3 3 12 8 10 10 10 2 3 2 8 3 6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 // SPDX-License-Identifier: GPL-2.0-only /* * LED support for the input layer * * Copyright 2010-2015 Samuel Thibault <samuel.thibault@ens-lyon.org> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/leds.h> #include <linux/input.h> #if IS_ENABLED(CONFIG_VT) #define VT_TRIGGER(_name) .trigger = _name #else #define VT_TRIGGER(_name) .trigger = NULL #endif static const struct { const char *name; const char *trigger; } input_led_info[LED_CNT] = { [LED_NUML] = { "numlock", VT_TRIGGER("kbd-numlock") }, [LED_CAPSL] = { "capslock", VT_TRIGGER("kbd-capslock") }, [LED_SCROLLL] = { "scrolllock", VT_TRIGGER("kbd-scrolllock") }, [LED_COMPOSE] = { "compose" }, [LED_KANA] = { "kana", VT_TRIGGER("kbd-kanalock") }, [LED_SLEEP] = { "sleep" } , [LED_SUSPEND] = { "suspend" }, [LED_MUTE] = { "mute" }, [LED_MISC] = { "misc" }, [LED_MAIL] = { "mail" }, [LED_CHARGING] = { "charging" }, }; struct input_led { struct led_classdev cdev; struct input_handle *handle; unsigned int code; /* One of LED_* constants */ }; struct input_leds { struct input_handle handle; unsigned int num_leds; struct input_led leds[] __counted_by(num_leds); }; static enum led_brightness input_leds_brightness_get(struct led_classdev *cdev) { struct input_led *led = container_of(cdev, struct input_led, cdev); struct input_dev *input = led->handle->dev; return test_bit(led->code, input->led) ? cdev->max_brightness : 0; } static void input_leds_brightness_set(struct led_classdev *cdev, enum led_brightness brightness) { struct input_led *led = container_of(cdev, struct input_led, cdev); input_inject_event(led->handle, EV_LED, led->code, !!brightness); } static void input_leds_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { } static int input_leds_get_count(struct input_dev *dev) { unsigned int led_code; int count = 0; for_each_set_bit(led_code, dev->ledbit, LED_CNT) if (input_led_info[led_code].name) count++; return count; } static int input_leds_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_leds *leds; struct input_led *led; unsigned int num_leds; unsigned int led_code; int led_no; int error; num_leds = input_leds_get_count(dev); if (!num_leds) return -ENXIO; leds = kzalloc(struct_size(leds, leds, num_leds), GFP_KERNEL); if (!leds) return -ENOMEM; leds->num_leds = num_leds; leds->handle.dev = dev; leds->handle.handler = handler; leds->handle.name = "leds"; leds->handle.private = leds; error = input_register_handle(&leds->handle); if (error) goto err_free_mem; error = input_open_device(&leds->handle); if (error) goto err_unregister_handle; led_no = 0; for_each_set_bit(led_code, dev->ledbit, LED_CNT) { if (!input_led_info[led_code].name) continue; led = &leds->leds[led_no]; led->handle = &leds->handle; led->code = led_code; led->cdev.name = kasprintf(GFP_KERNEL, "%s::%s", dev_name(&dev->dev), input_led_info[led_code].name); if (!led->cdev.name) { error = -ENOMEM; goto err_unregister_leds; } led->cdev.max_brightness = 1; led->cdev.brightness_get = input_leds_brightness_get; led->cdev.brightness_set = input_leds_brightness_set; led->cdev.default_trigger = input_led_info[led_code].trigger; error = led_classdev_register(&dev->dev, &led->cdev); if (error) { dev_err(&dev->dev, "failed to register LED %s: %d\n", led->cdev.name, error); kfree(led->cdev.name); goto err_unregister_leds; } led_no++; } return 0; err_unregister_leds: while (--led_no >= 0) { struct input_led *led = &leds->leds[led_no]; led_classdev_unregister(&led->cdev); kfree(led->cdev.name); } input_close_device(&leds->handle); err_unregister_handle: input_unregister_handle(&leds->handle); err_free_mem: kfree(leds); return error; } static void input_leds_disconnect(struct input_handle *handle) { struct input_leds *leds = handle->private; int i; for (i = 0; i < leds->num_leds; i++) { struct input_led *led = &leds->leds[i]; led_classdev_unregister(&led->cdev); kfree(led->cdev.name); } input_close_device(handle); input_unregister_handle(handle); kfree(leds); } static const struct input_device_id input_leds_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_LED) }, }, { }, }; MODULE_DEVICE_TABLE(input, input_leds_ids); static struct input_handler input_leds_handler = { .event = input_leds_event, .connect = input_leds_connect, .disconnect = input_leds_disconnect, .name = "leds", .id_table = input_leds_ids, }; static int __init input_leds_init(void) { return input_register_handler(&input_leds_handler); } module_init(input_leds_init); static void __exit input_leds_exit(void) { input_unregister_handler(&input_leds_handler); } module_exit(input_leds_exit); MODULE_AUTHOR("Samuel Thibault <samuel.thibault@ens-lyon.org>"); MODULE_AUTHOR("Dmitry Torokhov <dmitry.torokhov@gmail.com>"); MODULE_DESCRIPTION("Input -> LEDs Bridge"); MODULE_LICENSE("GPL v2");
1371 2512 43 43 43 97 30 19 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Fast and scalable bitmaps. * * Copyright (C) 2016 Facebook * Copyright (C) 2013-2014 Jens Axboe */ #ifndef __LINUX_SCALE_BITMAP_H #define __LINUX_SCALE_BITMAP_H #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/cache.h> #include <linux/list.h> #include <linux/log2.h> #include <linux/minmax.h> #include <linux/percpu.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/types.h> #include <linux/wait.h> struct seq_file; /** * struct sbitmap_word - Word in a &struct sbitmap. */ struct sbitmap_word { /** * @word: word holding free bits */ unsigned long word; /** * @cleared: word holding cleared bits */ unsigned long cleared ____cacheline_aligned_in_smp; } ____cacheline_aligned_in_smp; /** * struct sbitmap - Scalable bitmap. * * A &struct sbitmap is spread over multiple cachelines to avoid ping-pong. This * trades off higher memory usage for better scalability. */ struct sbitmap { /** * @depth: Number of bits used in the whole bitmap. */ unsigned int depth; /** * @shift: log2(number of bits used per word) */ unsigned int shift; /** * @map_nr: Number of words (cachelines) being used for the bitmap. */ unsigned int map_nr; /** * @round_robin: Allocate bits in strict round-robin order. */ bool round_robin; /** * @map: Allocated bitmap. */ struct sbitmap_word *map; /* * @alloc_hint: Cache of last successfully allocated or freed bit. * * This is per-cpu, which allows multiple users to stick to different * cachelines until the map is exhausted. */ unsigned int __percpu *alloc_hint; }; #define SBQ_WAIT_QUEUES 8 #define SBQ_WAKE_BATCH 8 /** * struct sbq_wait_state - Wait queue in a &struct sbitmap_queue. */ struct sbq_wait_state { /** * @wait: Wait queue. */ wait_queue_head_t wait; } ____cacheline_aligned_in_smp; /** * struct sbitmap_queue - Scalable bitmap with the added ability to wait on free * bits. * * A &struct sbitmap_queue uses multiple wait queues and rolling wakeups to * avoid contention on the wait queue spinlock. This ensures that we don't hit a * scalability wall when we run out of free bits and have to start putting tasks * to sleep. */ struct sbitmap_queue { /** * @sb: Scalable bitmap. */ struct sbitmap sb; /** * @wake_batch: Number of bits which must be freed before we wake up any * waiters. */ unsigned int wake_batch; /** * @wake_index: Next wait queue in @ws to wake up. */ atomic_t wake_index; /** * @ws: Wait queues. */ struct sbq_wait_state *ws; /* * @ws_active: count of currently active ws waitqueues */ atomic_t ws_active; /** * @min_shallow_depth: The minimum shallow depth which may be passed to * sbitmap_queue_get_shallow() */ unsigned int min_shallow_depth; /** * @completion_cnt: Number of bits cleared passed to the * wakeup function. */ atomic_t completion_cnt; /** * @wakeup_cnt: Number of thread wake ups issued. */ atomic_t wakeup_cnt; }; /** * sbitmap_init_node() - Initialize a &struct sbitmap on a specific memory node. * @sb: Bitmap to initialize. * @depth: Number of bits to allocate. * @shift: Use 2^@shift bits per word in the bitmap; if a negative number if * given, a good default is chosen. * @flags: Allocation flags. * @node: Memory node to allocate on. * @round_robin: If true, be stricter about allocation order; always allocate * starting from the last allocated bit. This is less efficient * than the default behavior (false). * @alloc_hint: If true, apply percpu hint for where to start searching for * a free bit. * * Return: Zero on success or negative errno on failure. */ int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, gfp_t flags, int node, bool round_robin, bool alloc_hint); /* sbitmap internal helper */ static inline unsigned int __map_depth(const struct sbitmap *sb, int index) { if (index == sb->map_nr - 1) return sb->depth - (index << sb->shift); return 1U << sb->shift; } /** * sbitmap_free() - Free memory used by a &struct sbitmap. * @sb: Bitmap to free. */ static inline void sbitmap_free(struct sbitmap *sb) { free_percpu(sb->alloc_hint); kvfree(sb->map); sb->map = NULL; } /** * sbitmap_resize() - Resize a &struct sbitmap. * @sb: Bitmap to resize. * @depth: New number of bits to resize to. * * Doesn't reallocate anything. It's up to the caller to ensure that the new * depth doesn't exceed the depth that the sb was initialized with. */ void sbitmap_resize(struct sbitmap *sb, unsigned int depth); /** * sbitmap_get() - Try to allocate a free bit from a &struct sbitmap. * @sb: Bitmap to allocate from. * * This operation provides acquire barrier semantics if it succeeds. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get(struct sbitmap *sb); /** * sbitmap_get_shallow() - Try to allocate a free bit from a &struct sbitmap, * limiting the depth used from each word. * @sb: Bitmap to allocate from. * @shallow_depth: The maximum number of bits to allocate from a single word. * * This rather specific operation allows for having multiple users with * different allocation limits. E.g., there can be a high-priority class that * uses sbitmap_get() and a low-priority class that uses sbitmap_get_shallow() * with a @shallow_depth of (1 << (@sb->shift - 1)). Then, the low-priority * class can only allocate half of the total bits in the bitmap, preventing it * from starving out the high-priority class. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth); /** * sbitmap_any_bit_set() - Check for a set bit in a &struct sbitmap. * @sb: Bitmap to check. * * Return: true if any bit in the bitmap is set, false otherwise. */ bool sbitmap_any_bit_set(const struct sbitmap *sb); #define SB_NR_TO_INDEX(sb, bitnr) ((bitnr) >> (sb)->shift) #define SB_NR_TO_BIT(sb, bitnr) ((bitnr) & ((1U << (sb)->shift) - 1U)) typedef bool (*sb_for_each_fn)(struct sbitmap *, unsigned int, void *); /** * __sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @start: Where to start the iteration. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. * * This is inline even though it's non-trivial so that the function calls to the * callback will hopefully get optimized away. */ static inline void __sbitmap_for_each_set(struct sbitmap *sb, unsigned int start, sb_for_each_fn fn, void *data) { unsigned int index; unsigned int nr; unsigned int scanned = 0; if (start >= sb->depth) start = 0; index = SB_NR_TO_INDEX(sb, start); nr = SB_NR_TO_BIT(sb, start); while (scanned < sb->depth) { unsigned long word; unsigned int depth = min_t(unsigned int, __map_depth(sb, index) - nr, sb->depth - scanned); scanned += depth; word = sb->map[index].word & ~sb->map[index].cleared; if (!word) goto next; /* * On the first iteration of the outer loop, we need to add the * bit offset back to the size of the word for find_next_bit(). * On all other iterations, nr is zero, so this is a noop. */ depth += nr; while (1) { nr = find_next_bit(&word, depth, nr); if (nr >= depth) break; if (!fn(sb, (index << sb->shift) + nr, data)) return; nr++; } next: nr = 0; if (++index >= sb->map_nr) index = 0; } } /** * sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. */ static inline void sbitmap_for_each_set(struct sbitmap *sb, sb_for_each_fn fn, void *data) { __sbitmap_for_each_set(sb, 0, fn, data); } static inline unsigned long *__sbitmap_word(struct sbitmap *sb, unsigned int bitnr) { return &sb->map[SB_NR_TO_INDEX(sb, bitnr)].word; } /* Helpers equivalent to the operations in asm/bitops.h and linux/bitmap.h */ static inline void sbitmap_set_bit(struct sbitmap *sb, unsigned int bitnr) { set_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline void sbitmap_clear_bit(struct sbitmap *sb, unsigned int bitnr) { clear_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /* * This one is special, since it doesn't actually clear the bit, rather it * sets the corresponding bit in the ->cleared mask instead. Paired with * the caller doing sbitmap_deferred_clear() if a given index is full, which * will clear the previously freed entries in the corresponding ->word. */ static inline void sbitmap_deferred_clear_bit(struct sbitmap *sb, unsigned int bitnr) { unsigned long *addr = &sb->map[SB_NR_TO_INDEX(sb, bitnr)].cleared; set_bit(SB_NR_TO_BIT(sb, bitnr), addr); } /* * Pair of sbitmap_get, and this one applies both cleared bit and * allocation hint. */ static inline void sbitmap_put(struct sbitmap *sb, unsigned int bitnr) { sbitmap_deferred_clear_bit(sb, bitnr); if (likely(sb->alloc_hint && !sb->round_robin && bitnr < sb->depth)) *raw_cpu_ptr(sb->alloc_hint) = bitnr; } static inline int sbitmap_test_bit(struct sbitmap *sb, unsigned int bitnr) { return test_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline int sbitmap_calculate_shift(unsigned int depth) { int shift = ilog2(BITS_PER_LONG); /* * If the bitmap is small, shrink the number of bits per word so * we spread over a few cachelines, at least. If less than 4 * bits, just forget about it, it's not going to work optimally * anyway. */ if (depth >= 4) { while ((4U << shift) > depth) shift--; } return shift; } /** * sbitmap_show() - Dump &struct sbitmap information to a &struct seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_weight() - Return how many set and not cleared bits in a &struct * sbitmap. * @sb: Bitmap to check. * * Return: How many set and not cleared bits set */ unsigned int sbitmap_weight(const struct sbitmap *sb); /** * sbitmap_bitmap_show() - Write a hex dump of a &struct sbitmap to a &struct * seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The output isn't guaranteed to be internally * consistent. */ void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_queue_init_node() - Initialize a &struct sbitmap_queue on a specific * memory node. * @sbq: Bitmap queue to initialize. * @depth: See sbitmap_init_node(). * @shift: See sbitmap_init_node(). * @round_robin: See sbitmap_get(). * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, int shift, bool round_robin, gfp_t flags, int node); /** * sbitmap_queue_free() - Free memory used by a &struct sbitmap_queue. * * @sbq: Bitmap queue to free. */ static inline void sbitmap_queue_free(struct sbitmap_queue *sbq) { kfree(sbq->ws); sbitmap_free(&sbq->sb); } /** * sbitmap_queue_recalculate_wake_batch() - Recalculate wake batch * @sbq: Bitmap queue to recalculate wake batch. * @users: Number of shares. * * Like sbitmap_queue_update_wake_batch(), this will calculate wake batch * by depth. This interface is for HCTX shared tags or queue shared tags. */ void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq, unsigned int users); /** * sbitmap_queue_resize() - Resize a &struct sbitmap_queue. * @sbq: Bitmap queue to resize. * @depth: New number of bits to resize to. * * Like sbitmap_resize(), this doesn't reallocate anything. It has to do * some extra work on the &struct sbitmap_queue, so it's not safe to just * resize the underlying &struct sbitmap. */ void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth); /** * __sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue with preemption already disabled. * @sbq: Bitmap queue to allocate from. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get(struct sbitmap_queue *sbq); /** * __sbitmap_queue_get_batch() - Try to allocate a batch of free bits * @sbq: Bitmap queue to allocate from. * @nr_tags: number of tags requested * @offset: offset to add to returned bits * * Return: Mask of allocated tags, 0 if none are found. Each tag allocated is * a bit in the mask returned, and the caller must add @offset to the value to * get the absolute tag value. */ unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags, unsigned int *offset); /** * sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word, with preemption * already disabled. * @sbq: Bitmap queue to allocate from. * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int shallow_depth); /** * sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get(struct sbitmap_queue *sbq, unsigned int *cpu) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get(sbq); put_cpu(); return nr; } /** * sbitmap_queue_min_shallow_depth() - Inform a &struct sbitmap_queue of the * minimum shallow depth that will be used. * @sbq: Bitmap queue in question. * @min_shallow_depth: The minimum shallow depth that will be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). * * sbitmap_queue_clear() batches wakeups as an optimization. The batch size * depends on the depth of the bitmap. Since the shallow allocation functions * effectively operate with a different depth, the shallow depth must be taken * into account when calculating the batch size. This function must be called * with the minimum shallow depth that will be used. Failure to do so can result * in missed wakeups. */ void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, unsigned int min_shallow_depth); /** * sbitmap_queue_clear() - Free an allocated bit and wake up waiters on a * &struct sbitmap_queue. * @sbq: Bitmap to free from. * @nr: Bit number to free. * @cpu: CPU the bit was allocated on. */ void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, unsigned int cpu); /** * sbitmap_queue_clear_batch() - Free a batch of allocated bits * &struct sbitmap_queue. * @sbq: Bitmap to free from. * @offset: offset for each tag in array * @tags: array of tags * @nr_tags: number of tags in array */ void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset, int *tags, int nr_tags); static inline int sbq_index_inc(int index) { return (index + 1) & (SBQ_WAIT_QUEUES - 1); } static inline void sbq_index_atomic_inc(atomic_t *index) { int old = atomic_read(index); int new = sbq_index_inc(old); atomic_cmpxchg(index, old, new); } /** * sbq_wait_ptr() - Get the next wait queue to use for a &struct * sbitmap_queue. * @sbq: Bitmap queue to wait on. * @wait_index: A counter per "user" of @sbq. */ static inline struct sbq_wait_state *sbq_wait_ptr(struct sbitmap_queue *sbq, atomic_t *wait_index) { struct sbq_wait_state *ws; ws = &sbq->ws[atomic_read(wait_index)]; sbq_index_atomic_inc(wait_index); return ws; } /** * sbitmap_queue_wake_all() - Wake up everything waiting on a &struct * sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_all(struct sbitmap_queue *sbq); /** * sbitmap_queue_wake_up() - Wake up some of waiters in one waitqueue * on a &struct sbitmap_queue. * @sbq: Bitmap queue to wake up. * @nr: Number of bits cleared. */ void sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr); /** * sbitmap_queue_show() - Dump &struct sbitmap_queue information to a &struct * seq_file. * @sbq: Bitmap queue to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m); struct sbq_wait { struct sbitmap_queue *sbq; /* if set, sbq_wait is accounted */ struct wait_queue_entry wait; }; #define DEFINE_SBQ_WAIT(name) \ struct sbq_wait name = { \ .sbq = NULL, \ .wait = { \ .private = current, \ .func = autoremove_wake_function, \ .entry = LIST_HEAD_INIT((name).wait.entry), \ } \ } /* * Wrapper around prepare_to_wait_exclusive(), which maintains some extra * internal state. */ void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait, int state); /* * Must be paired with sbitmap_prepare_to_wait(). */ void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Wrapper around add_wait_queue(), which maintains some extra internal state */ void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Must be paired with sbitmap_add_wait_queue() */ void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait); #endif /* __LINUX_SCALE_BITMAP_H */
745 681 681 157 178 8136 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_MMU_CONTEXT_H #define _ASM_X86_MMU_CONTEXT_H #include <asm/desc.h> #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/pkeys.h> #include <trace/events/tlb.h> #include <asm/tlbflush.h> #include <asm/paravirt.h> #include <asm/debugreg.h> #include <asm/gsseg.h> extern atomic64_t last_mm_ctx_id; #ifdef CONFIG_PERF_EVENTS DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key); DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key); void cr4_update_pce(void *ignored); #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL /* * ldt_structs can be allocated, used, and freed, but they are never * modified while live. */ struct ldt_struct { /* * Xen requires page-aligned LDTs with special permissions. This is * needed to prevent us from installing evil descriptors such as * call gates. On native, we could merge the ldt_struct and LDT * allocations, but it's not worth trying to optimize. */ struct desc_struct *entries; unsigned int nr_entries; /* * If PTI is in use, then the entries array is not mapped while we're * in user mode. The whole array will be aliased at the addressed * given by ldt_slot_va(slot). We use two slots so that we can allocate * and map, and enable a new LDT without invalidating the mapping * of an older, still-in-use LDT. * * slot will be -1 if this LDT doesn't have an alias mapping. */ int slot; }; /* * Used for LDT copy/destruction. */ static inline void init_new_context_ldt(struct mm_struct *mm) { mm->context.ldt = NULL; init_rwsem(&mm->context.ldt_usr_sem); } int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm); void destroy_context_ldt(struct mm_struct *mm); void ldt_arch_exit_mmap(struct mm_struct *mm); #else /* CONFIG_MODIFY_LDT_SYSCALL */ static inline void init_new_context_ldt(struct mm_struct *mm) { } static inline int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm) { return 0; } static inline void destroy_context_ldt(struct mm_struct *mm) { } static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { } #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL extern void load_mm_ldt(struct mm_struct *mm); extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next); #else static inline void load_mm_ldt(struct mm_struct *mm) { clear_LDT(); } static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) { DEBUG_LOCKS_WARN_ON(preemptible()); } #endif #ifdef CONFIG_ADDRESS_MASKING static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm) { return mm->context.lam_cr3_mask; } static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm) { mm->context.lam_cr3_mask = oldmm->context.lam_cr3_mask; mm->context.untag_mask = oldmm->context.untag_mask; } #define mm_untag_mask mm_untag_mask static inline unsigned long mm_untag_mask(struct mm_struct *mm) { return mm->context.untag_mask; } static inline void mm_reset_untag_mask(struct mm_struct *mm) { mm->context.untag_mask = -1UL; } #define arch_pgtable_dma_compat arch_pgtable_dma_compat static inline bool arch_pgtable_dma_compat(struct mm_struct *mm) { return !mm_lam_cr3_mask(mm) || test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags); } #else static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm) { return 0; } static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm) { } static inline void mm_reset_untag_mask(struct mm_struct *mm) { } #endif #define enter_lazy_tlb enter_lazy_tlb extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); /* * Init a new mm. Used on mm copies, like at fork() * and on mm's that are brand-new, like at execve(). */ #define init_new_context init_new_context static inline int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { mutex_init(&mm->context.lock); mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); atomic64_set(&mm->context.tlb_gen, 0); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { /* pkey 0 is the default and allocated implicitly */ mm->context.pkey_allocation_map = 0x1; /* -1 means unallocated or invalid */ mm->context.execute_only_pkey = -1; } #endif mm_reset_untag_mask(mm); init_new_context_ldt(mm); return 0; } #define destroy_context destroy_context static inline void destroy_context(struct mm_struct *mm) { destroy_context_ldt(mm); } extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); #define switch_mm_irqs_off switch_mm_irqs_off #define activate_mm(prev, next) \ do { \ paravirt_enter_mmap(next); \ switch_mm((prev), (next), NULL); \ } while (0); #ifdef CONFIG_X86_32 #define deactivate_mm(tsk, mm) \ do { \ loadsegment(gs, 0); \ } while (0) #else #define deactivate_mm(tsk, mm) \ do { \ shstk_free(tsk); \ load_gs_index(0); \ loadsegment(fs, 0); \ } while (0) #endif static inline void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* Duplicate the oldmm pkey state in mm: */ mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map; mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; #endif } static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { arch_dup_pkeys(oldmm, mm); paravirt_enter_mmap(mm); dup_lam(oldmm, mm); return ldt_dup_context(oldmm, mm); } static inline void arch_exit_mmap(struct mm_struct *mm) { paravirt_arch_exit_mmap(mm); ldt_arch_exit_mmap(mm); } #ifdef CONFIG_X86_64 static inline bool is_64bit_mm(struct mm_struct *mm) { return !IS_ENABLED(CONFIG_IA32_EMULATION) || !test_bit(MM_CONTEXT_UPROBE_IA32, &mm->context.flags); } #else static inline bool is_64bit_mm(struct mm_struct *mm) { return false; } #endif static inline void arch_unmap(struct mm_struct *mm, unsigned long start, unsigned long end) { } /* * We only want to enforce protection keys on the current process * because we effectively have no access to PKRU for other * processes or any way to tell *which * PKRU in a threaded * process we could use. * * So do not enforce things if the VMA is not from the current * mm, or if we are in a kernel thread. */ static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, bool execute, bool foreign) { /* pkeys never affect instruction fetches */ if (execute) return true; /* allow access if the VMA is not one from this process */ if (foreign || vma_is_foreign(vma)) return true; return __pkru_allows_pkey(vma_pkey(vma), write); } unsigned long __get_current_cr3_fast(void); #include <asm-generic/mmu_context.h> #endif /* _ASM_X86_MMU_CONTEXT_H */
13 12 12 7 6 12 6 11 15 5 3 5 3 2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 // SPDX-License-Identifier: GPL-2.0-only /* * Cryptographic API * * Michael MIC (IEEE 802.11i/TKIP) keyed digest * * Copyright (c) 2004 Jouni Malinen <j@w1.fi> */ #include <crypto/internal/hash.h> #include <asm/unaligned.h> #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/types.h> struct michael_mic_ctx { u32 l, r; }; struct michael_mic_desc_ctx { __le32 pending; size_t pending_len; u32 l, r; }; static inline u32 xswap(u32 val) { return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8); } #define michael_block(l, r) \ do { \ r ^= rol32(l, 17); \ l += r; \ r ^= xswap(l); \ l += r; \ r ^= rol32(l, 3); \ l += r; \ r ^= ror32(l, 2); \ l += r; \ } while (0) static int michael_init(struct shash_desc *desc) { struct michael_mic_desc_ctx *mctx = shash_desc_ctx(desc); struct michael_mic_ctx *ctx = crypto_shash_ctx(desc->tfm); mctx->pending_len = 0; mctx->l = ctx->l; mctx->r = ctx->r; return 0; } static int michael_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct michael_mic_desc_ctx *mctx = shash_desc_ctx(desc); if (mctx->pending_len) { int flen = 4 - mctx->pending_len; if (flen > len) flen = len; memcpy((u8 *)&mctx->pending + mctx->pending_len, data, flen); mctx->pending_len += flen; data += flen; len -= flen; if (mctx->pending_len < 4) return 0; mctx->l ^= le32_to_cpu(mctx->pending); michael_block(mctx->l, mctx->r); mctx->pending_len = 0; } while (len >= 4) { mctx->l ^= get_unaligned_le32(data); michael_block(mctx->l, mctx->r); data += 4; len -= 4; } if (len > 0) { mctx->pending_len = len; memcpy(&mctx->pending, data, len); } return 0; } static int michael_final(struct shash_desc *desc, u8 *out) { struct michael_mic_desc_ctx *mctx = shash_desc_ctx(desc); u8 *data = (u8 *)&mctx->pending; /* Last block and padding (0x5a, 4..7 x 0) */ switch (mctx->pending_len) { case 0: mctx->l ^= 0x5a; break; case 1: mctx->l ^= data[0] | 0x5a00; break; case 2: mctx->l ^= data[0] | (data[1] << 8) | 0x5a0000; break; case 3: mctx->l ^= data[0] | (data[1] << 8) | (data[2] << 16) | 0x5a000000; break; } michael_block(mctx->l, mctx->r); /* l ^= 0; */ michael_block(mctx->l, mctx->r); put_unaligned_le32(mctx->l, out); put_unaligned_le32(mctx->r, out + 4); return 0; } static int michael_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct michael_mic_ctx *mctx = crypto_shash_ctx(tfm); if (keylen != 8) return -EINVAL; mctx->l = get_unaligned_le32(key); mctx->r = get_unaligned_le32(key + 4); return 0; } static struct shash_alg alg = { .digestsize = 8, .setkey = michael_setkey, .init = michael_init, .update = michael_update, .final = michael_final, .descsize = sizeof(struct michael_mic_desc_ctx), .base = { .cra_name = "michael_mic", .cra_driver_name = "michael_mic-generic", .cra_blocksize = 8, .cra_ctxsize = sizeof(struct michael_mic_ctx), .cra_module = THIS_MODULE, } }; static int __init michael_mic_init(void) { return crypto_register_shash(&alg); } static void __exit michael_mic_exit(void) { crypto_unregister_shash(&alg); } subsys_initcall(michael_mic_init); module_exit(michael_mic_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Michael MIC"); MODULE_AUTHOR("Jouni Malinen <j@w1.fi>"); MODULE_ALIAS_CRYPTO("michael_mic");
1 1 1 1 1 2 2 2 2 3 3 2 2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 // SPDX-License-Identifier: GPL-2.0-or-later /* xfrm6_protocol.c - Generic xfrm protocol multiplexer for ipv6. * * Copyright (C) 2013 secunet Security Networks AG * * Author: * Steffen Klassert <steffen.klassert@secunet.com> * * Based on: * net/ipv4/xfrm4_protocol.c */ #include <linux/init.h> #include <linux/mutex.h> #include <linux/skbuff.h> #include <linux/icmpv6.h> #include <net/ip6_route.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/xfrm.h> static struct xfrm6_protocol __rcu *esp6_handlers __read_mostly; static struct xfrm6_protocol __rcu *ah6_handlers __read_mostly; static struct xfrm6_protocol __rcu *ipcomp6_handlers __read_mostly; static DEFINE_MUTEX(xfrm6_protocol_mutex); static inline struct xfrm6_protocol __rcu **proto_handlers(u8 protocol) { switch (protocol) { case IPPROTO_ESP: return &esp6_handlers; case IPPROTO_AH: return &ah6_handlers; case IPPROTO_COMP: return &ipcomp6_handlers; } return NULL; } #define for_each_protocol_rcu(head, handler) \ for (handler = rcu_dereference(head); \ handler != NULL; \ handler = rcu_dereference(handler->next)) \ static int xfrm6_rcv_cb(struct sk_buff *skb, u8 protocol, int err) { int ret; struct xfrm6_protocol *handler; struct xfrm6_protocol __rcu **head = proto_handlers(protocol); if (!head) return 0; for_each_protocol_rcu(*proto_handlers(protocol), handler) if ((ret = handler->cb_handler(skb, err)) <= 0) return ret; return 0; } int xfrm6_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type) { int ret; struct xfrm6_protocol *handler; struct xfrm6_protocol __rcu **head = proto_handlers(nexthdr); XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = NULL; XFRM_SPI_SKB_CB(skb)->family = AF_INET6; XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct ipv6hdr, daddr); if (!head) goto out; if (!skb_dst(skb)) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); int flags = RT6_LOOKUP_F_HAS_SADDR; struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_iif = skb->dev->ifindex, .daddr = ip6h->daddr, .saddr = ip6h->saddr, .flowlabel = ip6_flowinfo(ip6h), .flowi6_mark = skb->mark, .flowi6_proto = ip6h->nexthdr, }; dst = ip6_route_input_lookup(dev_net(skb->dev), skb->dev, &fl6, skb, flags); if (dst->error) goto drop; skb_dst_set(skb, dst); } for_each_protocol_rcu(*head, handler) if ((ret = handler->input_handler(skb, nexthdr, spi, encap_type)) != -EINVAL) return ret; out: icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } EXPORT_SYMBOL(xfrm6_rcv_encap); static int xfrm6_esp_rcv(struct sk_buff *skb) { int ret; struct xfrm6_protocol *handler; XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = NULL; for_each_protocol_rcu(esp6_handlers, handler) if ((ret = handler->handler(skb)) != -EINVAL) return ret; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); kfree_skb(skb); return 0; } static int xfrm6_esp_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_protocol *handler; for_each_protocol_rcu(esp6_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static int xfrm6_ah_rcv(struct sk_buff *skb) { int ret; struct xfrm6_protocol *handler; XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = NULL; for_each_protocol_rcu(ah6_handlers, handler) if ((ret = handler->handler(skb)) != -EINVAL) return ret; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); kfree_skb(skb); return 0; } static int xfrm6_ah_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_protocol *handler; for_each_protocol_rcu(ah6_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static int xfrm6_ipcomp_rcv(struct sk_buff *skb) { int ret; struct xfrm6_protocol *handler; XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = NULL; for_each_protocol_rcu(ipcomp6_handlers, handler) if ((ret = handler->handler(skb)) != -EINVAL) return ret; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); kfree_skb(skb); return 0; } static int xfrm6_ipcomp_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_protocol *handler; for_each_protocol_rcu(ipcomp6_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static const struct inet6_protocol esp6_protocol = { .handler = xfrm6_esp_rcv, .err_handler = xfrm6_esp_err, .flags = INET6_PROTO_NOPOLICY, }; static const struct inet6_protocol ah6_protocol = { .handler = xfrm6_ah_rcv, .err_handler = xfrm6_ah_err, .flags = INET6_PROTO_NOPOLICY, }; static const struct inet6_protocol ipcomp6_protocol = { .handler = xfrm6_ipcomp_rcv, .err_handler = xfrm6_ipcomp_err, .flags = INET6_PROTO_NOPOLICY, }; static const struct xfrm_input_afinfo xfrm6_input_afinfo = { .family = AF_INET6, .callback = xfrm6_rcv_cb, }; static inline const struct inet6_protocol *netproto(unsigned char protocol) { switch (protocol) { case IPPROTO_ESP: return &esp6_protocol; case IPPROTO_AH: return &ah6_protocol; case IPPROTO_COMP: return &ipcomp6_protocol; } return NULL; } int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol) { struct xfrm6_protocol __rcu **pprev; struct xfrm6_protocol *t; bool add_netproto = false; int ret = -EEXIST; int priority = handler->priority; if (!proto_handlers(protocol) || !netproto(protocol)) return -EINVAL; mutex_lock(&xfrm6_protocol_mutex); if (!rcu_dereference_protected(*proto_handlers(protocol), lockdep_is_held(&xfrm6_protocol_mutex))) add_netproto = true; for (pprev = proto_handlers(protocol); (t = rcu_dereference_protected(*pprev, lockdep_is_held(&xfrm6_protocol_mutex))) != NULL; pprev = &t->next) { if (t->priority < priority) break; if (t->priority == priority) goto err; } handler->next = *pprev; rcu_assign_pointer(*pprev, handler); ret = 0; err: mutex_unlock(&xfrm6_protocol_mutex); if (add_netproto) { if (inet6_add_protocol(netproto(protocol), protocol)) { pr_err("%s: can't add protocol\n", __func__); ret = -EAGAIN; } } return ret; } EXPORT_SYMBOL(xfrm6_protocol_register); int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol) { struct xfrm6_protocol __rcu **pprev; struct xfrm6_protocol *t; int ret = -ENOENT; if (!proto_handlers(protocol) || !netproto(protocol)) return -EINVAL; mutex_lock(&xfrm6_protocol_mutex); for (pprev = proto_handlers(protocol); (t = rcu_dereference_protected(*pprev, lockdep_is_held(&xfrm6_protocol_mutex))) != NULL; pprev = &t->next) { if (t == handler) { *pprev = handler->next; ret = 0; break; } } if (!rcu_dereference_protected(*proto_handlers(protocol), lockdep_is_held(&xfrm6_protocol_mutex))) { if (inet6_del_protocol(netproto(protocol), protocol) < 0) { pr_err("%s: can't remove protocol\n", __func__); ret = -EAGAIN; } } mutex_unlock(&xfrm6_protocol_mutex); synchronize_net(); return ret; } EXPORT_SYMBOL(xfrm6_protocol_deregister); int __init xfrm6_protocol_init(void) { return xfrm_input_register_afinfo(&xfrm6_input_afinfo); } void xfrm6_protocol_fini(void) { xfrm_input_unregister_afinfo(&xfrm6_input_afinfo); }
47135 64 47139 47105 1 47109 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); static __always_inline bool get_stack_guard_info(unsigned long *stack, struct stack_info *info) { /* make sure it's not in the stack proper */ if (get_stack_info_noinstr(stack, current, info)) return false; /* but if it is in the page below it, we hit a guard */ return get_stack_info_noinstr((void *)stack + PAGE_SIZE, current, info); } const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
78 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FS_STRUCT_H #define _LINUX_FS_STRUCT_H #include <linux/path.h> #include <linux/spinlock.h> #include <linux/seqlock.h> struct fs_struct { int users; spinlock_t lock; seqcount_spinlock_t seq; int umask; int in_exec; struct path root, pwd; } __randomize_layout; extern struct kmem_cache *fs_cachep; extern void exit_fs(struct task_struct *); extern void set_fs_root(struct fs_struct *, const struct path *); extern void set_fs_pwd(struct fs_struct *, const struct path *); extern struct fs_struct *copy_fs_struct(struct fs_struct *); extern void free_fs_struct(struct fs_struct *); extern int unshare_fs_struct(void); static inline void get_fs_root(struct fs_struct *fs, struct path *root) { spin_lock(&fs->lock); *root = fs->root; path_get(root); spin_unlock(&fs->lock); } static inline void get_fs_pwd(struct fs_struct *fs, struct path *pwd) { spin_lock(&fs->lock); *pwd = fs->pwd; path_get(pwd); spin_unlock(&fs->lock); } extern bool current_chrooted(void); #endif /* _LINUX_FS_STRUCT_H */
34 33 23 14 13 6 14 32 32 78 45 48 78 7 2 14 5 6 11 12 12 12 8 6 7 7 21 7 7 11 17 20 6 14 20 9 9 9 9 9 7 1 6 6 12 4 6 6 6 2 2 2 2 4 4 4 6 21 17 6 6 10 10 17 13 13 13 13 13 13 13 13 13 1 6 6 7 8 7 7 1 3 4 7 4 1 4 1 1 1 1 1 1 1 1 1 1 1 8 8 8 7 1 1 6 1 7 1 1 4 3 1 1 4 4 4 2 2 2 2 2 2 2 2 2 5 5 3 3 2 4 3 1 1 1 5 4 4 4 10 5 5 1 6 3 3 3 1 3 2 3 6 6 1 1 1 18 18 2 15 1 16 16 18 18 4 14 12 6 373 368 8 8 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 // SPDX-License-Identifier: LGPL-2.1 /* * Copyright (c) 2012 Taobao. * Written by Tao Ma <boyu.mt@taobao.com> */ #include <linux/iomap.h> #include <linux/fiemap.h> #include <linux/namei.h> #include <linux/iversion.h> #include <linux/sched/mm.h> #include "ext4_jbd2.h" #include "ext4.h" #include "xattr.h" #include "truncate.h" #define EXT4_XATTR_SYSTEM_DATA "data" #define EXT4_MIN_INLINE_DATA_SIZE ((sizeof(__le32) * EXT4_N_BLOCKS)) #define EXT4_INLINE_DOTDOT_OFFSET 2 #define EXT4_INLINE_DOTDOT_SIZE 4 static int ext4_get_inline_size(struct inode *inode) { if (EXT4_I(inode)->i_inline_off) return EXT4_I(inode)->i_inline_size; return 0; } static int get_max_inline_xattr_value_size(struct inode *inode, struct ext4_iloc *iloc) { struct ext4_xattr_ibody_header *header; struct ext4_xattr_entry *entry; struct ext4_inode *raw_inode; void *end; int free, min_offs; if (!EXT4_INODE_HAS_XATTR_SPACE(inode)) return 0; min_offs = EXT4_SB(inode->i_sb)->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE - EXT4_I(inode)->i_extra_isize - sizeof(struct ext4_xattr_ibody_header); /* * We need to subtract another sizeof(__u32) since an in-inode xattr * needs an empty 4 bytes to indicate the gap between the xattr entry * and the name/value pair. */ if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR)) return EXT4_XATTR_SIZE(min_offs - EXT4_XATTR_LEN(strlen(EXT4_XATTR_SYSTEM_DATA)) - EXT4_XATTR_ROUND - sizeof(__u32)); raw_inode = ext4_raw_inode(iloc); header = IHDR(inode, raw_inode); entry = IFIRST(header); end = (void *)raw_inode + EXT4_SB(inode->i_sb)->s_inode_size; /* Compute min_offs. */ while (!IS_LAST_ENTRY(entry)) { void *next = EXT4_XATTR_NEXT(entry); if (next >= end) { EXT4_ERROR_INODE(inode, "corrupt xattr in inline inode"); return 0; } if (!entry->e_value_inum && entry->e_value_size) { size_t offs = le16_to_cpu(entry->e_value_offs); if (offs < min_offs) min_offs = offs; } entry = next; } free = min_offs - ((void *)entry - (void *)IFIRST(header)) - sizeof(__u32); if (EXT4_I(inode)->i_inline_off) { entry = (struct ext4_xattr_entry *) ((void *)raw_inode + EXT4_I(inode)->i_inline_off); free += EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size)); goto out; } free -= EXT4_XATTR_LEN(strlen(EXT4_XATTR_SYSTEM_DATA)); if (free > EXT4_XATTR_ROUND) free = EXT4_XATTR_SIZE(free - EXT4_XATTR_ROUND); else free = 0; out: return free; } /* * Get the maximum size we now can store in an inode. * If we can't find the space for a xattr entry, don't use the space * of the extents since we have no space to indicate the inline data. */ int ext4_get_max_inline_size(struct inode *inode) { int error, max_inline_size; struct ext4_iloc iloc; if (EXT4_I(inode)->i_extra_isize == 0) return 0; error = ext4_get_inode_loc(inode, &iloc); if (error) { ext4_error_inode_err(inode, __func__, __LINE__, 0, -error, "can't get inode location %lu", inode->i_ino); return 0; } down_read(&EXT4_I(inode)->xattr_sem); max_inline_size = get_max_inline_xattr_value_size(inode, &iloc); up_read(&EXT4_I(inode)->xattr_sem); brelse(iloc.bh); if (!max_inline_size) return 0; return max_inline_size + EXT4_MIN_INLINE_DATA_SIZE; } /* * this function does not take xattr_sem, which is OK because it is * currently only used in a code path coming form ext4_iget, before * the new inode has been unlocked */ int ext4_find_inline_data_nolock(struct inode *inode) { struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; int error; if (EXT4_I(inode)->i_extra_isize == 0) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; if (!is.s.not_found) { if (is.s.here->e_value_inum) { EXT4_ERROR_INODE(inode, "inline data xattr refers " "to an external xattr inode"); error = -EFSCORRUPTED; goto out; } EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = EXT4_MIN_INLINE_DATA_SIZE + le32_to_cpu(is.s.here->e_value_size); } out: brelse(is.iloc.bh); return error; } static int ext4_read_inline_data(struct inode *inode, void *buffer, unsigned int len, struct ext4_iloc *iloc) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; int cp_len = 0; struct ext4_inode *raw_inode; if (!len) return 0; BUG_ON(len > EXT4_I(inode)->i_inline_size); cp_len = min_t(unsigned int, len, EXT4_MIN_INLINE_DATA_SIZE); raw_inode = ext4_raw_inode(iloc); memcpy(buffer, (void *)(raw_inode->i_block), cp_len); len -= cp_len; buffer += cp_len; if (!len) goto out; header = IHDR(inode, raw_inode); entry = (struct ext4_xattr_entry *)((void *)raw_inode + EXT4_I(inode)->i_inline_off); len = min_t(unsigned int, len, (unsigned int)le32_to_cpu(entry->e_value_size)); memcpy(buffer, (void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs), len); cp_len += len; out: return cp_len; } /* * write the buffer to the inline inode. * If 'create' is set, we don't need to do the extra copy in the xattr * value since it is already handled by ext4_xattr_ibody_set. * That saves us one memcpy. */ static void ext4_write_inline_data(struct inode *inode, struct ext4_iloc *iloc, void *buffer, loff_t pos, unsigned int len) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; struct ext4_inode *raw_inode; int cp_len = 0; if (unlikely(ext4_forced_shutdown(inode->i_sb))) return; BUG_ON(!EXT4_I(inode)->i_inline_off); BUG_ON(pos + len > EXT4_I(inode)->i_inline_size); raw_inode = ext4_raw_inode(iloc); buffer += pos; if (pos < EXT4_MIN_INLINE_DATA_SIZE) { cp_len = pos + len > EXT4_MIN_INLINE_DATA_SIZE ? EXT4_MIN_INLINE_DATA_SIZE - pos : len; memcpy((void *)raw_inode->i_block + pos, buffer, cp_len); len -= cp_len; buffer += cp_len; pos += cp_len; } if (!len) return; pos -= EXT4_MIN_INLINE_DATA_SIZE; header = IHDR(inode, raw_inode); entry = (struct ext4_xattr_entry *)((void *)raw_inode + EXT4_I(inode)->i_inline_off); memcpy((void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs) + pos, buffer, len); } static int ext4_create_inline_data(handle_t *handle, struct inode *inode, unsigned len) { int error; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; BUFFER_TRACE(is.iloc.bh, "get_write_access"); error = ext4_journal_get_write_access(handle, inode->i_sb, is.iloc.bh, EXT4_JTR_NONE); if (error) goto out; if (len > EXT4_MIN_INLINE_DATA_SIZE) { value = EXT4_ZERO_XATTR_VALUE; len -= EXT4_MIN_INLINE_DATA_SIZE; } else { value = ""; len = 0; } /* Insert the xttr entry. */ i.value = value; i.value_len = len; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUG_ON(!is.s.not_found); error = ext4_xattr_ibody_set(handle, inode, &i, &is); if (error) { if (error == -ENOSPC) ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); goto out; } memset((void *)ext4_raw_inode(&is.iloc)->i_block, 0, EXT4_MIN_INLINE_DATA_SIZE); EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = len + EXT4_MIN_INLINE_DATA_SIZE; ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); ext4_set_inode_flag(inode, EXT4_INODE_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); out: brelse(is.iloc.bh); return error; } static int ext4_update_inline_data(handle_t *handle, struct inode *inode, unsigned int len) { int error; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; /* If the old space is ok, write the data directly. */ if (len <= EXT4_I(inode)->i_inline_size) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUG_ON(is.s.not_found); len -= EXT4_MIN_INLINE_DATA_SIZE; value = kzalloc(len, GFP_NOFS); if (!value) { error = -ENOMEM; goto out; } error = ext4_xattr_ibody_get(inode, i.name_index, i.name, value, len); if (error < 0) goto out; BUFFER_TRACE(is.iloc.bh, "get_write_access"); error = ext4_journal_get_write_access(handle, inode->i_sb, is.iloc.bh, EXT4_JTR_NONE); if (error) goto out; /* Update the xattr entry. */ i.value = value; i.value_len = len; error = ext4_xattr_ibody_set(handle, inode, &i, &is); if (error) goto out; EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = EXT4_MIN_INLINE_DATA_SIZE + le32_to_cpu(is.s.here->e_value_size); ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); out: kfree(value); brelse(is.iloc.bh); return error; } static int ext4_prepare_inline_data(handle_t *handle, struct inode *inode, unsigned int len) { int ret, size, no_expand; struct ext4_inode_info *ei = EXT4_I(inode); if (!ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) return -ENOSPC; size = ext4_get_max_inline_size(inode); if (size < len) return -ENOSPC; ext4_write_lock_xattr(inode, &no_expand); if (ei->i_inline_off) ret = ext4_update_inline_data(handle, inode, len); else ret = ext4_create_inline_data(handle, inode, len); ext4_write_unlock_xattr(inode, &no_expand); return ret; } static int ext4_destroy_inline_data_nolock(handle_t *handle, struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_xattr_ibody_find is = { .s = { .not_found = 0, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, .value = NULL, .value_len = 0, }; int error; if (!ei->i_inline_off) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUFFER_TRACE(is.iloc.bh, "get_write_access"); error = ext4_journal_get_write_access(handle, inode->i_sb, is.iloc.bh, EXT4_JTR_NONE); if (error) goto out; error = ext4_xattr_ibody_set(handle, inode, &i, &is); if (error) goto out; memset((void *)ext4_raw_inode(&is.iloc)->i_block, 0, EXT4_MIN_INLINE_DATA_SIZE); memset(ei->i_data, 0, EXT4_MIN_INLINE_DATA_SIZE); if (ext4_has_feature_extents(inode->i_sb)) { if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) { ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); ext4_ext_tree_init(handle, inode); } } ext4_clear_inode_flag(inode, EXT4_INODE_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); EXT4_I(inode)->i_inline_off = 0; EXT4_I(inode)->i_inline_size = 0; ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); out: brelse(is.iloc.bh); if (error == -ENODATA) error = 0; return error; } static int ext4_read_inline_folio(struct inode *inode, struct folio *folio) { void *kaddr; int ret = 0; size_t len; struct ext4_iloc iloc; BUG_ON(!folio_test_locked(folio)); BUG_ON(!ext4_has_inline_data(inode)); BUG_ON(folio->index); if (!EXT4_I(inode)->i_inline_off) { ext4_warning(inode->i_sb, "inode %lu doesn't have inline data.", inode->i_ino); goto out; } ret = ext4_get_inode_loc(inode, &iloc); if (ret) goto out; len = min_t(size_t, ext4_get_inline_size(inode), i_size_read(inode)); BUG_ON(len > PAGE_SIZE); kaddr = kmap_local_folio(folio, 0); ret = ext4_read_inline_data(inode, kaddr, len, &iloc); kaddr = folio_zero_tail(folio, len, kaddr + len); kunmap_local(kaddr); folio_mark_uptodate(folio); brelse(iloc.bh); out: return ret; } int ext4_readpage_inline(struct inode *inode, struct folio *folio) { int ret = 0; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); return -EAGAIN; } /* * Current inline data can only exist in the 1st page, * So for all the other pages, just set them uptodate. */ if (!folio->index) ret = ext4_read_inline_folio(inode, folio); else if (!folio_test_uptodate(folio)) { folio_zero_segment(folio, 0, folio_size(folio)); folio_mark_uptodate(folio); } up_read(&EXT4_I(inode)->xattr_sem); folio_unlock(folio); return ret >= 0 ? 0 : ret; } static int ext4_convert_inline_data_to_extent(struct address_space *mapping, struct inode *inode) { int ret, needed_blocks, no_expand; handle_t *handle = NULL; int retries = 0, sem_held = 0; struct folio *folio = NULL; unsigned from, to; struct ext4_iloc iloc; if (!ext4_has_inline_data(inode)) { /* * clear the flag so that no new write * will trap here again. */ ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); return 0; } needed_blocks = ext4_writepage_trans_blocks(inode); ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; retry: handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out; } /* We cannot recurse into the filesystem as the transaction is already * started */ folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN | FGP_NOFS, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) { ret = PTR_ERR(folio); goto out_nofolio; } ext4_write_lock_xattr(inode, &no_expand); sem_held = 1; /* If some one has already done this for us, just exit. */ if (!ext4_has_inline_data(inode)) { ret = 0; goto out; } from = 0; to = ext4_get_inline_size(inode); if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) goto out; } ret = ext4_destroy_inline_data_nolock(handle, inode); if (ret) goto out; if (ext4_should_dioread_nolock(inode)) { ret = __block_write_begin(&folio->page, from, to, ext4_get_block_unwritten); } else ret = __block_write_begin(&folio->page, from, to, ext4_get_block); if (!ret && ext4_should_journal_data(inode)) { ret = ext4_walk_page_buffers(handle, inode, folio_buffers(folio), from, to, NULL, do_journal_get_write_access); } if (ret) { folio_unlock(folio); folio_put(folio); folio = NULL; ext4_orphan_add(handle, inode); ext4_write_unlock_xattr(inode, &no_expand); sem_held = 0; ext4_journal_stop(handle); handle = NULL; ext4_truncate_failed_write(inode); /* * If truncate failed early the inode might * still be on the orphan list; we need to * make sure the inode is removed from the * orphan list in that case. */ if (inode->i_nlink) ext4_orphan_del(NULL, inode); } if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) goto retry; if (folio) block_commit_write(&folio->page, from, to); out: if (folio) { folio_unlock(folio); folio_put(folio); } out_nofolio: if (sem_held) ext4_write_unlock_xattr(inode, &no_expand); if (handle) ext4_journal_stop(handle); brelse(iloc.bh); return ret; } /* * Try to write data in the inode. * If the inode has inline data, check whether the new write can be * in the inode also. If not, create the page the handle, move the data * to the page make it update and let the later codes create extent for it. */ int ext4_try_to_write_inline_data(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, struct page **pagep) { int ret; handle_t *handle; struct folio *folio; struct ext4_iloc iloc; if (pos + len > ext4_get_max_inline_size(inode)) goto convert; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; /* * The possible write could happen in the inode, * so try to reserve the space in inode first. */ handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out; } ret = ext4_prepare_inline_data(handle, inode, pos + len); if (ret && ret != -ENOSPC) goto out; /* We don't have space in inline inode, so convert it to extent. */ if (ret == -ENOSPC) { ext4_journal_stop(handle); brelse(iloc.bh); goto convert; } ret = ext4_journal_get_write_access(handle, inode->i_sb, iloc.bh, EXT4_JTR_NONE); if (ret) goto out; folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN | FGP_NOFS, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) { ret = PTR_ERR(folio); goto out; } *pagep = &folio->page; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ret = 0; folio_unlock(folio); folio_put(folio); goto out_up_read; } if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) { folio_unlock(folio); folio_put(folio); goto out_up_read; } } ret = 1; handle = NULL; out_up_read: up_read(&EXT4_I(inode)->xattr_sem); out: if (handle && (ret != 1)) ext4_journal_stop(handle); brelse(iloc.bh); return ret; convert: return ext4_convert_inline_data_to_extent(mapping, inode); } int ext4_write_inline_data_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, struct folio *folio) { handle_t *handle = ext4_journal_current_handle(); int no_expand; void *kaddr; struct ext4_iloc iloc; int ret = 0, ret2; if (unlikely(copied < len) && !folio_test_uptodate(folio)) copied = 0; if (likely(copied)) { ret = ext4_get_inode_loc(inode, &iloc); if (ret) { folio_unlock(folio); folio_put(folio); ext4_std_error(inode->i_sb, ret); goto out; } ext4_write_lock_xattr(inode, &no_expand); BUG_ON(!ext4_has_inline_data(inode)); /* * ei->i_inline_off may have changed since * ext4_write_begin() called * ext4_try_to_write_inline_data() */ (void) ext4_find_inline_data_nolock(inode); kaddr = kmap_local_folio(folio, 0); ext4_write_inline_data(inode, &iloc, kaddr, pos, copied); kunmap_local(kaddr); folio_mark_uptodate(folio); /* clear dirty flag so that writepages wouldn't work for us. */ folio_clear_dirty(folio); ext4_write_unlock_xattr(inode, &no_expand); brelse(iloc.bh); /* * It's important to update i_size while still holding folio * lock: page writeout could otherwise come in and zero * beyond i_size. */ ext4_update_inode_size(inode, pos + copied); } folio_unlock(folio); folio_put(folio); /* * Don't mark the inode dirty under folio lock. First, it unnecessarily * makes the holding time of folio lock longer. Second, it forces lock * ordering of folio lock and transaction start for journaling * filesystems. */ if (likely(copied)) mark_inode_dirty(inode); out: /* * If we didn't copy as much data as expected, we need to trim back * size of xattr containing inline data. */ if (pos + len > inode->i_size && ext4_can_truncate(inode)) ext4_orphan_add(handle, inode); ret2 = ext4_journal_stop(handle); if (!ret) ret = ret2; if (pos + len > inode->i_size) { ext4_truncate_failed_write(inode); /* * If truncate failed early the inode might still be * on the orphan list; we need to make sure the inode * is removed from the orphan list in that case. */ if (inode->i_nlink) ext4_orphan_del(NULL, inode); } return ret ? ret : copied; } /* * Try to make the page cache and handle ready for the inline data case. * We can call this function in 2 cases: * 1. The inode is created and the first write exceeds inline size. We can * clear the inode state safely. * 2. The inode has inline data, then we need to read the data, make it * update and dirty so that ext4_da_writepages can handle it. We don't * need to start the journal since the file's metadata isn't changed now. */ static int ext4_da_convert_inline_data_to_extent(struct address_space *mapping, struct inode *inode, void **fsdata) { int ret = 0, inline_size; struct folio *folio; folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) return PTR_ERR(folio); down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); goto out; } inline_size = ext4_get_inline_size(inode); if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) goto out; } ret = __block_write_begin(&folio->page, 0, inline_size, ext4_da_get_block_prep); if (ret) { up_read(&EXT4_I(inode)->xattr_sem); folio_unlock(folio); folio_put(folio); ext4_truncate_failed_write(inode); return ret; } folio_mark_dirty(folio); folio_mark_uptodate(folio); ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); *fsdata = (void *)CONVERT_INLINE_DATA; out: up_read(&EXT4_I(inode)->xattr_sem); if (folio) { folio_unlock(folio); folio_put(folio); } return ret; } /* * Prepare the write for the inline data. * If the data can be written into the inode, we just read * the page and make it uptodate, and start the journal. * Otherwise read the page, makes it dirty so that it can be * handle in writepages(the i_disksize update is left to the * normal ext4_da_write_end). */ int ext4_da_write_inline_data_begin(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { int ret; handle_t *handle; struct folio *folio; struct ext4_iloc iloc; int retries = 0; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; retry_journal: handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); goto out; } ret = ext4_prepare_inline_data(handle, inode, pos + len); if (ret && ret != -ENOSPC) goto out_journal; if (ret == -ENOSPC) { ext4_journal_stop(handle); ret = ext4_da_convert_inline_data_to_extent(mapping, inode, fsdata); if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) goto retry_journal; goto out; } /* * We cannot recurse into the filesystem as the transaction * is already started. */ folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN | FGP_NOFS, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) { ret = PTR_ERR(folio); goto out_journal; } down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ret = 0; goto out_release_page; } if (!folio_test_uptodate(folio)) { ret = ext4_read_inline_folio(inode, folio); if (ret < 0) goto out_release_page; } ret = ext4_journal_get_write_access(handle, inode->i_sb, iloc.bh, EXT4_JTR_NONE); if (ret) goto out_release_page; up_read(&EXT4_I(inode)->xattr_sem); *pagep = &folio->page; brelse(iloc.bh); return 1; out_release_page: up_read(&EXT4_I(inode)->xattr_sem); folio_unlock(folio); folio_put(folio); out_journal: ext4_journal_stop(handle); out: brelse(iloc.bh); return ret; } #ifdef INLINE_DIR_DEBUG void ext4_show_inline_dir(struct inode *dir, struct buffer_head *bh, void *inline_start, int inline_size) { int offset; unsigned short de_len; struct ext4_dir_entry_2 *de = inline_start; void *dlimit = inline_start + inline_size; trace_printk("inode %lu\n", dir->i_ino); offset = 0; while ((void *)de < dlimit) { de_len = ext4_rec_len_from_disk(de->rec_len, inline_size); trace_printk("de: off %u rlen %u name %.*s nlen %u ino %u\n", offset, de_len, de->name_len, de->name, de->name_len, le32_to_cpu(de->inode)); if (ext4_check_dir_entry(dir, NULL, de, bh, inline_start, inline_size, offset)) BUG(); offset += de_len; de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); } } #else #define ext4_show_inline_dir(dir, bh, inline_start, inline_size) #endif /* * Add a new entry into a inline dir. * It will return -ENOSPC if no space is available, and -EIO * and -EEXIST if directory entry already exists. */ static int ext4_add_dirent_to_inline(handle_t *handle, struct ext4_filename *fname, struct inode *dir, struct inode *inode, struct ext4_iloc *iloc, void *inline_start, int inline_size) { int err; struct ext4_dir_entry_2 *de; err = ext4_find_dest_de(dir, inode, iloc->bh, inline_start, inline_size, fname, &de); if (err) return err; BUFFER_TRACE(iloc->bh, "get_write_access"); err = ext4_journal_get_write_access(handle, dir->i_sb, iloc->bh, EXT4_JTR_NONE); if (err) return err; ext4_insert_dentry(dir, inode, de, inline_size, fname); ext4_show_inline_dir(dir, iloc->bh, inline_start, inline_size); /* * XXX shouldn't update any times until successful * completion of syscall, but too many callers depend * on this. * * XXX similarly, too many callers depend on * ext4_new_inode() setting the times, but error * recovery deletes the inode, so the worst that can * happen is that the times are slightly out of date * and/or different from the directory change time. */ inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); ext4_update_dx_flag(dir); inode_inc_iversion(dir); return 1; } static void *ext4_get_inline_xattr_pos(struct inode *inode, struct ext4_iloc *iloc) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; BUG_ON(!EXT4_I(inode)->i_inline_off); header = IHDR(inode, ext4_raw_inode(iloc)); entry = (struct ext4_xattr_entry *)((void *)ext4_raw_inode(iloc) + EXT4_I(inode)->i_inline_off); return (void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs); } /* Set the final de to cover the whole block. */ static void ext4_update_final_de(void *de_buf, int old_size, int new_size) { struct ext4_dir_entry_2 *de, *prev_de; void *limit; int de_len; de = de_buf; if (old_size) { limit = de_buf + old_size; do { prev_de = de; de_len = ext4_rec_len_from_disk(de->rec_len, old_size); de_buf += de_len; de = de_buf; } while (de_buf < limit); prev_de->rec_len = ext4_rec_len_to_disk(de_len + new_size - old_size, new_size); } else { /* this is just created, so create an empty entry. */ de->inode = 0; de->rec_len = ext4_rec_len_to_disk(new_size, new_size); } } static int ext4_update_inline_dir(handle_t *handle, struct inode *dir, struct ext4_iloc *iloc) { int ret; int old_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; int new_size = get_max_inline_xattr_value_size(dir, iloc); if (new_size - old_size <= ext4_dir_rec_len(1, NULL)) return -ENOSPC; ret = ext4_update_inline_data(handle, dir, new_size + EXT4_MIN_INLINE_DATA_SIZE); if (ret) return ret; ext4_update_final_de(ext4_get_inline_xattr_pos(dir, iloc), old_size, EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE); dir->i_size = EXT4_I(dir)->i_disksize = EXT4_I(dir)->i_inline_size; return 0; } static void ext4_restore_inline_data(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc, void *buf, int inline_size) { int ret; ret = ext4_create_inline_data(handle, inode, inline_size); if (ret) { ext4_msg(inode->i_sb, KERN_EMERG, "error restoring inline_data for inode -- potential data loss! (inode %lu, error %d)", inode->i_ino, ret); return; } ext4_write_inline_data(inode, iloc, buf, 0, inline_size); ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); } static int ext4_finish_convert_inline_dir(handle_t *handle, struct inode *inode, struct buffer_head *dir_block, void *buf, int inline_size) { int err, csum_size = 0, header_size = 0; struct ext4_dir_entry_2 *de; void *target = dir_block->b_data; /* * First create "." and ".." and then copy the dir information * back to the block. */ de = target; de = ext4_init_dot_dotdot(inode, de, inode->i_sb->s_blocksize, csum_size, le32_to_cpu(((struct ext4_dir_entry_2 *)buf)->inode), 1); header_size = (void *)de - target; memcpy((void *)de, buf + EXT4_INLINE_DOTDOT_SIZE, inline_size - EXT4_INLINE_DOTDOT_SIZE); if (ext4_has_metadata_csum(inode->i_sb)) csum_size = sizeof(struct ext4_dir_entry_tail); inode->i_size = inode->i_sb->s_blocksize; i_size_write(inode, inode->i_sb->s_blocksize); EXT4_I(inode)->i_disksize = inode->i_sb->s_blocksize; ext4_update_final_de(dir_block->b_data, inline_size - EXT4_INLINE_DOTDOT_SIZE + header_size, inode->i_sb->s_blocksize - csum_size); if (csum_size) ext4_initialize_dirent_tail(dir_block, inode->i_sb->s_blocksize); set_buffer_uptodate(dir_block); unlock_buffer(dir_block); err = ext4_handle_dirty_dirblock(handle, inode, dir_block); if (err) return err; set_buffer_verified(dir_block); return ext4_mark_inode_dirty(handle, inode); } static int ext4_convert_inline_data_nolock(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc) { int error; void *buf = NULL; struct buffer_head *data_bh = NULL; struct ext4_map_blocks map; int inline_size; inline_size = ext4_get_inline_size(inode); buf = kmalloc(inline_size, GFP_NOFS); if (!buf) { error = -ENOMEM; goto out; } error = ext4_read_inline_data(inode, buf, inline_size, iloc); if (error < 0) goto out; /* * Make sure the inline directory entries pass checks before we try to * convert them, so that we avoid touching stuff that needs fsck. */ if (S_ISDIR(inode->i_mode)) { error = ext4_check_all_de(inode, iloc->bh, buf + EXT4_INLINE_DOTDOT_SIZE, inline_size - EXT4_INLINE_DOTDOT_SIZE); if (error) goto out; } error = ext4_destroy_inline_data_nolock(handle, inode); if (error) goto out; map.m_lblk = 0; map.m_len = 1; map.m_flags = 0; error = ext4_map_blocks(handle, inode, &map, EXT4_GET_BLOCKS_CREATE); if (error < 0) goto out_restore; if (!(map.m_flags & EXT4_MAP_MAPPED)) { error = -EIO; goto out_restore; } data_bh = sb_getblk(inode->i_sb, map.m_pblk); if (!data_bh) { error = -ENOMEM; goto out_restore; } lock_buffer(data_bh); error = ext4_journal_get_create_access(handle, inode->i_sb, data_bh, EXT4_JTR_NONE); if (error) { unlock_buffer(data_bh); error = -EIO; goto out_restore; } memset(data_bh->b_data, 0, inode->i_sb->s_blocksize); if (!S_ISDIR(inode->i_mode)) { memcpy(data_bh->b_data, buf, inline_size); set_buffer_uptodate(data_bh); unlock_buffer(data_bh); error = ext4_handle_dirty_metadata(handle, inode, data_bh); } else { error = ext4_finish_convert_inline_dir(handle, inode, data_bh, buf, inline_size); } out_restore: if (error) ext4_restore_inline_data(handle, inode, iloc, buf, inline_size); out: brelse(data_bh); kfree(buf); return error; } /* * Try to add the new entry to the inline data. * If succeeds, return 0. If not, extended the inline dir and copied data to * the new created block. */ int ext4_try_add_inline_entry(handle_t *handle, struct ext4_filename *fname, struct inode *dir, struct inode *inode) { int ret, ret2, inline_size, no_expand; void *inline_start; struct ext4_iloc iloc; ret = ext4_get_inode_loc(dir, &iloc); if (ret) return ret; ext4_write_lock_xattr(dir, &no_expand); if (!ext4_has_inline_data(dir)) goto out; inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; ret = ext4_add_dirent_to_inline(handle, fname, dir, inode, &iloc, inline_start, inline_size); if (ret != -ENOSPC) goto out; /* check whether it can be inserted to inline xattr space. */ inline_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; if (!inline_size) { /* Try to use the xattr space.*/ ret = ext4_update_inline_dir(handle, dir, &iloc); if (ret && ret != -ENOSPC) goto out; inline_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; } if (inline_size) { inline_start = ext4_get_inline_xattr_pos(dir, &iloc); ret = ext4_add_dirent_to_inline(handle, fname, dir, inode, &iloc, inline_start, inline_size); if (ret != -ENOSPC) goto out; } /* * The inline space is filled up, so create a new block for it. * As the extent tree will be created, we have to save the inline * dir first. */ ret = ext4_convert_inline_data_nolock(handle, dir, &iloc); out: ext4_write_unlock_xattr(dir, &no_expand); ret2 = ext4_mark_inode_dirty(handle, dir); if (unlikely(ret2 && !ret)) ret = ret2; brelse(iloc.bh); return ret; } /* * This function fills a red-black tree with information from an * inlined dir. It returns the number directory entries loaded * into the tree. If there is an error it is returned in err. */ int ext4_inlinedir_to_tree(struct file *dir_file, struct inode *dir, ext4_lblk_t block, struct dx_hash_info *hinfo, __u32 start_hash, __u32 start_minor_hash, int *has_inline_data) { int err = 0, count = 0; unsigned int parent_ino; int pos; struct ext4_dir_entry_2 *de; struct inode *inode = file_inode(dir_file); int ret, inline_size = 0; struct ext4_iloc iloc; void *dir_buf = NULL; struct ext4_dir_entry_2 fake; struct fscrypt_str tmp_str; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); *has_inline_data = 0; goto out; } inline_size = ext4_get_inline_size(inode); dir_buf = kmalloc(inline_size, GFP_NOFS); if (!dir_buf) { ret = -ENOMEM; up_read(&EXT4_I(inode)->xattr_sem); goto out; } ret = ext4_read_inline_data(inode, dir_buf, inline_size, &iloc); up_read(&EXT4_I(inode)->xattr_sem); if (ret < 0) goto out; pos = 0; parent_ino = le32_to_cpu(((struct ext4_dir_entry_2 *)dir_buf)->inode); while (pos < inline_size) { /* * As inlined dir doesn't store any information about '.' and * only the inode number of '..' is stored, we have to handle * them differently. */ if (pos == 0) { fake.inode = cpu_to_le32(inode->i_ino); fake.name_len = 1; strcpy(fake.name, "."); fake.rec_len = ext4_rec_len_to_disk( ext4_dir_rec_len(fake.name_len, NULL), inline_size); ext4_set_de_type(inode->i_sb, &fake, S_IFDIR); de = &fake; pos = EXT4_INLINE_DOTDOT_OFFSET; } else if (pos == EXT4_INLINE_DOTDOT_OFFSET) { fake.inode = cpu_to_le32(parent_ino); fake.name_len = 2; strcpy(fake.name, ".."); fake.rec_len = ext4_rec_len_to_disk( ext4_dir_rec_len(fake.name_len, NULL), inline_size); ext4_set_de_type(inode->i_sb, &fake, S_IFDIR); de = &fake; pos = EXT4_INLINE_DOTDOT_SIZE; } else { de = (struct ext4_dir_entry_2 *)(dir_buf + pos); pos += ext4_rec_len_from_disk(de->rec_len, inline_size); if (ext4_check_dir_entry(inode, dir_file, de, iloc.bh, dir_buf, inline_size, pos)) { ret = count; goto out; } } if (ext4_hash_in_dirent(dir)) { hinfo->hash = EXT4_DIRENT_HASH(de); hinfo->minor_hash = EXT4_DIRENT_MINOR_HASH(de); } else { ext4fs_dirhash(dir, de->name, de->name_len, hinfo); } if ((hinfo->hash < start_hash) || ((hinfo->hash == start_hash) && (hinfo->minor_hash < start_minor_hash))) continue; if (de->inode == 0) continue; tmp_str.name = de->name; tmp_str.len = de->name_len; err = ext4_htree_store_dirent(dir_file, hinfo->hash, hinfo->minor_hash, de, &tmp_str); if (err) { ret = err; goto out; } count++; } ret = count; out: kfree(dir_buf); brelse(iloc.bh); return ret; } /* * So this function is called when the volume is mkfsed with * dir_index disabled. In order to keep f_pos persistent * after we convert from an inlined dir to a blocked based, * we just pretend that we are a normal dir and return the * offset as if '.' and '..' really take place. * */ int ext4_read_inline_dir(struct file *file, struct dir_context *ctx, int *has_inline_data) { unsigned int offset, parent_ino; int i; struct ext4_dir_entry_2 *de; struct super_block *sb; struct inode *inode = file_inode(file); int ret, inline_size = 0; struct ext4_iloc iloc; void *dir_buf = NULL; int dotdot_offset, dotdot_size, extra_offset, extra_size; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); *has_inline_data = 0; goto out; } inline_size = ext4_get_inline_size(inode); dir_buf = kmalloc(inline_size, GFP_NOFS); if (!dir_buf) { ret = -ENOMEM; up_read(&EXT4_I(inode)->xattr_sem); goto out; } ret = ext4_read_inline_data(inode, dir_buf, inline_size, &iloc); up_read(&EXT4_I(inode)->xattr_sem); if (ret < 0) goto out; ret = 0; sb = inode->i_sb; parent_ino = le32_to_cpu(((struct ext4_dir_entry_2 *)dir_buf)->inode); offset = ctx->pos; /* * dotdot_offset and dotdot_size is the real offset and * size for ".." and "." if the dir is block based while * the real size for them are only EXT4_INLINE_DOTDOT_SIZE. * So we will use extra_offset and extra_size to indicate them * during the inline dir iteration. */ dotdot_offset = ext4_dir_rec_len(1, NULL); dotdot_size = dotdot_offset + ext4_dir_rec_len(2, NULL); extra_offset = dotdot_size - EXT4_INLINE_DOTDOT_SIZE; extra_size = extra_offset + inline_size; /* * If the version has changed since the last call to * readdir(2), then we might be pointing to an invalid * dirent right now. Scan from the start of the inline * dir to make sure. */ if (!inode_eq_iversion(inode, file->f_version)) { for (i = 0; i < extra_size && i < offset;) { /* * "." is with offset 0 and * ".." is dotdot_offset. */ if (!i) { i = dotdot_offset; continue; } else if (i == dotdot_offset) { i = dotdot_size; continue; } /* for other entry, the real offset in * the buf has to be tuned accordingly. */ de = (struct ext4_dir_entry_2 *) (dir_buf + i - extra_offset); /* It's too expensive to do a full * dirent test each time round this * loop, but we do have to test at * least that it is non-zero. A * failure will be detected in the * dirent test below. */ if (ext4_rec_len_from_disk(de->rec_len, extra_size) < ext4_dir_rec_len(1, NULL)) break; i += ext4_rec_len_from_disk(de->rec_len, extra_size); } offset = i; ctx->pos = offset; file->f_version = inode_query_iversion(inode); } while (ctx->pos < extra_size) { if (ctx->pos == 0) { if (!dir_emit(ctx, ".", 1, inode->i_ino, DT_DIR)) goto out; ctx->pos = dotdot_offset; continue; } if (ctx->pos == dotdot_offset) { if (!dir_emit(ctx, "..", 2, parent_ino, DT_DIR)) goto out; ctx->pos = dotdot_size; continue; } de = (struct ext4_dir_entry_2 *) (dir_buf + ctx->pos - extra_offset); if (ext4_check_dir_entry(inode, file, de, iloc.bh, dir_buf, extra_size, ctx->pos)) goto out; if (le32_to_cpu(de->inode)) { if (!dir_emit(ctx, de->name, de->name_len, le32_to_cpu(de->inode), get_dtype(sb, de->file_type))) goto out; } ctx->pos += ext4_rec_len_from_disk(de->rec_len, extra_size); } out: kfree(dir_buf); brelse(iloc.bh); return ret; } void *ext4_read_inline_link(struct inode *inode) { struct ext4_iloc iloc; int ret, inline_size; void *link; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ERR_PTR(ret); ret = -ENOMEM; inline_size = ext4_get_inline_size(inode); link = kmalloc(inline_size + 1, GFP_NOFS); if (!link) goto out; ret = ext4_read_inline_data(inode, link, inline_size, &iloc); if (ret < 0) { kfree(link); goto out; } nd_terminate_link(link, inode->i_size, ret); out: if (ret < 0) link = ERR_PTR(ret); brelse(iloc.bh); return link; } struct buffer_head *ext4_get_first_inline_block(struct inode *inode, struct ext4_dir_entry_2 **parent_de, int *retval) { struct ext4_iloc iloc; *retval = ext4_get_inode_loc(inode, &iloc); if (*retval) return NULL; *parent_de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; return iloc.bh; } /* * Try to create the inline data for the new dir. * If it succeeds, return 0, otherwise return the error. * In case of ENOSPC, the caller should create the normal disk layout dir. */ int ext4_try_create_inline_dir(handle_t *handle, struct inode *parent, struct inode *inode) { int ret, inline_size = EXT4_MIN_INLINE_DATA_SIZE; struct ext4_iloc iloc; struct ext4_dir_entry_2 *de; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; ret = ext4_prepare_inline_data(handle, inode, inline_size); if (ret) goto out; /* * For inline dir, we only save the inode information for the ".." * and create a fake dentry to cover the left space. */ de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; de->inode = cpu_to_le32(parent->i_ino); de = (struct ext4_dir_entry_2 *)((void *)de + EXT4_INLINE_DOTDOT_SIZE); de->inode = 0; de->rec_len = ext4_rec_len_to_disk( inline_size - EXT4_INLINE_DOTDOT_SIZE, inline_size); set_nlink(inode, 2); inode->i_size = EXT4_I(inode)->i_disksize = inline_size; out: brelse(iloc.bh); return ret; } struct buffer_head *ext4_find_inline_entry(struct inode *dir, struct ext4_filename *fname, struct ext4_dir_entry_2 **res_dir, int *has_inline_data) { int ret; struct ext4_iloc iloc; void *inline_start; int inline_size; if (ext4_get_inode_loc(dir, &iloc)) return NULL; down_read(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; goto out; } inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; ret = ext4_search_dir(iloc.bh, inline_start, inline_size, dir, fname, 0, res_dir); if (ret == 1) goto out_find; if (ret < 0) goto out; if (ext4_get_inline_size(dir) == EXT4_MIN_INLINE_DATA_SIZE) goto out; inline_start = ext4_get_inline_xattr_pos(dir, &iloc); inline_size = ext4_get_inline_size(dir) - EXT4_MIN_INLINE_DATA_SIZE; ret = ext4_search_dir(iloc.bh, inline_start, inline_size, dir, fname, 0, res_dir); if (ret == 1) goto out_find; out: brelse(iloc.bh); iloc.bh = NULL; out_find: up_read(&EXT4_I(dir)->xattr_sem); return iloc.bh; } int ext4_delete_inline_entry(handle_t *handle, struct inode *dir, struct ext4_dir_entry_2 *de_del, struct buffer_head *bh, int *has_inline_data) { int err, inline_size, no_expand; struct ext4_iloc iloc; void *inline_start; err = ext4_get_inode_loc(dir, &iloc); if (err) return err; ext4_write_lock_xattr(dir, &no_expand); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; goto out; } if ((void *)de_del - ((void *)ext4_raw_inode(&iloc)->i_block) < EXT4_MIN_INLINE_DATA_SIZE) { inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; } else { inline_start = ext4_get_inline_xattr_pos(dir, &iloc); inline_size = ext4_get_inline_size(dir) - EXT4_MIN_INLINE_DATA_SIZE; } BUFFER_TRACE(bh, "get_write_access"); err = ext4_journal_get_write_access(handle, dir->i_sb, bh, EXT4_JTR_NONE); if (err) goto out; err = ext4_generic_delete_entry(dir, de_del, bh, inline_start, inline_size, 0); if (err) goto out; ext4_show_inline_dir(dir, iloc.bh, inline_start, inline_size); out: ext4_write_unlock_xattr(dir, &no_expand); if (likely(err == 0)) err = ext4_mark_inode_dirty(handle, dir); brelse(iloc.bh); if (err != -ENOENT) ext4_std_error(dir->i_sb, err); return err; } /* * Get the inline dentry at offset. */ static inline struct ext4_dir_entry_2 * ext4_get_inline_entry(struct inode *inode, struct ext4_iloc *iloc, unsigned int offset, void **inline_start, int *inline_size) { void *inline_pos; BUG_ON(offset > ext4_get_inline_size(inode)); if (offset < EXT4_MIN_INLINE_DATA_SIZE) { inline_pos = (void *)ext4_raw_inode(iloc)->i_block; *inline_size = EXT4_MIN_INLINE_DATA_SIZE; } else { inline_pos = ext4_get_inline_xattr_pos(inode, iloc); offset -= EXT4_MIN_INLINE_DATA_SIZE; *inline_size = ext4_get_inline_size(inode) - EXT4_MIN_INLINE_DATA_SIZE; } if (inline_start) *inline_start = inline_pos; return (struct ext4_dir_entry_2 *)(inline_pos + offset); } bool empty_inline_dir(struct inode *dir, int *has_inline_data) { int err, inline_size; struct ext4_iloc iloc; size_t inline_len; void *inline_pos; unsigned int offset; struct ext4_dir_entry_2 *de; bool ret = false; err = ext4_get_inode_loc(dir, &iloc); if (err) { EXT4_ERROR_INODE_ERR(dir, -err, "error %d getting inode %lu block", err, dir->i_ino); return false; } down_read(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; ret = true; goto out; } de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; if (!le32_to_cpu(de->inode)) { ext4_warning(dir->i_sb, "bad inline directory (dir #%lu) - no `..'", dir->i_ino); goto out; } inline_len = ext4_get_inline_size(dir); offset = EXT4_INLINE_DOTDOT_SIZE; while (offset < inline_len) { de = ext4_get_inline_entry(dir, &iloc, offset, &inline_pos, &inline_size); if (ext4_check_dir_entry(dir, NULL, de, iloc.bh, inline_pos, inline_size, offset)) { ext4_warning(dir->i_sb, "bad inline directory (dir #%lu) - " "inode %u, rec_len %u, name_len %d" "inline size %d", dir->i_ino, le32_to_cpu(de->inode), le16_to_cpu(de->rec_len), de->name_len, inline_size); goto out; } if (le32_to_cpu(de->inode)) { goto out; } offset += ext4_rec_len_from_disk(de->rec_len, inline_size); } ret = true; out: up_read(&EXT4_I(dir)->xattr_sem); brelse(iloc.bh); return ret; } int ext4_destroy_inline_data(handle_t *handle, struct inode *inode) { int ret, no_expand; ext4_write_lock_xattr(inode, &no_expand); ret = ext4_destroy_inline_data_nolock(handle, inode); ext4_write_unlock_xattr(inode, &no_expand); return ret; } int ext4_inline_data_iomap(struct inode *inode, struct iomap *iomap) { __u64 addr; int error = -EAGAIN; struct ext4_iloc iloc; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) goto out; error = ext4_get_inode_loc(inode, &iloc); if (error) goto out; addr = (__u64)iloc.bh->b_blocknr << inode->i_sb->s_blocksize_bits; addr += (char *)ext4_raw_inode(&iloc) - iloc.bh->b_data; addr += offsetof(struct ext4_inode, i_block); brelse(iloc.bh); iomap->addr = addr; iomap->offset = 0; iomap->length = min_t(loff_t, ext4_get_inline_size(inode), i_size_read(inode)); iomap->type = IOMAP_INLINE; iomap->flags = 0; out: up_read(&EXT4_I(inode)->xattr_sem); return error; } int ext4_inline_data_truncate(struct inode *inode, int *has_inline) { handle_t *handle; int inline_size, value_len, needed_blocks, no_expand, err = 0; size_t i_size; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; needed_blocks = ext4_writepage_trans_blocks(inode); handle = ext4_journal_start(inode, EXT4_HT_INODE, needed_blocks); if (IS_ERR(handle)) return PTR_ERR(handle); ext4_write_lock_xattr(inode, &no_expand); if (!ext4_has_inline_data(inode)) { ext4_write_unlock_xattr(inode, &no_expand); *has_inline = 0; ext4_journal_stop(handle); return 0; } if ((err = ext4_orphan_add(handle, inode)) != 0) goto out; if ((err = ext4_get_inode_loc(inode, &is.iloc)) != 0) goto out; down_write(&EXT4_I(inode)->i_data_sem); i_size = inode->i_size; inline_size = ext4_get_inline_size(inode); EXT4_I(inode)->i_disksize = i_size; if (i_size < inline_size) { /* * if there's inline data to truncate and this file was * converted to extents after that inline data was written, * the extent status cache must be cleared to avoid leaving * behind stale delayed allocated extent entries */ if (!ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); /* Clear the content in the xattr space. */ if (inline_size > EXT4_MIN_INLINE_DATA_SIZE) { if ((err = ext4_xattr_ibody_find(inode, &i, &is)) != 0) goto out_error; BUG_ON(is.s.not_found); value_len = le32_to_cpu(is.s.here->e_value_size); value = kmalloc(value_len, GFP_NOFS); if (!value) { err = -ENOMEM; goto out_error; } err = ext4_xattr_ibody_get(inode, i.name_index, i.name, value, value_len); if (err <= 0) goto out_error; i.value = value; i.value_len = i_size > EXT4_MIN_INLINE_DATA_SIZE ? i_size - EXT4_MIN_INLINE_DATA_SIZE : 0; err = ext4_xattr_ibody_set(handle, inode, &i, &is); if (err) goto out_error; } /* Clear the content within i_blocks. */ if (i_size < EXT4_MIN_INLINE_DATA_SIZE) { void *p = (void *) ext4_raw_inode(&is.iloc)->i_block; memset(p + i_size, 0, EXT4_MIN_INLINE_DATA_SIZE - i_size); } EXT4_I(inode)->i_inline_size = i_size < EXT4_MIN_INLINE_DATA_SIZE ? EXT4_MIN_INLINE_DATA_SIZE : i_size; } out_error: up_write(&EXT4_I(inode)->i_data_sem); out: brelse(is.iloc.bh); ext4_write_unlock_xattr(inode, &no_expand); kfree(value); if (inode->i_nlink) ext4_orphan_del(handle, inode); if (err == 0) { inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); err = ext4_mark_inode_dirty(handle, inode); if (IS_SYNC(inode)) ext4_handle_sync(handle); } ext4_journal_stop(handle); return err; } int ext4_convert_inline_data(struct inode *inode) { int error, needed_blocks, no_expand; handle_t *handle; struct ext4_iloc iloc; if (!ext4_has_inline_data(inode)) { ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); return 0; } else if (!ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { /* * Inode has inline data but EXT4_STATE_MAY_INLINE_DATA is * cleared. This means we are in the middle of moving of * inline data to delay allocated block. Just force writeout * here to finish conversion. */ error = filemap_flush(inode->i_mapping); if (error) return error; if (!ext4_has_inline_data(inode)) return 0; } needed_blocks = ext4_writepage_trans_blocks(inode); iloc.bh = NULL; error = ext4_get_inode_loc(inode, &iloc); if (error) return error; handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); if (IS_ERR(handle)) { error = PTR_ERR(handle); goto out_free; } ext4_write_lock_xattr(inode, &no_expand); if (ext4_has_inline_data(inode)) error = ext4_convert_inline_data_nolock(handle, inode, &iloc); ext4_write_unlock_xattr(inode, &no_expand); ext4_journal_stop(handle); out_free: brelse(iloc.bh); return error; }
