &dev->secure_elements, list) { nfc_genl_se_removed(dev, se->idx); list_del(&se->list); kfree(se); } ida_free(&nfc_index_ida, dev->idx); kfree(dev); } static void nfc_check_pres_work(struct work_struct *work) { struct nfc_dev *dev = container_of(work, struct nfc_dev, check_pres_work); int rc; device_lock(&dev->dev); if (dev->active_target && timer_pending(&dev->check_pres_timer) == 0) { rc = dev->ops->check_presence(dev, dev->active_target); if (rc == -EOPNOTSUPP) goto exit; if (rc) { u32 active_target_idx = dev->active_target->idx; device_unlock(&dev->dev); nfc_target_lost(dev, active_target_idx); return; } if (!dev->shutting_down) mod_timer(&dev->check_pres_timer, jiffies + msecs_to_jiffies(NFC_CHECK_PRES_FREQ_MS)); } exit: device_unlock(&dev->dev); } static void nfc_check_pres_timeout(struct timer_list *t) { struct nfc_dev *dev = from_timer(dev, t, check_pres_timer); schedule_work(&dev->check_pres_work); } const struct class nfc_class = { .name = "nfc", .dev_release = nfc_release, }; EXPORT_SYMBOL(nfc_class); static int match_idx(struct device *d, const void *data) { struct nfc_dev *dev = to_nfc_dev(d); const unsigned int *idx = data; return dev->idx == *idx; } struct nfc_dev *nfc_get_device(unsigned int idx) { struct device *d; d = class_find_device(&nfc_class, NULL, &idx, match_idx); if (!d) return NULL; return to_nfc_dev(d); } /** * nfc_allocate_device - allocate a new nfc device * * @ops: device operations * @supported_protocols: NFC protocols supported by the device * @tx_headroom: reserved space at beginning of skb * @tx_tailroom: reserved space at end of skb */ struct nfc_dev *nfc_allocate_device(const struct nfc_ops *ops, u32 supported_protocols, int tx_headroom, int tx_tailroom) { struct nfc_dev *dev; int rc; if (!ops->start_poll || !ops->stop_poll || !ops->activate_target || !ops->deactivate_target || !ops->im_transceive) return NULL; if (!supported_protocols) return NULL; dev = kzalloc(sizeof(struct nfc_dev), GFP_KERNEL); if (!dev) return NULL; rc = ida_alloc(&nfc_index_ida, GFP_KERNEL); if (rc < 0) goto err_free_dev; dev->idx = rc; dev->dev.class = &nfc_class; dev_set_name(&dev->dev, "nfc%d", dev->idx); device_initialize(&dev->dev); dev->ops = ops; dev->supported_protocols = supported_protocols; dev->tx_headroom = tx_headroom; dev->tx_tailroom = tx_tailroom; INIT_LIST_HEAD(&dev->secure_elements); nfc_genl_data_init(&dev->genl_data); dev->rf_mode = NFC_RF_NONE; /* first generation must not be 0 */ dev->targets_generation = 1; if (ops->check_presence) { timer_setup(&dev->check_pres_timer, nfc_check_pres_timeout, 0); INIT_WORK(&dev->check_pres_work, nfc_check_pres_work); } return dev; err_free_dev: kfree(dev); return NULL; } EXPORT_SYMBOL(nfc_allocate_device); /** * nfc_register_device - register a nfc device in the nfc subsystem * * @dev: The nfc device to register */ int nfc_register_device(struct nfc_dev *dev) { int rc; pr_debug("dev_name=%s\n", dev_name(&dev->dev)); mutex_lock(&nfc_devlist_mutex); nfc_devlist_generation++; rc = device_add(&dev->dev); mutex_unlock(&nfc_devlist_mutex); if (rc < 0) return rc; rc = nfc_llcp_register_device(dev); if (rc) pr_err("Could not register llcp device\n"); device_lock(&dev->dev); dev->rfkill = rfkill_alloc(dev_name(&dev->dev), &dev->dev, RFKILL_TYPE_NFC, &nfc_rfkill_ops, dev); if (dev->rfkill) { if (rfkill_register(dev->rfkill) < 0) { rfkill_destroy(dev->rfkill); dev->rfkill = NULL; } } dev->shutting_down = false; device_unlock(&dev->dev); rc = nfc_genl_device_added(dev); if (rc) pr_debug("The userspace won't be notified that the device %s was added\n", dev_name(&dev->dev)); return 0; } EXPORT_SYMBOL(nfc_register_device); /** * nfc_unregister_device - unregister a nfc device in the nfc subsystem * * @dev: The nfc device to unregister */ void nfc_unregister_device(struct nfc_dev *dev) { int rc; pr_debug("dev_name=%s\n", dev_name(&dev->dev)); rc = nfc_genl_device_removed(dev); if (rc) pr_debug("The userspace won't be notified that the device %s " "was removed\n", dev_name(&dev->dev)); device_lock(&dev->dev); if (dev->rfkill) { rfkill_unregister(dev->rfkill); rfkill_destroy(dev->rfkill); dev->rfkill = NULL; } dev->shutting_down = true; device_unlock(&dev->dev); if (dev->ops->check_presence) { del_timer_sync(&dev->check_pres_timer); cancel_work_sync(&dev->check_pres_work); } nfc_llcp_unregister_device(dev); mutex_lock(&nfc_devlist_mutex); nfc_devlist_generation++; device_del(&dev->dev); mutex_unlock(&nfc_devlist_mutex); } EXPORT_SYMBOL(nfc_unregister_device); static int __init nfc_init(void) { int rc; pr_info("NFC Core ver %s\n", VERSION); rc = class_register(&nfc_class); if (rc) return rc; rc = nfc_genl_init(); if (rc) goto err_genl; /* the first generation must not be 0 */ nfc_devlist_generation = 1; rc = rawsock_init(); if (rc) goto err_rawsock; rc = nfc_llcp_init(); if (rc) goto err_llcp_sock; rc = af_nfc_init(); if (rc) goto err_af_nfc; return 0; err_af_nfc: nfc_llcp_exit(); err_llcp_sock: rawsock_exit(); err_rawsock: nfc_genl_exit(); err_genl: class_unregister(&nfc_class); return rc; } static void __exit nfc_exit(void) { af_nfc_exit(); nfc_llcp_exit(); rawsock_exit(); nfc_genl_exit(); class_unregister(&nfc_class); } subsys_initcall(nfc_init); module_exit(nfc_exit); MODULE_AUTHOR("Lauro Ramos Venancio <lauro.venancio@openbossa.org>"); MODULE_DESCRIPTION("NFC Core ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_NFC); MODULE_ALIAS_GENL_FAMILY(NFC_GENL_NAME); |
64 64 15 19 18 64 64 64 56 56 16 3 56 56 22 22 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016 Facebook */ #include "percpu_freelist.h" int pcpu_freelist_init(struct pcpu_freelist *s) { int cpu; s->freelist = alloc_percpu(struct pcpu_freelist_head); if (!s->freelist) return -ENOMEM; for_each_possible_cpu(cpu) { struct pcpu_freelist_head *head = per_cpu_ptr(s->freelist, cpu); raw_spin_lock_init(&head->lock); head->first = NULL; } raw_spin_lock_init(&s->extralist.lock); s->extralist.first = NULL; return 0; } void pcpu_freelist_destroy(struct pcpu_freelist *s) { free_percpu(s->freelist); } static inline void pcpu_freelist_push_node(struct pcpu_freelist_head *head, struct pcpu_freelist_node *node) { node->next = head->first; WRITE_ONCE(head->first, node); } static inline void ___pcpu_freelist_push(struct pcpu_freelist_head *head, struct pcpu_freelist_node *node) { raw_spin_lock(&head->lock); pcpu_freelist_push_node(head, node); raw_spin_unlock(&head->lock); } static inline bool