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_btree.h" #include "xfs_errortag.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_alloc.h" #include "xfs_log.h" #include "xfs_btree_staging.h" #include "xfs_ag.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_bmap_btree.h" #include "xfs_rmap_btree.h" #include "xfs_refcount_btree.h" /* * Btree magic numbers. */ static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, XFS_FIBT_MAGIC, 0 }, { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, XFS_REFC_CRC_MAGIC } }; uint32_t xfs_btree_magic( int crc, xfs_btnum_t btnum) { uint32_t magic = xfs_magics[crc][btnum]; /* Ensure we asked for crc for crc-only magics. */ ASSERT(magic != 0); return magic; } /* * These sibling pointer checks are optimised for null sibling pointers. This * happens a lot, and we don't need to byte swap at runtime if the sibling * pointer is NULL. * * These are explicitly marked at inline because the cost of calling them as * functions instead of inlining them is about 36 bytes extra code per call site * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these * two sibling check functions reduces the compiled code size by over 300 * bytes. */ static inline xfs_failaddr_t xfs_btree_check_lblock_siblings( struct xfs_mount *mp, struct xfs_btree_cur *cur, int level, xfs_fsblock_t fsb, __be64 dsibling) { xfs_fsblock_t sibling; if (dsibling == cpu_to_be64(NULLFSBLOCK)) return NULL; sibling = be64_to_cpu(dsibling); if (sibling == fsb) return __this_address; if (level >= 0) { if (!xfs_btree_check_lptr(cur, sibling, level + 1)) return __this_address; } else { if (!xfs_verify_fsbno(mp, sibling)) return __this_address; } return NULL; } static inline xfs_failaddr_t xfs_btree_check_sblock_siblings( struct xfs_perag *pag, struct xfs_btree_cur *cur, int level, xfs_agblock_t agbno, __be32 dsibling) { xfs_agblock_t sibling; if (dsibling == cpu_to_be32(NULLAGBLOCK)) return NULL; sibling = be32_to_cpu(dsibling); if (sibling == agbno) return __this_address; if (level >= 0) { if (!xfs_btree_check_sptr(cur, sibling, level + 1)) return __this_address; } else { if (!xfs_verify_agbno(pag, sibling)) return __this_address; } return NULL; } /* * Check a long btree block header. Return the address of the failing check, * or NULL if everything is ok. */ xfs_failaddr_t __xfs_btree_check_lblock( struct xfs_btree_cur *cur, struct xfs_btree_block *block, int level, struct xfs_buf *bp) { struct xfs_mount *mp = cur->bc_mp; xfs_btnum_t btnum = cur->bc_btnum; int crc = xfs_has_crc(mp); xfs_failaddr_t fa; xfs_fsblock_t fsb = NULLFSBLOCK; if (crc) { if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) return __this_address; if (block->bb_u.l.bb_blkno != cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL)) return __this_address; if (block->bb_u.l.bb_pad != cpu_to_be32(0)) return __this_address; } if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) return __this_address; if (be16_to_cpu(block->bb_level) != level) return __this_address; if (be16_to_cpu(block->bb_numrecs) > cur->bc_ops->get_maxrecs(cur, level)) return __this_address; if (bp) fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb, block->bb_u.l.bb_leftsib); if (!fa) fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb, block->bb_u.l.bb_rightsib); return fa; } /* Check a long btree block header. */ static int xfs_btree_check_lblock( struct xfs_btree_cur *cur, struct xfs_btree_block *block, int level, struct xfs_buf *bp) { struct xfs_mount *mp = cur->bc_mp; xfs_failaddr_t fa; fa = __xfs_btree_check_lblock(cur, block, level, bp); if (XFS_IS_CORRUPT(mp, fa != NULL) || XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) { if (bp) trace_xfs_btree_corrupt(bp, _RET_IP_); return -EFSCORRUPTED; } return 0; } /* * Check a short btree block header. Return the address of the failing check, * or NULL if everything is ok. */ xfs_failaddr_t __xfs_btree_check_sblock( struct xfs_btree_cur *cur, struct xfs_btree_block *block, int level, struct xfs_buf *bp) { struct xfs_mount *mp = cur->bc_mp; struct xfs_perag *pag = cur->bc_ag.pag; xfs_btnum_t btnum = cur->bc_btnum; int crc = xfs_has_crc(mp); xfs_failaddr_t fa; xfs_agblock_t agbno = NULLAGBLOCK; if (crc) { if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) return __this_address; if (block->bb_u.s.bb_blkno != cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL)) return __this_address; } if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) return __this_address; if (be16_to_cpu(block->bb_level) != level) return __this_address; if (be16_to_cpu(block->bb_numrecs) > cur->bc_ops->get_maxrecs(cur, level)) return __this_address; if (bp) agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp)); fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno, block->bb_u.s.bb_leftsib); if (!fa) fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno, block->bb_u.s.bb_rightsib); return fa; } /* Check a short btree block header. */ STATIC int xfs_btree_check_sblock( struct xfs_btree_cur *cur, struct xfs_btree_block *block, int level, struct xfs_buf *bp) { struct xfs_mount *mp = cur->bc_mp; xfs_failaddr_t fa; fa = __xfs_btree_check_sblock(cur, block, level, bp); if (XFS_IS_CORRUPT(mp, fa != NULL) || XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) { if (bp) trace_xfs_btree_corrupt(bp, _RET_IP_); return -EFSCORRUPTED; } return 0; } /* * Debug routine: check that block header is ok. */ int xfs_btree_check_block( struct xfs_btree_cur *cur, /* btree cursor */ struct xfs_btree_block *block, /* generic btree block pointer */ int level, /* level of the btree block */ struct xfs_buf *bp) /* buffer containing block, if any */ { if (cur->bc_flags & XFS_BTREE_LONG_PTRS) return xfs_btree_check_lblock(cur, block, level, bp); else return xfs_btree_check_sblock(cur, block, level, bp); } /* Check that this long pointer is valid and points within the fs. */ bool xfs_btree_check_lptr( struct xfs_btree_cur *cur, xfs_fsblock_t fsbno, int level) { if (level <= 0) return false; return xfs_verify_fsbno(cur->bc_mp, fsbno); } /* Check that this short pointer is valid and points within the AG. */ bool xfs_btree_check_sptr( struct xfs_btree_cur *cur, xfs_agblock_t agbno, int level) { if (level <= 0) return false; return xfs_verify_agbno(cur->bc_ag.pag, agbno); } /* * Check that a given (indexed) btree pointer at a certain level of a * btree is valid and doesn't point past where it should. */ static int xfs_btree_check_ptr( struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, int index, int level) { if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]), level)) return 0; xfs_err(cur->bc_mp, "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.", cur->bc_ino.ip->i_ino, cur->bc_ino.whichfork, cur->bc_btnum, level, index); } else { if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]), level)) return 0; xfs_err(cur->bc_mp, "AG %u: Corrupt btree %d pointer at level %d index %d.", cur->bc_ag.pag->pag_agno, cur->bc_btnum, level, index); } return -EFSCORRUPTED; } #ifdef DEBUG # define xfs_btree_debug_check_ptr xfs_btree_check_ptr #else # define xfs_btree_debug_check_ptr(...) (0) #endif /* * Calculate CRC on the whole btree block and stuff it into the * long-form btree header. * * Prior to calculting the CRC, pull the LSN out of the buffer log item and put * it into the buffer so recovery knows what the last modification was that made * it to disk. */ void xfs_btree_lblock_calc_crc( struct xfs_buf *bp) { struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_buf_log_item *bip = bp->b_log_item; if (!xfs_has_crc(bp->b_mount)) return; if (bip) block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); } bool xfs_btree_lblock_verify_crc( struct xfs_buf *bp) { struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_mount *mp = bp->b_mount; if (xfs_has_crc(mp)) { if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) return false; return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); } return true; } /* * Calculate CRC on the whole btree block and stuff it into the * short-form btree header. * * Prior to calculting the CRC, pull the LSN out of the buffer log item and put * it into the buffer so recovery knows what the last modification was that made * it to disk. */ void xfs_btree_sblock_calc_crc( struct xfs_buf *bp) { struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_buf_log_item *bip = bp->b_log_item; if (!xfs_has_crc(bp->b_mount)) return; if (bip) block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); } bool xfs_btree_sblock_verify_crc( struct xfs_buf *bp) { struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_mount *mp = bp->b_mount; if (xfs_has_crc(mp)) { if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) return false; return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); } return true; } static int xfs_btree_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { int error; error = cur->bc_ops->free_block(cur, bp); if (!error) { xfs_trans_binval(cur->bc_tp, bp); XFS_BTREE_STATS_INC(cur, free); } return error; } /* * Delete the btree cursor. */ void xfs_btree_del_cursor( struct xfs_btree_cur *cur, /* btree cursor */ int error) /* del because of error */ { int i; /* btree level */ /* * Clear the buffer pointers and release the buffers. If we're doing * this because of an error, inspect all of the entries in the bc_bufs * array for buffers to be unlocked. This is because some of the btree * code works from level n down to 0, and if we get an error along the * way we won't have initialized all the entries down to 0. */ for (i = 0; i < cur->bc_nlevels; i++) { if (cur->bc_levels[i].bp) xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp); else if (!error) break; } /* * If we are doing a BMBT update, the number of unaccounted blocks * allocated during this cursor life time should be zero. If it's not * zero, then we should be shut down or on our way to shutdown due to * cancelling a dirty transaction on error. */ ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 || xfs_is_shutdown(cur->bc_mp) || error != 0); if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) kmem_free(cur->bc_ops); if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag) xfs_perag_put(cur->bc_ag.pag); kmem_cache_free(cur->bc_cache, cur); } /* * Duplicate the btree cursor. * Allocate a new one, copy the record, re-get the buffers. */ int /* error */ xfs_btree_dup_cursor( struct xfs_btree_cur *cur, /* input cursor */ struct xfs_btree_cur **ncur) /* output cursor */ { struct xfs_buf *bp; /* btree block's buffer pointer */ int error; /* error return value */ int i; /* level number of btree block */ xfs_mount_t *mp; /* mount structure for filesystem */ struct xfs_btree_cur *new; /* new cursor value */ xfs_trans_t *tp; /* transaction pointer, can be NULL */ tp = cur->bc_tp; mp = cur->bc_mp; /* * Allocate a new cursor like the old one. */ new = cur->bc_ops->dup_cursor(cur); /* * Copy the record currently in the cursor. */ new->bc_rec = cur->bc_rec; /* * For each level current, re-get the buffer and copy the ptr value. */ for (i = 0; i < new->bc_nlevels; i++) { new->bc_levels[i].ptr = cur->bc_levels[i].ptr; new->bc_levels[i].ra = cur->bc_levels[i].ra; bp = cur->bc_levels[i].bp; if (bp) { error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, xfs_buf_daddr(bp), mp->m_bsize, 0, &bp, cur->bc_ops->buf_ops); if (error) { xfs_btree_del_cursor(new, error); *ncur = NULL; return error; } } new->bc_levels[i].bp = bp; } *ncur = new; return 0; } /* * XFS btree block layout and addressing: * * There are two types of blocks in the btree: leaf and non-leaf blocks. * * The leaf record start with a header then followed by records containing * the values. A non-leaf block also starts with the same header, and * then first contains lookup keys followed by an equal number of pointers * to the btree blocks at the previous level. * * +--------+-------+-------+-------+-------+-------+-------+ * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | * +--------+-------+-------+-------+-------+-------+-------+ * * +--------+-------+-------+-------+-------+-------+-------+ * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | * +--------+-------+-------+-------+-------+-------+-------+ * * The header is called struct xfs_btree_block for reasons better left unknown * and comes in different versions for short (32bit) and long (64bit) block * pointers. The record and key structures are defined by the btree instances * and opaque to the btree core. The block pointers are simple disk endian * integers, available in a short (32bit) and long (64bit) variant. * * The helpers below calculate the offset of a given record, key or pointer * into a btree block (xfs_btree_*_offset) or return a pointer to the given * record, key or pointer (xfs_btree_*_addr). Note that all addressing * inside the btree block is done using indices starting at one, not zero! * * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing * overlapping intervals. In such a tree, records are still sorted lowest to * highest and indexed by the smallest key value that refers to the record. * However, nodes are different: each pointer has two associated keys -- one * indexing the lowest key available in the block(s) below (the same behavior * as the key in a regular btree) and another indexing the highest key * available in the block(s) below. Because records are /not/ sorted by the * highest key, all leaf block updates require us to compute the highest key * that matches any record in the leaf and to recursively update the high keys * in the nodes going further up in the tree, if necessary. Nodes look like * this: * * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ * * To perform an interval query on an overlapped tree, perform the usual * depth-first search and use the low and high keys to decide if we can skip * that particular node. If a leaf node is reached, return the records that * intersect the interval. Note that an interval query may return numerous * entries. For a non-overlapped tree, simply search for the record associated * with the lowest key and iterate forward until a non-matching record is * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in * more detail. * * Why do we care about overlapping intervals? Let's say you have a bunch of * reverse mapping records on a reflink filesystem: * * 1: +- file A startblock B offset C length D -----------+ * 2: +- file E startblock F offset G length H --------------+ * 3: +- file I startblock F offset J length K --+ * 4: +- file L... --+ * * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, * we'd simply increment the length of record 1. But how do we find the record * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return * record 3 because the keys are ordered first by startblock. An interval * query would return records 1 and 2 because they both overlap (B+D-1), and * from that we can pick out record 1 as the appropriate left neighbor. * * In the non-overlapped case you can do a LE lookup and decrement the cursor * because a record's interval must end before the next record. */ /* * Return size of the btree block header for this btree instance. */ static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) { if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) return XFS_BTREE_LBLOCK_CRC_LEN; return XFS_BTREE_LBLOCK_LEN; } if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) return XFS_BTREE_SBLOCK_CRC_LEN; return XFS_BTREE_SBLOCK_LEN; } /* * Return size of btree block pointers for this btree instance. */ static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) { return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? sizeof(__be64) : sizeof(__be32); } /* * Calculate offset of the n-th record in a btree block. */ STATIC size_t xfs_btree_rec_offset( struct xfs_btree_cur *cur, int n) { return xfs_btree_block_len(cur) + (n - 1) * cur->bc_ops->rec_len; } /* * Calculate offset of the n-th key in a btree block. */ STATIC size_t xfs_btree_key_offset( struct xfs_btree_cur *cur, int n) { return xfs_btree_block_len(cur) + (n - 1) * cur->bc_ops->key_len; } /* * Calculate offset of the n-th high key in a btree block. */ STATIC size_t xfs_btree_high_key_offset( struct xfs_btree_cur *cur, int n) { return xfs_btree_block_len(cur) + (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); } /* * Calculate offset of the n-th block pointer in a btree block. */ STATIC size_t xfs_btree_ptr_offset( struct xfs_btree_cur *cur, int n, int level) { return xfs_btree_block_len(cur) + cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + (n - 1) * xfs_btree_ptr_len(cur); } /* * Return a pointer to the n-th record in the btree block. */ union xfs_btree_rec * xfs_btree_rec_addr( struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block) { return (union xfs_btree_rec *) ((char *)block + xfs_btree_rec_offset(cur, n)); } /* * Return a pointer to the n-th key in the btree block. */ union xfs_btree_key * xfs_btree_key_addr( struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block) { return (union xfs_btree_key *) ((char *)block + xfs_btree_key_offset(cur, n)); } /* * Return a pointer to the n-th high key in the btree block. */ union xfs_btree_key * xfs_btree_high_key_addr( struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block) { return (union xfs_btree_key *) ((char *)block + xfs_btree_high_key_offset(cur, n)); } /* * Return a pointer to the n-th block pointer in the btree block. */ union xfs_btree_ptr * xfs_btree_ptr_addr( struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block) { int level = xfs_btree_get_level(block); ASSERT(block->bb_level != 0); return (union xfs_btree_ptr *) ((char *)block + xfs_btree_ptr_offset(cur, n, level)); } struct xfs_ifork * xfs_btree_ifork_ptr( struct xfs_btree_cur *cur) { ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); if (cur->bc_flags & XFS_BTREE_STAGING) return cur->bc_ino.ifake->if_fork; return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork); } /* * Get the root block which is stored in the inode. * * For now this btree implementation assumes the btree root is always * stored in the if_broot field of an inode fork. */ STATIC struct xfs_btree_block * xfs_btree_get_iroot( struct xfs_btree_cur *cur) { struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); return (struct xfs_btree_block *)ifp->if_broot; } /* * Retrieve the block pointer from the cursor at the given level. * This may be an inode btree root or from a buffer. */ struct xfs_btree_block * /* generic btree block pointer */ xfs_btree_get_block( struct xfs_btree_cur *cur, /* btree cursor */ int level, /* level in btree */ struct xfs_buf **bpp) /* buffer containing the block */ { if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && (level == cur->bc_nlevels - 1)) { *bpp = NULL; return xfs_btree_get_iroot(cur); } *bpp = cur->bc_levels[level].bp; return XFS_BUF_TO_BLOCK(*bpp); } /* * Change the cursor to point to the first record at the given level. * Other levels are unaffected. */ STATIC int /* success=1, failure=0 */ xfs_btree_firstrec( struct xfs_btree_cur *cur, /* btree cursor */ int level) /* level to change */ { struct xfs_btree_block *block; /* generic btree block pointer */ struct xfs_buf *bp; /* buffer containing block */ /* * Get the block pointer for this level. */ block = xfs_btree_get_block(cur, level, &bp); if (xfs_btree_check_block(cur, block, level, bp)) return 0; /* * It's empty, there is no such record. */ if (!block->bb_numrecs) return 0; /* * Set the ptr value to 1, that's the first record/key. */ cur->bc_levels[level].ptr = 1; return 1; } /* * Change the cursor to point to the last record in the current block * at the given level. Other levels are unaffected. */ STATIC int /* success=1, failure=0 */ xfs_btree_lastrec( struct xfs_btree_cur *cur, /* btree cursor */ int level) /* level to change */ { struct xfs_btree_block *block; /* generic btree block pointer */ struct xfs_buf *bp; /* buffer containing block */ /* * Get the block pointer for this level. */ block = xfs_btree_get_block(cur, level, &bp); if (xfs_btree_check_block(cur, block, level, bp)) return 0; /* * It's empty, there is no such record. */ if (!block->bb_numrecs) return 0; /* * Set the ptr value to numrecs, that's the last record/key. */ cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs); return 1; } /* * Compute first and last byte offsets for the fields given. * Interprets the offsets table, which contains struct field offsets. */ void xfs_btree_offsets( uint32_t fields, /* bitmask of fields */ const short *offsets, /* table of field offsets */ int nbits, /* number of bits to inspect */ int *first, /* output: first byte offset */ int *last) /* output: last byte offset */ { int i; /* current bit number */ uint32_t imask; /* mask for current bit number */ ASSERT(fields != 0); /* * Find the lowest bit, so the first byte offset. */ for (i = 0, imask = 1u; ; i++, imask <<= 1) { if (imask & fields) { *first = offsets[i]; break; } } /* * Find the highest bit, so the last byte offset. */ for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) { if (imask & fields) { *last = offsets[i + 1] - 1; break; } } } /* * Get a buffer for the block, return it read in. * Long-form addressing. */ int xfs_btree_read_bufl( struct xfs_mount *mp, /* file system mount point */ struct xfs_trans *tp, /* transaction pointer */ xfs_fsblock_t fsbno, /* file system block number */ struct xfs_buf **bpp, /* buffer for fsbno */ int refval, /* ref count value for buffer */ const struct xfs_buf_ops *ops) { struct xfs_buf *bp; /* return value */ xfs_daddr_t d; /* real disk block address */ int error; if (!xfs_verify_fsbno(mp, fsbno)) return -EFSCORRUPTED; d = XFS_FSB_TO_DADDR(mp, fsbno); error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, mp->m_bsize, 0, &bp, ops); if (error) return error; if (bp) xfs_buf_set_ref(bp, refval); *bpp = bp; return 0; } /* * Read-ahead the block, don't wait for it, don't return a buffer. * Long-form addressing. */ /* ARGSUSED */ void xfs_btree_reada_bufl( struct xfs_mount *mp, /* file system mount point */ xfs_fsblock_t fsbno, /* file system block number */ xfs_extlen_t count, /* count of filesystem blocks */ const struct xfs_buf_ops *ops) { xfs_daddr_t d; ASSERT(fsbno != NULLFSBLOCK); d = XFS_FSB_TO_DADDR(mp, fsbno); xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); } /* * Read-ahead the block, don't wait for it, don't return a buffer. * Short-form addressing. */ /* ARGSUSED */ void xfs_btree_reada_bufs( struct xfs_mount *mp, /* file system mount point */ xfs_agnumber_t agno, /* allocation group number */ xfs_agblock_t agbno, /* allocation group block number */ xfs_extlen_t count, /* count of filesystem blocks */ const struct xfs_buf_ops *ops) { xfs_daddr_t d; ASSERT(agno != NULLAGNUMBER); ASSERT(agbno != NULLAGBLOCK); d = XFS_AGB_TO_DADDR(mp, agno, agbno); xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); } STATIC int xfs_btree_readahead_lblock( struct xfs_btree_cur *cur, int lr, struct xfs_btree_block *block) { int rval = 0; xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { xfs_btree_reada_bufl(cur->bc_mp, left, 1, cur->bc_ops->buf_ops); rval++; } if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { xfs_btree_reada_bufl(cur->bc_mp, right, 1, cur->bc_ops->buf_ops); rval++; } return rval; } STATIC int xfs_btree_readahead_sblock( struct xfs_btree_cur *cur, int lr, struct xfs_btree_block *block) { int rval = 0; xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, left, 1, cur->bc_ops->buf_ops); rval++; } if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, right, 1, cur->bc_ops->buf_ops); rval++; } return rval; } /* * Read-ahead btree blocks, at the given level. * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. */ STATIC int xfs_btree_readahead( struct xfs_btree_cur *cur, /* btree cursor */ int lev, /* level in btree */ int lr) /* left/right bits */ { struct xfs_btree_block *block; /* * No readahead needed if we are at the root level and the * btree root is stored in the inode. */ if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && (lev == cur->bc_nlevels - 1)) return 0; if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra) return 0; cur->bc_levels[lev].ra |= lr; block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp); if (cur->bc_flags & XFS_BTREE_LONG_PTRS) return xfs_btree_readahead_lblock(cur, lr, block); return xfs_btree_readahead_sblock(cur, lr, block); } STATIC int xfs_btree_ptr_to_daddr( struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, xfs_daddr_t *daddr) { xfs_fsblock_t fsbno; xfs_agblock_t agbno; int error; error = xfs_btree_check_ptr(cur, ptr, 0, 1); if (error) return error; if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { fsbno = be64_to_cpu(ptr->l); *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno); } else { agbno = be32_to_cpu(ptr->s); *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno); } return 0; } /* * Readahead @count btree blocks at the given @ptr location. * * We don't need to care about long or short form btrees here as we have a * method of converting the ptr directly to a daddr available to us. */ STATIC void xfs_btree_readahead_ptr( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, xfs_extlen_t count) { xfs_daddr_t daddr; if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) return; xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr, cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); } /* * Set the buffer for level "lev" in the cursor to bp, releasing * any previous buffer. */ STATIC void xfs_btree_setbuf( struct xfs_btree_cur *cur, /* btree cursor */ int lev, /* level in btree */ struct xfs_buf *bp) /* new buffer to set */ { struct xfs_btree_block *b; /* btree block */ if (cur->bc_levels[lev].bp) xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp); cur->bc_levels[lev].bp = bp; cur->bc_levels[lev].ra = 0; b = XFS_BUF_TO_BLOCK(bp); if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; } else { if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; } } bool xfs_btree_ptr_is_null( struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr) { if (cur->bc_flags & XFS_BTREE_LONG_PTRS) return ptr->l == cpu_to_be64(NULLFSBLOCK); else return ptr->s == cpu_to_be32(NULLAGBLOCK); } void xfs_btree_set_ptr_null( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { if (cur->bc_flags & XFS_BTREE_LONG_PTRS) ptr->l = cpu_to_be64(NULLFSBLOCK); else ptr->s = cpu_to_be32(NULLAGBLOCK); } /* * Get/set/init sibling pointers */ void xfs_btree_get_sibling( struct xfs_btree_cur *cur, struct xfs_btree_block *block, union xfs_btree_ptr *ptr, int lr) { ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { if (lr == XFS_BB_RIGHTSIB) ptr->l = block->bb_u.l.bb_rightsib; else ptr->l = block->bb_u.l.bb_leftsib; } else { if (lr == XFS_BB_RIGHTSIB) ptr->s = block->bb_u.s.bb_rightsib; else ptr->s = block->bb_u.s.bb_leftsib; } } void xfs_btree_set_sibling( struct xfs_btree_cur *cur, struct xfs_btree_block *block, const union xfs_btree_ptr *ptr, int lr) { ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { if (lr == XFS_BB_RIGHTSIB) block->bb_u.l.bb_rightsib = ptr->l; else block->bb_u.l.bb_leftsib = ptr->l; } else { if (lr == XFS_BB_RIGHTSIB) block->bb_u.s.bb_rightsib = ptr->s; else block->bb_u.s.bb_leftsib = ptr->s; } } void xfs_btree_init_block_int( struct xfs_mount *mp, struct xfs_btree_block *buf, xfs_daddr_t blkno, xfs_btnum_t btnum, __u16 level, __u16 numrecs, __u64 owner, unsigned int flags) { int crc = xfs_has_crc(mp); __u32 magic = xfs_btree_magic(crc, btnum); buf->bb_magic = cpu_to_be32(magic); buf->bb_level = cpu_to_be16(level); buf->bb_numrecs = cpu_to_be16(numrecs); if (flags & XFS_BTREE_LONG_PTRS) { buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); if (crc) { buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); buf->bb_u.l.bb_owner = cpu_to_be64(owner); uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); buf->bb_u.l.bb_pad = 0; buf->bb_u.l.bb_lsn = 0; } } else { /* owner is a 32 bit value on short blocks */ __u32 __owner = (__u32)owner; buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); if (crc) { buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); buf->bb_u.s.bb_owner = cpu_to_be32(__owner); uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); buf->bb_u.s.bb_lsn = 0; } } } void xfs_btree_init_block( struct xfs_mount *mp, struct xfs_buf *bp, xfs_btnum_t btnum, __u16 level, __u16 numrecs, __u64 owner) { xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp), btnum, level, numrecs, owner, 0); } void xfs_btree_init_block_cur( struct xfs_btree_cur *cur, struct xfs_buf *bp, int level, int numrecs) { __u64 owner; /* * we can pull the owner from the cursor right now as the different * owners align directly with the pointer size of the btree. This may * change in future, but is safe for current users of the generic btree * code. */ if (cur->bc_flags & XFS_BTREE_LONG_PTRS) owner = cur->bc_ino.ip->i_ino; else owner = cur->bc_ag.pag->pag_agno; xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp), cur->bc_btnum, level, numrecs, owner, cur->bc_flags); } /* * Return true if ptr is the last record in the btree and * we need to track updates to this record. The decision * will be further refined in the update_lastrec method. */ STATIC int xfs_btree_is_lastrec( struct xfs_btree_cur *cur, struct xfs_btree_block *block, int level) { union xfs_btree_ptr ptr; if (level > 0) return 0; if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) return 0; xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); if (!xfs_btree_ptr_is_null(cur, &ptr)) return 0; return 1; } STATIC void xfs_btree_buf_to_ptr( struct xfs_btree_cur *cur, struct xfs_buf *bp, union xfs_btree_ptr *ptr) { if (cur->bc_flags & XFS_BTREE_LONG_PTRS) ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp))); else { ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp))); } } STATIC void xfs_btree_set_refs( struct xfs_btree_cur *cur, struct xfs_buf *bp) { switch (cur->bc_btnum) { case XFS_BTNUM_BNO: case XFS_BTNUM_CNT: xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); break; case XFS_BTNUM_INO: case XFS_BTNUM_FINO: xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); break; case XFS_BTNUM_BMAP: xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); break; case XFS_BTNUM_RMAP: xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); break; case XFS_BTNUM_REFC: xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); break; default: ASSERT(0); } } int xfs_btree_get_buf_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, struct xfs_btree_block **block, struct xfs_buf **bpp) { struct xfs_mount *mp = cur->bc_mp; xfs_daddr_t d; int error; error = xfs_btree_ptr_to_daddr(cur, ptr, &d); if (error) return error; error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, 0, bpp); if (error) return error; (*bpp)->b_ops = cur->bc_ops->buf_ops; *block = XFS_BUF_TO_BLOCK(*bpp); return 0; } /* * Read in the buffer at the given ptr and return the buffer and * the block pointer within the buffer. */ int xfs_btree_read_buf_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, int flags, struct xfs_btree_block **block, struct xfs_buf **bpp) { struct xfs_mount *mp = cur->bc_mp; xfs_daddr_t d; int error; /* need to sort out how callers deal with failures first */ ASSERT(!(flags & XBF_TRYLOCK)); error = xfs_btree_ptr_to_daddr(cur, ptr, &d); if (error) return error; error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, flags, bpp, cur->bc_ops->buf_ops); if (error) return error; xfs_btree_set_refs(cur, *bpp); *block = XFS_BUF_TO_BLOCK(*bpp); return 0; } /* * Copy keys from one btree block to another. */ void xfs_btree_copy_keys( struct xfs_btree_cur *cur, union xfs_btree_key *dst_key, const union xfs_btree_key *src_key, int numkeys) { ASSERT(numkeys >= 0); memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); } /* * Copy records from one btree block to another. */ STATIC void xfs_btree_copy_recs( struct xfs_btree_cur *cur, union xfs_btree_rec *dst_rec, union xfs_btree_rec *src_rec, int numrecs) { ASSERT(numrecs >= 0); memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); } /* * Copy block pointers from one btree block to another. */ void xfs_btree_copy_ptrs( struct xfs_btree_cur *cur, union xfs_btree_ptr *dst_ptr, const union xfs_btree_ptr *src_ptr, int numptrs) { ASSERT(numptrs >= 0); memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); } /* * Shift keys one index left/right inside a single btree block. */ STATIC void xfs_btree_shift_keys( struct xfs_btree_cur *cur, union xfs_btree_key *key, int dir, int numkeys) { char *dst_key; ASSERT(numkeys >= 0); ASSERT(dir == 1 || dir == -1); dst_key = (char *)key + (dir * cur->bc_ops->key_len); memmove(dst_key, key, numkeys * cur->bc_ops->key_len); } /* * Shift records one index left/right inside a single btree block. */ STATIC void xfs_btree_shift_recs( struct xfs_btree_cur *cur, union xfs_btree_rec *rec, int dir, int numrecs) { char *dst_rec; ASSERT(numrecs >= 0); ASSERT(dir == 1 || dir == -1); dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); } /* * Shift block pointers one index left/right inside a single btree block. */ STATIC void xfs_btree_shift_ptrs( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, int dir, int numptrs) { char *dst_ptr; ASSERT(numptrs >= 0); ASSERT(dir == 1 || dir == -1); dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); } /* * Log key values from the btree block. */ STATIC void xfs_btree_log_keys( struct xfs_btree_cur *cur, struct xfs_buf *bp, int first, int last) { if (bp) { xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); xfs_trans_log_buf(cur->bc_tp, bp, xfs_btree_key_offset(cur, first), xfs_btree_key_offset(cur, last + 1) - 1); } else { xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, xfs_ilog_fbroot(cur->bc_ino.whichfork)); } } /* * Log record values from the btree block. */ void xfs_btree_log_recs( struct xfs_btree_cur *cur, struct xfs_buf *bp, int first, int last) { xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); xfs_trans_log_buf(cur->bc_tp, bp, xfs_btree_rec_offset(cur, first), xfs_btree_rec_offset(cur, last + 1) - 1); } /* * Log block pointer fields from a btree block (nonleaf). */ STATIC void xfs_btree_log_ptrs( struct xfs_btree_cur *cur, /* btree cursor */ struct xfs_buf *bp, /* buffer containing btree block */ int first, /* index of first pointer to log */ int last) /* index of last pointer to log */ { if (bp) { struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); int level = xfs_btree_get_level(block); xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); xfs_trans_log_buf(cur->bc_tp, bp, xfs_btree_ptr_offset(cur, first, level), xfs_btree_ptr_offset(cur, last + 1, level) - 1); } else { xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, xfs_ilog_fbroot(cur->bc_ino.whichfork)); } } /* * Log fields from a btree block header. */ void xfs_btree_log_block( struct xfs_btree_cur *cur, /* btree cursor */ struct xfs_buf *bp, /* buffer containing btree block */ uint32_t fields) /* mask of fields: XFS_BB_... */ { int first; /* first byte offset logged */ int last; /* last byte offset logged */ static const short soffsets[] = { /* table of offsets (short) */ offsetof(struct xfs_btree_block, bb_magic), offsetof(struct xfs_btree_block, bb_level), offsetof(struct xfs_btree_block, bb_numrecs), offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), offsetof(struct xfs_btree_block, bb_u.s.bb_owner), offsetof(struct xfs_btree_block, bb_u.s.bb_crc), XFS_BTREE_SBLOCK_CRC_LEN }; static const short loffsets[] = { /* table of offsets (long) */ offsetof(struct xfs_btree_block, bb_magic), offsetof(struct xfs_btree_block, bb_level), offsetof(struct xfs_btree_block, bb_numrecs), offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), offsetof(struct xfs_btree_block, bb_u.l.bb_owner), offsetof(struct xfs_btree_block, bb_u.l.bb_crc), offsetof(struct xfs_btree_block, bb_u.l.bb_pad), XFS_BTREE_LBLOCK_CRC_LEN }; if (bp) { int nbits; if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { /* * We don't log the CRC when updating a btree * block but instead recreate it during log * recovery. As the log buffers have checksums * of their own this is safe and avoids logging a crc * update in a lot of places. */ if (fields == XFS_BB_ALL_BITS) fields = XFS_BB_ALL_BITS_CRC; nbits = XFS_BB_NUM_BITS_CRC; } else { nbits = XFS_BB_NUM_BITS; } xfs_btree_offsets(fields, (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? loffsets : soffsets, nbits, &first, &last); xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); xfs_trans_log_buf(cur->bc_tp, bp, first, last); } else { xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, xfs_ilog_fbroot(cur->bc_ino.whichfork)); } } /* * Increment cursor by one record at the level. * For nonzero levels the leaf-ward information is untouched. */ int /* error */ xfs_btree_increment( struct xfs_btree_cur *cur, int level, int *stat) /* success/failure */ { struct xfs_btree_block *block; union xfs_btree_ptr ptr; struct xfs_buf *bp; int error; /* error return value */ int lev; ASSERT(level < cur->bc_nlevels); /* Read-ahead to the right at this level. */ xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); /* Get a pointer to the btree block. */ block = xfs_btree_get_block(cur, level, &bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) goto error0; #endif /* We're done if we remain in the block after the increment. */ if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block)) goto out1; /* Fail if we just went off the right edge of the tree. */ xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); if (xfs_btree_ptr_is_null(cur, &ptr)) goto out0; XFS_BTREE_STATS_INC(cur, increment); /* * March up the tree incrementing pointers. * Stop when we don't go off the right edge of a block. */ for (lev = level + 1; lev < cur->bc_nlevels; lev++) { block = xfs_btree_get_block(cur, lev, &bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, lev, bp); if (error) goto error0; #endif if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block)) break; /* Read-ahead the right block for the next loop. */ xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); } /* * If we went off the root then we are either seriously * confused or have the tree root in an inode. */ if (lev == cur->bc_nlevels) { if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) goto out0; ASSERT(0); error = -EFSCORRUPTED; goto error0; } ASSERT(lev < cur->bc_nlevels); /* * Now walk back down the tree, fixing up the cursor's buffer * pointers and key numbers. */ for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { union xfs_btree_ptr *ptrp; ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); --lev; error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); if (error) goto error0; xfs_btree_setbuf(cur, lev, bp); cur->bc_levels[lev].ptr = 1; } out1: *stat = 1; return 0; out0: *stat = 0; return 0; error0: return error; } /* * Decrement cursor by one record at the level. * For nonzero levels the leaf-ward information is untouched. */ int /* error */ xfs_btree_decrement( struct xfs_btree_cur *cur, int level, int *stat) /* success/failure */ { struct xfs_btree_block *block; struct xfs_buf *bp; int error; /* error return value */ int lev; union xfs_btree_ptr ptr; ASSERT(level < cur->bc_nlevels); /* Read-ahead to the left at this level. */ xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); /* We're done if we remain in the block after the decrement. */ if (--cur->bc_levels[level].ptr > 0) goto out1; /* Get a pointer to the btree block. */ block = xfs_btree_get_block(cur, level, &bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) goto error0; #endif /* Fail if we just went off the left edge of the tree. */ xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); if (xfs_btree_ptr_is_null(cur, &ptr)) goto out0; XFS_BTREE_STATS_INC(cur, decrement); /* * March up the tree decrementing pointers. * Stop when we don't go off the left edge of a block. */ for (lev = level + 1; lev < cur->bc_nlevels; lev++) { if (--cur->bc_levels[lev].ptr > 0) break; /* Read-ahead the left block for the next loop. */ xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); } /* * If we went off the root then we are seriously confused. * or the root of the tree is in an inode. */ if (lev == cur->bc_nlevels) { if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) goto out0; ASSERT(0); error = -EFSCORRUPTED; goto error0; } ASSERT(lev < cur->bc_nlevels); /* * Now walk back down the tree, fixing up the cursor's buffer * pointers and key numbers. */ for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { union xfs_btree_ptr *ptrp; ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); --lev; error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); if (error) goto error0; xfs_btree_setbuf(cur, lev, bp); cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block); } out1: *stat = 1; return 0; out0: *stat = 0; return 0; error0: return error; } int xfs_btree_lookup_get_block( struct xfs_btree_cur *cur, /* btree cursor */ int level, /* level in the btree */ const union xfs_btree_ptr *pp, /* ptr to btree block */ struct xfs_btree_block **blkp) /* return btree block */ { struct xfs_buf *bp; /* buffer pointer for btree block */ xfs_daddr_t daddr; int error = 0; /* special case the root block if in an inode */ if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && (level == cur->bc_nlevels - 1)) { *blkp = xfs_btree_get_iroot(cur); return 0; } /* * If the old buffer at this level for the disk address we are * looking for re-use it. * * Otherwise throw it away and get a new one. */ bp = cur->bc_levels[level].bp; error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); if (error) return error; if (bp && xfs_buf_daddr(bp) == daddr) { *blkp = XFS_BUF_TO_BLOCK(bp); return 0; } error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); if (error) return error; /* Check the inode owner since the verifiers don't. */ if (xfs_has_crc(cur->bc_mp) && !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) && (cur->bc_flags & XFS_BTREE_LONG_PTRS) && be64_to_cpu((*blkp)->bb_u.l.bb_owner) != cur->bc_ino.ip->i_ino) goto out_bad; /* Did we get the level we were looking for? */ if (be16_to_cpu((*blkp)->bb_level) != level) goto out_bad; /* Check that internal nodes have at least one record. */ if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) goto out_bad; xfs_btree_setbuf(cur, level, bp); return 0; out_bad: *blkp = NULL; xfs_buf_mark_corrupt(bp); xfs_trans_brelse(cur->bc_tp, bp); return -EFSCORRUPTED; } /* * Get current search key. For level 0 we don't actually have a key * structure so we make one up from the record. For all other levels * we just return the right key. */ STATIC union xfs_btree_key * xfs_lookup_get_search_key( struct xfs_btree_cur *cur, int level, int keyno, struct xfs_btree_block *block, union xfs_btree_key *kp) { if (level == 0) { cur->bc_ops->init_key_from_rec(kp, xfs_btree_rec_addr(cur, keyno, block)); return kp; } return xfs_btree_key_addr(cur, keyno, block); } /* * Lookup the record. The cursor is made to point to it, based on dir. * stat is set to 0 if can't find any such record, 1 for success. */ int /* error */ xfs_btree_lookup( struct xfs_btree_cur *cur, /* btree cursor */ xfs_lookup_t dir, /* <=, ==, or >= */ int *stat) /* success/failure */ { struct xfs_btree_block *block; /* current btree block */ int64_t diff; /* difference for the current key */ int error; /* error return value */ int keyno; /* current key number */ int level; /* level in the btree */ union xfs_btree_ptr *pp; /* ptr to btree block */ union xfs_btree_ptr ptr; /* ptr to btree block */ XFS_BTREE_STATS_INC(cur, lookup); /* No such thing as a zero-level tree. */ if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) return -EFSCORRUPTED; block = NULL; keyno = 0; /* initialise start pointer from cursor */ cur->bc_ops->init_ptr_from_cur(cur, &ptr); pp = &ptr; /* * Iterate over each level in the btree, starting at the root. * For each level above the leaves, find the key we need, based * on the lookup record, then follow the corresponding block * pointer down to the next level. */ for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { /* Get the block we need to do the lookup on. */ error = xfs_btree_lookup_get_block(cur, level, pp, &block); if (error) goto error0; if (diff == 0) { /* * If we already had a key match at a higher level, we * know we need to use the first entry in this block. */ keyno = 1; } else { /* Otherwise search this block. Do a binary search. */ int high; /* high entry number */ int low; /* low entry number */ /* Set low and high entry numbers, 1-based. */ low = 1; high = xfs_btree_get_numrecs(block); if (!high) { /* Block is empty, must be an empty leaf. */ if (level != 0 || cur->bc_nlevels != 1) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, cur->bc_mp, block, sizeof(*block)); return -EFSCORRUPTED; } cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE; *stat = 0; return 0; } /* Binary search the block. */ while (low <= high) { union xfs_btree_key key; union xfs_btree_key *kp; XFS_BTREE_STATS_INC(cur, compare); /* keyno is average of low and high. */ keyno = (low + high) >> 1; /* Get current search key */ kp = xfs_lookup_get_search_key(cur, level, keyno, block, &key); /* * Compute difference to get next direction: * - less than, move right * - greater than, move left * - equal, we're done */ diff = cur->bc_ops->key_diff(cur, kp); if (diff < 0) low = keyno + 1; else if (diff > 0) high = keyno - 1; else break; } } /* * If there are more levels, set up for the next level * by getting the block number and filling in the cursor. */ if (level > 0) { /* * If we moved left, need the previous key number, * unless there isn't one. */ if (diff > 0 && --keyno < 1) keyno = 1; pp = xfs_btree_ptr_addr(cur, keyno, block); error = xfs_btree_debug_check_ptr(cur, pp, 0, level); if (error) goto error0; cur->bc_levels[level].ptr = keyno; } } /* Done with the search. See if we need to adjust the results. */ if (dir != XFS_LOOKUP_LE && diff < 0) { keyno++; /* * If ge search and we went off the end of the block, but it's * not the last block, we're in the wrong block. */ xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); if (dir == XFS_LOOKUP_GE && keyno > xfs_btree_get_numrecs(block) && !xfs_btree_ptr_is_null(cur, &ptr)) { int i; cur->bc_levels[0].ptr = keyno; error = xfs_btree_increment(cur, 0, &i); if (error) goto error0; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) return -EFSCORRUPTED; *stat = 1; return 0; } } else if (dir == XFS_LOOKUP_LE && diff > 0) keyno--; cur->bc_levels[0].ptr = keyno; /* Return if we succeeded or not. */ if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) *stat = 0; else if (dir != XFS_LOOKUP_EQ || diff == 0) *stat = 1; else *stat = 0; return 0; error0: return error; } /* Find the high key storage area from a regular key. */ union xfs_btree_key * xfs_btree_high_key_from_key( struct xfs_btree_cur *cur, union xfs_btree_key *key) { ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); return (union xfs_btree_key *)((char *)key + (cur->bc_ops->key_len / 2)); } /* Determine the low (and high if overlapped) keys of a leaf block */ STATIC void xfs_btree_get_leaf_keys( struct xfs_btree_cur *cur, struct xfs_btree_block *block, union xfs_btree_key *key) { union xfs_btree_key max_hkey; union xfs_btree_key hkey; union xfs_btree_rec *rec; union xfs_btree_key *high; int n; rec = xfs_btree_rec_addr(cur, 1, block); cur->bc_ops->init_key_from_rec(key, rec); if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { rec = xfs_btree_rec_addr(cur, n, block); cur->bc_ops->init_high_key_from_rec(&hkey, rec); if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey)) max_hkey = hkey; } high = xfs_btree_high_key_from_key(cur, key); memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); } } /* Determine the low (and high if overlapped) keys of a node block */ STATIC void xfs_btree_get_node_keys( struct xfs_btree_cur *cur, struct xfs_btree_block *block, union xfs_btree_key *key) { union xfs_btree_key *hkey; union xfs_btree_key *max_hkey; union xfs_btree_key *high; int n; if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { memcpy(key, xfs_btree_key_addr(cur, 1, block), cur->bc_ops->key_len / 2); max_hkey = xfs_btree_high_key_addr(cur, 1, block); for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { hkey = xfs_btree_high_key_addr(cur, n, block); if (xfs_btree_keycmp_gt(cur, hkey, max_hkey)) max_hkey = hkey; } high = xfs_btree_high_key_from_key(cur, key); memcpy(high, max_hkey, cur->bc_ops->key_len / 2); } else { memcpy(key, xfs_btree_key_addr(cur, 1, block), cur->bc_ops->key_len); } } /* Derive the keys for any btree block. */ void xfs_btree_get_keys( struct xfs_btree_cur *cur, struct xfs_btree_block *block, union xfs_btree_key *key) { if (be16_to_cpu(block->bb_level) == 0) xfs_btree_get_leaf_keys(cur, block, key); else xfs_btree_get_node_keys(cur, block, key); } /* * Decide if we need to update the parent keys of a btree block. For * a standard btree this is only necessary if we're updating the first * record/key. For an overlapping btree, we must always update the * keys because the highest key can be in any of the records or keys * in the block. */ static inline bool xfs_btree_needs_key_update( struct xfs_btree_cur *cur, int ptr) { return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; } /* * Update the low and high parent keys of the given level, progressing * towards the root. If force_all is false, stop if the keys for a given * level do not need updating. */ STATIC int __xfs_btree_updkeys( struct xfs_btree_cur *cur, int level, struct xfs_btree_block *block, struct xfs_buf *bp0, bool force_all) { union xfs_btree_key key; /* keys from current level */ union xfs_btree_key *lkey; /* keys from the next level up */ union xfs_btree_key *hkey; union xfs_btree_key *nlkey; /* keys from the next level up */ union xfs_btree_key *nhkey; struct xfs_buf *bp; int ptr; ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); /* Exit if there aren't any parent levels to update. */ if (level + 1 >= cur->bc_nlevels) return 0; trace_xfs_btree_updkeys(cur, level, bp0); lkey = &key; hkey = xfs_btree_high_key_from_key(cur, lkey); xfs_btree_get_keys(cur, block, lkey); for (level++; level < cur->bc_nlevels; level++) { #ifdef DEBUG int error; #endif block = xfs_btree_get_block(cur, level, &bp); trace_xfs_btree_updkeys(cur, level, bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) return error; #endif ptr = cur->bc_levels[level].ptr; nlkey = xfs_btree_key_addr(cur, ptr, block); nhkey = xfs_btree_high_key_addr(cur, ptr, block); if (!force_all && xfs_btree_keycmp_eq(cur, nlkey, lkey) && xfs_btree_keycmp_eq(cur, nhkey, hkey)) break; xfs_btree_copy_keys(cur, nlkey, lkey, 1); xfs_btree_log_keys(cur, bp, ptr, ptr); if (level + 1 >= cur->bc_nlevels) break; xfs_btree_get_node_keys(cur, block, lkey); } return 0; } /* Update all the keys from some level in cursor back to the root. */ STATIC int xfs_btree_updkeys_force( struct xfs_btree_cur *cur, int level) { struct xfs_buf *bp; struct xfs_btree_block *block; block = xfs_btree_get_block(cur, level, &bp); return __xfs_btree_updkeys(cur, level, block, bp, true); } /* * Update the parent keys of the given level, progressing towards the root. */ STATIC int xfs_btree_update_keys( struct xfs_btree_cur *cur, int level) { struct xfs_btree_block *block; struct xfs_buf *bp; union xfs_btree_key *kp; union xfs_btree_key key; int ptr; ASSERT(level >= 0); block = xfs_btree_get_block(cur, level, &bp); if (cur->bc_flags & XFS_BTREE_OVERLAPPING) return __xfs_btree_updkeys(cur, level, block, bp, false); /* * Go up the tree from this level toward the root. * At each level, update the key value to the value input. * Stop when we reach a level where the cursor isn't pointing * at the first entry in the block. */ xfs_btree_get_keys(cur, block, &key); for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { #ifdef DEBUG int error; #endif block = xfs_btree_get_block(cur, level, &bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) return error; #endif ptr = cur->bc_levels[level].ptr; kp = xfs_btree_key_addr(cur, ptr, block); xfs_btree_copy_keys(cur, kp, &key, 1); xfs_btree_log_keys(cur, bp, ptr, ptr); } return 0; } /* * Update the record referred to by cur to the value in the * given record. This either works (return 0) or gets an * EFSCORRUPTED error. */ int xfs_btree_update( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { struct xfs_btree_block *block; struct xfs_buf *bp; int error; int ptr; union xfs_btree_rec *rp; /* Pick up the current block. */ block = xfs_btree_get_block(cur, 0, &bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, 0, bp); if (error) goto error0; #endif /* Get the address of the rec to be updated. */ ptr = cur->bc_levels[0].ptr; rp = xfs_btree_rec_addr(cur, ptr, block); /* Fill in the new contents and log them. */ xfs_btree_copy_recs(cur, rp, rec, 1); xfs_btree_log_recs(cur, bp, ptr, ptr); /* * If we are tracking the last record in the tree and * we are at the far right edge of the tree, update it. */ if (xfs_btree_is_lastrec(cur, block, 0)) { cur->bc_ops->update_lastrec(cur, block, rec, ptr, LASTREC_UPDATE); } /* Pass new key value up to our parent. */ if (xfs_btree_needs_key_update(cur, ptr)) { error = xfs_btree_update_keys(cur, 0); if (error) goto error0; } return 0; error0: return error; } /* * Move 1 record left from cur/level if possible. * Update cur to reflect the new path. */ STATIC int /* error */ xfs_btree_lshift( struct xfs_btree_cur *cur, int level, int *stat) /* success/failure */ { struct xfs_buf *lbp; /* left buffer pointer */ struct xfs_btree_block *left; /* left btree block */ int lrecs; /* left record count */ struct xfs_buf *rbp; /* right buffer pointer */ struct xfs_btree_block *right; /* right btree block */ struct xfs_btree_cur *tcur; /* temporary btree cursor */ int rrecs; /* right record count */ union xfs_btree_ptr lptr; /* left btree pointer */ union xfs_btree_key *rkp = NULL; /* right btree key */ union xfs_btree_ptr *rpp = NULL; /* right address pointer */ union xfs_btree_rec *rrp = NULL; /* right record pointer */ int error; /* error return value */ int i; if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && level == cur->bc_nlevels - 1) goto out0; /* Set up variables for this block as "right". */ right = xfs_btree_get_block(cur, level, &rbp); #ifdef DEBUG error = xfs_btree_check_block(cur, right, level, rbp); if (error) goto error0; #endif /* If we've got no left sibling then we can't shift an entry left. */ xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); if (xfs_btree_ptr_is_null(cur, &lptr)) goto out0; /* * If the cursor entry is the one that would be moved, don't * do it... it's too complicated. */ if (cur->bc_levels[level].ptr <= 1) goto out0; /* Set up the left neighbor as "left". */ error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); if (error) goto error0; /* If it's full, it can't take another entry. */ lrecs = xfs_btree_get_numrecs(left); if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) goto out0; rrecs = xfs_btree_get_numrecs(right); /* * We add one entry to the left side and remove one for the right side. * Account for it here, the changes will be updated on disk and logged * later. */ lrecs++; rrecs--; XFS_BTREE_STATS_INC(cur, lshift); XFS_BTREE_STATS_ADD(cur, moves, 1); /* * If non-leaf, copy a key and a ptr to the left block. * Log the changes to the left block. */ if (level > 0) { /* It's a non-leaf. Move keys and pointers. */ union xfs_btree_key *lkp; /* left btree key */ union xfs_btree_ptr *lpp; /* left address pointer */ lkp = xfs_btree_key_addr(cur, lrecs, left); rkp = xfs_btree_key_addr(cur, 1, right); lpp = xfs_btree_ptr_addr(cur, lrecs, left); rpp = xfs_btree_ptr_addr(cur, 1, right); error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); if (error) goto error0; xfs_btree_copy_keys(cur, lkp, rkp, 1); xfs_btree_copy_ptrs(cur, lpp, rpp, 1); xfs_btree_log_keys(cur, lbp, lrecs, lrecs); xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); ASSERT(cur->bc_ops->keys_inorder(cur, xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); } else { /* It's a leaf. Move records. */ union xfs_btree_rec *lrp; /* left record pointer */ lrp = xfs_btree_rec_addr(cur, lrecs, left); rrp = xfs_btree_rec_addr(cur, 1, right); xfs_btree_copy_recs(cur, lrp, rrp, 1); xfs_btree_log_recs(cur, lbp, lrecs, lrecs); ASSERT(cur->bc_ops->recs_inorder(cur, xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); } xfs_btree_set_numrecs(left, lrecs); xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); xfs_btree_set_numrecs(right, rrecs); xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); /* * Slide the contents of right down one entry. */ XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); if (level > 0) { /* It's a nonleaf. operate on keys and ptrs */ for (i = 0; i < rrecs; i++) { error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); if (error) goto error0; } xfs_btree_shift_keys(cur, xfs_btree_key_addr(cur, 2, right), -1, rrecs); xfs_btree_shift_ptrs(cur, xfs_btree_ptr_addr(cur, 2, right), -1, rrecs); xfs_btree_log_keys(cur, rbp, 1, rrecs); xfs_btree_log_ptrs(cur, rbp, 1, rrecs); } else { /* It's a leaf. operate on records */ xfs_btree_shift_recs(cur, xfs_btree_rec_addr(cur, 2, right), -1, rrecs); xfs_btree_log_recs(cur, rbp, 1, rrecs); } /* * Using a temporary cursor, update the parent key values of the * block on the left. */ if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { error = xfs_btree_dup_cursor(cur, &tcur); if (error) goto error0; i = xfs_btree_firstrec(tcur, level); if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } error = xfs_btree_decrement(tcur, level, &i); if (error) goto error1; /* Update the parent high keys of the left block, if needed. */ error = xfs_btree_update_keys(tcur, level); if (error) goto error1; xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); } /* Update the parent keys of the right block. */ error = xfs_btree_update_keys(cur, level); if (error) goto error0; /* Slide the cursor value left one. */ cur->bc_levels[level].ptr--; *stat = 1; return 0; out0: *stat = 0; return 0; error0: return error; error1: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); return error; } /* * Move 1 record right from cur/level if possible. * Update cur to reflect the new path. */ STATIC int /* error */ xfs_btree_rshift( struct xfs_btree_cur *cur, int level, int *stat) /* success/failure */ { struct xfs_buf *lbp; /* left buffer pointer */ struct xfs_btree_block *left; /* left btree block */ struct xfs_buf *rbp; /* right buffer pointer */ struct xfs_btree_block *right; /* right btree block */ struct xfs_btree_cur *tcur; /* temporary btree cursor */ union xfs_btree_ptr rptr; /* right block pointer */ union xfs_btree_key *rkp; /* right btree key */ int rrecs; /* right record count */ int lrecs; /* left record count */ int error; /* error return value */ int i; /* loop counter */ if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && (level == cur->bc_nlevels - 1)) goto out0; /* Set up variables for this block as "left". */ left = xfs_btree_get_block(cur, level, &lbp); #ifdef DEBUG error = xfs_btree_check_block(cur, left, level, lbp); if (error) goto error0; #endif /* If we've got no right sibling then we can't shift an entry right. */ xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); if (xfs_btree_ptr_is_null(cur, &rptr)) goto out0; /* * If the cursor entry is the one that would be moved, don't * do it... it's too complicated. */ lrecs = xfs_btree_get_numrecs(left); if (cur->bc_levels[level].ptr >= lrecs) goto out0; /* Set up the right neighbor as "right". */ error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); if (error) goto error0; /* If it's full, it can't take another entry. */ rrecs = xfs_btree_get_numrecs(right); if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) goto out0; XFS_BTREE_STATS_INC(cur, rshift); XFS_BTREE_STATS_ADD(cur, moves, rrecs); /* * Make a hole at the start of the right neighbor block, then * copy the last left block entry to the hole. */ if (level > 0) { /* It's a nonleaf. make a hole in the keys and ptrs */ union xfs_btree_key *lkp; union xfs_btree_ptr *lpp; union xfs_btree_ptr *rpp; lkp = xfs_btree_key_addr(cur, lrecs, left); lpp = xfs_btree_ptr_addr(cur, lrecs, left); rkp = xfs_btree_key_addr(cur, 1, right); rpp = xfs_btree_ptr_addr(cur, 1, right); for (i = rrecs - 1; i >= 0; i--) { error = xfs_btree_debug_check_ptr(cur, rpp, i, level); if (error) goto error0; } xfs_btree_shift_keys(cur, rkp, 1, rrecs); xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); if (error) goto error0; /* Now put the new data in, and log it. */ xfs_btree_copy_keys(cur, rkp, lkp, 1); xfs_btree_copy_ptrs(cur, rpp, lpp, 1); xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); ASSERT(cur->bc_ops->keys_inorder(cur, rkp, xfs_btree_key_addr(cur, 2, right))); } else { /* It's a leaf. make a hole in the records */ union xfs_btree_rec *lrp; union xfs_btree_rec *rrp; lrp = xfs_btree_rec_addr(cur, lrecs, left); rrp = xfs_btree_rec_addr(cur, 1, right); xfs_btree_shift_recs(cur, rrp, 1, rrecs); /* Now put the new data in, and log it. */ xfs_btree_copy_recs(cur, rrp, lrp, 1); xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); } /* * Decrement and log left's numrecs, bump and log right's numrecs. */ xfs_btree_set_numrecs(left, --lrecs); xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); xfs_btree_set_numrecs(right, ++rrecs); xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); /* * Using a temporary cursor, update the parent key values of the * block on the right. */ error = xfs_btree_dup_cursor(cur, &tcur); if (error) goto error0; i = xfs_btree_lastrec(tcur, level); if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } error = xfs_btree_increment(tcur, level, &i); if (error) goto error1; /* Update the parent high keys of the left block, if needed. */ if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { error = xfs_btree_update_keys(cur, level); if (error) goto error1; } /* Update the parent keys of the right block. */ error = xfs_btree_update_keys(tcur, level); if (error) goto error1; xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); *stat = 1; return 0; out0: *stat = 0; return 0; error0: return error; error1: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); return error; } /* * Split cur/level block in half. * Return new block number and the key to its first * record (to be inserted into parent). */ STATIC int /* error */ __xfs_btree_split( struct xfs_btree_cur *cur, int level, union xfs_btree_ptr *ptrp, union xfs_btree_key *key, struct xfs_btree_cur **curp, int *stat) /* success/failure */ { union xfs_btree_ptr lptr; /* left sibling block ptr */ struct xfs_buf *lbp; /* left buffer pointer */ struct xfs_btree_block *left; /* left btree block */ union xfs_btree_ptr rptr; /* right sibling block ptr */ struct xfs_buf *rbp; /* right buffer pointer */ struct xfs_btree_block *right; /* right btree block */ union xfs_btree_ptr rrptr; /* right-right sibling ptr */ struct xfs_buf *rrbp; /* right-right buffer pointer */ struct xfs_btree_block *rrblock; /* right-right btree block */ int lrecs; int rrecs; int src_index; int error; /* error return value */ int i; XFS_BTREE_STATS_INC(cur, split); /* Set up left block (current one). */ left = xfs_btree_get_block(cur, level, &lbp); #ifdef DEBUG error = xfs_btree_check_block(cur, left, level, lbp); if (error) goto error0; #endif xfs_btree_buf_to_ptr(cur, lbp, &lptr); /* Allocate the new block. If we can't do it, we're toast. Give up. */ error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); if (error) goto error0; if (*stat == 0) goto out0; XFS_BTREE_STATS_INC(cur, alloc); /* Set up the new block as "right". */ error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); if (error) goto error0; /* Fill in the btree header for the new right block. */ xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); /* * Split the entries between the old and the new block evenly. * Make sure that if there's an odd number of entries now, that * each new block will have the same number of entries. */ lrecs = xfs_btree_get_numrecs(left); rrecs = lrecs / 2; if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1) rrecs++; src_index = (lrecs - rrecs + 1); XFS_BTREE_STATS_ADD(cur, moves, rrecs); /* Adjust numrecs for the later get_*_keys() calls. */ lrecs -= rrecs; xfs_btree_set_numrecs(left, lrecs); xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); /* * Copy btree block entries from the left block over to the * new block, the right. Update the right block and log the * changes. */ if (level > 0) { /* It's a non-leaf. Move keys and pointers. */ union xfs_btree_key *lkp; /* left btree key */ union xfs_btree_ptr *lpp; /* left address pointer */ union xfs_btree_key *rkp; /* right btree key */ union xfs_btree_ptr *rpp; /* right address pointer */ lkp = xfs_btree_key_addr(cur, src_index, left); lpp = xfs_btree_ptr_addr(cur, src_index, left); rkp = xfs_btree_key_addr(cur, 1, right); rpp = xfs_btree_ptr_addr(cur, 1, right); for (i = src_index; i < rrecs; i++) { error = xfs_btree_debug_check_ptr(cur, lpp, i, level); if (error) goto error0; } /* Copy the keys & pointers to the new block. */ xfs_btree_copy_keys(cur, rkp, lkp, rrecs); xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); xfs_btree_log_keys(cur, rbp, 1, rrecs); xfs_btree_log_ptrs(cur, rbp, 1, rrecs); /* Stash the keys of the new block for later insertion. */ xfs_btree_get_node_keys(cur, right, key); } else { /* It's a leaf. Move records. */ union xfs_btree_rec *lrp; /* left record pointer */ union xfs_btree_rec *rrp; /* right record pointer */ lrp = xfs_btree_rec_addr(cur, src_index, left); rrp = xfs_btree_rec_addr(cur, 1, right); /* Copy records to the new block. */ xfs_btree_copy_recs(cur, rrp, lrp, rrecs); xfs_btree_log_recs(cur, rbp, 1, rrecs); /* Stash the keys of the new block for later insertion. */ xfs_btree_get_leaf_keys(cur, right, key); } /* * Find the left block number by looking in the buffer. * Adjust sibling pointers. */ xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); /* * If there's a block to the new block's right, make that block * point back to right instead of to left. */ if (!xfs_btree_ptr_is_null(cur, &rrptr)) { error = xfs_btree_read_buf_block(cur, &rrptr, 0, &rrblock, &rrbp); if (error) goto error0; xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); } /* Update the parent high keys of the left block, if needed. */ if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { error = xfs_btree_update_keys(cur, level); if (error) goto error0; } /* * If the cursor is really in the right block, move it there. * If it's just pointing past the last entry in left, then we'll * insert there, so don't change anything in that case. */ if (cur->bc_levels[level].ptr > lrecs + 1) { xfs_btree_setbuf(cur, level, rbp); cur->bc_levels[level].ptr -= lrecs; } /* * If there are more levels, we'll need another cursor which refers * the right block, no matter where this cursor was. */ if (level + 1 < cur->bc_nlevels) { error = xfs_btree_dup_cursor(cur, curp); if (error) goto error0; (*curp)->bc_levels[level + 1].ptr++; } *ptrp = rptr; *stat = 1; return 0; out0: *stat = 0; return 0; error0: return error; } #ifdef __KERNEL__ struct xfs_btree_split_args { struct xfs_btree_cur *cur; int level; union xfs_btree_ptr *ptrp; union xfs_btree_key *key; struct xfs_btree_cur **curp; int *stat; /* success/failure */ int result; bool kswapd; /* allocation in kswapd context */ struct completion *done; struct work_struct work; }; /* * Stack switching interfaces for allocation */ static void xfs_btree_split_worker( struct work_struct *work) { struct xfs_btree_split_args *args = container_of(work, struct xfs_btree_split_args, work); unsigned long pflags; unsigned long new_pflags = 0; /* * we are in a transaction context here, but may also be doing work * in kswapd context, and hence we may need to inherit that state * temporarily to ensure that we don't block waiting for memory reclaim * in any way. */ if (args->kswapd) new_pflags |= PF_MEMALLOC | PF_KSWAPD; current_set_flags_nested(&pflags, new_pflags); xfs_trans_set_context(args->cur->bc_tp); args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, args->key, args->curp, args->stat); xfs_trans_clear_context(args->cur->bc_tp); current_restore_flags_nested(&pflags, new_pflags); /* * Do not access args after complete() has run here. We don't own args * and the owner may run and free args before we return here. */ complete(args->done); } /* * BMBT split requests often come in with little stack to work on so we push * them off to a worker thread so there is lots of stack to use. For the other * btree types, just call directly to avoid the context switch overhead here. * * Care must be taken here - the work queue rescuer thread introduces potential * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new * AGFs to allocate blocks. A task being run by the rescuer could attempt to * lock an AGF that is already locked by a task queued to run by the rescuer, * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to * release it until the current thread it is running gains the lock. * * To avoid this issue, we only ever queue BMBT splits that don't have an AGF * already locked to allocate from. The only place that doesn't hold an AGF * locked is unwritten extent conversion at IO completion, but that has already * been offloaded to a worker thread and hence has no stack consumption issues * we have to worry about. */ STATIC int /* error */ xfs_btree_split( struct xfs_btree_cur *cur, int level, union xfs_btree_ptr *ptrp, union xfs_btree_key *key, struct xfs_btree_cur **curp, int *stat) /* success/failure */ { struct xfs_btree_split_args args; DECLARE_COMPLETION_ONSTACK(done); if (cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_tp->t_highest_agno == NULLAGNUMBER) return __xfs_btree_split(cur, level, ptrp, key, curp, stat); args.cur = cur; args.level = level; args.ptrp = ptrp; args.key = key; args.curp = curp; args.stat = stat; args.done = &done; args.kswapd = current_is_kswapd(); INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); queue_work(xfs_alloc_wq, &args.work); wait_for_completion(&done); destroy_work_on_stack(&args.work); return args.result; } #else #define xfs_btree_split __xfs_btree_split #endif /* __KERNEL__ */ /* * Copy the old inode root contents into a real block and make the * broot point to it. */ int /* error */ xfs_btree_new_iroot( struct xfs_btree_cur *cur, /* btree cursor */ int *logflags, /* logging flags for inode */ int *stat) /* return status - 0 fail */ { struct xfs_buf *cbp; /* buffer for cblock */ struct xfs_btree_block *block; /* btree block */ struct xfs_btree_block *cblock; /* child btree block */ union xfs_btree_key *ckp; /* child key pointer */ union xfs_btree_ptr *cpp; /* child ptr pointer */ union xfs_btree_key *kp; /* pointer to btree key */ union xfs_btree_ptr *pp; /* pointer to block addr */ union xfs_btree_ptr nptr; /* new block addr */ int level; /* btree level */ int error; /* error return code */ int i; /* loop counter */ XFS_BTREE_STATS_INC(cur, newroot); ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); level = cur->bc_nlevels - 1; block = xfs_btree_get_iroot(cur); pp = xfs_btree_ptr_addr(cur, 1, block); /* Allocate the new block. If we can't do it, we're toast. Give up. */ error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); if (error) goto error0; if (*stat == 0) return 0; XFS_BTREE_STATS_INC(cur, alloc); /* Copy the root into a real block. */ error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); if (error) goto error0; /* * we can't just memcpy() the root in for CRC enabled btree blocks. * In that case have to also ensure the blkno remains correct */ memcpy(cblock, block, xfs_btree_block_len(cur)); if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp)); if (cur->bc_flags & XFS_BTREE_LONG_PTRS) cblock->bb_u.l.bb_blkno = bno; else cblock->bb_u.s.bb_blkno = bno; } be16_add_cpu(&block->bb_level, 1); xfs_btree_set_numrecs(block, 1); cur->bc_nlevels++; ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); cur->bc_levels[level + 1].ptr = 1; kp = xfs_btree_key_addr(cur, 1, block); ckp = xfs_btree_key_addr(cur, 1, cblock); xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); cpp = xfs_btree_ptr_addr(cur, 1, cblock); for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { error = xfs_btree_debug_check_ptr(cur, pp, i, level); if (error) goto error0; } xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); if (error) goto error0; xfs_btree_copy_ptrs(cur, pp, &nptr, 1); xfs_iroot_realloc(cur->bc_ino.ip, 1 - xfs_btree_get_numrecs(cblock), cur->bc_ino.whichfork); xfs_btree_setbuf(cur, level, cbp); /* * Do all this logging at the end so that * the root is at the right level. */ xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); *logflags |= XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork); *stat = 1; return 0; error0: return error; } /* * Allocate a new root block, fill it in. */ STATIC int /* error */ xfs_btree_new_root( struct xfs_btree_cur *cur, /* btree cursor */ int *stat) /* success/failure */ { struct xfs_btree_block *block; /* one half of the old root block */ struct xfs_buf *bp; /* buffer containing block */ int error; /* error return value */ struct xfs_buf *lbp; /* left buffer pointer */ struct xfs_btree_block *left; /* left btree block */ struct xfs_buf *nbp; /* new (root) buffer */ struct xfs_btree_block *new; /* new (root) btree block */ int nptr; /* new value for key index, 1 or 2 */ struct xfs_buf *rbp; /* right buffer pointer */ struct xfs_btree_block *right; /* right btree block */ union xfs_btree_ptr rptr; union xfs_btree_ptr lptr; XFS_BTREE_STATS_INC(cur, newroot); /* initialise our start point from the cursor */ cur->bc_ops->init_ptr_from_cur(cur, &rptr); /* Allocate the new block. If we can't do it, we're toast. Give up. */ error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); if (error) goto error0; if (*stat == 0) goto out0; XFS_BTREE_STATS_INC(cur, alloc); /* Set up the new block. */ error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); if (error) goto error0; /* Set the root in the holding structure increasing the level by 1. */ cur->bc_ops->set_root(cur, &lptr, 1); /* * At the previous root level there are now two blocks: the old root, * and the new block generated when it was split. We don't know which * one the cursor is pointing at, so we set up variables "left" and * "right" for each case. */ block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); if (error) goto error0; #endif xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); if (!xfs_btree_ptr_is_null(cur, &rptr)) { /* Our block is left, pick up the right block. */ lbp = bp; xfs_btree_buf_to_ptr(cur, lbp, &lptr); left = block; error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); if (error) goto error0; bp = rbp; nptr = 1; } else { /* Our block is right, pick up the left block. */ rbp = bp; xfs_btree_buf_to_ptr(cur, rbp, &rptr); right = block; xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); if (error) goto error0; bp = lbp; nptr = 2; } /* Fill in the new block's btree header and log it. */ xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && !xfs_btree_ptr_is_null(cur, &rptr)); /* Fill in the key data in the new root. */ if (xfs_btree_get_level(left) > 0) { /* * Get the keys for the left block's keys and put them directly * in the parent block. Do the same for the right block. */ xfs_btree_get_node_keys(cur, left, xfs_btree_key_addr(cur, 