pcpu_freelist_try_push_extra(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { if (!raw_spin_trylock(&s->extralist.lock)) return false; pcpu_freelist_push_node(&s->extralist, node); raw_spin_unlock(&s->extralist.lock); return true; } static inline void ___pcpu_freelist_push_nmi(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { int cpu, orig_cpu; orig_cpu = raw_smp_processor_id(); while (1) { for_each_cpu_wrap(cpu, cpu_possible_mask, orig_cpu) { struct pcpu_freelist_head *head; head = per_cpu_ptr(s->freelist, cpu); if (raw_spin_trylock(&head->lock)) { pcpu_freelist_push_node(head, node); raw_spin_unlock(&head->lock); return; } } /* cannot lock any per cpu lock, try extralist */ if (pcpu_freelist_try_push_extra(s, node)) return; } } void __pcpu_freelist_push(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { if (in_nmi()) ___pcpu_freelist_push_nmi(s, node); else ___pcpu_freelist_push(this_cpu_ptr(s->freelist), node); } void pcpu_freelist_push(struct pcpu_freelist *s, struct pcpu_freelist_node *node) { unsigned long flags; local_irq_save(flags); __pcpu_freelist_push(s, node); local_irq_restore(flags); } void pcpu_freelist_populate(struct pcpu_freelist *s, void *buf, u32 elem_size, u32 nr_elems) { struct pcpu_freelist_head *head; unsigned int cpu, cpu_idx, i, j, n, m; n = nr_elems / num_possible_cpus(); m = nr_elems % num_possible_cpus(); cpu_idx = 0; for_each_possible_cpu(cpu) { head = per_cpu_ptr(s->freelist, cpu); j = n + (cpu_idx < m ? 1 : 0); for (i = 0; i < j; i++) { /* No locking required as this is not visible yet. */ pcpu_freelist_push_node(head, buf); buf += elem_size; } cpu_idx++; } } static struct pcpu_freelist_node *___pcpu_freelist_pop(struct pcpu_freelist *s) { struct pcpu_freelist_head *head; struct pcpu_freelist_node *node; int cpu; for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { head = per_cpu_ptr(s->freelist, cpu); if (!READ_ONCE(head->first)) continue; raw_spin_lock(&head->lock); node = head->first; if (node) { WRITE_ONCE(head->first, node->next); raw_spin_unlock(&head->lock); return node; } raw_spin_unlock(&head->lock); } /* per cpu lists are all empty, try extralist */ if (!READ_ONCE(s->extralist.first)) return NULL; raw_spin_lock(&s->extralist.lock); node = s->extralist.first; if (node) WRITE_ONCE(s->extralist.first, node->next); raw_spin_unlock(&s->extralist.lock); return node; } static struct pcpu_freelist_node * ___pcpu_freelist_pop_nmi(struct pcpu_freelist *s) { struct pcpu_freelist_head *head; struct pcpu_freelist_node *node; int cpu; for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { head = per_cpu_ptr(s->freelist, cpu); if (!READ_ONCE(head->first)) continue; if (raw_spin_trylock(&head->lock)) { node = head->first; if (node) { WRITE_ONCE(head->first, node->next); raw_spin_unlock(&head->lock); return node; } raw_spin_unlock(&head->lock); } } /* cannot pop from per cpu lists, try extralist */ if (!READ_ONCE(s->extralist.first) || !raw_spin_trylock(&s->extralist.lock)) return NULL; node = s->extralist.first; if (node) WRITE_ONCE(s->extralist.first, node->next); raw_spin_unlock(&s->extralist.lock); return node; } struct pcpu_freelist_node *__pcpu_freelist_pop(struct pcpu_freelist *s) { if (in_nmi()) return ___pcpu_freelist_pop_nmi(s); return ___pcpu_freelist_pop(s); } struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *s) { struct pcpu_freelist_node *ret; unsigned long flags; local_irq_save(flags); ret = __pcpu_freelist_pop(s); local_irq_restore(flags); return ret; } |
2142 2234 317 2127 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * (C) 2008 Krzysztof Piotr Oledzki <ole@ans.pl> */ #ifndef _NF_CONNTRACK_ACCT_H #define _NF_CONNTRACK_ACCT_H #include <net/net_namespace.h> #include <linux/netfilter/nf_conntrack_common.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_extend.h> struct nf_conn_counter { atomic64_t packets; atomic64_t bytes; }; struct nf_conn_acct { struct nf_conn_counter counter[IP_CT_DIR_MAX]; }; static inline struct nf_conn_acct *nf_conn_acct_find(const struct nf_conn *ct) { return nf_ct_ext_find(ct, NF_CT_EXT_ACCT); } static inline struct nf_conn_acct *nf_ct_acct_ext_add(struct nf_conn *ct, gfp_t gfp) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) struct net *net = nf_ct_net(ct); struct nf_conn_acct *acct; if (!net->ct.sysctl_acct) return NULL; acct = nf_ct_ext_add(ct, NF_CT_EXT_ACCT, gfp); if (!acct) pr_debug("failed to add accounting extension area"); return acct; #else return NULL; #endif } /* Check if connection tracking accounting is enabled */ static inline bool nf_ct_acct_enabled(struct net *net) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return net->ct.sysctl_acct != 0; #else return false; #endif } /* Enable/disable connection tracking accounting */ static inline void nf_ct_set_acct(struct net *net, bool enable) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) net->ct.sysctl_acct = enable; #endif } void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets, unsigned int bytes); static inline void nf_ct_acct_update(struct nf_conn *ct, u32 dir, unsigned int bytes) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) nf_ct_acct_add(ct, dir, 1, bytes); #endif } void nf_conntrack_acct_pernet_init(struct net *net); #endif /* _NF_CONNTRACK_ACCT_H */ |
18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | /* * llc_c_ev.c - Connection component state transition event qualifiers * * A 'state' consists of a number of possible event matching functions, * the actions associated with each being executed when that event is * matched; a 'state machine' accepts events in a serial fashion from an * event queue. Each event is passed to each successive event matching * function until a match is made (the event matching function returns * success, or '0') or the list of event matching functions is exhausted. * If a match is made, the actions associated with the event are executed * and the state is changed to that event's transition state. Before some * events are recognized, even after a match has been made, a certain * number of 'event qualifier' functions must also be executed. If these * all execute successfully, then the event is finally executed. * * These event functions must return 0 for success, to show a matched * event, of 1 if the event does not match. Event qualifier functions * must return a 0 for success or a non-zero for failure. Each function * is simply responsible for verifying one single thing and returning * either a