1, new)); xfs_btree_get_node_keys(cur, right, xfs_btree_key_addr(cur, 2, new)); } else { /* * Get the keys for the left block's records and put them * directly in the parent block. Do the same for the right * block. */ xfs_btree_get_leaf_keys(cur, left, xfs_btree_key_addr(cur, 1, new)); xfs_btree_get_leaf_keys(cur, right, xfs_btree_key_addr(cur, 2, new)); } xfs_btree_log_keys(cur, nbp, 1, 2); /* Fill in the pointer data in the new root. */ xfs_btree_copy_ptrs(cur, xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); xfs_btree_copy_ptrs(cur, xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); xfs_btree_log_ptrs(cur, nbp, 1, 2); /* Fix up the cursor. */ xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); cur->bc_levels[cur->bc_nlevels].ptr = nptr; cur->bc_nlevels++; ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); *stat = 1; return 0; error0: return error; out0: *stat = 0; return 0; } STATIC int xfs_btree_make_block_unfull( struct xfs_btree_cur *cur, /* btree cursor */ int level, /* btree level */ int numrecs,/* # of recs in block */ int *oindex,/* old tree index */ int *index, /* new tree index */ union xfs_btree_ptr *nptr, /* new btree ptr */ struct xfs_btree_cur **ncur, /* new btree cursor */ union xfs_btree_key *key, /* key of new block */ int *stat) { int error = 0; if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && level == cur->bc_nlevels - 1) { struct xfs_inode *ip = cur->bc_ino.ip; if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { /* A root block that can be made bigger. */ xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork); *stat = 1; } else { /* A root block that needs replacing */ int logflags = 0; error = xfs_btree_new_iroot(cur, &logflags, stat); if (error || *stat == 0) return error; xfs_trans_log_inode(cur->bc_tp, ip, logflags); } return 0; } /* First, try shifting an entry to the right neighbor. */ error = xfs_btree_rshift(cur, level, stat); if (error || *stat) return error; /* Next, try shifting an entry to the left neighbor. */ error = xfs_btree_lshift(cur, level, stat); if (error) return error; if (*stat) { *oindex = *index = cur->bc_levels[level].ptr; return 0; } /* * Next, try splitting the current block in half. * * If this works we have to re-set our variables because we * could be in a different block now. */ error = xfs_btree_split(cur, level, nptr, key, ncur, stat); if (error || *stat == 0) return error; *index = cur->bc_levels[level].ptr; return 0; } /* * Insert one record/level. Return information to the caller * allowing the next level up to proceed if necessary. */ STATIC int xfs_btree_insrec( struct xfs_btree_cur *cur, /* btree cursor */ int level, /* level to insert record at */ union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ union xfs_btree_rec *rec, /* record to insert */ union xfs_btree_key *key, /* i/o: block key for ptrp */ struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ int *stat) /* success/failure */ { struct xfs_btree_block *block; /* btree block */ struct xfs_buf *bp; /* buffer for block */ union xfs_btree_ptr nptr; /* new block ptr */ struct xfs_btree_cur *ncur = NULL; /* new btree cursor */ union xfs_btree_key nkey; /* new block key */ union xfs_btree_key *lkey; int optr; /* old key/record index */ int ptr; /* key/record index */ int numrecs;/* number of records */ int error; /* error return value */ int i; xfs_daddr_t old_bn; ncur = NULL; lkey = &nkey; /* * If we have an external root pointer, and we've made it to the * root level, allocate a new root block and we're done. */ if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && (level >= cur->bc_nlevels)) { error = xfs_btree_new_root(cur, stat); xfs_btree_set_ptr_null(cur, ptrp); return error; } /* If we're off the left edge, return failure. */ ptr = cur->bc_levels[level].ptr; if (ptr == 0) { *stat = 0; return 0; } optr = ptr; XFS_BTREE_STATS_INC(cur, insrec); /* Get pointers to the btree buffer and block. */ block = xfs_btree_get_block(cur, level, &bp); old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL; numrecs = xfs_btree_get_numrecs(block); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) goto error0; /* Check that the new entry is being inserted in the right place. */ if (ptr <= numrecs) { if (level == 0) { ASSERT(cur->bc_ops->recs_inorder(cur, rec, xfs_btree_rec_addr(cur, ptr, block))); } else { ASSERT(cur->bc_ops->keys_inorder(cur, key, xfs_btree_key_addr(cur, ptr, block))); } } #endif /* * If the block is full, we can't insert the new entry until we * make the block un-full. */ xfs_btree_set_ptr_null(cur, &nptr); if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { error = xfs_btree_make_block_unfull(cur, level, numrecs, &optr, &ptr, &nptr, &ncur, lkey, stat); if (error || *stat == 0) goto error0; } /* * The current block may have changed if the block was * previously full and we have just made space in it. */ block = xfs_btree_get_block(cur, level, &bp); numrecs = xfs_btree_get_numrecs(block); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) goto error0; #endif /* * At this point we know there's room for our new entry in the block * we're pointing at. */ XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); if (level > 0) { /* It's a nonleaf. make a hole in the keys and ptrs */ union xfs_btree_key *kp; union xfs_btree_ptr *pp; kp = xfs_btree_key_addr(cur, ptr, block); pp = xfs_btree_ptr_addr(cur, ptr, block); for (i = numrecs - ptr; i >= 0; i--) { error = xfs_btree_debug_check_ptr(cur, pp, i, level); if (error) goto error0; } xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); if (error) goto error0; /* Now put the new data in, bump numrecs and log it. */ xfs_btree_copy_keys(cur, kp, key, 1); xfs_btree_copy_ptrs(cur, pp, ptrp, 1); numrecs++; xfs_btree_set_numrecs(block, numrecs); xfs_btree_log_ptrs(cur, bp, ptr, numrecs); xfs_btree_log_keys(cur, bp, ptr, numrecs); #ifdef DEBUG if (ptr < numrecs) { ASSERT(cur->bc_ops->keys_inorder(cur, kp, xfs_btree_key_addr(cur, ptr + 1, block))); } #endif } else { /* It's a leaf. make a hole in the records */ union xfs_btree_rec *rp; rp = xfs_btree_rec_addr(cur, ptr, block); xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); /* Now put the new data in, bump numrecs and log it. */ xfs_btree_copy_recs(cur, rp, rec, 1); xfs_btree_set_numrecs(block, ++numrecs); xfs_btree_log_recs(cur, bp, ptr, numrecs); #ifdef DEBUG if (ptr < numrecs) { ASSERT(cur->bc_ops->recs_inorder(cur, rp, xfs_btree_rec_addr(cur, ptr + 1, block))); } #endif } /* Log the new number of records in the btree header. */ xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); /* * If we just inserted into a new tree block, we have to * recalculate nkey here because nkey is out of date. * * Otherwise we're just updating an existing block (having shoved * some records into the new tree block), so use the regular key * update mechanism. */ if (bp && xfs_buf_daddr(bp) != old_bn) { xfs_btree_get_keys(cur, block, lkey); } else if (xfs_btree_needs_key_update(cur, optr)) { error = xfs_btree_update_keys(cur, level); if (error) goto error0; } /* * If we are tracking the last record in the tree and * we are at the far right edge of the tree, update it. */ if (xfs_btree_is_lastrec(cur, block, level)) { cur->bc_ops->update_lastrec(cur, block, rec, ptr, LASTREC_INSREC); } /* * Return the new block number, if any. * If there is one, give back a record value and a cursor too. */ *ptrp = nptr; if (!xfs_btree_ptr_is_null(cur, &nptr)) { xfs_btree_copy_keys(cur, key, lkey, 1); *curp = ncur; } *stat = 1; return 0; error0: if (ncur) xfs_btree_del_cursor(ncur, error); return error; } /* * Insert the record at the point referenced by cur. * * A multi-level split of the tree on insert will invalidate the original * cursor. All callers of this function should assume that the cursor is * no longer valid and revalidate it. */ int xfs_btree_insert( struct xfs_btree_cur *cur, int *stat) { int error; /* error return value */ int i; /* result value, 0 for failure */ int level; /* current level number in btree */ union xfs_btree_ptr nptr; /* new block number (split result) */ struct xfs_btree_cur *ncur; /* new cursor (split result) */ struct xfs_btree_cur *pcur; /* previous level's cursor */ union xfs_btree_key bkey; /* key of block to insert */ union xfs_btree_key *key; union xfs_btree_rec rec; /* record to insert */ level = 0; ncur = NULL; pcur = cur; key = &bkey; xfs_btree_set_ptr_null(cur, &nptr); /* Make a key out of the record data to be inserted, and save it. */ cur->bc_ops->init_rec_from_cur(cur, &rec); cur->bc_ops->init_key_from_rec(key, &rec); /* * Loop going up the tree, starting at the leaf level. * Stop when we don't get a split block, that must mean that * the insert is finished with this level. */ do { /* * Insert nrec/nptr into this level of the tree. * Note if we fail, nptr will be null. */ error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, &ncur, &i); if (error) { if (pcur != cur) xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); goto error0; } if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } level++; /* * See if the cursor we just used is trash. * Can't trash the caller's cursor, but otherwise we should * if ncur is a new cursor or we're about to be done. */ if (pcur != cur && (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { /* Save the state from the cursor before we trash it */ if (cur->bc_ops->update_cursor) cur->bc_ops->update_cursor(pcur, cur); cur->bc_nlevels = pcur->bc_nlevels; xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); } /* If we got a new cursor, switch to it. */ if (ncur) { pcur = ncur; ncur = NULL; } } while (!xfs_btree_ptr_is_null(cur, &nptr)); *stat = i; return 0; error0: return error; } /* * Try to merge a non-leaf block back into the inode root. * * Note: the killroot names comes from the fact that we're effectively * killing the old root block. But because we can't just delete the * inode we have to copy the single block it was pointing to into the * inode. */ STATIC int xfs_btree_kill_iroot( struct xfs_btree_cur *cur) { int whichfork = cur->bc_ino.whichfork; struct xfs_inode *ip = cur->bc_ino.ip; struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); struct xfs_btree_block *block; struct xfs_btree_block *cblock; union xfs_btree_key *kp; union xfs_btree_key *ckp; union xfs_btree_ptr *pp; union xfs_btree_ptr *cpp; struct xfs_buf *cbp; int level; int index; int numrecs; int error; #ifdef DEBUG union xfs_btree_ptr ptr; #endif int i; ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); ASSERT(cur->bc_nlevels > 1); /* * Don't deal with the root block needs to be a leaf case. * We're just going to turn the thing back into extents anyway. */ level = cur->bc_nlevels - 1; if (level == 1) goto out0; /* * Give up if the root has multiple children. */ block = xfs_btree_get_iroot(cur); if (xfs_btree_get_numrecs(block) != 1) goto out0; cblock = xfs_btree_get_block(cur, level - 1, &cbp); numrecs = xfs_btree_get_numrecs(cblock); /* * Only do this if the next level will fit. * Then the data must be copied up to the inode, * instead of freeing the root you free the next level. */ if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) goto out0; XFS_BTREE_STATS_INC(cur, killroot); #ifdef DEBUG xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); #endif index = numrecs - cur->bc_ops->get_maxrecs(cur, level); if (index) { xfs_iroot_realloc(cur->bc_ino.ip, index, cur->bc_ino.whichfork); block = ifp->if_broot; } be16_add_cpu(&block->bb_numrecs, index); ASSERT(block->bb_numrecs == cblock->bb_numrecs); kp = xfs_btree_key_addr(cur, 1, block); ckp = xfs_btree_key_addr(cur, 1, cblock); xfs_btree_copy_keys(cur, kp, ckp, numrecs); pp = xfs_btree_ptr_addr(cur, 1, block); cpp = xfs_btree_ptr_addr(cur, 1, cblock); for (i = 0; i < numrecs; i++) { error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); if (error) return error; } xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); error = xfs_btree_free_block(cur, cbp); if (error) return error; cur->bc_levels[level - 1].bp = NULL; be16_add_cpu(&block->bb_level, -1); xfs_trans_log_inode(cur->bc_tp, ip, XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork)); cur->bc_nlevels--; out0: return 0; } /* * Kill the current root node, and replace it with it's only child node. */ STATIC int xfs_btree_kill_root( struct xfs_btree_cur *cur, struct xfs_buf *bp, int level, union xfs_btree_ptr *newroot) { int error; XFS_BTREE_STATS_INC(cur, killroot); /* * Update the root pointer, decreasing the level by 1 and then * free the old root. */ cur->bc_ops->set_root(cur, newroot, -1); error = xfs_btree_free_block(cur, bp); if (error) return error; cur->bc_levels[level].bp = NULL; cur->bc_levels[level].ra = 0; cur->bc_nlevels--; return 0; } STATIC int xfs_btree_dec_cursor( struct xfs_btree_cur *cur, int level, int *stat) { int error; int i; if (level > 0) { error = xfs_btree_decrement(cur, level, &i); if (error) return error; } *stat = 1; return 0; } /* * Single level of the btree record deletion routine. * Delete record pointed to by cur/level. * Remove the record from its block then rebalance the tree. * Return 0 for error, 1 for done, 2 to go on to the next level. */ STATIC int /* error */ xfs_btree_delrec( struct xfs_btree_cur *cur, /* btree cursor */ int level, /* level removing record from */ int *stat) /* fail/done/go-on */ { struct xfs_btree_block *block; /* btree block */ union xfs_btree_ptr cptr; /* current block ptr */ struct xfs_buf *bp; /* buffer for block */ int error; /* error return value */ int i; /* loop counter */ union xfs_btree_ptr lptr; /* left sibling block ptr */ struct xfs_buf *lbp; /* left buffer pointer */ struct xfs_btree_block *left; /* left btree block */ int lrecs = 0; /* left record count */ int ptr; /* key/record index */ union xfs_btree_ptr rptr; /* right sibling block ptr */ struct xfs_buf *rbp; /* right buffer pointer */ struct xfs_btree_block *right; /* right btree block */ struct xfs_btree_block *rrblock; /* right-right btree block */ struct xfs_buf *rrbp; /* right-right buffer pointer */ int rrecs = 0; /* right record count */ struct xfs_btree_cur *tcur; /* temporary btree cursor */ int numrecs; /* temporary numrec count */ tcur = NULL; /* Get the index of the entry being deleted, check for nothing there. */ ptr = cur->bc_levels[level].ptr; if (ptr == 0) { *stat = 0; return 0; } /* Get the buffer & block containing the record or key/ptr. */ block = xfs_btree_get_block(cur, level, &bp); numrecs = xfs_btree_get_numrecs(block); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) goto error0; #endif /* Fail if we're off the end of the block. */ if (ptr > numrecs) { *stat = 0; return 0; } XFS_BTREE_STATS_INC(cur, delrec); XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); /* Excise the entries being deleted. */ if (level > 0) { /* It's a nonleaf. operate on keys and ptrs */ union xfs_btree_key *lkp; union xfs_btree_ptr *lpp; lkp = xfs_btree_key_addr(cur, ptr + 1, block); lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); for (i = 0; i < numrecs - ptr; i++) { error = xfs_btree_debug_check_ptr(cur, lpp, i, level); if (error) goto error0; } if (ptr < numrecs) { xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); } } else { /* It's a leaf. operate on records */ if (ptr < numrecs) { xfs_btree_shift_recs(cur, xfs_btree_rec_addr(cur, ptr + 1, block), -1, numrecs - ptr); xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); } } /* * Decrement and log the number of entries in the block. */ xfs_btree_set_numrecs(block, --numrecs); xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); /* * If we are tracking the last record in the tree and * we are at the far right edge of the tree, update it. */ if (xfs_btree_is_lastrec(cur, block, level)) { cur->bc_ops->update_lastrec(cur, block, NULL, ptr, LASTREC_DELREC); } /* * We're at the root level. First, shrink the root block in-memory. * Try to get rid of the next level down. If we can't then there's * nothing left to do. */ if (level == cur->bc_nlevels - 1) { if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork); error = xfs_btree_kill_iroot(cur); if (error) goto error0; error = xfs_btree_dec_cursor(cur, level, stat); if (error) goto error0; *stat = 1; return 0; } /* * If this is the root level, and there's only one entry left, * and it's NOT the leaf level, then we can get rid of this * level. */ if (numrecs == 1 && level > 0) { union xfs_btree_ptr *pp; /* * pp is still set to the first pointer in the block. * Make it the new root of the btree. */ pp = xfs_btree_ptr_addr(cur, 1, block); error = xfs_btree_kill_root(cur, bp, level, pp); if (error) goto error0; } else if (level > 0) { error = xfs_btree_dec_cursor(cur, level, stat); if (error) goto error0; } *stat = 1; return 0; } /* * If we deleted the leftmost entry in the block, update the * key values above us in the tree. */ if (xfs_btree_needs_key_update(cur, ptr)) { error = xfs_btree_update_keys(cur, level); if (error) goto error0; } /* * If the number of records remaining in the block is at least * the minimum, we're done. */ if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { error = xfs_btree_dec_cursor(cur, level, stat); if (error) goto error0; return 0; } /* * Otherwise, we have to move some records around to keep the * tree balanced. Look at the left and right sibling blocks to * see if we can re-balance by moving only one record. */ xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { /* * One child of root, need to get a chance to copy its contents * into the root and delete it. Can't go up to next level, * there's nothing to delete there. */ if (xfs_btree_ptr_is_null(cur, &rptr) && xfs_btree_ptr_is_null(cur, &lptr) && level == cur->bc_nlevels - 2) { error = xfs_btree_kill_iroot(cur); if (!error) error = xfs_btree_dec_cursor(cur, level, stat); if (error) goto error0; return 0; } } ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || !xfs_btree_ptr_is_null(cur, &lptr)); /* * Duplicate the cursor so our btree manipulations here won't * disrupt the next level up. */ error = xfs_btree_dup_cursor(cur, &tcur); if (error) goto error0; /* * If there's a right sibling, see if it's ok to shift an entry * out of it. */ if (!xfs_btree_ptr_is_null(cur, &rptr)) { /* * Move the temp cursor to the last entry in the next block. * Actually any entry but the first would suffice. */ i = xfs_btree_lastrec(tcur, level); if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } error = xfs_btree_increment(tcur, level, &i); if (error) goto error0; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } i = xfs_btree_lastrec(tcur, level); if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } /* Grab a pointer to the block. */ right = xfs_btree_get_block(tcur, level, &rbp); #ifdef DEBUG error = xfs_btree_check_block(tcur, right, level, rbp); if (error) goto error0; #endif /* Grab the current block number, for future use. */ xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); /* * If right block is full enough so that removing one entry * won't make it too empty, and left-shifting an entry out * of right to us works, we're done. */ if (xfs_btree_get_numrecs(right) - 1 >= cur->bc_ops->get_minrecs(tcur, level)) { error = xfs_btree_lshift(tcur, level, &i); if (error) goto error0; if (i) { ASSERT(xfs_btree_get_numrecs(block) >= cur->bc_ops->get_minrecs(tcur, level)); xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); tcur = NULL; error = xfs_btree_dec_cursor(cur, level, stat); if (error) goto error0; return 0; } } /* * Otherwise, grab the number of records in right for * future reference, and fix up the temp cursor to point * to our block again (last record). */ rrecs = xfs_btree_get_numrecs(right); if (!xfs_btree_ptr_is_null(cur, &lptr)) { i = xfs_btree_firstrec(tcur, level); if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } error = xfs_btree_decrement(tcur, level, &i); if (error) goto error0; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } } } /* * If there's a left sibling, see if it's ok to shift an entry * out of it. */ if (!xfs_btree_ptr_is_null(cur, &lptr)) { /* * Move the temp cursor to the first entry in the * previous block. */ i = xfs_btree_firstrec(tcur, level); if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } error = xfs_btree_decrement(tcur, level, &i); if (error) goto error0; i = xfs_btree_firstrec(tcur, level); if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { error = -EFSCORRUPTED; goto error0; } /* Grab a pointer to the block. */ left = xfs_btree_get_block(tcur, level, &lbp); #ifdef DEBUG error = xfs_btree_check_block(cur, left, level, lbp); if (error) goto error0; #endif /* Grab the current block number, for future use. */ xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); /* * If left block is full enough so that removing one entry * won't make it too empty, and right-shifting an entry out * of left to us works, we're done. */ if (xfs_btree_get_numrecs(left) - 1 >= cur->bc_ops->get_minrecs(tcur, level)) { error = xfs_btree_rshift(tcur, level, &i); if (error) goto error0; if (i) { ASSERT(xfs_btree_get_numrecs(block) >= cur->bc_ops->get_minrecs(tcur, level)); xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); tcur = NULL; if (level == 0) cur->bc_levels[0].ptr++; *stat = 1; return 0; } } /* * Otherwise, grab the number of records in right for * future reference. */ lrecs = xfs_btree_get_numrecs(left); } /* Delete the temp cursor, we're done with it. */ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); tcur = NULL; /* If here, we need to do a join to keep the tree balanced. */ ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); if (!xfs_btree_ptr_is_null(cur, &lptr) && lrecs + xfs_btree_get_numrecs(block) <= cur->bc_ops->get_maxrecs(cur, level)) { /* * Set "right" to be the starting block, * "left" to be the left neighbor. */ rptr = cptr; right = block; rbp = bp; error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); if (error) goto error0; /* * If that won't work, see if we can join with the right neighbor block. */ } else if (!xfs_btree_ptr_is_null(cur, &rptr) && rrecs + xfs_btree_get_numrecs(block) <= cur->bc_ops->get_maxrecs(cur, level)) { /* * Set "left" to be the starting block, * "right" to be the right neighbor. */ lptr = cptr; left = block; lbp = bp; error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); if (error) goto error0; /* * Otherwise, we can't fix the imbalance. * Just return. This is probably a logic error, but it's not fatal. */ } else { error = xfs_btree_dec_cursor(cur, level, stat); if (error) goto error0; return 0; } rrecs = xfs_btree_get_numrecs(right); lrecs = xfs_btree_get_numrecs(left); /* * We're now going to join "left" and "right" by moving all the stuff * in "right" to "left" and deleting "right". */ XFS_BTREE_STATS_ADD(cur, moves, rrecs); if (level > 0) { /* It's a non-leaf. Move keys and pointers. */ union xfs_btree_key *lkp; /* left btree key */ union xfs_btree_ptr *lpp; /* left address pointer */ union xfs_btree_key *rkp; /* right btree key */ union xfs_btree_ptr *rpp; /* right address pointer */ lkp = xfs_btree_key_addr(cur, lrecs + 1, left); lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); rkp = xfs_btree_key_addr(cur, 1, right); rpp = xfs_btree_ptr_addr(cur, 1, right); for (i = 1; i < rrecs; i++) { error = xfs_btree_debug_check_ptr(cur, rpp, i, level); if (error) goto error0; } xfs_btree_copy_keys(cur, lkp, rkp, rrecs); xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); } else { /* It's a leaf. Move records. */ union xfs_btree_rec *lrp; /* left record pointer */ union xfs_btree_rec *rrp; /* right record pointer */ lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); rrp = xfs_btree_rec_addr(cur, 1, right); xfs_btree_copy_recs(cur, lrp, rrp, rrecs); xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); } XFS_BTREE_STATS_INC(cur, join); /* * Fix up the number of records and right block pointer in the * surviving block, and log it. */ xfs_btree_set_numrecs(left, lrecs + rrecs); xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB); xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); /* If there is a right sibling, point it to the remaining block. */ xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); if (!xfs_btree_ptr_is_null(cur, &cptr)) { error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); if (error) goto error0; xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); } /* Free the deleted block. */ error = xfs_btree_free_block(cur, rbp); if (error) goto error0; /* * If we joined with the left neighbor, set the buffer in the * cursor to the left block, and fix up the index. */ if (bp != lbp) { cur->bc_levels[level].bp = lbp; cur->bc_levels[level].ptr += lrecs; cur->bc_levels[level].ra = 0; } /* * If we joined with the right neighbor and there's a level above * us, increment the cursor at that level. */ else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || (level + 1 < cur->bc_nlevels)) { error = xfs_btree_increment(cur, level + 1, &i); if (error) goto error0; } /* * Readjust the ptr at this level if it's not a leaf, since it's * still pointing at the deletion point, which makes the cursor * inconsistent. If this makes the ptr 0, the caller fixes it up. * We can't use decrement because it would change the next level up. */ if (level > 0) cur->bc_levels[level].ptr--; /* * We combined blocks, so we have to update the parent keys if the * btree supports overlapped intervals. However, * bc_levels[level + 1].ptr points to the old block so that the caller * knows which record to delete. Therefore, the caller must be savvy * enough to call updkeys for us if we return stat == 2. The other * exit points from this function don't require deletions further up * the tree, so they can call updkeys directly. */ /* Return value means the next level up has something to do. */ *stat = 2; return 0; error0: if (tcur) xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); return error; } /* * Delete the record pointed to by cur. * The cursor refers to the place where the record was (could be inserted) * when the operation returns. */ int /* error */ xfs_btree_delete( struct xfs_btree_cur *cur, int *stat) /* success/failure */ { int error; /* error return value */ int level; int i; bool joined = false; /* * Go up the tree, starting at leaf level. * * If 2 is returned then a join was done; go to the next level. * Otherwise we are done. */ for (level = 0, i = 2; i == 2; level++) { error = xfs_btree_delrec(cur, level, &i); if (error) goto error0; if (i == 2) joined = true; } /* * If we combined blocks as part of deleting the record, delrec won't * have updated the parent high keys so we have to do that here. */ if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { error = xfs_btree_updkeys_force(cur, 0); if (error) goto error0; } if (i == 0) { for (level = 1; level < cur->bc_nlevels; level++) { if (cur->bc_levels[level].ptr == 0) { error = xfs_btree_decrement(cur, level, &i); if (error) goto error0; break; } } } *stat = i; return 0; error0: return error; } /* * Get the data from the pointed-to record. */ int /* error */ xfs_btree_get_rec( struct xfs_btree_cur *cur, /* btree cursor */ union xfs_btree_rec **recp, /* output: btree record */ int *stat) /* output: success/failure */ { struct xfs_btree_block *block; /* btree block */ struct xfs_buf *bp; /* buffer pointer */ int ptr; /* record number */ #ifdef DEBUG int error; /* error return value */ #endif ptr = cur->bc_levels[0].ptr; block = xfs_btree_get_block(cur, 0, &bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, 0, bp); if (error) return error; #endif /* * Off the right end or left end, return failure. */ if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { *stat = 0; return 0; } /* * Point to the record and extract its data. */ *recp = xfs_btree_rec_addr(cur, ptr, block); *stat = 1; return 0; } /* Visit a block in a btree. */ STATIC int xfs_btree_visit_block( struct xfs_btree_cur *cur, int level, xfs_btree_visit_blocks_fn fn, void *data) { struct xfs_btree_block *block; struct xfs_buf *bp; union xfs_btree_ptr rptr; int error; /* do right sibling readahead */ xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); block = xfs_btree_get_block(cur, level, &bp); /* process the block */ error = fn(cur, level, data); if (error) return error; /* now read rh sibling block for next iteration */ xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); if (xfs_btree_ptr_is_null(cur, &rptr)) return -ENOENT; /* * We only visit blocks once in this walk, so we have to avoid the * internal xfs_btree_lookup_get_block() optimisation where it will * return the same block without checking if the right sibling points * back to us and creates a cyclic reference in the btree. */ if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp))) return -EFSCORRUPTED; } else { if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp))) return -EFSCORRUPTED; } return xfs_btree_lookup_get_block(cur, level, &rptr, &block); } /* Visit every block in a btree. */ int xfs_btree_visit_blocks( struct xfs_btree_cur *cur, xfs_btree_visit_blocks_fn fn, unsigned int flags, void *data) { union xfs_btree_ptr lptr; int level; struct xfs_btree_block *block = NULL; int error = 0; cur->bc_ops->init_ptr_from_cur(cur, &lptr); /* for each level */ for (level = cur->bc_nlevels - 1; level >= 0; level--) { /* grab the left hand block */ error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); if (error) return error; /* readahead the left most block for the next level down */ if (level > 0) { union xfs_btree_ptr *ptr; ptr = xfs_btree_ptr_addr(cur, 1, block); xfs_btree_readahead_ptr(cur, ptr, 1); /* save for the next iteration of the loop */ xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); if (!(flags & XFS_BTREE_VISIT_LEAVES)) continue; } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { continue; } /* for each buffer in the level */ do { error = xfs_btree_visit_block(cur, level, fn, data); } while (!error); if (error != -ENOENT) return error; } return 0; } /* * Change the owner of a btree. * * The mechanism we use here is ordered buffer logging. Because we don't know * how many buffers were are going to need to modify, we don't really want to * have to make transaction reservations for the worst case of every buffer in a * full size btree as that may be more space that we can fit in the log.... * * We do the btree walk in the most optimal manner possible - we have sibling * pointers so we can just walk all the blocks on each level from left to right * in a single pass, and then move to the next level and do the same. We can * also do readahead on the sibling pointers to get IO moving more quickly, * though for slow disks this is unlikely to make much difference to performance * as the amount of CPU work we have to do before moving to the next block is * relatively small. * * For each btree block that we load, modify the owner appropriately, set the * buffer as an ordered buffer and log it appropriately. We need to ensure that * we mark the region we change dirty so that if the buffer is relogged in * a subsequent transaction the changes we make here as an ordered buffer are * correctly relogged in that transaction. If we are in recovery context, then * just queue the modified buffer as delayed write buffer so the transaction * recovery completion writes the changes to disk. */ struct xfs_btree_block_change_owner_info { uint64_t new_owner; struct list_head *buffer_list; }; static int xfs_btree_block_change_owner( struct xfs_btree_cur *cur, int level, void *data) { struct xfs_btree_block_change_owner_info *bbcoi = data; struct xfs_btree_block *block; struct xfs_buf *bp; /* modify the owner */ block = xfs_btree_get_block(cur, level, &bp); if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) return 0; block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); } else { if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) return 0; block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); } /* * If the block is a root block hosted in an inode, we might not have a * buffer pointer here and we shouldn't attempt to log the change as the * information is already held in the inode and discarded when the root * block is formatted into the on-disk inode fork. We still change it, * though, so everything is consistent in memory. */ if (!bp) { ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); ASSERT(level == cur->bc_nlevels - 1); return 0; } if (cur->bc_tp) { if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { xfs_btree_log_block(cur, bp, XFS_BB_OWNER); return -EAGAIN; } } else { xfs_buf_delwri_queue(bp, bbcoi->buffer_list); } return 0; } int xfs_btree_change_owner( struct xfs_btree_cur *cur, uint64_t new_owner, struct list_head *buffer_list) { struct xfs_btree_block_change_owner_info bbcoi; bbcoi.new_owner = new_owner; bbcoi.buffer_list = buffer_list; return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, XFS_BTREE_VISIT_ALL, &bbcoi); } /* Verify the v5 fields of a long-format btree block. */ xfs_failaddr_t xfs_btree_lblock_v5hdr_verify( struct xfs_buf *bp, uint64_t owner) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); if (!xfs_has_crc(mp)) return __this_address; if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) return __this_address; if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) return __this_address; if (owner != XFS_RMAP_OWN_UNKNOWN && be64_to_cpu(block->bb_u.l.bb_owner) != owner) return __this_address; return NULL; } /* Verify a long-format btree block. */ xfs_failaddr_t xfs_btree_lblock_verify( struct xfs_buf *bp, unsigned int max_recs) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); xfs_fsblock_t fsb; xfs_failaddr_t fa; /* numrecs verification */ if (be16_to_cpu(block->bb_numrecs) > max_recs) return __this_address; /* sibling pointer verification */ fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb, block->bb_u.l.bb_leftsib); if (!fa) fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb, block->bb_u.l.bb_rightsib); return fa; } /** * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format * btree block * * @bp: buffer containing the btree block */ xfs_failaddr_t xfs_btree_sblock_v5hdr_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_perag *pag = bp->b_pag; if (!xfs_has_crc(mp)) return __this_address; if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) return __this_address; if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) return __this_address; if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) return __this_address; return NULL; } /** * xfs_btree_sblock_verify() -- verify a short-format btree block * * @bp: buffer containing the btree block * @max_recs: maximum records allowed in this btree node */ xfs_failaddr_t xfs_btree_sblock_verify( struct xfs_buf *bp, unsigned int max_recs) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); xfs_agblock_t agbno; xfs_failaddr_t fa; /* numrecs verification */ if (be16_to_cpu(block->bb_numrecs) > max_recs) return __this_address; /* sibling pointer verification */ agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp)); fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno, block->bb_u.s.bb_leftsib); if (!fa) fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno, block->bb_u.s.bb_rightsib); return fa; } /* * For the given limits on leaf and keyptr records per block, calculate the * height of the tree needed to index the number of leaf records. */ unsigned int xfs_btree_compute_maxlevels( const unsigned int *limits, unsigned long long records) { unsigned long long level_blocks = howmany_64(records, limits[0]); unsigned int height = 1; while (level_blocks > 1) { level_blocks = howmany_64(level_blocks, limits[1]); height++; } return height; } /* * For the given limits on leaf and keyptr records per block, calculate the * number of blocks needed to index the given number of leaf records. */ unsigned long long xfs_btree_calc_size( const unsigned int *limits, unsigned long long records) { unsigned long long level_blocks = howmany_64(records, limits[0]); unsigned long long blocks = level_blocks; while (level_blocks > 1) { level_blocks = howmany_64(level_blocks, limits[1]); blocks += level_blocks; } return blocks; } /* * Given a number of available blocks for the btree to consume with records and * pointers, calculate the height of the tree needed to index all the records * that space can hold based on the number of pointers each interior node * holds. * * We start by assuming a single level tree consumes a single block, then track * the number of blocks each node level consumes until we no longer have space * to store the next node level. At this point, we are indexing all the leaf * blocks in the space, and there's no more free space to split the tree any * further. That's our maximum btree height. */ unsigned int xfs_btree_space_to_height( const unsigned int *limits, unsigned long long leaf_blocks) { /* * The root btree block can have fewer than minrecs pointers in it * because the tree might not be big enough to require that amount of * fanout. Hence it has a minimum size of 2 pointers, not limits[1]. */ unsigned long long node_blocks = 2; unsigned long long blocks_left = leaf_blocks - 1; unsigned int height = 1; if (leaf_blocks < 1) return 0; while (node_blocks < blocks_left) { blocks_left -= node_blocks; node_blocks *= limits[1]; height++; } return height; } /* * Query a regular btree for all records overlapping a given interval. * Start with a LE lookup of the key of low_rec and return all records * until we find a record with a key greater than the key of high_rec. */ STATIC int xfs_btree_simple_query_range( struct xfs_btree_cur *cur, const union xfs_btree_key *low_key, const union xfs_btree_key *high_key, xfs_btree_query_range_fn fn, void *priv) { union xfs_btree_rec *recp; union xfs_btree_key rec_key; int stat; bool firstrec = true; int error; ASSERT(cur->bc_ops->init_high_key_from_rec); ASSERT(cur->bc_ops->diff_two_keys); /* * Find the leftmost record. The btree cursor must be set * to the low record used to generate low_key. */ stat = 0; error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); if (error) goto out; /* Nothing? See if there's anything to the right. */ if (!stat) { error = xfs_btree_increment(cur, 0, &stat); if (error) goto out; } while (stat) { /* Find the record. */ error = xfs_btree_get_rec(cur, &recp, &stat); if (error || !stat) break; /* Skip if low_key > high_key(rec). */ if (firstrec) { cur->bc_ops->init_high_key_from_rec(&rec_key, recp); firstrec = false; if (xfs_btree_keycmp_gt(cur, low_key, &rec_key)) goto advloop; } /* Stop if low_key(rec) > high_key. */ cur->bc_ops->init_key_from_rec(&rec_key, recp); if (xfs_btree_keycmp_gt(cur, &rec_key, high_key)) break; /* Callback */ error = fn(cur, recp, priv); if (error) break; advloop: /* Move on to the next record. */ error = xfs_btree_increment(cur, 0, &stat); if (error) break; } out: return error; } /* * Query an overlapped interval btree for all records overlapping a given * interval. This function roughly follows the algorithm given in * "Interval Trees" of _Introduction to Algorithms_, which is section * 14.3 in the 2nd and 3rd editions. * * First, generate keys for the low and high records passed in. * * For any leaf node, generate the high and low keys for the record. * If the record keys overlap with the query low/high keys, pass the * record to the function iterator. * * For any internal node, compare the low and high keys of each * pointer against the query low/high keys. If there's an overlap, * follow the pointer. * * As an optimization, we stop scanning a block when we find a low key * that is greater than the query's high key. */ STATIC int xfs_btree_overlapped_query_range( struct xfs_btree_cur *cur, const union xfs_btree_key *low_key, const union xfs_btree_key *high_key, xfs_btree_query_range_fn fn, void *priv) { union xfs_btree_ptr ptr; union xfs_btree_ptr *pp; union xfs_btree_key rec_key; union xfs_btree_key rec_hkey; union xfs_btree_key *lkp; union xfs_btree_key *hkp; union xfs_btree_rec *recp; struct xfs_btree_block *block; int level; struct xfs_buf *bp; int i; int error; /* Load the root of the btree. */ level = cur->bc_nlevels - 1; cur->bc_ops->init_ptr_from_cur(cur, &ptr); error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); if (error) return error; xfs_btree_get_block(cur, level, &bp); trace_xfs_btree_overlapped_query_range(cur, level, bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) goto out; #endif cur->bc_levels[level].ptr = 1; while (level < cur->bc_nlevels) { block = xfs_btree_get_block(cur, level, &bp); /* End of node, pop back towards the root. */ if (cur->bc_levels[level].ptr > be16_to_cpu(block->bb_numrecs)) { pop_up: if (level < cur->bc_nlevels - 1) cur->bc_levels[level + 1].ptr++; level++; continue; } if (level == 0) { /* Handle a leaf node. */ recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr, block); cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); cur->bc_ops->init_key_from_rec(&rec_key, recp); /* * If (query's high key < record's low key), then there * are no more interesting records in this block. Pop * up to the leaf level to find more record blocks. * * If (record's high key >= query's low key) and * (query's high key >= record's low key), then * this record overlaps the query range; callback. */ if (xfs_btree_keycmp_lt(cur, high_key, &rec_key)) goto pop_up; if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) { error = fn(cur, recp, priv); if (error) break; } cur->bc_levels[level].ptr++; continue; } /* Handle an internal node. */ lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block); hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr, block); pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block); /* * If (query's high key < pointer's low key), then there are no * more interesting keys in this block. Pop up one leaf level * to continue looking for records. * * If (pointer's high key >= query's low key) and * (query's high key >= pointer's low key), then * this record overlaps the query range; follow pointer. */ if (xfs_btree_keycmp_lt(cur, high_key, lkp)) goto pop_up; if (xfs_btree_keycmp_ge(cur, hkp, low_key)) { level--; error = xfs_btree_lookup_get_block(cur, level, pp, &block); if (error) goto out; xfs_btree_get_block(cur, level, &bp); trace_xfs_btree_overlapped_query_range(cur, level, bp); #ifdef DEBUG error = xfs_btree_check_block(cur, block, level, bp); if (error) goto out; #endif cur->bc_levels[level].ptr = 1; continue; } cur->bc_levels[level].ptr++; } out: /* * If we don't end this function with the cursor pointing at a record * block, a subsequent non-error cursor deletion will not release * node-level buffers, causing a buffer leak. This is quite possible * with a zero-results range query, so release the buffers if we * failed to return any results. */ if (cur->bc_levels[0].bp == NULL) { for (i = 0; i < cur->bc_nlevels; i++) { if (cur->bc_levels[i].bp) { xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp); cur->bc_levels[i].bp = NULL; cur->bc_levels[i].ptr = 0; cur->bc_levels[i].ra = 0; } } } return error; } static inline void xfs_btree_key_from_irec( struct xfs_btree_cur *cur, union xfs_btree_key *key, const union xfs_btree_irec *irec) { union xfs_btree_rec rec; cur->bc_rec = *irec; cur->bc_ops->init_rec_from_cur(cur, &rec); cur->bc_ops->init_key_from_rec(key, &rec); } /* * Query a btree for all records overlapping a given interval of keys. The * supplied function will be called with each record found; return one of the * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error * code. This function returns -ECANCELED, zero, or a negative error code. */ int xfs_btree_query_range( struct xfs_btree_cur *cur, const union xfs_btree_irec *low_rec, const union xfs_btree_irec *high_rec, xfs_btree_query_range_fn fn, void *priv) { union xfs_btree_key low_key; union xfs_btree_key high_key; /* Find the keys of both ends of the interval. */ xfs_btree_key_from_irec(cur, &high_key, high_rec); xfs_btree_key_from_irec(cur, &low_key, low_rec); /* Enforce low key <= high key. */ if (!xfs_btree_keycmp_le(cur, &low_key, &high_key)) return -EINVAL; if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, fn, priv); } /* Query a btree for all records. */ int xfs_btree_query_all( struct xfs_btree_cur *cur, xfs_btree_query_range_fn fn, void *priv) { union xfs_btree_key low_key; union xfs_btree_key high_key; memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); memset(&low_key, 0, sizeof(low_key)); memset(&high_key, 0xFF, sizeof(high_key)); return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); } static int xfs_btree_count_blocks_helper( struct xfs_btree_cur *cur, int level, void *data) { xfs_extlen_t *blocks = data; (*blocks)++; return 0; } /* Count the blocks in a btree and return the result in *blocks. */ int xfs_btree_count_blocks( struct xfs_btree_cur *cur, xfs_extlen_t *blocks) { *blocks = 0; return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, XFS_BTREE_VISIT_ALL, blocks); } /* Compare two btree pointers. */ int64_t xfs_btree_diff_two_ptrs( struct xfs_btree_cur *cur, const union xfs_btree_ptr *a, const union xfs_btree_ptr *b) { if (cur->bc_flags & XFS_BTREE_LONG_PTRS) return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); } struct xfs_btree_has_records { /* Keys for the start and end of the range we want to know about. */ union xfs_btree_key start_key; union xfs_btree_key end_key; /* Mask for key comparisons, if desired. */ const union xfs_btree_key *key_mask; /* Highest record key we've seen so far. */ union xfs_btree_key high_key; enum xbtree_recpacking outcome; }; STATIC int xfs_btree_has_records_helper( struct xfs_btree_cur *cur, const union xfs_btree_rec *rec, void *priv) { union xfs_btree_key rec_key; union xfs_btree_key rec_high_key; struct xfs_btree_has_records *info = priv; enum xbtree_key_contig key_contig; cur->bc_ops->init_key_from_rec(&rec_key, rec); if (info->outcome == XBTREE_RECPACKING_EMPTY) { info->outcome = XBTREE_RECPACKING_SPARSE; /* * If the first record we find does not overlap the start key, * then there is a hole at the start of the search range. * Classify this as sparse and stop immediately. */ if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key, info->key_mask)) return -ECANCELED; } else { /* * If a subsequent record does not overlap with the any record * we've seen so far, there is a hole in the middle of the * search range. Classify this as sparse and stop. * If the keys overlap and this btree does not allow overlap, * signal corruption. */ key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key, &rec_key, info->key_mask); if (key_contig == XBTREE_KEY_OVERLAP && !(cur->bc_flags & XFS_BTREE_OVERLAPPING)) return -EFSCORRUPTED; if (key_contig == XBTREE_KEY_GAP) return -ECANCELED; } /* * If high_key(rec) is larger than any other high key we've seen, * remember it for later. */ cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec); if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key, info->key_mask)) info->high_key = rec_high_key; /* struct copy */ return 0; } /* * Scan part of the keyspace of a btree and tell us if that keyspace does not * map to any records; is fully mapped to records; or is partially mapped to * records. This is the btree record equivalent to determining if a file is * sparse. * * For most btree types, the record scan should use all available btree key * fields to compare the keys encountered. These callers should pass NULL for * @mask. However, some callers (e.g. scanning physical space in the rmapbt) * want to ignore some part of the btree record keyspace when performing the * comparison. These callers should pass in a union xfs_btree_key object with * the fields that *should* be a part of the comparison set to any nonzero * value, and the rest zeroed. */ int xfs_btree_has_records( struct xfs_btree_cur *cur, const union xfs_btree_irec *low, const union xfs_btree_irec *high, const union xfs_btree_key *mask, enum xbtree_recpacking *outcome) { struct xfs_btree_has_records info = { .outcome = XBTREE_RECPACKING_EMPTY, .key_mask = mask, }; int error; /* Not all btrees support this operation. */ if (!cur->bc_ops->keys_contiguous) { ASSERT(0); return -EOPNOTSUPP; } xfs_btree_key_from_irec(cur, &info.start_key, low); xfs_btree_key_from_irec(cur, &info.end_key, high); error = xfs_btree_query_range(cur, low, high, xfs_btree_has_records_helper, &info); if (error == -ECANCELED) goto out; if (error) return error; if (info.outcome == XBTREE_RECPACKING_EMPTY) goto out; /* * If the largest high_key(rec) we saw during the walk is greater than * the end of the search range, classify this as full. Otherwise, * there is a hole at the end of the search range. */ if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key, mask)) info.outcome = XBTREE_RECPACKING_FULL; out: *outcome = info.outcome; return 0; } /* Are there more records in this btree? */ bool xfs_btree_has_more_records( struct xfs_btree_cur *cur) { struct xfs_btree_block *block; struct xfs_buf *bp; block = xfs_btree_get_block(cur, 0, &bp); /* There are still records in this block. */ if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block)) return true; /* There are more record blocks. */ if (cur->bc_flags & XFS_BTREE_LONG_PTRS) return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); else return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); } /* Set up all the btree cursor caches. */ int __init xfs_btree_init_cur_caches(void) { int error; error = xfs_allocbt_init_cur_cache(); if (error) return error; error = xfs_inobt_init_cur_cache(); if (error) goto err; error = xfs_bmbt_init_cur_cache(); if (error) goto err; error = xfs_rmapbt_init_cur_cache(); if (error) goto err; error = xfs_refcountbt_init_cur_cache(); if (error) goto err; return 0; err: xfs_btree_destroy_cur_caches(); return error; } /* Destroy all the btree cursor caches, if they've been allocated. */ void xfs_btree_destroy_cur_caches(void) { xfs_allocbt_destroy_cur_cache(); xfs_inobt_destroy_cur_cache(); xfs_bmbt_destroy_cur_cache(); xfs_rmapbt_destroy_cur_cache(); xfs_refcountbt_destroy_cur_cache(); } /* Move the btree cursor before the first record. */ int xfs_btree_goto_left_edge( struct xfs_btree_cur *cur) { int stat = 0; int error; memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); if (error) return error; if (!stat) return 0; error = xfs_btree_decrement(cur, 0, &stat); if (error) return error; if (stat != 0) { ASSERT(0); return -EFSCORRUPTED; } return 0; }
238 238 62 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 // SPDX-License-Identifier: GPL-2.0-or-later /* * Sysfs attributes of bridge * Linux ethernet bridge * * Authors: * Stephen Hemminger <shemminger@osdl.org> */ #include <linux/capability.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_bridge.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/times.h> #include <linux/sched/signal.h> #include "br_private.h" /* IMPORTANT: new bridge options must be added with netlink support only * please do not add new sysfs entries */ #define to_bridge(cd) ((struct net_bridge *)netdev_priv(to_net_dev(cd))) /* * Common code for storing bridge parameters. */ static ssize_t store_bridge_parm(struct device *d, const char *buf, size_t len, int (*set)(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack)) { struct net_bridge *br = to_bridge(d); struct netlink_ext_ack extack = {0}; unsigned long val; int err; if (!ns_capable(dev_net(br->dev)->user_ns, CAP_NET_ADMIN)) return -EPERM; err = kstrtoul(buf, 0, &val); if (err != 0) return err; if (!rtnl_trylock()) return restart_syscall(); err = (*set)(br, val, &extack); if (!err) netdev_state_change(br->dev); if (extack._msg) { if (err) br_err(br, "%s\n", extack._msg); else br_warn(br, "%s\n", extack._msg); } rtnl_unlock(); return err ? err : len; } static ssize_t forward_delay_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->forward_delay)); } static int set_forward_delay(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_forward_delay(br, val); } static ssize_t forward_delay_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_forward_delay); } static DEVICE_ATTR_RW(forward_delay); static ssize_t hello_time_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lu\n", jiffies_to_clock_t(to_bridge(d)->hello_time)); } static int set_hello_time(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_hello_time(br, val); } static ssize_t hello_time_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_hello_time); } static DEVICE_ATTR_RW(hello_time); static ssize_t max_age_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lu\n", jiffies_to_clock_t(to_bridge(d)->max_age)); } static int set_max_age(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_max_age(br, val); } static ssize_t max_age_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_max_age); } static DEVICE_ATTR_RW(max_age); static ssize_t ageing_time_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->ageing_time)); } static int set_ageing_time(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_set_ageing_time(br, val); } static ssize_t ageing_time_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_ageing_time); } static DEVICE_ATTR_RW(ageing_time); static ssize_t stp_state_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->stp_enabled); } static int set_stp_state(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_stp_set_enabled(br, val, extack); } static ssize_t stp_state_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_stp_state); } static DEVICE_ATTR_RW(stp_state); static ssize_t group_fwd_mask_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%#x\n", br->group_fwd_mask); } static int set_group_fwd_mask(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { if (val & BR_GROUPFWD_RESTRICTED) return -EINVAL; br->group_fwd_mask = val; return 0; } static ssize_t group_fwd_mask_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_group_fwd_mask); } static DEVICE_ATTR_RW(group_fwd_mask); static ssize_t priority_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", (br->bridge_id.prio[0] << 8) | br->bridge_id.prio[1]); } static int set_priority(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_stp_set_bridge_priority(br, (u16) val); return 0; } static ssize_t priority_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_priority); } static DEVICE_ATTR_RW(priority); static ssize_t root_id_show(struct device *d, struct device_attribute *attr, char *buf) { return br_show_bridge_id(buf, &to_bridge(d)->designated_root); } static DEVICE_ATTR_RO(root_id); static ssize_t bridge_id_show(struct device *d, struct device_attribute *attr, char *buf) { return br_show_bridge_id(buf, &to_bridge(d)->bridge_id); } static DEVICE_ATTR_RO(bridge_id); static ssize_t root_port_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_bridge(d)->root_port); } static DEVICE_ATTR_RO(root_port); static ssize_t root_path_cost_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_bridge(d)->root_path_cost); } static DEVICE_ATTR_RO(root_path_cost); static ssize_t topology_change_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_bridge(d)->topology_change); } static DEVICE_ATTR_RO(topology_change); static ssize_t topology_change_detected_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->topology_change_detected); } static DEVICE_ATTR_RO(topology_change_detected); static ssize_t hello_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->hello_timer)); } static DEVICE_ATTR_RO(hello_timer); static ssize_t tcn_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->tcn_timer)); } static DEVICE_ATTR_RO(tcn_timer); static ssize_t topology_change_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->topology_change_timer)); } static DEVICE_ATTR_RO(topology_change_timer); static ssize_t gc_timer_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%ld\n", br_timer_value(&br->gc_work.timer)); } static DEVICE_ATTR_RO(gc_timer); static ssize_t group_addr_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%pM\n", br->group_addr); } static ssize_t group_addr_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { struct net_bridge *br = to_bridge(d); u8 new_addr[6]; if (!ns_capable(dev_net(br->dev)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (!mac_pton(buf, new_addr)) return -EINVAL; if (!is_link_local_ether_addr(new_addr)) return -EINVAL; if (new_addr[5] == 1 || /* 802.3x Pause address */ new_addr[5] == 2 || /* 802.3ad Slow protocols */ new_addr[5] == 3) /* 802.1X PAE address */ return -EINVAL; if (!rtnl_trylock()) return restart_syscall(); spin_lock_bh(&br->lock); ether_addr_copy(br->group_addr, new_addr); spin_unlock_bh(&br->lock); br_opt_toggle(br, BROPT_GROUP_ADDR_SET, true); br_recalculate_fwd_mask(br); netdev_state_change(br->dev); rtnl_unlock(); return len; } static DEVICE_ATTR_RW(group_addr); static int set_flush(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { struct net_bridge_fdb_flush_desc desc = { .flags_mask = BIT(BR_FDB_STATIC) }; br_fdb_flush(br, &desc); return 0; } static ssize_t flush_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_flush); } static DEVICE_ATTR_WO(flush); static ssize_t no_linklocal_learn_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_boolopt_get(br, BR_BOOLOPT_NO_LL_LEARN)); } static int set_no_linklocal_learn(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_boolopt_toggle(br, BR_BOOLOPT_NO_LL_LEARN, !!val, extack); } static ssize_t no_linklocal_learn_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_no_linklocal_learn); } static DEVICE_ATTR_RW(no_linklocal_learn); #ifdef CONFIG_BRIDGE_IGMP_SNOOPING static ssize_t multicast_router_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->multicast_ctx.multicast_router); } static int set_multicast_router(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_router(&br->multicast_ctx, val); } static ssize_t multicast_router_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_router); } static DEVICE_ATTR_RW(multicast_router); static ssize_t multicast_snooping_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_MULTICAST_ENABLED)); } static ssize_t multicast_snooping_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_multicast_toggle); } static DEVICE_ATTR_RW(multicast_snooping); static ssize_t multicast_query_use_ifaddr_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_MULTICAST_QUERY_USE_IFADDR)); } static int set_query_use_ifaddr(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_MULTICAST_QUERY_USE_IFADDR, !!val); return 0; } static ssize_t multicast_query_use_ifaddr_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_query_use_ifaddr); } static DEVICE_ATTR_RW(multicast_query_use_ifaddr); static ssize_t multicast_querier_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->multicast_ctx.multicast_querier); } static int set_multicast_querier(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_querier(&br->multicast_ctx, val); } static ssize_t multicast_querier_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_querier); } static DEVICE_ATTR_RW(multicast_querier); static ssize_t hash_elasticity_show(struct device *d, struct device_attribute *attr, char *buf) { return sprintf(buf, "%u\n", RHT_ELASTICITY); } static int set_elasticity(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { /* 16 is RHT_ELASTICITY */ NL_SET_ERR_MSG_MOD(extack, "the hash_elasticity option has been deprecated and is always 16"); return 0; } static ssize_t hash_elasticity_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_elasticity); } static DEVICE_ATTR_RW(hash_elasticity); static ssize_t hash_max_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->hash_max); } static int set_hash_max(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->hash_max = val; return 0; } static ssize_t hash_max_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_hash_max); } static DEVICE_ATTR_RW(hash_max); static ssize_t multicast_igmp_version_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_igmp_version); } static int set_multicast_igmp_version(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_igmp_version(&br->multicast_ctx, val); } static ssize_t multicast_igmp_version_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_igmp_version); } static DEVICE_ATTR_RW(multicast_igmp_version); static ssize_t multicast_last_member_count_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_last_member_count); } static int set_last_member_count(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_last_member_count = val; return 0; } static ssize_t multicast_last_member_count_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_last_member_count); } static DEVICE_ATTR_RW(multicast_last_member_count); static ssize_t multicast_startup_query_count_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_startup_query_count); } static int set_startup_query_count(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_startup_query_count = val; return 0; } static ssize_t multicast_startup_query_count_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_startup_query_count); } static DEVICE_ATTR_RW(multicast_startup_query_count); static ssize_t multicast_last_member_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_last_member_interval)); } static int set_last_member_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_last_member_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_last_member_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_last_member_interval); } static DEVICE_ATTR_RW(multicast_last_member_interval); static ssize_t multicast_membership_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_membership_interval)); } static int set_membership_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_membership_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_membership_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_membership_interval); } static DEVICE_ATTR_RW(multicast_membership_interval); static ssize_t multicast_querier_interval_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_querier_interval)); } static int set_querier_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_querier_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_querier_interval_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_querier_interval); } static DEVICE_ATTR_RW(multicast_querier_interval); static ssize_t multicast_query_interval_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_query_interval)); } static int set_query_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_multicast_set_query_intvl(&br->multicast_ctx, val); return 0; } static ssize_t multicast_query_interval_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_query_interval); } static DEVICE_ATTR_RW(multicast_query_interval); static ssize_t multicast_query_response_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf( buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_query_response_interval)); } static int set_query_response_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br->multicast_ctx.multicast_query_response_interval = clock_t_to_jiffies(val); return 0; } static ssize_t multicast_query_response_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_query_response_interval); } static DEVICE_ATTR_RW(multicast_query_response_interval); static ssize_t multicast_startup_query_interval_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf( buf, "%lu\n", jiffies_to_clock_t(br->multicast_ctx.multicast_startup_query_interval)); } static int set_startup_query_interval(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_multicast_set_startup_query_intvl(&br->multicast_ctx, val); return 0; } static ssize_t multicast_startup_query_interval_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_startup_query_interval); } static DEVICE_ATTR_RW(multicast_startup_query_interval); static ssize_t multicast_stats_enabled_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_MULTICAST_STATS_ENABLED)); } static int set_stats_enabled(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_MULTICAST_STATS_ENABLED, !!val); return 0; } static ssize_t multicast_stats_enabled_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_stats_enabled); } static DEVICE_ATTR_RW(multicast_stats_enabled); #if IS_ENABLED(CONFIG_IPV6) static ssize_t multicast_mld_version_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br->multicast_ctx.multicast_mld_version); } static int set_multicast_mld_version(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_multicast_set_mld_version(&br->multicast_ctx, val); } static ssize_t multicast_mld_version_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_multicast_mld_version); } static DEVICE_ATTR_RW(multicast_mld_version); #endif #endif #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) static ssize_t nf_call_iptables_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_NF_CALL_IPTABLES)); } static int set_nf_call_iptables(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_NF_CALL_IPTABLES, !!val); return 0; } static ssize_t nf_call_iptables_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_nf_call_iptables); } static DEVICE_ATTR_RW(nf_call_iptables); static ssize_t nf_call_ip6tables_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_NF_CALL_IP6TABLES)); } static int set_nf_call_ip6tables(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_NF_CALL_IP6TABLES, !!val); return 0; } static ssize_t nf_call_ip6tables_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_nf_call_ip6tables); } static DEVICE_ATTR_RW(nf_call_ip6tables); static ssize_t nf_call_arptables_show( struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_NF_CALL_ARPTABLES)); } static int set_nf_call_arptables(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { br_opt_toggle(br, BROPT_NF_CALL_ARPTABLES, !!val); return 0; } static ssize_t nf_call_arptables_store( struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_nf_call_arptables); } static DEVICE_ATTR_RW(nf_call_arptables); #endif #ifdef CONFIG_BRIDGE_VLAN_FILTERING static ssize_t vlan_filtering_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br_opt_get(br, BROPT_VLAN_ENABLED)); } static ssize_t vlan_filtering_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_vlan_filter_toggle); } static DEVICE_ATTR_RW(vlan_filtering); static ssize_t vlan_protocol_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%#06x\n", ntohs(br->vlan_proto)); } static ssize_t vlan_protocol_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_vlan_set_proto); } static DEVICE_ATTR_RW(vlan_protocol); static ssize_t default_pvid_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%d\n", br->default_pvid); } static ssize_t default_pvid_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, br_vlan_set_default_pvid); } static DEVICE_ATTR_RW(default_pvid); static ssize_t vlan_stats_enabled_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_VLAN_STATS_ENABLED)); } static int set_vlan_stats_enabled(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_vlan_set_stats(br, val); } static ssize_t vlan_stats_enabled_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_vlan_stats_enabled); } static DEVICE_ATTR_RW(vlan_stats_enabled); static ssize_t vlan_stats_per_port_show(struct device *d, struct device_attribute *attr, char *buf) { struct net_bridge *br = to_bridge(d); return sprintf(buf, "%u\n", br_opt_get(br, BROPT_VLAN_STATS_PER_PORT)); } static int set_vlan_stats_per_port(struct net_bridge *br, unsigned long val, struct netlink_ext_ack *extack) { return br_vlan_set_stats_per_port(br, val); } static ssize_t vlan_stats_per_port_store(struct device *d, struct device_attribute *attr, const char *buf, size_t len) { return store_bridge_parm(d, buf, len, set_vlan_stats_per_port); } static DEVICE_ATTR_RW(vlan_stats_per_port); #endif static struct attribute *bridge_attrs[] = { &dev_attr_forward_delay.attr, &dev_attr_hello_time.attr, &dev_attr_max_age.attr, &dev_attr_ageing_time.attr, &dev_attr_stp_state.attr, &dev_attr_group_fwd_mask.attr, &dev_attr_priority.attr, &dev_attr_bridge_id.attr, &dev_attr_root_id.attr, &dev_attr_root_path_cost.attr, &dev_attr_root_port.attr, &dev_attr_topology_change.attr, &dev_attr_topology_change_detected.attr, &dev_attr_hello_timer.attr, &dev_attr_tcn_timer.attr, &dev_attr_topology_change_timer.attr, &dev_attr_gc_timer.attr, &dev_attr_group_addr.attr, &dev_attr_flush.attr, &dev_attr_no_linklocal_learn.attr, #ifdef CONFIG_BRIDGE_IGMP_SNOOPING &dev_attr_multicast_router.attr, &dev_attr_multicast_snooping.attr, &dev_attr_multicast_querier.attr, &dev_attr_multicast_query_use_ifaddr.attr, &dev_attr_hash_elasticity.attr, &dev_attr_hash_max.attr, &dev_attr_multicast_last_member_count.attr, &dev_attr_multicast_startup_query_count.attr, &dev_attr_multicast_last_member_interval.attr, &dev_attr_multicast_membership_interval.attr, &dev_attr_multicast_querier_interval.attr, &dev_attr_multicast_query_interval.attr, &dev_attr_multicast_query_response_interval.attr, &dev_attr_multicast_startup_query_interval.attr, &dev_attr_multicast_stats_enabled.attr, &dev_attr_multicast_igmp_version.attr, #if IS_ENABLED(CONFIG_IPV6) &dev_attr_multicast_mld_version.attr, #endif #endif #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) &dev_attr_nf_call_iptables.attr, &dev_attr_nf_call_ip6tables.attr, &dev_attr_nf_call_arptables.attr, #endif #ifdef CONFIG_BRIDGE_VLAN_FILTERING &dev_attr_vlan_filtering.attr, &dev_attr_vlan_protocol.attr, &dev_attr_default_pvid.attr, &dev_attr_vlan_stats_enabled.attr, &dev_attr_vlan_stats_per_port.attr, #endif NULL }; static const struct attribute_group bridge_group = { .name = SYSFS_BRIDGE_ATTR, .attrs = bridge_attrs, }; /* * Export the forwarding information table as a binary file * The records are struct __fdb_entry. * * Returns the number of bytes read. */ static ssize_t brforward_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct net_bridge *br = to_bridge(dev); int n; /* must read whole records */ if (off % sizeof(struct __fdb_entry) != 0) return -EINVAL; n = br_fdb_fillbuf(br, buf, count / sizeof(struct __fdb_entry), off / sizeof(struct __fdb_entry)); if (n > 0) n *= sizeof(struct __fdb_entry); return n; } static struct bin_attribute bridge_forward = { .attr = { .name = SYSFS_BRIDGE_FDB, .mode = 0444, }, .read = brforward_read, }; /* * Add entries in sysfs onto the existing network class device * for the bridge. * Adds a attribute group "bridge" containing tuning parameters. * Binary attribute containing the forward table * Sub directory to hold links to interfaces. * * Note: the ifobj exists only to be a subdirectory * to hold links. The ifobj exists in same data structure * as it's parent the bridge so reference counting works. */ int br_sysfs_addbr(struct net_device *dev) { struct kobject *brobj = &dev->dev.kobj; struct net_bridge *br = netdev_priv(dev); int err; err = sysfs_create_group(brobj, &bridge_group); if (err) { pr_info("%s: can't create group %s/%s\n", __func__, dev->name, bridge_group.name); goto out1; } err = sysfs_create_bin_file(brobj, &bridge_forward); if (err) { pr_info("%s: can't create attribute file %s/%s\n", __func__, dev->name, bridge_forward.attr.name); goto out2; } br->ifobj = kobject_create_and_add(SYSFS_BRIDGE_PORT_SUBDIR, brobj); if (!br->ifobj) { pr_info("%s: can't add kobject (directory) %s/%s\n", __func__, dev->name, SYSFS_BRIDGE_PORT_SUBDIR); err = -ENOMEM; goto out3; } return 0; out3: sysfs_remove_bin_file(&dev->dev.kobj, &bridge_forward); out2: sysfs_remove_group(&dev->dev.kobj, &bridge_group); out1: return err; } void br_sysfs_delbr(struct net_device *dev) { struct kobject *kobj = &dev->dev.kobj; struct net_bridge *br = netdev_priv(dev); kobject_put(br->ifobj); sysfs_remove_bin_file(kobj, &bridge_forward); sysfs_remove_group(kobj, &bridge_group); }
565 8 6 550 543 15 3 7 3 7 551 552 451 549 272 263 264 87 87 6 41 40 48 6 29 31 31 9 7 3 62 16 20 2 1 19 19 8 14 14 10 4 5 5 28 11 17 13 7 8 1 9 9 9 9 9 5 5 9 8 58 58 58 57 58 58 58 58 57 58 102 92 13 1 9 3 9 3 7 4 6 6 11 1 9 3 11 1 9 3 11 1 17 11 25 4 11 18 26 3 23 6 19 10 19 10 27 2 40 29 11 2 26 11 4 11 3 2 6 10 1 3 1 1 1 1 9 1 8 9 9 9 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 8 9 8 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 9 9 8 9 8 8 9 9 9 9 9 9 9 9 9 9 9 8 9 8 9 9 9 9 9 9 9 8 9 8 9 8 9 9 20 9 8 3 8 3 6 3 1 7 2 5 5 5 5 4 3 1 1 1 40 101 2 98 1 3 3 14 5 13 1 2 43 32 21 10 25 7 5 5 78 28 8 52 41 40 1 33 7 1 1 59 3 4 53 1 6 3 55 15 40 40 13 1 1 1 14 13 1 12 2 12 1 1 12 1 1 11 1 11 1 11 1 12 7 1 6 2 7 1 7 1 7 1 7 1 7 1 8 6 2 11 12 12 12 54 54 54 54 54 54 42 10 20 20 54 54 15 12 2 2 14 14 4 13 12 2 11 1 1 8 5 83 2 8 81 2 3 73 4 2 1 3 3 1 2 58 6 52 55 2 1 1 6 50 6 35 33 47 3 37 31 5 30 25 29 2 10 4 2 5 24 12 2 11 11 1 1 13 35 35 3 1 2 13 3 11 4 4 4 3 1 1 3 3 3 11 11 4 4 3 1 1 1 1 13 13 4 1 7 1 1 6 6 1 1 14 14 2 10 2 6 3 8 8 8 8 1 1 12 9 8 9 5 8 51 51 1 10 3 4 4 4 4 3 1 3 56 56 48 48 48 48 4 2 15 2 2 2 27 20 20 25 19 20 14 21 2 20 3 19 1 17 4 8 2 2 1 7 7 7 6 1 7 6 1 7 1 1 1 5 6 6 2 2 2 2 2 2 2 2 2 2 3 3 3 1 7 1 2 1 1 2 2 2 2 9 9 9 3 1 1 1 4 4 1 1 4 5 5 4 3 2 2 2 2 2 2 2 2 2 2 1 1 2 2 7 1 1 1 1 1 15 1 13 3 3 27 27 27 26 27 27 27 27 27 27 27 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 7 6 1 1 1 2 1 1 6 1 1 4 1 3 3 1 2 1 1 1 1 12 12 1 1 12 1 1 1 2 15 14 1 14 14 14 14 14 14 15 17 16 1 15 2 15 2 15 2 3 14 14 13 1 13 1 13 1 13 1 12 2 14 14 14 14 14 1 12 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 1 1 5 1 4 2 3 4 6 5 1 2 1 1 3 1 1 1 3 1 1 1 1 1 4 3 1 5 5 3 2 3 2 4 1 5 4 1 3 2 4 1 2 2 2 11 4 5 3 5 1 1 5 20 2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 18 17 18 18 18 18 18 17 1 18 18 18 18 18 18 18 18 18 7 5 2 5 2 7 7 6 1 1 1 3 3 3 3 3 6 4 1 1 2 2 2 1 1 1 1 1 1 1 1 17 2 2 8 5 10 5 13 6 6 5 4 4 7 6 8 8 8 3 3 15 6 6 6 5 5 4 3 4 5 4 3 2 4 5 5 5 5 5 5 5 3 2 2 3 5 5 3 1 1 1 3 3 3 3 2 1 1 1 1 1 1 1 1 1 1 19 19 3 17 3 1 13 4 1 8 7 1 8 3 3 3 3 3 3 3 3 3 3 3 3 6 2 1 4 1 3 3 5 4 1 1 5 1 1 1 1 1 1 1 1 2 2 1 28 2 2 24 26 1 1 23 1 3 1 23 25 23 1 1 23 1 22 1 22 2 2 1 1 3 3 1 1 1 3 3 1 1 1 6 6 6 3 28 3 25 1 10 14 24 3 1 20 20 19 1 20 20 17 1 1 17 1 4 13 2 2 6 6 1 1 3 27 1 8 18 24 6 17 12 5 7 12 12 12 3 9 12 9 3 11 11 1 11 11 11 11 11 11 11 10 11 11 11 10 10 3 10 1 1 2 2 1 1 2 5 2 1 2 2 2 2 7 1 3 2 1 2 1 1 2 2 1 3 5 2 3 1 2 2 2 1 1 1 4 1 1 1 1 3 2 1 8 8 2 1 1 4 4 3 1 2 47 47 31 16 10 1 6 5 9 9 61 1 59 50 9 56 46 4 6 52 52 47 4 2 6 44 22 4 27 2 1 1 1 3 1 1 1 1 2 1 1 1 1 5 3 4 13 1 1 7 2 2 6 4 2 1 41 21 2 20 22 18 1 18 3 7 14 3 15 15 2 6 6 2 5 1 6 1 1 1 1 1 1 1 1 1 8 1 2 2 2 1 1 1 1 1 1 1 1 1 5 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 7 4 2 2 1 1 1 9 4 2 2 20 16 4 4 1 1 2 1 2 3 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 12 1 1 10 2 10 2 10 8 2 8 2 7 3 1 8 17 16 1 16 15 4 1 13 3 699 59 11 633 29 523 522 562 665 3 140 531 102 595 13 663 151 112 412 135 591 102 587 83 1 1 4 4 4 43 43 16 16 16 16 16 16 16 16 16 16 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 3 3 1 1 25 25 25 3 3 3 3 3 3 3 289 59 242 242 242 1 242 242 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 // SPDX-License-Identifier: GPL-2.0-only /* * This is the new netlink-based wireless configuration interface. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include <linux/if.h> #include <linux/module.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/if_ether.h> #include <linux/ieee80211.h> #include <linux/nl80211.h> #include <linux/rtnetlink.h> #include <linux/netlink.h> #include <linux/nospec.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <net/net_namespace.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include <net/sock.h> #include <net/inet_connection_sock.h> #include "core.h" #include "nl80211.h" #include "reg.h" #include "rdev-ops.h" static int nl80211_crypto_settings(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_crypto_settings *settings, int cipher_limit); /* the netlink family */ static struct genl_family nl80211_fam; /* multicast groups */ enum nl80211_multicast_groups { NL80211_MCGRP_CONFIG, NL80211_MCGRP_SCAN, NL80211_MCGRP_REGULATORY, NL80211_MCGRP_MLME, NL80211_MCGRP_VENDOR, NL80211_MCGRP_NAN, NL80211_MCGRP_TESTMODE /* keep last - ifdef! */ }; static const struct genl_multicast_group nl80211_mcgrps[] = { [NL80211_MCGRP_CONFIG] = { .name = NL80211_MULTICAST_GROUP_CONFIG }, [NL80211_MCGRP_SCAN] = { .name = NL80211_MULTICAST_GROUP_SCAN }, [NL80211_MCGRP_REGULATORY] = { .name = NL80211_MULTICAST_GROUP_REG }, [NL80211_MCGRP_MLME] = { .name = NL80211_MULTICAST_GROUP_MLME }, [NL80211_MCGRP_VENDOR] = { .name = NL80211_MULTICAST_GROUP_VENDOR }, [NL80211_MCGRP_NAN] = { .name = NL80211_MULTICAST_GROUP_NAN }, #ifdef CONFIG_NL80211_TESTMODE [NL80211_MCGRP_TESTMODE] = { .name = NL80211_MULTICAST_GROUP_TESTMODE } #endif }; /* returns ERR_PTR values */ static struct wireless_dev * __cfg80211_wdev_from_attrs(struct cfg80211_registered_device *rdev, struct net *netns, struct nlattr **attrs) { struct wireless_dev *result = NULL; bool have_ifidx = attrs[NL80211_ATTR_IFINDEX]; bool have_wdev_id = attrs[NL80211_ATTR_WDEV]; u64 wdev_id = 0; int wiphy_idx = -1; int ifidx = -1; if (!have_ifidx && !have_wdev_id) return ERR_PTR(-EINVAL); if (have_ifidx) ifidx = nla_get_u32(attrs[NL80211_ATTR_IFINDEX]); if (have_wdev_id) { wdev_id = nla_get_u64(attrs[NL80211_ATTR_WDEV]); wiphy_idx = wdev_id >> 32; } if (rdev) { struct wireless_dev *wdev; lockdep_assert_held(&rdev->wiphy.mtx); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { if (have_ifidx && wdev->netdev && wdev->netdev->ifindex == ifidx) { result = wdev; break; } if (have_wdev_id && wdev->identifier == (u32)wdev_id) { result = wdev; break; } } return result ?: ERR_PTR(-ENODEV); } ASSERT_RTNL(); for_each_rdev(rdev) { struct wireless_dev *wdev; if (wiphy_net(&rdev->wiphy) != netns) continue; if (have_wdev_id && rdev->wiphy_idx != wiphy_idx) continue; list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { if (have_ifidx && wdev->netdev && wdev->netdev->ifindex == ifidx) { result = wdev; break; } if (have_wdev_id && wdev->identifier == (u32)wdev_id) { result = wdev; break; } } if (result) break; } if (result) return result; return ERR_PTR(-ENODEV); } static struct cfg80211_registered_device * __cfg80211_rdev_from_attrs(struct net *netns, struct nlattr **attrs) { struct cfg80211_registered_device *rdev = NULL, *tmp; struct net_device *netdev; ASSERT_RTNL(); if (!attrs[NL80211_ATTR_WIPHY] && !attrs[NL80211_ATTR_IFINDEX] && !attrs[NL80211_ATTR_WDEV]) return ERR_PTR(-EINVAL); if (attrs[NL80211_ATTR_WIPHY]) rdev = cfg80211_rdev_by_wiphy_idx( nla_get_u32(attrs[NL80211_ATTR_WIPHY])); if (attrs[NL80211_ATTR_WDEV]) { u64 wdev_id = nla_get_u64(attrs[NL80211_ATTR_WDEV]); struct wireless_dev *wdev; bool found = false; tmp = cfg80211_rdev_by_wiphy_idx(wdev_id >> 32); if (tmp) { /* make sure wdev exists */ list_for_each_entry(wdev, &tmp->wiphy.wdev_list, list) { if (wdev->identifier != (u32)wdev_id) continue; found = true; break; } if (!found) tmp = NULL; if (rdev && tmp != rdev) return ERR_PTR(-EINVAL); rdev = tmp; } } if (attrs[NL80211_ATTR_IFINDEX]) { int ifindex = nla_get_u32(attrs[NL80211_ATTR_IFINDEX]); netdev = __dev_get_by_index(netns, ifindex); if (netdev) { if (netdev->ieee80211_ptr) tmp = wiphy_to_rdev( netdev->ieee80211_ptr->wiphy); else tmp = NULL; /* not wireless device -- return error */ if (!tmp) return ERR_PTR(-EINVAL); /* mismatch -- return error */ if (rdev && tmp != rdev) return ERR_PTR(-EINVAL); rdev = tmp; } } if (!rdev) return ERR_PTR(-ENODEV); if (netns != wiphy_net(&rdev->wiphy)) return ERR_PTR(-ENODEV); return rdev; } /* * This function returns a pointer to the driver * that the genl_info item that is passed refers to. * * The result of this can be a PTR_ERR and hence must * be checked with IS_ERR() for errors. */ static struct cfg80211_registered_device * cfg80211_get_dev_from_info(struct net *netns, struct genl_info *info) { return __cfg80211_rdev_from_attrs(netns, info->attrs); } static int validate_beacon_head(const struct nlattr *attr, struct netlink_ext_ack *extack) { const u8 *data = nla_data(attr); unsigned int len = nla_len(attr); const struct element *elem; const struct ieee80211_mgmt *mgmt = (void *)data; unsigned int fixedlen, hdrlen; bool s1g_bcn; if (len < offsetofend(typeof(*mgmt), frame_control)) goto err; s1g_bcn = ieee80211_is_s1g_beacon(mgmt->frame_control); if (s1g_bcn) { fixedlen = offsetof(struct ieee80211_ext, u.s1g_beacon.variable); hdrlen = offsetof(struct ieee80211_ext, u.s1g_beacon); } else { fixedlen = offsetof(struct ieee80211_mgmt, u.beacon.variable); hdrlen = offsetof(struct ieee80211_mgmt, u.beacon); } if (len < fixedlen) goto err; if (ieee80211_hdrlen(mgmt->frame_control) != hdrlen) goto err; data += fixedlen; len -= fixedlen; for_each_element(elem, data, len) { /* nothing */ } if (for_each_element_completed(elem, data, len)) return 0; err: NL_SET_ERR_MSG_ATTR(extack, attr, "malformed beacon head"); return -EINVAL; } static int validate_ie_attr(const struct nlattr *attr, struct netlink_ext_ack *extack) { const u8 *data = nla_data(attr); unsigned int len = nla_len(attr); const struct element *elem; for_each_element(elem, data, len) { /* nothing */ } if (for_each_element_completed(elem, data, len)) return 0; NL_SET_ERR_MSG_ATTR(extack, attr, "malformed information elements"); return -EINVAL; } static int validate_he_capa(const struct nlattr *attr, struct netlink_ext_ack *extack) { if (!ieee80211_he_capa_size_ok(nla_data(attr), nla_len(attr))) return -EINVAL; return 0; } /* policy for the attributes */ static const struct nla_policy nl80211_policy[NUM_NL80211_ATTR]; static const struct nla_policy nl80211_ftm_responder_policy[NL80211_FTM_RESP_ATTR_MAX + 1] = { [NL80211_FTM_RESP_ATTR_ENABLED] = { .type = NLA_FLAG, }, [NL80211_FTM_RESP_ATTR_LCI] = { .type = NLA_BINARY, .len = U8_MAX }, [NL80211_FTM_RESP_ATTR_CIVICLOC] = { .type = NLA_BINARY, .len = U8_MAX }, }; static const struct nla_policy nl80211_pmsr_ftm_req_attr_policy[NL80211_PMSR_FTM_REQ_ATTR_MAX + 1] = { [NL80211_PMSR_FTM_REQ_ATTR_ASAP] = { .type = NLA_FLAG }, [NL80211_PMSR_FTM_REQ_ATTR_PREAMBLE] = { .type = NLA_U32 }, [NL80211_PMSR_FTM_REQ_ATTR_NUM_BURSTS_EXP] = NLA_POLICY_MAX(NLA_U8, 15), [NL80211_PMSR_FTM_REQ_ATTR_BURST_PERIOD] = { .type = NLA_U16 }, [NL80211_PMSR_FTM_REQ_ATTR_BURST_DURATION] = NLA_POLICY_MAX(NLA_U8, 15), [NL80211_PMSR_FTM_REQ_ATTR_FTMS_PER_BURST] = NLA_POLICY_MAX(NLA_U8, 31), [NL80211_PMSR_FTM_REQ_ATTR_NUM_FTMR_RETRIES] = { .type = NLA_U8 }, [NL80211_PMSR_FTM_REQ_ATTR_REQUEST_LCI] = { .type = NLA_FLAG }, [NL80211_PMSR_FTM_REQ_ATTR_REQUEST_CIVICLOC] = { .type = NLA_FLAG }, [NL80211_PMSR_FTM_REQ_ATTR_TRIGGER_BASED] = { .type = NLA_FLAG }, [NL80211_PMSR_FTM_REQ_ATTR_NON_TRIGGER_BASED] = { .type = NLA_FLAG }, [NL80211_PMSR_FTM_REQ_ATTR_LMR_FEEDBACK] = { .type = NLA_FLAG }, [NL80211_PMSR_FTM_REQ_ATTR_BSS_COLOR] = { .type = NLA_U8 }, }; static const struct nla_policy nl80211_pmsr_req_data_policy[NL80211_PMSR_TYPE_MAX + 1] = { [NL80211_PMSR_TYPE_FTM] = NLA_POLICY_NESTED(nl80211_pmsr_ftm_req_attr_policy), }; static const struct nla_policy nl80211_pmsr_req_attr_policy[NL80211_PMSR_REQ_ATTR_MAX + 1] = { [NL80211_PMSR_REQ_ATTR_DATA] = NLA_POLICY_NESTED(nl80211_pmsr_req_data_policy), [NL80211_PMSR_REQ_ATTR_GET_AP_TSF] = { .type = NLA_FLAG }, }; static const struct nla_policy nl80211_pmsr_peer_attr_policy[NL80211_PMSR_PEER_ATTR_MAX + 1] = { [NL80211_PMSR_PEER_ATTR_ADDR] = NLA_POLICY_ETH_ADDR, [NL80211_PMSR_PEER_ATTR_CHAN] = NLA_POLICY_NESTED(nl80211_policy), [NL80211_PMSR_PEER_ATTR_REQ] = NLA_POLICY_NESTED(nl80211_pmsr_req_attr_policy), [NL80211_PMSR_PEER_ATTR_RESP] = { .type = NLA_REJECT }, }; static const struct nla_policy nl80211_pmsr_attr_policy[NL80211_PMSR_ATTR_MAX + 1] = { [NL80211_PMSR_ATTR_MAX_PEERS] = { .type = NLA_REJECT }, [NL80211_PMSR_ATTR_REPORT_AP_TSF] = { .type = NLA_REJECT }, [NL80211_PMSR_ATTR_RANDOMIZE_MAC_ADDR] = { .type = NLA_REJECT }, [NL80211_PMSR_ATTR_TYPE_CAPA] = { .type = NLA_REJECT }, [NL80211_PMSR_ATTR_PEERS] = NLA_POLICY_NESTED_ARRAY(nl80211_pmsr_peer_attr_policy), }; static const struct nla_policy he_obss_pd_policy[NL80211_HE_OBSS_PD_ATTR_MAX + 1] = { [NL80211_HE_OBSS_PD_ATTR_MIN_OFFSET] = NLA_POLICY_RANGE(NLA_U8, 1, 20), [NL80211_HE_OBSS_PD_ATTR_MAX_OFFSET] = NLA_POLICY_RANGE(NLA_U8, 1, 20), [NL80211_HE_OBSS_PD_ATTR_NON_SRG_MAX_OFFSET] = NLA_POLICY_RANGE(NLA_U8, 1, 20), [NL80211_HE_OBSS_PD_ATTR_BSS_COLOR_BITMAP] = NLA_POLICY_EXACT_LEN(8), [NL80211_HE_OBSS_PD_ATTR_PARTIAL_BSSID_BITMAP] = NLA_POLICY_EXACT_LEN(8), [NL80211_HE_OBSS_PD_ATTR_SR_CTRL] = { .type = NLA_U8 }, }; static const struct nla_policy he_bss_color_policy[NL80211_HE_BSS_COLOR_ATTR_MAX + 1] = { [NL80211_HE_BSS_COLOR_ATTR_COLOR] = NLA_POLICY_RANGE(NLA_U8, 1, 63), [NL80211_HE_BSS_COLOR_ATTR_DISABLED] = { .type = NLA_FLAG }, [NL80211_HE_BSS_COLOR_ATTR_PARTIAL] = { .type = NLA_FLAG }, }; static const struct nla_policy nl80211_txattr_policy[NL80211_TXRATE_MAX + 1] = { [NL80211_TXRATE_LEGACY] = { .type = NLA_BINARY, .len = NL80211_MAX_SUPP_RATES }, [NL80211_TXRATE_HT] = { .type = NLA_BINARY, .len = NL80211_MAX_SUPP_HT_RATES }, [NL80211_TXRATE_VHT] = NLA_POLICY_EXACT_LEN_WARN(sizeof(struct nl80211_txrate_vht)), [NL80211_TXRATE_GI] = { .type = NLA_U8 }, [NL80211_TXRATE_HE] = NLA_POLICY_EXACT_LEN(sizeof(struct nl80211_txrate_he)), [NL80211_TXRATE_HE_GI] = NLA_POLICY_RANGE(NLA_U8, NL80211_RATE_INFO_HE_GI_0_8, NL80211_RATE_INFO_HE_GI_3_2), [NL80211_TXRATE_HE_LTF] = NLA_POLICY_RANGE(NLA_U8, NL80211_RATE_INFO_HE_1XLTF, NL80211_RATE_INFO_HE_4XLTF), }; static const struct nla_policy nl80211_tid_config_attr_policy[NL80211_TID_CONFIG_ATTR_MAX + 1] = { [NL80211_TID_CONFIG_ATTR_VIF_SUPP] = { .type = NLA_U64 }, [NL80211_TID_CONFIG_ATTR_PEER_SUPP] = { .type = NLA_U64 }, [NL80211_TID_CONFIG_ATTR_OVERRIDE] = { .type = NLA_FLAG }, [NL80211_TID_CONFIG_ATTR_TIDS] = NLA_POLICY_RANGE(NLA_U16, 1, 0xff), [NL80211_TID_CONFIG_ATTR_NOACK] = NLA_POLICY_MAX(NLA_U8, NL80211_TID_CONFIG_DISABLE), [NL80211_TID_CONFIG_ATTR_RETRY_SHORT] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_TID_CONFIG_ATTR_RETRY_LONG] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_TID_CONFIG_ATTR_AMPDU_CTRL] = NLA_POLICY_MAX(NLA_U8, NL80211_TID_CONFIG_DISABLE), [NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL] = NLA_POLICY_MAX(NLA_U8, NL80211_TID_CONFIG_DISABLE), [NL80211_TID_CONFIG_ATTR_AMSDU_CTRL] = NLA_POLICY_MAX(NLA_U8, NL80211_TID_CONFIG_DISABLE), [NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE] = NLA_POLICY_MAX(NLA_U8, NL80211_TX_RATE_FIXED), [NL80211_TID_CONFIG_ATTR_TX_RATE] = NLA_POLICY_NESTED(nl80211_txattr_policy), }; static const struct nla_policy nl80211_fils_discovery_policy[NL80211_FILS_DISCOVERY_ATTR_MAX + 1] = { [NL80211_FILS_DISCOVERY_ATTR_INT_MIN] = NLA_POLICY_MAX(NLA_U32, 10000), [NL80211_FILS_DISCOVERY_ATTR_INT_MAX] = NLA_POLICY_MAX(NLA_U32, 10000), [NL80211_FILS_DISCOVERY_ATTR_TMPL] = NLA_POLICY_RANGE(NLA_BINARY, NL80211_FILS_DISCOVERY_TMPL_MIN_LEN, IEEE80211_MAX_DATA_LEN), }; static const struct nla_policy nl80211_unsol_bcast_probe_resp_policy[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_MAX + 1] = { [NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_INT] = NLA_POLICY_MAX(NLA_U32, 20), [NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_TMPL] = { .type = NLA_BINARY, .len = IEEE80211_MAX_DATA_LEN } }; static const struct nla_policy sar_specs_policy[NL80211_SAR_ATTR_SPECS_MAX + 1] = { [NL80211_SAR_ATTR_SPECS_POWER] = { .type = NLA_S32 }, [NL80211_SAR_ATTR_SPECS_RANGE_INDEX] = {.type = NLA_U32 }, }; static const struct nla_policy sar_policy[NL80211_SAR_ATTR_MAX + 1] = { [NL80211_SAR_ATTR_TYPE] = NLA_POLICY_MAX(NLA_U32, NUM_NL80211_SAR_TYPE), [NL80211_SAR_ATTR_SPECS] = NLA_POLICY_NESTED_ARRAY(sar_specs_policy), }; static const struct nla_policy nl80211_mbssid_config_policy[NL80211_MBSSID_CONFIG_ATTR_MAX + 1] = { [NL80211_MBSSID_CONFIG_ATTR_MAX_INTERFACES] = NLA_POLICY_MIN(NLA_U8, 2), [NL80211_MBSSID_CONFIG_ATTR_MAX_EMA_PROFILE_PERIODICITY] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_MBSSID_CONFIG_ATTR_INDEX] = { .type = NLA_U8 }, [NL80211_MBSSID_CONFIG_ATTR_TX_IFINDEX] = { .type = NLA_U32 }, [NL80211_MBSSID_CONFIG_ATTR_EMA] = { .type = NLA_FLAG }, }; static const struct nla_policy nl80211_sta_wme_policy[NL80211_STA_WME_MAX + 1] = { [NL80211_STA_WME_UAPSD_QUEUES] = { .type = NLA_U8 }, [NL80211_STA_WME_MAX_SP] = { .type = NLA_U8 }, }; static const struct netlink_range_validation nl80211_punct_bitmap_range = { .min = 0, .max = 0xffff, }; static const struct nla_policy nl80211_policy[NUM_NL80211_ATTR] = { [0] = { .strict_start_type = NL80211_ATTR_HE_OBSS_PD }, [NL80211_ATTR_WIPHY] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_NAME] = { .type = NLA_NUL_STRING, .len = 20-1 }, [NL80211_ATTR_WIPHY_TXQ_PARAMS] = { .type = NLA_NESTED }, [NL80211_ATTR_WIPHY_FREQ] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_CHANNEL_TYPE] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_EDMG_CHANNELS] = NLA_POLICY_RANGE(NLA_U8, NL80211_EDMG_CHANNELS_MIN, NL80211_EDMG_CHANNELS_MAX), [NL80211_ATTR_WIPHY_EDMG_BW_CONFIG] = NLA_POLICY_RANGE(NLA_U8, NL80211_EDMG_BW_CONFIG_MIN, NL80211_EDMG_BW_CONFIG_MAX), [NL80211_ATTR_CHANNEL_WIDTH] = { .type = NLA_U32 }, [NL80211_ATTR_CENTER_FREQ1] = { .type = NLA_U32 }, [NL80211_ATTR_CENTER_FREQ1_OFFSET] = NLA_POLICY_RANGE(NLA_U32, 0, 999), [NL80211_ATTR_CENTER_FREQ2] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_RETRY_SHORT] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_ATTR_WIPHY_RETRY_LONG] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_ATTR_WIPHY_FRAG_THRESHOLD] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_RTS_THRESHOLD] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_COVERAGE_CLASS] = { .type = NLA_U8 }, [NL80211_ATTR_WIPHY_DYN_ACK] = { .type = NLA_FLAG }, [NL80211_ATTR_IFTYPE] = NLA_POLICY_MAX(NLA_U32, NL80211_IFTYPE_MAX), [NL80211_ATTR_IFINDEX] = { .type = NLA_U32 }, [NL80211_ATTR_IFNAME] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ-1 }, [NL80211_ATTR_MAC] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_ATTR_PREV_BSSID] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_ATTR_KEY] = { .type = NLA_NESTED, }, [NL80211_ATTR_KEY_DATA] = { .type = NLA_BINARY, .len = WLAN_MAX_KEY_LEN }, [NL80211_ATTR_KEY_IDX] = NLA_POLICY_MAX(NLA_U8, 7), [NL80211_ATTR_KEY_CIPHER] = { .type = NLA_U32 }, [NL80211_ATTR_KEY_DEFAULT] = { .type = NLA_FLAG }, [NL80211_ATTR_KEY_SEQ] = { .type = NLA_BINARY, .len = 16 }, [NL80211_ATTR_KEY_TYPE] = NLA_POLICY_MAX(NLA_U32, NUM_NL80211_KEYTYPES), [NL80211_ATTR_BEACON_INTERVAL] = { .type = NLA_U32 }, [NL80211_ATTR_DTIM_PERIOD] = { .type = NLA_U32 }, [NL80211_ATTR_BEACON_HEAD] = NLA_POLICY_VALIDATE_FN(NLA_BINARY, validate_beacon_head, IEEE80211_MAX_DATA_LEN), [NL80211_ATTR_BEACON_TAIL] = NLA_POLICY_VALIDATE_FN(NLA_BINARY, validate_ie_attr, IEEE80211_MAX_DATA_LEN), [NL80211_ATTR_STA_AID] = NLA_POLICY_RANGE(NLA_U16, 1, IEEE80211_MAX_AID), [NL80211_ATTR_STA_FLAGS] = { .type = NLA_NESTED }, [NL80211_ATTR_STA_LISTEN_INTERVAL] = { .type = NLA_U16 }, [NL80211_ATTR_STA_SUPPORTED_RATES] = { .type = NLA_BINARY, .len = NL80211_MAX_SUPP_RATES }, [NL80211_ATTR_STA_PLINK_ACTION] = NLA_POLICY_MAX(NLA_U8, NUM_NL80211_PLINK_ACTIONS - 1), [NL80211_ATTR_STA_TX_POWER_SETTING] = NLA_POLICY_RANGE(NLA_U8, NL80211_TX_POWER_AUTOMATIC, NL80211_TX_POWER_FIXED), [NL80211_ATTR_STA_TX_POWER] = { .type = NLA_S16 }, [NL80211_ATTR_STA_VLAN] = { .type = NLA_U32 }, [NL80211_ATTR_MNTR_FLAGS] = { /* NLA_NESTED can't be empty */ }, [NL80211_ATTR_MESH_ID] = { .type = NLA_BINARY, .len = IEEE80211_MAX_MESH_ID_LEN }, [NL80211_ATTR_MPATH_NEXT_HOP] = NLA_POLICY_ETH_ADDR_COMPAT, /* allow 3 for NUL-termination, we used to declare this NLA_STRING */ [NL80211_ATTR_REG_ALPHA2] = NLA_POLICY_RANGE(NLA_BINARY, 2, 3), [NL80211_ATTR_REG_RULES] = { .type = NLA_NESTED }, [NL80211_ATTR_BSS_CTS_PROT] = { .type = NLA_U8 }, [NL80211_ATTR_BSS_SHORT_PREAMBLE] = { .type = NLA_U8 }, [NL80211_ATTR_BSS_SHORT_SLOT_TIME] = { .type = NLA_U8 }, [NL80211_ATTR_BSS_BASIC_RATES] = { .type = NLA_BINARY, .len = NL80211_MAX_SUPP_RATES }, [NL80211_ATTR_BSS_HT_OPMODE] = { .type = NLA_U16 }, [NL80211_ATTR_MESH_CONFIG] = { .type = NLA_NESTED }, [NL80211_ATTR_SUPPORT_MESH_AUTH] = { .type = NLA_FLAG }, [NL80211_ATTR_HT_CAPABILITY] = NLA_POLICY_EXACT_LEN_WARN(NL80211_HT_CAPABILITY_LEN), [NL80211_ATTR_MGMT_SUBTYPE] = { .type = NLA_U8 }, [NL80211_ATTR_IE] = NLA_POLICY_VALIDATE_FN(NLA_BINARY, validate_ie_attr, IEEE80211_MAX_DATA_LEN), [NL80211_ATTR_SCAN_FREQUENCIES] = { .type = NLA_NESTED }, [NL80211_ATTR_SCAN_SSIDS] = { .type = NLA_NESTED }, [NL80211_ATTR_SSID] = { .type = NLA_BINARY, .len = IEEE80211_MAX_SSID_LEN }, [NL80211_ATTR_AUTH_TYPE] = { .type = NLA_U32 }, [NL80211_ATTR_REASON_CODE] = { .type = NLA_U16 }, [NL80211_ATTR_FREQ_FIXED] = { .type = NLA_FLAG }, [NL80211_ATTR_TIMED_OUT] = { .type = NLA_FLAG }, [NL80211_ATTR_USE_MFP] = NLA_POLICY_RANGE(NLA_U32, NL80211_MFP_NO, NL80211_MFP_OPTIONAL), [NL80211_ATTR_STA_FLAGS2] = NLA_POLICY_EXACT_LEN_WARN(sizeof(struct nl80211_sta_flag_update)), [NL80211_ATTR_CONTROL_PORT] = { .type = NLA_FLAG }, [NL80211_ATTR_CONTROL_PORT_ETHERTYPE] = { .type = NLA_U16 }, [NL80211_ATTR_CONTROL_PORT_NO_ENCRYPT] = { .type = NLA_FLAG }, [NL80211_ATTR_CONTROL_PORT_OVER_NL80211] = { .type = NLA_FLAG }, [NL80211_ATTR_PRIVACY] = { .type = NLA_FLAG }, [NL80211_ATTR_STATUS_CODE] = { .type = NLA_U16 }, [NL80211_ATTR_CIPHER_SUITE_GROUP] = { .type = NLA_U32 }, [NL80211_ATTR_WPA_VERSIONS] = { .type = NLA_U32 }, [NL80211_ATTR_PID] = { .type = NLA_U32 }, [NL80211_ATTR_4ADDR] = { .type = NLA_U8 }, [NL80211_ATTR_PMKID] = NLA_POLICY_EXACT_LEN_WARN(WLAN_PMKID_LEN), [NL80211_ATTR_DURATION] = { .type = NLA_U32 }, [NL80211_ATTR_COOKIE] = { .type = NLA_U64 }, [NL80211_ATTR_TX_RATES] = { .type = NLA_NESTED }, [NL80211_ATTR_FRAME] = { .type = NLA_BINARY, .len = IEEE80211_MAX_DATA_LEN }, [NL80211_ATTR_FRAME_MATCH] = { .type = NLA_BINARY, }, [NL80211_ATTR_PS_STATE] = NLA_POLICY_RANGE(NLA_U32, NL80211_PS_DISABLED, NL80211_PS_ENABLED), [NL80211_ATTR_CQM] = { .type = NLA_NESTED, }, [NL80211_ATTR_LOCAL_STATE_CHANGE] = { .type = NLA_FLAG }, [NL80211_ATTR_AP_ISOLATE] = { .type = NLA_U8 }, [NL80211_ATTR_WIPHY_TX_POWER_SETTING] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_TX_POWER_LEVEL] = { .type = NLA_U32 }, [NL80211_ATTR_FRAME_TYPE] = { .type = NLA_U16 }, [NL80211_ATTR_WIPHY_ANTENNA_TX] = { .type = NLA_U32 }, [NL80211_ATTR_WIPHY_ANTENNA_RX] = { .type = NLA_U32 }, [NL80211_ATTR_MCAST_RATE] = { .type = NLA_U32 }, [NL80211_ATTR_OFFCHANNEL_TX_OK] = { .type = NLA_FLAG }, [NL80211_ATTR_KEY_DEFAULT_TYPES] = { .type = NLA_NESTED }, [NL80211_ATTR_WOWLAN_TRIGGERS] = { .type = NLA_NESTED }, [NL80211_ATTR_STA_PLINK_STATE] = NLA_POLICY_MAX(NLA_U8, NUM_NL80211_PLINK_STATES - 1), [NL80211_ATTR_MEASUREMENT_DURATION] = { .type = NLA_U16 }, [NL80211_ATTR_MEASUREMENT_DURATION_MANDATORY] = { .type = NLA_FLAG }, [NL80211_ATTR_MESH_PEER_AID] = NLA_POLICY_RANGE(NLA_U16, 1, IEEE80211_MAX_AID), [NL80211_ATTR_SCHED_SCAN_INTERVAL] = { .type = NLA_U32 }, [NL80211_ATTR_REKEY_DATA] = { .type = NLA_NESTED }, [NL80211_ATTR_SCAN_SUPP_RATES] = { .type = NLA_NESTED }, [NL80211_ATTR_HIDDEN_SSID] = NLA_POLICY_RANGE(NLA_U32, NL80211_HIDDEN_SSID_NOT_IN_USE, NL80211_HIDDEN_SSID_ZERO_CONTENTS), [NL80211_ATTR_IE_PROBE_RESP] = NLA_POLICY_VALIDATE_FN(NLA_BINARY, validate_ie_attr, IEEE80211_MAX_DATA_LEN), [NL80211_ATTR_IE_ASSOC_RESP] = NLA_POLICY_VALIDATE_FN(NLA_BINARY, validate_ie_attr, IEEE80211_MAX_DATA_LEN), [NL80211_ATTR_ROAM_SUPPORT] = { .type = NLA_FLAG }, [NL80211_ATTR_STA_WME] = NLA_POLICY_NESTED(nl80211_sta_wme_policy), [NL80211_ATTR_SCHED_SCAN_MATCH] = { .type = NLA_NESTED }, [NL80211_ATTR_TX_NO_CCK_RATE] = { .type = NLA_FLAG }, [NL80211_ATTR_TDLS_ACTION] = { .type = NLA_U8 }, [NL80211_ATTR_TDLS_DIALOG_TOKEN] = { .type = NLA_U8 }, [NL80211_ATTR_TDLS_OPERATION] = { .type = NLA_U8 }, [NL80211_ATTR_TDLS_SUPPORT] = { .type = NLA_FLAG }, [NL80211_ATTR_TDLS_EXTERNAL_SETUP] = { .type = NLA_FLAG }, [NL80211_ATTR_TDLS_INITIATOR] = { .type = NLA_FLAG }, [NL80211_ATTR_DONT_WAIT_FOR_ACK] = { .type = NLA_FLAG }, [NL80211_ATTR_PROBE_RESP] = { .type = NLA_BINARY, .len = IEEE80211_MAX_DATA_LEN }, [NL80211_ATTR_DFS_REGION] = { .type = NLA_U8 }, [NL80211_ATTR_DISABLE_HT] = { .type = NLA_FLAG }, [NL80211_ATTR_HT_CAPABILITY_MASK] = { .len = NL80211_HT_CAPABILITY_LEN }, [NL80211_ATTR_NOACK_MAP] = { .type = NLA_U16 }, [NL80211_ATTR_INACTIVITY_TIMEOUT] = { .type = NLA_U16 }, [NL80211_ATTR_BG_SCAN_PERIOD] = { .type = NLA_U16 }, [NL80211_ATTR_WDEV] = { .type = NLA_U64 }, [NL80211_ATTR_USER_REG_HINT_TYPE] = { .type = NLA_U32 }, /* need to include at least Auth Transaction and Status Code */ [NL80211_ATTR_AUTH_DATA] = NLA_POLICY_MIN_LEN(4), [NL80211_ATTR_VHT_CAPABILITY] = NLA_POLICY_EXACT_LEN_WARN(NL80211_VHT_CAPABILITY_LEN), [NL80211_ATTR_SCAN_FLAGS] = { .type = NLA_U32 }, [NL80211_ATTR_P2P_CTWINDOW] = NLA_POLICY_MAX(NLA_U8, 127), [NL80211_ATTR_P2P_OPPPS] = NLA_POLICY_MAX(NLA_U8, 1), [NL80211_ATTR_LOCAL_MESH_POWER_MODE] = NLA_POLICY_RANGE(NLA_U32, NL80211_MESH_POWER_UNKNOWN + 1, NL80211_MESH_POWER_MAX), [NL80211_ATTR_ACL_POLICY] = {. type = NLA_U32 }, [NL80211_ATTR_MAC_ADDRS] = { .type = NLA_NESTED }, [NL80211_ATTR_STA_CAPABILITY] = { .type = NLA_U16 }, [NL80211_ATTR_STA_EXT_CAPABILITY] = { .type = NLA_BINARY, }, [NL80211_ATTR_SPLIT_WIPHY_DUMP] = { .type = NLA_FLAG, }, [NL80211_ATTR_DISABLE_VHT] = { .type = NLA_FLAG }, [NL80211_ATTR_VHT_CAPABILITY_MASK] = { .len = NL80211_VHT_CAPABILITY_LEN, }, [NL80211_ATTR_MDID] = { .type = NLA_U16 }, [NL80211_ATTR_IE_RIC] = { .type = NLA_BINARY, .len = IEEE80211_MAX_DATA_LEN }, [NL80211_ATTR_CRIT_PROT_ID] = { .type = NLA_U16 }, [NL80211_ATTR_MAX_CRIT_PROT_DURATION] = NLA_POLICY_MAX(NLA_U16, NL80211_CRIT_PROTO_MAX_DURATION), [NL80211_ATTR_PEER_AID] = NLA_POLICY_RANGE(NLA_U16, 1, IEEE80211_MAX_AID), [NL80211_ATTR_CH_SWITCH_COUNT] = { .type = NLA_U32 }, [NL80211_ATTR_CH_SWITCH_BLOCK_TX] = { .type = NLA_FLAG }, [NL80211_ATTR_CSA_IES] = { .type = NLA_NESTED }, [NL80211_ATTR_CNTDWN_OFFS_BEACON] = { .type = NLA_BINARY }, [NL80211_ATTR_CNTDWN_OFFS_PRESP] = { .type = NLA_BINARY }, [NL80211_ATTR_STA_SUPPORTED_CHANNELS] = NLA_POLICY_MIN_LEN(2), /* * The value of the Length field of the Supported Operating * Classes element is between 2 and 253. */ [NL80211_ATTR_STA_SUPPORTED_OPER_CLASSES] = NLA_POLICY_RANGE(NLA_BINARY, 2, 253), [NL80211_ATTR_HANDLE_DFS] = { .type = NLA_FLAG }, [NL80211_ATTR_OPMODE_NOTIF] = { .type = NLA_U8 }, [NL80211_ATTR_VENDOR_ID] = { .type = NLA_U32 }, [NL80211_ATTR_VENDOR_SUBCMD] = { .type = NLA_U32 }, [NL80211_ATTR_VENDOR_DATA] = { .type = NLA_BINARY }, [NL80211_ATTR_QOS_MAP] = NLA_POLICY_RANGE(NLA_BINARY, IEEE80211_QOS_MAP_LEN_MIN, IEEE80211_QOS_MAP_LEN_MAX), [NL80211_ATTR_MAC_HINT] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_ATTR_WIPHY_FREQ_HINT] = { .type = NLA_U32 }, [NL80211_ATTR_TDLS_PEER_CAPABILITY] = { .type = NLA_U32 }, [NL80211_ATTR_SOCKET_OWNER] = { .type = NLA_FLAG }, [NL80211_ATTR_CSA_C_OFFSETS_TX] = { .type = NLA_BINARY }, [NL80211_ATTR_USE_RRM] = { .type = NLA_FLAG }, [NL80211_ATTR_TSID] = NLA_POLICY_MAX(NLA_U8, IEEE80211_NUM_TIDS - 1), [NL80211_ATTR_USER_PRIO] = NLA_POLICY_MAX(NLA_U8, IEEE80211_NUM_UPS - 1), [NL80211_ATTR_ADMITTED_TIME] = { .type = NLA_U16 }, [NL80211_ATTR_SMPS_MODE] = { .type = NLA_U8 }, [NL80211_ATTR_OPER_CLASS] = { .type = NLA_U8 }, [NL80211_ATTR_MAC_MASK] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_ATTR_WIPHY_SELF_MANAGED_REG] = { .type = NLA_FLAG }, [NL80211_ATTR_NETNS_FD] = { .type = NLA_U32 }, [NL80211_ATTR_SCHED_SCAN_DELAY] = { .type = NLA_U32 }, [NL80211_ATTR_REG_INDOOR] = { .type = NLA_FLAG }, [NL80211_ATTR_PBSS] = { .type = NLA_FLAG }, [NL80211_ATTR_BSS_SELECT] = { .type = NLA_NESTED }, [NL80211_ATTR_STA_SUPPORT_P2P_PS] = NLA_POLICY_MAX(NLA_U8, NUM_NL80211_P2P_PS_STATUS - 1), [NL80211_ATTR_MU_MIMO_GROUP_DATA] = { .len = VHT_MUMIMO_GROUPS_DATA_LEN }, [NL80211_ATTR_MU_MIMO_FOLLOW_MAC_ADDR] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_ATTR_NAN_MASTER_PREF] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_ATTR_BANDS] = { .type = NLA_U32 }, [NL80211_ATTR_NAN_FUNC] = { .type = NLA_NESTED }, [NL80211_ATTR_FILS_KEK] = { .type = NLA_BINARY, .len = FILS_MAX_KEK_LEN }, [NL80211_ATTR_FILS_NONCES] = NLA_POLICY_EXACT_LEN_WARN(2 * FILS_NONCE_LEN), [NL80211_ATTR_MULTICAST_TO_UNICAST_ENABLED] = { .type = NLA_FLAG, }, [NL80211_ATTR_BSSID] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_ATTR_SCHED_SCAN_RELATIVE_RSSI] = { .type = NLA_S8 }, [NL80211_ATTR_SCHED_SCAN_RSSI_ADJUST] = { .len = sizeof(struct nl80211_bss_select_rssi_adjust) }, [NL80211_ATTR_TIMEOUT_REASON] = { .type = NLA_U32 }, [NL80211_ATTR_FILS_ERP_USERNAME] = { .type = NLA_BINARY, .len = FILS_ERP_MAX_USERNAME_LEN }, [NL80211_ATTR_FILS_ERP_REALM] = { .type = NLA_BINARY, .len = FILS_ERP_MAX_REALM_LEN }, [NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM] = { .type = NLA_U16 }, [NL80211_ATTR_FILS_ERP_RRK] = { .type = NLA_BINARY, .len = FILS_ERP_MAX_RRK_LEN }, [NL80211_ATTR_FILS_CACHE_ID] = NLA_POLICY_EXACT_LEN_WARN(2), [NL80211_ATTR_PMK] = { .type = NLA_BINARY, .len = PMK_MAX_LEN }, [NL80211_ATTR_PMKR0_NAME] = NLA_POLICY_EXACT_LEN(WLAN_PMK_NAME_LEN), [NL80211_ATTR_SCHED_SCAN_MULTI] = { .type = NLA_FLAG }, [NL80211_ATTR_EXTERNAL_AUTH_SUPPORT] = { .type = NLA_FLAG }, [NL80211_ATTR_TXQ_LIMIT] = { .type = NLA_U32 }, [NL80211_ATTR_TXQ_MEMORY_LIMIT] = { .type = NLA_U32 }, [NL80211_ATTR_TXQ_QUANTUM] = { .type = NLA_U32 }, [NL80211_ATTR_HE_CAPABILITY] = NLA_POLICY_VALIDATE_FN(NLA_BINARY, validate_he_capa, NL80211_HE_MAX_CAPABILITY_LEN), [NL80211_ATTR_FTM_RESPONDER] = NLA_POLICY_NESTED(nl80211_ftm_responder_policy), [NL80211_ATTR_TIMEOUT] = NLA_POLICY_MIN(NLA_U32, 1), [NL80211_ATTR_PEER_MEASUREMENTS] = NLA_POLICY_NESTED(nl80211_pmsr_attr_policy), [NL80211_ATTR_AIRTIME_WEIGHT] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_ATTR_SAE_PASSWORD] = { .type = NLA_BINARY, .len = SAE_PASSWORD_MAX_LEN }, [NL80211_ATTR_TWT_RESPONDER] = { .type = NLA_FLAG }, [NL80211_ATTR_HE_OBSS_PD] = NLA_POLICY_NESTED(he_obss_pd_policy), [NL80211_ATTR_VLAN_ID] = NLA_POLICY_RANGE(NLA_U16, 1, VLAN_N_VID - 2), [NL80211_ATTR_HE_BSS_COLOR] = NLA_POLICY_NESTED(he_bss_color_policy), [NL80211_ATTR_TID_CONFIG] = NLA_POLICY_NESTED_ARRAY(nl80211_tid_config_attr_policy), [NL80211_ATTR_CONTROL_PORT_NO_PREAUTH] = { .type = NLA_FLAG }, [NL80211_ATTR_PMK_LIFETIME] = NLA_POLICY_MIN(NLA_U32, 1), [NL80211_ATTR_PMK_REAUTH_THRESHOLD] = NLA_POLICY_RANGE(NLA_U8, 1, 100), [NL80211_ATTR_RECEIVE_MULTICAST] = { .type = NLA_FLAG }, [NL80211_ATTR_WIPHY_FREQ_OFFSET] = NLA_POLICY_RANGE(NLA_U32, 0, 999), [NL80211_ATTR_SCAN_FREQ_KHZ] = { .type = NLA_NESTED }, [NL80211_ATTR_HE_6GHZ_CAPABILITY] = NLA_POLICY_EXACT_LEN(sizeof(struct ieee80211_he_6ghz_capa)), [NL80211_ATTR_FILS_DISCOVERY] = NLA_POLICY_NESTED(nl80211_fils_discovery_policy), [NL80211_ATTR_UNSOL_BCAST_PROBE_RESP] = NLA_POLICY_NESTED(nl80211_unsol_bcast_probe_resp_policy), [NL80211_ATTR_S1G_CAPABILITY] = NLA_POLICY_EXACT_LEN(IEEE80211_S1G_CAPABILITY_LEN), [NL80211_ATTR_S1G_CAPABILITY_MASK] = NLA_POLICY_EXACT_LEN(IEEE80211_S1G_CAPABILITY_LEN), [NL80211_ATTR_SAE_PWE] = NLA_POLICY_RANGE(NLA_U8, NL80211_SAE_PWE_HUNT_AND_PECK, NL80211_SAE_PWE_BOTH), [NL80211_ATTR_RECONNECT_REQUESTED] = { .type = NLA_REJECT }, [NL80211_ATTR_SAR_SPEC] = NLA_POLICY_NESTED(sar_policy), [NL80211_ATTR_DISABLE_HE] = { .type = NLA_FLAG }, [NL80211_ATTR_OBSS_COLOR_BITMAP] = { .type = NLA_U64 }, [NL80211_ATTR_COLOR_CHANGE_COUNT] = { .type = NLA_U8 }, [NL80211_ATTR_COLOR_CHANGE_COLOR] = { .type = NLA_U8 }, [NL80211_ATTR_COLOR_CHANGE_ELEMS] = NLA_POLICY_NESTED(nl80211_policy), [NL80211_ATTR_MBSSID_CONFIG] = NLA_POLICY_NESTED(nl80211_mbssid_config_policy), [NL80211_ATTR_MBSSID_ELEMS] = { .type = NLA_NESTED }, [NL80211_ATTR_RADAR_BACKGROUND] = { .type = NLA_FLAG }, [NL80211_ATTR_AP_SETTINGS_FLAGS] = { .type = NLA_U32 }, [NL80211_ATTR_EHT_CAPABILITY] = NLA_POLICY_RANGE(NLA_BINARY, NL80211_EHT_MIN_CAPABILITY_LEN, NL80211_EHT_MAX_CAPABILITY_LEN), [NL80211_ATTR_DISABLE_EHT] = { .type = NLA_FLAG }, [NL80211_ATTR_MLO_LINKS] = NLA_POLICY_NESTED_ARRAY(nl80211_policy), [NL80211_ATTR_MLO_LINK_ID] = NLA_POLICY_RANGE(NLA_U8, 0, IEEE80211_MLD_MAX_NUM_LINKS), [NL80211_ATTR_MLD_ADDR] = NLA_POLICY_EXACT_LEN(ETH_ALEN), [NL80211_ATTR_MLO_SUPPORT] = { .type = NLA_FLAG }, [NL80211_ATTR_MAX_NUM_AKM_SUITES] = { .type = NLA_REJECT }, [NL80211_ATTR_PUNCT_BITMAP] = NLA_POLICY_FULL_RANGE(NLA_U32, &nl80211_punct_bitmap_range), [NL80211_ATTR_MAX_HW_TIMESTAMP_PEERS] = { .type = NLA_U16 }, [NL80211_ATTR_HW_TIMESTAMP_ENABLED] = { .type = NLA_FLAG }, [NL80211_ATTR_EMA_RNR_ELEMS] = { .type = NLA_NESTED }, [NL80211_ATTR_MLO_LINK_DISABLED] = { .type = NLA_FLAG }, [NL80211_ATTR_BSS_DUMP_INCLUDE_USE_DATA] = { .type = NLA_FLAG }, [NL80211_ATTR_MLO_TTLM_DLINK] = NLA_POLICY_EXACT_LEN(sizeof(u16) * 8), [NL80211_ATTR_MLO_TTLM_ULINK] = NLA_POLICY_EXACT_LEN(sizeof(u16) * 8), }; /* policy for the key attributes */ static const struct nla_policy nl80211_key_policy[NL80211_KEY_MAX + 1] = { [NL80211_KEY_DATA] = { .type = NLA_BINARY, .len = WLAN_MAX_KEY_LEN }, [NL80211_KEY_IDX] = { .type = NLA_U8 }, [NL80211_KEY_CIPHER] = { .type = NLA_U32 }, [NL80211_KEY_SEQ] = { .type = NLA_BINARY, .len = 16 }, [NL80211_KEY_DEFAULT] = { .type = NLA_FLAG }, [NL80211_KEY_DEFAULT_MGMT] = { .type = NLA_FLAG }, [NL80211_KEY_TYPE] = NLA_POLICY_MAX(NLA_U32, NUM_NL80211_KEYTYPES - 1), [NL80211_KEY_DEFAULT_TYPES] = { .type = NLA_NESTED }, [NL80211_KEY_MODE] = NLA_POLICY_RANGE(NLA_U8, 0, NL80211_KEY_SET_TX), }; /* policy for the key default flags */ static const struct nla_policy nl80211_key_default_policy[NUM_NL80211_KEY_DEFAULT_TYPES] = { [NL80211_KEY_DEFAULT_TYPE_UNICAST] = { .type = NLA_FLAG }, [NL80211_KEY_DEFAULT_TYPE_MULTICAST] = { .type = NLA_FLAG }, }; #ifdef CONFIG_PM /* policy for WoWLAN attributes */ static const struct nla_policy nl80211_wowlan_policy[NUM_NL80211_WOWLAN_TRIG] = { [NL80211_WOWLAN_TRIG_ANY] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_DISCONNECT] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_MAGIC_PKT] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_PKT_PATTERN] = { .type = NLA_NESTED }, [NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_RFKILL_RELEASE] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_TCP_CONNECTION] = { .type = NLA_NESTED }, [NL80211_WOWLAN_TRIG_NET_DETECT] = { .type = NLA_NESTED }, }; static const struct nla_policy nl80211_wowlan_tcp_policy[NUM_NL80211_WOWLAN_TCP] = { [NL80211_WOWLAN_TCP_SRC_IPV4] = { .type = NLA_U32 }, [NL80211_WOWLAN_TCP_DST_IPV4] = { .type = NLA_U32 }, [NL80211_WOWLAN_TCP_DST_MAC] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_WOWLAN_TCP_SRC_PORT] = { .type = NLA_U16 }, [NL80211_WOWLAN_TCP_DST_PORT] = { .type = NLA_U16 }, [NL80211_WOWLAN_TCP_DATA_PAYLOAD] = NLA_POLICY_MIN_LEN(1), [NL80211_WOWLAN_TCP_DATA_PAYLOAD_SEQ] = { .len = sizeof(struct nl80211_wowlan_tcp_data_seq) }, [NL80211_WOWLAN_TCP_DATA_PAYLOAD_TOKEN] = { .len = sizeof(struct nl80211_wowlan_tcp_data_token) }, [NL80211_WOWLAN_TCP_DATA_INTERVAL] = { .type = NLA_U32 }, [NL80211_WOWLAN_TCP_WAKE_PAYLOAD] = NLA_POLICY_MIN_LEN(1), [NL80211_WOWLAN_TCP_WAKE_MASK] = NLA_POLICY_MIN_LEN(1), }; #endif /* CONFIG_PM */ /* policy for coalesce rule attributes */ static const struct nla_policy nl80211_coalesce_policy[NUM_NL80211_ATTR_COALESCE_RULE] = { [NL80211_ATTR_COALESCE_RULE_DELAY] = { .type = NLA_U32 }, [NL80211_ATTR_COALESCE_RULE_CONDITION] = NLA_POLICY_RANGE(NLA_U32, NL80211_COALESCE_CONDITION_MATCH, NL80211_COALESCE_CONDITION_NO_MATCH), [NL80211_ATTR_COALESCE_RULE_PKT_PATTERN] = { .type = NLA_NESTED }, }; /* policy for GTK rekey offload attributes */ static const struct nla_policy nl80211_rekey_policy[NUM_NL80211_REKEY_DATA] = { [NL80211_REKEY_DATA_KEK] = { .type = NLA_BINARY, .len = NL80211_KEK_EXT_LEN }, [NL80211_REKEY_DATA_KCK] = { .type = NLA_BINARY, .len = NL80211_KCK_EXT_LEN_32 }, [NL80211_REKEY_DATA_REPLAY_CTR] = NLA_POLICY_EXACT_LEN(NL80211_REPLAY_CTR_LEN), [NL80211_REKEY_DATA_AKM] = { .type = NLA_U32 }, }; static const struct nla_policy nl80211_match_band_rssi_policy[NUM_NL80211_BANDS] = { [NL80211_BAND_2GHZ] = { .type = NLA_S32 }, [NL80211_BAND_5GHZ] = { .type = NLA_S32 }, [NL80211_BAND_6GHZ] = { .type = NLA_S32 }, [NL80211_BAND_60GHZ] = { .type = NLA_S32 }, [NL80211_BAND_LC] = { .type = NLA_S32 }, }; static const struct nla_policy nl80211_match_policy[NL80211_SCHED_SCAN_MATCH_ATTR_MAX + 1] = { [NL80211_SCHED_SCAN_MATCH_ATTR_SSID] = { .type = NLA_BINARY, .len = IEEE80211_MAX_SSID_LEN }, [NL80211_SCHED_SCAN_MATCH_ATTR_BSSID] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_SCHED_SCAN_MATCH_ATTR_RSSI] = { .type = NLA_U32 }, [NL80211_SCHED_SCAN_MATCH_PER_BAND_RSSI] = NLA_POLICY_NESTED(nl80211_match_band_rssi_policy), }; static const struct nla_policy nl80211_plan_policy[NL80211_SCHED_SCAN_PLAN_MAX + 1] = { [NL80211_SCHED_SCAN_PLAN_INTERVAL] = { .type = NLA_U32 }, [NL80211_SCHED_SCAN_PLAN_ITERATIONS] = { .type = NLA_U32 }, }; static const struct nla_policy nl80211_bss_select_policy[NL80211_BSS_SELECT_ATTR_MAX + 1] = { [NL80211_BSS_SELECT_ATTR_RSSI] = { .type = NLA_FLAG }, [NL80211_BSS_SELECT_ATTR_BAND_PREF] = { .type = NLA_U32 }, [NL80211_BSS_SELECT_ATTR_RSSI_ADJUST] = { .len = sizeof(struct nl80211_bss_select_rssi_adjust) }, }; /* policy for NAN function attributes */ static const struct nla_policy nl80211_nan_func_policy[NL80211_NAN_FUNC_ATTR_MAX + 1] = { [NL80211_NAN_FUNC_TYPE] = NLA_POLICY_MAX(NLA_U8, NL80211_NAN_FUNC_MAX_TYPE), [NL80211_NAN_FUNC_SERVICE_ID] = { .len = NL80211_NAN_FUNC_SERVICE_ID_LEN }, [NL80211_NAN_FUNC_PUBLISH_TYPE] = { .type = NLA_U8 }, [NL80211_NAN_FUNC_PUBLISH_BCAST] = { .type = NLA_FLAG }, [NL80211_NAN_FUNC_SUBSCRIBE_ACTIVE] = { .type = NLA_FLAG }, [NL80211_NAN_FUNC_FOLLOW_UP_ID] = { .type = NLA_U8 }, [NL80211_NAN_FUNC_FOLLOW_UP_REQ_ID] = { .type = NLA_U8 }, [NL80211_NAN_FUNC_FOLLOW_UP_DEST] = NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN), [NL80211_NAN_FUNC_CLOSE_RANGE] = { .type = NLA_FLAG }, [NL80211_NAN_FUNC_TTL] = { .type = NLA_U32 }, [NL80211_NAN_FUNC_SERVICE_INFO] = { .type = NLA_BINARY, .len = NL80211_NAN_FUNC_SERVICE_SPEC_INFO_MAX_LEN }, [NL80211_NAN_FUNC_SRF] = { .type = NLA_NESTED }, [NL80211_NAN_FUNC_RX_MATCH_FILTER] = { .type = NLA_NESTED }, [NL80211_NAN_FUNC_TX_MATCH_FILTER] = { .type = NLA_NESTED }, [NL80211_NAN_FUNC_INSTANCE_ID] = { .type = NLA_U8 }, [NL80211_NAN_FUNC_TERM_REASON] = { .type = NLA_U8 }, }; /* policy for Service Response Filter attributes */ static const struct nla_policy nl80211_nan_srf_policy[NL80211_NAN_SRF_ATTR_MAX + 1] = { [NL80211_NAN_SRF_INCLUDE] = { .type = NLA_FLAG }, [NL80211_NAN_SRF_BF] = { .type = NLA_BINARY, .len = NL80211_NAN_FUNC_SRF_MAX_LEN }, [NL80211_NAN_SRF_BF_IDX] = { .type = NLA_U8 }, [NL80211_NAN_SRF_MAC_ADDRS] = { .type = NLA_NESTED }, }; /* policy for packet pattern attributes */ static const struct nla_policy nl80211_packet_pattern_policy[MAX_NL80211_PKTPAT + 1] = { [NL80211_PKTPAT_MASK] = { .type = NLA_BINARY, }, [NL80211_PKTPAT_PATTERN] = { .type = NLA_BINARY, }, [NL80211_PKTPAT_OFFSET] = { .type = NLA_U32 }, }; static int nl80211_prepare_wdev_dump(struct netlink_callback *cb, struct cfg80211_registered_device **rdev, struct wireless_dev **wdev, struct nlattr **attrbuf) { int err; if (!cb->args[0]) { struct nlattr **attrbuf_free = NULL; if (!attrbuf) { attrbuf = kcalloc(NUM_NL80211_ATTR, sizeof(*attrbuf), GFP_KERNEL); if (!attrbuf) return -ENOMEM; attrbuf_free = attrbuf; } err = nlmsg_parse_deprecated(cb->nlh, GENL_HDRLEN + nl80211_fam.hdrsize, attrbuf, nl80211_fam.maxattr, nl80211_policy, NULL); if (err) { kfree(attrbuf_free); return err; } rtnl_lock(); *wdev = __cfg80211_wdev_from_attrs(NULL, sock_net(cb->skb->sk), attrbuf); kfree(attrbuf_free); if (IS_ERR(*wdev)) { rtnl_unlock(); return PTR_ERR(*wdev); } *rdev = wiphy_to_rdev((*wdev)->wiphy); mutex_lock(&(*rdev)->wiphy.mtx); rtnl_unlock(); /* 0 is the first index - add 1 to parse only once */ cb->args[0] = (*rdev)->wiphy_idx + 1; cb->args[1] = (*wdev)->identifier; } else { /* subtract the 1 again here */ struct wiphy *wiphy; struct wireless_dev *tmp; rtnl_lock(); wiphy = wiphy_idx_to_wiphy(cb->args[0] - 1); if (!wiphy) { rtnl_unlock(); return -ENODEV; } *rdev = wiphy_to_rdev(wiphy); *wdev = NULL; list_for_each_entry(tmp, &(*rdev)->wiphy.wdev_list, list) { if (tmp->identifier == cb->args[1]) { *wdev = tmp; break; } } if (!*wdev) { rtnl_unlock(); return -ENODEV; } mutex_lock(&(*rdev)->wiphy.mtx); rtnl_unlock(); } return 0; } /* message building helper */ void *nl80211hdr_put(struct sk_buff *skb, u32 portid, u32 seq, int flags, u8 cmd) { /* since there is no private header just add the generic one */ return genlmsg_put(skb, portid, seq, &nl80211_fam, flags, cmd); } static int nl80211_msg_put_wmm_rules(struct sk_buff *msg, const struct ieee80211_reg_rule *rule) { int j; struct nlattr *nl_wmm_rules = nla_nest_start_noflag(msg, NL80211_FREQUENCY_ATTR_WMM); if (!nl_wmm_rules) goto nla_put_failure; for (j = 0; j < IEEE80211_NUM_ACS; j++) { struct nlattr *nl_wmm_rule = nla_nest_start_noflag(msg, j); if (!nl_wmm_rule) goto nla_put_failure; if (nla_put_u16(msg, NL80211_WMMR_CW_MIN, rule->wmm_rule.client[j].cw_min) || nla_put_u16(msg, NL80211_WMMR_CW_MAX, rule->wmm_rule.client[j].cw_max) || nla_put_u8(msg, NL80211_WMMR_AIFSN, rule->wmm_rule.client[j].aifsn) || nla_put_u16(msg, NL80211_WMMR_TXOP, rule->wmm_rule.client[j].cot)) goto nla_put_failure; nla_nest_end(msg, nl_wmm_rule); } nla_nest_end(msg, nl_wmm_rules); return 0; nla_put_failure: return -ENOBUFS; } static int nl80211_msg_put_channel(struct sk_buff *msg, struct wiphy *wiphy, struct ieee80211_channel *chan, bool large) { /* Some channels must be completely excluded from the * list to protect old user-space tools from breaking */ if (!large && chan->flags & (IEEE80211_CHAN_NO_10MHZ | IEEE80211_CHAN_NO_20MHZ)) return 0; if (!large && chan->freq_offset) return 0; if (nla_put_u32(msg, NL80211_FREQUENCY_ATTR_FREQ, chan->center_freq)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_FREQUENCY_ATTR_OFFSET, chan->freq_offset)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_PSD) && nla_put_s8(msg, NL80211_FREQUENCY_ATTR_PSD, chan->psd)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_DISABLED) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_DISABLED)) goto nla_put_failure; if (chan->flags & IEEE80211_CHAN_NO_IR) { if (nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_IR)) goto nla_put_failure; if (nla_put_flag(msg, __NL80211_FREQUENCY_ATTR_NO_IBSS)) goto nla_put_failure; } if (chan->flags & IEEE80211_CHAN_RADAR) { if (nla_put_flag(msg, NL80211_FREQUENCY_ATTR_RADAR)) goto nla_put_failure; if (large) { u32 time; time = elapsed_jiffies_msecs(chan->dfs_state_entered); if (nla_put_u32(msg, NL80211_FREQUENCY_ATTR_DFS_STATE, chan->dfs_state)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_FREQUENCY_ATTR_DFS_TIME, time)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_FREQUENCY_ATTR_DFS_CAC_TIME, chan->dfs_cac_ms)) goto nla_put_failure; } } if (large) { if ((chan->flags & IEEE80211_CHAN_NO_HT40MINUS) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_HT40_MINUS)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_HT40PLUS) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_HT40_PLUS)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_80MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_80MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_160MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_160MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_INDOOR_ONLY) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_INDOOR_ONLY)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_IR_CONCURRENT) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_IR_CONCURRENT)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_20MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_20MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_10MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_10MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_HE) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_HE)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_1MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_1MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_2MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_2MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_4MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_4MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_8MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_8MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_16MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_16MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_320MHZ) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_320MHZ)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_EHT) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_EHT)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_DFS_CONCURRENT) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_DFS_CONCURRENT)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_UHB_VLP_CLIENT)) goto nla_put_failure; if ((chan->flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT) && nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_UHB_AFC_CLIENT)) goto nla_put_failure; } if (nla_put_u32(msg, NL80211_FREQUENCY_ATTR_MAX_TX_POWER, DBM_TO_MBM(chan->max_power))) goto nla_put_failure; if (large) { const struct ieee80211_reg_rule *rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); if (!IS_ERR_OR_NULL(rule) && rule->has_wmm) { if (nl80211_msg_put_wmm_rules(msg, rule)) goto nla_put_failure; } } return 0; nla_put_failure: return -ENOBUFS; } static bool nl80211_put_txq_stats(struct sk_buff *msg, struct cfg80211_txq_stats *txqstats, int attrtype) { struct nlattr *txqattr; #define PUT_TXQVAL_U32(attr, memb) do { \ if (txqstats->filled & BIT(NL80211_TXQ_STATS_ ## attr) && \ nla_put_u32(msg, NL80211_TXQ_STATS_ ## attr, txqstats->memb)) \ return false; \ } while (0) txqattr = nla_nest_start_noflag(msg, attrtype); if (!txqattr) return false; PUT_TXQVAL_U32(BACKLOG_BYTES, backlog_bytes); PUT_TXQVAL_U32(BACKLOG_PACKETS, backlog_packets); PUT_TXQVAL_U32(FLOWS, flows); PUT_TXQVAL_U32(DROPS, drops); PUT_TXQVAL_U32(ECN_MARKS, ecn_marks); PUT_TXQVAL_U32(OVERLIMIT, overlimit); PUT_TXQVAL_U32(OVERMEMORY, overmemory); PUT_TXQVAL_U32(COLLISIONS, collisions); PUT_TXQVAL_U32(TX_BYTES, tx_bytes); PUT_TXQVAL_U32(TX_PACKETS, tx_packets); PUT_TXQVAL_U32(MAX_FLOWS, max_flows); nla_nest_end(msg, txqattr); #undef PUT_TXQVAL_U32 return true; } /* netlink command implementations */ /** * nl80211_link_id - return link ID * @attrs: attributes to look at * * Returns: the link ID or 0 if not given * * Note this function doesn't do any validation of the link * ID validity wrt. links that were actually added, so it must * be called only from ops with %NL80211_FLAG_MLO_VALID_LINK_ID * or if additional validation is done. */ static unsigned int nl80211_link_id(struct nlattr **attrs) { struct nlattr *linkid = attrs[NL80211_ATTR_MLO_LINK_ID]; if (!linkid) return 0; return nla_get_u8(linkid); } static int nl80211_link_id_or_invalid(struct nlattr **attrs) { struct nlattr *linkid = attrs[NL80211_ATTR_MLO_LINK_ID]; if (!linkid) return -1; return nla_get_u8(linkid); } struct key_parse { struct key_params p; int idx; int type; bool def, defmgmt, defbeacon; bool def_uni, def_multi; }; static int nl80211_parse_key_new(struct genl_info *info, struct nlattr *key, struct key_parse *k) { struct nlattr *tb[NL80211_KEY_MAX + 1]; int err = nla_parse_nested_deprecated(tb, NL80211_KEY_MAX, key, nl80211_key_policy, info->extack); if (err) return err; k->def = !!tb[NL80211_KEY_DEFAULT]; k->defmgmt = !!tb[NL80211_KEY_DEFAULT_MGMT]; k->defbeacon = !!tb[NL80211_KEY_DEFAULT_BEACON]; if (k->def) { k->def_uni = true; k->def_multi = true; } if (k->defmgmt || k->defbeacon) k->def_multi = true; if (tb[NL80211_KEY_IDX]) k->idx = nla_get_u8(tb[NL80211_KEY_IDX]); if (tb[NL80211_KEY_DATA]) { k->p.key = nla_data(tb[NL80211_KEY_DATA]); k->p.key_len = nla_len(tb[NL80211_KEY_DATA]); } if (tb[NL80211_KEY_SEQ]) { k->p.seq = nla_data(tb[NL80211_KEY_SEQ]); k->p.seq_len = nla_len(tb[NL80211_KEY_SEQ]); } if (tb[NL80211_KEY_CIPHER]) k->p.cipher = nla_get_u32(tb[NL80211_KEY_CIPHER]); if (tb[NL80211_KEY_TYPE]) k->type = nla_get_u32(tb[NL80211_KEY_TYPE]); if (tb[NL80211_KEY_DEFAULT_TYPES]) { struct nlattr *kdt[NUM_NL80211_KEY_DEFAULT_TYPES]; err = nla_parse_nested_deprecated(kdt, NUM_NL80211_KEY_DEFAULT_TYPES - 1, tb[NL80211_KEY_DEFAULT_TYPES], nl80211_key_default_policy, info->extack); if (err) return err; k->def_uni = kdt[NL80211_KEY_DEFAULT_TYPE_UNICAST]; k->def_multi = kdt[NL80211_KEY_DEFAULT_TYPE_MULTICAST]; } if (tb[NL80211_KEY_MODE]) k->p.mode = nla_get_u8(tb[NL80211_KEY_MODE]); return 0; } static int nl80211_parse_key_old(struct genl_info *info, struct key_parse *k) { if (info->attrs[NL80211_ATTR_KEY_DATA]) { k->p.key = nla_data(info->attrs[NL80211_ATTR_KEY_DATA]); k->p.key_len = nla_len(info->attrs[NL80211_ATTR_KEY_DATA]); } if (info->attrs[NL80211_ATTR_KEY_SEQ]) { k->p.seq = nla_data(info->attrs[NL80211_ATTR_KEY_SEQ]); k->p.seq_len = nla_len(info->attrs[NL80211_ATTR_KEY_SEQ]); } if (info->attrs[NL80211_ATTR_KEY_IDX]) k->idx = nla_get_u8(info->attrs[NL80211_ATTR_KEY_IDX]); if (info->attrs[NL80211_ATTR_KEY_CIPHER]) k->p.cipher = nla_get_u32(info->attrs[NL80211_ATTR_KEY_CIPHER]); k->def = !!info->attrs[NL80211_ATTR_KEY_DEFAULT]; k->defmgmt = !!info->attrs[NL80211_ATTR_KEY_DEFAULT_MGMT]; if (k->def) { k->def_uni = true; k->def_multi = true; } if (k->defmgmt) k->def_multi = true; if (info->attrs[NL80211_ATTR_KEY_TYPE]) k->type = nla_get_u32(info->attrs[NL80211_ATTR_KEY_TYPE]); if (info->attrs[NL80211_ATTR_KEY_DEFAULT_TYPES]) { struct nlattr *kdt[NUM_NL80211_KEY_DEFAULT_TYPES]; int err = nla_parse_nested_deprecated(kdt, NUM_NL80211_KEY_DEFAULT_TYPES - 1, info->attrs[NL80211_ATTR_KEY_DEFAULT_TYPES], nl80211_key_default_policy, info->extack); if (err) return err; k->def_uni = kdt[NL80211_KEY_DEFAULT_TYPE_UNICAST]; k->def_multi = kdt[NL80211_KEY_DEFAULT_TYPE_MULTICAST]; } return 0; } static int nl80211_parse_key(struct genl_info *info, struct key_parse *k) { int err; memset(k, 0, sizeof(*k)); k->idx = -1; k->type = -1; if (info->attrs[NL80211_ATTR_KEY]) err = nl80211_parse_key_new(info, info->attrs[NL80211_ATTR_KEY], k); else err = nl80211_parse_key_old(info, k); if (err) return err; if ((k->def ? 1 : 0) + (k->defmgmt ? 1 : 0) + (k->defbeacon ? 1 : 0) > 1) { GENL_SET_ERR_MSG(info, "key with multiple default flags is invalid"); return -EINVAL; } if (k->defmgmt || k->defbeacon) { if (k->def_uni || !k->def_multi) { GENL_SET_ERR_MSG(info, "defmgmt/defbeacon key must be mcast"); return -EINVAL; } } if (k->idx != -1) { if (k->defmgmt) { if (k->idx < 4 || k->idx > 5) { GENL_SET_ERR_MSG(info, "defmgmt key idx not 4 or 5"); return -EINVAL; } } else if (k->defbeacon) { if (k->idx < 6 || k->idx > 7) { GENL_SET_ERR_MSG(info, "defbeacon key idx not 6 or 7"); return -EINVAL; } } else if (k->def) { if (k->idx < 0 || k->idx > 3) { GENL_SET_ERR_MSG(info, "def key idx not 0-3"); return -EINVAL; } } else { if (k->idx < 0 || k->idx > 7) { GENL_SET_ERR_MSG(info, "key idx not 0-7"); return -EINVAL; } } } return 0; } static struct cfg80211_cached_keys * nl80211_parse_connkeys(struct cfg80211_registered_device *rdev, struct genl_info *info, bool *no_ht) { struct nlattr *keys = info->attrs[NL80211_ATTR_KEYS]; struct key_parse parse; struct nlattr *key; struct cfg80211_cached_keys *result; int rem, err, def = 0; bool have_key = false; nla_for_each_nested(key, keys, rem) { have_key = true; break; } if (!have_key) return NULL; result = kzalloc(sizeof(*result), GFP_KERNEL); if (!result) return ERR_PTR(-ENOMEM); result->def = -1; nla_for_each_nested(key, keys, rem) { memset(&parse, 0, sizeof(parse)); parse.idx = -1; err = nl80211_parse_key_new(info, key, &parse); if (err) goto error; err = -EINVAL; if (!parse.p.key) goto error; if (parse.idx < 0 || parse.idx > 3) { GENL_SET_ERR_MSG(info, "key index out of range [0-3]"); goto error; } if (parse.def) { if (def) { GENL_SET_ERR_MSG(info, "only one key can be default"); goto error; } def = 1; result->def = parse.idx; if (!parse.def_uni || !parse.def_multi) goto error; } else if (parse.defmgmt) goto error; err = cfg80211_validate_key_settings(rdev, &parse.p, parse.idx, false, NULL); if (err) goto error; if (parse.p.cipher != WLAN_CIPHER_SUITE_WEP40 && parse.p.cipher != WLAN_CIPHER_SUITE_WEP104) { GENL_SET_ERR_MSG(info, "connect key must be WEP"); err = -EINVAL; goto error; } result->params[parse.idx].cipher = parse.p.cipher; result->params[parse.idx].key_len = parse.p.key_len; result->params[parse.idx].key = result->data[parse.idx]; memcpy(result->data[parse.idx], parse.p.key, parse.p.key_len); /* must be WEP key if we got here */ if (no_ht) *no_ht = true; } if (result->def < 0) { err = -EINVAL; GENL_SET_ERR_MSG(info, "need a default/TX key"); goto error; } return result; error: kfree(result); return ERR_PTR(err); } static int nl80211_key_allowed(struct wireless_dev *wdev) { lockdep_assert_wiphy(wdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_MESH_POINT: break; case NL80211_IFTYPE_ADHOC: if (wdev->u.ibss.current_bss) return 0; return -ENOLINK; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (wdev->connected) return 0; return -ENOLINK; case NL80211_IFTYPE_NAN: if (wiphy_ext_feature_isset(wdev->wiphy, NL80211_EXT_FEATURE_SECURE_NAN)) return 0; return -EINVAL; case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_WDS: case NUM_NL80211_IFTYPES: return -EINVAL; } return 0; } static struct ieee80211_channel *nl80211_get_valid_chan(struct wiphy *wiphy, u32 freq) { struct ieee80211_channel *chan; chan = ieee80211_get_channel_khz(wiphy, freq); if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) return NULL; return chan; } static int nl80211_put_iftypes(struct sk_buff *msg, u32 attr, u16 ifmodes) { struct nlattr *nl_modes = nla_nest_start_noflag(msg, attr); int i; if (!nl_modes) goto nla_put_failure; i = 0; while (ifmodes) { if ((ifmodes & 1) && nla_put_flag(msg, i)) goto nla_put_failure; ifmodes >>= 1; i++; } nla_nest_end(msg, nl_modes); return 0; nla_put_failure: return -ENOBUFS; } static int nl80211_put_iface_combinations(struct wiphy *wiphy, struct sk_buff *msg, bool large) { struct nlattr *nl_combis; int i, j; nl_combis = nla_nest_start_noflag(msg, NL80211_ATTR_INTERFACE_COMBINATIONS); if (!nl_combis) goto nla_put_failure; for (i = 0; i < wiphy->n_iface_combinations; i++) { const struct ieee80211_iface_combination *c; struct nlattr *nl_combi, *nl_limits; c = &wiphy->iface_combinations[i]; nl_combi = nla_nest_start_noflag(msg, i + 1); if (!nl_combi) goto nla_put_failure; nl_limits = nla_nest_start_noflag(msg, NL80211_IFACE_COMB_LIMITS); if (!nl_limits) goto nla_put_failure; for (j = 0; j < c->n_limits; j++) { struct nlattr *nl_limit; nl_limit = nla_nest_start_noflag(msg, j + 1); if (!nl_limit) goto nla_put_failure; if (nla_put_u32(msg, NL80211_IFACE_LIMIT_MAX, c->limits[j].max)) goto nla_put_failure; if (nl80211_put_iftypes(msg, NL80211_IFACE_LIMIT_TYPES, c->limits[j].types)) goto nla_put_failure; nla_nest_end(msg, nl_limit); } nla_nest_end(msg, nl_limits); if (c->beacon_int_infra_match && nla_put_flag(msg, NL80211_IFACE_COMB_STA_AP_BI_MATCH)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_IFACE_COMB_NUM_CHANNELS, c->num_different_channels) || nla_put_u32(msg, NL80211_IFACE_COMB_MAXNUM, c->max_interfaces)) goto nla_put_failure; if (large && (nla_put_u32(msg, NL80211_IFACE_COMB_RADAR_DETECT_WIDTHS, c->radar_detect_widths) || nla_put_u32(msg, NL80211_IFACE_COMB_RADAR_DETECT_REGIONS, c->radar_detect_regions))) goto nla_put_failure; if (c->beacon_int_min_gcd && nla_put_u32(msg, NL80211_IFACE_COMB_BI_MIN_GCD, c->beacon_int_min_gcd)) goto nla_put_failure; nla_nest_end(msg, nl_combi); } nla_nest_end(msg, nl_combis); return 0; nla_put_failure: return -ENOBUFS; } #ifdef CONFIG_PM static int nl80211_send_wowlan_tcp_caps(struct cfg80211_registered_device *rdev, struct sk_buff *msg) { const struct wiphy_wowlan_tcp_support *tcp = rdev->wiphy.wowlan->tcp; struct nlattr *nl_tcp; if (!tcp) return 0; nl_tcp = nla_nest_start_noflag(msg, NL80211_WOWLAN_TRIG_TCP_CONNECTION); if (!nl_tcp) return -ENOBUFS; if (nla_put_u32(msg, NL80211_WOWLAN_TCP_DATA_PAYLOAD, tcp->data_payload_max)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_WOWLAN_TCP_DATA_PAYLOAD, tcp->data_payload_max)) return -ENOBUFS; if (tcp->seq && nla_put_flag(msg, NL80211_WOWLAN_TCP_DATA_PAYLOAD_SEQ)) return -ENOBUFS; if (tcp->tok && nla_put(msg, NL80211_WOWLAN_TCP_DATA_PAYLOAD_TOKEN, sizeof(*tcp->tok), tcp->tok)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_WOWLAN_TCP_DATA_INTERVAL, tcp->data_interval_max)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_WOWLAN_TCP_WAKE_PAYLOAD, tcp->wake_payload_max)) return -ENOBUFS; nla_nest_end(msg, nl_tcp); return 0; } static int nl80211_send_wowlan(struct sk_buff *msg, struct cfg80211_registered_device *rdev, bool large) { struct nlattr *nl_wowlan; if (!rdev->wiphy.wowlan) return 0; nl_wowlan = nla_nest_start_noflag(msg, NL80211_ATTR_WOWLAN_TRIGGERS_SUPPORTED); if (!nl_wowlan) return -ENOBUFS; if (((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_ANY) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_ANY)) || ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_DISCONNECT) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_DISCONNECT)) || ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_MAGIC_PKT) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_MAGIC_PKT)) || ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_SUPPORTS_GTK_REKEY) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_GTK_REKEY_SUPPORTED)) || ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_GTK_REKEY_FAILURE) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE)) || ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_EAP_IDENTITY_REQ) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST)) || ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_4WAY_HANDSHAKE) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE)) || ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_RFKILL_RELEASE) && nla_put_flag(msg, NL80211_WOWLAN_TRIG_RFKILL_RELEASE))) return -ENOBUFS; if (rdev->wiphy.wowlan->n_patterns) { struct nl80211_pattern_support pat = { .max_patterns = rdev->wiphy.wowlan->n_patterns, .min_pattern_len = rdev->wiphy.wowlan->pattern_min_len, .max_pattern_len = rdev->wiphy.wowlan->pattern_max_len, .max_pkt_offset = rdev->wiphy.wowlan->max_pkt_offset, }; if (nla_put(msg, NL80211_WOWLAN_TRIG_PKT_PATTERN, sizeof(pat), &pat)) return -ENOBUFS; } if ((rdev->wiphy.wowlan->flags & WIPHY_WOWLAN_NET_DETECT) && nla_put_u32(msg, NL80211_WOWLAN_TRIG_NET_DETECT, rdev->wiphy.wowlan->max_nd_match_sets)) return -ENOBUFS; if (large && nl80211_send_wowlan_tcp_caps(rdev, msg)) return -ENOBUFS; nla_nest_end(msg, nl_wowlan); return 0; } #endif static int nl80211_send_coalesce(struct sk_buff *msg, struct cfg80211_registered_device *rdev) { struct nl80211_coalesce_rule_support rule; if (!rdev->wiphy.coalesce) return 0; rule.max_rules = rdev->wiphy.coalesce->n_rules; rule.max_delay = rdev->wiphy.coalesce->max_delay; rule.pat.max_patterns = rdev->wiphy.coalesce->n_patterns; rule.pat.min_pattern_len = rdev->wiphy.coalesce->pattern_min_len; rule.pat.max_pattern_len = rdev->wiphy.coalesce->pattern_max_len; rule.pat.max_pkt_offset = rdev->wiphy.coalesce->max_pkt_offset; if (nla_put(msg, NL80211_ATTR_COALESCE_RULE, sizeof(rule), &rule)) return -ENOBUFS; return 0; } static int nl80211_send_iftype_data(struct sk_buff *msg, const struct ieee80211_supported_band *sband, const struct ieee80211_sband_iftype_data *iftdata) { const struct ieee80211_sta_he_cap *he_cap = &iftdata->he_cap; const struct ieee80211_sta_eht_cap *eht_cap = &iftdata->eht_cap; if (nl80211_put_iftypes(msg, NL80211_BAND_IFTYPE_ATTR_IFTYPES, iftdata->types_mask)) return -ENOBUFS; if (he_cap->has_he) { if (nla_put(msg, NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC, sizeof(he_cap->he_cap_elem.mac_cap_info), he_cap->he_cap_elem.mac_cap_info) || nla_put(msg, NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY, sizeof(he_cap->he_cap_elem.phy_cap_info), he_cap->he_cap_elem.phy_cap_info) || nla_put(msg, NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET, sizeof(he_cap->he_mcs_nss_supp), &he_cap->he_mcs_nss_supp) || nla_put(msg, NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE, sizeof(he_cap->ppe_thres), he_cap->ppe_thres)) return -ENOBUFS; } if (eht_cap->has_eht && he_cap->has_he) { u8 mcs_nss_size, ppe_thresh_size; u16 ppe_thres_hdr; bool is_ap; is_ap = iftdata->types_mask & BIT(NL80211_IFTYPE_AP) || iftdata->types_mask & BIT(NL80211_IFTYPE_P2P_GO); mcs_nss_size = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, &eht_cap->eht_cap_elem, is_ap); ppe_thres_hdr = get_unaligned_le16(&eht_cap->eht_ppe_thres[0]); ppe_thresh_size = ieee80211_eht_ppe_size(ppe_thres_hdr, eht_cap->eht_cap_elem.phy_cap_info); if (nla_put(msg, NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MAC, sizeof(eht_cap->eht_cap_elem.mac_cap_info), eht_cap->eht_cap_elem.mac_cap_info) || nla_put(msg, NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PHY, sizeof(eht_cap->eht_cap_elem.phy_cap_info), eht_cap->eht_cap_elem.phy_cap_info) || nla_put(msg, NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MCS_SET, mcs_nss_size, &eht_cap->eht_mcs_nss_supp) || nla_put(msg, NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PPE, ppe_thresh_size, eht_cap->eht_ppe_thres)) return -ENOBUFS; } if (sband->band == NL80211_BAND_6GHZ && nla_put(msg, NL80211_BAND_IFTYPE_ATTR_HE_6GHZ_CAPA, sizeof(iftdata->he_6ghz_capa), &iftdata->he_6ghz_capa)) return -ENOBUFS; if (iftdata->vendor_elems.data && iftdata->vendor_elems.len && nla_put(msg, NL80211_BAND_IFTYPE_ATTR_VENDOR_ELEMS, iftdata->vendor_elems.len, iftdata->vendor_elems.data)) return -ENOBUFS; return 0; } static int nl80211_send_band_rateinfo(struct sk_buff *msg, struct ieee80211_supported_band *sband, bool large) { struct nlattr *nl_rates, *nl_rate; struct ieee80211_rate *rate; int i; /* add HT info */ if (sband->ht_cap.ht_supported && (nla_put(msg, NL80211_BAND_ATTR_HT_MCS_SET, sizeof(sband->ht_cap.mcs), &sband->ht_cap.mcs) || nla_put_u16(msg, NL80211_BAND_ATTR_HT_CAPA, sband->ht_cap.cap) || nla_put_u8(msg, NL80211_BAND_ATTR_HT_AMPDU_FACTOR, sband->ht_cap.ampdu_factor) || nla_put_u8(msg, NL80211_BAND_ATTR_HT_AMPDU_DENSITY, sband->ht_cap.ampdu_density))) return -ENOBUFS; /* add VHT info */ if (sband->vht_cap.vht_supported && (nla_put(msg, NL80211_BAND_ATTR_VHT_MCS_SET, sizeof(sband->vht_cap.vht_mcs), &sband->vht_cap.vht_mcs) || nla_put_u32(msg, NL80211_BAND_ATTR_VHT_CAPA, sband->vht_cap.cap))) return -ENOBUFS; if (large && sband->n_iftype_data) { struct nlattr *nl_iftype_data = nla_nest_start_noflag(msg, NL80211_BAND_ATTR_IFTYPE_DATA); const struct ieee80211_sband_iftype_data *iftd; int err; if (!nl_iftype_data) return -ENOBUFS; for_each_sband_iftype_data(sband, i, iftd) { struct nlattr *iftdata; iftdata = nla_nest_start_noflag(msg, i + 1); if (!iftdata) return -ENOBUFS; err = nl80211_send_iftype_data(msg, sband, iftd); if (err) return err; nla_nest_end(msg, iftdata); } nla_nest_end(msg, nl_iftype_data); } /* add EDMG info */ if (large && sband->edmg_cap.channels && (nla_put_u8(msg, NL80211_BAND_ATTR_EDMG_CHANNELS, sband->edmg_cap.channels) || nla_put_u8(msg, NL80211_BAND_ATTR_EDMG_BW_CONFIG, sband->edmg_cap.bw_config))) return -ENOBUFS; /* add bitrates */ nl_rates = nla_nest_start_noflag(msg, NL80211_BAND_ATTR_RATES); if (!nl_rates) return -ENOBUFS; for (i = 0; i < sband->n_bitrates; i++) { nl_rate = nla_nest_start_noflag(msg, i); if (!nl_rate) return -ENOBUFS; rate = &sband->bitrates[i]; if (nla_put_u32(msg, NL80211_BITRATE_ATTR_RATE, rate->bitrate)) return -ENOBUFS; if ((rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) && nla_put_flag(msg, NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE)) return -ENOBUFS; nla_nest_end(msg, nl_rate); } nla_nest_end(msg, nl_rates); /* S1G capabilities */ if (sband->band == NL80211_BAND_S1GHZ && sband->s1g_cap.s1g && (nla_put(msg, NL80211_BAND_ATTR_S1G_CAPA, sizeof(sband->s1g_cap.cap), sband->s1g_cap.cap) || nla_put(msg, NL80211_BAND_ATTR_S1G_MCS_NSS_SET, sizeof(sband->s1g_cap.nss_mcs), sband->s1g_cap.nss_mcs))) return -ENOBUFS; return 0; } static int nl80211_send_mgmt_stypes(struct sk_buff *msg, const struct ieee80211_txrx_stypes *mgmt_stypes) { u16 stypes; struct nlattr *nl_ftypes, *nl_ifs; enum nl80211_iftype ift; int i; if (!mgmt_stypes) return 0; nl_ifs = nla_nest_start_noflag(msg, NL80211_ATTR_TX_FRAME_TYPES); if (!nl_ifs) return -ENOBUFS; for (ift = 0; ift < NUM_NL80211_IFTYPES; ift++) { nl_ftypes = nla_nest_start_noflag(msg, ift); if (!nl_ftypes) return -ENOBUFS; i = 0; stypes = mgmt_stypes[ift].tx; while (stypes) { if ((stypes & 1) && nla_put_u16(msg, NL80211_ATTR_FRAME_TYPE, (i << 4) | IEEE80211_FTYPE_MGMT)) return -ENOBUFS; stypes >>= 1; i++; } nla_nest_end(msg, nl_ftypes); } nla_nest_end(msg, nl_ifs); nl_ifs = nla_nest_start_noflag(msg, NL80211_ATTR_RX_FRAME_TYPES); if (!nl_ifs) return -ENOBUFS; for (ift = 0; ift < NUM_NL80211_IFTYPES; ift++) { nl_ftypes = nla_nest_start_noflag(msg, ift); if (!nl_ftypes) return -ENOBUFS; i = 0; stypes = mgmt_stypes[ift].rx; while (stypes) { if ((stypes & 1) && nla_put_u16(msg, NL80211_ATTR_FRAME_TYPE, (i << 4) | IEEE80211_FTYPE_MGMT)) return -ENOBUFS; stypes >>= 1; i++; } nla_nest_end(msg, nl_ftypes); } nla_nest_end(msg, nl_ifs); return 0; } #define CMD(op, n) \ do { \ if (rdev->ops->op) { \ i++; \ if (nla_put_u32(msg, i, NL80211_CMD_ ## n)) \ goto nla_put_failure; \ } \ } while (0) static int nl80211_add_commands_unsplit(struct cfg80211_registered_device *rdev, struct sk_buff *msg) { int i = 0; /* * do *NOT* add anything into this function, new things need to be * advertised only to new versions of userspace that can deal with * the split (and they can't possibly care about new features... */ CMD(add_virtual_intf, NEW_INTERFACE); CMD(change_virtual_intf, SET_INTERFACE); CMD(add_key, NEW_KEY); CMD(start_ap, START_AP); CMD(add_station, NEW_STATION); CMD(add_mpath, NEW_MPATH); CMD(update_mesh_config, SET_MESH_CONFIG); CMD(change_bss, SET_BSS); CMD(auth, AUTHENTICATE); CMD(assoc, ASSOCIATE); CMD(deauth, DEAUTHENTICATE); CMD(disassoc, DISASSOCIATE); CMD(join_ibss, JOIN_IBSS); CMD(join_mesh, JOIN_MESH); CMD(set_pmksa, SET_PMKSA); CMD(del_pmksa, DEL_PMKSA); CMD(flush_pmksa, FLUSH_PMKSA); if (rdev->wiphy.flags & WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL) CMD(remain_on_channel, REMAIN_ON_CHANNEL); CMD(set_bitrate_mask, SET_TX_BITRATE_MASK); CMD(mgmt_tx, FRAME); CMD(mgmt_tx_cancel_wait, FRAME_WAIT_CANCEL); if (rdev->wiphy.flags & WIPHY_FLAG_NETNS_OK) { i++; if (nla_put_u32(msg, i, NL80211_CMD_SET_WIPHY_NETNS)) goto nla_put_failure; } if (rdev->ops->set_monitor_channel || rdev->ops->start_ap || rdev->ops->join_mesh) { i++; if (nla_put_u32(msg, i, NL80211_CMD_SET_CHANNEL)) goto nla_put_failure; } if (rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_TDLS) { CMD(tdls_mgmt, TDLS_MGMT); CMD(tdls_oper, TDLS_OPER); } if (rdev->wiphy.max_sched_scan_reqs) CMD(sched_scan_start, START_SCHED_SCAN); CMD(probe_client, PROBE_CLIENT); CMD(set_noack_map, SET_NOACK_MAP); if (rdev->wiphy.flags & WIPHY_FLAG_REPORTS_OBSS) { i++; if (nla_put_u32(msg, i, NL80211_CMD_REGISTER_BEACONS)) goto nla_put_failure; } CMD(start_p2p_device, START_P2P_DEVICE); CMD(set_mcast_rate, SET_MCAST_RATE); #ifdef CONFIG_NL80211_TESTMODE CMD(testmode_cmd, TESTMODE); #endif if (rdev->ops->connect || rdev->ops->auth) { i++; if (nla_put_u32(msg, i, NL80211_CMD_CONNECT)) goto nla_put_failure; } if (rdev->ops->disconnect || rdev->ops->deauth) { i++; if (nla_put_u32(msg, i, NL80211_CMD_DISCONNECT)) goto nla_put_failure; } return i; nla_put_failure: return -ENOBUFS; } static int nl80211_send_pmsr_ftm_capa(const struct cfg80211_pmsr_capabilities *cap, struct sk_buff *msg) { struct nlattr *ftm; if (!cap->ftm.supported) return 0; ftm = nla_nest_start_noflag(msg, NL80211_PMSR_TYPE_FTM); if (!ftm) return -ENOBUFS; if (cap->ftm.asap && nla_put_flag(msg, NL80211_PMSR_FTM_CAPA_ATTR_ASAP)) return -ENOBUFS; if (cap->ftm.non_asap && nla_put_flag(msg, NL80211_PMSR_FTM_CAPA_ATTR_NON_ASAP)) return -ENOBUFS; if (cap->ftm.request_lci && nla_put_flag(msg, NL80211_PMSR_FTM_CAPA_ATTR_REQ_LCI)) return -ENOBUFS; if (cap->ftm.request_civicloc && nla_put_flag(msg, NL80211_PMSR_FTM_CAPA_ATTR_REQ_CIVICLOC)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_PMSR_FTM_CAPA_ATTR_PREAMBLES, cap->ftm.preambles)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_PMSR_FTM_CAPA_ATTR_BANDWIDTHS, cap->ftm.bandwidths)) return -ENOBUFS; if (cap->ftm.max_bursts_exponent >= 0 && nla_put_u32(msg, NL80211_PMSR_FTM_CAPA_ATTR_MAX_BURSTS_EXPONENT, cap->ftm.max_bursts_exponent)) return -ENOBUFS; if (cap->ftm.max_ftms_per_burst && nla_put_u32(msg, NL80211_PMSR_FTM_CAPA_ATTR_MAX_FTMS_PER_BURST, cap->ftm.max_ftms_per_burst)) return -ENOBUFS; if (cap->ftm.trigger_based && nla_put_flag(msg, NL80211_PMSR_FTM_CAPA_ATTR_TRIGGER_BASED)) return -ENOBUFS; if (cap->ftm.non_trigger_based && nla_put_flag(msg, NL80211_PMSR_FTM_CAPA_ATTR_NON_TRIGGER_BASED)) return -ENOBUFS; nla_nest_end(msg, ftm); return 0; } static int nl80211_send_pmsr_capa(struct cfg80211_registered_device *rdev, struct sk_buff *msg) { const struct cfg80211_pmsr_capabilities *cap = rdev->wiphy.pmsr_capa; struct nlattr *pmsr, *caps; if (!cap) return 0; /* * we don't need to clean up anything here since the caller * will genlmsg_cancel() if we fail */ pmsr = nla_nest_start_noflag(msg, NL80211_ATTR_PEER_MEASUREMENTS); if (!pmsr) return -ENOBUFS; if (nla_put_u32(msg, NL80211_PMSR_ATTR_MAX_PEERS, cap->max_peers)) return -ENOBUFS; if (cap->report_ap_tsf && nla_put_flag(msg, NL80211_PMSR_ATTR_REPORT_AP_TSF)) return -ENOBUFS; if (cap->randomize_mac_addr && nla_put_flag(msg, NL80211_PMSR_ATTR_RANDOMIZE_MAC_ADDR)) return -ENOBUFS; caps = nla_nest_start_noflag(msg, NL80211_PMSR_ATTR_TYPE_CAPA); if (!caps) return -ENOBUFS; if (nl80211_send_pmsr_ftm_capa(cap, msg)) return -ENOBUFS; nla_nest_end(msg, caps); nla_nest_end(msg, pmsr); return 0; } static int nl80211_put_iftype_akm_suites(struct cfg80211_registered_device *rdev, struct sk_buff *msg) { int i; struct nlattr *nested, *nested_akms; const struct wiphy_iftype_akm_suites *iftype_akms; if (!rdev->wiphy.num_iftype_akm_suites || !rdev->wiphy.iftype_akm_suites) return 0; nested = nla_nest_start(msg, NL80211_ATTR_IFTYPE_AKM_SUITES); if (!nested) return -ENOBUFS; for (i = 0; i < rdev->wiphy.num_iftype_akm_suites; i++) { nested_akms = nla_nest_start(msg, i + 1); if (!nested_akms) return -ENOBUFS; iftype_akms = &rdev->wiphy.iftype_akm_suites[i]; if (nl80211_put_iftypes(msg, NL80211_IFTYPE_AKM_ATTR_IFTYPES, iftype_akms->iftypes_mask)) return -ENOBUFS; if (nla_put(msg, NL80211_IFTYPE_AKM_ATTR_SUITES, sizeof(u32) * iftype_akms->n_akm_suites, iftype_akms->akm_suites)) { return -ENOBUFS; } nla_nest_end(msg, nested_akms); } nla_nest_end(msg, nested); return 0; } static int nl80211_put_tid_config_support(struct cfg80211_registered_device *rdev, struct sk_buff *msg) { struct nlattr *supp; if (!rdev->wiphy.tid_config_support.vif && !rdev->wiphy.tid_config_support.peer) return 0; supp = nla_nest_start(msg, NL80211_ATTR_TID_CONFIG); if (!supp) return -ENOSPC; if (rdev->wiphy.tid_config_support.vif && nla_put_u64_64bit(msg, NL80211_TID_CONFIG_ATTR_VIF_SUPP, rdev->wiphy.tid_config_support.vif, NL80211_TID_CONFIG_ATTR_PAD)) goto fail; if (rdev->wiphy.tid_config_support.peer && nla_put_u64_64bit(msg, NL80211_TID_CONFIG_ATTR_PEER_SUPP, rdev->wiphy.tid_config_support.peer, NL80211_TID_CONFIG_ATTR_PAD)) goto fail; /* for now we just use the same value ... makes more sense */ if (nla_put_u8(msg, NL80211_TID_CONFIG_ATTR_RETRY_SHORT, rdev->wiphy.tid_config_support.max_retry)) goto fail; if (nla_put_u8(msg, NL80211_TID_CONFIG_ATTR_RETRY_LONG, rdev->wiphy.tid_config_support.max_retry)) goto fail; nla_nest_end(msg, supp); return 0; fail: nla_nest_cancel(msg, supp); return -ENOBUFS; } static int nl80211_put_sar_specs(struct cfg80211_registered_device *rdev, struct sk_buff *msg) { struct nlattr *sar_capa, *specs, *sub_freq_range; u8 num_freq_ranges; int i; if (!rdev->wiphy.sar_capa) return 0; num_freq_ranges = rdev->wiphy.sar_capa->num_freq_ranges; sar_capa = nla_nest_start(msg, NL80211_ATTR_SAR_SPEC); if (!sar_capa) return -ENOSPC; if (nla_put_u32(msg, NL80211_SAR_ATTR_TYPE, rdev->wiphy.sar_capa->type)) goto fail; specs = nla_nest_start(msg, NL80211_SAR_ATTR_SPECS); if (!specs) goto fail; /* report supported freq_ranges */ for (i = 0; i < num_freq_ranges; i++) { sub_freq_range = nla_nest_start(msg, i + 1); if (!sub_freq_range) goto fail; if (nla_put_u32(msg, NL80211_SAR_ATTR_SPECS_START_FREQ, rdev->wiphy.sar_capa->freq_ranges[i].start_freq)) goto fail; if (nla_put_u32(msg, NL80211_SAR_ATTR_SPECS_END_FREQ, rdev->wiphy.sar_capa->freq_ranges[i].end_freq)) goto fail; nla_nest_end(msg, sub_freq_range); } nla_nest_end(msg, specs); nla_nest_end(msg, sar_capa); return 0; fail: nla_nest_cancel(msg, sar_capa); return -ENOBUFS; } static int nl80211_put_mbssid_support(struct wiphy *wiphy, struct sk_buff *msg) { struct nlattr *config; if (!wiphy->mbssid_max_interfaces) return 0; config = nla_nest_start(msg, NL80211_ATTR_MBSSID_CONFIG); if (!config) return -ENOBUFS; if (nla_put_u8(msg, NL80211_MBSSID_CONFIG_ATTR_MAX_INTERFACES, wiphy->mbssid_max_interfaces)) goto fail; if (wiphy->ema_max_profile_periodicity && nla_put_u8(msg, NL80211_MBSSID_CONFIG_ATTR_MAX_EMA_PROFILE_PERIODICITY, wiphy->ema_max_profile_periodicity)) goto fail; nla_nest_end(msg, config); return 0; fail: nla_nest_cancel(msg, config); return -ENOBUFS; } struct nl80211_dump_wiphy_state { s64 filter_wiphy; long start; long split_start, band_start, chan_start, capa_start; bool split; }; static int nl80211_send_wiphy(struct cfg80211_registered_device *rdev, enum nl80211_commands cmd, struct sk_buff *msg, u32 portid, u32 seq, int flags, struct nl80211_dump_wiphy_state *state) { void *hdr; struct nlattr *nl_bands, *nl_band; struct nlattr *nl_freqs, *nl_freq; struct nlattr *nl_cmds; enum nl80211_band band; struct ieee80211_channel *chan; int i; const struct ieee80211_txrx_stypes *mgmt_stypes = rdev->wiphy.mgmt_stypes; u32 features; hdr = nl80211hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (WARN_ON(!state)) return -EINVAL; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_string(msg, NL80211_ATTR_WIPHY_NAME, wiphy_name(&rdev->wiphy)) || nla_put_u32(msg, NL80211_ATTR_GENERATION, cfg80211_rdev_list_generation)) goto nla_put_failure; if (cmd != NL80211_CMD_NEW_WIPHY) goto finish; switch (state->split_start) { case 0: if (nla_put_u8(msg, NL80211_ATTR_WIPHY_RETRY_SHORT, rdev->wiphy.retry_short) || nla_put_u8(msg, NL80211_ATTR_WIPHY_RETRY_LONG, rdev->wiphy.retry_long) || nla_put_u32(msg, NL80211_ATTR_WIPHY_FRAG_THRESHOLD, rdev->wiphy.frag_threshold) || nla_put_u32(msg, NL80211_ATTR_WIPHY_RTS_THRESHOLD, rdev->wiphy.rts_threshold) || nla_put_u8(msg, NL80211_ATTR_WIPHY_COVERAGE_CLASS, rdev->wiphy.coverage_class) || nla_put_u8(msg, NL80211_ATTR_MAX_NUM_SCAN_SSIDS, rdev->wiphy.max_scan_ssids) || nla_put_u8(msg, NL80211_ATTR_MAX_NUM_SCHED_SCAN_SSIDS, rdev->wiphy.max_sched_scan_ssids) || nla_put_u16(msg, NL80211_ATTR_MAX_SCAN_IE_LEN, rdev->wiphy.max_scan_ie_len) || nla_put_u16(msg, NL80211_ATTR_MAX_SCHED_SCAN_IE_LEN, rdev->wiphy.max_sched_scan_ie_len) || nla_put_u8(msg, NL80211_ATTR_MAX_MATCH_SETS, rdev->wiphy.max_match_sets)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN) && nla_put_flag(msg, NL80211_ATTR_SUPPORT_IBSS_RSN)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_MESH_AUTH) && nla_put_flag(msg, NL80211_ATTR_SUPPORT_MESH_AUTH)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_AP_UAPSD) && nla_put_flag(msg, NL80211_ATTR_SUPPORT_AP_UAPSD)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_FW_ROAM) && nla_put_flag(msg, NL80211_ATTR_ROAM_SUPPORT)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_TDLS) && nla_put_flag(msg, NL80211_ATTR_TDLS_SUPPORT)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_TDLS_EXTERNAL_SETUP) && nla_put_flag(msg, NL80211_ATTR_TDLS_EXTERNAL_SETUP)) goto nla_put_failure; state->split_start++; if (state->split) break; fallthrough; case 1: if (nla_put(msg, NL80211_ATTR_CIPHER_SUITES, sizeof(u32) * rdev->wiphy.n_cipher_suites, rdev->wiphy.cipher_suites)) goto nla_put_failure; if (nla_put_u8(msg, NL80211_ATTR_MAX_NUM_PMKIDS, rdev->wiphy.max_num_pmkids)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_CONTROL_PORT_PROTOCOL) && nla_put_flag(msg, NL80211_ATTR_CONTROL_PORT_ETHERTYPE)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_WIPHY_ANTENNA_AVAIL_TX, rdev->wiphy.available_antennas_tx) || nla_put_u32(msg, NL80211_ATTR_WIPHY_ANTENNA_AVAIL_RX, rdev->wiphy.available_antennas_rx)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD) && nla_put_u32(msg, NL80211_ATTR_PROBE_RESP_OFFLOAD, rdev->wiphy.probe_resp_offload)) goto nla_put_failure; if ((rdev->wiphy.available_antennas_tx || rdev->wiphy.available_antennas_rx) && rdev->ops->get_antenna) { u32 tx_ant = 0, rx_ant = 0; int res; res = rdev_get_antenna(rdev, &tx_ant, &rx_ant); if (!res) { if (nla_put_u32(msg, NL80211_ATTR_WIPHY_ANTENNA_TX, tx_ant) || nla_put_u32(msg, NL80211_ATTR_WIPHY_ANTENNA_RX, rx_ant)) goto nla_put_failure; } } state->split_start++; if (state->split) break; fallthrough; case 2: if (nl80211_put_iftypes(msg, NL80211_ATTR_SUPPORTED_IFTYPES, rdev->wiphy.interface_modes)) goto nla_put_failure; state->split_start++; if (state->split) break; fallthrough; case 3: nl_bands = nla_nest_start_noflag(msg, NL80211_ATTR_WIPHY_BANDS); if (!nl_bands) goto nla_put_failure; for (band = state->band_start; band < (state->split ? NUM_NL80211_BANDS : NL80211_BAND_60GHZ + 1); band++) { struct ieee80211_supported_band *sband; /* omit higher bands for ancient software */ if (band > NL80211_BAND_5GHZ && !state->split) break; sband = rdev->wiphy.bands[band]; if (!sband) continue; nl_band = nla_nest_start_noflag(msg, band); if (!nl_band) goto nla_put_failure; switch (state->chan_start) { case 0: if (nl80211_send_band_rateinfo(msg, sband, state->split)) goto nla_put_failure; state->chan_start++; if (state->split) break; fallthrough; default: /* add frequencies */ nl_freqs = nla_nest_start_noflag(msg, NL80211_BAND_ATTR_FREQS); if (!nl_freqs) goto nla_put_failure; for (i = state->chan_start - 1; i < sband->n_channels; i++) { nl_freq = nla_nest_start_noflag(msg, i); if (!nl_freq) goto nla_put_failure; chan = &sband->channels[i]; if (nl80211_msg_put_channel( msg, &rdev->wiphy, chan, state->split)) goto nla_put_failure; nla_nest_end(msg, nl_freq); if (state->split) break; } if (i < sband->n_channels) state->chan_start = i + 2; else state->chan_start = 0; nla_nest_end(msg, nl_freqs); } nla_nest_end(msg, nl_band); if (state->split) { /* start again here */ if (state->chan_start) band--; break; } } nla_nest_end(msg, nl_bands); if (band < NUM_NL80211_BANDS) state->band_start = band + 1; else state->band_start = 0; /* if bands & channels are done, continue outside */ if (state->band_start == 0 && state->chan_start == 0) state->split_start++; if (state->split) break; fallthrough; case 4: nl_cmds = nla_nest_start_noflag(msg, NL80211_ATTR_SUPPORTED_COMMANDS); if (!nl_cmds) goto nla_put_failure; i = nl80211_add_commands_unsplit(rdev, msg); if (i < 0) goto nla_put_failure; if (state->split) { CMD(crit_proto_start, CRIT_PROTOCOL_START); CMD(crit_proto_stop, CRIT_PROTOCOL_STOP); if (rdev->wiphy.flags & WIPHY_FLAG_HAS_CHANNEL_SWITCH) CMD(channel_switch, CHANNEL_SWITCH); CMD(set_qos_map, SET_QOS_MAP); if (rdev->wiphy.features & NL80211_FEATURE_SUPPORTS_WMM_ADMISSION) CMD(add_tx_ts, ADD_TX_TS); CMD(set_multicast_to_unicast, SET_MULTICAST_TO_UNICAST); CMD(update_connect_params, UPDATE_CONNECT_PARAMS); CMD(update_ft_ies, UPDATE_FT_IES); if (rdev->wiphy.sar_capa) CMD(set_sar_specs, SET_SAR_SPECS); } #undef CMD nla_nest_end(msg, nl_cmds); state->split_start++; if (state->split) break; fallthrough; case 5: if (rdev->ops->remain_on_channel && (rdev->wiphy.flags & WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL) && nla_put_u32(msg, NL80211_ATTR_MAX_REMAIN_ON_CHANNEL_DURATION, rdev->wiphy.max_remain_on_channel_duration)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_OFFCHAN_TX) && nla_put_flag(msg, NL80211_ATTR_OFFCHANNEL_TX_OK)) goto nla_put_failure; state->split_start++; if (state->split) break; fallthrough; case 6: #ifdef CONFIG_PM if (nl80211_send_wowlan(msg, rdev, state->split)) goto nla_put_failure; state->split_start++; if (state->split) break; #else state->split_start++; #endif fallthrough; case 7: if (nl80211_put_iftypes(msg, NL80211_ATTR_SOFTWARE_IFTYPES, rdev->wiphy.software_iftypes)) goto nla_put_failure; if (nl80211_put_iface_combinations(&rdev->wiphy, msg, state->split)) goto nla_put_failure; state->split_start++; if (state->split) break; fallthrough; case 8: if ((rdev->wiphy.flags & WIPHY_FLAG_HAVE_AP_SME) && nla_put_u32(msg, NL80211_ATTR_DEVICE_AP_SME, rdev->wiphy.ap_sme_capa)) goto nla_put_failure; features = rdev->wiphy.features; /* * We can only add the per-channel limit information if the * dump is split, otherwise it makes it too big. Therefore * only advertise it in that case. */ if (state->split) features |= NL80211_FEATURE_ADVERTISE_CHAN_LIMITS; if (nla_put_u32(msg, NL80211_ATTR_FEATURE_FLAGS, features)) goto nla_put_failure; if (rdev->wiphy.ht_capa_mod_mask && nla_put(msg, NL80211_ATTR_HT_CAPABILITY_MASK, sizeof(*rdev->wiphy.ht_capa_mod_mask), rdev->wiphy.ht_capa_mod_mask)) goto nla_put_failure; if (rdev->wiphy.flags & WIPHY_FLAG_HAVE_AP_SME && rdev->wiphy.max_acl_mac_addrs && nla_put_u32(msg, NL80211_ATTR_MAC_ACL_MAX, rdev->wiphy.max_acl_mac_addrs)) goto nla_put_failure; /* * Any information below this point is only available to * applications that can deal with it being split. This * helps ensure that newly added capabilities don't break * older tools by overrunning their buffers. * * We still increment split_start so that in the split * case we'll continue with more data in the next round, * but break unconditionally so unsplit data stops here. */ if (state->split) state->split_start++; else state->split_start = 0; break; case 9: if (nl80211_send_mgmt_stypes(msg, mgmt_stypes)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_MAX_NUM_SCHED_SCAN_PLANS, rdev->wiphy.max_sched_scan_plans) || nla_put_u32(msg, NL80211_ATTR_MAX_SCAN_PLAN_INTERVAL, rdev->wiphy.max_sched_scan_plan_interval) || nla_put_u32(msg, NL80211_ATTR_MAX_SCAN_PLAN_ITERATIONS, rdev->wiphy.max_sched_scan_plan_iterations)) goto nla_put_failure; if (rdev->wiphy.extended_capabilities && (nla_put(msg, NL80211_ATTR_EXT_CAPA, rdev->wiphy.extended_capabilities_len, rdev->wiphy.extended_capabilities) || nla_put(msg, NL80211_ATTR_EXT_CAPA_MASK, rdev->wiphy.extended_capabilities_len, rdev->wiphy.extended_capabilities_mask))) goto nla_put_failure; if (rdev->wiphy.vht_capa_mod_mask && nla_put(msg, NL80211_ATTR_VHT_CAPABILITY_MASK, sizeof(*rdev->wiphy.vht_capa_mod_mask), rdev->wiphy.vht_capa_mod_mask)) goto nla_put_failure; if (nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, rdev->wiphy.perm_addr)) goto nla_put_failure; if (!is_zero_ether_addr(rdev->wiphy.addr_mask) && nla_put(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN, rdev->wiphy.addr_mask)) goto nla_put_failure; if (rdev->wiphy.n_addresses > 1) { void *attr; attr = nla_nest_start(msg, NL80211_ATTR_MAC_ADDRS); if (!attr) goto nla_put_failure; for (i = 0; i < rdev->wiphy.n_addresses; i++) if (nla_put(msg, i + 1, ETH_ALEN, rdev->wiphy.addresses[i].addr)) goto nla_put_failure; nla_nest_end(msg, attr); } state->split_start++; break; case 10: if (nl80211_send_coalesce(msg, rdev)) goto nla_put_failure; if ((rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_5_10_MHZ) && (nla_put_flag(msg, NL80211_ATTR_SUPPORT_5_MHZ) || nla_put_flag(msg, NL80211_ATTR_SUPPORT_10_MHZ))) goto nla_put_failure; if (rdev->wiphy.max_ap_assoc_sta && nla_put_u32(msg, NL80211_ATTR_MAX_AP_ASSOC_STA, rdev->wiphy.max_ap_assoc_sta)) goto nla_put_failure; state->split_start++; break; case 11: if (rdev->wiphy.n_vendor_commands) { const struct nl80211_vendor_cmd_info *info; struct nlattr *nested; nested = nla_nest_start_noflag(msg, NL80211_ATTR_VENDOR_DATA); if (!nested) goto nla_put_failure; for (i = 0; i < rdev->wiphy.n_vendor_commands; i++) { info = &rdev->wiphy.vendor_commands[i].info; if (nla_put(msg, i + 1, sizeof(*info), info)) goto nla_put_failure; } nla_nest_end(msg, nested); } if (rdev->wiphy.n_vendor_events) { const struct nl80211_vendor_cmd_info *info; struct nlattr *nested; nested = nla_nest_start_noflag(msg, NL80211_ATTR_VENDOR_EVENTS); if (!nested) goto nla_put_failure; for (i = 0; i < rdev->wiphy.n_vendor_events; i++) { info = &rdev->wiphy.vendor_events[i]; if (nla_put(msg, i + 1, sizeof(*info), info)) goto nla_put_failure; } nla_nest_end(msg, nested); } state->split_start++; break; case 12: if (rdev->wiphy.flags & WIPHY_FLAG_HAS_CHANNEL_SWITCH && nla_put_u8(msg, NL80211_ATTR_MAX_CSA_COUNTERS, rdev->wiphy.max_num_csa_counters)) goto nla_put_failure; if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && nla_put_flag(msg, NL80211_ATTR_WIPHY_SELF_MANAGED_REG)) goto nla_put_failure; if (rdev->wiphy.max_sched_scan_reqs && nla_put_u32(msg, NL80211_ATTR_SCHED_SCAN_MAX_REQS, rdev->wiphy.max_sched_scan_reqs)) goto nla_put_failure; if (nla_put(msg, NL80211_ATTR_EXT_FEATURES, sizeof(rdev->wiphy.ext_features), rdev->wiphy.ext_features)) goto nla_put_failure; if (rdev->wiphy.bss_select_support) { struct nlattr *nested; u32 bss_select_support = rdev->wiphy.bss_select_support; nested = nla_nest_start_noflag(msg, NL80211_ATTR_BSS_SELECT); if (!nested) goto nla_put_failure; i = 0; while (bss_select_support) { if ((bss_select_support & 1) && nla_put_flag(msg, i)) goto nla_put_failure; i++; bss_select_support >>= 1; } nla_nest_end(msg, nested); } state->split_start++; break; case 13: if (rdev->wiphy.num_iftype_ext_capab && rdev->wiphy.iftype_ext_capab) { struct nlattr *nested_ext_capab, *nested; nested = nla_nest_start_noflag(msg, NL80211_ATTR_IFTYPE_EXT_CAPA); if (!nested) goto nla_put_failure; for (i = state->capa_start; i < rdev->wiphy.num_iftype_ext_capab; i++) { const struct wiphy_iftype_ext_capab *capab; capab = &rdev->wiphy.iftype_ext_capab[i]; nested_ext_capab = nla_nest_start_noflag(msg, i); if (!nested_ext_capab || nla_put_u32(msg, NL80211_ATTR_IFTYPE, capab->iftype) || nla_put(msg, NL80211_ATTR_EXT_CAPA, capab->extended_capabilities_len, capab->extended_capabilities) || nla_put(msg, NL80211_ATTR_EXT_CAPA_MASK, capab->extended_capabilities_len, capab->extended_capabilities_mask)) goto nla_put_failure; if (rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_MLO && (nla_put_u16(msg, NL80211_ATTR_EML_CAPABILITY, capab->eml_capabilities) || nla_put_u16(msg, NL80211_ATTR_MLD_CAPA_AND_OPS, capab->mld_capa_and_ops))) goto nla_put_failure; nla_nest_end(msg, nested_ext_capab); if (state->split) break; } nla_nest_end(msg, nested); if (i < rdev->wiphy.num_iftype_ext_capab) { state->capa_start = i + 1; break; } } if (nla_put_u32(msg, NL80211_ATTR_BANDS, rdev->wiphy.nan_supported_bands)) goto nla_put_failure; if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_TXQS)) { struct cfg80211_txq_stats txqstats = {}; int res; res = rdev_get_txq_stats(rdev, NULL, &txqstats); if (!res && !nl80211_put_txq_stats(msg, &txqstats, NL80211_ATTR_TXQ_STATS)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_TXQ_LIMIT, rdev->wiphy.txq_limit)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_TXQ_MEMORY_LIMIT, rdev->wiphy.txq_memory_limit)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_TXQ_QUANTUM, rdev->wiphy.txq_quantum)) goto nla_put_failure; } state->split_start++; break; case 14: if (nl80211_send_pmsr_capa(rdev, msg)) goto nla_put_failure; state->split_start++; break; case 15: if (rdev->wiphy.akm_suites && nla_put(msg, NL80211_ATTR_AKM_SUITES, sizeof(u32) * rdev->wiphy.n_akm_suites, rdev->wiphy.akm_suites)) goto nla_put_failure; if (nl80211_put_iftype_akm_suites(rdev, msg)) goto nla_put_failure; if (nl80211_put_tid_config_support(rdev, msg)) goto nla_put_failure; state->split_start++; break; case 16: if (nl80211_put_sar_specs(rdev, msg)) goto nla_put_failure; if (nl80211_put_mbssid_support(&rdev->wiphy, msg)) goto nla_put_failure; if (nla_put_u16(msg, NL80211_ATTR_MAX_NUM_AKM_SUITES, rdev->wiphy.max_num_akm_suites)) goto nla_put_failure; if (rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_MLO) nla_put_flag(msg, NL80211_ATTR_MLO_SUPPORT); if (rdev->wiphy.hw_timestamp_max_peers && nla_put_u16(msg, NL80211_ATTR_MAX_HW_TIMESTAMP_PEERS, rdev->wiphy.hw_timestamp_max_peers)) goto nla_put_failure; /* done */ state->split_start = 0; break; } finish: genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_dump_wiphy_parse(struct sk_buff *skb, struct netlink_callback *cb, struct nl80211_dump_wiphy_state *state) { struct nlattr **tb = kcalloc(NUM_NL80211_ATTR, sizeof(*tb), GFP_KERNEL); int ret; if (!tb) return -ENOMEM; ret = nlmsg_parse_deprecated(cb->nlh, GENL_HDRLEN + nl80211_fam.hdrsize, tb, nl80211_fam.maxattr, nl80211_policy, NULL); /* ignore parse errors for backward compatibility */ if (ret) { ret = 0; goto out; } state->split = tb[NL80211_ATTR_SPLIT_WIPHY_DUMP]; if (tb[NL80211_ATTR_WIPHY]) state->filter_wiphy = nla_get_u32(tb[NL80211_ATTR_WIPHY]); if (tb[NL80211_ATTR_WDEV]) state->filter_wiphy = nla_get_u64(tb[NL80211_ATTR_WDEV]) >> 32; if (tb[NL80211_ATTR_IFINDEX]) { struct net_device *netdev; struct cfg80211_registered_device *rdev; int ifidx = nla_get_u32(tb[NL80211_ATTR_IFINDEX]); netdev = __dev_get_by_index(sock_net(skb->sk), ifidx); if (!netdev) { ret = -ENODEV; goto out; } if (netdev->ieee80211_ptr) { rdev = wiphy_to_rdev( netdev->ieee80211_ptr->wiphy); state->filter_wiphy = rdev->wiphy_idx; } } ret = 0; out: kfree(tb); return ret; } static int nl80211_dump_wiphy(struct sk_buff *skb, struct netlink_callback *cb) { int idx = 0, ret; struct nl80211_dump_wiphy_state *state = (void *)cb->args[0]; struct cfg80211_registered_device *rdev; rtnl_lock(); if (!state) { state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) { rtnl_unlock(); return -ENOMEM; } state->filter_wiphy = -1; ret = nl80211_dump_wiphy_parse(skb, cb, state); if (ret) { kfree(state); rtnl_unlock(); return ret; } cb->args[0] = (long)state; } for_each_rdev(rdev) { if (!net_eq(wiphy_net(&rdev->wiphy), sock_net(skb->sk))) continue; if (++idx <= state->start) continue; if (state->filter_wiphy != -1 && state->filter_wiphy != rdev->wiphy_idx) continue; wiphy_lock(&rdev->wiphy); /* attempt to fit multiple wiphy data chunks into the skb */ do { ret = nl80211_send_wiphy(rdev, NL80211_CMD_NEW_WIPHY, skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, state); if (ret < 0) { /* * If sending the wiphy data didn't fit (ENOBUFS * or EMSGSIZE returned), this SKB is still * empty (so it's not too big because another * wiphy dataset is already in the skb) and * we've not tried to adjust the dump allocation * yet ... then adjust the alloc size to be * bigger, and return 1 but with the empty skb. * This results in an empty message being RX'ed * in userspace, but that is ignored. * * We can then retry with the larger buffer. */ if ((ret == -ENOBUFS || ret == -EMSGSIZE) && !skb->len && !state->split && cb->min_dump_alloc < 4096) { cb->min_dump_alloc = 4096; state->split_start = 0; wiphy_unlock(&rdev->wiphy); rtnl_unlock(); return 1; } idx--; break; } } while (state->split_start > 0); wiphy_unlock(&rdev->wiphy); break; } rtnl_unlock(); state->start = idx; return skb->len; } static int nl80211_dump_wiphy_done(struct netlink_callback *cb) { kfree((void *)cb->args[0]); return 0; } static int nl80211_get_wiphy(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct nl80211_dump_wiphy_state state = {}; msg = nlmsg_new(4096, GFP_KERNEL); if (!msg) return -ENOMEM; if (nl80211_send_wiphy(rdev, NL80211_CMD_NEW_WIPHY, msg, info->snd_portid, info->snd_seq, 0, &state) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } static const struct nla_policy txq_params_policy[NL80211_TXQ_ATTR_MAX + 1] = { [NL80211_TXQ_ATTR_QUEUE] = { .type = NLA_U8 }, [NL80211_TXQ_ATTR_TXOP] = { .type = NLA_U16 }, [NL80211_TXQ_ATTR_CWMIN] = { .type = NLA_U16 }, [NL80211_TXQ_ATTR_CWMAX] = { .type = NLA_U16 }, [NL80211_TXQ_ATTR_AIFS] = { .type = NLA_U8 }, }; static int parse_txq_params(struct nlattr *tb[], struct ieee80211_txq_params *txq_params) { u8 ac; if (!tb[NL80211_TXQ_ATTR_AC] || !tb[NL80211_TXQ_ATTR_TXOP] || !tb[NL80211_TXQ_ATTR_CWMIN] || !tb[NL80211_TXQ_ATTR_CWMAX] || !tb[NL80211_TXQ_ATTR_AIFS]) return -EINVAL; ac = nla_get_u8(tb[NL80211_TXQ_ATTR_AC]); txq_params->txop = nla_get_u16(tb[NL80211_TXQ_ATTR_TXOP]); txq_params->cwmin = nla_get_u16(tb[NL80211_TXQ_ATTR_CWMIN]); txq_params->cwmax = nla_get_u16(tb[NL80211_TXQ_ATTR_CWMAX]); txq_params->aifs = nla_get_u8(tb[NL80211_TXQ_ATTR_AIFS]); if (ac >= NL80211_NUM_ACS) return -EINVAL; txq_params->ac = array_index_nospec(ac, NL80211_NUM_ACS); return 0; } static bool nl80211_can_set_dev_channel(struct wireless_dev *wdev) { /* * You can only set the channel explicitly for some interfaces, * most have their channel managed via their respective * "establish a connection" command (connect, join, ...) * * For AP/GO and mesh mode, the channel can be set with the * channel userspace API, but is only stored and passed to the * low-level driver when the AP starts or the mesh is joined. * This is for backward compatibility, userspace can also give * the channel in the start-ap or join-mesh commands instead. * * Monitors are special as they are normally slaved to * whatever else is going on, so they have their own special * operation to set the monitor channel if possible. */ return !wdev || wdev->iftype == NL80211_IFTYPE_AP || wdev->iftype == NL80211_IFTYPE_MESH_POINT || wdev->iftype == NL80211_IFTYPE_MONITOR || wdev->iftype == NL80211_IFTYPE_P2P_GO; } static int nl80211_parse_punct_bitmap(struct cfg80211_registered_device *rdev, struct genl_info *info, const struct cfg80211_chan_def *chandef, u16 *punct_bitmap) { if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_PUNCT)) return -EINVAL; *punct_bitmap = nla_get_u32(info->attrs[NL80211_ATTR_PUNCT_BITMAP]); if (!cfg80211_valid_disable_subchannel_bitmap(punct_bitmap, chandef)) return -EINVAL; return 0; } int nl80211_parse_chandef(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_chan_def *chandef) { struct netlink_ext_ack *extack = info->extack; struct nlattr **attrs = info->attrs; u32 control_freq; if (!attrs[NL80211_ATTR_WIPHY_FREQ]) { NL_SET_ERR_MSG_ATTR(extack, attrs[NL80211_ATTR_WIPHY_FREQ], "Frequency is missing"); return -EINVAL; } control_freq = MHZ_TO_KHZ( nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ])); if (info->attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]) control_freq += nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]); memset(chandef, 0, sizeof(*chandef)); chandef->chan = ieee80211_get_channel_khz(&rdev->wiphy, control_freq); chandef->width = NL80211_CHAN_WIDTH_20_NOHT; chandef->center_freq1 = KHZ_TO_MHZ(control_freq); chandef->freq1_offset = control_freq % 1000; chandef->center_freq2 = 0; /* Primary channel not allowed */ if (!chandef->chan || chandef->chan->flags & IEEE80211_CHAN_DISABLED) { NL_SET_ERR_MSG_ATTR(extack, attrs[NL80211_ATTR_WIPHY_FREQ], "Channel is disabled"); return -EINVAL; } if (attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE]) { enum nl80211_channel_type chantype; chantype = nla_get_u32(attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE]); switch (chantype) { case NL80211_CHAN_NO_HT: case NL80211_CHAN_HT20: case NL80211_CHAN_HT40PLUS: case NL80211_CHAN_HT40MINUS: cfg80211_chandef_create(chandef, chandef->chan, chantype); /* user input for center_freq is incorrect */ if (attrs[NL80211_ATTR_CENTER_FREQ1] && chandef->center_freq1 != nla_get_u32(attrs[NL80211_ATTR_CENTER_FREQ1])) { NL_SET_ERR_MSG_ATTR(extack, attrs[NL80211_ATTR_CENTER_FREQ1], "bad center frequency 1"); return -EINVAL; } /* center_freq2 must be zero */ if (attrs[NL80211_ATTR_CENTER_FREQ2] && nla_get_u32(attrs[NL80211_ATTR_CENTER_FREQ2])) { NL_SET_ERR_MSG_ATTR(extack, attrs[NL80211_ATTR_CENTER_FREQ2], "center frequency 2 can't be used"); return -EINVAL; } break; default: NL_SET_ERR_MSG_ATTR(extack, attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE], "invalid channel type"); return -EINVAL; } } else if (attrs[NL80211_ATTR_CHANNEL_WIDTH]) { chandef->width = nla_get_u32(attrs[NL80211_ATTR_CHANNEL_WIDTH]); if (chandef->chan->band == NL80211_BAND_S1GHZ) { /* User input error for channel width doesn't match channel */ if (chandef->width != ieee80211_s1g_channel_width(chandef->chan)) { NL_SET_ERR_MSG_ATTR(extack, attrs[NL80211_ATTR_CHANNEL_WIDTH], "bad channel width"); return -EINVAL; } } if (attrs[NL80211_ATTR_CENTER_FREQ1]) { chandef->center_freq1 = nla_get_u32(attrs[NL80211_ATTR_CENTER_FREQ1]); if (attrs[NL80211_ATTR_CENTER_FREQ1_OFFSET]) chandef->freq1_offset = nla_get_u32( attrs[NL80211_ATTR_CENTER_FREQ1_OFFSET]); else chandef->freq1_offset = 0; } if (attrs[NL80211_ATTR_CENTER_FREQ2]) chandef->center_freq2 = nla_get_u32(attrs[NL80211_ATTR_CENTER_FREQ2]); } if (info->attrs[NL80211_ATTR_WIPHY_EDMG_CHANNELS]) { chandef->edmg.channels = nla_get_u8(info->attrs[NL80211_ATTR_WIPHY_EDMG_CHANNELS]); if (info->attrs[NL80211_ATTR_WIPHY_EDMG_BW_CONFIG]) chandef->edmg.bw_config = nla_get_u8(info->attrs[NL80211_ATTR_WIPHY_EDMG_BW_CONFIG]); } else { chandef->edmg.bw_config = 0; chandef->edmg.channels = 0; } if (!cfg80211_chandef_valid(chandef)) { NL_SET_ERR_MSG(extack, "invalid channel definition"); return -EINVAL; } if (!cfg80211_chandef_usable(&rdev->wiphy, chandef, IEEE80211_CHAN_DISABLED)) { NL_SET_ERR_MSG(extack, "(extension) channel is disabled"); return -EINVAL; } if ((chandef->width == NL80211_CHAN_WIDTH_5 || chandef->width == NL80211_CHAN_WIDTH_10) && !