success or failure. * * All of followed event functions are described in 802.2 LLC Protocol * standard document except two functions that we added that will explain * in their comments, at below. * * Copyright (c) 1997 by Procom Technology, Inc. * 2001-2003 by Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * This program can be redistributed or modified under the terms of the * GNU General Public License as published by the Free Software Foundation. * This program is distributed without any warranty or implied warranty * of merchantability or fitness for a particular purpose. * * See the GNU General Public License for more details. */ #include <linux/netdevice.h> #include <net/llc_conn.h> #include <net/llc_sap.h> #include <net/sock.h> #include <net/llc_c_ac.h> #include <net/llc_c_ev.h> #include <net/llc_pdu.h> #if 1 #define dprintk(args...) printk(KERN_DEBUG args) #else #define dprintk(args...) #endif /** * llc_util_ns_inside_rx_window - check if sequence number is in rx window * @ns: sequence number of received pdu. * @vr: sequence number which receiver expects to receive. * @rw: receive window size of receiver. * * Checks if sequence number of received PDU is in range of receive * window. Returns 0 for success, 1 otherwise */ static u16 llc_util_ns_inside_rx_window(u8 ns, u8 vr, u8 rw) { return !llc_circular_between(vr, ns, (vr + rw - 1) % LLC_2_SEQ_NBR_MODULO); } /** * llc_util_nr_inside_tx_window - check if sequence number is in tx window * @sk: current connection. * @nr: N(R) of received PDU. * * This routine checks if N(R) of received PDU is in range of transmit * window; on the other hand checks if received PDU acknowledges some * outstanding PDUs that are in transmit window. Returns 0 for success, 1 * otherwise. */ static u16 llc_util_nr_inside_tx_window(struct sock *sk, u8 nr) { u8 nr1, nr2; struct sk_buff *skb; struct llc_pdu_sn *pdu; struct llc_sock *llc = llc_sk(sk); int rc = 0; if (llc->dev->flags & IFF_LOOPBACK) goto out; rc = 1; if (skb_queue_empty(&llc->pdu_unack_q)) goto out; skb = skb_peek(&llc->pdu_unack_q); pdu = llc_pdu_sn_hdr(skb); nr1 = LLC_I_GET_NS(pdu); skb = skb_peek_tail(&llc->pdu_unack_q); pdu = llc_pdu_sn_hdr(skb); nr2 = LLC_I_GET_NS(pdu); rc = !llc_circular_between(nr1, nr, (nr2 + 1) % LLC_2_SEQ_NBR_MODULO); out: return rc; } int llc_conn_ev_conn_req(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->prim == LLC_CONN_PRIM && ev->prim_type == LLC_PRIM_TYPE_REQ ? 0 : 1; } int llc_conn_ev_data_req(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->prim == LLC_DATA_PRIM && ev->prim_type == LLC_PRIM_TYPE_REQ ? 0 : 1; } int llc_conn_ev_disc_req(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->prim == LLC_DISC_PRIM && ev->prim_type == LLC_PRIM_TYPE_REQ ? 0 : 1; } int llc_conn_ev_rst_req(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->prim == LLC_RESET_PRIM && ev->prim_type == LLC_PRIM_TYPE_REQ ? 0 : 1; } int llc_conn_ev_local_busy_detected(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->type == LLC_CONN_EV_TYPE_SIMPLE && ev->prim_type == LLC_CONN_EV_LOCAL_BUSY_DETECTED ? 0 : 1; } int llc_conn_ev_local_busy_cleared(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->type == LLC_CONN_EV_TYPE_SIMPLE && ev->prim_type == LLC_CONN_EV_LOCAL_BUSY_CLEARED ? 0 : 1; } int llc_conn_ev_rx_bad_pdu(struct sock *sk, struct sk_buff *skb) { return 1; } int llc_conn_ev_rx_disc_cmd_pbit_set_x(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_CMD(pdu) == LLC_2_PDU_CMD_DISC ? 0 : 1; } int llc_conn_ev_rx_dm_rsp_fbit_set_x(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_RSP(pdu) == LLC_2_PDU_RSP_DM ? 0 : 1; } int llc_conn_ev_rx_frmr_rsp_fbit_set_x(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_RSP(pdu) == LLC_2_PDU_RSP_FRMR ? 0 : 1; } int llc_conn_ev_rx_i_cmd_pbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return llc_conn_space(sk, skb) && LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_0(pdu) && LLC_I_GET_NS(pdu) == llc_sk(sk)->vR ? 0 : 1; } int llc_conn_ev_rx_i_cmd_pbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return llc_conn_space(sk, skb) && LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_1(pdu) && LLC_I_GET_NS(pdu) == llc_sk(sk)->vR ? 0 : 1; } int llc_conn_ev_rx_i_cmd_pbit_set_0_unexpd_ns(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vr = llc_sk(sk)->vR; const u8 ns = LLC_I_GET_NS(pdu); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_0(pdu) && ns != vr && !llc_util_ns_inside_rx_window(ns, vr, llc_sk(sk)->rw) ? 0 : 1; } int llc_conn_ev_rx_i_cmd_pbit_set_1_unexpd_ns(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vr = llc_sk(sk)->vR; const u8 ns = LLC_I_GET_NS(pdu); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_1(pdu) && ns != vr && !llc_util_ns_inside_rx_window(ns, vr, llc_sk(sk)->rw) ? 0 : 1; } int llc_conn_ev_rx_i_cmd_pbit_set_x_inval_ns(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn * pdu = llc_pdu_sn_hdr(skb); const u8 vr = llc_sk(sk)->vR; const u8 ns = LLC_I_GET_NS(pdu); const u16 rc = LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_I(pdu) && ns != vr && llc_util_ns_inside_rx_window(ns, vr, llc_sk(sk)->rw) ? 0 : 1; if (!rc) dprintk("%s: matched, state=%d, ns=%d, vr=%d\n", __func__, llc_sk(sk)->state, ns, vr); return rc; } int llc_conn_ev_rx_i_rsp_fbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return llc_conn_space(sk, skb) && LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_0(pdu) && LLC_I_GET_NS(pdu) == llc_sk(sk)->vR ? 0 : 1; } int llc_conn_ev_rx_i_rsp_fbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_1(pdu) && LLC_I_GET_NS(pdu) == llc_sk(sk)->vR ? 0 : 1; } int llc_conn_ev_rx_i_rsp_fbit_set_x(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return llc_conn_space(sk, skb) && LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_GET_NS(pdu) == llc_sk(sk)->vR ? 0 : 1; } int llc_conn_ev_rx_i_rsp_fbit_set_0_unexpd_ns(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vr = llc_sk(sk)->vR; const u8 ns = LLC_I_GET_NS(pdu); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_0(pdu) && ns != vr && !llc_util_ns_inside_rx_window(ns, vr, llc_sk(sk)->rw) ? 0 : 1; } int llc_conn_ev_rx_i_rsp_fbit_set_1_unexpd_ns(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vr = llc_sk(sk)->vR; const u8 ns = LLC_I_GET_NS(pdu); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_I(pdu) && LLC_I_PF_IS_1(pdu) && ns != vr && !llc_util_ns_inside_rx_window(ns, vr, llc_sk(sk)->rw) ? 