(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_5_10_MHZ)) { NL_SET_ERR_MSG(extack, "5/10 MHz not supported"); return -EINVAL; } return 0; } static int __nl80211_set_channel(struct cfg80211_registered_device *rdev, struct net_device *dev, struct genl_info *info, int _link_id) { struct cfg80211_chan_def chandef; int result; enum nl80211_iftype iftype = NL80211_IFTYPE_MONITOR; struct wireless_dev *wdev = NULL; int link_id = _link_id; if (dev) wdev = dev->ieee80211_ptr; if (!nl80211_can_set_dev_channel(wdev)) return -EOPNOTSUPP; if (wdev) iftype = wdev->iftype; if (link_id < 0) { if (wdev && wdev->valid_links) return -EINVAL; link_id = 0; } result = nl80211_parse_chandef(rdev, info, &chandef); if (result) return result; switch (iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (!cfg80211_reg_can_beacon_relax(&rdev->wiphy, &chandef, iftype)) return -EINVAL; if (wdev->links[link_id].ap.beacon_interval) { struct ieee80211_channel *cur_chan; if (!dev || !rdev->ops->set_ap_chanwidth || !(rdev->wiphy.features & NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE)) return -EBUSY; /* Only allow dynamic channel width changes */ cur_chan = wdev->links[link_id].ap.chandef.chan; if (chandef.chan != cur_chan) return -EBUSY; result = rdev_set_ap_chanwidth(rdev, dev, link_id, &chandef); if (result) return result; wdev->links[link_id].ap.chandef = chandef; } else { wdev->u.ap.preset_chandef = chandef; } return 0; case NL80211_IFTYPE_MESH_POINT: return cfg80211_set_mesh_channel(rdev, wdev, &chandef); case NL80211_IFTYPE_MONITOR: return cfg80211_set_monitor_channel(rdev, &chandef); default: break; } return -EINVAL; } static int nl80211_set_channel(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int link_id = nl80211_link_id_or_invalid(info->attrs); struct net_device *netdev = info->user_ptr[1]; return __nl80211_set_channel(rdev, netdev, info, link_id); } static int nl80211_set_wiphy(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = NULL; struct net_device *netdev = NULL; struct wireless_dev *wdev; int result = 0, rem_txq_params = 0; struct nlattr *nl_txq_params; u32 changed; u8 retry_short = 0, retry_long = 0; u32 frag_threshold = 0, rts_threshold = 0; u8 coverage_class = 0; u32 txq_limit = 0, txq_memory_limit = 0, txq_quantum = 0; rtnl_lock(); /* * Try to find the wiphy and netdev. Normally this * function shouldn't need the netdev, but this is * done for backward compatibility -- previously * setting the channel was done per wiphy, but now * it is per netdev. Previous userland like hostapd * also passed a netdev to set_wiphy, so that it is * possible to let that go to the right netdev! */ if (info->attrs[NL80211_ATTR_IFINDEX]) { int ifindex = nla_get_u32(info->attrs[NL80211_ATTR_IFINDEX]); netdev = __dev_get_by_index(genl_info_net(info), ifindex); if (netdev && netdev->ieee80211_ptr) rdev = wiphy_to_rdev(netdev->ieee80211_ptr->wiphy); else netdev = NULL; } if (!netdev) { rdev = __cfg80211_rdev_from_attrs(genl_info_net(info), info->attrs); if (IS_ERR(rdev)) { rtnl_unlock(); return PTR_ERR(rdev); } wdev = NULL; netdev = NULL; result = 0; } else wdev = netdev->ieee80211_ptr; wiphy_lock(&rdev->wiphy); /* * end workaround code, by now the rdev is available * and locked, and wdev may or may not be NULL. */ if (info->attrs[NL80211_ATTR_WIPHY_NAME]) result = cfg80211_dev_rename( rdev, nla_data(info->attrs[NL80211_ATTR_WIPHY_NAME])); rtnl_unlock(); if (result) goto out; if (info->attrs[NL80211_ATTR_WIPHY_TXQ_PARAMS]) { struct ieee80211_txq_params txq_params; struct nlattr *tb[NL80211_TXQ_ATTR_MAX + 1]; if (!rdev->ops->set_txq_params) { result = -EOPNOTSUPP; goto out; } if (!netdev) { result = -EINVAL; goto out; } if (netdev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP && netdev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) { result = -EINVAL; goto out; } if (!netif_running(netdev)) { result = -ENETDOWN; goto out; } nla_for_each_nested(nl_txq_params, info->attrs[NL80211_ATTR_WIPHY_TXQ_PARAMS], rem_txq_params) { result = nla_parse_nested_deprecated(tb, NL80211_TXQ_ATTR_MAX, nl_txq_params, txq_params_policy, info->extack); if (result) goto out; result = parse_txq_params(tb, &txq_params); if (result) goto out; txq_params.link_id = nl80211_link_id_or_invalid(info->attrs); if (txq_params.link_id >= 0 && !(netdev->ieee80211_ptr->valid_links & BIT(txq_params.link_id))) result = -ENOLINK; else if (txq_params.link_id >= 0 && !netdev->ieee80211_ptr->valid_links) result = -EINVAL; else result = rdev_set_txq_params(rdev, netdev, &txq_params); if (result) goto out; } } if (info->attrs[NL80211_ATTR_WIPHY_FREQ]) { int link_id = nl80211_link_id_or_invalid(info->attrs); if (wdev) { result = __nl80211_set_channel( rdev, nl80211_can_set_dev_channel(wdev) ? netdev : NULL, info, link_id); } else { result = __nl80211_set_channel(rdev, netdev, info, link_id); } if (result) goto out; } if (info->attrs[NL80211_ATTR_WIPHY_TX_POWER_SETTING]) { struct wireless_dev *txp_wdev = wdev; enum nl80211_tx_power_setting type; int idx, mbm = 0; if (!(rdev->wiphy.features & NL80211_FEATURE_VIF_TXPOWER)) txp_wdev = NULL; if (!rdev->ops->set_tx_power) { result = -EOPNOTSUPP; goto out; } idx = NL80211_ATTR_WIPHY_TX_POWER_SETTING; type = nla_get_u32(info->attrs[idx]); if (!info->attrs[NL80211_ATTR_WIPHY_TX_POWER_LEVEL] && (type != NL80211_TX_POWER_AUTOMATIC)) { result = -EINVAL; goto out; } if (type != NL80211_TX_POWER_AUTOMATIC) { idx = NL80211_ATTR_WIPHY_TX_POWER_LEVEL; mbm = nla_get_u32(info->attrs[idx]); } result = rdev_set_tx_power(rdev, txp_wdev, type, mbm); if (result) goto out; } if (info->attrs[NL80211_ATTR_WIPHY_ANTENNA_TX] && info->attrs[NL80211_ATTR_WIPHY_ANTENNA_RX]) { u32 tx_ant, rx_ant; if ((!rdev->wiphy.available_antennas_tx && !rdev->wiphy.available_antennas_rx) || !rdev->ops->set_antenna) { result = -EOPNOTSUPP; goto out; } tx_ant = nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_ANTENNA_TX]); rx_ant = nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_ANTENNA_RX]); /* reject antenna configurations which don't match the * available antenna masks, except for the "all" mask */ if ((~tx_ant && (tx_ant & ~rdev->wiphy.available_antennas_tx)) || (~rx_ant && (rx_ant & ~rdev->wiphy.available_antennas_rx))) { result = -EINVAL; goto out; } tx_ant = tx_ant & rdev->wiphy.available_antennas_tx; rx_ant = rx_ant & rdev->wiphy.available_antennas_rx; result = rdev_set_antenna(rdev, tx_ant, rx_ant); if (result) goto out; } changed = 0; if (info->attrs[NL80211_ATTR_WIPHY_RETRY_SHORT]) { retry_short = nla_get_u8( info->attrs[NL80211_ATTR_WIPHY_RETRY_SHORT]); changed |= WIPHY_PARAM_RETRY_SHORT; } if (info->attrs[NL80211_ATTR_WIPHY_RETRY_LONG]) { retry_long = nla_get_u8( info->attrs[NL80211_ATTR_WIPHY_RETRY_LONG]); changed |= WIPHY_PARAM_RETRY_LONG; } if (info->attrs[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]) { frag_threshold = nla_get_u32( info->attrs[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]); if (frag_threshold < 256) { result = -EINVAL; goto out; } if (frag_threshold != (u32) -1) { /* * Fragments (apart from the last one) are required to * have even length. Make the fragmentation code * simpler by stripping LSB should someone try to use * odd threshold value. */ frag_threshold &= ~0x1; } changed |= WIPHY_PARAM_FRAG_THRESHOLD; } if (info->attrs[NL80211_ATTR_WIPHY_RTS_THRESHOLD]) { rts_threshold = nla_get_u32( info->attrs[NL80211_ATTR_WIPHY_RTS_THRESHOLD]); changed |= WIPHY_PARAM_RTS_THRESHOLD; } if (info->attrs[NL80211_ATTR_WIPHY_COVERAGE_CLASS]) { if (info->attrs[NL80211_ATTR_WIPHY_DYN_ACK]) { result = -EINVAL; goto out; } coverage_class = nla_get_u8( info->attrs[NL80211_ATTR_WIPHY_COVERAGE_CLASS]); changed |= WIPHY_PARAM_COVERAGE_CLASS; } if (info->attrs[NL80211_ATTR_WIPHY_DYN_ACK]) { if (!(rdev->wiphy.features & NL80211_FEATURE_ACKTO_ESTIMATION)) { result = -EOPNOTSUPP; goto out; } changed |= WIPHY_PARAM_DYN_ACK; } if (info->attrs[NL80211_ATTR_TXQ_LIMIT]) { if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_TXQS)) { result = -EOPNOTSUPP; goto out; } txq_limit = nla_get_u32( info->attrs[NL80211_ATTR_TXQ_LIMIT]); changed |= WIPHY_PARAM_TXQ_LIMIT; } if (info->attrs[NL80211_ATTR_TXQ_MEMORY_LIMIT]) { if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_TXQS)) { result = -EOPNOTSUPP; goto out; } txq_memory_limit = nla_get_u32( info->attrs[NL80211_ATTR_TXQ_MEMORY_LIMIT]); changed |= WIPHY_PARAM_TXQ_MEMORY_LIMIT; } if (info->attrs[NL80211_ATTR_TXQ_QUANTUM]) { if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_TXQS)) { result = -EOPNOTSUPP; goto out; } txq_quantum = nla_get_u32( info->attrs[NL80211_ATTR_TXQ_QUANTUM]); changed |= WIPHY_PARAM_TXQ_QUANTUM; } if (changed) { u8 old_retry_short, old_retry_long; u32 old_frag_threshold, old_rts_threshold; u8 old_coverage_class; u32 old_txq_limit, old_txq_memory_limit, old_txq_quantum; if (!rdev->ops->set_wiphy_params) { result = -EOPNOTSUPP; goto out; } old_retry_short = rdev->wiphy.retry_short; old_retry_long = rdev->wiphy.retry_long; old_frag_threshold = rdev->wiphy.frag_threshold; old_rts_threshold = rdev->wiphy.rts_threshold; old_coverage_class = rdev->wiphy.coverage_class; old_txq_limit = rdev->wiphy.txq_limit; old_txq_memory_limit = rdev->wiphy.txq_memory_limit; old_txq_quantum = rdev->wiphy.txq_quantum; if (changed & WIPHY_PARAM_RETRY_SHORT) rdev->wiphy.retry_short = retry_short; if (changed & WIPHY_PARAM_RETRY_LONG) rdev->wiphy.retry_long = retry_long; if (changed & WIPHY_PARAM_FRAG_THRESHOLD) rdev->wiphy.frag_threshold = frag_threshold; if (changed & WIPHY_PARAM_RTS_THRESHOLD) rdev->wiphy.rts_threshold = rts_threshold; if (changed & WIPHY_PARAM_COVERAGE_CLASS) rdev->wiphy.coverage_class = coverage_class; if (changed & WIPHY_PARAM_TXQ_LIMIT) rdev->wiphy.txq_limit = txq_limit; if (changed & WIPHY_PARAM_TXQ_MEMORY_LIMIT) rdev->wiphy.txq_memory_limit = txq_memory_limit; if (changed & WIPHY_PARAM_TXQ_QUANTUM) rdev->wiphy.txq_quantum = txq_quantum; result = rdev_set_wiphy_params(rdev, changed); if (result) { rdev->wiphy.retry_short = old_retry_short; rdev->wiphy.retry_long = old_retry_long; rdev->wiphy.frag_threshold = old_frag_threshold; rdev->wiphy.rts_threshold = old_rts_threshold; rdev->wiphy.coverage_class = old_coverage_class; rdev->wiphy.txq_limit = old_txq_limit; rdev->wiphy.txq_memory_limit = old_txq_memory_limit; rdev->wiphy.txq_quantum = old_txq_quantum; goto out; } } result = 0; out: wiphy_unlock(&rdev->wiphy); return result; } int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef) { if (WARN_ON(!cfg80211_chandef_valid(chandef))) return -EINVAL; if (nla_put_u32(msg, NL80211_ATTR_WIPHY_FREQ, chandef->chan->center_freq)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_ATTR_WIPHY_FREQ_OFFSET, chandef->chan->freq_offset)) return -ENOBUFS; switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_40: if (nla_put_u32(msg, NL80211_ATTR_WIPHY_CHANNEL_TYPE, cfg80211_get_chandef_type(chandef))) return -ENOBUFS; break; default: break; } if (nla_put_u32(msg, NL80211_ATTR_CHANNEL_WIDTH, chandef->width)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_ATTR_CENTER_FREQ1, chandef->center_freq1)) return -ENOBUFS; if (chandef->center_freq2 && nla_put_u32(msg, NL80211_ATTR_CENTER_FREQ2, chandef->center_freq2)) return -ENOBUFS; return 0; } EXPORT_SYMBOL(nl80211_send_chandef); static int nl80211_send_iface(struct sk_buff *msg, u32 portid, u32 seq, int flags, struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_commands cmd) { struct net_device *dev = wdev->netdev; void *hdr; lockdep_assert_wiphy(&rdev->wiphy); WARN_ON(cmd != NL80211_CMD_NEW_INTERFACE && cmd != NL80211_CMD_DEL_INTERFACE && cmd != NL80211_CMD_SET_INTERFACE); hdr = nl80211hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -1; if (dev && (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put_string(msg, NL80211_ATTR_IFNAME, dev->name))) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFTYPE, wdev->iftype) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, wdev_address(wdev)) || nla_put_u32(msg, NL80211_ATTR_GENERATION, rdev->devlist_generation ^ (cfg80211_rdev_list_generation << 2)) || nla_put_u8(msg, NL80211_ATTR_4ADDR, wdev->use_4addr)) goto nla_put_failure; if (rdev->ops->get_channel && !wdev->valid_links) { struct cfg80211_chan_def chandef = {}; int ret; ret = rdev_get_channel(rdev, wdev, 0, &chandef); if (ret == 0 && nl80211_send_chandef(msg, &chandef)) goto nla_put_failure; } if (rdev->ops->get_tx_power) { int dbm, ret; ret = rdev_get_tx_power(rdev, wdev, &dbm); if (ret == 0 && nla_put_u32(msg, NL80211_ATTR_WIPHY_TX_POWER_LEVEL, DBM_TO_MBM(dbm))) goto nla_put_failure; } switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (wdev->u.ap.ssid_len && nla_put(msg, NL80211_ATTR_SSID, wdev->u.ap.ssid_len, wdev->u.ap.ssid)) goto nla_put_failure; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (wdev->u.client.ssid_len && nla_put(msg, NL80211_ATTR_SSID, wdev->u.client.ssid_len, wdev->u.client.ssid)) goto nla_put_failure; break; case NL80211_IFTYPE_ADHOC: if (wdev->u.ibss.ssid_len && nla_put(msg, NL80211_ATTR_SSID, wdev->u.ibss.ssid_len, wdev->u.ibss.ssid)) goto nla_put_failure; break; default: /* nothing */ break; } if (rdev->ops->get_txq_stats) { struct cfg80211_txq_stats txqstats = {}; int ret = rdev_get_txq_stats(rdev, wdev, &txqstats); if (ret == 0 && !nl80211_put_txq_stats(msg, &txqstats, NL80211_ATTR_TXQ_STATS)) goto nla_put_failure; } if (wdev->valid_links) { unsigned int link_id; struct nlattr *links = nla_nest_start(msg, NL80211_ATTR_MLO_LINKS); if (!links) goto nla_put_failure; for_each_valid_link(wdev, link_id) { struct nlattr *link = nla_nest_start(msg, link_id + 1); struct cfg80211_chan_def chandef = {}; int ret; if (!link) goto nla_put_failure; if (nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link_id)) goto nla_put_failure; if (nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, wdev->links[link_id].addr)) goto nla_put_failure; ret = rdev_get_channel(rdev, wdev, link_id, &chandef); if (ret == 0 && nl80211_send_chandef(msg, &chandef)) goto nla_put_failure; nla_nest_end(msg, link); } nla_nest_end(msg, links); } genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_dump_interface(struct sk_buff *skb, struct netlink_callback *cb) { int wp_idx = 0; int if_idx = 0; int wp_start = cb->args[0]; int if_start = cb->args[1]; int filter_wiphy = -1; struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; int ret; rtnl_lock(); if (!cb->args[2]) { struct nl80211_dump_wiphy_state state = { .filter_wiphy = -1, }; ret = nl80211_dump_wiphy_parse(skb, cb, &state); if (ret) goto out_unlock; filter_wiphy = state.filter_wiphy; /* * if filtering, set cb->args[2] to +1 since 0 is the default * value needed to determine that parsing is necessary. */ if (filter_wiphy >= 0) cb->args[2] = filter_wiphy + 1; else cb->args[2] = -1; } else if (cb->args[2] > 0) { filter_wiphy = cb->args[2] - 1; } for_each_rdev(rdev) { if (!net_eq(wiphy_net(&rdev->wiphy), sock_net(skb->sk))) continue; if (wp_idx < wp_start) { wp_idx++; continue; } if (filter_wiphy >= 0 && filter_wiphy != rdev->wiphy_idx) continue; if_idx = 0; wiphy_lock(&rdev->wiphy); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { if (if_idx < if_start) { if_idx++; continue; } if (nl80211_send_iface(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wdev, NL80211_CMD_NEW_INTERFACE) < 0) { wiphy_unlock(&rdev->wiphy); goto out; } if_idx++; } wiphy_unlock(&rdev->wiphy); if_start = 0; wp_idx++; } out: cb->args[0] = wp_idx; cb->args[1] = if_idx; ret = skb->len; out_unlock: rtnl_unlock(); return ret; } static int nl80211_get_interface(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; if (nl80211_send_iface(msg, info->snd_portid, info->snd_seq, 0, rdev, wdev, NL80211_CMD_NEW_INTERFACE) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } static const struct nla_policy mntr_flags_policy[NL80211_MNTR_FLAG_MAX + 1] = { [NL80211_MNTR_FLAG_FCSFAIL] = { .type = NLA_FLAG }, [NL80211_MNTR_FLAG_PLCPFAIL] = { .type = NLA_FLAG }, [NL80211_MNTR_FLAG_CONTROL] = { .type = NLA_FLAG }, [NL80211_MNTR_FLAG_OTHER_BSS] = { .type = NLA_FLAG }, [NL80211_MNTR_FLAG_COOK_FRAMES] = { .type = NLA_FLAG }, [NL80211_MNTR_FLAG_ACTIVE] = { .type = NLA_FLAG }, }; static int parse_monitor_flags(struct nlattr *nla, u32 *mntrflags) { struct nlattr *flags[NL80211_MNTR_FLAG_MAX + 1]; int flag; *mntrflags = 0; if (!nla) return -EINVAL; if (nla_parse_nested_deprecated(flags, NL80211_MNTR_FLAG_MAX, nla, mntr_flags_policy, NULL)) return -EINVAL; for (flag = 1; flag <= NL80211_MNTR_FLAG_MAX; flag++) if (flags[flag]) *mntrflags |= (1<<flag); *mntrflags |= MONITOR_FLAG_CHANGED; return 0; } static int nl80211_parse_mon_options(struct cfg80211_registered_device *rdev, enum nl80211_iftype type, struct genl_info *info, struct vif_params *params) { bool change = false; int err; if (info->attrs[NL80211_ATTR_MNTR_FLAGS]) { if (type != NL80211_IFTYPE_MONITOR) return -EINVAL; err = parse_monitor_flags(info->attrs[NL80211_ATTR_MNTR_FLAGS], &params->flags); if (err) return err; change = true; } if (params->flags & MONITOR_FLAG_ACTIVE && !(rdev->wiphy.features & NL80211_FEATURE_ACTIVE_MONITOR)) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_MU_MIMO_GROUP_DATA]) { const u8 *mumimo_groups; u32 cap_flag = NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER; if (type != NL80211_IFTYPE_MONITOR) return -EINVAL; if (!wiphy_ext_feature_isset(&rdev->wiphy, cap_flag)) return -EOPNOTSUPP; mumimo_groups = nla_data(info->attrs[NL80211_ATTR_MU_MIMO_GROUP_DATA]); /* bits 0 and 63 are reserved and must be zero */ if ((mumimo_groups[0] & BIT(0)) || (mumimo_groups[VHT_MUMIMO_GROUPS_DATA_LEN - 1] & BIT(7))) return -EINVAL; params->vht_mumimo_groups = mumimo_groups; change = true; } if (info->attrs[NL80211_ATTR_MU_MIMO_FOLLOW_MAC_ADDR]) { u32 cap_flag = NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER; if (type != NL80211_IFTYPE_MONITOR) return -EINVAL; if (!wiphy_ext_feature_isset(&rdev->wiphy, cap_flag)) return -EOPNOTSUPP; params->vht_mumimo_follow_addr = nla_data(info->attrs[NL80211_ATTR_MU_MIMO_FOLLOW_MAC_ADDR]); change = true; } return change ? 1 : 0; } static int nl80211_valid_4addr(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 use_4addr, enum nl80211_iftype iftype) { if (!use_4addr) { if (netdev && netif_is_bridge_port(netdev)) return -EBUSY; return 0; } switch (iftype) { case NL80211_IFTYPE_AP_VLAN: if (rdev->wiphy.flags & WIPHY_FLAG_4ADDR_AP) return 0; break; case NL80211_IFTYPE_STATION: if (rdev->wiphy.flags & WIPHY_FLAG_4ADDR_STATION) return 0; break; default: break; } return -EOPNOTSUPP; } static int nl80211_set_interface(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct vif_params params; int err; enum nl80211_iftype otype, ntype; struct net_device *dev = info->user_ptr[1]; bool change = false; memset(&params, 0, sizeof(params)); otype = ntype = dev->ieee80211_ptr->iftype; if (info->attrs[NL80211_ATTR_IFTYPE]) { ntype = nla_get_u32(info->attrs[NL80211_ATTR_IFTYPE]); if (otype != ntype) change = true; } if (info->attrs[NL80211_ATTR_MESH_ID]) { struct wireless_dev *wdev = dev->ieee80211_ptr; if (ntype != NL80211_IFTYPE_MESH_POINT) return -EINVAL; if (netif_running(dev)) return -EBUSY; BUILD_BUG_ON(IEEE80211_MAX_SSID_LEN != IEEE80211_MAX_MESH_ID_LEN); wdev->u.mesh.id_up_len = nla_len(info->attrs[NL80211_ATTR_MESH_ID]); memcpy(wdev->u.mesh.id, nla_data(info->attrs[NL80211_ATTR_MESH_ID]), wdev->u.mesh.id_up_len); } if (info->attrs[NL80211_ATTR_4ADDR]) { params.use_4addr = !!nla_get_u8(info->attrs[NL80211_ATTR_4ADDR]); change = true; err = nl80211_valid_4addr(rdev, dev, params.use_4addr, ntype); if (err) return err; } else { params.use_4addr = -1; } err = nl80211_parse_mon_options(rdev, ntype, info, &params); if (err < 0) return err; if (err > 0) change = true; if (change) err = cfg80211_change_iface(rdev, dev, ntype, &params); else err = 0; if (!err && params.use_4addr != -1) dev->ieee80211_ptr->use_4addr = params.use_4addr; if (change && !err) { struct wireless_dev *wdev = dev->ieee80211_ptr; nl80211_notify_iface(rdev, wdev, NL80211_CMD_SET_INTERFACE); } return err; } static int _nl80211_new_interface(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct vif_params params; struct wireless_dev *wdev; struct sk_buff *msg; int err; enum nl80211_iftype type = NL80211_IFTYPE_UNSPECIFIED; memset(&params, 0, sizeof(params)); if (!info->attrs[NL80211_ATTR_IFNAME]) return -EINVAL; if (info->attrs[NL80211_ATTR_IFTYPE]) type = nla_get_u32(info->attrs[NL80211_ATTR_IFTYPE]); if (!rdev->ops->add_virtual_intf) return -EOPNOTSUPP; if ((type == NL80211_IFTYPE_P2P_DEVICE || type == NL80211_IFTYPE_NAN || rdev->wiphy.features & NL80211_FEATURE_MAC_ON_CREATE) && info->attrs[NL80211_ATTR_MAC]) { nla_memcpy(params.macaddr, info->attrs[NL80211_ATTR_MAC], ETH_ALEN); if (!is_valid_ether_addr(params.macaddr)) return -EADDRNOTAVAIL; } if (info->attrs[NL80211_ATTR_4ADDR]) { params.use_4addr = !!nla_get_u8(info->attrs[NL80211_ATTR_4ADDR]); err = nl80211_valid_4addr(rdev, NULL, params.use_4addr, type); if (err) return err; } if (!cfg80211_iftype_allowed(&rdev->wiphy, type, params.use_4addr, 0)) return -EOPNOTSUPP; err = nl80211_parse_mon_options(rdev, type, info, &params); if (err < 0) return err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; wdev = rdev_add_virtual_intf(rdev, nla_data(info->attrs[NL80211_ATTR_IFNAME]), NET_NAME_USER, type, &params); if (WARN_ON(!wdev)) { nlmsg_free(msg); return -EPROTO; } else if (IS_ERR(wdev)) { nlmsg_free(msg); return PTR_ERR(wdev); } if (info->attrs[NL80211_ATTR_SOCKET_OWNER]) wdev->owner_nlportid = info->snd_portid; switch (type) { case NL80211_IFTYPE_MESH_POINT: if (!info->attrs[NL80211_ATTR_MESH_ID]) break; BUILD_BUG_ON(IEEE80211_MAX_SSID_LEN != IEEE80211_MAX_MESH_ID_LEN); wdev->u.mesh.id_up_len = nla_len(info->attrs[NL80211_ATTR_MESH_ID]); memcpy(wdev->u.mesh.id, nla_data(info->attrs[NL80211_ATTR_MESH_ID]), wdev->u.mesh.id_up_len); break; case NL80211_IFTYPE_NAN: case NL80211_IFTYPE_P2P_DEVICE: /* * P2P Device and NAN do not have a netdev, so don't go * through the netdev notifier and must be added here */ cfg80211_init_wdev(wdev); cfg80211_register_wdev(rdev, wdev); break; default: break; } if (nl80211_send_iface(msg, info->snd_portid, info->snd_seq, 0, rdev, wdev, NL80211_CMD_NEW_INTERFACE) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } static int nl80211_new_interface(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int ret; /* to avoid failing a new interface creation due to pending removal */ cfg80211_destroy_ifaces(rdev); wiphy_lock(&rdev->wiphy); ret = _nl80211_new_interface(skb, info); wiphy_unlock(&rdev->wiphy); return ret; } static int nl80211_del_interface(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; if (!rdev->ops->del_virtual_intf) return -EOPNOTSUPP; /* * We hold RTNL, so this is safe, without RTNL opencount cannot * reach 0, and thus the rdev cannot be deleted. * * We need to do it for the dev_close(), since that will call * the netdev notifiers, and we need to acquire the mutex there * but don't know if we get there from here or from some other * place (e.g. "ip link set ... down"). */ mutex_unlock(&rdev->wiphy.mtx); /* * If we remove a wireless device without a netdev then clear * user_ptr[1] so that nl80211_post_doit won't dereference it * to check if it needs to do dev_put(). Otherwise it crashes * since the wdev has been freed, unlike with a netdev where * we need the dev_put() for the netdev to really be freed. */ if (!wdev->netdev) info->user_ptr[1] = NULL; else dev_close(wdev->netdev); mutex_lock(&rdev->wiphy.mtx); return cfg80211_remove_virtual_intf(rdev, wdev); } static int nl80211_set_noack_map(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; u16 noack_map; if (!info->attrs[NL80211_ATTR_NOACK_MAP]) return -EINVAL; if (!rdev->ops->set_noack_map) return -EOPNOTSUPP; noack_map = nla_get_u16(info->attrs[NL80211_ATTR_NOACK_MAP]); return rdev_set_noack_map(rdev, dev, noack_map); } static int nl80211_validate_key_link_id(struct genl_info *info, struct wireless_dev *wdev, int link_id, bool pairwise) { if (pairwise) { if (link_id != -1) { GENL_SET_ERR_MSG(info, "link ID not allowed for pairwise key"); return -EINVAL; } return 0; } if (wdev->valid_links) { if (link_id == -1) { GENL_SET_ERR_MSG(info, "link ID must for MLO group key"); return -EINVAL; } if (!(wdev->valid_links & BIT(link_id))) { GENL_SET_ERR_MSG(info, "invalid link ID for MLO group key"); return -EINVAL; } } else if (link_id != -1) { GENL_SET_ERR_MSG(info, "link ID not allowed for non-MLO group key"); return -EINVAL; } return 0; } struct get_key_cookie { struct sk_buff *msg; int error; int idx; }; static void get_key_callback(void *c, struct key_params *params) { struct nlattr *key; struct get_key_cookie *cookie = c; if ((params->key && nla_put(cookie->msg, NL80211_ATTR_KEY_DATA, params->key_len, params->key)) || (params->seq && nla_put(cookie->msg, NL80211_ATTR_KEY_SEQ, params->seq_len, params->seq)) || (params->cipher && nla_put_u32(cookie->msg, NL80211_ATTR_KEY_CIPHER, params->cipher))) goto nla_put_failure; key = nla_nest_start_noflag(cookie->msg, NL80211_ATTR_KEY); if (!key) goto nla_put_failure; if ((params->key && nla_put(cookie->msg, NL80211_KEY_DATA, params->key_len, params->key)) || (params->seq && nla_put(cookie->msg, NL80211_KEY_SEQ, params->seq_len, params->seq)) || (params->cipher && nla_put_u32(cookie->msg, NL80211_KEY_CIPHER, params->cipher))) goto nla_put_failure; if (nla_put_u8(cookie->msg, NL80211_KEY_IDX, cookie->idx)) goto nla_put_failure; nla_nest_end(cookie->msg, key); return; nla_put_failure: cookie->error = 1; } static int nl80211_get_key(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int err; struct net_device *dev = info->user_ptr[1]; u8 key_idx = 0; const u8 *mac_addr = NULL; bool pairwise; struct get_key_cookie cookie = { .error = 0, }; void *hdr; struct sk_buff *msg; bool bigtk_support = false; int link_id = nl80211_link_id_or_invalid(info->attrs); struct wireless_dev *wdev = dev->ieee80211_ptr; if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION)) bigtk_support = true; if ((wdev->iftype == NL80211_IFTYPE_STATION || wdev->iftype == NL80211_IFTYPE_P2P_CLIENT) && wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) bigtk_support = true; if (info->attrs[NL80211_ATTR_KEY_IDX]) { key_idx = nla_get_u8(info->attrs[NL80211_ATTR_KEY_IDX]); if (key_idx >= 6 && key_idx <= 7 && !bigtk_support) { GENL_SET_ERR_MSG(info, "BIGTK not supported"); return -EINVAL; } } if (info->attrs[NL80211_ATTR_MAC]) mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]); pairwise = !!mac_addr; if (info->attrs[NL80211_ATTR_KEY_TYPE]) { u32 kt = nla_get_u32(info->attrs[NL80211_ATTR_KEY_TYPE]); if (kt != NL80211_KEYTYPE_GROUP && kt != NL80211_KEYTYPE_PAIRWISE) return -EINVAL; pairwise = kt == NL80211_KEYTYPE_PAIRWISE; } if (!rdev->ops->get_key) return -EOPNOTSUPP; if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) return -ENOENT; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_NEW_KEY); if (!hdr) goto nla_put_failure; cookie.msg = msg; cookie.idx = key_idx; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put_u8(msg, NL80211_ATTR_KEY_IDX, key_idx)) goto nla_put_failure; if (mac_addr && nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, mac_addr)) goto nla_put_failure; err = nl80211_validate_key_link_id(info, wdev, link_id, pairwise); if (err) goto free_msg; err = rdev_get_key(rdev, dev, link_id, key_idx, pairwise, mac_addr, &cookie, get_key_callback); if (err) goto free_msg; if (cookie.error) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: err = -ENOBUFS; free_msg: nlmsg_free(msg); return err; } static int nl80211_set_key(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct key_parse key; int err; struct net_device *dev = info->user_ptr[1]; int link_id = nl80211_link_id_or_invalid(info->attrs); struct wireless_dev *wdev = dev->ieee80211_ptr; err = nl80211_parse_key(info, &key); if (err) return err; if (key.idx < 0) return -EINVAL; /* Only support setting default key and * Extended Key ID action NL80211_KEY_SET_TX. */ if (!key.def && !key.defmgmt && !key.defbeacon && !(key.p.mode == NL80211_KEY_SET_TX)) return -EINVAL; if (key.def) { if (!rdev->ops->set_default_key) return -EOPNOTSUPP; err = nl80211_key_allowed(wdev); if (err) return err; err = nl80211_validate_key_link_id(info, wdev, link_id, false); if (err) return err; err = rdev_set_default_key(rdev, dev, link_id, key.idx, key.def_uni, key.def_multi); if (err) return err; #ifdef CONFIG_CFG80211_WEXT wdev->wext.default_key = key.idx; #endif return 0; } else if (key.defmgmt) { if (key.def_uni || !key.def_multi) return -EINVAL; if (!rdev->ops->set_default_mgmt_key) return -EOPNOTSUPP; err = nl80211_key_allowed(wdev); if (err) return err; err = nl80211_validate_key_link_id(info, wdev, link_id, false); if (err) return err; err = rdev_set_default_mgmt_key(rdev, dev, link_id, key.idx); if (err) return err; #ifdef CONFIG_CFG80211_WEXT wdev->wext.default_mgmt_key = key.idx; #endif return 0; } else if (key.defbeacon) { if (key.def_uni || !key.def_multi) return -EINVAL; if (!rdev->ops->set_default_beacon_key) return -EOPNOTSUPP; err = nl80211_key_allowed(wdev); if (err) return err; err = nl80211_validate_key_link_id(info, wdev, link_id, false); if (err) return err; return rdev_set_default_beacon_key(rdev, dev, link_id, key.idx); } else if (key.p.mode == NL80211_KEY_SET_TX && wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_EXT_KEY_ID)) { u8 *mac_addr = NULL; if (info->attrs[NL80211_ATTR_MAC]) mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!mac_addr || key.idx < 0 || key.idx > 1) return -EINVAL; err = nl80211_validate_key_link_id(info, wdev, link_id, true); if (err) return err; return rdev_add_key(rdev, dev, link_id, key.idx, NL80211_KEYTYPE_PAIRWISE, mac_addr, &key.p); } return -EINVAL; } static int nl80211_new_key(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int err; struct net_device *dev = info->user_ptr[1]; struct key_parse key; const u8 *mac_addr = NULL; int link_id = nl80211_link_id_or_invalid(info->attrs); struct wireless_dev *wdev = dev->ieee80211_ptr; err = nl80211_parse_key(info, &key); if (err) return err; if (!key.p.key) { GENL_SET_ERR_MSG(info, "no key"); return -EINVAL; } if (info->attrs[NL80211_ATTR_MAC]) mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]); if (key.type == -1) { if (mac_addr) key.type = NL80211_KEYTYPE_PAIRWISE; else key.type = NL80211_KEYTYPE_GROUP; } /* for now */ if (key.type != NL80211_KEYTYPE_PAIRWISE && key.type != NL80211_KEYTYPE_GROUP) { GENL_SET_ERR_MSG(info, "key type not pairwise or group"); return -EINVAL; } if (key.type == NL80211_KEYTYPE_GROUP && info->attrs[NL80211_ATTR_VLAN_ID]) key.p.vlan_id = nla_get_u16(info->attrs[NL80211_ATTR_VLAN_ID]); if (!rdev->ops->add_key) return -EOPNOTSUPP; if (cfg80211_validate_key_settings(rdev, &key.p, key.idx, key.type == NL80211_KEYTYPE_PAIRWISE, mac_addr)) { GENL_SET_ERR_MSG(info, "key setting validation failed"); return -EINVAL; } err = nl80211_key_allowed(wdev); if (err) GENL_SET_ERR_MSG(info, "key not allowed"); if (!err) err = nl80211_validate_key_link_id(info, wdev, link_id, key.type == NL80211_KEYTYPE_PAIRWISE); if (!err) { err = rdev_add_key(rdev, dev, link_id, key.idx, key.type == NL80211_KEYTYPE_PAIRWISE, mac_addr, &key.p); if (err) GENL_SET_ERR_MSG(info, "key addition failed"); } return err; } static int nl80211_del_key(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int err; struct net_device *dev = info->user_ptr[1]; u8 *mac_addr = NULL; struct key_parse key; int link_id = nl80211_link_id_or_invalid(info->attrs); struct wireless_dev *wdev = dev->ieee80211_ptr; err = nl80211_parse_key(info, &key); if (err) return err; if (info->attrs[NL80211_ATTR_MAC]) mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]); if (key.type == -1) { if (mac_addr) key.type = NL80211_KEYTYPE_PAIRWISE; else key.type = NL80211_KEYTYPE_GROUP; } /* for now */ if (key.type != NL80211_KEYTYPE_PAIRWISE && key.type != NL80211_KEYTYPE_GROUP) return -EINVAL; if (!cfg80211_valid_key_idx(rdev, key.idx, key.type == NL80211_KEYTYPE_PAIRWISE)) return -EINVAL; if (!rdev->ops->del_key) return -EOPNOTSUPP; err = nl80211_key_allowed(wdev); if (key.type == NL80211_KEYTYPE_GROUP && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) err = -ENOENT; if (!err) err = nl80211_validate_key_link_id(info, wdev, link_id, key.type == NL80211_KEYTYPE_PAIRWISE); if (!err) err = rdev_del_key(rdev, dev, link_id, key.idx, key.type == NL80211_KEYTYPE_PAIRWISE, mac_addr); #ifdef CONFIG_CFG80211_WEXT if (!err) { if (key.idx == wdev->wext.default_key) wdev->wext.default_key = -1; else if (key.idx == wdev->wext.default_mgmt_key) wdev->wext.default_mgmt_key = -1; } #endif return err; } /* This function returns an error or the number of nested attributes */ static int validate_acl_mac_addrs(struct nlattr *nl_attr) { struct nlattr *attr; int n_entries = 0, tmp; nla_for_each_nested(attr, nl_attr, tmp) { if (nla_len(attr) != ETH_ALEN) return -EINVAL; n_entries++; } return n_entries; } /* * This function parses ACL information and allocates memory for ACL data. * On successful return, the calling function is responsible to free the * ACL buffer returned by this function. */ static struct cfg80211_acl_data *parse_acl_data(struct wiphy *wiphy, struct genl_info *info) { enum nl80211_acl_policy acl_policy; struct nlattr *attr; struct cfg80211_acl_data *acl; int i = 0, n_entries, tmp; if (!wiphy->max_acl_mac_addrs) return ERR_PTR(-EOPNOTSUPP); if (!info->attrs[NL80211_ATTR_ACL_POLICY]) return ERR_PTR(-EINVAL); acl_policy = nla_get_u32(info->attrs[NL80211_ATTR_ACL_POLICY]); if (acl_policy != NL80211_ACL_POLICY_ACCEPT_UNLESS_LISTED && acl_policy != NL80211_ACL_POLICY_DENY_UNLESS_LISTED) return ERR_PTR(-EINVAL); if (!info->attrs[NL80211_ATTR_MAC_ADDRS]) return ERR_PTR(-EINVAL); n_entries = validate_acl_mac_addrs(info->attrs[NL80211_ATTR_MAC_ADDRS]); if (n_entries < 0) return ERR_PTR(n_entries); if (n_entries > wiphy->max_acl_mac_addrs) return ERR_PTR(-EOPNOTSUPP); acl = kzalloc(struct_size(acl, mac_addrs, n_entries), GFP_KERNEL); if (!acl) return ERR_PTR(-ENOMEM); acl->n_acl_entries = n_entries; nla_for_each_nested(attr, info->attrs[NL80211_ATTR_MAC_ADDRS], tmp) { memcpy(acl->mac_addrs[i].addr, nla_data(attr), ETH_ALEN); i++; } acl->acl_policy = acl_policy; return acl; } static int nl80211_set_mac_acl(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_acl_data *acl; int err; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; if (!dev->ieee80211_ptr->links[0].ap.beacon_interval) return -EINVAL; acl = parse_acl_data(&rdev->wiphy, info); if (IS_ERR(acl)) return PTR_ERR(acl); err = rdev_set_mac_acl(rdev, dev, acl); kfree(acl); return err; } static u32 rateset_to_mask(struct ieee80211_supported_band *sband, u8 *rates, u8 rates_len) { u8 i; u32 mask = 0; for (i = 0; i < rates_len; i++) { int rate = (rates[i] & 0x7f) * 5; int ridx; for (ridx = 0; ridx < sband->n_bitrates; ridx++) { struct ieee80211_rate *srate = &sband->bitrates[ridx]; if (rate == srate->bitrate) { mask |= 1 << ridx; break; } } if (ridx == sband->n_bitrates) return 0; /* rate not found */ } return mask; } static bool ht_rateset_to_mask(struct ieee80211_supported_band *sband, u8 *rates, u8 rates_len, u8 mcs[IEEE80211_HT_MCS_MASK_LEN]) { u8 i; memset(mcs, 0, IEEE80211_HT_MCS_MASK_LEN); for (i = 0; i < rates_len; i++) { int ridx, rbit; ridx = rates[i] / 8; rbit = BIT(rates[i] % 8); /* check validity */ if ((ridx < 0) || (ridx >= IEEE80211_HT_MCS_MASK_LEN)) return false; /* check availability */ ridx = array_index_nospec(ridx, IEEE80211_HT_MCS_MASK_LEN); if (sband->ht_cap.mcs.rx_mask[ridx] & rbit) mcs[ridx] |= rbit; else return false; } return true; } static u16 vht_mcs_map_to_mcs_mask(u8 vht_mcs_map) { u16 mcs_mask = 0; switch (vht_mcs_map) { case IEEE80211_VHT_MCS_NOT_SUPPORTED: break; case IEEE80211_VHT_MCS_SUPPORT_0_7: mcs_mask = 0x00FF; break; case IEEE80211_VHT_MCS_SUPPORT_0_8: mcs_mask = 0x01FF; break; case IEEE80211_VHT_MCS_SUPPORT_0_9: mcs_mask = 0x03FF; break; default: break; } return mcs_mask; } static void vht_build_mcs_mask(u16 vht_mcs_map, u16 vht_mcs_mask[NL80211_VHT_NSS_MAX]) { u8 nss; for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) { vht_mcs_mask[nss] = vht_mcs_map_to_mcs_mask(vht_mcs_map & 0x03); vht_mcs_map >>= 2; } } static bool vht_set_mcs_mask(struct ieee80211_supported_band *sband, struct nl80211_txrate_vht *txrate, u16 mcs[NL80211_VHT_NSS_MAX]) { u16 tx_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map); u16 tx_mcs_mask[NL80211_VHT_NSS_MAX] = {}; u8 i; if (!sband->vht_cap.vht_supported) return false; memset(mcs, 0, sizeof(u16) * NL80211_VHT_NSS_MAX); /* Build vht_mcs_mask from VHT capabilities */ vht_build_mcs_mask(tx_mcs_map, tx_mcs_mask); for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { if ((tx_mcs_mask[i] & txrate->mcs[i]) == txrate->mcs[i]) mcs[i] = txrate->mcs[i]; else return false; } return true; } static u16 he_mcs_map_to_mcs_mask(u8 he_mcs_map) { switch (he_mcs_map) { case IEEE80211_HE_MCS_NOT_SUPPORTED: return 0; case IEEE80211_HE_MCS_SUPPORT_0_7: return 0x00FF; case IEEE80211_HE_MCS_SUPPORT_0_9: return 0x03FF; case IEEE80211_HE_MCS_SUPPORT_0_11: return 0xFFF; default: break; } return 0; } static void he_build_mcs_mask(u16 he_mcs_map, u16 he_mcs_mask[NL80211_HE_NSS_MAX]) { u8 nss; for (nss = 0; nss < NL80211_HE_NSS_MAX; nss++) { he_mcs_mask[nss] = he_mcs_map_to_mcs_mask(he_mcs_map & 0x03); he_mcs_map >>= 2; } } static u16 he_get_txmcsmap(struct genl_info *info, unsigned int link_id, const struct ieee80211_sta_he_cap *he_cap) { struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_chan_def *chandef; __le16 tx_mcs; chandef = wdev_chandef(wdev, link_id); if (!chandef) { /* * This is probably broken, but we never maintained * a chandef in these cases, so it always was. */ return le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80); } switch (chandef->width) { case NL80211_CHAN_WIDTH_80P80: tx_mcs = he_cap->he_mcs_nss_supp.tx_mcs_80p80; break; case NL80211_CHAN_WIDTH_160: tx_mcs = he_cap->he_mcs_nss_supp.tx_mcs_160; break; default: tx_mcs = he_cap->he_mcs_nss_supp.tx_mcs_80; break; } return le16_to_cpu(tx_mcs); } static bool he_set_mcs_mask(struct genl_info *info, struct wireless_dev *wdev, struct ieee80211_supported_band *sband, struct nl80211_txrate_he *txrate, u16 mcs[NL80211_HE_NSS_MAX], unsigned int link_id) { const struct ieee80211_sta_he_cap *he_cap; u16 tx_mcs_mask[NL80211_HE_NSS_MAX] = {}; u16 tx_mcs_map = 0; u8 i; he_cap = ieee80211_get_he_iftype_cap(sband, wdev->iftype); if (!he_cap) return false; memset(mcs, 0, sizeof(u16) * NL80211_HE_NSS_MAX); tx_mcs_map = he_get_txmcsmap(info, link_id, he_cap); /* Build he_mcs_mask from HE capabilities */ he_build_mcs_mask(tx_mcs_map, tx_mcs_mask); for (i = 0; i < NL80211_HE_NSS_MAX; i++) { if ((tx_mcs_mask[i] & txrate->mcs[i]) == txrate->mcs[i]) mcs[i] = txrate->mcs[i]; else return false; } return true; } static int nl80211_parse_tx_bitrate_mask(struct genl_info *info, struct nlattr *attrs[], enum nl80211_attrs attr, struct cfg80211_bitrate_mask *mask, struct net_device *dev, bool default_all_enabled, unsigned int link_id) { struct nlattr *tb[NL80211_TXRATE_MAX + 1]; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = dev->ieee80211_ptr; int rem, i; struct nlattr *tx_rates; struct ieee80211_supported_band *sband; u16 vht_tx_mcs_map, he_tx_mcs_map; memset(mask, 0, sizeof(*mask)); /* Default to all rates enabled */ for (i = 0; i < NUM_NL80211_BANDS; i++) { const struct ieee80211_sta_he_cap *he_cap; if (!default_all_enabled) break; sband = rdev->wiphy.bands[i]; if (!sband) continue; mask->control[i].legacy = (1 << sband->n_bitrates) - 1; memcpy(mask->control[i].ht_mcs, sband->ht_cap.mcs.rx_mask, sizeof(mask->control[i].ht_mcs)); if (sband->vht_cap.vht_supported) { vht_tx_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map); vht_build_mcs_mask(vht_tx_mcs_map, mask->control[i].vht_mcs); } he_cap = ieee80211_get_he_iftype_cap(sband, wdev->iftype); if (!he_cap) continue; he_tx_mcs_map = he_get_txmcsmap(info, link_id, he_cap); he_build_mcs_mask(he_tx_mcs_map, mask->control[i].he_mcs); mask->control[i].he_gi = 0xFF; mask->control[i].he_ltf = 0xFF; } /* if no rates are given set it back to the defaults */ if (!attrs[attr]) goto out; /* The nested attribute uses enum nl80211_band as the index. This maps * directly to the enum nl80211_band values used in cfg80211. */ BUILD_BUG_ON(NL80211_MAX_SUPP_HT_RATES > IEEE80211_HT_MCS_MASK_LEN * 8); nla_for_each_nested(tx_rates, attrs[attr], rem) { enum nl80211_band band = nla_type(tx_rates); int err; if (band < 0 || band >= NUM_NL80211_BANDS) return -EINVAL; sband = rdev->wiphy.bands[band]; if (sband == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, NL80211_TXRATE_MAX, tx_rates, nl80211_txattr_policy, info->extack); if (err) return err; if (tb[NL80211_TXRATE_LEGACY]) { mask->control[band].legacy = rateset_to_mask( sband, nla_data(tb[NL80211_TXRATE_LEGACY]), nla_len(tb[NL80211_TXRATE_LEGACY])); if ((mask->control[band].legacy == 0) && nla_len(tb[NL80211_TXRATE_LEGACY])) return -EINVAL; } if (tb[NL80211_TXRATE_HT]) { if (!ht_rateset_to_mask( sband, nla_data(tb[NL80211_TXRATE_HT]), nla_len(tb[NL80211_TXRATE_HT]), mask->control[band].ht_mcs)) return -EINVAL; } if (tb[NL80211_TXRATE_VHT]) { if (!vht_set_mcs_mask( sband, nla_data(tb[NL80211_TXRATE_VHT]), mask->control[band].vht_mcs)) return -EINVAL; } if (tb[NL80211_TXRATE_GI]) { mask->control[band].gi = nla_get_u8(tb[NL80211_TXRATE_GI]); if (mask->control[band].gi > NL80211_TXRATE_FORCE_LGI) return -EINVAL; } if (tb[NL80211_TXRATE_HE] && !he_set_mcs_mask(info, wdev, sband, nla_data(tb[NL80211_TXRATE_HE]), mask->control[band].he_mcs, link_id)) return -EINVAL; if (tb[NL80211_TXRATE_HE_GI]) mask->control[band].he_gi = nla_get_u8(tb[NL80211_TXRATE_HE_GI]); if (tb[NL80211_TXRATE_HE_LTF]) mask->control[band].he_ltf = nla_get_u8(tb[NL80211_TXRATE_HE_LTF]); if (mask->control[band].legacy == 0) { /* don't allow empty legacy rates if HT, VHT or HE * are not even supported. */ if (!(rdev->wiphy.bands[band]->ht_cap.ht_supported || rdev->wiphy.bands[band]->vht_cap.vht_supported || ieee80211_get_he_iftype_cap(sband, wdev->iftype))) return -EINVAL; for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) if (mask->control[band].ht_mcs[i]) goto out; for (i = 0; i < NL80211_VHT_NSS_MAX; i++) if (mask->control[band].vht_mcs[i]) goto out; for (i = 0; i < NL80211_HE_NSS_MAX; i++) if (mask->control[band].he_mcs[i]) goto out; /* legacy and mcs rates may not be both empty */ return -EINVAL; } } out: return 0; } static int validate_beacon_tx_rate(struct cfg80211_registered_device *rdev, enum nl80211_band band, struct cfg80211_bitrate_mask *beacon_rate) { u32 count_ht, count_vht, count_he, i; u32 rate = beacon_rate->control[band].legacy; /* Allow only one rate */ if (hweight32(rate) > 1) return -EINVAL; count_ht = 0; for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { if (hweight8(beacon_rate->control[band].ht_mcs[i]) > 1) { return -EINVAL; } else if (beacon_rate->control[band].ht_mcs[i]) { count_ht++; if (count_ht > 1) return -EINVAL; } if (count_ht && rate) return -EINVAL; } count_vht = 0; for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { if (hweight16(beacon_rate->control[band].vht_mcs[i]) > 1) { return -EINVAL; } else if (beacon_rate->control[band].vht_mcs[i]) { count_vht++; if (count_vht > 1) return -EINVAL; } if (count_vht && rate) return -EINVAL; } count_he = 0; for (i = 0; i < NL80211_HE_NSS_MAX; i++) { if (hweight16(beacon_rate->control[band].he_mcs[i]) > 1) { return -EINVAL; } else if (beacon_rate->control[band].he_mcs[i]) { count_he++; if (count_he > 1) return -EINVAL; } if (count_he && rate) return -EINVAL; } if ((count_ht && count_vht && count_he) || (!rate && !count_ht && !count_vht && !count_he)) return -EINVAL; if (rate && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY)) return -EINVAL; if (count_ht && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT)) return -EINVAL; if (count_vht && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT)) return -EINVAL; if (count_he && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE)) return -EINVAL; return 0; } static int nl80211_parse_mbssid_config(struct wiphy *wiphy, struct net_device *dev, struct nlattr *attrs, struct cfg80211_mbssid_config *config, u8 num_elems) { struct nlattr *tb[NL80211_MBSSID_CONFIG_ATTR_MAX + 1]; if (!wiphy->mbssid_max_interfaces) return -EOPNOTSUPP; if (nla_parse_nested(tb, NL80211_MBSSID_CONFIG_ATTR_MAX, attrs, NULL, NULL) || !tb[NL80211_MBSSID_CONFIG_ATTR_INDEX]) return -EINVAL; config->ema = nla_get_flag(tb[NL80211_MBSSID_CONFIG_ATTR_EMA]); if (config->ema) { if (!wiphy->ema_max_profile_periodicity) return -EOPNOTSUPP; if (num_elems > wiphy->ema_max_profile_periodicity) return -EINVAL; } config->index = nla_get_u8(tb[NL80211_MBSSID_CONFIG_ATTR_INDEX]); if (config->index >= wiphy->mbssid_max_interfaces || (!config->index && !num_elems)) return -EINVAL; if (tb[NL80211_MBSSID_CONFIG_ATTR_TX_IFINDEX]) { u32 tx_ifindex = nla_get_u32(tb[NL80211_MBSSID_CONFIG_ATTR_TX_IFINDEX]); if ((!config->index && tx_ifindex != dev->ifindex) || (config->index && tx_ifindex == dev->ifindex)) return -EINVAL; if (tx_ifindex != dev->ifindex) { struct net_device *tx_netdev = dev_get_by_index(wiphy_net(wiphy), tx_ifindex); if (!tx_netdev || !tx_netdev->ieee80211_ptr || tx_netdev->ieee80211_ptr->wiphy != wiphy || tx_netdev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP) { dev_put(tx_netdev); return -EINVAL; } config->tx_wdev = tx_netdev->ieee80211_ptr; } else { config->tx_wdev = dev->ieee80211_ptr; } } else if (!config->index) { config->tx_wdev = dev->ieee80211_ptr; } else { return -EINVAL; } return 0; } static struct cfg80211_mbssid_elems * nl80211_parse_mbssid_elems(struct wiphy *wiphy, struct nlattr *attrs) { struct nlattr *nl_elems; struct cfg80211_mbssid_elems *elems; int rem_elems; u8 i = 0, num_elems = 0; if (!wiphy->mbssid_max_interfaces) return ERR_PTR(-EINVAL); nla_for_each_nested(nl_elems, attrs, rem_elems) { if (num_elems >= 255) return ERR_PTR(-EINVAL); num_elems++; } elems = kzalloc(struct_size(elems, elem, num_elems), GFP_KERNEL); if (!elems) return ERR_PTR(-ENOMEM); elems->cnt = num_elems; nla_for_each_nested(nl_elems, attrs, rem_elems) { elems->elem[i].data = nla_data(nl_elems); elems->elem[i].len = nla_len(nl_elems); i++; } return elems; } static struct cfg80211_rnr_elems * nl80211_parse_rnr_elems(struct wiphy *wiphy, struct nlattr *attrs, struct netlink_ext_ack *extack) { struct nlattr *nl_elems; struct cfg80211_rnr_elems *elems; int rem_elems; u8 i = 0, num_elems = 0; nla_for_each_nested(nl_elems, attrs, rem_elems) { int ret; ret = validate_ie_attr(nl_elems, extack); if (ret) return ERR_PTR(ret); num_elems++; } elems = kzalloc(struct_size(elems, elem, num_elems), GFP_KERNEL); if (!elems) return ERR_PTR(-ENOMEM); elems->cnt = num_elems; nla_for_each_nested(nl_elems, attrs, rem_elems) { elems->elem[i].data = nla_data(nl_elems); elems->elem[i].len = nla_len(nl_elems); i++; } return elems; } static int nl80211_parse_he_bss_color(struct nlattr *attrs, struct cfg80211_he_bss_color *he_bss_color) { struct nlattr *tb[NL80211_HE_BSS_COLOR_ATTR_MAX + 1]; int err; err = nla_parse_nested(tb, NL80211_HE_BSS_COLOR_ATTR_MAX, attrs, he_bss_color_policy, NULL); if (err) return err; if (!tb[NL80211_HE_BSS_COLOR_ATTR_COLOR]) return -EINVAL; he_bss_color->color = nla_get_u8(tb[NL80211_HE_BSS_COLOR_ATTR_COLOR]); he_bss_color->enabled = !nla_get_flag(tb[NL80211_HE_BSS_COLOR_ATTR_DISABLED]); he_bss_color->partial = nla_get_flag(tb[NL80211_HE_BSS_COLOR_ATTR_PARTIAL]); return 0; } static int nl80211_parse_beacon(struct cfg80211_registered_device *rdev, struct nlattr *attrs[], struct cfg80211_beacon_data *bcn, struct netlink_ext_ack *extack) { bool haveinfo = false; int err; memset(bcn, 0, sizeof(*bcn)); bcn->link_id = nl80211_link_id(attrs); if (attrs[NL80211_ATTR_BEACON_HEAD]) { bcn->head = nla_data(attrs[NL80211_ATTR_BEACON_HEAD]); bcn->head_len = nla_len(attrs[NL80211_ATTR_BEACON_HEAD]); if (!bcn->head_len) return -EINVAL; haveinfo = true; } if (attrs[NL80211_ATTR_BEACON_TAIL]) { bcn->tail = nla_data(attrs[NL80211_ATTR_BEACON_TAIL]); bcn->tail_len = nla_len(attrs[NL80211_ATTR_BEACON_TAIL]); haveinfo = true; } if (!haveinfo) return -EINVAL; if (attrs[NL80211_ATTR_IE]) { bcn->beacon_ies = nla_data(attrs[NL80211_ATTR_IE]); bcn->beacon_ies_len = nla_len(attrs[NL80211_ATTR_IE]); } if (attrs[NL80211_ATTR_IE_PROBE_RESP]) { bcn->proberesp_ies = nla_data(attrs[NL80211_ATTR_IE_PROBE_RESP]); bcn->proberesp_ies_len = nla_len(attrs[NL80211_ATTR_IE_PROBE_RESP]); } if (attrs[NL80211_ATTR_IE_ASSOC_RESP]) { bcn->assocresp_ies = nla_data(attrs[NL80211_ATTR_IE_ASSOC_RESP]); bcn->assocresp_ies_len = nla_len(attrs[NL80211_ATTR_IE_ASSOC_RESP]); } if (attrs[NL80211_ATTR_PROBE_RESP]) { bcn->probe_resp = nla_data(attrs[NL80211_ATTR_PROBE_RESP]); bcn->probe_resp_len = nla_len(attrs[NL80211_ATTR_PROBE_RESP]); } if (attrs[NL80211_ATTR_FTM_RESPONDER]) { struct nlattr *tb[NL80211_FTM_RESP_ATTR_MAX + 1]; err = nla_parse_nested_deprecated(tb, NL80211_FTM_RESP_ATTR_MAX, attrs[NL80211_ATTR_FTM_RESPONDER], NULL, NULL); if (err) return err; if (tb[NL80211_FTM_RESP_ATTR_ENABLED] && wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) bcn->ftm_responder = 1; else return -EOPNOTSUPP; if (tb[NL80211_FTM_RESP_ATTR_LCI]) { bcn->lci = nla_data(tb[NL80211_FTM_RESP_ATTR_LCI]); bcn->lci_len = nla_len(tb[NL80211_FTM_RESP_ATTR_LCI]); } if (tb[NL80211_FTM_RESP_ATTR_CIVICLOC]) { bcn->civicloc = nla_data(tb[NL80211_FTM_RESP_ATTR_CIVICLOC]); bcn->civicloc_len = nla_len(tb[NL80211_FTM_RESP_ATTR_CIVICLOC]); } } else { bcn->ftm_responder = -1; } if (attrs[NL80211_ATTR_HE_BSS_COLOR]) { err = nl80211_parse_he_bss_color(attrs[NL80211_ATTR_HE_BSS_COLOR], &bcn->he_bss_color); if (err) return err; bcn->he_bss_color_valid = true; } if (attrs[NL80211_ATTR_MBSSID_ELEMS]) { struct cfg80211_mbssid_elems *mbssid = nl80211_parse_mbssid_elems(&rdev->wiphy, attrs[NL80211_ATTR_MBSSID_ELEMS]); if (IS_ERR(mbssid)) return PTR_ERR(mbssid); bcn->mbssid_ies = mbssid; if (bcn->mbssid_ies && attrs[NL80211_ATTR_EMA_RNR_ELEMS]) { struct cfg80211_rnr_elems *rnr = nl80211_parse_rnr_elems(&rdev->wiphy, attrs[NL80211_ATTR_EMA_RNR_ELEMS], extack); if (IS_ERR(rnr)) return PTR_ERR(rnr); if (rnr && rnr->cnt < bcn->mbssid_ies->cnt) return -EINVAL; bcn->rnr_ies = rnr; } } return 0; } static int nl80211_parse_he_obss_pd(struct nlattr *attrs, struct ieee80211_he_obss_pd *he_obss_pd) { struct nlattr *tb[NL80211_HE_OBSS_PD_ATTR_MAX + 1]; int err; err = nla_parse_nested(tb, NL80211_HE_OBSS_PD_ATTR_MAX, attrs, he_obss_pd_policy, NULL); if (err) return err; if (!tb[NL80211_HE_OBSS_PD_ATTR_SR_CTRL]) return -EINVAL; he_obss_pd->sr_ctrl = nla_get_u8(tb[NL80211_HE_OBSS_PD_ATTR_SR_CTRL]); if (tb[NL80211_HE_OBSS_PD_ATTR_MIN_OFFSET]) he_obss_pd->min_offset = nla_get_u8(tb[NL80211_HE_OBSS_PD_ATTR_MIN_OFFSET]); if (tb[NL80211_HE_OBSS_PD_ATTR_MAX_OFFSET]) he_obss_pd->max_offset = nla_get_u8(tb[NL80211_HE_OBSS_PD_ATTR_MAX_OFFSET]); if (tb[NL80211_HE_OBSS_PD_ATTR_NON_SRG_MAX_OFFSET]) he_obss_pd->non_srg_max_offset = nla_get_u8(tb[NL80211_HE_OBSS_PD_ATTR_NON_SRG_MAX_OFFSET]); if (he_obss_pd->min_offset > he_obss_pd->max_offset) return -EINVAL; if (tb[NL80211_HE_OBSS_PD_ATTR_BSS_COLOR_BITMAP]) memcpy(he_obss_pd->bss_color_bitmap, nla_data(tb[NL80211_HE_OBSS_PD_ATTR_BSS_COLOR_BITMAP]), sizeof(he_obss_pd->bss_color_bitmap)); if (tb[NL80211_HE_OBSS_PD_ATTR_PARTIAL_BSSID_BITMAP]) memcpy(he_obss_pd->partial_bssid_bitmap, nla_data(tb[NL80211_HE_OBSS_PD_ATTR_PARTIAL_BSSID_BITMAP]), sizeof(he_obss_pd->partial_bssid_bitmap)); he_obss_pd->enable = true; return 0; } static int nl80211_parse_fils_discovery(struct cfg80211_registered_device *rdev, struct nlattr *attrs, struct cfg80211_fils_discovery *fd) { struct nlattr *tb[NL80211_FILS_DISCOVERY_ATTR_MAX + 1]; int ret; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY)) return -EINVAL; ret = nla_parse_nested(tb, NL80211_FILS_DISCOVERY_ATTR_MAX, attrs, NULL, NULL); if (ret) return ret; if (!tb[NL80211_FILS_DISCOVERY_ATTR_INT_MIN] && !tb[NL80211_FILS_DISCOVERY_ATTR_INT_MAX] && !tb[NL80211_FILS_DISCOVERY_ATTR_TMPL]) { fd->update = true; return 0; } if (!tb[NL80211_FILS_DISCOVERY_ATTR_INT_MIN] || !tb[NL80211_FILS_DISCOVERY_ATTR_INT_MAX] || !tb[NL80211_FILS_DISCOVERY_ATTR_TMPL]) return -EINVAL; fd->tmpl_len = nla_len(tb[NL80211_FILS_DISCOVERY_ATTR_TMPL]); fd->tmpl = nla_data(tb[NL80211_FILS_DISCOVERY_ATTR_TMPL]); fd->min_interval = nla_get_u32(tb[NL80211_FILS_DISCOVERY_ATTR_INT_MIN]); fd->max_interval = nla_get_u32(tb[NL80211_FILS_DISCOVERY_ATTR_INT_MAX]); fd->update = true; return 0; } static int nl80211_parse_unsol_bcast_probe_resp(struct cfg80211_registered_device *rdev, struct nlattr *attrs, struct cfg80211_unsol_bcast_probe_resp *presp) { struct nlattr *tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_MAX + 1]; int ret; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP)) return -EINVAL; ret = nla_parse_nested(tb, NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_MAX, attrs, NULL, NULL); if (ret) return ret; if (!tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_INT] && !tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_TMPL]) { presp->update = true; return 0; } if (!tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_INT] || !tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_TMPL]) return -EINVAL; presp->tmpl = nla_data(tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_TMPL]); presp->tmpl_len = nla_len(tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_TMPL]); presp->interval = nla_get_u32(tb[NL80211_UNSOL_BCAST_PROBE_RESP_ATTR_INT]); presp->update = true; return 0; } static void nl80211_check_ap_rate_selectors(struct cfg80211_ap_settings *params, const struct element *rates) { int i; if (!rates) return; for (i = 0; i < rates->datalen; i++) { if (rates->data[i] == BSS_MEMBERSHIP_SELECTOR_HT_PHY) params->ht_required = true; if (rates->data[i] == BSS_MEMBERSHIP_SELECTOR_VHT_PHY) params->vht_required = true; if (rates->data[i] == BSS_MEMBERSHIP_SELECTOR_HE_PHY) params->he_required = true; if (rates->data[i] == BSS_MEMBERSHIP_SELECTOR_SAE_H2E) params->sae_h2e_required = true; } } /* * Since the nl80211 API didn't include, from the beginning, attributes about * HT/VHT requirements/capabilities, we parse them out of the IEs for the * benefit of drivers that rebuild IEs in the firmware. */ static int nl80211_calculate_ap_params(struct cfg80211_ap_settings *params) { const struct cfg80211_beacon_data *bcn = &params->beacon; size_t ies_len = bcn->tail_len; const u8 *ies = bcn->tail; const struct element *rates; const struct element *cap; rates = cfg80211_find_elem(WLAN_EID_SUPP_RATES, ies, ies_len); nl80211_check_ap_rate_selectors(params, rates); rates = cfg80211_find_elem(WLAN_EID_EXT_SUPP_RATES, ies, ies_len); nl80211_check_ap_rate_selectors(params, rates); cap = cfg80211_find_elem(WLAN_EID_HT_CAPABILITY, ies, ies_len); if (cap && cap->datalen >= sizeof(*params->ht_cap)) params->ht_cap = (void *)cap->data; cap = cfg80211_find_elem(WLAN_EID_VHT_CAPABILITY, ies, ies_len); if (cap && cap->datalen >= sizeof(*params->vht_cap)) params->vht_cap = (void *)cap->data; cap = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ies, ies_len); if (cap && cap->datalen >= sizeof(*params->he_cap) + 1) params->he_cap = (void *)(cap->data + 1); cap = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ies, ies_len); if (cap && cap->datalen >= sizeof(*params->he_oper) + 1) params->he_oper = (void *)(cap->data + 1); cap = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_CAPABILITY, ies, ies_len); if (cap) { if (!cap->datalen) return -EINVAL; params->eht_cap = (void *)(cap->data + 1); if (!ieee80211_eht_capa_size_ok((const u8 *)params->he_cap, (const u8 *)params->eht_cap, cap->datalen - 1, true)) return -EINVAL; } cap = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_OPERATION, ies, ies_len); if (cap) { if (!cap->datalen) return -EINVAL; params->eht_oper = (void *)(cap->data + 1); if (!ieee80211_eht_oper_size_ok((const u8 *)params->eht_oper, cap->datalen - 1)) return -EINVAL; } return 0; } static bool nl80211_get_ap_channel(struct cfg80211_registered_device *rdev, struct cfg80211_ap_settings *params) { struct wireless_dev *wdev; list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { if (wdev->iftype != NL80211_IFTYPE_AP && wdev->iftype != NL80211_IFTYPE_P2P_GO) continue; if (!wdev->u.ap.preset_chandef.chan) continue; params->chandef = wdev->u.ap.preset_chandef; return true; } return false; } static bool nl80211_valid_auth_type(struct cfg80211_registered_device *rdev, enum nl80211_auth_type auth_type, enum nl80211_commands cmd) { if (auth_type > NL80211_AUTHTYPE_MAX) return false; switch (cmd) { case NL80211_CMD_AUTHENTICATE: if (!(rdev->wiphy.features & NL80211_FEATURE_SAE) && auth_type == NL80211_AUTHTYPE_SAE) return false; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_FILS_STA) && (auth_type == NL80211_AUTHTYPE_FILS_SK || auth_type == NL80211_AUTHTYPE_FILS_SK_PFS || auth_type == NL80211_AUTHTYPE_FILS_PK)) return false; return true; case NL80211_CMD_CONNECT: if (!(rdev->wiphy.features & NL80211_FEATURE_SAE) && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD) && auth_type == NL80211_AUTHTYPE_SAE) return false; /* FILS with SK PFS or PK not supported yet */ if (auth_type == NL80211_AUTHTYPE_FILS_SK_PFS || auth_type == NL80211_AUTHTYPE_FILS_PK) return false; if (!wiphy_ext_feature_isset( &rdev->wiphy, NL80211_EXT_FEATURE_FILS_SK_OFFLOAD) && auth_type == NL80211_AUTHTYPE_FILS_SK) return false; return true; case NL80211_CMD_START_AP: if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD_AP) && auth_type == NL80211_AUTHTYPE_SAE) return false; /* FILS not supported yet */ if (auth_type == NL80211_AUTHTYPE_FILS_SK || auth_type == NL80211_AUTHTYPE_FILS_SK_PFS || auth_type == NL80211_AUTHTYPE_FILS_PK) return false; return true; default: return false; } } static void nl80211_send_ap_started(struct wireless_dev *wdev, unsigned int link_id) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_START_AP); if (!hdr) goto out; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD) || (wdev->u.ap.ssid_len && nla_put(msg, NL80211_ATTR_SSID, wdev->u.ap.ssid_len, wdev->u.ap.ssid)) || (wdev->valid_links && nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link_id))) goto out; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); return; out: nlmsg_free(msg); } static int nl80211_validate_ap_phy_operation(struct cfg80211_ap_settings *params) { struct ieee80211_channel *channel = params->chandef.chan; if ((params->he_cap || params->he_oper) && (channel->flags & IEEE80211_CHAN_NO_HE)) return -EOPNOTSUPP; if ((params->eht_cap || params->eht_oper) && (channel->flags & IEEE80211_CHAN_NO_EHT)) return -EOPNOTSUPP; return 0; } static int nl80211_start_ap(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; unsigned int link_id = nl80211_link_id(info->attrs); struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_ap_settings *params; int err; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; if (!rdev->ops->start_ap) return -EOPNOTSUPP; if (wdev->links[link_id].ap.beacon_interval) return -EALREADY; /* these are required for START_AP */ if (!info->attrs[NL80211_ATTR_BEACON_INTERVAL] || !info->attrs[NL80211_ATTR_DTIM_PERIOD] || !info->attrs[NL80211_ATTR_BEACON_HEAD]) return -EINVAL; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; err = nl80211_parse_beacon(rdev, info->attrs, &params->beacon, info->extack); if (err) goto out; params->beacon_interval = nla_get_u32(info->attrs[NL80211_ATTR_BEACON_INTERVAL]); params->dtim_period = nla_get_u32(info->attrs[NL80211_ATTR_DTIM_PERIOD]); err = cfg80211_validate_beacon_int(rdev, dev->ieee80211_ptr->iftype, params->beacon_interval); if (err) goto out; /* * In theory, some of these attributes should be required here * but since they were not used when the command was originally * added, keep them optional for old user space programs to let * them continue to work with drivers that do not need the * additional information -- drivers must check! */ if (info->attrs[NL80211_ATTR_SSID]) { params->ssid = nla_data(info->attrs[NL80211_ATTR_SSID]); params->ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); if (params->ssid_len == 0) { err = -EINVAL; goto out; } if (wdev->u.ap.ssid_len && (wdev->u.ap.ssid_len != params->ssid_len || memcmp(wdev->u.ap.ssid, params->ssid, params->ssid_len))) { /* require identical SSID for MLO */ err = -EINVAL; goto out; } } else if (wdev->valid_links) { /* require SSID for MLO */ err = -EINVAL; goto out; } if (info->attrs[NL80211_ATTR_HIDDEN_SSID]) params->hidden_ssid = nla_get_u32( info->attrs[NL80211_ATTR_HIDDEN_SSID]); params->privacy = !!info->attrs[NL80211_ATTR_PRIVACY]; if (info->attrs[NL80211_ATTR_AUTH_TYPE]) { params->auth_type = nla_get_u32( info->attrs[NL80211_ATTR_AUTH_TYPE]); if (!nl80211_valid_auth_type(rdev, params->auth_type, NL80211_CMD_START_AP)) { err = -EINVAL; goto out; } } else params->auth_type = NL80211_AUTHTYPE_AUTOMATIC; err = nl80211_crypto_settings(rdev, info, &params->crypto, NL80211_MAX_NR_CIPHER_SUITES); if (err) goto out; if (info->attrs[NL80211_ATTR_INACTIVITY_TIMEOUT]) { if (!(rdev->wiphy.features & NL80211_FEATURE_INACTIVITY_TIMER)) { err = -EOPNOTSUPP; goto out; } params->inactivity_timeout = nla_get_u16( info->attrs[NL80211_ATTR_INACTIVITY_TIMEOUT]); } if (info->attrs[NL80211_ATTR_P2P_CTWINDOW]) { if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) { err = -EINVAL; goto out; } params->p2p_ctwindow = nla_get_u8(info->attrs[NL80211_ATTR_P2P_CTWINDOW]); if (params->p2p_ctwindow != 0 && !(rdev->wiphy.features & NL80211_FEATURE_P2P_GO_CTWIN)) { err = -EINVAL; goto out; } } if (info->attrs[NL80211_ATTR_P2P_OPPPS]) { u8 tmp; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) { err = -EINVAL; goto out; } tmp = nla_get_u8(info->attrs[NL80211_ATTR_P2P_OPPPS]); params->p2p_opp_ps = tmp; if (params->p2p_opp_ps != 0 && !(rdev->wiphy.features & NL80211_FEATURE_P2P_GO_OPPPS)) { err = -EINVAL; goto out; } } if (info->attrs[NL80211_ATTR_WIPHY_FREQ]) { err = nl80211_parse_chandef(rdev, info, &params->chandef); if (err) goto out; } else if (wdev->valid_links) { /* with MLD need to specify the channel configuration */ err = -EINVAL; goto out; } else if (wdev->u.ap.preset_chandef.chan) { params->chandef = wdev->u.ap.preset_chandef; } else if (!nl80211_get_ap_channel(rdev, params)) { err = -EINVAL; goto out; } if (info->attrs[NL80211_ATTR_PUNCT_BITMAP]) { err = nl80211_parse_punct_bitmap(rdev, info, &params->chandef, &params->punct_bitmap); if (err) goto out; } if (!cfg80211_reg_can_beacon_relax(&rdev->wiphy, &params->chandef, wdev->iftype)) { err = -EINVAL; goto out; } if (info->attrs[NL80211_ATTR_TX_RATES]) { err = nl80211_parse_tx_bitrate_mask(info, info->attrs, NL80211_ATTR_TX_RATES, &params->beacon_rate, dev, false, link_id); if (err) goto out; err = validate_beacon_tx_rate(rdev, params->chandef.chan->band, &params->beacon_rate); if (err) goto out; } if (info->attrs[NL80211_ATTR_SMPS_MODE]) { params->smps_mode = nla_get_u8(info->attrs[NL80211_ATTR_SMPS_MODE]); switch (params->smps_mode) { case NL80211_SMPS_OFF: break; case NL80211_SMPS_STATIC: if (!(rdev->wiphy.features & NL80211_FEATURE_STATIC_SMPS)) { err = -EINVAL; goto out; } break; case NL80211_SMPS_DYNAMIC: if (!(rdev->wiphy.features & NL80211_FEATURE_DYNAMIC_SMPS)) { err = -EINVAL; goto out; } break; default: err = -EINVAL; goto out; } } else { params->smps_mode = NL80211_SMPS_OFF; } params->pbss = nla_get_flag(info->attrs[NL80211_ATTR_PBSS]); if (params->pbss && !rdev->wiphy.bands[NL80211_BAND_60GHZ]) { err = -EOPNOTSUPP; goto out; } if (info->attrs[NL80211_ATTR_ACL_POLICY]) { params->acl = parse_acl_data(&rdev->wiphy, info); if (IS_ERR(params->acl)) { err = PTR_ERR(params->acl); params->acl = NULL; goto out; } } params->twt_responder = nla_get_flag(info->attrs[NL80211_ATTR_TWT_RESPONDER]); if (info->attrs[NL80211_ATTR_HE_OBSS_PD]) { err = nl80211_parse_he_obss_pd( info->attrs[NL80211_ATTR_HE_OBSS_PD], &params->he_obss_pd); if (err) goto out; } if (info->attrs[NL80211_ATTR_FILS_DISCOVERY]) { err = nl80211_parse_fils_discovery(rdev, info->attrs[NL80211_ATTR_FILS_DISCOVERY], &params->fils_discovery); if (err) goto out; } if (info->attrs[NL80211_ATTR_UNSOL_BCAST_PROBE_RESP]) { err = nl80211_parse_unsol_bcast_probe_resp( rdev, info->attrs[NL80211_ATTR_UNSOL_BCAST_PROBE_RESP], &params->unsol_bcast_probe_resp); if (err) goto out; } if (info->attrs[NL80211_ATTR_MBSSID_CONFIG]) { err = nl80211_parse_mbssid_config(&rdev->wiphy, dev, info->attrs[NL80211_ATTR_MBSSID_CONFIG], &params->mbssid_config, params->beacon.mbssid_ies ? params->beacon.mbssid_ies->cnt : 0); if (err) goto out; } if (!params->mbssid_config.ema && params->beacon.rnr_ies) { err = -EINVAL; goto out; } err = nl80211_calculate_ap_params(params); if (err) goto out; err = nl80211_validate_ap_phy_operation(params); if (err) goto out; if (info->attrs[NL80211_ATTR_AP_SETTINGS_FLAGS]) params->flags = nla_get_u32( info->attrs[NL80211_ATTR_AP_SETTINGS_FLAGS]); else if (info->attrs[NL80211_ATTR_EXTERNAL_AUTH_SUPPORT]) params->flags |= NL80211_AP_SETTINGS_EXTERNAL_AUTH_SUPPORT; if (wdev->conn_owner_nlportid && info->attrs[NL80211_ATTR_SOCKET_OWNER] && wdev->conn_owner_nlportid != info->snd_portid) { err = -EINVAL; goto out; } /* FIXME: validate MLO/link-id against driver capabilities */ err = rdev_start_ap(rdev, dev, params); if (!err) { wdev->links[link_id].ap.beacon_interval = params->beacon_interval; wdev->links[link_id].ap.chandef = params->chandef; wdev->u.ap.ssid_len = params->ssid_len; memcpy(wdev->u.ap.ssid, params->ssid, params->ssid_len); if (info->attrs[NL80211_ATTR_SOCKET_OWNER]) wdev->conn_owner_nlportid = info->snd_portid; nl80211_send_ap_started(wdev, link_id); } out: kfree(params->acl); kfree(params->beacon.mbssid_ies); if (params->mbssid_config.tx_wdev && params->mbssid_config.tx_wdev->netdev && params->mbssid_config.tx_wdev->netdev != dev) dev_put(params->mbssid_config.tx_wdev->netdev); kfree(params->beacon.rnr_ies); kfree(params); return err; } static int nl80211_set_beacon(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; unsigned int link_id = nl80211_link_id(info->attrs); struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_ap_update *params; struct nlattr *attr; int err; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; if (!rdev->ops->change_beacon) return -EOPNOTSUPP; if (!wdev->links[link_id].ap.beacon_interval) return -EINVAL; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; err = nl80211_parse_beacon(rdev, info->attrs, &params->beacon, info->extack); if (err) goto out; attr = info->attrs[NL80211_ATTR_FILS_DISCOVERY]; if (attr) { err = nl80211_parse_fils_discovery(rdev, attr, &params->fils_discovery); if (err) goto out; } attr = info->attrs[NL80211_ATTR_UNSOL_BCAST_PROBE_RESP]; if (attr) { err = nl80211_parse_unsol_bcast_probe_resp(rdev, attr, &params->unsol_bcast_probe_resp); if (err) goto out; } err = rdev_change_beacon(rdev, dev, params); out: kfree(params->beacon.mbssid_ies); kfree(params->beacon.rnr_ies); kfree(params); return err; } static int nl80211_stop_ap(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; unsigned int link_id = nl80211_link_id(info->attrs); struct net_device *dev = info->user_ptr[1]; return cfg80211_stop_ap(rdev, dev, link_id, false); } static const struct nla_policy sta_flags_policy[NL80211_STA_FLAG_MAX + 1] = { [NL80211_STA_FLAG_AUTHORIZED] = { .type = NLA_FLAG }, [NL80211_STA_FLAG_SHORT_PREAMBLE] = { .type = NLA_FLAG }, [NL80211_STA_FLAG_WME] = { .type = NLA_FLAG }, [NL80211_STA_FLAG_MFP] = { .type = NLA_FLAG }, [NL80211_STA_FLAG_AUTHENTICATED] = { .type = NLA_FLAG }, [NL80211_STA_FLAG_TDLS_PEER] = { .type = NLA_FLAG }, }; static int parse_station_flags(struct genl_info *info, enum nl80211_iftype iftype, struct station_parameters *params) { struct nlattr *flags[NL80211_STA_FLAG_MAX + 1]; struct nlattr *nla; int flag; /* * Try parsing the new attribute first so userspace * can specify both for older kernels. */ nla = info->attrs[NL80211_ATTR_STA_FLAGS2]; if (nla) { struct nl80211_sta_flag_update *sta_flags; sta_flags = nla_data(nla); params->sta_flags_mask = sta_flags->mask; params->sta_flags_set = sta_flags->set; params->sta_flags_set &= params->sta_flags_mask; if ((params->sta_flags_mask | params->sta_flags_set) & BIT(__NL80211_STA_FLAG_INVALID)) return -EINVAL; return 0; } /* if present, parse the old attribute */ nla = info->attrs[NL80211_ATTR_STA_FLAGS]; if (!nla) return 0; if (nla_parse_nested_deprecated(flags, NL80211_STA_FLAG_MAX, nla, sta_flags_policy, info->extack)) return -EINVAL; /* * Only allow certain flags for interface types so that * other attributes are silently ignored. Remember that * this is backward compatibility code with old userspace * and shouldn't be hit in other cases anyway. */ switch (iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: params->sta_flags_mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_MFP); break; case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_STATION: params->sta_flags_mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_TDLS_PEER); break; case NL80211_IFTYPE_MESH_POINT: params->sta_flags_mask = BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_MFP) | BIT(NL80211_STA_FLAG_AUTHORIZED); break; default: return -EINVAL; } for (flag = 1; flag <= NL80211_STA_FLAG_MAX; flag++) { if (flags[flag]) { params->sta_flags_set |= (1<<flag); /* no longer support new API additions in old API */ if (flag > NL80211_STA_FLAG_MAX_OLD_API) return -EINVAL; } } return 0; } bool nl80211_put_sta_rate(struct sk_buff *msg, struct rate_info *info, int attr) { struct nlattr *rate; u32 bitrate; u16 bitrate_compat; enum nl80211_rate_info rate_flg; rate = nla_nest_start_noflag(msg, attr); if (!rate) return false; /* cfg80211_calculate_bitrate will return 0 for mcs >= 32 */ bitrate = cfg80211_calculate_bitrate(info); /* report 16-bit bitrate only if we can */ bitrate_compat = bitrate < (1UL << 16) ? bitrate : 0; if (bitrate > 0 && nla_put_u32(msg, NL80211_RATE_INFO_BITRATE32, bitrate)) return false; if (bitrate_compat > 0 && nla_put_u16(msg, NL80211_RATE_INFO_BITRATE, bitrate_compat)) return false; switch (info->bw) { case RATE_INFO_BW_1: rate_flg = NL80211_RATE_INFO_1_MHZ_WIDTH; break; case RATE_INFO_BW_2: rate_flg = NL80211_RATE_INFO_2_MHZ_WIDTH; break; case RATE_INFO_BW_4: rate_flg = NL80211_RATE_INFO_4_MHZ_WIDTH; break; case RATE_INFO_BW_5: rate_flg = NL80211_RATE_INFO_5_MHZ_WIDTH; break; case RATE_INFO_BW_8: rate_flg = NL80211_RATE_INFO_8_MHZ_WIDTH; break; case RATE_INFO_BW_10: rate_flg = NL80211_RATE_INFO_10_MHZ_WIDTH; break; case RATE_INFO_BW_16: rate_flg = NL80211_RATE_INFO_16_MHZ_WIDTH; break; default: WARN_ON(1); fallthrough; case RATE_INFO_BW_20: rate_flg = 0; break; case RATE_INFO_BW_40: rate_flg = NL80211_RATE_INFO_40_MHZ_WIDTH; break; case RATE_INFO_BW_80: rate_flg = NL80211_RATE_INFO_80_MHZ_WIDTH; break; case RATE_INFO_BW_160: rate_flg = NL80211_RATE_INFO_160_MHZ_WIDTH; break; case RATE_INFO_BW_HE_RU: rate_flg = 0; WARN_ON(!