0 : 1; } int llc_conn_ev_rx_i_rsp_fbit_set_x_unexpd_ns(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vr = llc_sk(sk)->vR; const u8 ns = LLC_I_GET_NS(pdu); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_I(pdu) && ns != vr && !llc_util_ns_inside_rx_window(ns, vr, llc_sk(sk)->rw) ? 0 : 1; } int llc_conn_ev_rx_i_rsp_fbit_set_x_inval_ns(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vr = llc_sk(sk)->vR; const u8 ns = LLC_I_GET_NS(pdu); const u16 rc = LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_I(pdu) && ns != vr && llc_util_ns_inside_rx_window(ns, vr, llc_sk(sk)->rw) ? 0 : 1; if (!rc) dprintk("%s: matched, state=%d, ns=%d, vr=%d\n", __func__, llc_sk(sk)->state, ns, vr); return rc; } int llc_conn_ev_rx_rej_cmd_pbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_0(pdu) && LLC_S_PDU_CMD(pdu) == LLC_2_PDU_CMD_REJ ? 0 : 1; } int llc_conn_ev_rx_rej_cmd_pbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_1(pdu) && LLC_S_PDU_CMD(pdu) == LLC_2_PDU_CMD_REJ ? 0 : 1; } int llc_conn_ev_rx_rej_rsp_fbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_0(pdu) && LLC_S_PDU_RSP(pdu) == LLC_2_PDU_RSP_REJ ? 0 : 1; } int llc_conn_ev_rx_rej_rsp_fbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_1(pdu) && LLC_S_PDU_RSP(pdu) == LLC_2_PDU_RSP_REJ ? 0 : 1; } int llc_conn_ev_rx_rej_rsp_fbit_set_x(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PDU_RSP(pdu) == LLC_2_PDU_RSP_REJ ? 0 : 1; } int llc_conn_ev_rx_rnr_cmd_pbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_0(pdu) && LLC_S_PDU_CMD(pdu) == LLC_2_PDU_CMD_RNR ? 0 : 1; } int llc_conn_ev_rx_rnr_cmd_pbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_1(pdu) && LLC_S_PDU_CMD(pdu) == LLC_2_PDU_CMD_RNR ? 0 : 1; } int llc_conn_ev_rx_rnr_rsp_fbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_0(pdu) && LLC_S_PDU_RSP(pdu) == LLC_2_PDU_RSP_RNR ? 0 : 1; } int llc_conn_ev_rx_rnr_rsp_fbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_1(pdu) && LLC_S_PDU_RSP(pdu) == LLC_2_PDU_RSP_RNR ? 0 : 1; } int llc_conn_ev_rx_rr_cmd_pbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_0(pdu) && LLC_S_PDU_CMD(pdu) == LLC_2_PDU_CMD_RR ? 0 : 1; } int llc_conn_ev_rx_rr_cmd_pbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_1(pdu) && LLC_S_PDU_CMD(pdu) == LLC_2_PDU_CMD_RR ? 0 : 1; } int llc_conn_ev_rx_rr_rsp_fbit_set_0(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return llc_conn_space(sk, skb) && LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_0(pdu) && LLC_S_PDU_RSP(pdu) == LLC_2_PDU_RSP_RR ? 0 : 1; } int llc_conn_ev_rx_rr_rsp_fbit_set_1(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); return llc_conn_space(sk, skb) && LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_S(pdu) && LLC_S_PF_IS_1(pdu) && LLC_S_PDU_RSP(pdu) == LLC_2_PDU_RSP_RR ? 0 : 1; } int llc_conn_ev_rx_sabme_cmd_pbit_set_x(struct sock *sk, struct sk_buff *skb) { const struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return LLC_PDU_IS_CMD(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_CMD(pdu) == LLC_2_PDU_CMD_SABME ? 0 : 1; } int llc_conn_ev_rx_ua_rsp_fbit_set_x(struct sock *sk, struct sk_buff *skb) { struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); return LLC_PDU_IS_RSP(pdu) && LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PDU_RSP(pdu) == LLC_2_PDU_RSP_UA ? 0 : 1; } int llc_conn_ev_rx_xxx_cmd_pbit_set_1(struct sock *sk, struct sk_buff *skb) { u16 rc = 1; const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); if (LLC_PDU_IS_CMD(pdu)) { if (LLC_PDU_TYPE_IS_I(pdu) || LLC_PDU_TYPE_IS_S(pdu)) { if (LLC_I_PF_IS_1(pdu)) rc = 0; } else if (LLC_PDU_TYPE_IS_U(pdu) && LLC_U_PF_IS_1(pdu)) rc = 0; } return rc; } int llc_conn_ev_rx_xxx_cmd_pbit_set_x(struct sock *sk, struct sk_buff *skb) { u16 rc = 1; const struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); if (LLC_PDU_IS_CMD(pdu)) { if (LLC_PDU_TYPE_IS_I(pdu) || LLC_PDU_TYPE_IS_S(pdu)) rc = 0; else if (LLC_PDU_TYPE_IS_U(pdu)) switch (LLC_U_PDU_CMD(pdu)) { case LLC_2_PDU_CMD_SABME: case LLC_2_PDU_CMD_DISC: rc = 0; break; } } return rc; } int llc_conn_ev_rx_xxx_rsp_fbit_set_x(struct sock *sk, struct sk_buff *skb) { u16 rc = 1; const struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); if (LLC_PDU_IS_RSP(pdu)) { if (LLC_PDU_TYPE_IS_I(pdu) || LLC_PDU_TYPE_IS_S(pdu)) rc = 0; else if (LLC_PDU_TYPE_IS_U(pdu)) switch (LLC_U_PDU_RSP(pdu)) { case LLC_2_PDU_RSP_UA: case LLC_2_PDU_RSP_DM: case LLC_2_PDU_RSP_FRMR: rc = 0; break; } } return rc; } int llc_conn_ev_rx_zzz_cmd_pbit_set_x_inval_nr(struct sock *sk, struct sk_buff *skb) { u16 rc = 1; const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vs = llc_sk(sk)->vS; const u8 nr = LLC_I_GET_NR(pdu); if (LLC_PDU_IS_CMD(pdu) && (LLC_PDU_TYPE_IS_I(pdu) || LLC_PDU_TYPE_IS_S(pdu)) && nr != vs && llc_util_nr_inside_tx_window(sk, nr)) { dprintk("%s: matched, state=%d, vs=%d, nr=%d\n", __func__, llc_sk(sk)->state, vs, nr); rc = 0; } return rc; } int llc_conn_ev_rx_zzz_rsp_fbit_set_x_inval_nr(struct sock *sk, struct sk_buff *skb) { u16 rc = 1; const struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); const u8 vs = llc_sk(sk)->vS; const u8 nr = LLC_I_GET_NR(pdu); if (LLC_PDU_IS_RSP(pdu) && (LLC_PDU_TYPE_IS_I(pdu) || LLC_PDU_TYPE_IS_S(pdu)) && nr != vs && llc_util_nr_inside_tx_window(sk, nr)) { rc = 0; dprintk("%s: matched, state=%d, vs=%d, nr=%d\n", __func__, llc_sk(sk)->state, vs, nr); } return rc; } int llc_conn_ev_rx_any_frame(struct sock *sk, struct sk_buff *skb) { return 0; } int llc_conn_ev_p_tmr_exp(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->type != LLC_CONN_EV_TYPE_P_TMR; } int llc_conn_ev_ack_tmr_exp(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->type != LLC_CONN_EV_TYPE_ACK_TMR; } int llc_conn_ev_rej_tmr_exp(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->type != LLC_CONN_EV_TYPE_REJ_TMR; } int llc_conn_ev_busy_tmr_exp(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->type != LLC_CONN_EV_TYPE_BUSY_TMR; } int llc_conn_ev_init_p_f_cycle(struct sock *sk, struct sk_buff *skb) { return 1; } int llc_conn_ev_tx_buffer_full(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_ev *ev = llc_conn_ev(skb); return ev->type == LLC_CONN_EV_TYPE_SIMPLE && ev->prim_type == LLC_CONN_EV_TX_BUFF_FULL ? 