(info->flags & RATE_INFO_FLAGS_HE_MCS)); break; case RATE_INFO_BW_320: rate_flg = NL80211_RATE_INFO_320_MHZ_WIDTH; break; case RATE_INFO_BW_EHT_RU: rate_flg = 0; WARN_ON(!(info->flags & RATE_INFO_FLAGS_EHT_MCS)); break; } if (rate_flg && nla_put_flag(msg, rate_flg)) return false; if (info->flags & RATE_INFO_FLAGS_MCS) { if (nla_put_u8(msg, NL80211_RATE_INFO_MCS, info->mcs)) return false; if (info->flags & RATE_INFO_FLAGS_SHORT_GI && nla_put_flag(msg, NL80211_RATE_INFO_SHORT_GI)) return false; } else if (info->flags & RATE_INFO_FLAGS_VHT_MCS) { if (nla_put_u8(msg, NL80211_RATE_INFO_VHT_MCS, info->mcs)) return false; if (nla_put_u8(msg, NL80211_RATE_INFO_VHT_NSS, info->nss)) return false; if (info->flags & RATE_INFO_FLAGS_SHORT_GI && nla_put_flag(msg, NL80211_RATE_INFO_SHORT_GI)) return false; } else if (info->flags & RATE_INFO_FLAGS_HE_MCS) { if (nla_put_u8(msg, NL80211_RATE_INFO_HE_MCS, info->mcs)) return false; if (nla_put_u8(msg, NL80211_RATE_INFO_HE_NSS, info->nss)) return false; if (nla_put_u8(msg, NL80211_RATE_INFO_HE_GI, info->he_gi)) return false; if (nla_put_u8(msg, NL80211_RATE_INFO_HE_DCM, info->he_dcm)) return false; if (info->bw == RATE_INFO_BW_HE_RU && nla_put_u8(msg, NL80211_RATE_INFO_HE_RU_ALLOC, info->he_ru_alloc)) return false; } else if (info->flags & RATE_INFO_FLAGS_S1G_MCS) { if (nla_put_u8(msg, NL80211_RATE_INFO_S1G_MCS, info->mcs)) return false; if (nla_put_u8(msg, NL80211_RATE_INFO_S1G_NSS, info->nss)) return false; if (info->flags & RATE_INFO_FLAGS_SHORT_GI && nla_put_flag(msg, NL80211_RATE_INFO_SHORT_GI)) return false; } else if (info->flags & RATE_INFO_FLAGS_EHT_MCS) { if (nla_put_u8(msg, NL80211_RATE_INFO_EHT_MCS, info->mcs)) return false; if (nla_put_u8(msg, NL80211_RATE_INFO_EHT_NSS, info->nss)) return false; if (nla_put_u8(msg, NL80211_RATE_INFO_EHT_GI, info->eht_gi)) return false; if (info->bw == RATE_INFO_BW_EHT_RU && nla_put_u8(msg, NL80211_RATE_INFO_EHT_RU_ALLOC, info->eht_ru_alloc)) return false; } nla_nest_end(msg, rate); return true; } static bool nl80211_put_signal(struct sk_buff *msg, u8 mask, s8 *signal, int id) { void *attr; int i = 0; if (!mask) return true; attr = nla_nest_start_noflag(msg, id); if (!attr) return false; for (i = 0; i < IEEE80211_MAX_CHAINS; i++) { if (!(mask & BIT(i))) continue; if (nla_put_u8(msg, i, signal[i])) return false; } nla_nest_end(msg, attr); return true; } static int nl80211_send_station(struct sk_buff *msg, u32 cmd, u32 portid, u32 seq, int flags, struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo) { void *hdr; struct nlattr *sinfoattr, *bss_param; hdr = nl80211hdr_put(msg, portid, seq, flags, cmd); if (!hdr) { cfg80211_sinfo_release_content(sinfo); return -1; } if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, mac_addr) || nla_put_u32(msg, NL80211_ATTR_GENERATION, sinfo->generation)) goto nla_put_failure; sinfoattr = nla_nest_start_noflag(msg, NL80211_ATTR_STA_INFO); if (!sinfoattr) goto nla_put_failure; #define PUT_SINFO(attr, memb, type) do { \ BUILD_BUG_ON(sizeof(type) == sizeof(u64)); \ if (sinfo->filled & BIT_ULL(NL80211_STA_INFO_ ## attr) && \ nla_put_ ## type(msg, NL80211_STA_INFO_ ## attr, \ sinfo->memb)) \ goto nla_put_failure; \ } while (0) #define PUT_SINFO_U64(attr, memb) do { \ if (sinfo->filled & BIT_ULL(NL80211_STA_INFO_ ## attr) && \ nla_put_u64_64bit(msg, NL80211_STA_INFO_ ## attr, \ sinfo->memb, NL80211_STA_INFO_PAD)) \ goto nla_put_failure; \ } while (0) PUT_SINFO(CONNECTED_TIME, connected_time, u32); PUT_SINFO(INACTIVE_TIME, inactive_time, u32); PUT_SINFO_U64(ASSOC_AT_BOOTTIME, assoc_at); if (sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES) | BIT_ULL(NL80211_STA_INFO_RX_BYTES64)) && nla_put_u32(msg, NL80211_STA_INFO_RX_BYTES, (u32)sinfo->rx_bytes)) goto nla_put_failure; if (sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES) | BIT_ULL(NL80211_STA_INFO_TX_BYTES64)) && nla_put_u32(msg, NL80211_STA_INFO_TX_BYTES, (u32)sinfo->tx_bytes)) goto nla_put_failure; PUT_SINFO_U64(RX_BYTES64, rx_bytes); PUT_SINFO_U64(TX_BYTES64, tx_bytes); PUT_SINFO(LLID, llid, u16); PUT_SINFO(PLID, plid, u16); PUT_SINFO(PLINK_STATE, plink_state, u8); PUT_SINFO_U64(RX_DURATION, rx_duration); PUT_SINFO_U64(TX_DURATION, tx_duration); if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS)) PUT_SINFO(AIRTIME_WEIGHT, airtime_weight, u16); switch (rdev->wiphy.signal_type) { case CFG80211_SIGNAL_TYPE_MBM: PUT_SINFO(SIGNAL, signal, u8); PUT_SINFO(SIGNAL_AVG, signal_avg, u8); break; default: break; } if (sinfo->filled & BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL)) { if (!nl80211_put_signal(msg, sinfo->chains, sinfo->chain_signal, NL80211_STA_INFO_CHAIN_SIGNAL)) goto nla_put_failure; } if (sinfo->filled & BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)) { if (!nl80211_put_signal(msg, sinfo->chains, sinfo->chain_signal_avg, NL80211_STA_INFO_CHAIN_SIGNAL_AVG)) goto nla_put_failure; } if (sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE)) { if (!nl80211_put_sta_rate(msg, &sinfo->txrate, NL80211_STA_INFO_TX_BITRATE)) goto nla_put_failure; } if (sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE)) { if (!nl80211_put_sta_rate(msg, &sinfo->rxrate, NL80211_STA_INFO_RX_BITRATE)) goto nla_put_failure; } PUT_SINFO(RX_PACKETS, rx_packets, u32); PUT_SINFO(TX_PACKETS, tx_packets, u32); PUT_SINFO(TX_RETRIES, tx_retries, u32); PUT_SINFO(TX_FAILED, tx_failed, u32); PUT_SINFO(EXPECTED_THROUGHPUT, expected_throughput, u32); PUT_SINFO(AIRTIME_LINK_METRIC, airtime_link_metric, u32); PUT_SINFO(BEACON_LOSS, beacon_loss_count, u32); PUT_SINFO(LOCAL_PM, local_pm, u32); PUT_SINFO(PEER_PM, peer_pm, u32); PUT_SINFO(NONPEER_PM, nonpeer_pm, u32); PUT_SINFO(CONNECTED_TO_GATE, connected_to_gate, u8); PUT_SINFO(CONNECTED_TO_AS, connected_to_as, u8); if (sinfo->filled & BIT_ULL(NL80211_STA_INFO_BSS_PARAM)) { bss_param = nla_nest_start_noflag(msg, NL80211_STA_INFO_BSS_PARAM); if (!bss_param) goto nla_put_failure; if (((sinfo->bss_param.flags & BSS_PARAM_FLAGS_CTS_PROT) && nla_put_flag(msg, NL80211_STA_BSS_PARAM_CTS_PROT)) || ((sinfo->bss_param.flags & BSS_PARAM_FLAGS_SHORT_PREAMBLE) && nla_put_flag(msg, NL80211_STA_BSS_PARAM_SHORT_PREAMBLE)) || ((sinfo->bss_param.flags & BSS_PARAM_FLAGS_SHORT_SLOT_TIME) && nla_put_flag(msg, NL80211_STA_BSS_PARAM_SHORT_SLOT_TIME)) || nla_put_u8(msg, NL80211_STA_BSS_PARAM_DTIM_PERIOD, sinfo->bss_param.dtim_period) || nla_put_u16(msg, NL80211_STA_BSS_PARAM_BEACON_INTERVAL, sinfo->bss_param.beacon_interval)) goto nla_put_failure; nla_nest_end(msg, bss_param); } if ((sinfo->filled & BIT_ULL(NL80211_STA_INFO_STA_FLAGS)) && nla_put(msg, NL80211_STA_INFO_STA_FLAGS, sizeof(struct nl80211_sta_flag_update), &sinfo->sta_flags)) goto nla_put_failure; PUT_SINFO_U64(T_OFFSET, t_offset); PUT_SINFO_U64(RX_DROP_MISC, rx_dropped_misc); PUT_SINFO_U64(BEACON_RX, rx_beacon); PUT_SINFO(BEACON_SIGNAL_AVG, rx_beacon_signal_avg, u8); PUT_SINFO(RX_MPDUS, rx_mpdu_count, u32); PUT_SINFO(FCS_ERROR_COUNT, fcs_err_count, u32); if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT)) { PUT_SINFO(ACK_SIGNAL, ack_signal, u8); PUT_SINFO(ACK_SIGNAL_AVG, avg_ack_signal, s8); } #undef PUT_SINFO #undef PUT_SINFO_U64 if (sinfo->pertid) { struct nlattr *tidsattr; int tid; tidsattr = nla_nest_start_noflag(msg, NL80211_STA_INFO_TID_STATS); if (!tidsattr) goto nla_put_failure; for (tid = 0; tid < IEEE80211_NUM_TIDS + 1; tid++) { struct cfg80211_tid_stats *tidstats; struct nlattr *tidattr; tidstats = &sinfo->pertid[tid]; if (!tidstats->filled) continue; tidattr = nla_nest_start_noflag(msg, tid + 1); if (!tidattr) goto nla_put_failure; #define PUT_TIDVAL_U64(attr, memb) do { \ if (tidstats->filled & BIT(NL80211_TID_STATS_ ## attr) && \ nla_put_u64_64bit(msg, NL80211_TID_STATS_ ## attr, \ tidstats->memb, NL80211_TID_STATS_PAD)) \ goto nla_put_failure; \ } while (0) PUT_TIDVAL_U64(RX_MSDU, rx_msdu); PUT_TIDVAL_U64(TX_MSDU, tx_msdu); PUT_TIDVAL_U64(TX_MSDU_RETRIES, tx_msdu_retries); PUT_TIDVAL_U64(TX_MSDU_FAILED, tx_msdu_failed); #undef PUT_TIDVAL_U64 if ((tidstats->filled & BIT(NL80211_TID_STATS_TXQ_STATS)) && !nl80211_put_txq_stats(msg, &tidstats->txq_stats, NL80211_TID_STATS_TXQ_STATS)) goto nla_put_failure; nla_nest_end(msg, tidattr); } nla_nest_end(msg, tidsattr); } nla_nest_end(msg, sinfoattr); if (sinfo->assoc_req_ies_len && nla_put(msg, NL80211_ATTR_IE, sinfo->assoc_req_ies_len, sinfo->assoc_req_ies)) goto nla_put_failure; if (sinfo->assoc_resp_ies_len && nla_put(msg, NL80211_ATTR_RESP_IE, sinfo->assoc_resp_ies_len, sinfo->assoc_resp_ies)) goto nla_put_failure; if (sinfo->mlo_params_valid) { if (nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, sinfo->assoc_link_id)) goto nla_put_failure; if (!is_zero_ether_addr(sinfo->mld_addr) && nla_put(msg, NL80211_ATTR_MLD_ADDR, ETH_ALEN, sinfo->mld_addr)) goto nla_put_failure; } cfg80211_sinfo_release_content(sinfo); genlmsg_end(msg, hdr); return 0; nla_put_failure: cfg80211_sinfo_release_content(sinfo); genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_dump_station(struct sk_buff *skb, struct netlink_callback *cb) { struct station_info sinfo; struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; u8 mac_addr[ETH_ALEN]; int sta_idx = cb->args[2]; int err; err = nl80211_prepare_wdev_dump(cb, &rdev, &wdev, NULL); if (err) return err; /* nl80211_prepare_wdev_dump acquired it in the successful case */ __acquire(&rdev->wiphy.mtx); if (!wdev->netdev) { err = -EINVAL; goto out_err; } if (!rdev->ops->dump_station) { err = -EOPNOTSUPP; goto out_err; } while (1) { memset(&sinfo, 0, sizeof(sinfo)); err = rdev_dump_station(rdev, wdev->netdev, sta_idx, mac_addr, &sinfo); if (err == -ENOENT) break; if (err) goto out_err; if (nl80211_send_station(skb, NL80211_CMD_NEW_STATION, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wdev->netdev, mac_addr, &sinfo) < 0) goto out; sta_idx++; } out: cb->args[2] = sta_idx; err = skb->len; out_err: wiphy_unlock(&rdev->wiphy); return err; } static int nl80211_get_station(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct station_info sinfo; struct sk_buff *msg; u8 *mac_addr = NULL; int err; memset(&sinfo, 0, sizeof(sinfo)); if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!rdev->ops->get_station) return -EOPNOTSUPP; err = rdev_get_station(rdev, dev, mac_addr, &sinfo); if (err) return err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { cfg80211_sinfo_release_content(&sinfo); return -ENOMEM; } if (nl80211_send_station(msg, NL80211_CMD_NEW_STATION, info->snd_portid, info->snd_seq, 0, rdev, dev, mac_addr, &sinfo) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } int cfg80211_check_station_change(struct wiphy *wiphy, struct station_parameters *params, enum cfg80211_station_type statype) { if (params->listen_interval != -1 && statype != CFG80211_STA_AP_CLIENT_UNASSOC) return -EINVAL; if (params->support_p2p_ps != -1 && statype != CFG80211_STA_AP_CLIENT_UNASSOC) return -EINVAL; if (params->aid && !(params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER)) && statype != CFG80211_STA_AP_CLIENT_UNASSOC) return -EINVAL; /* When you run into this, adjust the code below for the new flag */ BUILD_BUG_ON(NL80211_STA_FLAG_MAX != 7); switch (statype) { case CFG80211_STA_MESH_PEER_KERNEL: case CFG80211_STA_MESH_PEER_USER: /* * No ignoring the TDLS flag here -- the userspace mesh * code doesn't have the bug of including TDLS in the * mask everywhere. */ if (params->sta_flags_mask & ~(BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_MFP) | BIT(NL80211_STA_FLAG_AUTHORIZED))) return -EINVAL; break; case CFG80211_STA_TDLS_PEER_SETUP: case CFG80211_STA_TDLS_PEER_ACTIVE: if (!(params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER))) return -EINVAL; /* ignore since it can't change */ params->sta_flags_mask &= ~BIT(NL80211_STA_FLAG_TDLS_PEER); break; default: /* disallow mesh-specific things */ if (params->plink_action != NL80211_PLINK_ACTION_NO_ACTION) return -EINVAL; if (params->local_pm) return -EINVAL; if (params->sta_modify_mask & STATION_PARAM_APPLY_PLINK_STATE) return -EINVAL; } if (statype != CFG80211_STA_TDLS_PEER_SETUP && statype != CFG80211_STA_TDLS_PEER_ACTIVE) { /* TDLS can't be set, ... */ if (params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER)) return -EINVAL; /* * ... but don't bother the driver with it. This works around * a hostapd/wpa_supplicant issue -- it always includes the * TLDS_PEER flag in the mask even for AP mode. */ params->sta_flags_mask &= ~BIT(NL80211_STA_FLAG_TDLS_PEER); } if (statype != CFG80211_STA_TDLS_PEER_SETUP && statype != CFG80211_STA_AP_CLIENT_UNASSOC) { /* reject other things that can't change */ if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD) return -EINVAL; if (params->sta_modify_mask & STATION_PARAM_APPLY_CAPABILITY) return -EINVAL; if (params->link_sta_params.supported_rates) return -EINVAL; if (params->ext_capab || params->link_sta_params.ht_capa || params->link_sta_params.vht_capa || params->link_sta_params.he_capa || params->link_sta_params.eht_capa) return -EINVAL; } if (statype != CFG80211_STA_AP_CLIENT && statype != CFG80211_STA_AP_CLIENT_UNASSOC) { if (params->vlan) return -EINVAL; } switch (statype) { case CFG80211_STA_AP_MLME_CLIENT: /* Use this only for authorizing/unauthorizing a station */ if (!(params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED))) return -EOPNOTSUPP; break; case CFG80211_STA_AP_CLIENT: case CFG80211_STA_AP_CLIENT_UNASSOC: /* accept only the listed bits */ if (params->sta_flags_mask & ~(BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_MFP))) return -EINVAL; /* but authenticated/associated only if driver handles it */ if (!(wiphy->features & NL80211_FEATURE_FULL_AP_CLIENT_STATE) && params->sta_flags_mask & (BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED))) return -EINVAL; break; case CFG80211_STA_IBSS: case CFG80211_STA_AP_STA: /* reject any changes other than AUTHORIZED */ if (params->sta_flags_mask & ~BIT(NL80211_STA_FLAG_AUTHORIZED)) return -EINVAL; break; case CFG80211_STA_TDLS_PEER_SETUP: /* reject any changes other than AUTHORIZED or WME */ if (params->sta_flags_mask & ~(BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_WME))) return -EINVAL; /* force (at least) rates when authorizing */ if (params->sta_flags_set & BIT(NL80211_STA_FLAG_AUTHORIZED) && !params->link_sta_params.supported_rates) return -EINVAL; break; case CFG80211_STA_TDLS_PEER_ACTIVE: /* reject any changes */ return -EINVAL; case CFG80211_STA_MESH_PEER_KERNEL: if (params->sta_modify_mask & STATION_PARAM_APPLY_PLINK_STATE) return -EINVAL; break; case CFG80211_STA_MESH_PEER_USER: if (params->plink_action != NL80211_PLINK_ACTION_NO_ACTION && params->plink_action != NL80211_PLINK_ACTION_BLOCK) return -EINVAL; break; } /* * Older kernel versions ignored this attribute entirely, so don't * reject attempts to update it but mark it as unused instead so the * driver won't look at the data. */ if (statype != CFG80211_STA_AP_CLIENT_UNASSOC && statype != CFG80211_STA_TDLS_PEER_SETUP) params->link_sta_params.opmode_notif_used = false; return 0; } EXPORT_SYMBOL(cfg80211_check_station_change); /* * Get vlan interface making sure it is running and on the right wiphy. */ static struct net_device *get_vlan(struct genl_info *info, struct cfg80211_registered_device *rdev) { struct nlattr *vlanattr = info->attrs[NL80211_ATTR_STA_VLAN]; struct net_device *v; int ret; if (!vlanattr) return NULL; v = dev_get_by_index(genl_info_net(info), nla_get_u32(vlanattr)); if (!v) return ERR_PTR(-ENODEV); if (!v->ieee80211_ptr || v->ieee80211_ptr->wiphy != &rdev->wiphy) { ret = -EINVAL; goto error; } if (v->ieee80211_ptr->iftype != NL80211_IFTYPE_AP_VLAN && v->ieee80211_ptr->iftype != NL80211_IFTYPE_AP && v->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) { ret = -EINVAL; goto error; } if (!netif_running(v)) { ret = -ENETDOWN; goto error; } return v; error: dev_put(v); return ERR_PTR(ret); } static int nl80211_parse_sta_wme(struct genl_info *info, struct station_parameters *params) { struct nlattr *tb[NL80211_STA_WME_MAX + 1]; struct nlattr *nla; int err; /* parse WME attributes if present */ if (!info->attrs[NL80211_ATTR_STA_WME]) return 0; nla = info->attrs[NL80211_ATTR_STA_WME]; err = nla_parse_nested_deprecated(tb, NL80211_STA_WME_MAX, nla, nl80211_sta_wme_policy, info->extack); if (err) return err; if (tb[NL80211_STA_WME_UAPSD_QUEUES]) params->uapsd_queues = nla_get_u8( tb[NL80211_STA_WME_UAPSD_QUEUES]); if (params->uapsd_queues & ~IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK) return -EINVAL; if (tb[NL80211_STA_WME_MAX_SP]) params->max_sp = nla_get_u8(tb[NL80211_STA_WME_MAX_SP]); if (params->max_sp & ~IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK) return -EINVAL; params->sta_modify_mask |= STATION_PARAM_APPLY_UAPSD; return 0; } static int nl80211_parse_sta_channel_info(struct genl_info *info, struct station_parameters *params) { if (info->attrs[NL80211_ATTR_STA_SUPPORTED_CHANNELS]) { params->supported_channels = nla_data(info->attrs[NL80211_ATTR_STA_SUPPORTED_CHANNELS]); params->supported_channels_len = nla_len(info->attrs[NL80211_ATTR_STA_SUPPORTED_CHANNELS]); /* * Need to include at least one (first channel, number of * channels) tuple for each subband (checked in policy), * and must have proper tuples for the rest of the data as well. */ if (params->supported_channels_len % 2) return -EINVAL; } if (info->attrs[NL80211_ATTR_STA_SUPPORTED_OPER_CLASSES]) { params->supported_oper_classes = nla_data(info->attrs[NL80211_ATTR_STA_SUPPORTED_OPER_CLASSES]); params->supported_oper_classes_len = nla_len(info->attrs[NL80211_ATTR_STA_SUPPORTED_OPER_CLASSES]); } return 0; } static int nl80211_set_station_tdls(struct genl_info *info, struct station_parameters *params) { int err; /* Dummy STA entry gets updated once the peer capabilities are known */ if (info->attrs[NL80211_ATTR_PEER_AID]) params->aid = nla_get_u16(info->attrs[NL80211_ATTR_PEER_AID]); if (info->attrs[NL80211_ATTR_HT_CAPABILITY]) params->link_sta_params.ht_capa = nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]); if (info->attrs[NL80211_ATTR_VHT_CAPABILITY]) params->link_sta_params.vht_capa = nla_data(info->attrs[NL80211_ATTR_VHT_CAPABILITY]); if (info->attrs[NL80211_ATTR_HE_CAPABILITY]) { params->link_sta_params.he_capa = nla_data(info->attrs[NL80211_ATTR_HE_CAPABILITY]); params->link_sta_params.he_capa_len = nla_len(info->attrs[NL80211_ATTR_HE_CAPABILITY]); if (info->attrs[NL80211_ATTR_EHT_CAPABILITY]) { params->link_sta_params.eht_capa = nla_data(info->attrs[NL80211_ATTR_EHT_CAPABILITY]); params->link_sta_params.eht_capa_len = nla_len(info->attrs[NL80211_ATTR_EHT_CAPABILITY]); if (!ieee80211_eht_capa_size_ok((const u8 *)params->link_sta_params.he_capa, (const u8 *)params->link_sta_params.eht_capa, params->link_sta_params.eht_capa_len, false)) return -EINVAL; } } err = nl80211_parse_sta_channel_info(info, params); if (err) return err; return nl80211_parse_sta_wme(info, params); } static int nl80211_parse_sta_txpower_setting(struct genl_info *info, struct sta_txpwr *txpwr, bool *txpwr_set) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int idx; if (info->attrs[NL80211_ATTR_STA_TX_POWER_SETTING]) { if (!rdev->ops->set_tx_power || !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_STA_TX_PWR)) return -EOPNOTSUPP; idx = NL80211_ATTR_STA_TX_POWER_SETTING; txpwr->type = nla_get_u8(info->attrs[idx]); if (txpwr->type == NL80211_TX_POWER_LIMITED) { idx = NL80211_ATTR_STA_TX_POWER; if (info->attrs[idx]) txpwr->power = nla_get_s16(info->attrs[idx]); else return -EINVAL; } *txpwr_set = true; } else { *txpwr_set = false; } return 0; } static int nl80211_set_station(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct station_parameters params; u8 *mac_addr; int err; memset(&params, 0, sizeof(params)); if (!rdev->ops->change_station) return -EOPNOTSUPP; /* * AID and listen_interval properties can be set only for unassociated * station. Include these parameters here and will check them in * cfg80211_check_station_change(). */ if (info->attrs[NL80211_ATTR_STA_AID]) params.aid = nla_get_u16(info->attrs[NL80211_ATTR_STA_AID]); if (info->attrs[NL80211_ATTR_VLAN_ID]) params.vlan_id = nla_get_u16(info->attrs[NL80211_ATTR_VLAN_ID]); if (info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL]) params.listen_interval = nla_get_u16(info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL]); else params.listen_interval = -1; if (info->attrs[NL80211_ATTR_STA_SUPPORT_P2P_PS]) params.support_p2p_ps = nla_get_u8(info->attrs[NL80211_ATTR_STA_SUPPORT_P2P_PS]); else params.support_p2p_ps = -1; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; params.link_sta_params.link_id = nl80211_link_id_or_invalid(info->attrs); if (info->attrs[NL80211_ATTR_MLD_ADDR]) { /* If MLD_ADDR attribute is set then this is an MLD station * and the MLD_ADDR attribute holds the MLD address and the * MAC attribute holds for the LINK address. * In that case, the link_id is also expected to be valid. */ if (params.link_sta_params.link_id < 0) return -EINVAL; mac_addr = nla_data(info->attrs[NL80211_ATTR_MLD_ADDR]); params.link_sta_params.mld_mac = mac_addr; params.link_sta_params.link_mac = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!is_valid_ether_addr(params.link_sta_params.link_mac)) return -EINVAL; } else { mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]); } if (info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]) { params.link_sta_params.supported_rates = nla_data(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]); params.link_sta_params.supported_rates_len = nla_len(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]); } if (info->attrs[NL80211_ATTR_STA_CAPABILITY]) { params.capability = nla_get_u16(info->attrs[NL80211_ATTR_STA_CAPABILITY]); params.sta_modify_mask |= STATION_PARAM_APPLY_CAPABILITY; } if (info->attrs[NL80211_ATTR_STA_EXT_CAPABILITY]) { params.ext_capab = nla_data(info->attrs[NL80211_ATTR_STA_EXT_CAPABILITY]); params.ext_capab_len = nla_len(info->attrs[NL80211_ATTR_STA_EXT_CAPABILITY]); } if (parse_station_flags(info, dev->ieee80211_ptr->iftype, &params)) return -EINVAL; if (info->attrs[NL80211_ATTR_STA_PLINK_ACTION]) params.plink_action = nla_get_u8(info->attrs[NL80211_ATTR_STA_PLINK_ACTION]); if (info->attrs[NL80211_ATTR_STA_PLINK_STATE]) { params.plink_state = nla_get_u8(info->attrs[NL80211_ATTR_STA_PLINK_STATE]); if (info->attrs[NL80211_ATTR_MESH_PEER_AID]) params.peer_aid = nla_get_u16( info->attrs[NL80211_ATTR_MESH_PEER_AID]); params.sta_modify_mask |= STATION_PARAM_APPLY_PLINK_STATE; } if (info->attrs[NL80211_ATTR_LOCAL_MESH_POWER_MODE]) params.local_pm = nla_get_u32( info->attrs[NL80211_ATTR_LOCAL_MESH_POWER_MODE]); if (info->attrs[NL80211_ATTR_OPMODE_NOTIF]) { params.link_sta_params.opmode_notif_used = true; params.link_sta_params.opmode_notif = nla_get_u8(info->attrs[NL80211_ATTR_OPMODE_NOTIF]); } if (info->attrs[NL80211_ATTR_HE_6GHZ_CAPABILITY]) params.link_sta_params.he_6ghz_capa = nla_data(info->attrs[NL80211_ATTR_HE_6GHZ_CAPABILITY]); if (info->attrs[NL80211_ATTR_AIRTIME_WEIGHT]) params.airtime_weight = nla_get_u16(info->attrs[NL80211_ATTR_AIRTIME_WEIGHT]); if (params.airtime_weight && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS)) return -EOPNOTSUPP; err = nl80211_parse_sta_txpower_setting(info, &params.link_sta_params.txpwr, &params.link_sta_params.txpwr_set); if (err) return err; /* Include parameters for TDLS peer (will check later) */ err = nl80211_set_station_tdls(info, &params); if (err) return err; params.vlan = get_vlan(info, rdev); if (IS_ERR(params.vlan)) return PTR_ERR(params.vlan); switch (dev->ieee80211_ptr->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: break; default: err = -EOPNOTSUPP; goto out_put_vlan; } /* driver will call cfg80211_check_station_change() */ err = rdev_change_station(rdev, dev, mac_addr, &params); out_put_vlan: dev_put(params.vlan); return err; } static int nl80211_new_station(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int err; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct station_parameters params; u8 *mac_addr = NULL; u32 auth_assoc = BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED); memset(&params, 0, sizeof(params)); if (!rdev->ops->add_station) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL]) return -EINVAL; if (!info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]) return -EINVAL; if (!info->attrs[NL80211_ATTR_STA_AID] && !info->attrs[NL80211_ATTR_PEER_AID]) return -EINVAL; params.link_sta_params.link_id = nl80211_link_id_or_invalid(info->attrs); if (info->attrs[NL80211_ATTR_MLD_ADDR]) { mac_addr = nla_data(info->attrs[NL80211_ATTR_MLD_ADDR]); params.link_sta_params.mld_mac = mac_addr; params.link_sta_params.link_mac = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!is_valid_ether_addr(params.link_sta_params.link_mac)) return -EINVAL; } else { mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]); } params.link_sta_params.supported_rates = nla_data(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]); params.link_sta_params.supported_rates_len = nla_len(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]); params.listen_interval = nla_get_u16(info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL]); if (info->attrs[NL80211_ATTR_VLAN_ID]) params.vlan_id = nla_get_u16(info->attrs[NL80211_ATTR_VLAN_ID]); if (info->attrs[NL80211_ATTR_STA_SUPPORT_P2P_PS]) { params.support_p2p_ps = nla_get_u8(info->attrs[NL80211_ATTR_STA_SUPPORT_P2P_PS]); } else { /* * if not specified, assume it's supported for P2P GO interface, * and is NOT supported for AP interface */ params.support_p2p_ps = dev->ieee80211_ptr->iftype == NL80211_IFTYPE_P2P_GO; } if (info->attrs[NL80211_ATTR_PEER_AID]) params.aid = nla_get_u16(info->attrs[NL80211_ATTR_PEER_AID]); else params.aid = nla_get_u16(info->attrs[NL80211_ATTR_STA_AID]); if (info->attrs[NL80211_ATTR_STA_CAPABILITY]) { params.capability = nla_get_u16(info->attrs[NL80211_ATTR_STA_CAPABILITY]); params.sta_modify_mask |= STATION_PARAM_APPLY_CAPABILITY; } if (info->attrs[NL80211_ATTR_STA_EXT_CAPABILITY]) { params.ext_capab = nla_data(info->attrs[NL80211_ATTR_STA_EXT_CAPABILITY]); params.ext_capab_len = nla_len(info->attrs[NL80211_ATTR_STA_EXT_CAPABILITY]); } if (info->attrs[NL80211_ATTR_HT_CAPABILITY]) params.link_sta_params.ht_capa = nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]); if (info->attrs[NL80211_ATTR_VHT_CAPABILITY]) params.link_sta_params.vht_capa = nla_data(info->attrs[NL80211_ATTR_VHT_CAPABILITY]); if (info->attrs[NL80211_ATTR_HE_CAPABILITY]) { params.link_sta_params.he_capa = nla_data(info->attrs[NL80211_ATTR_HE_CAPABILITY]); params.link_sta_params.he_capa_len = nla_len(info->attrs[NL80211_ATTR_HE_CAPABILITY]); if (info->attrs[NL80211_ATTR_EHT_CAPABILITY]) { params.link_sta_params.eht_capa = nla_data(info->attrs[NL80211_ATTR_EHT_CAPABILITY]); params.link_sta_params.eht_capa_len = nla_len(info->attrs[NL80211_ATTR_EHT_CAPABILITY]); if (!ieee80211_eht_capa_size_ok((const u8 *)params.link_sta_params.he_capa, (const u8 *)params.link_sta_params.eht_capa, params.link_sta_params.eht_capa_len, false)) return -EINVAL; } } if (info->attrs[NL80211_ATTR_HE_6GHZ_CAPABILITY]) params.link_sta_params.he_6ghz_capa = nla_data(info->attrs[NL80211_ATTR_HE_6GHZ_CAPABILITY]); if (info->attrs[NL80211_ATTR_OPMODE_NOTIF]) { params.link_sta_params.opmode_notif_used = true; params.link_sta_params.opmode_notif = nla_get_u8(info->attrs[NL80211_ATTR_OPMODE_NOTIF]); } if (info->attrs[NL80211_ATTR_STA_PLINK_ACTION]) params.plink_action = nla_get_u8(info->attrs[NL80211_ATTR_STA_PLINK_ACTION]); if (info->attrs[NL80211_ATTR_AIRTIME_WEIGHT]) params.airtime_weight = nla_get_u16(info->attrs[NL80211_ATTR_AIRTIME_WEIGHT]); if (params.airtime_weight && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS)) return -EOPNOTSUPP; err = nl80211_parse_sta_txpower_setting(info, &params.link_sta_params.txpwr, &params.link_sta_params.txpwr_set); if (err) return err; err = nl80211_parse_sta_channel_info(info, &params); if (err) return err; err = nl80211_parse_sta_wme(info, &params); if (err) return err; if (parse_station_flags(info, dev->ieee80211_ptr->iftype, &params)) return -EINVAL; /* HT/VHT requires QoS, but if we don't have that just ignore HT/VHT * as userspace might just pass through the capabilities from the IEs * directly, rather than enforcing this restriction and returning an * error in this case. */ if (!(params.sta_flags_set & BIT(NL80211_STA_FLAG_WME))) { params.link_sta_params.ht_capa = NULL; params.link_sta_params.vht_capa = NULL; /* HE and EHT require WME */ if (params.link_sta_params.he_capa_len || params.link_sta_params.he_6ghz_capa || params.link_sta_params.eht_capa_len) return -EINVAL; } /* Ensure that HT/VHT capabilities are not set for 6 GHz HE STA */ if (params.link_sta_params.he_6ghz_capa && (params.link_sta_params.ht_capa || params.link_sta_params.vht_capa)) return -EINVAL; /* When you run into this, adjust the code below for the new flag */ BUILD_BUG_ON(NL80211_STA_FLAG_MAX != 7); switch (dev->ieee80211_ptr->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: /* ignore WME attributes if iface/sta is not capable */ if (!(rdev->wiphy.flags & WIPHY_FLAG_AP_UAPSD) || !(params.sta_flags_set & BIT(NL80211_STA_FLAG_WME))) params.sta_modify_mask &= ~STATION_PARAM_APPLY_UAPSD; /* TDLS peers cannot be added */ if ((params.sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER)) || info->attrs[NL80211_ATTR_PEER_AID]) return -EINVAL; /* but don't bother the driver with it */ params.sta_flags_mask &= ~BIT(NL80211_STA_FLAG_TDLS_PEER); /* allow authenticated/associated only if driver handles it */ if (!(rdev->wiphy.features & NL80211_FEATURE_FULL_AP_CLIENT_STATE) && params.sta_flags_mask & auth_assoc) return -EINVAL; /* Older userspace, or userspace wanting to be compatible with * !NL80211_FEATURE_FULL_AP_CLIENT_STATE, will not set the auth * and assoc flags in the mask, but assumes the station will be * added as associated anyway since this was the required driver * behaviour before NL80211_FEATURE_FULL_AP_CLIENT_STATE was * introduced. * In order to not bother drivers with this quirk in the API * set the flags in both the mask and set for new stations in * this case. */ if (!(params.sta_flags_mask & auth_assoc)) { params.sta_flags_mask |= auth_assoc; params.sta_flags_set |= auth_assoc; } /* must be last in here for error handling */ params.vlan = get_vlan(info, rdev); if (IS_ERR(params.vlan)) return PTR_ERR(params.vlan); break; case NL80211_IFTYPE_MESH_POINT: /* ignore uAPSD data */ params.sta_modify_mask &= ~STATION_PARAM_APPLY_UAPSD; /* associated is disallowed */ if (params.sta_flags_mask & BIT(NL80211_STA_FLAG_ASSOCIATED)) return -EINVAL; /* TDLS peers cannot be added */ if ((params.sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER)) || info->attrs[NL80211_ATTR_PEER_AID]) return -EINVAL; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: /* ignore uAPSD data */ params.sta_modify_mask &= ~STATION_PARAM_APPLY_UAPSD; /* these are disallowed */ if (params.sta_flags_mask & (BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_AUTHENTICATED))) return -EINVAL; /* Only TDLS peers can be added */ if (!(params.sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER))) return -EINVAL; /* Can only add if TDLS ... */ if (!(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_TDLS)) return -EOPNOTSUPP; /* ... with external setup is supported */ if (!(rdev->wiphy.flags & WIPHY_FLAG_TDLS_EXTERNAL_SETUP)) return -EOPNOTSUPP; /* * Older wpa_supplicant versions always mark the TDLS peer * as authorized, but it shouldn't yet be. */ params.sta_flags_mask &= ~BIT(NL80211_STA_FLAG_AUTHORIZED); break; default: return -EOPNOTSUPP; } /* be aware of params.vlan when changing code here */ if (wdev->valid_links) { if (params.link_sta_params.link_id < 0) { err = -EINVAL; goto out; } if (!(wdev->valid_links & BIT(params.link_sta_params.link_id))) { err = -ENOLINK; goto out; } } else { if (params.link_sta_params.link_id >= 0) { err = -EINVAL; goto out; } } err = rdev_add_station(rdev, dev, mac_addr, &params); out: dev_put(params.vlan); return err; } static int nl80211_del_station(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct station_del_parameters params; memset(&params, 0, sizeof(params)); if (info->attrs[NL80211_ATTR_MAC]) params.mac = nla_data(info->attrs[NL80211_ATTR_MAC]); switch (dev->ieee80211_ptr->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_P2P_GO: /* always accept these */ break; case NL80211_IFTYPE_ADHOC: /* conditionally accept */ if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_DEL_IBSS_STA)) break; return -EINVAL; default: return -EINVAL; } if (!rdev->ops->del_station) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_MGMT_SUBTYPE]) { params.subtype = nla_get_u8(info->attrs[NL80211_ATTR_MGMT_SUBTYPE]); if (params.subtype != IEEE80211_STYPE_DISASSOC >> 4 && params.subtype != IEEE80211_STYPE_DEAUTH >> 4) return -EINVAL; } else { /* Default to Deauthentication frame */ params.subtype = IEEE80211_STYPE_DEAUTH >> 4; } if (info->attrs[NL80211_ATTR_REASON_CODE]) { params.reason_code = nla_get_u16(info->attrs[NL80211_ATTR_REASON_CODE]); if (params.reason_code == 0) return -EINVAL; /* 0 is reserved */ } else { /* Default to reason code 2 */ params.reason_code = WLAN_REASON_PREV_AUTH_NOT_VALID; } return rdev_del_station(rdev, dev, &params); } static int nl80211_send_mpath(struct sk_buff *msg, u32 portid, u32 seq, int flags, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { void *hdr; struct nlattr *pinfoattr; hdr = nl80211hdr_put(msg, portid, seq, flags, NL80211_CMD_NEW_MPATH); if (!hdr) return -1; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, dst) || nla_put(msg, NL80211_ATTR_MPATH_NEXT_HOP, ETH_ALEN, next_hop) || nla_put_u32(msg, NL80211_ATTR_GENERATION, pinfo->generation)) goto nla_put_failure; pinfoattr = nla_nest_start_noflag(msg, NL80211_ATTR_MPATH_INFO); if (!pinfoattr) goto nla_put_failure; if ((pinfo->filled & MPATH_INFO_FRAME_QLEN) && nla_put_u32(msg, NL80211_MPATH_INFO_FRAME_QLEN, pinfo->frame_qlen)) goto nla_put_failure; if (((pinfo->filled & MPATH_INFO_SN) && nla_put_u32(msg, NL80211_MPATH_INFO_SN, pinfo->sn)) || ((pinfo->filled & MPATH_INFO_METRIC) && nla_put_u32(msg, NL80211_MPATH_INFO_METRIC, pinfo->metric)) || ((pinfo->filled & MPATH_INFO_EXPTIME) && nla_put_u32(msg, NL80211_MPATH_INFO_EXPTIME, pinfo->exptime)) || ((pinfo->filled & MPATH_INFO_FLAGS) && nla_put_u8(msg, NL80211_MPATH_INFO_FLAGS, pinfo->flags)) || ((pinfo->filled & MPATH_INFO_DISCOVERY_TIMEOUT) && nla_put_u32(msg, NL80211_MPATH_INFO_DISCOVERY_TIMEOUT, pinfo->discovery_timeout)) || ((pinfo->filled & MPATH_INFO_DISCOVERY_RETRIES) && nla_put_u8(msg, NL80211_MPATH_INFO_DISCOVERY_RETRIES, pinfo->discovery_retries)) || ((pinfo->filled & MPATH_INFO_HOP_COUNT) && nla_put_u8(msg, NL80211_MPATH_INFO_HOP_COUNT, pinfo->hop_count)) || ((pinfo->filled & MPATH_INFO_PATH_CHANGE) && nla_put_u32(msg, NL80211_MPATH_INFO_PATH_CHANGE, pinfo->path_change_count))) goto nla_put_failure; nla_nest_end(msg, pinfoattr); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_dump_mpath(struct sk_buff *skb, struct netlink_callback *cb) { struct mpath_info pinfo; struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; u8 dst[ETH_ALEN]; u8 next_hop[ETH_ALEN]; int path_idx = cb->args[2]; int err; err = nl80211_prepare_wdev_dump(cb, &rdev, &wdev, NULL); if (err) return err; /* nl80211_prepare_wdev_dump acquired it in the successful case */ __acquire(&rdev->wiphy.mtx); if (!rdev->ops->dump_mpath) { err = -EOPNOTSUPP; goto out_err; } if (wdev->iftype != NL80211_IFTYPE_MESH_POINT) { err = -EOPNOTSUPP; goto out_err; } while (1) { err = rdev_dump_mpath(rdev, wdev->netdev, path_idx, dst, next_hop, &pinfo); if (err == -ENOENT) break; if (err) goto out_err; if (nl80211_send_mpath(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, wdev->netdev, dst, next_hop, &pinfo) < 0) goto out; path_idx++; } out: cb->args[2] = path_idx; err = skb->len; out_err: wiphy_unlock(&rdev->wiphy); return err; } static int nl80211_get_mpath(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int err; struct net_device *dev = info->user_ptr[1]; struct mpath_info pinfo; struct sk_buff *msg; u8 *dst = NULL; u8 next_hop[ETH_ALEN]; memset(&pinfo, 0, sizeof(pinfo)); if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; dst = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!rdev->ops->get_mpath) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; err = rdev_get_mpath(rdev, dev, dst, next_hop, &pinfo); if (err) return err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; if (nl80211_send_mpath(msg, info->snd_portid, info->snd_seq, 0, dev, dst, next_hop, &pinfo) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } static int nl80211_set_mpath(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; u8 *dst = NULL; u8 *next_hop = NULL; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!info->attrs[NL80211_ATTR_MPATH_NEXT_HOP]) return -EINVAL; dst = nla_data(info->attrs[NL80211_ATTR_MAC]); next_hop = nla_data(info->attrs[NL80211_ATTR_MPATH_NEXT_HOP]); if (!rdev->ops->change_mpath) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; return rdev_change_mpath(rdev, dev, dst, next_hop); } static int nl80211_new_mpath(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; u8 *dst = NULL; u8 *next_hop = NULL; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!info->attrs[NL80211_ATTR_MPATH_NEXT_HOP]) return -EINVAL; dst = nla_data(info->attrs[NL80211_ATTR_MAC]); next_hop = nla_data(info->attrs[NL80211_ATTR_MPATH_NEXT_HOP]); if (!rdev->ops->add_mpath) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; return rdev_add_mpath(rdev, dev, dst, next_hop); } static int nl80211_del_mpath(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; u8 *dst = NULL; if (info->attrs[NL80211_ATTR_MAC]) dst = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!rdev->ops->del_mpath) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; return rdev_del_mpath(rdev, dev, dst); } static int nl80211_get_mpp(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; int err; struct net_device *dev = info->user_ptr[1]; struct mpath_info pinfo; struct sk_buff *msg; u8 *dst = NULL; u8 mpp[ETH_ALEN]; memset(&pinfo, 0, sizeof(pinfo)); if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; dst = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!rdev->ops->get_mpp) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; err = rdev_get_mpp(rdev, dev, dst, mpp, &pinfo); if (err) return err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; if (nl80211_send_mpath(msg, info->snd_portid, info->snd_seq, 0, dev, dst, mpp, &pinfo) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } static int nl80211_dump_mpp(struct sk_buff *skb, struct netlink_callback *cb) { struct mpath_info pinfo; struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; u8 dst[ETH_ALEN]; u8 mpp[ETH_ALEN]; int path_idx = cb->args[2]; int err; err = nl80211_prepare_wdev_dump(cb, &rdev, &wdev, NULL); if (err) return err; /* nl80211_prepare_wdev_dump acquired it in the successful case */ __acquire(&rdev->wiphy.mtx); if (!rdev->ops->dump_mpp) { err = -EOPNOTSUPP; goto out_err; } if (wdev->iftype != NL80211_IFTYPE_MESH_POINT) { err = -EOPNOTSUPP; goto out_err; } while (1) { err = rdev_dump_mpp(rdev, wdev->netdev, path_idx, dst, mpp, &pinfo); if (err == -ENOENT) break; if (err) goto out_err; if (nl80211_send_mpath(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, wdev->netdev, dst, mpp, &pinfo) < 0) goto out; path_idx++; } out: cb->args[2] = path_idx; err = skb->len; out_err: wiphy_unlock(&rdev->wiphy); return err; } static int nl80211_set_bss(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct bss_parameters params; memset(&params, 0, sizeof(params)); params.link_id = nl80211_link_id_or_invalid(info->attrs); /* default to not changing parameters */ params.use_cts_prot = -1; params.use_short_preamble = -1; params.use_short_slot_time = -1; params.ap_isolate = -1; params.ht_opmode = -1; params.p2p_ctwindow = -1; params.p2p_opp_ps = -1; if (info->attrs[NL80211_ATTR_BSS_CTS_PROT]) params.use_cts_prot = nla_get_u8(info->attrs[NL80211_ATTR_BSS_CTS_PROT]); if (info->attrs[NL80211_ATTR_BSS_SHORT_PREAMBLE]) params.use_short_preamble = nla_get_u8(info->attrs[NL80211_ATTR_BSS_SHORT_PREAMBLE]); if (info->attrs[NL80211_ATTR_BSS_SHORT_SLOT_TIME]) params.use_short_slot_time = nla_get_u8(info->attrs[NL80211_ATTR_BSS_SHORT_SLOT_TIME]); if (info->attrs[NL80211_ATTR_BSS_BASIC_RATES]) { params.basic_rates = nla_data(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]); params.basic_rates_len = nla_len(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]); } if (info->attrs[NL80211_ATTR_AP_ISOLATE]) params.ap_isolate = !!nla_get_u8(info->attrs[NL80211_ATTR_AP_ISOLATE]); if (info->attrs[NL80211_ATTR_BSS_HT_OPMODE]) params.ht_opmode = nla_get_u16(info->attrs[NL80211_ATTR_BSS_HT_OPMODE]); if (info->attrs[NL80211_ATTR_P2P_CTWINDOW]) { if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) return -EINVAL; params.p2p_ctwindow = nla_get_u8(info->attrs[NL80211_ATTR_P2P_CTWINDOW]); if (params.p2p_ctwindow != 0 && !(rdev->wiphy.features & NL80211_FEATURE_P2P_GO_CTWIN)) return -EINVAL; } if (info->attrs[NL80211_ATTR_P2P_OPPPS]) { u8 tmp; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) return -EINVAL; tmp = nla_get_u8(info->attrs[NL80211_ATTR_P2P_OPPPS]); params.p2p_opp_ps = tmp; if (params.p2p_opp_ps && !(rdev->wiphy.features & NL80211_FEATURE_P2P_GO_OPPPS)) return -EINVAL; } if (!rdev->ops->change_bss) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; return rdev_change_bss(rdev, dev, &params); } static int nl80211_req_set_reg(struct sk_buff *skb, struct genl_info *info) { char *data = NULL; bool is_indoor; enum nl80211_user_reg_hint_type user_reg_hint_type; u32 owner_nlportid; /* * You should only get this when cfg80211 hasn't yet initialized * completely when built-in to the kernel right between the time * window between nl80211_init() and regulatory_init(), if that is * even possible. */ if (unlikely(!rcu_access_pointer(cfg80211_regdomain))) return -EINPROGRESS; if (info->attrs[NL80211_ATTR_USER_REG_HINT_TYPE]) user_reg_hint_type = nla_get_u32(info->attrs[NL80211_ATTR_USER_REG_HINT_TYPE]); else user_reg_hint_type = NL80211_USER_REG_HINT_USER; switch (user_reg_hint_type) { case NL80211_USER_REG_HINT_USER: case NL80211_USER_REG_HINT_CELL_BASE: if (!info->attrs[NL80211_ATTR_REG_ALPHA2]) return -EINVAL; data = nla_data(info->attrs[NL80211_ATTR_REG_ALPHA2]); return regulatory_hint_user(data, user_reg_hint_type); case NL80211_USER_REG_HINT_INDOOR: if (info->attrs[NL80211_ATTR_SOCKET_OWNER]) { owner_nlportid = info->snd_portid; is_indoor = !!info->attrs[NL80211_ATTR_REG_INDOOR]; } else { owner_nlportid = 0; is_indoor = true; } return regulatory_hint_indoor(is_indoor, owner_nlportid); default: return -EINVAL; } } static int nl80211_reload_regdb(struct sk_buff *skb, struct genl_info *info) { return reg_reload_regdb(); } static int nl80211_get_mesh_config(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct mesh_config cur_params; int err = 0; void *hdr; struct nlattr *pinfoattr; struct sk_buff *msg; if (wdev->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; if (!rdev->ops->get_mesh_config) return -EOPNOTSUPP; /* If not connected, get default parameters */ if (!wdev->u.mesh.id_len) memcpy(&cur_params, &default_mesh_config, sizeof(cur_params)); else err = rdev_get_mesh_config(rdev, dev, &cur_params); if (err) return err; /* Draw up a netlink message to send back */ msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_GET_MESH_CONFIG); if (!hdr) goto out; pinfoattr = nla_nest_start_noflag(msg, NL80211_ATTR_MESH_CONFIG); if (!pinfoattr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put_u16(msg, NL80211_MESHCONF_RETRY_TIMEOUT, cur_params.dot11MeshRetryTimeout) || nla_put_u16(msg, NL80211_MESHCONF_CONFIRM_TIMEOUT, cur_params.dot11MeshConfirmTimeout) || nla_put_u16(msg, NL80211_MESHCONF_HOLDING_TIMEOUT, cur_params.dot11MeshHoldingTimeout) || nla_put_u16(msg, NL80211_MESHCONF_MAX_PEER_LINKS, cur_params.dot11MeshMaxPeerLinks) || nla_put_u8(msg, NL80211_MESHCONF_MAX_RETRIES, cur_params.dot11MeshMaxRetries) || nla_put_u8(msg, NL80211_MESHCONF_TTL, cur_params.dot11MeshTTL) || nla_put_u8(msg, NL80211_MESHCONF_ELEMENT_TTL, cur_params.element_ttl) || nla_put_u8(msg, NL80211_MESHCONF_AUTO_OPEN_PLINKS, cur_params.auto_open_plinks) || nla_put_u32(msg, NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, cur_params.dot11MeshNbrOffsetMaxNeighbor) || nla_put_u8(msg, NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, cur_params.dot11MeshHWMPmaxPREQretries) || nla_put_u32(msg, NL80211_MESHCONF_PATH_REFRESH_TIME, cur_params.path_refresh_time) || nla_put_u16(msg, NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, cur_params.min_discovery_timeout) || nla_put_u32(msg, NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, cur_params.dot11MeshHWMPactivePathTimeout) || nla_put_u16(msg, NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, cur_params.dot11MeshHWMPpreqMinInterval) || nla_put_u16(msg, NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, cur_params.dot11MeshHWMPperrMinInterval) || nla_put_u16(msg, NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME, cur_params.dot11MeshHWMPnetDiameterTraversalTime) || nla_put_u8(msg, NL80211_MESHCONF_HWMP_ROOTMODE, cur_params.dot11MeshHWMPRootMode) || nla_put_u16(msg, NL80211_MESHCONF_HWMP_RANN_INTERVAL, cur_params.dot11MeshHWMPRannInterval) || nla_put_u8(msg, NL80211_MESHCONF_GATE_ANNOUNCEMENTS, cur_params.dot11MeshGateAnnouncementProtocol) || nla_put_u8(msg, NL80211_MESHCONF_FORWARDING, cur_params.dot11MeshForwarding) || nla_put_s32(msg, NL80211_MESHCONF_RSSI_THRESHOLD, cur_params.rssi_threshold) || nla_put_u32(msg, NL80211_MESHCONF_HT_OPMODE, cur_params.ht_opmode) || nla_put_u32(msg, NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, cur_params.dot11MeshHWMPactivePathToRootTimeout) || nla_put_u16(msg, NL80211_MESHCONF_HWMP_ROOT_INTERVAL, cur_params.dot11MeshHWMProotInterval) || nla_put_u16(msg, NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, cur_params.dot11MeshHWMPconfirmationInterval) || nla_put_u32(msg, NL80211_MESHCONF_POWER_MODE, cur_params.power_mode) || nla_put_u16(msg, NL80211_MESHCONF_AWAKE_WINDOW, cur_params.dot11MeshAwakeWindowDuration) || nla_put_u32(msg, NL80211_MESHCONF_PLINK_TIMEOUT, cur_params.plink_timeout) || nla_put_u8(msg, NL80211_MESHCONF_CONNECTED_TO_GATE, cur_params.dot11MeshConnectedToMeshGate) || nla_put_u8(msg, NL80211_MESHCONF_NOLEARN, cur_params.dot11MeshNolearn) || nla_put_u8(msg, NL80211_MESHCONF_CONNECTED_TO_AS, cur_params.dot11MeshConnectedToAuthServer)) goto nla_put_failure; nla_nest_end(msg, pinfoattr); genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: out: nlmsg_free(msg); return -ENOBUFS; } static const struct nla_policy nl80211_meshconf_params_policy[NL80211_MESHCONF_ATTR_MAX+1] = { [NL80211_MESHCONF_RETRY_TIMEOUT] = NLA_POLICY_RANGE(NLA_U16, 1, 255), [NL80211_MESHCONF_CONFIRM_TIMEOUT] = NLA_POLICY_RANGE(NLA_U16, 1, 255), [NL80211_MESHCONF_HOLDING_TIMEOUT] = NLA_POLICY_RANGE(NLA_U16, 1, 255), [NL80211_MESHCONF_MAX_PEER_LINKS] = NLA_POLICY_RANGE(NLA_U16, 0, 255), [NL80211_MESHCONF_MAX_RETRIES] = NLA_POLICY_MAX(NLA_U8, 16), [NL80211_MESHCONF_TTL] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_MESHCONF_ELEMENT_TTL] = NLA_POLICY_MIN(NLA_U8, 1), [NL80211_MESHCONF_AUTO_OPEN_PLINKS] = NLA_POLICY_MAX(NLA_U8, 1), [NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR] = NLA_POLICY_RANGE(NLA_U32, 1, 255), [NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES] = { .type = NLA_U8 }, [NL80211_MESHCONF_PATH_REFRESH_TIME] = { .type = NLA_U32 }, [NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT] = { .type = NLA_U32 }, [NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_MESHCONF_HWMP_ROOTMODE] = NLA_POLICY_MAX(NLA_U8, 4), [NL80211_MESHCONF_HWMP_RANN_INTERVAL] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_MESHCONF_GATE_ANNOUNCEMENTS] = NLA_POLICY_MAX(NLA_U8, 1), [NL80211_MESHCONF_FORWARDING] = NLA_POLICY_MAX(NLA_U8, 1), [NL80211_MESHCONF_RSSI_THRESHOLD] = NLA_POLICY_RANGE(NLA_S32, -255, 0), [NL80211_MESHCONF_HT_OPMODE] = { .type = NLA_U16 }, [NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT] = { .type = NLA_U32 }, [NL80211_MESHCONF_HWMP_ROOT_INTERVAL] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL] = NLA_POLICY_MIN(NLA_U16, 1), [NL80211_MESHCONF_POWER_MODE] = NLA_POLICY_RANGE(NLA_U32, NL80211_MESH_POWER_ACTIVE, NL80211_MESH_POWER_MAX), [NL80211_MESHCONF_AWAKE_WINDOW] = { .type = NLA_U16 }, [NL80211_MESHCONF_PLINK_TIMEOUT] = { .type = NLA_U32 }, [NL80211_MESHCONF_CONNECTED_TO_GATE] = NLA_POLICY_RANGE(NLA_U8, 0, 1), [NL80211_MESHCONF_NOLEARN] = NLA_POLICY_RANGE(NLA_U8, 0, 1), [NL80211_MESHCONF_CONNECTED_TO_AS] = NLA_POLICY_RANGE(NLA_U8, 0, 1), }; static const struct nla_policy nl80211_mesh_setup_params_policy[NL80211_MESH_SETUP_ATTR_MAX+1] = { [NL80211_MESH_SETUP_ENABLE_VENDOR_SYNC] = { .type = NLA_U8 }, [NL80211_MESH_SETUP_ENABLE_VENDOR_PATH_SEL] = { .type = NLA_U8 }, [NL80211_MESH_SETUP_ENABLE_VENDOR_METRIC] = { .type = NLA_U8 }, [NL80211_MESH_SETUP_USERSPACE_AUTH] = { .type = NLA_FLAG }, [NL80211_MESH_SETUP_AUTH_PROTOCOL] = { .type = NLA_U8 }, [NL80211_MESH_SETUP_USERSPACE_MPM] = { .type = NLA_FLAG }, [NL80211_MESH_SETUP_IE] = NLA_POLICY_VALIDATE_FN(NLA_BINARY, validate_ie_attr, IEEE80211_MAX_DATA_LEN), [NL80211_MESH_SETUP_USERSPACE_AMPE] = { .type = NLA_FLAG }, }; static int nl80211_parse_mesh_config(struct genl_info *info, struct mesh_config *cfg, u32 *mask_out) { struct nlattr *tb[NL80211_MESHCONF_ATTR_MAX + 1]; u32 mask = 0; u16 ht_opmode; #define FILL_IN_MESH_PARAM_IF_SET(tb, cfg, param, mask, attr, fn) \ do { \ if (tb[attr]) { \ cfg->param = fn(tb[attr]); \ mask |= BIT((attr) - 1); \ } \ } while (0) if (!info->attrs[NL80211_ATTR_MESH_CONFIG]) return -EINVAL; if (nla_parse_nested_deprecated(tb, NL80211_MESHCONF_ATTR_MAX, info->attrs[NL80211_ATTR_MESH_CONFIG], nl80211_meshconf_params_policy, info->extack)) return -EINVAL; /* This makes sure that there aren't more than 32 mesh config * parameters (otherwise our bitfield scheme would not work.) */ BUILD_BUG_ON(NL80211_MESHCONF_ATTR_MAX > 32); /* Fill in the params struct */ FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshRetryTimeout, mask, NL80211_MESHCONF_RETRY_TIMEOUT, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshConfirmTimeout, mask, NL80211_MESHCONF_CONFIRM_TIMEOUT, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHoldingTimeout, mask, NL80211_MESHCONF_HOLDING_TIMEOUT, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshMaxPeerLinks, mask, NL80211_MESHCONF_MAX_PEER_LINKS, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshMaxRetries, mask, NL80211_MESHCONF_MAX_RETRIES, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshTTL, mask, NL80211_MESHCONF_TTL, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, element_ttl, mask, NL80211_MESHCONF_ELEMENT_TTL, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, auto_open_plinks, mask, NL80211_MESHCONF_AUTO_OPEN_PLINKS, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshNbrOffsetMaxNeighbor, mask, NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, nla_get_u32); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPmaxPREQretries, mask, NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, path_refresh_time, mask, NL80211_MESHCONF_PATH_REFRESH_TIME, nla_get_u32); if (mask & BIT(NL80211_MESHCONF_PATH_REFRESH_TIME) && (cfg->path_refresh_time < 1 || cfg->path_refresh_time > 65535)) return -EINVAL; FILL_IN_MESH_PARAM_IF_SET(tb, cfg, min_discovery_timeout, mask, NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPactivePathTimeout, mask, NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, nla_get_u32); if (mask & BIT(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT) && (cfg->dot11MeshHWMPactivePathTimeout < 1 || cfg->dot11MeshHWMPactivePathTimeout > 65535)) return -EINVAL; FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPpreqMinInterval, mask, NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPperrMinInterval, mask, NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPnetDiameterTraversalTime, mask, NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPRootMode, mask, NL80211_MESHCONF_HWMP_ROOTMODE, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPRannInterval, mask, NL80211_MESHCONF_HWMP_RANN_INTERVAL, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshGateAnnouncementProtocol, mask, NL80211_MESHCONF_GATE_ANNOUNCEMENTS, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshForwarding, mask, NL80211_MESHCONF_FORWARDING, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, rssi_threshold, mask, NL80211_MESHCONF_RSSI_THRESHOLD, nla_get_s32); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshConnectedToMeshGate, mask, NL80211_MESHCONF_CONNECTED_TO_GATE, nla_get_u8); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshConnectedToAuthServer, mask, NL80211_MESHCONF_CONNECTED_TO_AS, nla_get_u8); /* * Check HT operation mode based on * IEEE 802.11-2016 9.4.2.57 HT Operation element. */ if (tb[NL80211_MESHCONF_HT_OPMODE]) { ht_opmode = nla_get_u16(tb[NL80211_MESHCONF_HT_OPMODE]); if (ht_opmode & ~(IEEE80211_HT_OP_MODE_PROTECTION | IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT | IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT)) return -EINVAL; /* NON_HT_STA bit is reserved, but some programs set it */ ht_opmode &= ~IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT; cfg->ht_opmode = ht_opmode; mask |= (1 << (NL80211_MESHCONF_HT_OPMODE - 1)); } FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPactivePathToRootTimeout, mask, NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, nla_get_u32); if (mask & BIT(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT) && (cfg->dot11MeshHWMPactivePathToRootTimeout < 1 || cfg->dot11MeshHWMPactivePathToRootTimeout > 65535)) return -EINVAL; FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMProotInterval, mask, NL80211_MESHCONF_HWMP_ROOT_INTERVAL, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPconfirmationInterval, mask, NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, power_mode, mask, NL80211_MESHCONF_POWER_MODE, nla_get_u32); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshAwakeWindowDuration, mask, NL80211_MESHCONF_AWAKE_WINDOW, nla_get_u16); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, plink_timeout, mask, NL80211_MESHCONF_PLINK_TIMEOUT, nla_get_u32); FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshNolearn, mask, NL80211_MESHCONF_NOLEARN, nla_get_u8); if (mask_out) *mask_out = mask; return 0; #undef FILL_IN_MESH_PARAM_IF_SET } static int nl80211_parse_mesh_setup(struct genl_info *info, struct mesh_setup *setup) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct nlattr *tb[NL80211_MESH_SETUP_ATTR_MAX + 1]; if (!info->attrs[NL80211_ATTR_MESH_SETUP]) return -EINVAL; if (nla_parse_nested_deprecated(tb, NL80211_MESH_SETUP_ATTR_MAX, info->attrs[NL80211_ATTR_MESH_SETUP], nl80211_mesh_setup_params_policy, info->extack)) return -EINVAL; if (tb[NL80211_MESH_SETUP_ENABLE_VENDOR_SYNC]) setup->sync_method = (nla_get_u8(tb[NL80211_MESH_SETUP_ENABLE_VENDOR_SYNC])) ? IEEE80211_SYNC_METHOD_VENDOR : IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET; if (tb[NL80211_MESH_SETUP_ENABLE_VENDOR_PATH_SEL]) setup->path_sel_proto = (nla_get_u8(tb[NL80211_MESH_SETUP_ENABLE_VENDOR_PATH_SEL])) ? IEEE80211_PATH_PROTOCOL_VENDOR : IEEE80211_PATH_PROTOCOL_HWMP; if (tb[NL80211_MESH_SETUP_ENABLE_VENDOR_METRIC]) setup->path_metric = (nla_get_u8(tb[NL80211_MESH_SETUP_ENABLE_VENDOR_METRIC])) ? IEEE80211_PATH_METRIC_VENDOR : IEEE80211_PATH_METRIC_AIRTIME; if (tb[NL80211_MESH_SETUP_IE]) { struct nlattr *ieattr = tb[NL80211_MESH_SETUP_IE]; setup->ie = nla_data(ieattr); setup->ie_len = nla_len(ieattr); } if (tb[NL80211_MESH_SETUP_USERSPACE_MPM] && !(rdev->wiphy.features & NL80211_FEATURE_USERSPACE_MPM)) return -EINVAL; setup->user_mpm = nla_get_flag(tb[NL80211_MESH_SETUP_USERSPACE_MPM]); setup->is_authenticated = nla_get_flag(tb[NL80211_MESH_SETUP_USERSPACE_AUTH]); setup->is_secure = nla_get_flag(tb[NL80211_MESH_SETUP_USERSPACE_AMPE]); if (setup->is_secure) setup->user_mpm = true; if (tb[NL80211_MESH_SETUP_AUTH_PROTOCOL]) { if (!setup->user_mpm) return -EINVAL; setup->auth_id = nla_get_u8(tb[NL80211_MESH_SETUP_AUTH_PROTOCOL]); } return 0; } static int nl80211_update_mesh_config(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct mesh_config cfg = {}; u32 mask; int err; if (wdev->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; if (!rdev->ops->update_mesh_config) return -EOPNOTSUPP; err = nl80211_parse_mesh_config(info, &cfg, &mask); if (err) return err; if (!wdev->u.mesh.id_len) err = -ENOLINK; if (!err) err = rdev_update_mesh_config(rdev, dev, mask, &cfg); return err; } static int nl80211_put_regdom(const struct ieee80211_regdomain *regdom, struct sk_buff *msg) { struct nlattr *nl_reg_rules; unsigned int i; if (nla_put_string(msg, NL80211_ATTR_REG_ALPHA2, regdom->alpha2) || (regdom->dfs_region && nla_put_u8(msg, NL80211_ATTR_DFS_REGION, regdom->dfs_region))) goto nla_put_failure; nl_reg_rules = nla_nest_start_noflag(msg, NL80211_ATTR_REG_RULES); if (!nl_reg_rules) goto nla_put_failure; for (i = 0; i < regdom->n_reg_rules; i++) { struct nlattr *nl_reg_rule; const struct ieee80211_reg_rule *reg_rule; const struct ieee80211_freq_range *freq_range; const struct ieee80211_power_rule *power_rule; unsigned int max_bandwidth_khz; reg_rule = &regdom->reg_rules[i]; freq_range = &reg_rule->freq_range; power_rule = &reg_rule->power_rule; nl_reg_rule = nla_nest_start_noflag(msg, i); if (!nl_reg_rule) goto nla_put_failure; max_bandwidth_khz = freq_range->max_bandwidth_khz; if (!max_bandwidth_khz) max_bandwidth_khz = reg_get_max_bandwidth(regdom, reg_rule); if (nla_put_u32(msg, NL80211_ATTR_REG_RULE_FLAGS, reg_rule->flags) || nla_put_u32(msg, NL80211_ATTR_FREQ_RANGE_START, freq_range->start_freq_khz) || nla_put_u32(msg, NL80211_ATTR_FREQ_RANGE_END, freq_range->end_freq_khz) || nla_put_u32(msg, NL80211_ATTR_FREQ_RANGE_MAX_BW, max_bandwidth_khz) || nla_put_u32(msg, NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN, power_rule->max_antenna_gain) || nla_put_u32(msg, NL80211_ATTR_POWER_RULE_MAX_EIRP, power_rule->max_eirp) || nla_put_u32(msg, NL80211_ATTR_DFS_CAC_TIME, reg_rule->dfs_cac_ms)) goto nla_put_failure; if ((reg_rule->flags & NL80211_RRF_PSD) && nla_put_s8(msg, NL80211_ATTR_POWER_RULE_PSD, reg_rule->psd)) goto nla_put_failure; nla_nest_end(msg, nl_reg_rule); } nla_nest_end(msg, nl_reg_rules); return 0; nla_put_failure: return -EMSGSIZE; } static int nl80211_get_reg_do(struct sk_buff *skb, struct genl_info *info) { const struct ieee80211_regdomain *regdom = NULL; struct cfg80211_registered_device *rdev; struct wiphy *wiphy = NULL; struct sk_buff *msg; int err = -EMSGSIZE; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOBUFS; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_GET_REG); if (!hdr) goto put_failure; rtnl_lock(); if (info->attrs[NL80211_ATTR_WIPHY]) { bool self_managed; rdev = cfg80211_get_dev_from_info(genl_info_net(info), info); if (IS_ERR(rdev)) { err = PTR_ERR(rdev); goto nla_put_failure; } wiphy = &rdev->wiphy; self_managed = wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED; rcu_read_lock(); regdom = get_wiphy_regdom(wiphy); /* a self-managed-reg device must have a private regdom */ if (WARN_ON(!regdom && self_managed)) { err = -EINVAL; goto nla_put_failure_rcu; } if (regdom && nla_put_u32(msg, NL80211_ATTR_WIPHY, get_wiphy_idx(wiphy))) goto nla_put_failure_rcu; } else { rcu_read_lock(); } if (!wiphy && reg_last_request_cell_base() && nla_put_u32(msg, NL80211_ATTR_USER_REG_HINT_TYPE, NL80211_USER_REG_HINT_CELL_BASE)) goto nla_put_failure_rcu; if (!regdom) regdom = rcu_dereference(cfg80211_regdomain); if (nl80211_put_regdom(regdom, msg)) goto nla_put_failure_rcu; rcu_read_unlock(); genlmsg_end(msg, hdr); rtnl_unlock(); return genlmsg_reply(msg, info); nla_put_failure_rcu: rcu_read_unlock(); nla_put_failure: rtnl_unlock(); put_failure: nlmsg_free(msg); return err; } static int nl80211_send_regdom(struct sk_buff *msg, struct netlink_callback *cb, u32 seq, int flags, struct wiphy *wiphy, const struct ieee80211_regdomain *regdom) { void *hdr = nl80211hdr_put(msg, NETLINK_CB(cb->skb).portid, seq, flags, NL80211_CMD_GET_REG); if (!hdr) return -1; genl_dump_check_consistent(cb, hdr); if (nl80211_put_regdom(regdom, msg)) goto nla_put_failure; if (!wiphy && reg_last_request_cell_base() && nla_put_u32(msg, NL80211_ATTR_USER_REG_HINT_TYPE, NL80211_USER_REG_HINT_CELL_BASE)) goto nla_put_failure; if (wiphy && nla_put_u32(msg, NL80211_ATTR_WIPHY, get_wiphy_idx(wiphy))) goto nla_put_failure; if (wiphy && wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && nla_put_flag(msg, NL80211_ATTR_WIPHY_SELF_MANAGED_REG)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_get_reg_dump(struct sk_buff *skb, struct netlink_callback *cb) { const struct ieee80211_regdomain *regdom = NULL; struct cfg80211_registered_device *rdev; int err, reg_idx, start = cb->args[2]; rcu_read_lock(); if (cfg80211_regdomain && start == 0) { err = nl80211_send_regdom(skb, cb, cb->nlh->nlmsg_seq, NLM_F_MULTI, NULL, rcu_dereference(cfg80211_regdomain)); if (err < 0) goto out_err; } /* the global regdom is idx 0 */ reg_idx = 1; list_for_each_entry_rcu(rdev, &cfg80211_rdev_list, list) { regdom = get_wiphy_regdom(&rdev->wiphy); if (!regdom) continue; if (++reg_idx <= start) continue; err = nl80211_send_regdom(skb, cb, cb->nlh->nlmsg_seq, NLM_F_MULTI, &rdev->wiphy, regdom); if (err < 0) { reg_idx--; break; } } cb->args[2] = reg_idx; err = skb->len; out_err: rcu_read_unlock(); return err; } #ifdef CONFIG_CFG80211_CRDA_SUPPORT static const struct nla_policy reg_rule_policy[NL80211_REG_RULE_ATTR_MAX + 1] = { [NL80211_ATTR_REG_RULE_FLAGS] = { .type = NLA_U32 }, [NL80211_ATTR_FREQ_RANGE_START] = { .type = NLA_U32 }, [NL80211_ATTR_FREQ_RANGE_END] = { .type = NLA_U32 }, [NL80211_ATTR_FREQ_RANGE_MAX_BW] = { .type = NLA_U32 }, [NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN] = { .type = NLA_U32 }, [NL80211_ATTR_POWER_RULE_MAX_EIRP] = { .type = NLA_U32 }, [NL80211_ATTR_DFS_CAC_TIME] = { .type = NLA_U32 }, }; static int parse_reg_rule(struct nlattr *tb[], struct ieee80211_reg_rule *reg_rule) { struct ieee80211_freq_range *freq_range = &reg_rule->freq_range; struct ieee80211_power_rule *power_rule = &reg_rule->power_rule; if (!tb[NL80211_ATTR_REG_RULE_FLAGS]) return -EINVAL; if (!tb[NL80211_ATTR_FREQ_RANGE_START]) return -EINVAL; if (!tb[NL80211_ATTR_FREQ_RANGE_END]) return -EINVAL; if (!tb[NL80211_ATTR_FREQ_RANGE_MAX_BW]) return -EINVAL; if (!tb[NL80211_ATTR_POWER_RULE_MAX_EIRP]) return -EINVAL; reg_rule->flags = nla_get_u32(tb[NL80211_ATTR_REG_RULE_FLAGS]); freq_range->start_freq_khz = nla_get_u32(tb[NL80211_ATTR_FREQ_RANGE_START]); freq_range->end_freq_khz = nla_get_u32(tb[NL80211_ATTR_FREQ_RANGE_END]); freq_range->max_bandwidth_khz = nla_get_u32(tb[NL80211_ATTR_FREQ_RANGE_MAX_BW]); power_rule->max_eirp = nla_get_u32(tb[NL80211_ATTR_POWER_RULE_MAX_EIRP]); if (tb[NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN]) power_rule->max_antenna_gain = nla_get_u32(tb[NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN]); if (tb[NL80211_ATTR_DFS_CAC_TIME]) reg_rule->dfs_cac_ms = nla_get_u32(tb[NL80211_ATTR_DFS_CAC_TIME]); return 0; } static int nl80211_set_reg(struct sk_buff *skb, struct genl_info *info) { struct nlattr *tb[NL80211_REG_RULE_ATTR_MAX + 1]; struct nlattr *nl_reg_rule; char *alpha2; int rem_reg_rules, r; u32 num_rules = 0, rule_idx = 0; enum nl80211_dfs_regions dfs_region = NL80211_DFS_UNSET; struct ieee80211_regdomain *rd; if (!info->attrs[NL80211_ATTR_REG_ALPHA2]) return -EINVAL; if (!info->attrs[NL80211_ATTR_REG_RULES]) return -EINVAL; alpha2 = nla_data(info->attrs[NL80211_ATTR_REG_ALPHA2]); if (info->attrs[NL80211_ATTR_DFS_REGION]) dfs_region = nla_get_u8(info->attrs[NL80211_ATTR_DFS_REGION]); nla_for_each_nested(nl_reg_rule, info->attrs[NL80211_ATTR_REG_RULES], rem_reg_rules) { num_rules++; if (num_rules > NL80211_MAX_SUPP_REG_RULES) return -EINVAL; } rtnl_lock(); if (!reg_is_valid_request(alpha2)) { r = -EINVAL; goto out; } rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); if (!rd) { r = -ENOMEM; goto out; } rd->n_reg_rules = num_rules; rd->alpha2[0] = alpha2[0]; rd->alpha2[1] = alpha2[1]; /* * Disable DFS master mode if the DFS region was * not supported or known on this kernel. */ if (reg_supported_dfs_region(dfs_region)) rd->dfs_region = dfs_region; nla_for_each_nested(nl_reg_rule, info->attrs[NL80211_ATTR_REG_RULES], rem_reg_rules) { r = nla_parse_nested_deprecated(tb, NL80211_REG_RULE_ATTR_MAX, nl_reg_rule, reg_rule_policy, info->extack); if (r) goto bad_reg; r = parse_reg_rule(tb, &rd->reg_rules[rule_idx]); if (r) goto bad_reg; rule_idx++; if (rule_idx > NL80211_MAX_SUPP_REG_RULES) { r = -EINVAL; goto bad_reg; } } r = set_regdom(rd, REGD_SOURCE_CRDA); /* set_regdom takes ownership of rd */ rd = NULL; bad_reg: kfree(rd); out: rtnl_unlock(); return r; } #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ static int validate_scan_freqs(struct nlattr *freqs) { struct nlattr *attr1, *attr2; int n_channels = 0, tmp1, tmp2; nla_for_each_nested(attr1, freqs, tmp1) if (nla_len(attr1) != sizeof(u32)) return 0; nla_for_each_nested(attr1, freqs, tmp1) { n_channels++; /* * Some hardware has a limited channel list for * scanning, and it is pretty much nonsensical * to scan for a channel twice, so disallow that * and don't require drivers to check that the * channel list they get isn't longer than what * they can scan, as long as they can scan all * the channels they registered at once. */ nla_for_each_nested(attr2, freqs, tmp2) if (attr1 != attr2 && nla_get_u32(attr1) == nla_get_u32(attr2)) return 0; } return n_channels; } static bool is_band_valid(struct wiphy *wiphy, enum nl80211_band b) { return b < NUM_NL80211_BANDS && wiphy->bands[b]; } static int parse_bss_select(struct nlattr *nla, struct wiphy *wiphy, struct cfg80211_bss_selection *bss_select) { struct nlattr *attr[NL80211_BSS_SELECT_ATTR_MAX + 1]; struct nlattr *nest; int err; bool found = false; int i; /* only process one nested attribute */ nest = nla_data(nla); if (!nla_ok(nest, nla_len(nest))) return -EINVAL; err = nla_parse_nested_deprecated(attr, NL80211_BSS_SELECT_ATTR_MAX, nest, nl80211_bss_select_policy, NULL); if (err) return err; /* only one attribute may be given */ for (i = 0; i <= NL80211_BSS_SELECT_ATTR_MAX; i++) { if (attr[i]) { if (found) return -EINVAL; found = true; } } bss_select->behaviour = __NL80211_BSS_SELECT_ATTR_INVALID; if (attr[NL80211_BSS_SELECT_ATTR_RSSI]) bss_select->behaviour = NL80211_BSS_SELECT_ATTR_RSSI; if (attr[NL80211_BSS_SELECT_ATTR_BAND_PREF]) { bss_select->behaviour = NL80211_BSS_SELECT_ATTR_BAND_PREF; bss_select->param.band_pref = nla_get_u32(attr[NL80211_BSS_SELECT_ATTR_BAND_PREF]); if (!is_band_valid(wiphy, bss_select->param.band_pref)) return -EINVAL; } if (attr[NL80211_BSS_SELECT_ATTR_RSSI_ADJUST]) { struct nl80211_bss_select_rssi_adjust *adj_param; adj_param = nla_data(attr[NL80211_BSS_SELECT_ATTR_RSSI_ADJUST]); bss_select->behaviour = NL80211_BSS_SELECT_ATTR_RSSI_ADJUST; bss_select->param.adjust.band = adj_param->band; bss_select->param.adjust.delta = adj_param->delta; if (!is_band_valid(wiphy, bss_select->param.adjust.band)) return -EINVAL; } /* user-space did not provide behaviour attribute */ if (bss_select->behaviour == __NL80211_BSS_SELECT_ATTR_INVALID) return -EINVAL; if (!(wiphy->bss_select_support & BIT(bss_select->behaviour))) return -EINVAL; return 0; } int nl80211_parse_random_mac(struct nlattr **attrs, u8 *mac_addr, u8 *mac_addr_mask) { int i; if (!attrs[NL80211_ATTR_MAC] && !attrs[NL80211_ATTR_MAC_MASK]) { eth_zero_addr(mac_addr); eth_zero_addr(mac_addr_mask); mac_addr[0] = 0x2; mac_addr_mask[0] = 0x3; return 0; } /* need both or none */ if (!attrs[NL80211_ATTR_MAC] || !attrs[NL80211_ATTR_MAC_MASK]) return -EINVAL; memcpy(mac_addr, nla_data(attrs[NL80211_ATTR_MAC]), ETH_ALEN); memcpy(mac_addr_mask, nla_data(attrs[NL80211_ATTR_MAC_MASK]), ETH_ALEN); /* don't allow or configure an mcast address */ if (!is_multicast_ether_addr(mac_addr_mask) || is_multicast_ether_addr(mac_addr)) return -EINVAL; /* * allow users to pass a MAC address that has bits set outside * of the mask, but don't bother drivers with having to deal * with such bits */ for (i = 0; i < ETH_ALEN; i++) mac_addr[i] &= mac_addr_mask[i]; return 0; } static bool cfg80211_off_channel_oper_allowed(struct wireless_dev *wdev, struct ieee80211_channel *chan) { unsigned int link_id; bool all_ok = true; lockdep_assert_wiphy(wdev->wiphy); if (!cfg80211_beaconing_iface_active(wdev)) return true; /* * FIXME: check if we have a free HW resource/link for chan * * This, as well as the FIXME below, requires knowing the link * capabilities of the hardware. */ /* we cannot leave radar channels */ for_each_valid_link(wdev, link_id) { struct cfg80211_chan_def *chandef; chandef = wdev_chandef(wdev, link_id); if (!chandef || !chandef->chan) continue; /* * FIXME: don't require all_ok, but rather check only the * correct HW resource/link onto which 'chan' falls, * as only that link leaves the channel for doing * the off-channel operation. */ if (chandef->chan->flags & IEEE80211_CHAN_RADAR) all_ok = false; } if (all_ok) return true; return regulatory_pre_cac_allowed(wdev->wiphy); } static bool nl80211_check_scan_feat(struct wiphy *wiphy, u32 flags, u32 flag, enum nl80211_ext_feature_index feat) { if (!(flags & flag)) return true; if (wiphy_ext_feature_isset(wiphy, feat)) return true; return false; } static int nl80211_check_scan_flags(struct wiphy *wiphy, struct wireless_dev *wdev, void *request, struct nlattr **attrs, bool is_sched_scan) { u8 *mac_addr, *mac_addr_mask; u32 *flags; enum nl80211_feature_flags randomness_flag; if (!attrs[NL80211_ATTR_SCAN_FLAGS]) return 0; if (is_sched_scan) { struct cfg80211_sched_scan_request *req = request; randomness_flag = wdev ? NL80211_FEATURE_SCHED_SCAN_RANDOM_MAC_ADDR : NL80211_FEATURE_ND_RANDOM_MAC_ADDR; flags = &req->flags; mac_addr = req->mac_addr; mac_addr_mask = req->mac_addr_mask; } else { struct cfg80211_scan_request *req = request; randomness_flag = NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; flags = &req->flags; mac_addr = req->mac_addr; mac_addr_mask = req->mac_addr_mask; } *flags = nla_get_u32(attrs[NL80211_ATTR_SCAN_FLAGS]); if (((*flags & NL80211_SCAN_FLAG_LOW_PRIORITY) && !(wiphy->features & NL80211_FEATURE_LOW_PRIORITY_SCAN)) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_LOW_SPAN, NL80211_EXT_FEATURE_LOW_SPAN_SCAN) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_LOW_POWER, NL80211_EXT_FEATURE_LOW_POWER_SCAN) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_HIGH_ACCURACY, NL80211_EXT_FEATURE_HIGH_ACCURACY_SCAN) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_FILS_MAX_CHANNEL_TIME, NL80211_EXT_FEATURE_FILS_MAX_CHANNEL_TIME) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_ACCEPT_BCAST_PROBE_RESP, NL80211_EXT_FEATURE_ACCEPT_BCAST_PROBE_RESP) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_OCE_PROBE_REQ_DEFERRAL_SUPPRESSION, NL80211_EXT_FEATURE_OCE_PROBE_REQ_DEFERRAL_SUPPRESSION) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_OCE_PROBE_REQ_HIGH_TX_RATE, NL80211_EXT_FEATURE_OCE_PROBE_REQ_HIGH_TX_RATE) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_RANDOM_SN, NL80211_EXT_FEATURE_SCAN_RANDOM_SN) || !nl80211_check_scan_feat(wiphy, *flags, NL80211_SCAN_FLAG_MIN_PREQ_CONTENT, NL80211_EXT_FEATURE_SCAN_MIN_PREQ_CONTENT)) return -EOPNOTSUPP; if (*flags & NL80211_SCAN_FLAG_RANDOM_ADDR) { int err; if (!(wiphy->features & randomness_flag) || (wdev && wdev->connected)) return -EOPNOTSUPP; err = nl80211_parse_random_mac(attrs, mac_addr, mac_addr_mask); if (err) return err; } return 0; } static int nl80211_trigger_scan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; struct cfg80211_scan_request *request; struct nlattr *scan_freqs = NULL; bool scan_freqs_khz = false; struct nlattr *attr; struct wiphy *wiphy; int err, tmp, n_ssids = 0, n_channels, i; size_t ie_len, size; wiphy = &rdev->wiphy; if (wdev->iftype == NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!rdev->ops->scan) return -EOPNOTSUPP; if (rdev->scan_req || rdev->scan_msg) return -EBUSY; if (info->attrs[NL80211_ATTR_SCAN_FREQ_KHZ]) { if (!wiphy_ext_feature_isset(wiphy, NL80211_EXT_FEATURE_SCAN_FREQ_KHZ)) return -EOPNOTSUPP; scan_freqs = info->attrs[NL80211_ATTR_SCAN_FREQ_KHZ]; scan_freqs_khz = true; } else if (info->attrs[NL80211_ATTR_SCAN_FREQUENCIES]) scan_freqs = info->attrs[NL80211_ATTR_SCAN_FREQUENCIES]; if (scan_freqs) { n_channels = validate_scan_freqs(scan_freqs); if (!n_channels) return -EINVAL; } else { n_channels = ieee80211_get_num_supported_channels(wiphy); } if (info->attrs[NL80211_ATTR_SCAN_SSIDS]) nla_for_each_nested(attr, info->attrs[NL80211_ATTR_SCAN_SSIDS], tmp) n_ssids++; if (n_ssids > wiphy->max_scan_ssids) return -EINVAL; if (info->attrs[NL80211_ATTR_IE]) ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); else ie_len = 0; if (ie_len > wiphy->max_scan_ie_len) return -EINVAL; size = struct_size(request, channels, n_channels); size = size_add(size, array_size(sizeof(*request->ssids), n_ssids)); size = size_add(size, ie_len); request = kzalloc(size, GFP_KERNEL); if (!request) return -ENOMEM; if (n_ssids) request->ssids = (void *)&request->channels[n_channels]; request->n_ssids = n_ssids; if (ie_len) { if (n_ssids) request->ie = (void *)(request->ssids + n_ssids); else request->ie = (void *)(request->channels + n_channels); } i = 0; if (scan_freqs) { /* user specified, bail out if channel not found */ nla_for_each_nested(attr, scan_freqs, tmp) { struct ieee80211_channel *chan; int freq = nla_get_u32(attr); if (!scan_freqs_khz) freq = MHZ_TO_KHZ(freq); chan = ieee80211_get_channel_khz(wiphy, freq); if (!chan) { err = -EINVAL; goto out_free; } /* ignore disabled channels */ if (chan->flags & IEEE80211_CHAN_DISABLED) continue; request->channels[i] = chan; i++; } } else { enum nl80211_band band; /* all channels */ for (band = 0; band < NUM_NL80211_BANDS; band++) { int j; if (!wiphy->bands[band]) continue; for (j = 0; j < wiphy->bands[band]->n_channels; j++) { struct ieee80211_channel *chan; chan = &wiphy->bands[band]->channels[j]; if (chan->flags & IEEE80211_CHAN_DISABLED) continue; request->channels[i] = chan; i++; } } } if (!i) { err = -EINVAL; goto out_free; } request->n_channels = i; for (i = 0; i < request->n_channels; i++) { struct ieee80211_channel *chan = request->channels[i]; /* if we can go off-channel to the target channel we're good */ if (cfg80211_off_channel_oper_allowed(wdev, chan)) continue; if (!cfg80211_wdev_on_sub_chan(wdev, chan, true)) { err = -EBUSY; goto out_free; } } i = 0; if (n_ssids) { nla_for_each_nested(attr, info->attrs[NL80211_ATTR_SCAN_SSIDS], tmp) { if (nla_len(attr) > IEEE80211_MAX_SSID_LEN) { err = -EINVAL; goto out_free; } request->ssids[i].ssid_len = nla_len(attr); memcpy(request->ssids[i].ssid, nla_data(attr), nla_len(attr)); i++; } } if (info->attrs[NL80211_ATTR_IE]) { request->ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); memcpy((void *)request->ie, nla_data(info->attrs[NL80211_ATTR_IE]), request->ie_len); } for (i = 0; i < NUM_NL80211_BANDS; i++) if (wiphy->bands[i]) request->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; if (info->attrs[NL80211_ATTR_SCAN_SUPP_RATES]) { nla_for_each_nested(attr, info->attrs[NL80211_ATTR_SCAN_SUPP_RATES], tmp) { enum nl80211_band band = nla_type(attr); if (band < 0 || band >= NUM_NL80211_BANDS) { err = -EINVAL; goto out_free; } if (!wiphy->bands[band]) continue; err = ieee80211_get_ratemask(wiphy->bands[band], nla_data(attr), nla_len(attr), &request->rates[band]); if (err) goto out_free; } } if (info->attrs[NL80211_ATTR_MEASUREMENT_DURATION]) { request->duration = nla_get_u16(info->attrs[NL80211_ATTR_MEASUREMENT_DURATION]); request->duration_mandatory = nla_get_flag(info->attrs[NL80211_ATTR_MEASUREMENT_DURATION_MANDATORY]); } err = nl80211_check_scan_flags(wiphy, wdev, request, info->attrs, false); if (err) goto out_free; request->no_cck = nla_get_flag(info->attrs[NL80211_ATTR_TX_NO_CCK_RATE]); /* Initial implementation used NL80211_ATTR_MAC to set the specific * BSSID to scan for. This was problematic because that same attribute * was already used for another purpose (local random MAC address). The * NL80211_ATTR_BSSID attribute was added to fix this. For backwards * compatibility with older userspace components, also use the * NL80211_ATTR_MAC value here if it can be determined to be used for * the specific BSSID use case instead of the random MAC address * (NL80211_ATTR_SCAN_FLAGS is used to enable random MAC address use). */ if (info->attrs[NL80211_ATTR_BSSID]) memcpy(request->bssid, nla_data(info->attrs[NL80211_ATTR_BSSID]), ETH_ALEN); else if (!(request->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) && info->attrs[NL80211_ATTR_MAC]) memcpy(request->bssid, nla_data(info->attrs[NL80211_ATTR_MAC]), ETH_ALEN); else eth_broadcast_addr(request->bssid); request->tsf_report_link_id = nl80211_link_id_or_invalid(info->attrs); request->wdev = wdev; request->wiphy = &rdev->wiphy; request->scan_start = jiffies; rdev->scan_req = request; err = cfg80211_scan(rdev); if (err) goto out_free; nl80211_send_scan_start(rdev, wdev); dev_hold(wdev->netdev); return 0; out_free: rdev->scan_req = NULL; kfree(request); return err; } static int nl80211_abort_scan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; if (!rdev->ops->abort_scan) return -EOPNOTSUPP; if (rdev->scan_msg) return 0; if (!rdev->scan_req) return -ENOENT; rdev_abort_scan(rdev, wdev); return 0; } static int nl80211_parse_sched_scan_plans(struct wiphy *wiphy, int n_plans, struct cfg80211_sched_scan_request *request, struct nlattr **attrs) { int tmp, err, i = 0; struct nlattr *attr; if (!attrs[NL80211_ATTR_SCHED_SCAN_PLANS]) { u32 interval; /* * If scan plans are not specified, * %NL80211_ATTR_SCHED_SCAN_INTERVAL will be specified. In this * case one scan plan will be set with the specified scan * interval and infinite number of iterations. */ interval = nla_get_u32(attrs[NL80211_ATTR_SCHED_SCAN_INTERVAL]); if (!interval) return -EINVAL; request->scan_plans[0].interval = DIV_ROUND_UP(interval, MSEC_PER_SEC); if (!request->scan_plans[0].interval) return -EINVAL; if (request->scan_plans[0].interval > wiphy->max_sched_scan_plan_interval) request->scan_plans[0].interval = wiphy->max_sched_scan_plan_interval; return 0; } nla_for_each_nested(attr, attrs[NL80211_ATTR_SCHED_SCAN_PLANS], tmp) { struct nlattr *plan[NL80211_SCHED_SCAN_PLAN_MAX + 1]; if (WARN_ON(i >= n_plans)) return -EINVAL; err = nla_parse_nested_deprecated(plan, NL80211_SCHED_SCAN_PLAN_MAX, attr, nl80211_plan_policy, NULL); if (err) return err; if (!plan[NL80211_SCHED_SCAN_PLAN_INTERVAL]) return -EINVAL; request->scan_plans[i].interval = nla_get_u32(plan[NL80211_SCHED_SCAN_PLAN_INTERVAL]); if (!request->scan_plans[i].interval || request->scan_plans[i].interval > wiphy->max_sched_scan_plan_interval) return -EINVAL; if (plan[NL80211_SCHED_SCAN_PLAN_ITERATIONS]) { request->scan_plans[i].iterations = nla_get_u32(plan[NL80211_SCHED_SCAN_PLAN_ITERATIONS]); if (!request->scan_plans[i].iterations || (request->scan_plans[i].iterations > wiphy->max_sched_scan_plan_iterations)) return -EINVAL; } else if (i < n_plans - 1) { /* * All scan plans but the last one must specify * a finite number of iterations */ return -EINVAL; } i++; } /* * The last scan plan must not specify the number of * iterations, it is supposed to run infinitely */ if (request->scan_plans[n_plans - 1].iterations) return -EINVAL; return 0; } static int nl80211_parse_sched_scan_per_band_rssi(struct wiphy *wiphy, struct cfg80211_match_set *match_sets, struct nlattr *tb_band_rssi, s32 rssi_thold) { struct nlattr *attr; int i, tmp, ret = 0; if (!wiphy_ext_feature_isset(wiphy, NL80211_EXT_FEATURE_SCHED_SCAN_BAND_SPECIFIC_RSSI_THOLD)) { if (tb_band_rssi) ret = -EOPNOTSUPP; else for (i = 0; i < NUM_NL80211_BANDS; i++) match_sets->per_band_rssi_thold[i] = NL80211_SCAN_RSSI_THOLD_OFF; return ret; } for (i = 0; i < NUM_NL80211_BANDS; i++) match_sets->per_band_rssi_thold[i] = rssi_thold; nla_for_each_nested(attr, tb_band_rssi, tmp) { enum nl80211_band band = nla_type(attr); if (band < 0 || band >= NUM_NL80211_BANDS) return -EINVAL; match_sets->per_band_rssi_thold[band] = nla_get_s32(attr); } return 0; } static struct cfg80211_sched_scan_request * nl80211_parse_sched_scan(struct wiphy *wiphy, struct wireless_dev *wdev, struct nlattr **attrs, int max_match_sets) { struct cfg80211_sched_scan_request *request; struct nlattr *attr; int err, tmp, n_ssids = 0, n_match_sets = 0, n_channels, i, n_plans = 0; enum nl80211_band band; size_t ie_len, size; struct nlattr *tb[NL80211_SCHED_SCAN_MATCH_ATTR_MAX + 1]; s32 default_match_rssi = NL80211_SCAN_RSSI_THOLD_OFF; if (attrs[NL80211_ATTR_SCAN_FREQUENCIES]) { n_channels = validate_scan_freqs( attrs[NL80211_ATTR_SCAN_FREQUENCIES]); if (!n_channels) return ERR_PTR(-EINVAL); } else { n_channels = ieee80211_get_num_supported_channels(wiphy); } if (attrs[NL80211_ATTR_SCAN_SSIDS]) nla_for_each_nested(attr, attrs[NL80211_ATTR_SCAN_SSIDS], tmp) n_ssids++; if (n_ssids > wiphy->max_sched_scan_ssids) return ERR_PTR(-EINVAL); /* * First, count the number of 'real' matchsets. Due to an issue with * the old implementation, matchsets containing only the RSSI attribute * (NL80211_SCHED_SCAN_MATCH_ATTR_RSSI) are considered as the 'default' * RSSI for all matchsets, rather than their own matchset for reporting * all APs with a strong RSSI. This is needed to be compatible with * older userspace that treated a matchset with only the RSSI as the * global RSSI for all other matchsets - if there are other matchsets. */ if (attrs[NL80211_ATTR_SCHED_SCAN_MATCH]) { nla_for_each_nested(attr, attrs[NL80211_ATTR_SCHED_SCAN_MATCH], tmp) { struct nlattr *rssi; err = nla_parse_nested_deprecated(tb, NL80211_SCHED_SCAN_MATCH_ATTR_MAX, attr, nl80211_match_policy, NULL); if (err) return ERR_PTR(err); /* SSID and BSSID are mutually exclusive */ if (tb[NL80211_SCHED_SCAN_MATCH_ATTR_SSID] && tb[NL80211_SCHED_SCAN_MATCH_ATTR_BSSID]) return ERR_PTR(-EINVAL); /* add other standalone attributes here */ if (tb[NL80211_SCHED_SCAN_MATCH_ATTR_SSID] || tb[NL80211_SCHED_SCAN_MATCH_ATTR_BSSID]) { n_match_sets++; continue; } rssi = tb[NL80211_SCHED_SCAN_MATCH_ATTR_RSSI]; if (rssi) default_match_rssi = nla_get_s32(rssi); } } /* However, if there's no other matchset, add the RSSI one */ if (!n_match_sets && default_match_rssi != NL80211_SCAN_RSSI_THOLD_OFF) n_match_sets = 1; if (n_match_sets > max_match_sets) return ERR_PTR(-EINVAL); if (attrs[NL80211_ATTR_IE]) ie_len = nla_len(attrs[NL80211_ATTR_IE]); else ie_len = 0; if (ie_len > wiphy->max_sched_scan_ie_len) return ERR_PTR(-EINVAL); if (attrs[NL80211_ATTR_SCHED_SCAN_PLANS]) { /* * NL80211_ATTR_SCHED_SCAN_INTERVAL must not be specified since * each scan plan already specifies its own interval */ if (attrs[NL80211_ATTR_SCHED_SCAN_INTERVAL]) return ERR_PTR(-EINVAL); nla_for_each_nested(attr, attrs[NL80211_ATTR_SCHED_SCAN_PLANS], tmp) n_plans++; } else { /* * The scan interval attribute is kept for backward * compatibility. If no scan plans are specified and sched scan * interval is specified, one scan plan will be set with this * scan interval and infinite number of iterations. */ if (!attrs[NL80211_ATTR_SCHED_SCAN_INTERVAL]) return ERR_PTR(-EINVAL); n_plans = 1; } if (!n_plans || n_plans > wiphy->max_sched_scan_plans) return ERR_PTR(-EINVAL); if (!wiphy_ext_feature_isset( wiphy, NL80211_EXT_FEATURE_SCHED_SCAN_RELATIVE_RSSI) && (attrs[NL80211_ATTR_SCHED_SCAN_RELATIVE_RSSI] || attrs[NL80211_ATTR_SCHED_SCAN_RSSI_ADJUST])) return ERR_PTR(-EINVAL); size = struct_size(request, channels, n_channels); size = size_add(size, array_size(sizeof(*request->ssids), n_ssids)); size = size_add(size, array_size(sizeof(*request->match_sets), n_match_sets)); size = size_add(size, array_size(sizeof(*request->scan_plans), n_plans)); size = size_add(size, ie_len); request = kzalloc(size, GFP_KERNEL); if (!request) return ERR_PTR(-ENOMEM); if (n_ssids) request->ssids = (void *)&request->channels[n_channels]; request->n_ssids = n_ssids; if (ie_len) { if (n_ssids) request->ie = (void *)(request->ssids + n_ssids); else request->ie = (void *)(request->channels + n_channels); } if (n_match_sets) { if (request->ie) request->match_sets = (void *)(request->ie + ie_len); else if (n_ssids) request->match_sets = (void *)(request->ssids + n_ssids); else request->match_sets = (void *)(request->channels + n_channels); } request->n_match_sets = n_match_sets; if (n_match_sets) request->scan_plans = (void *)(request->match_sets + n_match_sets); else if (request->ie) request->scan_plans = (void *)(request->ie + ie_len); else if (n_ssids) request->scan_plans = (void *)(request->ssids + n_ssids); else request->scan_plans = (void *)(request->channels + n_channels); request->n_scan_plans = n_plans; i = 0; if (attrs[NL80211_ATTR_SCAN_FREQUENCIES]) { /* user specified, bail out if channel not found */ nla_for_each_nested(attr, attrs[NL80211_ATTR_SCAN_FREQUENCIES], tmp) { struct ieee80211_channel *chan; chan = ieee80211_get_channel(wiphy, nla_get_u32(attr)); if (!chan) { err = -EINVAL; goto out_free; } /* ignore disabled channels */ if (chan->flags & IEEE80211_CHAN_DISABLED) continue; request->channels[i] = chan; i++; } } else { /* all channels */ for (band = 0; band < NUM_NL80211_BANDS; band++) { int j; if (!wiphy->bands[band]) continue; for (j = 0; j < wiphy->bands[band]->n_channels; j++) { struct ieee80211_channel *chan; chan = &wiphy->bands[band]->channels[j]; if (chan->flags & IEEE80211_CHAN_DISABLED) continue; request->channels[i] = chan; i++; } } } if (!i) { err = -EINVAL; goto out_free; } request->n_channels = i; i = 0; if (n_ssids) { nla_for_each_nested(attr, attrs[NL80211_ATTR_SCAN_SSIDS], tmp) { if (nla_len(attr) > IEEE80211_MAX_SSID_LEN) { err = -EINVAL; goto out_free; } request->ssids[i].ssid_len = nla_len(attr); memcpy(request->ssids[i].ssid, nla_data(attr), nla_len(attr)); i++; } } i = 0; if (attrs[NL80211_ATTR_SCHED_SCAN_MATCH]) { nla_for_each_nested(attr, attrs[NL80211_ATTR_SCHED_SCAN_MATCH], tmp) { struct nlattr *ssid, *bssid, *rssi; err = nla_parse_nested_deprecated(tb, NL80211_SCHED_SCAN_MATCH_ATTR_MAX, attr, nl80211_match_policy, NULL); if (err) goto out_free; ssid = tb[NL80211_SCHED_SCAN_MATCH_ATTR_SSID]; bssid = tb[NL80211_SCHED_SCAN_MATCH_ATTR_BSSID]; if (!ssid && !bssid) { i++; continue; } if (WARN_ON(i >= n_match_sets)) { /* this indicates a programming error, * the loop above should have verified * things properly */ err = -EINVAL; goto out_free; } if (ssid) { memcpy(request->match_sets[i].ssid.ssid, nla_data(ssid), nla_len(ssid)); request->match_sets[i].ssid.ssid_len = nla_len(ssid); } if (bssid) memcpy(request->match_sets[i].bssid, nla_data(bssid), ETH_ALEN); /* special attribute - old implementation w/a */ request->match_sets[i].rssi_thold = default_match_rssi; rssi = tb[NL80211_SCHED_SCAN_MATCH_ATTR_RSSI]; if (rssi) request->match_sets[i].rssi_thold = nla_get_s32(rssi); /* Parse per band RSSI attribute */ err = nl80211_parse_sched_scan_per_band_rssi(wiphy, &request->match_sets[i], tb[NL80211_SCHED_SCAN_MATCH_PER_BAND_RSSI], request->match_sets[i].rssi_thold); if (err) goto out_free; i++; } /* there was no other matchset, so the RSSI one is alone */ if (i == 0 && n_match_sets) request->match_sets[0].rssi_thold = default_match_rssi; request->min_rssi_thold = INT_MAX; for (i = 0; i < n_match_sets; i++) request->min_rssi_thold = min(request->match_sets[i].rssi_thold, request->min_rssi_thold); } else { request->min_rssi_thold = NL80211_SCAN_RSSI_THOLD_OFF; } if (ie_len) { request->ie_len = ie_len; memcpy((void *)request->ie, nla_data(attrs[NL80211_ATTR_IE]), request->ie_len); } err = nl80211_check_scan_flags(wiphy, wdev, request, attrs, true); if (err) goto out_free; if (attrs[NL80211_ATTR_SCHED_SCAN_DELAY]) request->delay = nla_get_u32(attrs[NL80211_ATTR_SCHED_SCAN_DELAY]); if (attrs[NL80211_ATTR_SCHED_SCAN_RELATIVE_RSSI]) { request->relative_rssi = nla_get_s8( attrs[NL80211_ATTR_SCHED_SCAN_RELATIVE_RSSI]); request->relative_rssi_set = true; } if (request->relative_rssi_set && attrs[NL80211_ATTR_SCHED_SCAN_RSSI_ADJUST]) { struct nl80211_bss_select_rssi_adjust *rssi_adjust; rssi_adjust = nla_data( attrs[NL80211_ATTR_SCHED_SCAN_RSSI_ADJUST]); request->rssi_adjust.band = rssi_adjust->band; request->rssi_adjust.delta = rssi_adjust->delta; if (!is_band_valid(wiphy, request->rssi_adjust.band)) { err = -EINVAL; goto out_free; } } err = nl80211_parse_sched_scan_plans(wiphy, n_plans, request, attrs); if (err) goto out_free; request->scan_start = jiffies; return request; out_free: kfree(request); return ERR_PTR(err); } static int nl80211_start_sched_scan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_sched_scan_request *sched_scan_req; bool want_multi; int err; if (!rdev->wiphy.max_sched_scan_reqs || !rdev->ops->sched_scan_start) return -EOPNOTSUPP; want_multi = info->attrs[NL80211_ATTR_SCHED_SCAN_MULTI]; err = cfg80211_sched_scan_req_possible(rdev, want_multi); if (err) return err; sched_scan_req = nl80211_parse_sched_scan(&rdev->wiphy, wdev, info->attrs, rdev->wiphy.max_match_sets); err = PTR_ERR_OR_ZERO(sched_scan_req); if (err) goto out_err; /* leave request id zero for legacy request * or if driver does not support multi-scheduled scan */ if (want_multi && rdev->wiphy.max_sched_scan_reqs > 1) sched_scan_req->reqid = cfg80211_assign_cookie(rdev); err = rdev_sched_scan_start(rdev, dev, sched_scan_req); if (err) goto out_free; sched_scan_req->dev = dev; sched_scan_req->wiphy = &rdev->wiphy; if (info->attrs[NL80211_ATTR_SOCKET_OWNER]) sched_scan_req->owner_nlportid = info->snd_portid; cfg80211_add_sched_scan_req(rdev, sched_scan_req); nl80211_send_sched_scan(sched_scan_req, NL80211_CMD_START_SCHED_SCAN); return 0; out_free: kfree(sched_scan_req); out_err: return err; } static int nl80211_stop_sched_scan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_sched_scan_request *req; struct cfg80211_registered_device *rdev = info->user_ptr[0]; u64 cookie; if (!rdev->wiphy.max_sched_scan_reqs || !rdev->ops->sched_scan_stop) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_COOKIE]) { cookie = nla_get_u64(info->attrs[NL80211_ATTR_COOKIE]); return __cfg80211_stop_sched_scan(rdev, cookie, false); } req = list_first_or_null_rcu(&rdev->sched_scan_req_list, struct cfg80211_sched_scan_request, list); if (!req || req->reqid || (req->owner_nlportid && req->owner_nlportid != info->snd_portid)) return -ENOENT; return cfg80211_stop_sched_scan_req(rdev, req, false); } static int nl80211_start_radar_detection(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_chan_def chandef; enum nl80211_dfs_regions dfs_region; unsigned int cac_time_ms; int err = -EINVAL; flush_delayed_work(&rdev->dfs_update_channels_wk); wiphy_lock(wiphy); dfs_region = reg_get_dfs_region(wiphy); if (dfs_region == NL80211_DFS_UNSET) goto unlock; err = nl80211_parse_chandef(rdev, info, &chandef); if (err) goto unlock; err = cfg80211_chandef_dfs_required(wiphy, &chandef, wdev->iftype); if (err < 0) goto unlock; if (err == 0) { err = -EINVAL; goto unlock; } if (!cfg80211_chandef_dfs_usable(wiphy, &chandef)) { err = -EINVAL; goto unlock; } if (nla_get_flag(info->attrs[NL80211_ATTR_RADAR_BACKGROUND])) { err = cfg80211_start_background_radar_detection(rdev, wdev, &chandef); goto unlock; } if (netif_carrier_ok(dev)) { err = -EBUSY; goto unlock; } if (wdev->cac_started) { err = -EBUSY; goto unlock; } /* CAC start is offloaded to HW and can't be started manually */ if (wiphy_ext_feature_isset(wiphy, NL80211_EXT_FEATURE_DFS_OFFLOAD)) { err = -EOPNOTSUPP; goto unlock; } if (!rdev->ops->start_radar_detection) { err = -EOPNOTSUPP; goto unlock; } cac_time_ms = cfg80211_chandef_dfs_cac_time(&rdev->wiphy, &chandef); if (WARN_ON(!cac_time_ms)) cac_time_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; err = rdev_start_radar_detection(rdev, dev, &chandef, cac_time_ms); if (!err) { wdev->links[0].ap.chandef = chandef; wdev->cac_started = true; wdev->cac_start_time = jiffies; wdev->cac_time_ms = cac_time_ms; } unlock: wiphy_unlock(wiphy); return err; } static int nl80211_notify_radar_detection(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_chan_def chandef; enum nl80211_dfs_regions dfs_region; int err; dfs_region = reg_get_dfs_region(wiphy); if (dfs_region == NL80211_DFS_UNSET) { GENL_SET_ERR_MSG(info, "DFS Region is not set. Unexpected Radar indication"); return -EINVAL; } err = nl80211_parse_chandef(rdev, info, &chandef); if (err) { GENL_SET_ERR_MSG(info, "Unable to extract chandef info"); return err; } err = cfg80211_chandef_dfs_required(wiphy, &chandef, wdev->iftype); if (err < 0) { GENL_SET_ERR_MSG(info, "chandef is invalid"); return err; } if (err == 0) { GENL_SET_ERR_MSG(info, "Unexpected Radar indication for chandef/iftype"); return -EINVAL; } /* Do not process this notification if radar is already detected * by kernel on this channel, and return success. */ if (chandef.chan->dfs_state == NL80211_DFS_UNAVAILABLE) return 0; cfg80211_set_dfs_state(wiphy, &chandef, NL80211_DFS_UNAVAILABLE); cfg80211_sched_dfs_chan_update(rdev); rdev->radar_chandef = chandef; /* Propagate this notification to other radios as well */ queue_work(cfg80211_wq, &rdev->propagate_radar_detect_wk); return 0; } static int nl80211_channel_switch(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; unsigned int link_id = nl80211_link_id(info->attrs); struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_csa_settings params; struct nlattr **csa_attrs = NULL; int err; bool need_new_beacon = false; bool need_handle_dfs_flag = true; int len, i; u32 cs_count; if (!rdev->ops->channel_switch || !(rdev->wiphy.flags & WIPHY_FLAG_HAS_CHANNEL_SWITCH)) return -EOPNOTSUPP; switch (dev->ieee80211_ptr->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: need_new_beacon = true; /* For all modes except AP the handle_dfs flag needs to be * supplied to tell the kernel that userspace will handle radar * events when they happen. Otherwise a switch to a channel * requiring DFS will be rejected. */ need_handle_dfs_flag = false; /* useless if AP is not running */ if (!wdev->links[link_id].ap.beacon_interval) return -ENOTCONN; break; case NL80211_IFTYPE_ADHOC: if (!wdev->u.ibss.ssid_len) return -ENOTCONN; break; case NL80211_IFTYPE_MESH_POINT: if (!wdev->u.mesh.id_len) return -ENOTCONN; break; default: return -EOPNOTSUPP; } memset(&params, 0, sizeof(params)); params.beacon_csa.ftm_responder = -1; if (!info->attrs[NL80211_ATTR_WIPHY_FREQ] || !info->attrs[NL80211_ATTR_CH_SWITCH_COUNT]) return -EINVAL; /* only important for AP, IBSS and mesh create IEs internally */ if (need_new_beacon && !info->attrs[NL80211_ATTR_CSA_IES]) return -EINVAL; /* Even though the attribute is u32, the specification says * u8, so let's make sure we don't overflow. */ cs_count = nla_get_u32(info->attrs[NL80211_ATTR_CH_SWITCH_COUNT]); if (cs_count > 255) return -EINVAL; params.count = cs_count; if (!need_new_beacon) goto skip_beacons; err = nl80211_parse_beacon(rdev, info->attrs, &params.beacon_after, info->extack); if (err) goto free; csa_attrs = kcalloc(NL80211_ATTR_MAX + 1, sizeof(*csa_attrs), GFP_KERNEL); if (!csa_attrs) { err = -ENOMEM; goto free; } err = nla_parse_nested_deprecated(csa_attrs, NL80211_ATTR_MAX, info->attrs[NL80211_ATTR_CSA_IES], nl80211_policy, info->extack); if (err) goto free; err = nl80211_parse_beacon(rdev, csa_attrs, &params.beacon_csa, info->extack); if (err) goto free; if (!csa_attrs[NL80211_ATTR_CNTDWN_OFFS_BEACON]) { err = -EINVAL; goto free; } len = nla_len(csa_attrs[NL80211_ATTR_CNTDWN_OFFS_BEACON]); if (!len || (len % sizeof(u16))) { err = -EINVAL; goto free; } params.n_counter_offsets_beacon = len / sizeof(u16); if (rdev->wiphy.max_num_csa_counters && (params.n_counter_offsets_beacon > rdev->wiphy.max_num_csa_counters)) { err = -EINVAL; goto free; } params.counter_offsets_beacon = nla_data(csa_attrs[NL80211_ATTR_CNTDWN_OFFS_BEACON]); /* sanity checks - counters should fit and be the same */ for (i = 0; i < params.n_counter_offsets_beacon; i++) { u16 offset = params.counter_offsets_beacon[i]; if (offset >= params.beacon_csa.tail_len) { err = -EINVAL; goto free; } if (params.beacon_csa.tail[offset] != params.count) { err = -EINVAL; goto free; } } if (csa_attrs[NL80211_ATTR_CNTDWN_OFFS_PRESP]) { len = nla_len(csa_attrs[NL80211_ATTR_CNTDWN_OFFS_PRESP]); if (!len || (len % sizeof(u16))) { err = -EINVAL; goto free; } params.n_counter_offsets_presp = len / sizeof(u16); if (rdev->wiphy.max_num_csa_counters && (params.n_counter_offsets_presp > rdev->wiphy.max_num_csa_counters)) { err = -EINVAL; goto free; } params.counter_offsets_presp = nla_data(csa_attrs[NL80211_ATTR_CNTDWN_OFFS_PRESP]); /* sanity checks - counters should fit and be the same */ for (i = 0; i < params.n_counter_offsets_presp; i++) { u16 offset = params.counter_offsets_presp[i]; if (offset >= params.beacon_csa.probe_resp_len) { err = -EINVAL; goto free; } if (params.beacon_csa.probe_resp[offset] != params.count) { err = -EINVAL; goto free; } } } skip_beacons: err = nl80211_parse_chandef(rdev, info, &params.chandef); if (err) goto free; if (!cfg80211_reg_can_beacon_relax(&rdev->wiphy, &params.chandef, wdev->iftype)) { err = -EINVAL; goto free; } err = cfg80211_chandef_dfs_required(wdev->wiphy, &params.chandef, wdev->iftype); if (err < 0) goto free; if (err > 0) { params.radar_required = true; if (need_handle_dfs_flag && !nla_get_flag(info->attrs[NL80211_ATTR_HANDLE_DFS])) { err = -EINVAL; goto free; } } if (info->attrs[NL80211_ATTR_CH_SWITCH_BLOCK_TX]) params.block_tx = true; if (info->attrs[NL80211_ATTR_PUNCT_BITMAP]) { err = nl80211_parse_punct_bitmap(rdev, info, &params.chandef, &params.punct_bitmap); if (err) goto free; } err = rdev_channel_switch(rdev, dev, &params); free: kfree(params.beacon_after.mbssid_ies); kfree(params.beacon_csa.mbssid_ies); kfree(params.beacon_after.rnr_ies); kfree(params.beacon_csa.rnr_ies); kfree(csa_attrs); return err; } static int nl80211_send_bss(struct sk_buff *msg, struct netlink_callback *cb, u32 seq, int flags, struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_internal_bss *intbss) { struct cfg80211_bss *res = &intbss->pub; const struct cfg80211_bss_ies *ies; unsigned int link_id; void *hdr; struct nlattr *bss; lockdep_assert_wiphy(wdev->wiphy); hdr = nl80211hdr_put(msg, NETLINK_CB(cb->skb).portid, seq, flags, NL80211_CMD_NEW_SCAN_RESULTS); if (!hdr) return -1; genl_dump_check_consistent(cb, hdr); if (nla_put_u32(msg, NL80211_ATTR_GENERATION, rdev->bss_generation)) goto nla_put_failure; if (wdev->netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex)) goto nla_put_failure; if (nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto nla_put_failure; bss = nla_nest_start_noflag(msg, NL80211_ATTR_BSS); if (!bss) goto nla_put_failure; if ((!is_zero_ether_addr(res->bssid) && nla_put(msg, NL80211_BSS_BSSID, ETH_ALEN, res->bssid))) goto nla_put_failure; rcu_read_lock(); /* indicate whether we have probe response data or not */ if (rcu_access_pointer(res->proberesp_ies) && nla_put_flag(msg, NL80211_BSS_PRESP_DATA)) goto fail_unlock_rcu; /* this pointer prefers to be pointed to probe response data * but is always valid */ ies = rcu_dereference(res->ies); if (ies) { if (nla_put_u64_64bit(msg, NL80211_BSS_TSF, ies->tsf, NL80211_BSS_PAD)) goto fail_unlock_rcu; if (ies->len && nla_put(msg, NL80211_BSS_INFORMATION_ELEMENTS, ies->len, ies->data)) goto fail_unlock_rcu; } /* and this pointer is always (unless driver didn't know) beacon data */ ies = rcu_dereference(res->beacon_ies); if (ies && ies->from_beacon) { if (nla_put_u64_64bit(msg, NL80211_BSS_BEACON_TSF, ies->tsf, NL80211_BSS_PAD)) goto fail_unlock_rcu; if (ies->len && nla_put(msg, NL80211_BSS_BEACON_IES, ies->len, ies->data)) goto fail_unlock_rcu; } rcu_read_unlock(); if (res->beacon_interval && nla_put_u16(msg, NL80211_BSS_BEACON_INTERVAL, res->beacon_interval)) goto nla_put_failure; if (nla_put_u16(msg, NL80211_BSS_CAPABILITY, res->capability) || nla_put_u32(msg, NL80211_BSS_FREQUENCY, res->channel->center_freq) || nla_put_u32(msg, NL80211_BSS_FREQUENCY_OFFSET, res->channel->freq_offset) || nla_put_u32(msg, NL80211_BSS_SEEN_MS_AGO, jiffies_to_msecs(jiffies - intbss->ts))) goto nla_put_failure; if (intbss->parent_tsf && (nla_put_u64_64bit(msg, NL80211_BSS_PARENT_TSF, intbss->parent_tsf, NL80211_BSS_PAD) || nla_put(msg, NL80211_BSS_PARENT_BSSID, ETH_ALEN, intbss->parent_bssid))) goto nla_put_failure; if (intbss->ts_boottime && nla_put_u64_64bit(msg, NL80211_BSS_LAST_SEEN_BOOTTIME, intbss->ts_boottime, NL80211_BSS_PAD)) goto nla_put_failure; if (!nl80211_put_signal(msg, intbss->pub.chains, intbss->pub.chain_signal, NL80211_BSS_CHAIN_SIGNAL)) goto nla_put_failure; switch (rdev->wiphy.signal_type) { case CFG80211_SIGNAL_TYPE_MBM: if (nla_put_u32(msg, NL80211_BSS_SIGNAL_MBM, res->signal)) goto nla_put_failure; break; case CFG80211_SIGNAL_TYPE_UNSPEC: if (nla_put_u8(msg, NL80211_BSS_SIGNAL_UNSPEC, res->signal)) goto nla_put_failure; break; default: break; } switch (wdev->iftype) { case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_STATION: for_each_valid_link(wdev, link_id) { if (intbss == wdev->links[link_id].client.current_bss && (nla_put_u32(msg, NL80211_BSS_STATUS, NL80211_BSS_STATUS_ASSOCIATED) || (wdev->valid_links && (nla_put_u8(msg, NL80211_BSS_MLO_LINK_ID, link_id) || nla_put(msg, NL80211_BSS_MLD_ADDR, ETH_ALEN, wdev->u.client.connected_addr))))) goto nla_put_failure; } break; case NL80211_IFTYPE_ADHOC: if (intbss == wdev->u.ibss.current_bss && nla_put_u32(msg, NL80211_BSS_STATUS, NL80211_BSS_STATUS_IBSS_JOINED)) goto nla_put_failure; break; default: break; } if (nla_put_u32(msg, NL80211_BSS_USE_FOR, res->use_for)) goto nla_put_failure; if (res->cannot_use_reasons && nla_put_u64_64bit(msg, NL80211_BSS_CANNOT_USE_REASONS, res->cannot_use_reasons, NL80211_BSS_PAD)) goto nla_put_failure; nla_nest_end(msg, bss); genlmsg_end(msg, hdr); return 0; fail_unlock_rcu: rcu_read_unlock(); nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_dump_scan(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg80211_registered_device *rdev; struct cfg80211_internal_bss *scan; struct wireless_dev *wdev; struct nlattr **attrbuf; int start = cb->args[2], idx = 0; bool dump_include_use_data; int err; attrbuf = kcalloc(NUM_NL80211_ATTR, sizeof(*attrbuf), GFP_KERNEL); if (!attrbuf) return -ENOMEM; err = nl80211_prepare_wdev_dump(cb, &rdev, &wdev, attrbuf); if (err) { kfree(attrbuf); return err; } /* nl80211_prepare_wdev_dump acquired it in the successful case */ __acquire(&rdev->wiphy.mtx); dump_include_use_data = attrbuf[NL80211_ATTR_BSS_DUMP_INCLUDE_USE_DATA]; kfree(attrbuf); spin_lock_bh(&rdev->bss_lock); /* * dump_scan will be called multiple times to break up the scan results * into multiple messages. It is unlikely that any more bss-es will be * expired after the first call, so only call only call this on the * first dump_scan invocation. */ if (start == 0) cfg80211_bss_expire(rdev); cb->seq = rdev->bss_generation; list_for_each_entry(scan, &rdev->bss_list, list) { if (++idx <= start) continue; if (!dump_include_use_data && !(scan->pub.use_for & NL80211_BSS_USE_FOR_NORMAL)) continue; if (nl80211_send_bss(skb, cb, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wdev, scan) < 0) { idx--; break; } } spin_unlock_bh(&rdev->bss_lock); cb->args[2] = idx; wiphy_unlock(&rdev->wiphy); return skb->len; } static int nl80211_send_survey(struct sk_buff *msg, u32 portid, u32 seq, int flags, struct net_device *dev, bool allow_radio_stats, struct survey_info *survey) { void *hdr; struct nlattr *infoattr; /* skip radio stats if userspace didn't request them */ if (!survey->channel && !allow_radio_stats) return 0; hdr = nl80211hdr_put(msg, portid, seq, flags, NL80211_CMD_NEW_SURVEY_RESULTS); if (!hdr) return -ENOMEM; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; infoattr = nla_nest_start_noflag(msg, NL80211_ATTR_SURVEY_INFO); if (!infoattr) goto nla_put_failure; if (survey->channel && nla_put_u32(msg, NL80211_SURVEY_INFO_FREQUENCY, survey->channel->center_freq)) goto nla_put_failure; if (survey->channel && survey->channel->freq_offset && nla_put_u32(msg, NL80211_SURVEY_INFO_FREQUENCY_OFFSET, survey->channel->freq_offset)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_NOISE_DBM) && nla_put_u8(msg, NL80211_SURVEY_INFO_NOISE, survey->noise)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_IN_USE) && nla_put_flag(msg, NL80211_SURVEY_INFO_IN_USE)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_TIME) && nla_put_u64_64bit(msg, NL80211_SURVEY_INFO_TIME, survey->time, NL80211_SURVEY_INFO_PAD)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_TIME_BUSY) && nla_put_u64_64bit(msg, NL80211_SURVEY_INFO_TIME_BUSY, survey->time_busy, NL80211_SURVEY_INFO_PAD)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_TIME_EXT_BUSY) && nla_put_u64_64bit(msg, NL80211_SURVEY_INFO_TIME_EXT_BUSY, survey->time_ext_busy, NL80211_SURVEY_INFO_PAD)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_TIME_RX) && nla_put_u64_64bit(msg, NL80211_SURVEY_INFO_TIME_RX, survey->time_rx, NL80211_SURVEY_INFO_PAD)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_TIME_TX) && nla_put_u64_64bit(msg, NL80211_SURVEY_INFO_TIME_TX, survey->time_tx, NL80211_SURVEY_INFO_PAD)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_TIME_SCAN) && nla_put_u64_64bit(msg, NL80211_SURVEY_INFO_TIME_SCAN, survey->time_scan, NL80211_SURVEY_INFO_PAD)) goto nla_put_failure; if ((survey->filled & SURVEY_INFO_TIME_BSS_RX) && nla_put_u64_64bit(msg, NL80211_SURVEY_INFO_TIME_BSS_RX, survey->time_bss_rx, NL80211_SURVEY_INFO_PAD)) goto nla_put_failure; nla_nest_end(msg, infoattr); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_dump_survey(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr **attrbuf; struct survey_info survey; struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; int survey_idx = cb->args[2]; int res; bool radio_stats; attrbuf = kcalloc(NUM_NL80211_ATTR, sizeof(*attrbuf), GFP_KERNEL); if (!attrbuf) return -ENOMEM; res = nl80211_prepare_wdev_dump(cb, &rdev, &wdev, attrbuf); if (res) { kfree(attrbuf); return res; } /* nl80211_prepare_wdev_dump acquired it in the successful case */ __acquire(&rdev->wiphy.mtx); /* prepare_wdev_dump parsed the attributes */ radio_stats = attrbuf[NL80211_ATTR_SURVEY_RADIO_STATS]; if (!wdev->netdev) { res = -EINVAL; goto out_err; } if (!rdev->ops->dump_survey) { res = -EOPNOTSUPP; goto out_err; } while (1) { res = rdev_dump_survey(rdev, wdev->netdev, survey_idx, &survey); if (res == -ENOENT) break; if (res) goto out_err; /* don't send disabled channels, but do send non-channel data */ if (survey.channel && survey.channel->flags & IEEE80211_CHAN_DISABLED) { survey_idx++; continue; } if (nl80211_send_survey(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, wdev->netdev, radio_stats, &survey) < 0) goto out; survey_idx++; } out: cb->args[2] = survey_idx; res = skb->len; out_err: kfree(attrbuf); wiphy_unlock(&rdev->wiphy); return res; } static bool nl80211_valid_wpa_versions(u32 wpa_versions) { return !(wpa_versions & ~(NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2 | NL80211_WPA_VERSION_3)); } static int nl80211_authenticate(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct ieee80211_channel *chan; const u8 *bssid, *ssid; int err, ssid_len; enum nl80211_auth_type auth_type; struct key_parse key; bool local_state_change; struct cfg80211_auth_request req = {}; u32 freq; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!info->attrs[NL80211_ATTR_AUTH_TYPE]) return -EINVAL; if (!info->attrs[NL80211_ATTR_SSID]) return -EINVAL; if (!info->attrs[NL80211_ATTR_WIPHY_FREQ]) return -EINVAL; err = nl80211_parse_key(info, &key); if (err) return err; if (key.idx >= 0) { if (key.type != -1 && key.type != NL80211_KEYTYPE_GROUP) return -EINVAL; if (!key.p.key || !key.p.key_len) return -EINVAL; if ((key.p.cipher != WLAN_CIPHER_SUITE_WEP40 || key.p.key_len != WLAN_KEY_LEN_WEP40) && (key.p.cipher != WLAN_CIPHER_SUITE_WEP104 || key.p.key_len != WLAN_KEY_LEN_WEP104)) return -EINVAL; if (key.idx > 3) return -EINVAL; } else { key.p.key_len = 0; key.p.key = NULL; } if (key.idx >= 0) { int i; bool ok = false; for (i = 0; i < rdev->wiphy.n_cipher_suites; i++) { if (key.p.cipher == rdev->wiphy.cipher_suites[i]) { ok = true; break; } } if (!ok) return -EINVAL; } if (!rdev->ops->auth) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; bssid = nla_data(info->attrs[NL80211_ATTR_MAC]); freq = MHZ_TO_KHZ(nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ])); if (info->attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]) freq += nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]); chan = nl80211_get_valid_chan(&rdev->wiphy, freq); if (!chan) return -EINVAL; ssid = nla_data(info->attrs[NL80211_ATTR_SSID]); ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); if (info->attrs[NL80211_ATTR_IE]) { req.ie = nla_data(info->attrs[NL80211_ATTR_IE]); req.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); } auth_type = nla_get_u32(info->attrs[NL80211_ATTR_AUTH_TYPE]); if (!nl80211_valid_auth_type(rdev, auth_type, NL80211_CMD_AUTHENTICATE)) return -EINVAL; if ((auth_type == NL80211_AUTHTYPE_SAE || auth_type == NL80211_AUTHTYPE_FILS_SK || auth_type == NL80211_AUTHTYPE_FILS_SK_PFS || auth_type == NL80211_AUTHTYPE_FILS_PK) && !info->attrs[NL80211_ATTR_AUTH_DATA]) return -EINVAL; if (info->attrs[NL80211_ATTR_AUTH_DATA]) { if (auth_type != NL80211_AUTHTYPE_SAE && auth_type != NL80211_AUTHTYPE_FILS_SK && auth_type != NL80211_AUTHTYPE_FILS_SK_PFS && auth_type != NL80211_AUTHTYPE_FILS_PK) return -EINVAL; req.auth_data = nla_data(info->attrs[NL80211_ATTR_AUTH_DATA]); req.auth_data_len = nla_len(info->attrs[NL80211_ATTR_AUTH_DATA]); } local_state_change = !!info->attrs[NL80211_ATTR_LOCAL_STATE_CHANGE]; /* * Since we no longer track auth state, ignore * requests to only change local state. */ if (local_state_change) return 0; req.auth_type = auth_type; req.key = key.p.key; req.key_len = key.p.key_len; req.key_idx = key.idx; req.link_id = nl80211_link_id_or_invalid(info->attrs); if (req.link_id >= 0) { if (!(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_MLO)) return -EINVAL; if (!info->attrs[NL80211_ATTR_MLD_ADDR]) return -EINVAL; req.ap_mld_addr = nla_data(info->attrs[NL80211_ATTR_MLD_ADDR]); if (!is_valid_ether_addr(req.ap_mld_addr)) return -EINVAL; } req.bss = cfg80211_get_bss(&rdev->wiphy, chan, bssid, ssid, ssid_len, IEEE80211_BSS_TYPE_ESS, IEEE80211_PRIVACY_ANY); if (!req.bss) return -ENOENT; err = cfg80211_mlme_auth(rdev, dev, &req); cfg80211_put_bss(&rdev->wiphy, req.bss); return err; } static int validate_pae_over_nl80211(struct cfg80211_registered_device *rdev, struct genl_info *info) { if (!info->attrs[NL80211_ATTR_SOCKET_OWNER]) { GENL_SET_ERR_MSG(info, "SOCKET_OWNER not set"); return -EINVAL; } if (!rdev->ops->tx_control_port || !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211)) return -EOPNOTSUPP; return 0; } static int nl80211_crypto_settings(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_crypto_settings *settings, int cipher_limit) { memset(settings, 0, sizeof(*settings)); settings->control_port = info->attrs[NL80211_ATTR_CONTROL_PORT]; if (info->attrs[NL80211_ATTR_CONTROL_PORT_ETHERTYPE]) { u16 proto; proto = nla_get_u16( info->attrs[NL80211_ATTR_CONTROL_PORT_ETHERTYPE]); settings->control_port_ethertype = cpu_to_be16(proto); if (!(rdev->wiphy.flags & WIPHY_FLAG_CONTROL_PORT_PROTOCOL) && proto != ETH_P_PAE) return -EINVAL; if (info->attrs[NL80211_ATTR_CONTROL_PORT_NO_ENCRYPT]) settings->control_port_no_encrypt = true; } else settings->control_port_ethertype = cpu_to_be16(ETH_P_PAE); if (info->attrs[NL80211_ATTR_CONTROL_PORT_OVER_NL80211]) { int r = validate_pae_over_nl80211(rdev, info); if (r < 0) return r; settings->control_port_over_nl80211 = true; if (info->attrs[NL80211_ATTR_CONTROL_PORT_NO_PREAUTH]) settings->control_port_no_preauth = true; } if (info->attrs[NL80211_ATTR_CIPHER_SUITES_PAIRWISE]) { void *data; int len, i; data = nla_data(info->attrs[NL80211_ATTR_CIPHER_SUITES_PAIRWISE]); len = nla_len(info->attrs[NL80211_ATTR_CIPHER_SUITES_PAIRWISE]); settings->n_ciphers_pairwise = len / sizeof(u32); if (len % sizeof(u32)) return -EINVAL; if (settings->n_ciphers_pairwise > cipher_limit) return -EINVAL; memcpy(settings->ciphers_pairwise, data, len); for (i = 0; i < settings->n_ciphers_pairwise; i++) if (!cfg80211_supported_cipher_suite( &rdev->wiphy, settings->ciphers_pairwise[i])) return -EINVAL; } if (info->attrs[NL80211_ATTR_CIPHER_SUITE_GROUP]) { settings->cipher_group = nla_get_u32(info->attrs[NL80211_ATTR_CIPHER_SUITE_GROUP]); if (!cfg80211_supported_cipher_suite(&rdev->wiphy, settings->cipher_group)) return -EINVAL; } if (info->attrs[NL80211_ATTR_WPA_VERSIONS]) { settings->wpa_versions = nla_get_u32(info->attrs[NL80211_ATTR_WPA_VERSIONS]); if (!nl80211_valid_wpa_versions(settings->wpa_versions)) return -EINVAL; } if (info->attrs[NL80211_ATTR_AKM_SUITES]) { void *data; int len; data = nla_data(info->attrs[NL80211_ATTR_AKM_SUITES]); len = nla_len(info->attrs[NL80211_ATTR_AKM_SUITES]); settings->n_akm_suites = len / sizeof(u32); if (len % sizeof(u32)) return -EINVAL; if (settings->n_akm_suites > rdev->wiphy.max_num_akm_suites) return -EINVAL; memcpy(settings->akm_suites, data, len); } if (info->attrs[NL80211_ATTR_PMK]) { if (nla_len(info->attrs[NL80211_ATTR_PMK]) != WLAN_PMK_LEN) return -EINVAL; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_PSK) && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_AP_PSK)) return -EINVAL; settings->psk = nla_data(info->attrs[NL80211_ATTR_PMK]); } if (info->attrs[NL80211_ATTR_SAE_PASSWORD]) { if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD) && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD_AP)) return -EINVAL; settings->sae_pwd = nla_data(info->attrs[NL80211_ATTR_SAE_PASSWORD]); settings->sae_pwd_len = nla_len(info->attrs[NL80211_ATTR_SAE_PASSWORD]); } if (info->attrs[NL80211_ATTR_SAE_PWE]) settings->sae_pwe = nla_get_u8(info->attrs[NL80211_ATTR_SAE_PWE]); else settings->sae_pwe = NL80211_SAE_PWE_UNSPECIFIED; return 0; } static struct cfg80211_bss *nl80211_assoc_bss(struct cfg80211_registered_device *rdev, const u8 *ssid, int ssid_len, struct nlattr **attrs, int assoc_link_id, int link_id) { struct ieee80211_channel *chan; struct cfg80211_bss *bss; const u8 *bssid; u32 freq, use_for = 0; if (!attrs[NL80211_ATTR_MAC] || !attrs[NL80211_ATTR_WIPHY_FREQ]) return ERR_PTR(-EINVAL); bssid = nla_data(attrs[NL80211_ATTR_MAC]); freq = MHZ_TO_KHZ(nla_get_u32(attrs[NL80211_ATTR_WIPHY_FREQ])); if (attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]) freq += nla_get_u32(attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]); chan = nl80211_get_valid_chan(&rdev->wiphy, freq); if (!chan) return ERR_PTR(-EINVAL); if (assoc_link_id >= 0) use_for = NL80211_BSS_USE_FOR_MLD_LINK; if (assoc_link_id == link_id) use_for |= NL80211_BSS_USE_FOR_NORMAL; bss = __cfg80211_get_bss(&rdev->wiphy, chan, bssid, ssid, ssid_len, IEEE80211_BSS_TYPE_ESS, IEEE80211_PRIVACY_ANY, use_for); if (!bss) return ERR_PTR(-ENOENT); return bss; } static int nl80211_associate(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_assoc_request req = {}; struct nlattr **attrs = NULL; const u8 *ap_addr, *ssid; unsigned int link_id; int err, ssid_len; if (dev->ieee80211_ptr->conn_owner_nlportid && dev->ieee80211_ptr->conn_owner_nlportid != info->snd_portid) return -EPERM; if (!info->attrs[NL80211_ATTR_SSID]) return -EINVAL; if (!rdev->ops->assoc) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; ssid = nla_data(info->attrs[NL80211_ATTR_SSID]); ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); if (info->attrs[NL80211_ATTR_IE]) { req.ie = nla_data(info->attrs[NL80211_ATTR_IE]); req.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); if (cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, req.ie, req.ie_len)) { NL_SET_ERR_MSG_ATTR(info->extack, info->attrs[NL80211_ATTR_IE], "non-inheritance makes no sense"); return -EINVAL; } } if (info->attrs[NL80211_ATTR_USE_MFP]) { enum nl80211_mfp mfp = nla_get_u32(info->attrs[NL80211_ATTR_USE_MFP]); if (mfp == NL80211_MFP_REQUIRED) req.use_mfp = true; else if (mfp != NL80211_MFP_NO) return -EINVAL; } if (info->attrs[NL80211_ATTR_PREV_BSSID]) req.prev_bssid = nla_data(info->attrs[NL80211_ATTR_PREV_BSSID]); if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_HT])) req.flags |= ASSOC_REQ_DISABLE_HT; if (info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]) memcpy(&req.ht_capa_mask, nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]), sizeof(req.ht_capa_mask)); if (info->attrs[NL80211_ATTR_HT_CAPABILITY]) { if (!info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]) return -EINVAL; memcpy(&req.ht_capa, nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]), sizeof(req.ht_capa)); } if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_VHT])) req.flags |= ASSOC_REQ_DISABLE_VHT; if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_HE])) req.flags |= ASSOC_REQ_DISABLE_HE; if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_EHT])) req.flags |= ASSOC_REQ_DISABLE_EHT; if (info->attrs[NL80211_ATTR_VHT_CAPABILITY_MASK]) memcpy(&req.vht_capa_mask, nla_data(info->attrs[NL80211_ATTR_VHT_CAPABILITY_MASK]), sizeof(req.vht_capa_mask)); if (info->attrs[NL80211_ATTR_VHT_CAPABILITY]) { if (!info->attrs[NL80211_ATTR_VHT_CAPABILITY_MASK]) return -EINVAL; memcpy(&req.vht_capa, nla_data(info->attrs[NL80211_ATTR_VHT_CAPABILITY]), sizeof(req.vht_capa)); } if (nla_get_flag(info->attrs[NL80211_ATTR_USE_RRM])) { if (!((rdev->wiphy.features & NL80211_FEATURE_DS_PARAM_SET_IE_IN_PROBES) && (rdev->wiphy.features & NL80211_FEATURE_QUIET)) && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_RRM)) return -EINVAL; req.flags |= ASSOC_REQ_USE_RRM; } if (info->attrs[NL80211_ATTR_FILS_KEK]) { req.fils_kek = nla_data(info->attrs[NL80211_ATTR_FILS_KEK]); req.fils_kek_len = nla_len(info->attrs[NL80211_ATTR_FILS_KEK]); if (!info->attrs[NL80211_ATTR_FILS_NONCES]) return -EINVAL; req.fils_nonces = nla_data(info->attrs[NL80211_ATTR_FILS_NONCES]); } if (info->attrs[NL80211_ATTR_S1G_CAPABILITY_MASK]) { if (!info->attrs[NL80211_ATTR_S1G_CAPABILITY]) return -EINVAL; memcpy(&req.s1g_capa_mask, nla_data(info->attrs[NL80211_ATTR_S1G_CAPABILITY_MASK]), sizeof(req.s1g_capa_mask)); } if (info->attrs[NL80211_ATTR_S1G_CAPABILITY]) { if (!info->attrs[NL80211_ATTR_S1G_CAPABILITY_MASK]) return -EINVAL; memcpy(&req.s1g_capa, nla_data(info->attrs[NL80211_ATTR_S1G_CAPABILITY]), sizeof(req.s1g_capa)); } req.link_id = nl80211_link_id_or_invalid(info->attrs); if (info->attrs[NL80211_ATTR_MLO_LINKS]) { unsigned int attrsize = NUM_NL80211_ATTR * sizeof(*attrs); struct nlattr *link; int rem = 0; if (req.link_id < 0) return -EINVAL; if (!(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_MLO)) return -EINVAL; if (info->attrs[NL80211_ATTR_MAC] || info->attrs[NL80211_ATTR_WIPHY_FREQ] || !info->attrs[NL80211_ATTR_MLD_ADDR]) return -EINVAL; req.ap_mld_addr = nla_data(info->attrs[NL80211_ATTR_MLD_ADDR]); ap_addr = req.ap_mld_addr; attrs = kzalloc(attrsize, GFP_KERNEL); if (!attrs) return -ENOMEM; nla_for_each_nested(link, info->attrs[NL80211_ATTR_MLO_LINKS], rem) { memset(attrs, 0, attrsize); nla_parse_nested(attrs, NL80211_ATTR_MAX, link, NULL, NULL); if (!attrs[NL80211_ATTR_MLO_LINK_ID]) { err = -EINVAL; NL_SET_BAD_ATTR(info->extack, link); goto free; } link_id = nla_get_u8(attrs[NL80211_ATTR_MLO_LINK_ID]); /* cannot use the same link ID again */ if (req.links[link_id].bss) { err = -EINVAL; NL_SET_BAD_ATTR(info->extack, link); goto free; } req.links[link_id].bss = nl80211_assoc_bss(rdev, ssid, ssid_len, attrs, req.link_id, link_id); if (IS_ERR(req.links[link_id].bss)) { err = PTR_ERR(req.links[link_id].bss); req.links[link_id].bss = NULL; NL_SET_ERR_MSG_ATTR(info->extack, link, "Error fetching BSS for link"); goto free; } if (attrs[NL80211_ATTR_IE]) { req.links[link_id].elems = nla_data(attrs[NL80211_ATTR_IE]); req.links[link_id].elems_len = nla_len(attrs[NL80211_ATTR_IE]); if (cfg80211_find_elem(WLAN_EID_FRAGMENT, req.links[link_id].elems, req.links[link_id].elems_len)) { NL_SET_ERR_MSG_ATTR(info->extack, attrs[NL80211_ATTR_IE], "cannot deal with fragmentation"); err = -EINVAL; goto free; } if (cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, req.links[link_id].elems, req.links[link_id].elems_len)) { NL_SET_ERR_MSG_ATTR(info->extack, attrs[NL80211_ATTR_IE], "cannot deal with non-inheritance"); err = -EINVAL; goto free; } } req.links[link_id].disabled = nla_get_flag(attrs[NL80211_ATTR_MLO_LINK_DISABLED]); } if (!req.links[req.link_id].bss) { err = -EINVAL; goto free; } if (req.links[req.link_id].elems_len) { GENL_SET_ERR_MSG(info, "cannot have per-link elems on assoc link"); err = -EINVAL; goto free; } if (req.links[req.link_id].disabled) { GENL_SET_ERR_MSG(info, "cannot have assoc link disabled"); err = -EINVAL; goto free; } kfree(attrs); attrs = NULL; } else { if (req.link_id >= 0) return -EINVAL; req.bss = nl80211_assoc_bss(rdev, ssid, ssid_len, info->attrs, -1, -1); if (IS_ERR(req.bss)) return PTR_ERR(req.bss); ap_addr = req.bss->bssid; } err = nl80211_crypto_settings(rdev, info, &req.crypto, 1); if (!err) { struct nlattr *link; int rem = 0; err = cfg80211_mlme_assoc(rdev, dev, &req); if (!err && info->attrs[NL80211_ATTR_SOCKET_OWNER]) { dev->ieee80211_ptr->conn_owner_nlportid = info->snd_portid; memcpy(dev->ieee80211_ptr->disconnect_bssid, ap_addr, ETH_ALEN); } /* Report error from first problematic link */ if (info->attrs[NL80211_ATTR_MLO_LINKS]) { nla_for_each_nested(link, info->attrs[NL80211_ATTR_MLO_LINKS], rem) { struct nlattr *link_id_attr = nla_find_nested(link, NL80211_ATTR_MLO_LINK_ID); if (!link_id_attr) continue; link_id = nla_get_u8(link_id_attr); if (link_id == req.link_id) continue; if (!req.links[link_id].error || WARN_ON(req.links[link_id].error > 0)) continue; WARN_ON(err >= 0); NL_SET_BAD_ATTR(info->extack, link); err = req.links[link_id].error; break; } } } free: for (link_id = 0; link_id < ARRAY_SIZE(req.links); link_id++) cfg80211_put_bss(&rdev->wiphy, req.links[link_id].bss); cfg80211_put_bss(&rdev->wiphy, req.bss); kfree(attrs); return err; } static int nl80211_deauthenticate(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; const u8 *ie = NULL, *bssid; int ie_len = 0; u16 reason_code; bool local_state_change; if (dev->ieee80211_ptr->conn_owner_nlportid && dev->ieee80211_ptr->conn_owner_nlportid != info->snd_portid) return -EPERM; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!info->attrs[NL80211_ATTR_REASON_CODE]) return -EINVAL; if (!rdev->ops->deauth) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; bssid = nla_data(info->attrs[NL80211_ATTR_MAC]); reason_code = nla_get_u16(info->attrs[NL80211_ATTR_REASON_CODE]); if (reason_code == 0) { /* Reason Code 0 is reserved */ return -EINVAL; } if (info->attrs[NL80211_ATTR_IE]) { ie = nla_data(info->attrs[NL80211_ATTR_IE]); ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); } local_state_change = !!info->attrs[NL80211_ATTR_LOCAL_STATE_CHANGE]; return cfg80211_mlme_deauth(rdev, dev, bssid, ie, ie_len, reason_code, local_state_change); } static int nl80211_disassociate(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; const u8 *ie = NULL, *bssid; int ie_len = 0; u16 reason_code; bool local_state_change; if (dev->ieee80211_ptr->conn_owner_nlportid && dev->ieee80211_ptr->conn_owner_nlportid != info->snd_portid) return -EPERM; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!info->attrs[NL80211_ATTR_REASON_CODE]) return -EINVAL; if (!rdev->ops->disassoc) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; bssid = nla_data(info->attrs[NL80211_ATTR_MAC]); reason_code = nla_get_u16(info->attrs[NL80211_ATTR_REASON_CODE]); if (reason_code == 0) { /* Reason Code 0 is reserved */ return -EINVAL; } if (info->attrs[NL80211_ATTR_IE]) { ie = nla_data(info->attrs[NL80211_ATTR_IE]); ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); } local_state_change = !!info->attrs[NL80211_ATTR_LOCAL_STATE_CHANGE]; return cfg80211_mlme_disassoc(rdev, dev, bssid, ie, ie_len, reason_code, local_state_change); } static bool nl80211_parse_mcast_rate(struct cfg80211_registered_device *rdev, int mcast_rate[NUM_NL80211_BANDS], int rateval) { struct wiphy *wiphy = &rdev->wiphy; bool found = false; int band, i; for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband; sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].bitrate == rateval) { mcast_rate[band] = i + 1; found = true; break; } } } return found; } static int nl80211_join_ibss(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_ibss_params ibss; struct wiphy *wiphy; struct cfg80211_cached_keys *connkeys = NULL; int err; memset(&ibss, 0, sizeof(ibss)); if (!info->attrs[NL80211_ATTR_SSID] || !nla_len(info->attrs[NL80211_ATTR_SSID])) return -EINVAL; ibss.beacon_interval = 100; if (info->attrs[NL80211_ATTR_BEACON_INTERVAL]) ibss.beacon_interval = nla_get_u32(info->attrs[NL80211_ATTR_BEACON_INTERVAL]); err = cfg80211_validate_beacon_int(rdev, NL80211_IFTYPE_ADHOC, ibss.beacon_interval); if (err) return err; if (!rdev->ops->join_ibss) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_ADHOC) return -EOPNOTSUPP; wiphy = &rdev->wiphy; if (info->attrs[NL80211_ATTR_MAC]) { ibss.bssid = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!is_valid_ether_addr(ibss.bssid)) return -EINVAL; } ibss.ssid = nla_data(info->attrs[NL80211_ATTR_SSID]); ibss.ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); if (info->attrs[NL80211_ATTR_IE]) { ibss.ie = nla_data(info->attrs[NL80211_ATTR_IE]); ibss.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); } err = nl80211_parse_chandef(rdev, info, &ibss.chandef); if (err) return err; if (!cfg80211_reg_can_beacon(&rdev->wiphy, &ibss.chandef, NL80211_IFTYPE_ADHOC)) return -EINVAL; switch (ibss.chandef.width) { case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20_NOHT: break; case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_40: if (!(rdev->wiphy.features & NL80211_FEATURE_HT_IBSS)) return -EINVAL; break; case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: if (!(rdev->wiphy.features & NL80211_FEATURE_HT_IBSS)) return -EINVAL; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_VHT_IBSS)) return -EINVAL; break; case NL80211_CHAN_WIDTH_320: return -EINVAL; default: return -EINVAL; } ibss.channel_fixed = !!info->attrs[NL80211_ATTR_FREQ_FIXED]; ibss.privacy = !!info->attrs[NL80211_ATTR_PRIVACY]; if (info->attrs[NL80211_ATTR_BSS_BASIC_RATES]) { u8 *rates = nla_data(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]); int n_rates = nla_len(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]); struct ieee80211_supported_band *sband = wiphy->bands[ibss.chandef.chan->band]; err = ieee80211_get_ratemask(sband, rates, n_rates, &ibss.basic_rates); if (err) return err; } if (info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]) memcpy(&ibss.ht_capa_mask, nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]), sizeof(ibss.ht_capa_mask)); if (info->attrs[NL80211_ATTR_HT_CAPABILITY]) { if (!info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]) return -EINVAL; memcpy(&ibss.ht_capa, nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]), sizeof(ibss.ht_capa)); } if (info->attrs[NL80211_ATTR_MCAST_RATE] && !nl80211_parse_mcast_rate(rdev, ibss.mcast_rate, nla_get_u32(info->attrs[NL80211_ATTR_MCAST_RATE]))) return -EINVAL; if (ibss.privacy && info->attrs[NL80211_ATTR_KEYS]) { bool no_ht = false; connkeys = nl80211_parse_connkeys(rdev, info, &no_ht); if (IS_ERR(connkeys)) return PTR_ERR(connkeys); if ((ibss.chandef.width != NL80211_CHAN_WIDTH_20_NOHT) && no_ht) { kfree_sensitive(connkeys); return -EINVAL; } } ibss.control_port = nla_get_flag(info->attrs[NL80211_ATTR_CONTROL_PORT]); if (info->attrs[NL80211_ATTR_CONTROL_PORT_OVER_NL80211]) { int r = validate_pae_over_nl80211(rdev, info); if (r < 0) { kfree_sensitive(connkeys); return r; } ibss.control_port_over_nl80211 = true; } ibss.userspace_handles_dfs = nla_get_flag(info->attrs[NL80211_ATTR_HANDLE_DFS]); err = __cfg80211_join_ibss(rdev, dev, &ibss, connkeys); if (err) kfree_sensitive(connkeys); else if (info->attrs[NL80211_ATTR_SOCKET_OWNER]) dev->ieee80211_ptr->conn_owner_nlportid = info->snd_portid; return err; } static int nl80211_leave_ibss(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; if (!rdev->ops->leave_ibss) return -EOPNOTSUPP; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_ADHOC) return -EOPNOTSUPP; return cfg80211_leave_ibss(rdev, dev, false); } static int nl80211_set_mcast_rate(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; int mcast_rate[NUM_NL80211_BANDS]; u32 nla_rate; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_ADHOC && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_OCB) return -EOPNOTSUPP; if (!rdev->ops->set_mcast_rate) return -EOPNOTSUPP; memset(mcast_rate, 0, sizeof(mcast_rate)); if (!info->attrs[NL80211_ATTR_MCAST_RATE]) return -EINVAL; nla_rate = nla_get_u32(info->attrs[NL80211_ATTR_MCAST_RATE]); if (!nl80211_parse_mcast_rate(rdev, mcast_rate, nla_rate)) return -EINVAL; return rdev_set_mcast_rate(rdev, dev, mcast_rate); } static struct sk_buff * __cfg80211_alloc_vendor_skb(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, int approxlen, u32 portid, u32 seq, enum nl80211_commands cmd, enum nl80211_attrs attr, const struct nl80211_vendor_cmd_info *info, gfp_t gfp) { struct sk_buff *skb; void *hdr; struct nlattr *data; skb = nlmsg_new(approxlen + 100, gfp); if (!skb) return NULL; hdr = nl80211hdr_put(skb, portid, seq, 0, cmd); if (!hdr) { kfree_skb(skb); return NULL; } if (nla_put_u32(skb, NL80211_ATTR_WIPHY, rdev->wiphy_idx)) goto nla_put_failure; if (info) { if (nla_put_u32(skb, NL80211_ATTR_VENDOR_ID, info->vendor_id)) goto nla_put_failure; if (nla_put_u32(skb, NL80211_ATTR_VENDOR_SUBCMD, info->subcmd)) goto nla_put_failure; } if (wdev) { if (nla_put_u64_64bit(skb, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto nla_put_failure; if (wdev->netdev && nla_put_u32(skb, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex)) goto nla_put_failure; } data = nla_nest_start_noflag(skb, attr); if (!data) goto nla_put_failure; ((void **)skb->cb)[0] = rdev; ((void **)skb->cb)[1] = hdr; ((void **)skb->cb)[2] = data; return skb; nla_put_failure: kfree_skb(skb); return NULL; } struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_commands cmd, enum nl80211_attrs attr, unsigned int portid, int vendor_event_idx, int approxlen, gfp_t gfp) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); const struct nl80211_vendor_cmd_info *info; switch (cmd) { case NL80211_CMD_TESTMODE: if (WARN_ON(vendor_event_idx != -1)) return NULL; info = NULL; break; case NL80211_CMD_VENDOR: if (WARN_ON(vendor_event_idx < 0 || vendor_event_idx >= wiphy->n_vendor_events)) return NULL; info = &wiphy->vendor_events[vendor_event_idx]; break; default: WARN_ON(1); return NULL; } return __cfg80211_alloc_vendor_skb(rdev, wdev, approxlen, portid, 0, cmd, attr, info, gfp); } EXPORT_SYMBOL(__cfg80211_alloc_event_skb); void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp) { struct cfg80211_registered_device *rdev = ((void **)skb->cb)[0]; void *hdr = ((void **)skb->cb)[1]; struct nlmsghdr *nlhdr = nlmsg_hdr(skb); struct nlattr *data = ((void **)skb->cb)[2]; enum nl80211_multicast_groups mcgrp = NL80211_MCGRP_TESTMODE; /* clear CB data for netlink core to own from now on */ memset(skb->cb, 0, sizeof(skb->cb)); nla_nest_end(skb, data); genlmsg_end(skb, hdr); if (nlhdr->nlmsg_pid) { genlmsg_unicast(wiphy_net(&rdev->wiphy), skb, nlhdr->nlmsg_pid); } else { if (data->nla_type == NL80211_ATTR_VENDOR_DATA) mcgrp = NL80211_MCGRP_VENDOR; genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), skb, 0, mcgrp, gfp); } } EXPORT_SYMBOL(__cfg80211_send_event_skb); #ifdef CONFIG_NL80211_TESTMODE static int nl80211_testmode_do(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev; int err; lockdep_assert_held(&rdev->wiphy.mtx); wdev = __cfg80211_wdev_from_attrs(rdev, genl_info_net(info), info->attrs); if (!rdev->ops->testmode_cmd) return -EOPNOTSUPP; if (IS_ERR(wdev)) { err = PTR_ERR(wdev); if (err != -EINVAL) return err; wdev = NULL; } else if (wdev->wiphy != &rdev->wiphy) { return -EINVAL; } if (!info->attrs[NL80211_ATTR_TESTDATA]) return -EINVAL; rdev->cur_cmd_info = info; err = rdev_testmode_cmd(rdev, wdev, nla_data(info->attrs[NL80211_ATTR_TESTDATA]), nla_len(info->attrs[NL80211_ATTR_TESTDATA])); rdev->cur_cmd_info = NULL; return err; } static int nl80211_testmode_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg80211_registered_device *rdev; struct nlattr **attrbuf = NULL; int err; long phy_idx; void *data = NULL; int data_len = 0; rtnl_lock(); if (cb->args[0]) { /* * 0 is a valid index, but not valid for args[0], * so we need to offset by 1. */ phy_idx = cb->args[0] - 1; rdev = cfg80211_rdev_by_wiphy_idx(phy_idx); if (!rdev) { err = -ENOENT; goto out_err; } } else { attrbuf = kcalloc(NUM_NL80211_ATTR, sizeof(*attrbuf), GFP_KERNEL); if (!attrbuf) { err = -ENOMEM; goto out_err; } err = nlmsg_parse_deprecated(cb->nlh, GENL_HDRLEN + nl80211_fam.hdrsize, attrbuf, nl80211_fam.maxattr, nl80211_policy, NULL); if (err) goto out_err; rdev = __cfg80211_rdev_from_attrs(sock_net(skb->sk), attrbuf); if (IS_ERR(rdev)) { err = PTR_ERR(rdev); goto out_err; } phy_idx = rdev->wiphy_idx; if (attrbuf[NL80211_ATTR_TESTDATA]) cb->args[1] = (long)attrbuf[NL80211_ATTR_TESTDATA]; } if (cb->args[1]) { data = nla_data((void *)cb->args[1]); data_len = nla_len((void *)cb->args[1]); } if (!rdev->ops->testmode_dump) { err = -EOPNOTSUPP; goto out_err; } while (1) { void *hdr = nl80211hdr_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, NL80211_CMD_TESTMODE); struct nlattr *tmdata; if (!hdr) break; if (nla_put_u32(skb, NL80211_ATTR_WIPHY, phy_idx)) { genlmsg_cancel(skb, hdr); break; } tmdata = nla_nest_start_noflag(skb, NL80211_ATTR_TESTDATA); if (!tmdata) { genlmsg_cancel(skb, hdr); break; } err = rdev_testmode_dump(rdev, skb, cb, data, data_len); nla_nest_end(skb, tmdata); if (err == -ENOBUFS || err == -ENOENT) { genlmsg_cancel(skb, hdr); break; } else if (err) { genlmsg_cancel(skb, hdr); goto out_err; } genlmsg_end(skb, hdr); } err = skb->len; /* see above */ cb->args[0] = phy_idx + 1; out_err: kfree(attrbuf); rtnl_unlock(); return err; } #endif static int nl80211_connect(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_connect_params connect; struct wiphy *wiphy; struct cfg80211_cached_keys *connkeys = NULL; u32 freq = 0; int err; memset(&connect, 0, sizeof(connect)); if (!info->attrs[NL80211_ATTR_SSID] || !nla_len(info->attrs[NL80211_ATTR_SSID])) return -EINVAL; if (info->attrs[NL80211_ATTR_AUTH_TYPE]) { connect.auth_type = nla_get_u32(info->attrs[NL80211_ATTR_AUTH_TYPE]); if (!nl80211_valid_auth_type(rdev, connect.auth_type, NL80211_CMD_CONNECT)) return -EINVAL; } else connect.auth_type = NL80211_AUTHTYPE_AUTOMATIC; connect.privacy = info->attrs[NL80211_ATTR_PRIVACY]; if (info->attrs[NL80211_ATTR_WANT_1X_4WAY_HS] && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_1X)) return -EINVAL; connect.want_1x = info->attrs[NL80211_ATTR_WANT_1X_4WAY_HS]; err = nl80211_crypto_settings(rdev, info, &connect.crypto, NL80211_MAX_NR_CIPHER_SUITES); if (err) return err; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; wiphy = &rdev->wiphy; connect.bg_scan_period = -1; if (info->attrs[NL80211_ATTR_BG_SCAN_PERIOD] && (wiphy->flags & WIPHY_FLAG_SUPPORTS_FW_ROAM)) { connect.bg_scan_period = nla_get_u16(info->attrs[NL80211_ATTR_BG_SCAN_PERIOD]); } if (info->attrs[NL80211_ATTR_MAC]) connect.bssid = nla_data(info->attrs[NL80211_ATTR_MAC]); else if (info->attrs[NL80211_ATTR_MAC_HINT]) connect.bssid_hint = nla_data(info->attrs[NL80211_ATTR_MAC_HINT]); connect.ssid = nla_data(info->attrs[NL80211_ATTR_SSID]); connect.ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); if (info->attrs[NL80211_ATTR_IE]) { connect.ie = nla_data(info->attrs[NL80211_ATTR_IE]); connect.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); } if (info->attrs[NL80211_ATTR_USE_MFP]) { connect.mfp = nla_get_u32(info->attrs[NL80211_ATTR_USE_MFP]); if (connect.mfp == NL80211_MFP_OPTIONAL && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_MFP_OPTIONAL)) return -EOPNOTSUPP; } else { connect.mfp = NL80211_MFP_NO; } if (info->attrs[NL80211_ATTR_PREV_BSSID]) connect.prev_bssid = nla_data(info->attrs[NL80211_ATTR_PREV_BSSID]); if (info->attrs[NL80211_ATTR_WIPHY_FREQ]) freq = MHZ_TO_KHZ(nla_get_u32( info->attrs[NL80211_ATTR_WIPHY_FREQ])); if (info->attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]) freq += nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ_OFFSET]); if (freq) { connect.channel = nl80211_get_valid_chan(wiphy, freq); if (!connect.channel) return -EINVAL; } else if (info->attrs[NL80211_ATTR_WIPHY_FREQ_HINT]) { freq = nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ_HINT]); freq = MHZ_TO_KHZ(freq); connect.channel_hint = nl80211_get_valid_chan(wiphy, freq); if (!connect.channel_hint) return -EINVAL; } if (info->attrs[NL80211_ATTR_WIPHY_EDMG_CHANNELS]) { connect.edmg.channels = nla_get_u8(info->attrs[NL80211_ATTR_WIPHY_EDMG_CHANNELS]); if (info->attrs[NL80211_ATTR_WIPHY_EDMG_BW_CONFIG]) connect.edmg.bw_config = nla_get_u8(info->attrs[NL80211_ATTR_WIPHY_EDMG_BW_CONFIG]); } if (connect.privacy && info->attrs[NL80211_ATTR_KEYS]) { connkeys = nl80211_parse_connkeys(rdev, info, NULL); if (IS_ERR(connkeys)) return PTR_ERR(connkeys); } if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_HT])) connect.flags |= ASSOC_REQ_DISABLE_HT; if (info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]) memcpy(&connect.ht_capa_mask, nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]), sizeof(connect.ht_capa_mask)); if (info->attrs[NL80211_ATTR_HT_CAPABILITY]) { if (!info->attrs[NL80211_ATTR_HT_CAPABILITY_MASK]) { kfree_sensitive(connkeys); return -EINVAL; } memcpy(&connect.ht_capa, nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]), sizeof(connect.ht_capa)); } if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_VHT])) connect.flags |= ASSOC_REQ_DISABLE_VHT; if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_HE])) connect.flags |= ASSOC_REQ_DISABLE_HE; if (nla_get_flag(info->attrs[NL80211_ATTR_DISABLE_EHT])) connect.flags |= ASSOC_REQ_DISABLE_EHT; if (info->attrs[NL80211_ATTR_VHT_CAPABILITY_MASK]) memcpy(&connect.vht_capa_mask, nla_data(info->attrs[NL80211_ATTR_VHT_CAPABILITY_MASK]), sizeof(connect.vht_capa_mask)); if (info->attrs[NL80211_ATTR_VHT_CAPABILITY]) { if (!info->attrs[NL80211_ATTR_VHT_CAPABILITY_MASK]) { kfree_sensitive(connkeys); return -EINVAL; } memcpy(&connect.vht_capa, nla_data(info->attrs[NL80211_ATTR_VHT_CAPABILITY]), sizeof(connect.vht_capa)); } if (nla_get_flag(info->attrs[NL80211_ATTR_USE_RRM])) { if (!((rdev->wiphy.features & NL80211_FEATURE_DS_PARAM_SET_IE_IN_PROBES) && (rdev->wiphy.features & NL80211_FEATURE_QUIET)) && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_RRM)) { kfree_sensitive(connkeys); return -EINVAL; } connect.flags |= ASSOC_REQ_USE_RRM; } connect.pbss = nla_get_flag(info->attrs[NL80211_ATTR_PBSS]); if (connect.pbss && !rdev->wiphy.bands[NL80211_BAND_60GHZ]) { kfree_sensitive(connkeys); return -EOPNOTSUPP; } if (info->attrs[NL80211_ATTR_BSS_SELECT]) { /* bss selection makes no sense if bssid is set */ if (connect.bssid) { kfree_sensitive(connkeys); return -EINVAL; } err = parse_bss_select(info->attrs[NL80211_ATTR_BSS_SELECT], wiphy, &connect.bss_select); if (err) { kfree_sensitive(connkeys); return err; } } if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_FILS_SK_OFFLOAD) && info->attrs[NL80211_ATTR_FILS_ERP_USERNAME] && info->attrs[NL80211_ATTR_FILS_ERP_REALM] && info->attrs[NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM] && info->attrs[NL80211_ATTR_FILS_ERP_RRK]) { connect.fils_erp_username = nla_data(info->attrs[NL80211_ATTR_FILS_ERP_USERNAME]); connect.fils_erp_username_len = nla_len(info->attrs[NL80211_ATTR_FILS_ERP_USERNAME]); connect.fils_erp_realm = nla_data(info->attrs[NL80211_ATTR_FILS_ERP_REALM]); connect.fils_erp_realm_len = nla_len(info->attrs[NL80211_ATTR_FILS_ERP_REALM]); connect.fils_erp_next_seq_num = nla_get_u16( info->attrs[NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM]); connect.fils_erp_rrk = nla_data(info->attrs[NL80211_ATTR_FILS_ERP_RRK]); connect.fils_erp_rrk_len = nla_len(info->attrs[NL80211_ATTR_FILS_ERP_RRK]); } else if (info->attrs[NL80211_ATTR_FILS_ERP_USERNAME] || info->attrs[NL80211_ATTR_FILS_ERP_REALM] || info->attrs[NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM] || info->attrs[NL80211_ATTR_FILS_ERP_RRK]) { kfree_sensitive(connkeys); return -EINVAL; } if (nla_get_flag(info->attrs[NL80211_ATTR_EXTERNAL_AUTH_SUPPORT])) { if (!info->attrs[NL80211_ATTR_SOCKET_OWNER]) { kfree_sensitive(connkeys); GENL_SET_ERR_MSG(info, "external auth requires connection ownership"); return -EINVAL; } connect.flags |= CONNECT_REQ_EXTERNAL_AUTH_SUPPORT; } if (nla_get_flag(info->attrs[NL80211_ATTR_MLO_SUPPORT])) connect.flags |= CONNECT_REQ_MLO_SUPPORT; err = cfg80211_connect(rdev, dev, &connect, connkeys, connect.prev_bssid); if (err) kfree_sensitive(connkeys); if (!err && info->attrs[NL80211_ATTR_SOCKET_OWNER]) { dev->ieee80211_ptr->conn_owner_nlportid = info->snd_portid; if (connect.bssid) memcpy(dev->ieee80211_ptr->disconnect_bssid, connect.bssid, ETH_ALEN); else eth_zero_addr(dev->ieee80211_ptr->disconnect_bssid); } return err; } static int nl80211_update_connect_params(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_connect_params connect = {}; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; bool fils_sk_offload; u32 auth_type; u32 changed = 0; if (!rdev->ops->update_connect_params) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_IE]) { connect.ie = nla_data(info->attrs[NL80211_ATTR_IE]); connect.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); changed |= UPDATE_ASSOC_IES; } fils_sk_offload = wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_FILS_SK_OFFLOAD); /* * when driver supports fils-sk offload all attributes must be * provided. So the else covers "fils-sk-not-all" and * "no-fils-sk-any". */ if (fils_sk_offload && info->attrs[NL80211_ATTR_FILS_ERP_USERNAME] && info->attrs[NL80211_ATTR_FILS_ERP_REALM] && info->attrs[NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM] && info->attrs[NL80211_ATTR_FILS_ERP_RRK]) { connect.fils_erp_username = nla_data(info->attrs[NL80211_ATTR_FILS_ERP_USERNAME]); connect.fils_erp_username_len = nla_len(info->attrs[NL80211_ATTR_FILS_ERP_USERNAME]); connect.fils_erp_realm = nla_data(info->attrs[NL80211_ATTR_FILS_ERP_REALM]); connect.fils_erp_realm_len = nla_len(info->attrs[NL80211_ATTR_FILS_ERP_REALM]); connect.fils_erp_next_seq_num = nla_get_u16( info->attrs[NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM]); connect.fils_erp_rrk = nla_data(info->attrs[NL80211_ATTR_FILS_ERP_RRK]); connect.fils_erp_rrk_len = nla_len(info->attrs[NL80211_ATTR_FILS_ERP_RRK]); changed |= UPDATE_FILS_ERP_INFO; } else if (info->attrs[NL80211_ATTR_FILS_ERP_USERNAME] || info->attrs[NL80211_ATTR_FILS_ERP_REALM] || info->attrs[NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM] || info->attrs[NL80211_ATTR_FILS_ERP_RRK]) { return -EINVAL; } if (info->attrs[NL80211_ATTR_AUTH_TYPE]) { auth_type = nla_get_u32(info->attrs[NL80211_ATTR_AUTH_TYPE]); if (!nl80211_valid_auth_type(rdev, auth_type, NL80211_CMD_CONNECT)) return -EINVAL; if (auth_type == NL80211_AUTHTYPE_FILS_SK && fils_sk_offload && !(changed & UPDATE_FILS_ERP_INFO)) return -EINVAL; connect.auth_type = auth_type; changed |= UPDATE_AUTH_TYPE; } if (!wdev->connected) return -ENOLINK; return rdev_update_connect_params(rdev, dev, &connect, changed); } static int nl80211_disconnect(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; u16 reason; if (dev->ieee80211_ptr->conn_owner_nlportid && dev->ieee80211_ptr->conn_owner_nlportid != info->snd_portid) return -EPERM; if (!info->attrs[NL80211_ATTR_REASON_CODE]) reason = WLAN_REASON_DEAUTH_LEAVING; else reason = nla_get_u16(info->attrs[NL80211_ATTR_REASON_CODE]); if (reason == 0) return -EINVAL; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; return cfg80211_disconnect(rdev, dev, reason, true); } static int nl80211_wiphy_netns(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net *net; int err; if (info->attrs[NL80211_ATTR_PID]) { u32 pid = nla_get_u32(info->attrs[NL80211_ATTR_PID]); net = get_net_ns_by_pid(pid); } else if (info->attrs[NL80211_ATTR_NETNS_FD]) { u32 fd = nla_get_u32(info->attrs[NL80211_ATTR_NETNS_FD]); net = get_net_ns_by_fd(fd); } else { return -EINVAL; } if (IS_ERR(net)) return PTR_ERR(net); err = 0; /* check if anything to do */ if (!net_eq(wiphy_net(&rdev->wiphy), net)) err = cfg80211_switch_netns(rdev, net); put_net(net); return err; } static int nl80211_set_pmksa(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_pmksa pmksa; bool ap_pmksa_caching_support = false; memset(&pmksa, 0, sizeof(struct cfg80211_pmksa)); ap_pmksa_caching_support = wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_AP_PMKSA_CACHING); if (!info->attrs[NL80211_ATTR_PMKID]) return -EINVAL; pmksa.pmkid = nla_data(info->attrs[NL80211_ATTR_PMKID]); if (info->attrs[NL80211_ATTR_MAC]) { pmksa.bssid = nla_data(info->attrs[NL80211_ATTR_MAC]); } else if (info->attrs[NL80211_ATTR_SSID] && info->attrs[NL80211_ATTR_FILS_CACHE_ID] && info->attrs[NL80211_ATTR_PMK]) { pmksa.ssid = nla_data(info->attrs[NL80211_ATTR_SSID]); pmksa.ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); pmksa.cache_id = nla_data(info->attrs[NL80211_ATTR_FILS_CACHE_ID]); } else { return -EINVAL; } if (info->attrs[NL80211_ATTR_PMK]) { pmksa.pmk = nla_data(info->attrs[NL80211_ATTR_PMK]); pmksa.pmk_len = nla_len(info->attrs[NL80211_ATTR_PMK]); } if (info->attrs[NL80211_ATTR_PMK_LIFETIME]) pmksa.pmk_lifetime = nla_get_u32(info->attrs[NL80211_ATTR_PMK_LIFETIME]); if (info->attrs[NL80211_ATTR_PMK_REAUTH_THRESHOLD]) pmksa.pmk_reauth_threshold = nla_get_u8(info->attrs[NL80211_ATTR_PMK_REAUTH_THRESHOLD]); if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT && !((dev->ieee80211_ptr->iftype == NL80211_IFTYPE_AP || dev->ieee80211_ptr->iftype == NL80211_IFTYPE_P2P_GO) && ap_pmksa_caching_support)) return -EOPNOTSUPP; if (!rdev->ops->set_pmksa) return -EOPNOTSUPP; return rdev_set_pmksa(rdev, dev, &pmksa); } static int nl80211_del_pmksa(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_pmksa pmksa; bool sae_offload_support = false; bool owe_offload_support = false; bool ap_pmksa_caching_support = false; memset(&pmksa, 0, sizeof(struct cfg80211_pmksa)); sae_offload_support = wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD); owe_offload_support = wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_OWE_OFFLOAD); ap_pmksa_caching_support = wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_AP_PMKSA_CACHING); if (info->attrs[NL80211_ATTR_PMKID]) pmksa.pmkid = nla_data(info->attrs[NL80211_ATTR_PMKID]); if (info->attrs[NL80211_ATTR_MAC]) { pmksa.bssid = nla_data(info->attrs[NL80211_ATTR_MAC]); } else if (info->attrs[NL80211_ATTR_SSID]) { /* SSID based pmksa flush suppported only for FILS, * OWE/SAE OFFLOAD cases */ if (info->attrs[NL80211_ATTR_FILS_CACHE_ID] && info->attrs[NL80211_ATTR_PMK]) { pmksa.cache_id = nla_data(info->attrs[NL80211_ATTR_FILS_CACHE_ID]); } else if (!sae_offload_support && !owe_offload_support) { return -EINVAL; } pmksa.ssid = nla_data(info->attrs[NL80211_ATTR_SSID]); pmksa.ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); } else { return -EINVAL; } if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT && !((dev->ieee80211_ptr->iftype == NL80211_IFTYPE_AP || dev->ieee80211_ptr->iftype == NL80211_IFTYPE_P2P_GO) && ap_pmksa_caching_support)) return -EOPNOTSUPP; if (!rdev->ops->del_pmksa) return -EOPNOTSUPP; return rdev_del_pmksa(rdev, dev, &pmksa); } static int nl80211_flush_pmksa(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; if (!rdev->ops->flush_pmksa) return -EOPNOTSUPP; return rdev_flush_pmksa(rdev, dev); } static int nl80211_tdls_mgmt(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; u8 action_code, dialog_token; u32 peer_capability = 0; u16 status_code; u8 *peer; int link_id; bool initiator; if (!(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_TDLS) || !rdev->ops->tdls_mgmt) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_TDLS_ACTION] || !info->attrs[NL80211_ATTR_STATUS_CODE] || !info->attrs[NL80211_ATTR_TDLS_DIALOG_TOKEN] || !info->attrs[NL80211_ATTR_IE] || !info->attrs[NL80211_ATTR_MAC]) return -EINVAL; peer = nla_data(info->attrs[NL80211_ATTR_MAC]); action_code = nla_get_u8(info->attrs[NL80211_ATTR_TDLS_ACTION]); status_code = nla_get_u16(info->attrs[NL80211_ATTR_STATUS_CODE]); dialog_token = nla_get_u8(info->attrs[NL80211_ATTR_TDLS_DIALOG_TOKEN]); initiator = nla_get_flag(info->attrs[NL80211_ATTR_TDLS_INITIATOR]); if (info->attrs[NL80211_ATTR_TDLS_PEER_CAPABILITY]) peer_capability = nla_get_u32(info->attrs[NL80211_ATTR_TDLS_PEER_CAPABILITY]); link_id = nl80211_link_id_or_invalid(info->attrs); return rdev_tdls_mgmt(rdev, dev, peer, link_id, action_code, dialog_token, status_code, peer_capability, initiator, nla_data(info->attrs[NL80211_ATTR_IE]), nla_len(info->attrs[NL80211_ATTR_IE])); } static int nl80211_tdls_oper(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; enum nl80211_tdls_operation operation; u8 *peer; if (!(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_TDLS) || !rdev->ops->tdls_oper) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_TDLS_OPERATION] || !info->attrs[NL80211_ATTR_MAC]) return -EINVAL; operation = nla_get_u8(info->attrs[NL80211_ATTR_TDLS_OPERATION]); peer = nla_data(info->attrs[NL80211_ATTR_MAC]); return rdev_tdls_oper(rdev, dev, peer, operation); } static int nl80211_remain_on_channel(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; unsigned int link_id = nl80211_link_id(info->attrs); struct wireless_dev *wdev = info->user_ptr[1]; struct cfg80211_chan_def chandef; struct sk_buff *msg; void *hdr; u64 cookie; u32 duration; int err; if (!info->attrs[NL80211_ATTR_WIPHY_FREQ] || !info->attrs[NL80211_ATTR_DURATION]) return -EINVAL; duration = nla_get_u32(info->attrs[NL80211_ATTR_DURATION]); if (!rdev->ops->remain_on_channel || !(rdev->wiphy.flags & WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL)) return -EOPNOTSUPP; /* * We should be on that channel for at least a minimum amount of * time (10ms) but no longer than the driver supports. */ if (duration < NL80211_MIN_REMAIN_ON_CHANNEL_TIME || duration > rdev->wiphy.max_remain_on_channel_duration) return -EINVAL; err = nl80211_parse_chandef(rdev, info, &chandef); if (err) return err; if (!cfg80211_off_channel_oper_allowed(wdev, chandef.chan)) { const struct cfg80211_chan_def *oper_chandef, *compat_chandef; oper_chandef = wdev_chandef(wdev, link_id); if (WARN_ON(!oper_chandef)) { /* cannot happen since we must beacon to get here */ WARN_ON(1); return -EBUSY; } /* note: returns first one if identical chandefs */ compat_chandef = cfg80211_chandef_compatible(&chandef, oper_chandef); if (compat_chandef != &chandef) return -EBUSY; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_REMAIN_ON_CHANNEL); if (!hdr) { err = -ENOBUFS; goto free_msg; } err = rdev_remain_on_channel(rdev, wdev, chandef.chan, duration, &cookie); if (err) goto free_msg; if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, cookie, NL80211_ATTR_PAD)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: err = -ENOBUFS; free_msg: nlmsg_free(msg); return err; } static int nl80211_cancel_remain_on_channel(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; u64 cookie; if (!info->attrs[NL80211_ATTR_COOKIE]) return -EINVAL; if (!rdev->ops->cancel_remain_on_channel) return -EOPNOTSUPP; cookie = nla_get_u64(info->attrs[NL80211_ATTR_COOKIE]); return rdev_cancel_remain_on_channel(rdev, wdev, cookie); } static int nl80211_set_tx_bitrate_mask(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_bitrate_mask mask; unsigned int link_id = nl80211_link_id(info->attrs); struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; int err; if (!rdev->ops->set_bitrate_mask) return -EOPNOTSUPP; err = nl80211_parse_tx_bitrate_mask(info, info->attrs, NL80211_ATTR_TX_RATES, &mask, dev, true, link_id); if (err) return err; return rdev_set_bitrate_mask(rdev, dev, link_id, NULL, &mask); } static int nl80211_register_mgmt(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; u16 frame_type = IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION; if (!info->attrs[NL80211_ATTR_FRAME_MATCH]) return -EINVAL; if (info->attrs[NL80211_ATTR_FRAME_TYPE]) frame_type = nla_get_u16(info->attrs[NL80211_ATTR_FRAME_TYPE]); switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_DEVICE: break; case NL80211_IFTYPE_NAN: if (!wiphy_ext_feature_isset(wdev->wiphy, NL80211_EXT_FEATURE_SECURE_NAN)) return -EOPNOTSUPP; break; default: return -EOPNOTSUPP; } /* not much point in registering if we can't reply */ if (!rdev->ops->mgmt_tx) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_RECEIVE_MULTICAST] && !wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_MULTICAST_REGISTRATIONS)) { GENL_SET_ERR_MSG(info, "multicast RX registrations are not supported"); return -EOPNOTSUPP; } return cfg80211_mlme_register_mgmt(wdev, info->snd_portid, frame_type, nla_data(info->attrs[NL80211_ATTR_FRAME_MATCH]), nla_len(info->attrs[NL80211_ATTR_FRAME_MATCH]), info->attrs[NL80211_ATTR_RECEIVE_MULTICAST], info->extack); } static int nl80211_tx_mgmt(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; struct cfg80211_chan_def chandef; int err; void *hdr = NULL; u64 cookie; struct sk_buff *msg = NULL; struct cfg80211_mgmt_tx_params params = { .dont_wait_for_ack = info->attrs[NL80211_ATTR_DONT_WAIT_FOR_ACK], }; if (!info->attrs[NL80211_ATTR_FRAME]) return -EINVAL; if (!rdev->ops->mgmt_tx) return -EOPNOTSUPP; switch (wdev->iftype) { case NL80211_IFTYPE_P2P_DEVICE: if (!info->attrs[NL80211_ATTR_WIPHY_FREQ]) return -EINVAL; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_P2P_GO: break; case NL80211_IFTYPE_NAN: if (!wiphy_ext_feature_isset(wdev->wiphy, NL80211_EXT_FEATURE_SECURE_NAN)) return -EOPNOTSUPP; break; default: return -EOPNOTSUPP; } if (info->attrs[NL80211_ATTR_DURATION]) { if (!(rdev->wiphy.flags & WIPHY_FLAG_OFFCHAN_TX)) return -EINVAL; params.wait = nla_get_u32(info->attrs[NL80211_ATTR_DURATION]); /* * We should wait on the channel for at least a minimum amount * of time (10ms) but no longer than the driver supports. */ if (params.wait < NL80211_MIN_REMAIN_ON_CHANNEL_TIME || params.wait > rdev->wiphy.max_remain_on_channel_duration) return -EINVAL; } params.offchan = info->attrs[NL80211_ATTR_OFFCHANNEL_TX_OK]; if (params.offchan && !(rdev->wiphy.flags & WIPHY_FLAG_OFFCHAN_TX)) return -EINVAL; params.no_cck = nla_get_flag(info->attrs[NL80211_ATTR_TX_NO_CCK_RATE]); /* get the channel if any has been specified, otherwise pass NULL to * the driver. The latter will use the current one */ chandef.chan = NULL; if (info->attrs[NL80211_ATTR_WIPHY_FREQ]) { err = nl80211_parse_chandef(rdev, info, &chandef); if (err) return err; } if (!chandef.chan && params.offchan) return -EINVAL; if (params.offchan && !cfg80211_off_channel_oper_allowed(wdev, chandef.chan)) return -EBUSY; params.link_id = nl80211_link_id_or_invalid(info->attrs); /* * This now races due to the unlock, but we cannot check * the valid links for the _station_ anyway, so that's up * to the driver. */ if (params.link_id >= 0 && !