0 : 1; } /* Event qualifier functions * * these functions simply verify the value of a state flag associated with * the connection and return either a 0 for success or a non-zero value * for not-success; verify the event is the type we expect */ int llc_conn_ev_qlfy_data_flag_eq_1(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->data_flag != 1; } int llc_conn_ev_qlfy_data_flag_eq_0(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->data_flag; } int llc_conn_ev_qlfy_data_flag_eq_2(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->data_flag != 2; } int llc_conn_ev_qlfy_p_flag_eq_1(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->p_flag != 1; } /** * llc_conn_ev_qlfy_last_frame_eq_1 - checks if frame is last in tx window * @sk: current connection structure. * @skb: current event. * * This function determines when frame which is sent, is last frame of * transmit window, if it is then this function return zero else return * one. This function is used for sending last frame of transmit window * as I-format command with p-bit set to one. Returns 0 if frame is last * frame, 1 otherwise. */ int llc_conn_ev_qlfy_last_frame_eq_1(struct sock *sk, struct sk_buff *skb) { return !(skb_queue_len(&llc_sk(sk)->pdu_unack_q) + 1 == llc_sk(sk)->k); } /** * llc_conn_ev_qlfy_last_frame_eq_0 - checks if frame isn't last in tx window * @sk: current connection structure. * @skb: current event. * * This function determines when frame which is sent, isn't last frame of * transmit window, if it isn't then this function return zero else return * one. Returns 0 if frame isn't last frame, 1 otherwise. */ int llc_conn_ev_qlfy_last_frame_eq_0(struct sock *sk, struct sk_buff *skb) { return skb_queue_len(&llc_sk(sk)->pdu_unack_q) + 1 == llc_sk(sk)->k; } int llc_conn_ev_qlfy_p_flag_eq_0(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->p_flag; } int llc_conn_ev_qlfy_p_flag_eq_f(struct sock *sk, struct sk_buff *skb) { u8 f_bit; llc_pdu_decode_pf_bit(skb, &f_bit); return llc_sk(sk)->p_flag == f_bit ? 0 : 1; } int llc_conn_ev_qlfy_remote_busy_eq_0(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->remote_busy_flag; } int llc_conn_ev_qlfy_remote_busy_eq_1(struct sock *sk, struct sk_buff *skb) { return !llc_sk(sk)->remote_busy_flag; } int llc_conn_ev_qlfy_retry_cnt_lt_n2(struct sock *sk, struct sk_buff *skb) { return !(llc_sk(sk)->retry_count < llc_sk(sk)->n2); } int llc_conn_ev_qlfy_retry_cnt_gte_n2(struct sock *sk, struct sk_buff *skb) { return !(llc_sk(sk)->retry_count >= llc_sk(sk)->n2); } int llc_conn_ev_qlfy_s_flag_eq_1(struct sock *sk, struct sk_buff *skb) { return !llc_sk(sk)->s_flag; } int llc_conn_ev_qlfy_s_flag_eq_0(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->s_flag; } int llc_conn_ev_qlfy_cause_flag_eq_1(struct sock *sk, struct sk_buff *skb) { return !llc_sk(sk)->cause_flag; } int llc_conn_ev_qlfy_cause_flag_eq_0(struct sock *sk, struct sk_buff *skb) { return llc_sk(sk)->cause_flag; } int llc_conn_ev_qlfy_set_status_conn(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->status = LLC_STATUS_CONN; return 0; } int llc_conn_ev_qlfy_set_status_disc(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->status = LLC_STATUS_DISC; return 0; } int llc_conn_ev_qlfy_set_status_failed(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->status = LLC_STATUS_FAILED; return 0; } int llc_conn_ev_qlfy_set_status_remote_busy(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->status = LLC_STATUS_REMOTE_BUSY; return 0; } int llc_conn_ev_qlfy_set_status_refuse(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->status = LLC_STATUS_REFUSE; return 0; } int llc_conn_ev_qlfy_set_status_conflict(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->status = LLC_STATUS_CONFLICT; return 0; } int llc_conn_ev_qlfy_set_status_rst_done(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->status = LLC_STATUS_RESET_DONE; return 0; } |
15629 15631 15633 15628 15653 15636 15626 15636 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | // SPDX-License-Identifier: GPL-2.0 #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/memblock.h> #include <linux/page_ext.h> #include <linux/memory.h> #include <linux/vmalloc.h> #include <linux/kmemleak.h> #include <linux/page_owner.h> #include <linux/page_idle.h> #include <linux/page_table_check.h> #include <linux/rcupdate.h> #include <linux/pgalloc_tag.h> /* * struct page extension * * This is the feature to manage memory for extended data per page. * * Until now, we must modify struct page itself to store extra data per page. * This requires rebuilding the kernel and it is really time consuming process. * And, sometimes, rebuild is impossible due to third party module dependency. * At last, enlarging struct page could cause un-wanted system behaviour change. * * This feature is intended to overcome above mentioned problems. This feature * allocates memory for extended data per page in certain place rather than * the struct page itself. This memory can be accessed by the accessor * functions provided by this code. During the boot process, it checks whether * allocation of huge chunk of memory is needed or not. If not, it avoids * allocating memory at all. With this advantage, we can include this feature * into the kernel in default and can avoid rebuild and solve related problems. * * To help these things to work well, there are two callbacks for clients. One * is the need callback which is mandatory if user wants to avoid useless * memory allocation at boot-time. The other is optional, init callback, which * is used to do proper initialization after memory is allocated. * * The need callback is used to decide whether extended memory allocation is * needed or not. Sometimes users want to deactivate some features in this * boot and extra memory would be unnecessary. In this case, to avoid * allocating huge chunk of memory, each clients represent their need of * extra memory through the need callback. If one of the need callbacks * returns true, it means that someone needs extra memory so that * page extension core should allocates memory for page extension. If * none of need callbacks return true, memory isn't needed at all in this boot * and page extension core can skip to allocate memory. As result, * none of memory is wasted. * * When need callback returns true, page_ext checks if there is a request for * extra memory through size in struct page_ext_operations. If it is non-zero, * extra space is allocated for each page_ext entry and offset is returned to * user through offset in struct page_ext_operations. * * The init callback is used to do proper initialization after page extension * is completely initialized. In sparse memory system, extra memory is * allocated some time later than memmap is allocated. In other words, lifetime * of memory for page extension isn't same with memmap for struct page. * Therefore, clients can't store extra data until page extension is * initialized, even if pages are allocated and used freely. This could * cause inadequate state of extra data per page, so, to prevent it, client * can utilize this callback to initialize the state of it correctly. */ #ifdef CONFIG_SPARSEMEM #define PAGE_EXT_INVALID (0x1) #endif #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) static bool need_page_idle(void) { return true; } static struct page_ext_operations page_idle_ops __initdata = { .need = need_page_idle, .need_shared_flags = true, }; #endif static struct page_ext_operations *page_ext_ops[] __initdata = { #ifdef CONFIG_PAGE_OWNER &page_owner_ops, #endif #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) &page_idle_ops, #endif #ifdef CONFIG_MEM_ALLOC_PROFILING &page_alloc_tagging_ops, #endif #ifdef CONFIG_PAGE_TABLE_CHECK &page_table_check_ops, #endif }; unsigned long page_ext_size; static unsigned long total_usage; #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG /* * To ensure correct allocation tagging for pages, page_ext should be available * before the first page allocation. Otherwise early task stacks will be * allocated before page_ext initialization and missing tags will be flagged. */ bool early_page_ext __meminitdata = true; #else bool early_page_ext __meminitdata; #endif static int __init setup_early_page_ext(char *str) { early_page_ext = true; return 0; } early_param("early_page_ext", setup_early_page_ext); static bool __init invoke_need_callbacks(void) { int i; int entries = ARRAY_SIZE(page_ext_ops); bool need = false; for (i = 0; i < entries; i++) { if (page_ext_ops[i]->need()) { if (page_ext_ops[i]->need_shared_flags) { page_ext_size = sizeof(struct page_ext); break; } } } for (i = 0; i < entries; i++) { if (page_ext_ops[i]->need()) { page_ext_ops[i]->offset = page_ext_size; page_ext_size += page_ext_ops[i]->size; need = true; } } return need; } static void __init invoke_init_callbacks(void) { int i; int entries = ARRAY_SIZE(page_ext_ops); for (i = 0; i < entries; i++) { if (page_ext_ops[i]->init) page_ext_ops[i]->init(); } } static inline struct page_ext *get_entry(void *base, unsigned long index) { return base + page_ext_size * index; } #ifndef CONFIG_SPARSEMEM void __init page_ext_init_flatmem_late(void) { invoke_init_callbacks(); } void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) { pgdat->node_page_ext = NULL; } static struct page_ext *lookup_page_ext(const struct page *page) { unsigned long pfn = page_to_pfn(page); unsigned long index; struct page_ext *base; WARN_ON_ONCE(!rcu_read_lock_held()); base = NODE_DATA(page_to_nid(page))->node_page_ext; /* * The sanity checks the page allocator does upon freeing a * page can reach here before the page_ext arrays are * allocated when feeding a range of pages to the allocator * for the first time during bootup or memory hotplug. */ if (unlikely(!base)) return NULL; index = pfn - round_down(node_start_pfn(page_to_nid(page)), MAX_ORDER_NR_PAGES); return get_entry(base, index); } static int __init alloc_node_page_ext(int nid) { struct page_ext *base; unsigned long table_size; unsigned long nr_pages; nr_pages = NODE_DATA(nid)->node_spanned_pages; if (!nr_pages) return 0; /* * Need extra space if node range is not aligned with * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm * checks buddy's status, range could be out of exact node range. */ if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) nr_pages += MAX_ORDER_NR_PAGES; table_size = page_ext_size * nr_pages; base = memblock_alloc_try_nid( table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid); if (!base) return -ENOMEM; NODE_DATA(nid)->node_page_ext = base; total_usage += table_size; mod_node_page_state(NODE_DATA(nid), NR_MEMMAP_BOOT, DIV_ROUND_UP(table_size, PAGE_SIZE)); return 0; } void __init page_ext_init_flatmem(void) { int nid, fail; if (!invoke_need_callbacks()) return; for_each_online_node(nid) { fail = alloc_node_page_ext(nid); if (fail) goto fail; } pr_info("allocated %ld bytes of page_ext\n", total_usage); return; fail: pr_crit("allocation of page_ext failed.\n"); panic("Out of memory"); } #else /* CONFIG_SPARSEMEM */ static bool page_ext_invalid(struct page_ext *page_ext) { return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID); } static struct page_ext *lookup_page_ext(const struct page *page) { unsigned long pfn = page_to_pfn(page); struct mem_section *section = __pfn_to_section(pfn); struct page_ext *page_ext = READ_ONCE(section->page_ext); WARN_ON_ONCE(!rcu_read_lock_held()); /* * The sanity checks the page allocator does upon freeing a * page can reach here before the page_ext arrays are * allocated when feeding a range of pages to the allocator * for the first time during bootup or memory hotplug. */ if (page_ext_invalid(page_ext)) return NULL; return get_entry(page_ext, pfn); } static void *__meminit alloc_page_ext(size_t size, int nid) { gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; void *addr = NULL; addr = alloc_pages_exact_nid(nid, size, flags); if (addr) kmemleak_alloc(addr, size, 1, flags); else addr = vzalloc_node(size, nid); if (addr) { mod_node_page_state(NODE_DATA(nid), NR_MEMMAP, DIV_ROUND_UP(size, PAGE_SIZE)); } return addr; } static int __meminit init_section_page_ext(unsigned long pfn, int nid) { struct mem_section *section; struct page_ext *base; unsigned long table_size; section = __pfn_to_section(pfn); if (section->page_ext) return 0; table_size = page_ext_size * PAGES_PER_SECTION; base = alloc_page_ext(table_size, nid); /* * The value stored in section->page_ext is (base - pfn) * and it does not point to the memory block allocated above, * causing kmemleak false positives. */ kmemleak_not_leak(base); if (!base) { pr_err("page ext allocation failure\n"); return -ENOMEM; } /* * The passed "pfn" may not be aligned to SECTION. For the calculation * we need to apply a mask. */ pfn &= PAGE_SECTION_MASK; section->page_ext = (void *)base - page_ext_size * pfn; total_usage += table_size; return 0; } static void free_page_ext(void *addr) { size_t table_size; struct page *page; struct pglist_data *pgdat; table_size = page_ext_size * PAGES_PER_SECTION; if (is_vmalloc_addr(addr)) { page = vmalloc_to_page(addr); pgdat = page_pgdat(page); vfree(addr); } else { page = virt_to_page(addr); pgdat = page_pgdat(page); BUG_ON(PageReserved(page)); kmemleak_free(addr); free_pages_exact(addr, table_size); } mod_node_page_state(pgdat, NR_MEMMAP, -1L * (DIV_ROUND_UP(table_size, PAGE_SIZE))); } static void __free_page_ext(unsigned long pfn) { struct mem_section *ms; struct page_ext *base; ms = __pfn_to_section(pfn); if (!ms || !ms->page_ext) return; base = READ_ONCE(ms->page_ext); /* * page_ext here can be valid while doing the roll back * operation in online_page_ext(). */ if (page_ext_invalid(base)) base = (void *)base - PAGE_EXT_INVALID; WRITE_ONCE(ms->page_ext, NULL); base = get_entry(base, pfn); free_page_ext(base); } static void __invalidate_page_ext(unsigned long pfn) { struct mem_section *ms; void *val; ms = __pfn_to_section(pfn); if (!ms || !ms->page_ext) return; val = (void *)ms->page_ext + PAGE_EXT_INVALID; WRITE_ONCE(ms->page_ext, val); } static int __meminit online_page_ext(unsigned long start_pfn, unsigned long nr_pages, int nid) { unsigned long start, end, pfn; int fail = 0; start = SECTION_ALIGN_DOWN(start_pfn); end = SECTION_ALIGN_UP(start_pfn + nr_pages); if (nid == NUMA_NO_NODE) { /* * In this case, "nid" already exists and contains valid memory. * "start_pfn" passed to us is a pfn which is an arg for * online__pages(), and start_pfn should exist. */ nid = pfn_to_nid(start_pfn); VM_BUG_ON(!node_online(nid)); } for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) fail = init_section_page_ext(pfn, nid); if (!fail) return 0; /* rollback */ end = pfn - PAGES_PER_SECTION; for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_ext(pfn); return -ENOMEM; } static void __meminit offline_page_ext(unsigned long start_pfn, unsigned long nr_pages) { unsigned long start, end, pfn; start = SECTION_ALIGN_DOWN(start_pfn); end = SECTION_ALIGN_UP(start_pfn + nr_pages); /* * Freeing of page_ext is done in 3 steps to avoid * use-after-free of it: * 1) Traverse all the sections and mark their page_ext * as invalid. * 2) Wait for all the existing users of page_ext who * started before invalidation to finish. * 3) Free the page_ext. */ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __invalidate_page_ext(pfn); synchronize_rcu(); for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_ext(pfn); } static int __meminit page_ext_callback(struct notifier_block *self, unsigned long action, void *arg) { struct memory_notify *mn = arg; int ret = 0; switch (action) { case MEM_GOING_ONLINE: ret = online_page_ext(mn->start_pfn, mn->nr_pages, mn->status_change_nid); break; case MEM_OFFLINE: offline_page_ext(mn->start_pfn, mn->nr_pages); break; case MEM_CANCEL_ONLINE: offline_page_ext(mn->start_pfn, mn->nr_pages); break; case MEM_GOING_OFFLINE: break; case MEM_ONLINE: case MEM_CANCEL_OFFLINE: break; } return notifier_from_errno(ret); } void __init page_ext_init(void) { unsigned long pfn; int nid; if (!invoke_need_callbacks()) return; for_each_node_state(nid, N_MEMORY) { unsigned long start_pfn, end_pfn; start_pfn = node_start_pfn(nid); end_pfn = node_end_pfn(nid); /* * start_pfn and end_pfn may not be aligned to SECTION and the * page->flags of out of node pages are not initialized. So we * scan [start_pfn, the biggest section's pfn < end_pfn) here. */ for (pfn = start_pfn; pfn < end_pfn; pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { if (!pfn_valid(pfn)) continue; /* * Nodes's pfns can be overlapping. * We know some arch can have a nodes layout such as * -------------pfn--------------> * N0 | N1 | N2 | N0 | N1 | N2|.... */ if (pfn_to_nid(pfn) != nid) continue; if (init_section_page_ext(pfn, nid)) goto oom; cond_resched(); } } hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI); pr_info("allocated %ld bytes of page_ext\n", total_usage); invoke_init_callbacks(); return; oom: panic("Out of memory"); } void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) { } #endif /** * page_ext_get() - Get the extended information for a page. * @page: The page we're interested in. * * Ensures that the page_ext will remain valid until page_ext_put() * is called. * * Return: NULL if no page_ext exists for this page. * Context: Any context. Caller may not sleep until they have called * page_ext_put(). */ struct page_ext *page_ext_get(const struct page *page) { struct page_ext *page_ext; rcu_read_lock(); page_ext = lookup_page_ext(page); if (!page_ext) { rcu_read_unlock(); return NULL; } return page_ext; } /** * page_ext_put() - Working with page extended information is done. * @page_ext: Page extended information received from page_ext_get(). * * The page extended information of the page may not be valid after this * function is called. * * Return: None. * Context: Any context with corresponding page_ext_get() is called. */ void page_ext_put(struct page_ext *page_ext) { if (unlikely(!page_ext)) return; rcu_read_unlock(); } |
579 578 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 | // SPDX-License-Identifier: GPL-2.0 /* * linux/mm/madvise.c * * Copyright (C) 1999 Linus Torvalds * Copyright (C) 2002 Christoph Hellwig */ #include <linux/mman.h> #include <linux/pagemap.h> #include <linux/syscalls.h> #include <linux/mempolicy.h> #include <linux/page-isolation.h> #include <linux/page_idle.h> #include <linux/userfaultfd_k.h> #include <linux/hugetlb.h> #include <linux/falloc.h> #include <linux/fadvise.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/mm_inline.h> #include <linux/string.h> #include <linux/uio.h> #include <linux/ksm.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/pagewalk.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/shmem_fs.h> #include <linux/mmu_notifier.h> #include <asm/tlb.h> #include "internal.h" #include "swap.h" struct madvise_walk_private { struct mmu_gather *tlb; bool pageout; }; /* * Any behaviour which results in changes to the vma->vm_flags needs to * take mmap_lock for writing. Others, which simply traverse vmas, need * to only take it for reading. */ static int madvise_need_mmap_write(int behavior) { switch (behavior) { case MADV_REMOVE: case MADV_WILLNEED: case MADV_DONTNEED: case MADV_DONTNEED_LOCKED: case MADV_COLD: case MADV_PAGEOUT: case MADV_FREE: case MADV_POPULATE_READ: case MADV_POPULATE_WRITE: case MADV_COLLAPSE: return 0; default: /* be safe, default to 1. list exceptions explicitly */ return 1; } } #ifdef CONFIG_ANON_VMA_NAME struct anon_vma_name *anon_vma_name_alloc(const char *name) { struct anon_vma_name *anon_name; size_t count; /* Add 1 for NUL terminator at the end of the anon_name->name */ count = strlen(name) + 1; anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); if (anon_name) { kref_init(&anon_name->kref); memcpy(anon_name->name, name, count); } return anon_name; } void anon_vma_name_free(struct kref *kref) { struct anon_vma_name *anon_name = container_of(kref, struct anon_vma_name, kref); kfree(anon_name); } struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) { mmap_assert_locked(vma->vm_mm); return vma->anon_name; } /* mmap_lock should be write-locked */ static int replace_anon_vma_name(struct vm_area_struct *vma, struct anon_vma_name *anon_name) { struct anon_vma_name *orig_name = anon_vma_name(vma); if (!anon_name) { vma->anon_name = NULL; anon_vma_name_put(orig_name); return 0; } if (anon_vma_name_eq(orig_name, anon_name)) return 0; vma->anon_name = anon_vma_name_reuse(anon_name); anon_vma_name_put(orig_name); return 0; } #else /* CONFIG_ANON_VMA_NAME */ static int replace_anon_vma_name(struct vm_area_struct *vma, struct anon_vma_name *anon_name) { if (anon_name) return -EINVAL; return 0; } #endif /* CONFIG_ANON_VMA_NAME */ /* * Update the vm_flags on region of a vma, splitting it or merging it as * necessary. Must be called with mmap_lock held for writing; * Caller should ensure anon_name stability by raising its refcount even when * anon_name belongs to a valid vma because this function might free that vma. */ static int madvise_update_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end, unsigned long new_flags, struct anon_vma_name *anon_name) { struct mm_struct *mm = vma->vm_mm; int error; VMA_ITERATOR(vmi, mm, start); if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) { *prev = vma; return 0; } vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags, anon_name); if (IS_ERR(vma)) return PTR_ERR(vma); *prev = vma; /* vm_flags is protected by the mmap_lock held in write mode. */ vma_start_write(vma); vm_flags_reset(vma, new_flags); if (!vma->vm_file || vma_is_anon_shmem(vma)) { error = replace_anon_vma_name(vma, anon_name); if (error) return error; } return 0; } #ifdef CONFIG_SWAP static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->private; struct swap_iocb *splug = NULL; pte_t *ptep = NULL; spinlock_t *ptl; unsigned long addr; for (addr = start; addr < end; addr += PAGE_SIZE) { pte_t pte; swp_entry_t entry; struct folio *folio; if (!ptep++) { ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); if (!ptep) break; } pte = ptep_get(ptep); if (!is_swap_pte(pte)) continue; entry = pte_to_swp_entry(pte); if (unlikely(non_swap_entry(entry))) continue; pte_unmap_unlock(ptep, ptl); ptep = NULL; folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, vma, addr, &splug); if (folio) folio_put(folio); } if (ptep) pte_unmap_unlock(ptep, ptl); swap_read_unplug(splug); cond_resched(); return 0; } static const struct mm_walk_ops swapin_walk_ops = { .pmd_entry = swapin_walk_pmd_entry, .walk_lock = PGWALK_RDLOCK, }; static void shmem_swapin_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct address_space *mapping) { XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); pgoff_t end_index = linear_page_index(vma, end) - 1; struct folio *folio; struct swap_iocb *splug = NULL; rcu_read_lock(); xas_for_each(&xas, folio, end_index) { unsigned long addr; swp_entry_t entry; if (!xa_is_value(folio)) continue; entry = radix_to_swp_entry(folio); /* There might be swapin error entries in shmem mapping. */ if (non_swap_entry(entry)) continue; addr = vma->vm_start + ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT); xas_pause(&xas); rcu_read_unlock(); folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping), vma, addr, &splug); if (folio) folio_put(folio); rcu_read_lock(); } rcu_read_unlock(); swap_read_unplug(splug); } #endif /* CONFIG_SWAP */ /* * Schedule all required I/O operations. Do not wait for completion. */ static long madvise_willneed(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; struct file *file = vma->vm_file; loff_t offset; *prev = vma; #ifdef CONFIG_SWAP if (!file) { walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); lru_add_drain(); /* Push any new pages onto the LRU now */ return 0; } if (shmem_mapping(file->f_mapping)) { shmem_swapin_range(vma, start, end, file->f_mapping); lru_add_drain(); /* Push any new pages onto the LRU now */ return 0; } #else if (!file) return -EBADF; #endif if (IS_DAX(file_inode(file))) { /* no bad return value, but ignore advice */ return 0; } /* * Filesystem's fadvise may need to take various locks. We need to * explicitly grab a reference because the vma (and hence the * vma's reference to the file) can go away as soon as we drop * mmap_lock. */ *prev = NULL; /* tell sys_madvise we drop mmap_lock */ get_file(file); offset = (loff_t)(start - vma->vm_start) + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); mmap_read_unlock(mm); vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); fput(file); mmap_read_lock(mm); return 0; } static inline bool can_do_file_pageout(struct vm_area_struct *vma) { if (!vma->vm_file) return false; /* * paging out pagecache only for non-anonymous mappings that correspond * to the files the calling process could (if tried) open for writing; * otherwise we'd be including shared non-exclusive mappings, which * opens a side channel. */ return inode_owner_or_capable(&nop_mnt_idmap, file_inode(vma->vm_file)) || file_permission(vma->vm_file, MAY_WRITE) == 0; } static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end, struct folio *folio, pte_t *ptep, pte_t pte, bool *any_young, bool *any_dirty) { const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; int max_nr = (end - addr) / PAGE_SIZE; return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL, any_young, any_dirty); } static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct madvise_walk_private *private = walk->private; struct mmu_gather *tlb = private->tlb; bool pageout = private->pageout; struct mm_struct *mm = tlb->mm; struct vm_area_struct *vma = walk->vma; pte_t *start_pte, *pte, ptent; spinlock_t *ptl; struct folio *folio = NULL; LIST_HEAD(folio_list); bool pageout_anon_only_filter; unsigned int batch_count = 0; int nr; if (fatal_signal_pending(current)) return -EINTR; pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) && !can_do_file_pageout(vma); #ifdef CON |