(wdev->valid_links & BIT(params.link_id))) return -EINVAL; params.buf = nla_data(info->attrs[NL80211_ATTR_FRAME]); params.len = nla_len(info->attrs[NL80211_ATTR_FRAME]); if (info->attrs[NL80211_ATTR_CSA_C_OFFSETS_TX]) { int len = nla_len(info->attrs[NL80211_ATTR_CSA_C_OFFSETS_TX]); int i; if (len % sizeof(u16)) return -EINVAL; params.n_csa_offsets = len / sizeof(u16); params.csa_offsets = nla_data(info->attrs[NL80211_ATTR_CSA_C_OFFSETS_TX]); /* check that all the offsets fit the frame */ for (i = 0; i < params.n_csa_offsets; i++) { if (params.csa_offsets[i] >= params.len) return -EINVAL; } } if (!params.dont_wait_for_ack) { msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_FRAME); if (!hdr) { err = -ENOBUFS; goto free_msg; } } params.chan = chandef.chan; err = cfg80211_mlme_mgmt_tx(rdev, wdev, &params, &cookie); if (err) goto free_msg; if (msg) { if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, cookie, NL80211_ATTR_PAD)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); } return 0; nla_put_failure: err = -ENOBUFS; free_msg: nlmsg_free(msg); return err; } static int nl80211_tx_mgmt_cancel_wait(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; u64 cookie; if (!info->attrs[NL80211_ATTR_COOKIE]) return -EINVAL; if (!rdev->ops->mgmt_tx_cancel_wait) return -EOPNOTSUPP; switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_DEVICE: break; case NL80211_IFTYPE_NAN: if (!wiphy_ext_feature_isset(wdev->wiphy, NL80211_EXT_FEATURE_SECURE_NAN)) return -EOPNOTSUPP; break; default: return -EOPNOTSUPP; } cookie = nla_get_u64(info->attrs[NL80211_ATTR_COOKIE]); return rdev_mgmt_tx_cancel_wait(rdev, wdev, cookie); } static int nl80211_set_power_save(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev; struct net_device *dev = info->user_ptr[1]; u8 ps_state; bool state; int err; if (!info->attrs[NL80211_ATTR_PS_STATE]) return -EINVAL; ps_state = nla_get_u32(info->attrs[NL80211_ATTR_PS_STATE]); wdev = dev->ieee80211_ptr; if (!rdev->ops->set_power_mgmt) return -EOPNOTSUPP; state = (ps_state == NL80211_PS_ENABLED) ? true : false; if (state == wdev->ps) return 0; err = rdev_set_power_mgmt(rdev, dev, state, wdev->ps_timeout); if (!err) wdev->ps = state; return err; } static int nl80211_get_power_save(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; enum nl80211_ps_state ps_state; struct wireless_dev *wdev; struct net_device *dev = info->user_ptr[1]; struct sk_buff *msg; void *hdr; int err; wdev = dev->ieee80211_ptr; if (!rdev->ops->set_power_mgmt) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_GET_POWER_SAVE); if (!hdr) { err = -ENOBUFS; goto free_msg; } if (wdev->ps) ps_state = NL80211_PS_ENABLED; else ps_state = NL80211_PS_DISABLED; if (nla_put_u32(msg, NL80211_ATTR_PS_STATE, ps_state)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: err = -ENOBUFS; free_msg: nlmsg_free(msg); return err; } static const struct nla_policy nl80211_attr_cqm_policy[NL80211_ATTR_CQM_MAX + 1] = { [NL80211_ATTR_CQM_RSSI_THOLD] = { .type = NLA_BINARY }, [NL80211_ATTR_CQM_RSSI_HYST] = { .type = NLA_U32 }, [NL80211_ATTR_CQM_RSSI_THRESHOLD_EVENT] = { .type = NLA_U32 }, [NL80211_ATTR_CQM_TXE_RATE] = { .type = NLA_U32 }, [NL80211_ATTR_CQM_TXE_PKTS] = { .type = NLA_U32 }, [NL80211_ATTR_CQM_TXE_INTVL] = { .type = NLA_U32 }, [NL80211_ATTR_CQM_RSSI_LEVEL] = { .type = NLA_S32 }, }; static int nl80211_set_cqm_txe(struct genl_info *info, u32 rate, u32 pkts, u32 intvl) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; if (rate > 100 || intvl > NL80211_CQM_TXE_MAX_INTVL) return -EINVAL; if (!rdev->ops->set_cqm_txe_config) return -EOPNOTSUPP; if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; return rdev_set_cqm_txe_config(rdev, dev, rate, pkts, intvl); } static int cfg80211_cqm_rssi_update(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_cqm_config *cqm_config) { struct wireless_dev *wdev = dev->ieee80211_ptr; s32 last, low, high; u32 hyst; int i, n, low_index; int err; /* * Obtain current RSSI value if possible, if not and no RSSI threshold * event has been received yet, we should receive an event after a * connection is established and enough beacons received to calculate * the average. */ if (!cqm_config->last_rssi_event_value && wdev->links[0].client.current_bss && rdev->ops->get_station) { struct station_info sinfo = {}; u8 *mac_addr; mac_addr = wdev->links[0].client.current_bss->pub.bssid; err = rdev_get_station(rdev, dev, mac_addr, &sinfo); if (err) return err; cfg80211_sinfo_release_content(&sinfo); if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG)) cqm_config->last_rssi_event_value = (s8) sinfo.rx_beacon_signal_avg; } last = cqm_config->last_rssi_event_value; hyst = cqm_config->rssi_hyst; n = cqm_config->n_rssi_thresholds; for (i = 0; i < n; i++) { i = array_index_nospec(i, n); if (last < cqm_config->rssi_thresholds[i]) break; } low_index = i - 1; if (low_index >= 0) { low_index = array_index_nospec(low_index, n); low = cqm_config->rssi_thresholds[low_index] - hyst; } else { low = S32_MIN; } if (i < n) { i = array_index_nospec(i, n); high = cqm_config->rssi_thresholds[i] + hyst - 1; } else { high = S32_MAX; } return rdev_set_cqm_rssi_range_config(rdev, dev, low, high); } static int nl80211_set_cqm_rssi(struct genl_info *info, const s32 *thresholds, int n_thresholds, u32 hysteresis) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct cfg80211_cqm_config *cqm_config = NULL, *old; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; s32 prev = S32_MIN; int i, err; /* Check all values negative and sorted */ for (i = 0; i < n_thresholds; i++) { if (thresholds[i] > 0 || thresholds[i] <= prev) return -EINVAL; prev = thresholds[i]; } if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; if (n_thresholds == 1 && thresholds[0] == 0) /* Disabling */ n_thresholds = 0; old = wiphy_dereference(wdev->wiphy, wdev->cqm_config); /* if already disabled just succeed */ if (!n_thresholds && !old) return 0; if (n_thresholds > 1) { if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST) || !rdev->ops->set_cqm_rssi_range_config) return -EOPNOTSUPP; } else { if (!rdev->ops->set_cqm_rssi_config) return -EOPNOTSUPP; } if (n_thresholds) { cqm_config = kzalloc(struct_size(cqm_config, rssi_thresholds, n_thresholds), GFP_KERNEL); if (!cqm_config) return -ENOMEM; cqm_config->rssi_hyst = hysteresis; cqm_config->n_rssi_thresholds = n_thresholds; memcpy(cqm_config->rssi_thresholds, thresholds, flex_array_size(cqm_config, rssi_thresholds, n_thresholds)); cqm_config->use_range_api = n_thresholds > 1 || !rdev->ops->set_cqm_rssi_config; rcu_assign_pointer(wdev->cqm_config, cqm_config); if (cqm_config->use_range_api) err = cfg80211_cqm_rssi_update(rdev, dev, cqm_config); else err = rdev_set_cqm_rssi_config(rdev, dev, thresholds[0], hysteresis); } else { RCU_INIT_POINTER(wdev->cqm_config, NULL); /* if enabled as range also disable via range */ if (old->use_range_api) err = rdev_set_cqm_rssi_range_config(rdev, dev, 0, 0); else err = rdev_set_cqm_rssi_config(rdev, dev, 0, 0); } if (err) { rcu_assign_pointer(wdev->cqm_config, old); kfree_rcu(cqm_config, rcu_head); } else { kfree_rcu(old, rcu_head); } return err; } static int nl80211_set_cqm(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attrs[NL80211_ATTR_CQM_MAX + 1]; struct nlattr *cqm; int err; cqm = info->attrs[NL80211_ATTR_CQM]; if (!cqm) return -EINVAL; err = nla_parse_nested_deprecated(attrs, NL80211_ATTR_CQM_MAX, cqm, nl80211_attr_cqm_policy, info->extack); if (err) return err; if (attrs[NL80211_ATTR_CQM_RSSI_THOLD] && attrs[NL80211_ATTR_CQM_RSSI_HYST]) { const s32 *thresholds = nla_data(attrs[NL80211_ATTR_CQM_RSSI_THOLD]); int len = nla_len(attrs[NL80211_ATTR_CQM_RSSI_THOLD]); u32 hysteresis = nla_get_u32(attrs[NL80211_ATTR_CQM_RSSI_HYST]); if (len % 4) return -EINVAL; return nl80211_set_cqm_rssi(info, thresholds, len / 4, hysteresis); } if (attrs[NL80211_ATTR_CQM_TXE_RATE] && attrs[NL80211_ATTR_CQM_TXE_PKTS] && attrs[NL80211_ATTR_CQM_TXE_INTVL]) { u32 rate = nla_get_u32(attrs[NL80211_ATTR_CQM_TXE_RATE]); u32 pkts = nla_get_u32(attrs[NL80211_ATTR_CQM_TXE_PKTS]); u32 intvl = nla_get_u32(attrs[NL80211_ATTR_CQM_TXE_INTVL]); return nl80211_set_cqm_txe(info, rate, pkts, intvl); } return -EINVAL; } static int nl80211_join_ocb(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct ocb_setup setup = {}; int err; err = nl80211_parse_chandef(rdev, info, &setup.chandef); if (err) return err; return cfg80211_join_ocb(rdev, dev, &setup); } static int nl80211_leave_ocb(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; return cfg80211_leave_ocb(rdev, dev); } static int nl80211_join_mesh(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct mesh_config cfg; struct mesh_setup setup; int err; /* start with default */ memcpy(&cfg, &default_mesh_config, sizeof(cfg)); memcpy(&setup, &default_mesh_setup, sizeof(setup)); if (info->attrs[NL80211_ATTR_MESH_CONFIG]) { /* and parse parameters if given */ err = nl80211_parse_mesh_config(info, &cfg, NULL); if (err) return err; } if (!info->attrs[NL80211_ATTR_MESH_ID] || !nla_len(info->attrs[NL80211_ATTR_MESH_ID])) return -EINVAL; setup.mesh_id = nla_data(info->attrs[NL80211_ATTR_MESH_ID]); setup.mesh_id_len = nla_len(info->attrs[NL80211_ATTR_MESH_ID]); if (info->attrs[NL80211_ATTR_MCAST_RATE] && !nl80211_parse_mcast_rate(rdev, setup.mcast_rate, nla_get_u32(info->attrs[NL80211_ATTR_MCAST_RATE]))) return -EINVAL; if (info->attrs[NL80211_ATTR_BEACON_INTERVAL]) { setup.beacon_interval = nla_get_u32(info->attrs[NL80211_ATTR_BEACON_INTERVAL]); err = cfg80211_validate_beacon_int(rdev, NL80211_IFTYPE_MESH_POINT, setup.beacon_interval); if (err) return err; } if (info->attrs[NL80211_ATTR_DTIM_PERIOD]) { setup.dtim_period = nla_get_u32(info->attrs[NL80211_ATTR_DTIM_PERIOD]); if (setup.dtim_period < 1 || setup.dtim_period > 100) return -EINVAL; } if (info->attrs[NL80211_ATTR_MESH_SETUP]) { /* parse additional setup parameters if given */ err = nl80211_parse_mesh_setup(info, &setup); if (err) return err; } if (setup.user_mpm) cfg.auto_open_plinks = false; if (info->attrs[NL80211_ATTR_WIPHY_FREQ]) { err = nl80211_parse_chandef(rdev, info, &setup.chandef); if (err) return err; } else { /* __cfg80211_join_mesh() will sort it out */ setup.chandef.chan = NULL; } if (info->attrs[NL80211_ATTR_BSS_BASIC_RATES]) { u8 *rates = nla_data(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]); int n_rates = nla_len(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]); struct ieee80211_supported_band *sband; if (!setup.chandef.chan) return -EINVAL; sband = rdev->wiphy.bands[setup.chandef.chan->band]; err = ieee80211_get_ratemask(sband, rates, n_rates, &setup.basic_rates); if (err) return err; } if (info->attrs[NL80211_ATTR_TX_RATES]) { err = nl80211_parse_tx_bitrate_mask(info, info->attrs, NL80211_ATTR_TX_RATES, &setup.beacon_rate, dev, false, 0); if (err) return err; if (!setup.chandef.chan) return -EINVAL; err = validate_beacon_tx_rate(rdev, setup.chandef.chan->band, &setup.beacon_rate); if (err) return err; } setup.userspace_handles_dfs = nla_get_flag(info->attrs[NL80211_ATTR_HANDLE_DFS]); if (info->attrs[NL80211_ATTR_CONTROL_PORT_OVER_NL80211]) { int r = validate_pae_over_nl80211(rdev, info); if (r < 0) return r; setup.control_port_over_nl80211 = true; } err = __cfg80211_join_mesh(rdev, dev, &setup, &cfg); if (!err && info->attrs[NL80211_ATTR_SOCKET_OWNER]) dev->ieee80211_ptr->conn_owner_nlportid = info->snd_portid; return err; } static int nl80211_leave_mesh(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; return cfg80211_leave_mesh(rdev, dev); } #ifdef CONFIG_PM static int nl80211_send_wowlan_patterns(struct sk_buff *msg, struct cfg80211_registered_device *rdev) { struct cfg80211_wowlan *wowlan = rdev->wiphy.wowlan_config; struct nlattr *nl_pats, *nl_pat; int i, pat_len; if (!wowlan->n_patterns) return 0; nl_pats = nla_nest_start_noflag(msg, NL80211_WOWLAN_TRIG_PKT_PATTERN); if (!nl_pats) return -ENOBUFS; for (i = 0; i < wowlan->n_patterns; i++) { nl_pat = nla_nest_start_noflag(msg, i + 1); if (!nl_pat) return -ENOBUFS; pat_len = wowlan->patterns[i].pattern_len; if (nla_put(msg, NL80211_PKTPAT_MASK, DIV_ROUND_UP(pat_len, 8), wowlan->patterns[i].mask) || nla_put(msg, NL80211_PKTPAT_PATTERN, pat_len, wowlan->patterns[i].pattern) || nla_put_u32(msg, NL80211_PKTPAT_OFFSET, wowlan->patterns[i].pkt_offset)) return -ENOBUFS; nla_nest_end(msg, nl_pat); } nla_nest_end(msg, nl_pats); return 0; } static int nl80211_send_wowlan_tcp(struct sk_buff *msg, struct cfg80211_wowlan_tcp *tcp) { struct nlattr *nl_tcp; if (!tcp) return 0; nl_tcp = nla_nest_start_noflag(msg, NL80211_WOWLAN_TRIG_TCP_CONNECTION); if (!nl_tcp) return -ENOBUFS; if (nla_put_in_addr(msg, NL80211_WOWLAN_TCP_SRC_IPV4, tcp->src) || nla_put_in_addr(msg, NL80211_WOWLAN_TCP_DST_IPV4, tcp->dst) || nla_put(msg, NL80211_WOWLAN_TCP_DST_MAC, ETH_ALEN, tcp->dst_mac) || nla_put_u16(msg, NL80211_WOWLAN_TCP_SRC_PORT, tcp->src_port) || nla_put_u16(msg, NL80211_WOWLAN_TCP_DST_PORT, tcp->dst_port) || nla_put(msg, NL80211_WOWLAN_TCP_DATA_PAYLOAD, tcp->payload_len, tcp->payload) || nla_put_u32(msg, NL80211_WOWLAN_TCP_DATA_INTERVAL, tcp->data_interval) || nla_put(msg, NL80211_WOWLAN_TCP_WAKE_PAYLOAD, tcp->wake_len, tcp->wake_data) || nla_put(msg, NL80211_WOWLAN_TCP_WAKE_MASK, DIV_ROUND_UP(tcp->wake_len, 8), tcp->wake_mask)) return -ENOBUFS; if (tcp->payload_seq.len && nla_put(msg, NL80211_WOWLAN_TCP_DATA_PAYLOAD_SEQ, sizeof(tcp->payload_seq), &tcp->payload_seq)) return -ENOBUFS; if (tcp->payload_tok.len && nla_put(msg, NL80211_WOWLAN_TCP_DATA_PAYLOAD_TOKEN, sizeof(tcp->payload_tok) + tcp->tokens_size, &tcp->payload_tok)) return -ENOBUFS; nla_nest_end(msg, nl_tcp); return 0; } static int nl80211_send_wowlan_nd(struct sk_buff *msg, struct cfg80211_sched_scan_request *req) { struct nlattr *nd, *freqs, *matches, *match, *scan_plans, *scan_plan; int i; if (!req) return 0; nd = nla_nest_start_noflag(msg, NL80211_WOWLAN_TRIG_NET_DETECT); if (!nd) return -ENOBUFS; if (req->n_scan_plans == 1 && nla_put_u32(msg, NL80211_ATTR_SCHED_SCAN_INTERVAL, req->scan_plans[0].interval * 1000)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_ATTR_SCHED_SCAN_DELAY, req->delay)) return -ENOBUFS; if (req->relative_rssi_set) { struct nl80211_bss_select_rssi_adjust rssi_adjust; if (nla_put_s8(msg, NL80211_ATTR_SCHED_SCAN_RELATIVE_RSSI, req->relative_rssi)) return -ENOBUFS; rssi_adjust.band = req->rssi_adjust.band; rssi_adjust.delta = req->rssi_adjust.delta; if (nla_put(msg, NL80211_ATTR_SCHED_SCAN_RSSI_ADJUST, sizeof(rssi_adjust), &rssi_adjust)) return -ENOBUFS; } freqs = nla_nest_start_noflag(msg, NL80211_ATTR_SCAN_FREQUENCIES); if (!freqs) return -ENOBUFS; for (i = 0; i < req->n_channels; i++) { if (nla_put_u32(msg, i, req->channels[i]->center_freq)) return -ENOBUFS; } nla_nest_end(msg, freqs); if (req->n_match_sets) { matches = nla_nest_start_noflag(msg, NL80211_ATTR_SCHED_SCAN_MATCH); if (!matches) return -ENOBUFS; for (i = 0; i < req->n_match_sets; i++) { match = nla_nest_start_noflag(msg, i); if (!match) return -ENOBUFS; if (nla_put(msg, NL80211_SCHED_SCAN_MATCH_ATTR_SSID, req->match_sets[i].ssid.ssid_len, req->match_sets[i].ssid.ssid)) return -ENOBUFS; nla_nest_end(msg, match); } nla_nest_end(msg, matches); } scan_plans = nla_nest_start_noflag(msg, NL80211_ATTR_SCHED_SCAN_PLANS); if (!scan_plans) return -ENOBUFS; for (i = 0; i < req->n_scan_plans; i++) { scan_plan = nla_nest_start_noflag(msg, i + 1); if (!scan_plan) return -ENOBUFS; if (nla_put_u32(msg, NL80211_SCHED_SCAN_PLAN_INTERVAL, req->scan_plans[i].interval) || (req->scan_plans[i].iterations && nla_put_u32(msg, NL80211_SCHED_SCAN_PLAN_ITERATIONS, req->scan_plans[i].iterations))) return -ENOBUFS; nla_nest_end(msg, scan_plan); } nla_nest_end(msg, scan_plans); nla_nest_end(msg, nd); return 0; } static int nl80211_get_wowlan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct sk_buff *msg; void *hdr; u32 size = NLMSG_DEFAULT_SIZE; if (!rdev->wiphy.wowlan) return -EOPNOTSUPP; if (rdev->wiphy.wowlan_config && rdev->wiphy.wowlan_config->tcp) { /* adjust size to have room for all the data */ size += rdev->wiphy.wowlan_config->tcp->tokens_size + rdev->wiphy.wowlan_config->tcp->payload_len + rdev->wiphy.wowlan_config->tcp->wake_len + rdev->wiphy.wowlan_config->tcp->wake_len / 8; } msg = nlmsg_new(size, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_GET_WOWLAN); if (!hdr) goto nla_put_failure; if (rdev->wiphy.wowlan_config) { struct nlattr *nl_wowlan; nl_wowlan = nla_nest_start_noflag(msg, NL80211_ATTR_WOWLAN_TRIGGERS); if (!nl_wowlan) goto nla_put_failure; if ((rdev->wiphy.wowlan_config->any && nla_put_flag(msg, NL80211_WOWLAN_TRIG_ANY)) || (rdev->wiphy.wowlan_config->disconnect && nla_put_flag(msg, NL80211_WOWLAN_TRIG_DISCONNECT)) || (rdev->wiphy.wowlan_config->magic_pkt && nla_put_flag(msg, NL80211_WOWLAN_TRIG_MAGIC_PKT)) || (rdev->wiphy.wowlan_config->gtk_rekey_failure && nla_put_flag(msg, NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE)) || (rdev->wiphy.wowlan_config->eap_identity_req && nla_put_flag(msg, NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST)) || (rdev->wiphy.wowlan_config->four_way_handshake && nla_put_flag(msg, NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE)) || (rdev->wiphy.wowlan_config->rfkill_release && nla_put_flag(msg, NL80211_WOWLAN_TRIG_RFKILL_RELEASE))) goto nla_put_failure; if (nl80211_send_wowlan_patterns(msg, rdev)) goto nla_put_failure; if (nl80211_send_wowlan_tcp(msg, rdev->wiphy.wowlan_config->tcp)) goto nla_put_failure; if (nl80211_send_wowlan_nd( msg, rdev->wiphy.wowlan_config->nd_config)) goto nla_put_failure; nla_nest_end(msg, nl_wowlan); } genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: nlmsg_free(msg); return -ENOBUFS; } static int nl80211_parse_wowlan_tcp(struct cfg80211_registered_device *rdev, struct nlattr *attr, struct cfg80211_wowlan *trig) { struct nlattr *tb[NUM_NL80211_WOWLAN_TCP]; struct cfg80211_wowlan_tcp *cfg; struct nl80211_wowlan_tcp_data_token *tok = NULL; struct nl80211_wowlan_tcp_data_seq *seq = NULL; u32 size; u32 data_size, wake_size, tokens_size = 0, wake_mask_size; int err, port; if (!rdev->wiphy.wowlan->tcp) return -EINVAL; err = nla_parse_nested_deprecated(tb, MAX_NL80211_WOWLAN_TCP, attr, nl80211_wowlan_tcp_policy, NULL); if (err) return err; if (!tb[NL80211_WOWLAN_TCP_SRC_IPV4] || !tb[NL80211_WOWLAN_TCP_DST_IPV4] || !tb[NL80211_WOWLAN_TCP_DST_MAC] || !tb[NL80211_WOWLAN_TCP_DST_PORT] || !tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD] || !tb[NL80211_WOWLAN_TCP_DATA_INTERVAL] || !tb[NL80211_WOWLAN_TCP_WAKE_PAYLOAD] || !tb[NL80211_WOWLAN_TCP_WAKE_MASK]) return -EINVAL; data_size = nla_len(tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD]); if (data_size > rdev->wiphy.wowlan->tcp->data_payload_max) return -EINVAL; if (nla_get_u32(tb[NL80211_WOWLAN_TCP_DATA_INTERVAL]) > rdev->wiphy.wowlan->tcp->data_interval_max || nla_get_u32(tb[NL80211_WOWLAN_TCP_DATA_INTERVAL]) == 0) return -EINVAL; wake_size = nla_len(tb[NL80211_WOWLAN_TCP_WAKE_PAYLOAD]); if (wake_size > rdev->wiphy.wowlan->tcp->wake_payload_max) return -EINVAL; wake_mask_size = nla_len(tb[NL80211_WOWLAN_TCP_WAKE_MASK]); if (wake_mask_size != DIV_ROUND_UP(wake_size, 8)) return -EINVAL; if (tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD_TOKEN]) { u32 tokln = nla_len(tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD_TOKEN]); tok = nla_data(tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD_TOKEN]); tokens_size = tokln - sizeof(*tok); if (!tok->len || tokens_size % tok->len) return -EINVAL; if (!rdev->wiphy.wowlan->tcp->tok) return -EINVAL; if (tok->len > rdev->wiphy.wowlan->tcp->tok->max_len) return -EINVAL; if (tok->len < rdev->wiphy.wowlan->tcp->tok->min_len) return -EINVAL; if (tokens_size > rdev->wiphy.wowlan->tcp->tok->bufsize) return -EINVAL; if (tok->offset + tok->len > data_size) return -EINVAL; } if (tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD_SEQ]) { seq = nla_data(tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD_SEQ]); if (!rdev->wiphy.wowlan->tcp->seq) return -EINVAL; if (seq->len == 0 || seq->len > 4) return -EINVAL; if (seq->len + seq->offset > data_size) return -EINVAL; } size = sizeof(*cfg); size += data_size; size += wake_size + wake_mask_size; size += tokens_size; cfg = kzalloc(size, GFP_KERNEL); if (!cfg) return -ENOMEM; cfg->src = nla_get_in_addr(tb[NL80211_WOWLAN_TCP_SRC_IPV4]); cfg->dst = nla_get_in_addr(tb[NL80211_WOWLAN_TCP_DST_IPV4]); memcpy(cfg->dst_mac, nla_data(tb[NL80211_WOWLAN_TCP_DST_MAC]), ETH_ALEN); if (tb[NL80211_WOWLAN_TCP_SRC_PORT]) port = nla_get_u16(tb[NL80211_WOWLAN_TCP_SRC_PORT]); else port = 0; #ifdef CONFIG_INET /* allocate a socket and port for it and use it */ err = __sock_create(wiphy_net(&rdev->wiphy), PF_INET, SOCK_STREAM, IPPROTO_TCP, &cfg->sock, 1); if (err) { kfree(cfg); return err; } if (inet_csk_get_port(cfg->sock->sk, port)) { sock_release(cfg->sock); kfree(cfg); return -EADDRINUSE; } cfg->src_port = inet_sk(cfg->sock->sk)->inet_num; #else if (!port) { kfree(cfg); return -EINVAL; } cfg->src_port = port; #endif cfg->dst_port = nla_get_u16(tb[NL80211_WOWLAN_TCP_DST_PORT]); cfg->payload_len = data_size; cfg->payload = (u8 *)cfg + sizeof(*cfg) + tokens_size; memcpy((void *)cfg->payload, nla_data(tb[NL80211_WOWLAN_TCP_DATA_PAYLOAD]), data_size); if (seq) cfg->payload_seq = *seq; cfg->data_interval = nla_get_u32(tb[NL80211_WOWLAN_TCP_DATA_INTERVAL]); cfg->wake_len = wake_size; cfg->wake_data = (u8 *)cfg + sizeof(*cfg) + tokens_size + data_size; memcpy((void *)cfg->wake_data, nla_data(tb[NL80211_WOWLAN_TCP_WAKE_PAYLOAD]), wake_size); cfg->wake_mask = (u8 *)cfg + sizeof(*cfg) + tokens_size + data_size + wake_size; memcpy((void *)cfg->wake_mask, nla_data(tb[NL80211_WOWLAN_TCP_WAKE_MASK]), wake_mask_size); if (tok) { cfg->tokens_size = tokens_size; cfg->payload_tok = *tok; memcpy(cfg->payload_tok.token_stream, tok->token_stream, tokens_size); } trig->tcp = cfg; return 0; } static int nl80211_parse_wowlan_nd(struct cfg80211_registered_device *rdev, const struct wiphy_wowlan_support *wowlan, struct nlattr *attr, struct cfg80211_wowlan *trig) { struct nlattr **tb; int err; tb = kcalloc(NUM_NL80211_ATTR, sizeof(*tb), GFP_KERNEL); if (!tb) return -ENOMEM; if (!(wowlan->flags & WIPHY_WOWLAN_NET_DETECT)) { err = -EOPNOTSUPP; goto out; } err = nla_parse_nested_deprecated(tb, NL80211_ATTR_MAX, attr, nl80211_policy, NULL); if (err) goto out; trig->nd_config = nl80211_parse_sched_scan(&rdev->wiphy, NULL, tb, wowlan->max_nd_match_sets); err = PTR_ERR_OR_ZERO(trig->nd_config); if (err) trig->nd_config = NULL; out: kfree(tb); return err; } static int nl80211_set_wowlan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct nlattr *tb[NUM_NL80211_WOWLAN_TRIG]; struct cfg80211_wowlan new_triggers = {}; struct cfg80211_wowlan *ntrig; const struct wiphy_wowlan_support *wowlan = rdev->wiphy.wowlan; int err, i; bool prev_enabled = rdev->wiphy.wowlan_config; bool regular = false; if (!wowlan) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_WOWLAN_TRIGGERS]) { cfg80211_rdev_free_wowlan(rdev); rdev->wiphy.wowlan_config = NULL; goto set_wakeup; } err = nla_parse_nested_deprecated(tb, MAX_NL80211_WOWLAN_TRIG, info->attrs[NL80211_ATTR_WOWLAN_TRIGGERS], nl80211_wowlan_policy, info->extack); if (err) return err; if (tb[NL80211_WOWLAN_TRIG_ANY]) { if (!(wowlan->flags & WIPHY_WOWLAN_ANY)) return -EINVAL; new_triggers.any = true; } if (tb[NL80211_WOWLAN_TRIG_DISCONNECT]) { if (!(wowlan->flags & WIPHY_WOWLAN_DISCONNECT)) return -EINVAL; new_triggers.disconnect = true; regular = true; } if (tb[NL80211_WOWLAN_TRIG_MAGIC_PKT]) { if (!(wowlan->flags & WIPHY_WOWLAN_MAGIC_PKT)) return -EINVAL; new_triggers.magic_pkt = true; regular = true; } if (tb[NL80211_WOWLAN_TRIG_GTK_REKEY_SUPPORTED]) return -EINVAL; if (tb[NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE]) { if (!(wowlan->flags & WIPHY_WOWLAN_GTK_REKEY_FAILURE)) return -EINVAL; new_triggers.gtk_rekey_failure = true; regular = true; } if (tb[NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST]) { if (!(wowlan->flags & WIPHY_WOWLAN_EAP_IDENTITY_REQ)) return -EINVAL; new_triggers.eap_identity_req = true; regular = true; } if (tb[NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE]) { if (!(wowlan->flags & WIPHY_WOWLAN_4WAY_HANDSHAKE)) return -EINVAL; new_triggers.four_way_handshake = true; regular = true; } if (tb[NL80211_WOWLAN_TRIG_RFKILL_RELEASE]) { if (!(wowlan->flags & WIPHY_WOWLAN_RFKILL_RELEASE)) return -EINVAL; new_triggers.rfkill_release = true; regular = true; } if (tb[NL80211_WOWLAN_TRIG_PKT_PATTERN]) { struct nlattr *pat; int n_patterns = 0; int rem, pat_len, mask_len, pkt_offset; struct nlattr *pat_tb[NUM_NL80211_PKTPAT]; regular = true; nla_for_each_nested(pat, tb[NL80211_WOWLAN_TRIG_PKT_PATTERN], rem) n_patterns++; if (n_patterns > wowlan->n_patterns) return -EINVAL; new_triggers.patterns = kcalloc(n_patterns, sizeof(new_triggers.patterns[0]), GFP_KERNEL); if (!new_triggers.patterns) return -ENOMEM; new_triggers.n_patterns = n_patterns; i = 0; nla_for_each_nested(pat, tb[NL80211_WOWLAN_TRIG_PKT_PATTERN], rem) { u8 *mask_pat; err = nla_parse_nested_deprecated(pat_tb, MAX_NL80211_PKTPAT, pat, nl80211_packet_pattern_policy, info->extack); if (err) goto error; err = -EINVAL; if (!pat_tb[NL80211_PKTPAT_MASK] || !pat_tb[NL80211_PKTPAT_PATTERN]) goto error; pat_len = nla_len(pat_tb[NL80211_PKTPAT_PATTERN]); mask_len = DIV_ROUND_UP(pat_len, 8); if (nla_len(pat_tb[NL80211_PKTPAT_MASK]) != mask_len) goto error; if (pat_len > wowlan->pattern_max_len || pat_len < wowlan->pattern_min_len) goto error; if (!pat_tb[NL80211_PKTPAT_OFFSET]) pkt_offset = 0; else pkt_offset = nla_get_u32( pat_tb[NL80211_PKTPAT_OFFSET]); if (pkt_offset > wowlan->max_pkt_offset) goto error; new_triggers.patterns[i].pkt_offset = pkt_offset; mask_pat = kmalloc(mask_len + pat_len, GFP_KERNEL); if (!mask_pat) { err = -ENOMEM; goto error; } new_triggers.patterns[i].mask = mask_pat; memcpy(mask_pat, nla_data(pat_tb[NL80211_PKTPAT_MASK]), mask_len); mask_pat += mask_len; new_triggers.patterns[i].pattern = mask_pat; new_triggers.patterns[i].pattern_len = pat_len; memcpy(mask_pat, nla_data(pat_tb[NL80211_PKTPAT_PATTERN]), pat_len); i++; } } if (tb[NL80211_WOWLAN_TRIG_TCP_CONNECTION]) { regular = true; err = nl80211_parse_wowlan_tcp( rdev, tb[NL80211_WOWLAN_TRIG_TCP_CONNECTION], &new_triggers); if (err) goto error; } if (tb[NL80211_WOWLAN_TRIG_NET_DETECT]) { regular = true; err = nl80211_parse_wowlan_nd( rdev, wowlan, tb[NL80211_WOWLAN_TRIG_NET_DETECT], &new_triggers); if (err) goto error; } /* The 'any' trigger means the device continues operating more or less * as in its normal operation mode and wakes up the host on most of the * normal interrupts (like packet RX, ...) * It therefore makes little sense to combine with the more constrained * wakeup trigger modes. */ if (new_triggers.any && regular) { err = -EINVAL; goto error; } ntrig = kmemdup(&new_triggers, sizeof(new_triggers), GFP_KERNEL); if (!ntrig) { err = -ENOMEM; goto error; } cfg80211_rdev_free_wowlan(rdev); rdev->wiphy.wowlan_config = ntrig; set_wakeup: if (rdev->ops->set_wakeup && prev_enabled != !!rdev->wiphy.wowlan_config) rdev_set_wakeup(rdev, rdev->wiphy.wowlan_config); return 0; error: for (i = 0; i < new_triggers.n_patterns; i++) kfree(new_triggers.patterns[i].mask); kfree(new_triggers.patterns); if (new_triggers.tcp && new_triggers.tcp->sock) sock_release(new_triggers.tcp->sock); kfree(new_triggers.tcp); kfree(new_triggers.nd_config); return err; } #endif static int nl80211_send_coalesce_rules(struct sk_buff *msg, struct cfg80211_registered_device *rdev) { struct nlattr *nl_pats, *nl_pat, *nl_rule, *nl_rules; int i, j, pat_len; struct cfg80211_coalesce_rules *rule; if (!rdev->coalesce->n_rules) return 0; nl_rules = nla_nest_start_noflag(msg, NL80211_ATTR_COALESCE_RULE); if (!nl_rules) return -ENOBUFS; for (i = 0; i < rdev->coalesce->n_rules; i++) { nl_rule = nla_nest_start_noflag(msg, i + 1); if (!nl_rule) return -ENOBUFS; rule = &rdev->coalesce->rules[i]; if (nla_put_u32(msg, NL80211_ATTR_COALESCE_RULE_DELAY, rule->delay)) return -ENOBUFS; if (nla_put_u32(msg, NL80211_ATTR_COALESCE_RULE_CONDITION, rule->condition)) return -ENOBUFS; nl_pats = nla_nest_start_noflag(msg, NL80211_ATTR_COALESCE_RULE_PKT_PATTERN); if (!nl_pats) return -ENOBUFS; for (j = 0; j < rule->n_patterns; j++) { nl_pat = nla_nest_start_noflag(msg, j + 1); if (!nl_pat) return -ENOBUFS; pat_len = rule->patterns[j].pattern_len; if (nla_put(msg, NL80211_PKTPAT_MASK, DIV_ROUND_UP(pat_len, 8), rule->patterns[j].mask) || nla_put(msg, NL80211_PKTPAT_PATTERN, pat_len, rule->patterns[j].pattern) || nla_put_u32(msg, NL80211_PKTPAT_OFFSET, rule->patterns[j].pkt_offset)) return -ENOBUFS; nla_nest_end(msg, nl_pat); } nla_nest_end(msg, nl_pats); nla_nest_end(msg, nl_rule); } nla_nest_end(msg, nl_rules); return 0; } static int nl80211_get_coalesce(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct sk_buff *msg; void *hdr; if (!rdev->wiphy.coalesce) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_GET_COALESCE); if (!hdr) goto nla_put_failure; if (rdev->coalesce && nl80211_send_coalesce_rules(msg, rdev)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: nlmsg_free(msg); return -ENOBUFS; } void cfg80211_rdev_free_coalesce(struct cfg80211_registered_device *rdev) { struct cfg80211_coalesce *coalesce = rdev->coalesce; int i, j; struct cfg80211_coalesce_rules *rule; if (!coalesce) return; for (i = 0; i < coalesce->n_rules; i++) { rule = &coalesce->rules[i]; for (j = 0; j < rule->n_patterns; j++) kfree(rule->patterns[j].mask); kfree(rule->patterns); } kfree(coalesce->rules); kfree(coalesce); rdev->coalesce = NULL; } static int nl80211_parse_coalesce_rule(struct cfg80211_registered_device *rdev, struct nlattr *rule, struct cfg80211_coalesce_rules *new_rule) { int err, i; const struct wiphy_coalesce_support *coalesce = rdev->wiphy.coalesce; struct nlattr *tb[NUM_NL80211_ATTR_COALESCE_RULE], *pat; int rem, pat_len, mask_len, pkt_offset, n_patterns = 0; struct nlattr *pat_tb[NUM_NL80211_PKTPAT]; err = nla_parse_nested_deprecated(tb, NL80211_ATTR_COALESCE_RULE_MAX, rule, nl80211_coalesce_policy, NULL); if (err) return err; if (tb[NL80211_ATTR_COALESCE_RULE_DELAY]) new_rule->delay = nla_get_u32(tb[NL80211_ATTR_COALESCE_RULE_DELAY]); if (new_rule->delay > coalesce->max_delay) return -EINVAL; if (tb[NL80211_ATTR_COALESCE_RULE_CONDITION]) new_rule->condition = nla_get_u32(tb[NL80211_ATTR_COALESCE_RULE_CONDITION]); if (!tb[NL80211_ATTR_COALESCE_RULE_PKT_PATTERN]) return -EINVAL; nla_for_each_nested(pat, tb[NL80211_ATTR_COALESCE_RULE_PKT_PATTERN], rem) n_patterns++; if (n_patterns > coalesce->n_patterns) return -EINVAL; new_rule->patterns = kcalloc(n_patterns, sizeof(new_rule->patterns[0]), GFP_KERNEL); if (!new_rule->patterns) return -ENOMEM; new_rule->n_patterns = n_patterns; i = 0; nla_for_each_nested(pat, tb[NL80211_ATTR_COALESCE_RULE_PKT_PATTERN], rem) { u8 *mask_pat; err = nla_parse_nested_deprecated(pat_tb, MAX_NL80211_PKTPAT, pat, nl80211_packet_pattern_policy, NULL); if (err) return err; if (!pat_tb[NL80211_PKTPAT_MASK] || !pat_tb[NL80211_PKTPAT_PATTERN]) return -EINVAL; pat_len = nla_len(pat_tb[NL80211_PKTPAT_PATTERN]); mask_len = DIV_ROUND_UP(pat_len, 8); if (nla_len(pat_tb[NL80211_PKTPAT_MASK]) != mask_len) return -EINVAL; if (pat_len > coalesce->pattern_max_len || pat_len < coalesce->pattern_min_len) return -EINVAL; if (!pat_tb[NL80211_PKTPAT_OFFSET]) pkt_offset = 0; else pkt_offset = nla_get_u32(pat_tb[NL80211_PKTPAT_OFFSET]); if (pkt_offset > coalesce->max_pkt_offset) return -EINVAL; new_rule->patterns[i].pkt_offset = pkt_offset; mask_pat = kmalloc(mask_len + pat_len, GFP_KERNEL); if (!mask_pat) return -ENOMEM; new_rule->patterns[i].mask = mask_pat; memcpy(mask_pat, nla_data(pat_tb[NL80211_PKTPAT_MASK]), mask_len); mask_pat += mask_len; new_rule->patterns[i].pattern = mask_pat; new_rule->patterns[i].pattern_len = pat_len; memcpy(mask_pat, nla_data(pat_tb[NL80211_PKTPAT_PATTERN]), pat_len); i++; } return 0; } static int nl80211_set_coalesce(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; const struct wiphy_coalesce_support *coalesce = rdev->wiphy.coalesce; struct cfg80211_coalesce new_coalesce = {}; struct cfg80211_coalesce *n_coalesce; int err, rem_rule, n_rules = 0, i, j; struct nlattr *rule; struct cfg80211_coalesce_rules *tmp_rule; if (!rdev->wiphy.coalesce || !rdev->ops->set_coalesce) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_COALESCE_RULE]) { cfg80211_rdev_free_coalesce(rdev); rdev_set_coalesce(rdev, NULL); return 0; } nla_for_each_nested(rule, info->attrs[NL80211_ATTR_COALESCE_RULE], rem_rule) n_rules++; if (n_rules > coalesce->n_rules) return -EINVAL; new_coalesce.rules = kcalloc(n_rules, sizeof(new_coalesce.rules[0]), GFP_KERNEL); if (!new_coalesce.rules) return -ENOMEM; new_coalesce.n_rules = n_rules; i = 0; nla_for_each_nested(rule, info->attrs[NL80211_ATTR_COALESCE_RULE], rem_rule) { err = nl80211_parse_coalesce_rule(rdev, rule, &new_coalesce.rules[i]); if (err) goto error; i++; } err = rdev_set_coalesce(rdev, &new_coalesce); if (err) goto error; n_coalesce = kmemdup(&new_coalesce, sizeof(new_coalesce), GFP_KERNEL); if (!n_coalesce) { err = -ENOMEM; goto error; } cfg80211_rdev_free_coalesce(rdev); rdev->coalesce = n_coalesce; return 0; error: for (i = 0; i < new_coalesce.n_rules; i++) { tmp_rule = &new_coalesce.rules[i]; for (j = 0; j < tmp_rule->n_patterns; j++) kfree(tmp_rule->patterns[j].mask); kfree(tmp_rule->patterns); } kfree(new_coalesce.rules); return err; } static int nl80211_set_rekey_data(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct nlattr *tb[NUM_NL80211_REKEY_DATA]; struct cfg80211_gtk_rekey_data rekey_data = {}; int err; if (!info->attrs[NL80211_ATTR_REKEY_DATA]) return -EINVAL; err = nla_parse_nested_deprecated(tb, MAX_NL80211_REKEY_DATA, info->attrs[NL80211_ATTR_REKEY_DATA], nl80211_rekey_policy, info->extack); if (err) return err; if (!tb[NL80211_REKEY_DATA_REPLAY_CTR] || !tb[NL80211_REKEY_DATA_KEK] || !tb[NL80211_REKEY_DATA_KCK]) return -EINVAL; if (nla_len(tb[NL80211_REKEY_DATA_KEK]) != NL80211_KEK_LEN && !(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK && nla_len(tb[NL80211_REKEY_DATA_KEK]) == NL80211_KEK_EXT_LEN)) return -ERANGE; if (nla_len(tb[NL80211_REKEY_DATA_KCK]) != NL80211_KCK_LEN && !(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK && nla_len(tb[NL80211_REKEY_DATA_KCK]) == NL80211_KCK_EXT_LEN) && !(rdev->wiphy.flags & WIPHY_FLAG_SUPPORTS_EXT_KCK_32 && nla_len(tb[NL80211_REKEY_DATA_KCK]) == NL80211_KCK_EXT_LEN_32)) return -ERANGE; rekey_data.kek = nla_data(tb[NL80211_REKEY_DATA_KEK]); rekey_data.kck = nla_data(tb[NL80211_REKEY_DATA_KCK]); rekey_data.replay_ctr = nla_data(tb[NL80211_REKEY_DATA_REPLAY_CTR]); rekey_data.kek_len = nla_len(tb[NL80211_REKEY_DATA_KEK]); rekey_data.kck_len = nla_len(tb[NL80211_REKEY_DATA_KCK]); if (tb[NL80211_REKEY_DATA_AKM]) rekey_data.akm = nla_get_u32(tb[NL80211_REKEY_DATA_AKM]); if (!wdev->connected) return -ENOTCONN; if (!rdev->ops->set_rekey_data) return -EOPNOTSUPP; return rdev_set_rekey_data(rdev, dev, &rekey_data); } static int nl80211_register_unexpected_frame(struct sk_buff *skb, struct genl_info *info) { struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; if (wdev->iftype != NL80211_IFTYPE_AP && wdev->iftype != NL80211_IFTYPE_P2P_GO) return -EINVAL; if (wdev->ap_unexpected_nlportid) return -EBUSY; wdev->ap_unexpected_nlportid = info->snd_portid; return 0; } static int nl80211_probe_client(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct sk_buff *msg; void *hdr; const u8 *addr; u64 cookie; int err; if (wdev->iftype != NL80211_IFTYPE_AP && wdev->iftype != NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!rdev->ops->probe_client) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_PROBE_CLIENT); if (!hdr) { err = -ENOBUFS; goto free_msg; } addr = nla_data(info->attrs[NL80211_ATTR_MAC]); err = rdev_probe_client(rdev, dev, addr, &cookie); if (err) goto free_msg; if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, cookie, NL80211_ATTR_PAD)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: err = -ENOBUFS; free_msg: nlmsg_free(msg); return err; } static int nl80211_register_beacons(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct cfg80211_beacon_registration *reg, *nreg; int rv; if (!(rdev->wiphy.flags & WIPHY_FLAG_REPORTS_OBSS)) return -EOPNOTSUPP; nreg = kzalloc(sizeof(*nreg), GFP_KERNEL); if (!nreg) return -ENOMEM; /* First, check if already registered. */ spin_lock_bh(&rdev->beacon_registrations_lock); list_for_each_entry(reg, &rdev->beacon_registrations, list) { if (reg->nlportid == info->snd_portid) { rv = -EALREADY; goto out_err; } } /* Add it to the list */ nreg->nlportid = info->snd_portid; list_add(&nreg->list, &rdev->beacon_registrations); spin_unlock_bh(&rdev->beacon_registrations_lock); return 0; out_err: spin_unlock_bh(&rdev->beacon_registrations_lock); kfree(nreg); return rv; } static int nl80211_start_p2p_device(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; int err; if (!rdev->ops->start_p2p_device) return -EOPNOTSUPP; if (wdev->iftype != NL80211_IFTYPE_P2P_DEVICE) return -EOPNOTSUPP; if (wdev_running(wdev)) return 0; if (rfkill_blocked(rdev->wiphy.rfkill)) return -ERFKILL; err = rdev_start_p2p_device(rdev, wdev); if (err) return err; wdev->is_running = true; rdev->opencount++; return 0; } static int nl80211_stop_p2p_device(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; if (wdev->iftype != NL80211_IFTYPE_P2P_DEVICE) return -EOPNOTSUPP; if (!rdev->ops->stop_p2p_device) return -EOPNOTSUPP; cfg80211_stop_p2p_device(rdev, wdev); return 0; } static int nl80211_start_nan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; struct cfg80211_nan_conf conf = {}; int err; if (wdev->iftype != NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (wdev_running(wdev)) return -EEXIST; if (rfkill_blocked(rdev->wiphy.rfkill)) return -ERFKILL; if (!info->attrs[NL80211_ATTR_NAN_MASTER_PREF]) return -EINVAL; conf.master_pref = nla_get_u8(info->attrs[NL80211_ATTR_NAN_MASTER_PREF]); if (info->attrs[NL80211_ATTR_BANDS]) { u32 bands = nla_get_u32(info->attrs[NL80211_ATTR_BANDS]); if (bands & ~(u32)wdev->wiphy->nan_supported_bands) return -EOPNOTSUPP; if (bands && !(bands & BIT(NL80211_BAND_2GHZ))) return -EINVAL; conf.bands = bands; } err = rdev_start_nan(rdev, wdev, &conf); if (err) return err; wdev->is_running = true; rdev->opencount++; return 0; } static int nl80211_stop_nan(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; if (wdev->iftype != NL80211_IFTYPE_NAN) return -EOPNOTSUPP; cfg80211_stop_nan(rdev, wdev); return 0; } static int validate_nan_filter(struct nlattr *filter_attr) { struct nlattr *attr; int len = 0, n_entries = 0, rem; nla_for_each_nested(attr, filter_attr, rem) { len += nla_len(attr); n_entries++; } if (len >= U8_MAX) return -EINVAL; return n_entries; } static int handle_nan_filter(struct nlattr *attr_filter, struct cfg80211_nan_func *func, bool tx) { struct nlattr *attr; int n_entries, rem, i; struct cfg80211_nan_func_filter *filter; n_entries = validate_nan_filter(attr_filter); if (n_entries < 0) return n_entries; BUILD_BUG_ON(sizeof(*func->rx_filters) != sizeof(*func->tx_filters)); filter = kcalloc(n_entries, sizeof(*func->rx_filters), GFP_KERNEL); if (!filter) return -ENOMEM; i = 0; nla_for_each_nested(attr, attr_filter, rem) { filter[i].filter = nla_memdup(attr, GFP_KERNEL); if (!filter[i].filter) goto err; filter[i].len = nla_len(attr); i++; } if (tx) { func->num_tx_filters = n_entries; func->tx_filters = filter; } else { func->num_rx_filters = n_entries; func->rx_filters = filter; } return 0; err: i = 0; nla_for_each_nested(attr, attr_filter, rem) { kfree(filter[i].filter); i++; } kfree(filter); return -ENOMEM; } static int nl80211_nan_add_func(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; struct nlattr *tb[NUM_NL80211_NAN_FUNC_ATTR], *func_attr; struct cfg80211_nan_func *func; struct sk_buff *msg = NULL; void *hdr = NULL; int err = 0; if (wdev->iftype != NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!wdev_running(wdev)) return -ENOTCONN; if (!info->attrs[NL80211_ATTR_NAN_FUNC]) return -EINVAL; err = nla_parse_nested_deprecated(tb, NL80211_NAN_FUNC_ATTR_MAX, info->attrs[NL80211_ATTR_NAN_FUNC], nl80211_nan_func_policy, info->extack); if (err) return err; func = kzalloc(sizeof(*func), GFP_KERNEL); if (!func) return -ENOMEM; func->cookie = cfg80211_assign_cookie(rdev); if (!tb[NL80211_NAN_FUNC_TYPE]) { err = -EINVAL; goto out; } func->type = nla_get_u8(tb[NL80211_NAN_FUNC_TYPE]); if (!tb[NL80211_NAN_FUNC_SERVICE_ID]) { err = -EINVAL; goto out; } memcpy(func->service_id, nla_data(tb[NL80211_NAN_FUNC_SERVICE_ID]), sizeof(func->service_id)); func->close_range = nla_get_flag(tb[NL80211_NAN_FUNC_CLOSE_RANGE]); if (tb[NL80211_NAN_FUNC_SERVICE_INFO]) { func->serv_spec_info_len = nla_len(tb[NL80211_NAN_FUNC_SERVICE_INFO]); func->serv_spec_info = kmemdup(nla_data(tb[NL80211_NAN_FUNC_SERVICE_INFO]), func->serv_spec_info_len, GFP_KERNEL); if (!func->serv_spec_info) { err = -ENOMEM; goto out; } } if (tb[NL80211_NAN_FUNC_TTL]) func->ttl = nla_get_u32(tb[NL80211_NAN_FUNC_TTL]); switch (func->type) { case NL80211_NAN_FUNC_PUBLISH: if (!tb[NL80211_NAN_FUNC_PUBLISH_TYPE]) { err = -EINVAL; goto out; } func->publish_type = nla_get_u8(tb[NL80211_NAN_FUNC_PUBLISH_TYPE]); func->publish_bcast = nla_get_flag(tb[NL80211_NAN_FUNC_PUBLISH_BCAST]); if ((!(func->publish_type & NL80211_NAN_SOLICITED_PUBLISH)) && func->publish_bcast) { err = -EINVAL; goto out; } break; case NL80211_NAN_FUNC_SUBSCRIBE: func->subscribe_active = nla_get_flag(tb[NL80211_NAN_FUNC_SUBSCRIBE_ACTIVE]); break; case NL80211_NAN_FUNC_FOLLOW_UP: if (!tb[NL80211_NAN_FUNC_FOLLOW_UP_ID] || !tb[NL80211_NAN_FUNC_FOLLOW_UP_REQ_ID] || !tb[NL80211_NAN_FUNC_FOLLOW_UP_DEST]) { err = -EINVAL; goto out; } func->followup_id = nla_get_u8(tb[NL80211_NAN_FUNC_FOLLOW_UP_ID]); func->followup_reqid = nla_get_u8(tb[NL80211_NAN_FUNC_FOLLOW_UP_REQ_ID]); memcpy(func->followup_dest.addr, nla_data(tb[NL80211_NAN_FUNC_FOLLOW_UP_DEST]), sizeof(func->followup_dest.addr)); if (func->ttl) { err = -EINVAL; goto out; } break; default: err = -EINVAL; goto out; } if (tb[NL80211_NAN_FUNC_SRF]) { struct nlattr *srf_tb[NUM_NL80211_NAN_SRF_ATTR]; err = nla_parse_nested_deprecated(srf_tb, NL80211_NAN_SRF_ATTR_MAX, tb[NL80211_NAN_FUNC_SRF], nl80211_nan_srf_policy, info->extack); if (err) goto out; func->srf_include = nla_get_flag(srf_tb[NL80211_NAN_SRF_INCLUDE]); if (srf_tb[NL80211_NAN_SRF_BF]) { if (srf_tb[NL80211_NAN_SRF_MAC_ADDRS] || !srf_tb[NL80211_NAN_SRF_BF_IDX]) { err = -EINVAL; goto out; } func->srf_bf_len = nla_len(srf_tb[NL80211_NAN_SRF_BF]); func->srf_bf = kmemdup(nla_data(srf_tb[NL80211_NAN_SRF_BF]), func->srf_bf_len, GFP_KERNEL); if (!func->srf_bf) { err = -ENOMEM; goto out; } func->srf_bf_idx = nla_get_u8(srf_tb[NL80211_NAN_SRF_BF_IDX]); } else { struct nlattr *attr, *mac_attr = srf_tb[NL80211_NAN_SRF_MAC_ADDRS]; int n_entries, rem, i = 0; if (!mac_attr) { err = -EINVAL; goto out; } n_entries = validate_acl_mac_addrs(mac_attr); if (n_entries <= 0) { err = -EINVAL; goto out; } func->srf_num_macs = n_entries; func->srf_macs = kcalloc(n_entries, sizeof(*func->srf_macs), GFP_KERNEL); if (!func->srf_macs) { err = -ENOMEM; goto out; } nla_for_each_nested(attr, mac_attr, rem) memcpy(func->srf_macs[i++].addr, nla_data(attr), sizeof(*func->srf_macs)); } } if (tb[NL80211_NAN_FUNC_TX_MATCH_FILTER]) { err = handle_nan_filter(tb[NL80211_NAN_FUNC_TX_MATCH_FILTER], func, true); if (err) goto out; } if (tb[NL80211_NAN_FUNC_RX_MATCH_FILTER]) { err = handle_nan_filter(tb[NL80211_NAN_FUNC_RX_MATCH_FILTER], func, false); if (err) goto out; } msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) { err = -ENOMEM; goto out; } hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_ADD_NAN_FUNCTION); /* This can't really happen - we just allocated 4KB */ if (WARN_ON(!hdr)) { err = -ENOMEM; goto out; } err = rdev_add_nan_func(rdev, wdev, func); out: if (err < 0) { cfg80211_free_nan_func(func); nlmsg_free(msg); return err; } /* propagate the instance id and cookie to userspace */ if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, func->cookie, NL80211_ATTR_PAD)) goto nla_put_failure; func_attr = nla_nest_start_noflag(msg, NL80211_ATTR_NAN_FUNC); if (!func_attr) goto nla_put_failure; if (nla_put_u8(msg, NL80211_NAN_FUNC_INSTANCE_ID, func->instance_id)) goto nla_put_failure; nla_nest_end(msg, func_attr); genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: nlmsg_free(msg); return -ENOBUFS; } static int nl80211_nan_del_func(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; u64 cookie; if (wdev->iftype != NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!wdev_running(wdev)) return -ENOTCONN; if (!info->attrs[NL80211_ATTR_COOKIE]) return -EINVAL; cookie = nla_get_u64(info->attrs[NL80211_ATTR_COOKIE]); rdev_del_nan_func(rdev, wdev, cookie); return 0; } static int nl80211_nan_change_config(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; struct cfg80211_nan_conf conf = {}; u32 changed = 0; if (wdev->iftype != NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!wdev_running(wdev)) return -ENOTCONN; if (info->attrs[NL80211_ATTR_NAN_MASTER_PREF]) { conf.master_pref = nla_get_u8(info->attrs[NL80211_ATTR_NAN_MASTER_PREF]); if (conf.master_pref <= 1 || conf.master_pref == 255) return -EINVAL; changed |= CFG80211_NAN_CONF_CHANGED_PREF; } if (info->attrs[NL80211_ATTR_BANDS]) { u32 bands = nla_get_u32(info->attrs[NL80211_ATTR_BANDS]); if (bands & ~(u32)wdev->wiphy->nan_supported_bands) return -EOPNOTSUPP; if (bands && !(bands & BIT(NL80211_BAND_2GHZ))) return -EINVAL; conf.bands = bands; changed |= CFG80211_NAN_CONF_CHANGED_BANDS; } if (!changed) return -EINVAL; return rdev_nan_change_conf(rdev, wdev, &conf, changed); } void cfg80211_nan_match(struct wireless_dev *wdev, struct cfg80211_nan_match_params *match, gfp_t gfp) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct nlattr *match_attr, *local_func_attr, *peer_func_attr; struct sk_buff *msg; void *hdr; if (WARN_ON(!match->inst_id || !match->peer_inst_id || !match->addr)) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_NAN_MATCH); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (wdev->netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex)) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto nla_put_failure; if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, match->cookie, NL80211_ATTR_PAD) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, match->addr)) goto nla_put_failure; match_attr = nla_nest_start_noflag(msg, NL80211_ATTR_NAN_MATCH); if (!match_attr) goto nla_put_failure; local_func_attr = nla_nest_start_noflag(msg, NL80211_NAN_MATCH_FUNC_LOCAL); if (!local_func_attr) goto nla_put_failure; if (nla_put_u8(msg, NL80211_NAN_FUNC_INSTANCE_ID, match->inst_id)) goto nla_put_failure; nla_nest_end(msg, local_func_attr); peer_func_attr = nla_nest_start_noflag(msg, NL80211_NAN_MATCH_FUNC_PEER); if (!peer_func_attr) goto nla_put_failure; if (nla_put_u8(msg, NL80211_NAN_FUNC_TYPE, match->type) || nla_put_u8(msg, NL80211_NAN_FUNC_INSTANCE_ID, match->peer_inst_id)) goto nla_put_failure; if (match->info && match->info_len && nla_put(msg, NL80211_NAN_FUNC_SERVICE_INFO, match->info_len, match->info)) goto nla_put_failure; nla_nest_end(msg, peer_func_attr); nla_nest_end(msg, match_attr); genlmsg_end(msg, hdr); if (!wdev->owner_nlportid) genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_NAN, gfp); else genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, wdev->owner_nlportid); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_nan_match); void cfg80211_nan_func_terminated(struct wireless_dev *wdev, u8 inst_id, enum nl80211_nan_func_term_reason reason, u64 cookie, gfp_t gfp) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; struct nlattr *func_attr; void *hdr; if (WARN_ON(!inst_id)) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_DEL_NAN_FUNCTION); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (wdev->netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex)) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto nla_put_failure; if (nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, cookie, NL80211_ATTR_PAD)) goto nla_put_failure; func_attr = nla_nest_start_noflag(msg, NL80211_ATTR_NAN_FUNC); if (!func_attr) goto nla_put_failure; if (nla_put_u8(msg, NL80211_NAN_FUNC_INSTANCE_ID, inst_id) || nla_put_u8(msg, NL80211_NAN_FUNC_TERM_REASON, reason)) goto nla_put_failure; nla_nest_end(msg, func_attr); genlmsg_end(msg, hdr); if (!wdev->owner_nlportid) genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_NAN, gfp); else genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, wdev->owner_nlportid); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_nan_func_terminated); static int nl80211_get_protocol_features(struct sk_buff *skb, struct genl_info *info) { void *hdr; struct sk_buff *msg; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_GET_PROTOCOL_FEATURES); if (!hdr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_PROTOCOL_FEATURES, NL80211_PROTOCOL_FEATURE_SPLIT_WIPHY_DUMP)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: kfree_skb(msg); return -ENOBUFS; } static int nl80211_update_ft_ies(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct cfg80211_update_ft_ies_params ft_params; struct net_device *dev = info->user_ptr[1]; if (!rdev->ops->update_ft_ies) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MDID] || !info->attrs[NL80211_ATTR_IE]) return -EINVAL; memset(&ft_params, 0, sizeof(ft_params)); ft_params.md = nla_get_u16(info->attrs[NL80211_ATTR_MDID]); ft_params.ie = nla_data(info->attrs[NL80211_ATTR_IE]); ft_params.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); return rdev_update_ft_ies(rdev, dev, &ft_params); } static int nl80211_crit_protocol_start(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; enum nl80211_crit_proto_id proto = NL80211_CRIT_PROTO_UNSPEC; u16 duration; int ret; if (!rdev->ops->crit_proto_start) return -EOPNOTSUPP; if (WARN_ON(!rdev->ops->crit_proto_stop)) return -EINVAL; if (rdev->crit_proto_nlportid) return -EBUSY; /* determine protocol if provided */ if (info->attrs[NL80211_ATTR_CRIT_PROT_ID]) proto = nla_get_u16(info->attrs[NL80211_ATTR_CRIT_PROT_ID]); if (proto >= NUM_NL80211_CRIT_PROTO) return -EINVAL; /* timeout must be provided */ if (!info->attrs[NL80211_ATTR_MAX_CRIT_PROT_DURATION]) return -EINVAL; duration = nla_get_u16(info->attrs[NL80211_ATTR_MAX_CRIT_PROT_DURATION]); ret = rdev_crit_proto_start(rdev, wdev, proto, duration); if (!ret) rdev->crit_proto_nlportid = info->snd_portid; return ret; } static int nl80211_crit_protocol_stop(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = info->user_ptr[1]; if (!rdev->ops->crit_proto_stop) return -EOPNOTSUPP; if (rdev->crit_proto_nlportid) { rdev->crit_proto_nlportid = 0; rdev_crit_proto_stop(rdev, wdev); } return 0; } static int nl80211_vendor_check_policy(const struct wiphy_vendor_command *vcmd, struct nlattr *attr, struct netlink_ext_ack *extack) { if (vcmd->policy == VENDOR_CMD_RAW_DATA) { if (attr->nla_type & NLA_F_NESTED) { NL_SET_ERR_MSG_ATTR(extack, attr, "unexpected nested data"); return -EINVAL; } return 0; } if (!(attr->nla_type & NLA_F_NESTED)) { NL_SET_ERR_MSG_ATTR(extack, attr, "expected nested data"); return -EINVAL; } return nla_validate_nested(attr, vcmd->maxattr, vcmd->policy, extack); } static int nl80211_vendor_cmd(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct wireless_dev *wdev = __cfg80211_wdev_from_attrs(rdev, genl_info_net(info), info->attrs); int i, err; u32 vid, subcmd; if (!rdev->wiphy.vendor_commands) return -EOPNOTSUPP; if (IS_ERR(wdev)) { err = PTR_ERR(wdev); if (err != -EINVAL) return err; wdev = NULL; } else if (wdev->wiphy != &rdev->wiphy) { return -EINVAL; } if (!info->attrs[NL80211_ATTR_VENDOR_ID] || !info->attrs[NL80211_ATTR_VENDOR_SUBCMD]) return -EINVAL; vid = nla_get_u32(info->attrs[NL80211_ATTR_VENDOR_ID]); subcmd = nla_get_u32(info->attrs[NL80211_ATTR_VENDOR_SUBCMD]); for (i = 0; i < rdev->wiphy.n_vendor_commands; i++) { const struct wiphy_vendor_command *vcmd; void *data = NULL; int len = 0; vcmd = &rdev->wiphy.vendor_commands[i]; if (vcmd->info.vendor_id != vid || vcmd->info.subcmd != subcmd) continue; if (vcmd->flags & (WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV)) { if (!wdev) return -EINVAL; if (vcmd->flags & WIPHY_VENDOR_CMD_NEED_NETDEV && !wdev->netdev) return -EINVAL; if (vcmd->flags & WIPHY_VENDOR_CMD_NEED_RUNNING) { if (!wdev_running(wdev)) return -ENETDOWN; } } else { wdev = NULL; } if (!vcmd->doit) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_VENDOR_DATA]) { data = nla_data(info->attrs[NL80211_ATTR_VENDOR_DATA]); len = nla_len(info->attrs[NL80211_ATTR_VENDOR_DATA]); err = nl80211_vendor_check_policy(vcmd, info->attrs[NL80211_ATTR_VENDOR_DATA], info->extack); if (err) return err; } rdev->cur_cmd_info = info; err = vcmd->doit(&rdev->wiphy, wdev, data, len); rdev->cur_cmd_info = NULL; return err; } return -EOPNOTSUPP; } static int nl80211_prepare_vendor_dump(struct sk_buff *skb, struct netlink_callback *cb, struct cfg80211_registered_device **rdev, struct wireless_dev **wdev) { struct nlattr **attrbuf; u32 vid, subcmd; unsigned int i; int vcmd_idx = -1; int err; void *data = NULL; unsigned int data_len = 0; if (cb->args[0]) { /* subtract the 1 again here */ struct wiphy *wiphy = wiphy_idx_to_wiphy(cb->args[0] - 1); struct wireless_dev *tmp; if (!wiphy) return -ENODEV; *rdev = wiphy_to_rdev(wiphy); *wdev = NULL; if (cb->args[1]) { list_for_each_entry(tmp, &wiphy->wdev_list, list) { if (tmp->identifier == cb->args[1] - 1) { *wdev = tmp; break; } } } /* keep rtnl locked in successful case */ return 0; } attrbuf = kcalloc(NUM_NL80211_ATTR, sizeof(*attrbuf), GFP_KERNEL); if (!attrbuf) return -ENOMEM; err = nlmsg_parse_deprecated(cb->nlh, GENL_HDRLEN + nl80211_fam.hdrsize, attrbuf, nl80211_fam.maxattr, nl80211_policy, NULL); if (err) goto out; if (!attrbuf[NL80211_ATTR_VENDOR_ID] || !attrbuf[NL80211_ATTR_VENDOR_SUBCMD]) { err = -EINVAL; goto out; } *wdev = __cfg80211_wdev_from_attrs(NULL, sock_net(skb->sk), attrbuf); if (IS_ERR(*wdev)) *wdev = NULL; *rdev = __cfg80211_rdev_from_attrs(sock_net(skb->sk), attrbuf); if (IS_ERR(*rdev)) { err = PTR_ERR(*rdev); goto out; } vid = nla_get_u32(attrbuf[NL80211_ATTR_VENDOR_ID]); subcmd = nla_get_u32(attrbuf[NL80211_ATTR_VENDOR_SUBCMD]); for (i = 0; i < (*rdev)->wiphy.n_vendor_commands; i++) { const struct wiphy_vendor_command *vcmd; vcmd = &(*rdev)->wiphy.vendor_commands[i]; if (vcmd->info.vendor_id != vid || vcmd->info.subcmd != subcmd) continue; if (!vcmd->dumpit) { err = -EOPNOTSUPP; goto out; } vcmd_idx = i; break; } if (vcmd_idx < 0) { err = -EOPNOTSUPP; goto out; } if (attrbuf[NL80211_ATTR_VENDOR_DATA]) { data = nla_data(attrbuf[NL80211_ATTR_VENDOR_DATA]); data_len = nla_len(attrbuf[NL80211_ATTR_VENDOR_DATA]); err = nl80211_vendor_check_policy( &(*rdev)->wiphy.vendor_commands[vcmd_idx], attrbuf[NL80211_ATTR_VENDOR_DATA], cb->extack); if (err) goto out; } /* 0 is the first index - add 1 to parse only once */ cb->args[0] = (*rdev)->wiphy_idx + 1; /* add 1 to know if it was NULL */ cb->args[1] = *wdev ? (*wdev)->identifier + 1 : 0; cb->args[2] = vcmd_idx; cb->args[3] = (unsigned long)data; cb->args[4] = data_len; /* keep rtnl locked in successful case */ err = 0; out: kfree(attrbuf); return err; } static int nl80211_vendor_cmd_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; unsigned int vcmd_idx; const struct wiphy_vendor_command *vcmd; void *data; int data_len; int err; struct nlattr *vendor_data; rtnl_lock(); err = nl80211_prepare_vendor_dump(skb, cb, &rdev, &wdev); if (err) goto out; vcmd_idx = cb->args[2]; data = (void *)cb->args[3]; data_len = cb->args[4]; vcmd = &rdev->wiphy.vendor_commands[vcmd_idx]; if (vcmd->flags & (WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV)) { if (!wdev) { err = -EINVAL; goto out; } if (vcmd->flags & WIPHY_VENDOR_CMD_NEED_NETDEV && !wdev->netdev) { err = -EINVAL; goto out; } if (vcmd->flags & WIPHY_VENDOR_CMD_NEED_RUNNING) { if (!wdev_running(wdev)) { err = -ENETDOWN; goto out; } } } while (1) { void *hdr = nl80211hdr_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, NL80211_CMD_VENDOR); if (!hdr) break; if (nla_put_u32(skb, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (wdev && nla_put_u64_64bit(skb, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD))) { genlmsg_cancel(skb, hdr); break; } vendor_data = nla_nest_start_noflag(skb, NL80211_ATTR_VENDOR_DATA); if (!vendor_data) { genlmsg_cancel(skb, hdr); break; } err = vcmd->dumpit(&rdev->wiphy, wdev, skb, data, data_len, (unsigned long *)&cb->args[5]); nla_nest_end(skb, vendor_data); if (err == -ENOBUFS || err == -ENOENT) { genlmsg_cancel(skb, hdr); break; } else if (err <= 0) { genlmsg_cancel(skb, hdr); goto out; } genlmsg_end(skb, hdr); } err = skb->len; out: rtnl_unlock(); return err; } struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy, enum nl80211_commands cmd, enum nl80211_attrs attr, int approxlen) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); if (WARN_ON(!rdev->cur_cmd_info)) return NULL; return __cfg80211_alloc_vendor_skb(rdev, NULL, approxlen, rdev->cur_cmd_info->snd_portid, rdev->cur_cmd_info->snd_seq, cmd, attr, NULL, GFP_KERNEL); } EXPORT_SYMBOL(__cfg80211_alloc_reply_skb); int cfg80211_vendor_cmd_reply(struct sk_buff *skb) { struct cfg80211_registered_device *rdev = ((void **)skb->cb)[0]; void *hdr = ((void **)skb->cb)[1]; struct nlattr *data = ((void **)skb->cb)[2]; /* clear CB data for netlink core to own from now on */ memset(skb->cb, 0, sizeof(skb->cb)); if (WARN_ON(!rdev->cur_cmd_info)) { kfree_skb(skb); return -EINVAL; } nla_nest_end(skb, data); genlmsg_end(skb, hdr); return genlmsg_reply(skb, rdev->cur_cmd_info); } EXPORT_SYMBOL_GPL(cfg80211_vendor_cmd_reply); unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); if (WARN_ON(!rdev->cur_cmd_info)) return 0; return rdev->cur_cmd_info->snd_portid; } EXPORT_SYMBOL_GPL(cfg80211_vendor_cmd_get_sender); static int nl80211_set_qos_map(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct cfg80211_qos_map *qos_map = NULL; struct net_device *dev = info->user_ptr[1]; u8 *pos, len, num_des, des_len, des; int ret; if (!rdev->ops->set_qos_map) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_QOS_MAP]) { pos = nla_data(info->attrs[NL80211_ATTR_QOS_MAP]); len = nla_len(info->attrs[NL80211_ATTR_QOS_MAP]); if (len % 2) return -EINVAL; qos_map = kzalloc(sizeof(struct cfg80211_qos_map), GFP_KERNEL); if (!qos_map) return -ENOMEM; num_des = (len - IEEE80211_QOS_MAP_LEN_MIN) >> 1; if (num_des) { des_len = num_des * sizeof(struct cfg80211_dscp_exception); memcpy(qos_map->dscp_exception, pos, des_len); qos_map->num_des = num_des; for (des = 0; des < num_des; des++) { if (qos_map->dscp_exception[des].up > 7) { kfree(qos_map); return -EINVAL; } } pos += des_len; } memcpy(qos_map->up, pos, IEEE80211_QOS_MAP_LEN_MIN); } ret = nl80211_key_allowed(dev->ieee80211_ptr); if (!ret) ret = rdev_set_qos_map(rdev, dev, qos_map); kfree(qos_map); return ret; } static int nl80211_add_tx_ts(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; const u8 *peer; u8 tsid, up; u16 admitted_time = 0; if (!(rdev->wiphy.features & NL80211_FEATURE_SUPPORTS_WMM_ADMISSION)) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_TSID] || !info->attrs[NL80211_ATTR_MAC] || !info->attrs[NL80211_ATTR_USER_PRIO]) return -EINVAL; tsid = nla_get_u8(info->attrs[NL80211_ATTR_TSID]); up = nla_get_u8(info->attrs[NL80211_ATTR_USER_PRIO]); /* WMM uses TIDs 0-7 even for TSPEC */ if (tsid >= IEEE80211_FIRST_TSPEC_TSID) { /* TODO: handle 802.11 TSPEC/admission control * need more attributes for that (e.g. BA session requirement); * change the WMM adminssion test above to allow both then */ return -EINVAL; } peer = nla_data(info->attrs[NL80211_ATTR_MAC]); if (info->attrs[NL80211_ATTR_ADMITTED_TIME]) { admitted_time = nla_get_u16(info->attrs[NL80211_ATTR_ADMITTED_TIME]); if (!admitted_time) return -EINVAL; } switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (wdev->connected) break; return -ENOTCONN; default: return -EOPNOTSUPP; } return rdev_add_tx_ts(rdev, dev, tsid, peer, up, admitted_time); } static int nl80211_del_tx_ts(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; const u8 *peer; u8 tsid; if (!info->attrs[NL80211_ATTR_TSID] || !info->attrs[NL80211_ATTR_MAC]) return -EINVAL; tsid = nla_get_u8(info->attrs[NL80211_ATTR_TSID]); peer = nla_data(info->attrs[NL80211_ATTR_MAC]); return rdev_del_tx_ts(rdev, dev, tsid, peer); } static int nl80211_tdls_channel_switch(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_chan_def chandef = {}; const u8 *addr; u8 oper_class; int err; if (!rdev->ops->tdls_channel_switch || !(rdev->wiphy.features & NL80211_FEATURE_TDLS_CHANNEL_SWITCH)) return -EOPNOTSUPP; switch (dev->ieee80211_ptr->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: break; default: return -EOPNOTSUPP; } if (!info->attrs[NL80211_ATTR_MAC] || !info->attrs[NL80211_ATTR_OPER_CLASS]) return -EINVAL; err = nl80211_parse_chandef(rdev, info, &chandef); if (err) return err; /* * Don't allow wide channels on the 2.4Ghz band, as per IEEE802.11-2012 * section 10.22.6.2.1. Disallow 5/10Mhz channels as well for now, the * specification is not defined for them. */ if (chandef.chan->band == NL80211_BAND_2GHZ && chandef.width != NL80211_CHAN_WIDTH_20_NOHT && chandef.width != NL80211_CHAN_WIDTH_20) return -EINVAL; /* we will be active on the TDLS link */ if (!cfg80211_reg_can_beacon_relax(&rdev->wiphy, &chandef, wdev->iftype)) return -EINVAL; /* don't allow switching to DFS channels */ if (cfg80211_chandef_dfs_required(wdev->wiphy, &chandef, wdev->iftype)) return -EINVAL; addr = nla_data(info->attrs[NL80211_ATTR_MAC]); oper_class = nla_get_u8(info->attrs[NL80211_ATTR_OPER_CLASS]); return rdev_tdls_channel_switch(rdev, dev, addr, oper_class, &chandef); } static int nl80211_tdls_cancel_channel_switch(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; const u8 *addr; if (!rdev->ops->tdls_channel_switch || !rdev->ops->tdls_cancel_channel_switch || !(rdev->wiphy.features & NL80211_FEATURE_TDLS_CHANNEL_SWITCH)) return -EOPNOTSUPP; switch (dev->ieee80211_ptr->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: break; default: return -EOPNOTSUPP; } if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; addr = nla_data(info->attrs[NL80211_ATTR_MAC]); rdev_tdls_cancel_channel_switch(rdev, dev, addr); return 0; } static int nl80211_set_multicast_to_unicast(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; const struct nlattr *nla; bool enabled; if (!rdev->ops->set_multicast_to_unicast) return -EOPNOTSUPP; if (wdev->iftype != NL80211_IFTYPE_AP && wdev->iftype != NL80211_IFTYPE_P2P_GO) return -EOPNOTSUPP; nla = info->attrs[NL80211_ATTR_MULTICAST_TO_UNICAST_ENABLED]; enabled = nla_get_flag(nla); return rdev_set_multicast_to_unicast(rdev, dev, enabled); } static int nl80211_set_pmk(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_pmk_conf pmk_conf = {}; if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_1X)) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MAC] || !info->attrs[NL80211_ATTR_PMK]) return -EINVAL; if (!wdev->connected) return -ENOTCONN; pmk_conf.aa = nla_data(info->attrs[NL80211_ATTR_MAC]); if (memcmp(pmk_conf.aa, wdev->u.client.connected_addr, ETH_ALEN)) return -EINVAL; pmk_conf.pmk = nla_data(info->attrs[NL80211_ATTR_PMK]); pmk_conf.pmk_len = nla_len(info->attrs[NL80211_ATTR_PMK]); if (pmk_conf.pmk_len != WLAN_PMK_LEN && pmk_conf.pmk_len != WLAN_PMK_LEN_SUITE_B_192) return -EINVAL; if (info->attrs[NL80211_ATTR_PMKR0_NAME]) pmk_conf.pmk_r0_name = nla_data(info->attrs[NL80211_ATTR_PMKR0_NAME]); return rdev_set_pmk(rdev, dev, &pmk_conf); } static int nl80211_del_pmk(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; const u8 *aa; if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_1X)) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MAC]) return -EINVAL; aa = nla_data(info->attrs[NL80211_ATTR_MAC]); return rdev_del_pmk(rdev, dev, aa); } static int nl80211_external_auth(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_external_auth_params params; if (!rdev->ops->external_auth) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_SSID] && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP && dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO) return -EINVAL; if (!info->attrs[NL80211_ATTR_BSSID]) return -EINVAL; if (!info->attrs[NL80211_ATTR_STATUS_CODE]) return -EINVAL; memset(&params, 0, sizeof(params)); if (info->attrs[NL80211_ATTR_SSID]) { params.ssid.ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]); if (params.ssid.ssid_len == 0) return -EINVAL; memcpy(params.ssid.ssid, nla_data(info->attrs[NL80211_ATTR_SSID]), params.ssid.ssid_len); } memcpy(params.bssid, nla_data(info->attrs[NL80211_ATTR_BSSID]), ETH_ALEN); params.status = nla_get_u16(info->attrs[NL80211_ATTR_STATUS_CODE]); if (info->attrs[NL80211_ATTR_PMKID]) params.pmkid = nla_data(info->attrs[NL80211_ATTR_PMKID]); return rdev_external_auth(rdev, dev, &params); } static int nl80211_tx_control_port(struct sk_buff *skb, struct genl_info *info) { bool dont_wait_for_ack = info->attrs[NL80211_ATTR_DONT_WAIT_FOR_ACK]; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; const u8 *buf; size_t len; u8 *dest; u16 proto; bool noencrypt; u64 cookie = 0; int link_id; int err; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211)) return -EOPNOTSUPP; if (!rdev->ops->tx_control_port) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_FRAME] || !info->attrs[NL80211_ATTR_MAC] || !info->attrs[NL80211_ATTR_CONTROL_PORT_ETHERTYPE]) { GENL_SET_ERR_MSG(info, "Frame, MAC or ethertype missing"); return -EINVAL; } switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_MESH_POINT: break; case NL80211_IFTYPE_ADHOC: if (wdev->u.ibss.current_bss) break; return -ENOTCONN; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (wdev->connected) break; return -ENOTCONN; default: return -EOPNOTSUPP; } buf = nla_data(info->attrs[NL80211_ATTR_FRAME]); len = nla_len(info->attrs[NL80211_ATTR_FRAME]); dest = nla_data(info->attrs[NL80211_ATTR_MAC]); proto = nla_get_u16(info->attrs[NL80211_ATTR_CONTROL_PORT_ETHERTYPE]); noencrypt = nla_get_flag(info->attrs[NL80211_ATTR_CONTROL_PORT_NO_ENCRYPT]); link_id = nl80211_link_id_or_invalid(info->attrs); err = rdev_tx_control_port(rdev, dev, buf, len, dest, cpu_to_be16(proto), noencrypt, link_id, dont_wait_for_ack ? NULL : &cookie); if (!err && !dont_wait_for_ack) nl_set_extack_cookie_u64(info->extack, cookie); return err; } static int nl80211_get_ftm_responder_stats(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_ftm_responder_stats ftm_stats = {}; unsigned int link_id = nl80211_link_id(info->attrs); struct sk_buff *msg; void *hdr; struct nlattr *ftm_stats_attr; int err; if (wdev->iftype != NL80211_IFTYPE_AP || !wdev->links[link_id].ap.beacon_interval) return -EOPNOTSUPP; err = rdev_get_ftm_responder_stats(rdev, dev, &ftm_stats); if (err) return err; if (!ftm_stats.filled) return -ENODATA; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, info->snd_portid, info->snd_seq, 0, NL80211_CMD_GET_FTM_RESPONDER_STATS); if (!hdr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; ftm_stats_attr = nla_nest_start_noflag(msg, NL80211_ATTR_FTM_RESPONDER_STATS); if (!ftm_stats_attr) goto nla_put_failure; #define SET_FTM(field, name, type) \ do { if ((ftm_stats.filled & BIT(NL80211_FTM_STATS_ ## name)) && \ nla_put_ ## type(msg, NL80211_FTM_STATS_ ## name, \ ftm_stats.field)) \ goto nla_put_failure; } while (0) #define SET_FTM_U64(field, name) \ do { if ((ftm_stats.filled & BIT(NL80211_FTM_STATS_ ## name)) && \ nla_put_u64_64bit(msg, NL80211_FTM_STATS_ ## name, \ ftm_stats.field, NL80211_FTM_STATS_PAD)) \ goto nla_put_failure; } while (0) SET_FTM(success_num, SUCCESS_NUM, u32); SET_FTM(partial_num, PARTIAL_NUM, u32); SET_FTM(failed_num, FAILED_NUM, u32); SET_FTM(asap_num, ASAP_NUM, u32); SET_FTM(non_asap_num, NON_ASAP_NUM, u32); SET_FTM_U64(total_duration_ms, TOTAL_DURATION_MSEC); SET_FTM(unknown_triggers_num, UNKNOWN_TRIGGERS_NUM, u32); SET_FTM(reschedule_requests_num, RESCHEDULE_REQUESTS_NUM, u32); SET_FTM(out_of_window_triggers_num, OUT_OF_WINDOW_TRIGGERS_NUM, u32); #undef SET_FTM nla_nest_end(msg, ftm_stats_attr); genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: nlmsg_free(msg); return -ENOBUFS; } static int nl80211_update_owe_info(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct cfg80211_update_owe_info owe_info; struct net_device *dev = info->user_ptr[1]; if (!rdev->ops->update_owe_info) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_STATUS_CODE] || !info->attrs[NL80211_ATTR_MAC]) return -EINVAL; memset(&owe_info, 0, sizeof(owe_info)); owe_info.status = nla_get_u16(info->attrs[NL80211_ATTR_STATUS_CODE]); nla_memcpy(owe_info.peer, info->attrs[NL80211_ATTR_MAC], ETH_ALEN); if (info->attrs[NL80211_ATTR_IE]) { owe_info.ie = nla_data(info->attrs[NL80211_ATTR_IE]); owe_info.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]); } return rdev_update_owe_info(rdev, dev, &owe_info); } static int nl80211_probe_mesh_link(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct station_info sinfo = {}; const u8 *buf; size_t len; u8 *dest; int err; if (!rdev->ops->probe_mesh_link || !rdev->ops->get_station) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MAC] || !info->attrs[NL80211_ATTR_FRAME]) { GENL_SET_ERR_MSG(info, "Frame or MAC missing"); return -EINVAL; } if (wdev->iftype != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; dest = nla_data(info->attrs[NL80211_ATTR_MAC]); buf = nla_data(info->attrs[NL80211_ATTR_FRAME]); len = nla_len(info->attrs[NL80211_ATTR_FRAME]); if (len < sizeof(struct ethhdr)) return -EINVAL; if (!ether_addr_equal(buf, dest) || is_multicast_ether_addr(buf) || !ether_addr_equal(buf + ETH_ALEN, dev->dev_addr)) return -EINVAL; err = rdev_get_station(rdev, dev, dest, &sinfo); if (err) return err; cfg80211_sinfo_release_content(&sinfo); return rdev_probe_mesh_link(rdev, dev, dest, buf, len); } static int parse_tid_conf(struct cfg80211_registered_device *rdev, struct nlattr *attrs[], struct net_device *dev, struct cfg80211_tid_cfg *tid_conf, struct genl_info *info, const u8 *peer, unsigned int link_id) { struct netlink_ext_ack *extack = info->extack; u64 mask; int err; if (!attrs[NL80211_TID_CONFIG_ATTR_TIDS]) return -EINVAL; tid_conf->config_override = nla_get_flag(attrs[NL80211_TID_CONFIG_ATTR_OVERRIDE]); tid_conf->tids = nla_get_u16(attrs[NL80211_TID_CONFIG_ATTR_TIDS]); if (tid_conf->config_override) { if (rdev->ops->reset_tid_config) { err = rdev_reset_tid_config(rdev, dev, peer, tid_conf->tids); if (err) return err; } else { return -EINVAL; } } if (attrs[NL80211_TID_CONFIG_ATTR_NOACK]) { tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_NOACK); tid_conf->noack = nla_get_u8(attrs[NL80211_TID_CONFIG_ATTR_NOACK]); } if (attrs[NL80211_TID_CONFIG_ATTR_RETRY_SHORT]) { tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_RETRY_SHORT); tid_conf->retry_short = nla_get_u8(attrs[NL80211_TID_CONFIG_ATTR_RETRY_SHORT]); if (tid_conf->retry_short > rdev->wiphy.max_data_retry_count) return -EINVAL; } if (attrs[NL80211_TID_CONFIG_ATTR_RETRY_LONG]) { tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG); tid_conf->retry_long = nla_get_u8(attrs[NL80211_TID_CONFIG_ATTR_RETRY_LONG]); if (tid_conf->retry_long > rdev->wiphy.max_data_retry_count) return -EINVAL; } if (attrs[NL80211_TID_CONFIG_ATTR_AMPDU_CTRL]) { tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL); tid_conf->ampdu = nla_get_u8(attrs[NL80211_TID_CONFIG_ATTR_AMPDU_CTRL]); } if (attrs[NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL]) { tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL); tid_conf->rtscts = nla_get_u8(attrs[NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL]); } if (attrs[NL80211_TID_CONFIG_ATTR_AMSDU_CTRL]) { tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_AMSDU_CTRL); tid_conf->amsdu = nla_get_u8(attrs[NL80211_TID_CONFIG_ATTR_AMSDU_CTRL]); } if (attrs[NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE]) { u32 idx = NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE, attr; tid_conf->txrate_type = nla_get_u8(attrs[idx]); if (tid_conf->txrate_type != NL80211_TX_RATE_AUTOMATIC) { attr = NL80211_TID_CONFIG_ATTR_TX_RATE; err = nl80211_parse_tx_bitrate_mask(info, attrs, attr, &tid_conf->txrate_mask, dev, true, link_id); if (err) return err; tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_TX_RATE); } tid_conf->mask |= BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE); } if (peer) mask = rdev->wiphy.tid_config_support.peer; else mask = rdev->wiphy.tid_config_support.vif; if (tid_conf->mask & ~mask) { NL_SET_ERR_MSG(extack, "unsupported TID configuration"); return -EOPNOTSUPP; } return 0; } static int nl80211_set_tid_config(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct nlattr *attrs[NL80211_TID_CONFIG_ATTR_MAX + 1]; unsigned int link_id = nl80211_link_id(info->attrs); struct net_device *dev = info->user_ptr[1]; struct cfg80211_tid_config *tid_config; struct nlattr *tid; int conf_idx = 0, rem_conf; int ret = -EINVAL; u32 num_conf = 0; if (!info->attrs[NL80211_ATTR_TID_CONFIG]) return -EINVAL; if (!rdev->ops->set_tid_config) return -EOPNOTSUPP; nla_for_each_nested(tid, info->attrs[NL80211_ATTR_TID_CONFIG], rem_conf) num_conf++; tid_config = kzalloc(struct_size(tid_config, tid_conf, num_conf), GFP_KERNEL); if (!tid_config) return -ENOMEM; tid_config->n_tid_conf = num_conf; if (info->attrs[NL80211_ATTR_MAC]) tid_config->peer = nla_data(info->attrs[NL80211_ATTR_MAC]); nla_for_each_nested(tid, info->attrs[NL80211_ATTR_TID_CONFIG], rem_conf) { ret = nla_parse_nested(attrs, NL80211_TID_CONFIG_ATTR_MAX, tid, NULL, NULL); if (ret) goto bad_tid_conf; ret = parse_tid_conf(rdev, attrs, dev, &tid_config->tid_conf[conf_idx], info, tid_config->peer, link_id); if (ret) goto bad_tid_conf; conf_idx++; } ret = rdev_set_tid_config(rdev, dev, tid_config); bad_tid_conf: kfree(tid_config); return ret; } static int nl80211_color_change(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct cfg80211_color_change_settings params = {}; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; struct nlattr **tb; u16 offset; int err; if (!rdev->ops->color_change) return -EOPNOTSUPP; if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BSS_COLOR)) return -EOPNOTSUPP; if (wdev->iftype != NL80211_IFTYPE_AP) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_COLOR_CHANGE_COUNT] || !info->attrs[NL80211_ATTR_COLOR_CHANGE_COLOR] || !info->attrs[NL80211_ATTR_COLOR_CHANGE_ELEMS]) return -EINVAL; params.count = nla_get_u8(info->attrs[NL80211_ATTR_COLOR_CHANGE_COUNT]); params.color = nla_get_u8(info->attrs[NL80211_ATTR_COLOR_CHANGE_COLOR]); err = nl80211_parse_beacon(rdev, info->attrs, &params.beacon_next, info->extack); if (err) return err; tb = kcalloc(NL80211_ATTR_MAX + 1, sizeof(*tb), GFP_KERNEL); if (!tb) return -ENOMEM; err = nla_parse_nested(tb, NL80211_ATTR_MAX, info->attrs[NL80211_ATTR_COLOR_CHANGE_ELEMS], nl80211_policy, info->extack); if (err) goto out; err = nl80211_parse_beacon(rdev, tb, &params.beacon_color_change, info->extack); if (err) goto out; if (!tb[NL80211_ATTR_CNTDWN_OFFS_BEACON]) { err = -EINVAL; goto out; } if (nla_len(tb[NL80211_ATTR_CNTDWN_OFFS_BEACON]) != sizeof(u16)) { err = -EINVAL; goto out; } offset = nla_get_u16(tb[NL80211_ATTR_CNTDWN_OFFS_BEACON]); if (offset >= params.beacon_color_change.tail_len) { err = -EINVAL; goto out; } if (params.beacon_color_change.tail[offset] != params.count) { err = -EINVAL; goto out; } params.counter_offset_beacon = offset; if (tb[NL80211_ATTR_CNTDWN_OFFS_PRESP]) { if (nla_len(tb[NL80211_ATTR_CNTDWN_OFFS_PRESP]) != sizeof(u16)) { err = -EINVAL; goto out; } offset = nla_get_u16(tb[NL80211_ATTR_CNTDWN_OFFS_PRESP]); if (offset >= params.beacon_color_change.probe_resp_len) { err = -EINVAL; goto out; } if (params.beacon_color_change.probe_resp[offset] != params.count) { err = -EINVAL; goto out; } params.counter_offset_presp = offset; } err = rdev_color_change(rdev, dev, &params); out: kfree(params.beacon_next.mbssid_ies); kfree(params.beacon_color_change.mbssid_ies); kfree(params.beacon_next.rnr_ies); kfree(params.beacon_color_change.rnr_ies); kfree(tb); return err; } static int nl80211_set_fils_aad(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_fils_aad fils_aad = {}; u8 *nonces; if (!info->attrs[NL80211_ATTR_MAC] || !info->attrs[NL80211_ATTR_FILS_KEK] || !info->attrs[NL80211_ATTR_FILS_NONCES]) return -EINVAL; fils_aad.macaddr = nla_data(info->attrs[NL80211_ATTR_MAC]); fils_aad.kek_len = nla_len(info->attrs[NL80211_ATTR_FILS_KEK]); fils_aad.kek = nla_data(info->attrs[NL80211_ATTR_FILS_KEK]); nonces = nla_data(info->attrs[NL80211_ATTR_FILS_NONCES]); fils_aad.snonce = nonces; fils_aad.anonce = nonces + FILS_NONCE_LEN; return rdev_set_fils_aad(rdev, dev, &fils_aad); } static int nl80211_add_link(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; unsigned int link_id = nl80211_link_id(info->attrs); struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; int ret; if (!(wdev->wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO)) return -EINVAL; switch (wdev->iftype) { case NL80211_IFTYPE_AP: break; default: return -EINVAL; } if (!info->attrs[NL80211_ATTR_MAC] || !is_valid_ether_addr(nla_data(info->attrs[NL80211_ATTR_MAC]))) return -EINVAL; wdev->valid_links |= BIT(link_id); ether_addr_copy(wdev->links[link_id].addr, nla_data(info->attrs[NL80211_ATTR_MAC])); ret = rdev_add_intf_link(rdev, wdev, link_id); if (ret) { wdev->valid_links &= ~BIT(link_id); eth_zero_addr(wdev->links[link_id].addr); } return ret; } static int nl80211_remove_link(struct sk_buff *skb, struct genl_info *info) { unsigned int link_id = nl80211_link_id(info->attrs); struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; /* cannot remove if there's no link */ if (!info->attrs[NL80211_ATTR_MLO_LINK_ID]) return -EINVAL; switch (wdev->iftype) { case NL80211_IFTYPE_AP: break; default: return -EINVAL; } cfg80211_remove_link(wdev, link_id); return 0; } static int nl80211_add_mod_link_station(struct sk_buff *skb, struct genl_info *info, bool add) { struct link_station_parameters params = {}; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; int err; if ((add && !rdev->ops->add_link_station) || (!add && !rdev->ops->mod_link_station)) return -EOPNOTSUPP; if (add && !info->attrs[NL80211_ATTR_MAC]) return -EINVAL; if (!info->attrs[NL80211_ATTR_MLD_ADDR]) return -EINVAL; if (add && !info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]) return -EINVAL; params.mld_mac = nla_data(info->attrs[NL80211_ATTR_MLD_ADDR]); if (info->attrs[NL80211_ATTR_MAC]) { params.link_mac = nla_data(info->attrs[NL80211_ATTR_MAC]); if (!is_valid_ether_addr(params.link_mac)) return -EINVAL; } if (!info->attrs[NL80211_ATTR_MLO_LINK_ID]) return -EINVAL; params.link_id = nla_get_u8(info->attrs[NL80211_ATTR_MLO_LINK_ID]); if (info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]) { params.supported_rates = nla_data(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]); params.supported_rates_len = nla_len(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]); } if (info->attrs[NL80211_ATTR_HT_CAPABILITY]) params.ht_capa = nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]); if (info->attrs[NL80211_ATTR_VHT_CAPABILITY]) params.vht_capa = nla_data(info->attrs[NL80211_ATTR_VHT_CAPABILITY]); if (info->attrs[NL80211_ATTR_HE_CAPABILITY]) { params.he_capa = nla_data(info->attrs[NL80211_ATTR_HE_CAPABILITY]); params.he_capa_len = nla_len(info->attrs[NL80211_ATTR_HE_CAPABILITY]); if (info->attrs[NL80211_ATTR_EHT_CAPABILITY]) { params.eht_capa = nla_data(info->attrs[NL80211_ATTR_EHT_CAPABILITY]); params.eht_capa_len = nla_len(info->attrs[NL80211_ATTR_EHT_CAPABILITY]); if (!ieee80211_eht_capa_size_ok((const u8 *)params.he_capa, (const u8 *)params.eht_capa, params.eht_capa_len, false)) return -EINVAL; } } if (info->attrs[NL80211_ATTR_HE_6GHZ_CAPABILITY]) params.he_6ghz_capa = nla_data(info->attrs[NL80211_ATTR_HE_6GHZ_CAPABILITY]); if (info->attrs[NL80211_ATTR_OPMODE_NOTIF]) { params.opmode_notif_used = true; params.opmode_notif = nla_get_u8(info->attrs[NL80211_ATTR_OPMODE_NOTIF]); } err = nl80211_parse_sta_txpower_setting(info, &params.txpwr, &params.txpwr_set); if (err) return err; if (add) return rdev_add_link_station(rdev, dev, &params); return rdev_mod_link_station(rdev, dev, &params); } static int nl80211_add_link_station(struct sk_buff *skb, struct genl_info *info) { return nl80211_add_mod_link_station(skb, info, true); } static int nl80211_modify_link_station(struct sk_buff *skb, struct genl_info *info) { return nl80211_add_mod_link_station(skb, info, false); } static int nl80211_remove_link_station(struct sk_buff *skb, struct genl_info *info) { struct link_station_del_parameters params = {}; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; if (!rdev->ops->del_link_station) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MLD_ADDR] || !info->attrs[NL80211_ATTR_MLO_LINK_ID]) return -EINVAL; params.mld_mac = nla_data(info->attrs[NL80211_ATTR_MLD_ADDR]); params.link_id = nla_get_u8(info->attrs[NL80211_ATTR_MLO_LINK_ID]); return rdev_del_link_station(rdev, dev, &params); } static int nl80211_set_hw_timestamp(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct cfg80211_set_hw_timestamp hwts = {}; if (!rdev->wiphy.hw_timestamp_max_peers) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_MAC] && rdev->wiphy.hw_timestamp_max_peers != CFG80211_HW_TIMESTAMP_ALL_PEERS) return -EOPNOTSUPP; if (info->attrs[NL80211_ATTR_MAC]) hwts.macaddr = nla_data(info->attrs[NL80211_ATTR_MAC]); hwts.enable = nla_get_flag(info->attrs[NL80211_ATTR_HW_TIMESTAMP_ENABLED]); return rdev_set_hw_timestamp(rdev, dev, &hwts); } static int nl80211_set_ttlm(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_ttlm_params params = {}; struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wireless_dev *wdev = dev->ieee80211_ptr; if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_P2P_CLIENT) return -EOPNOTSUPP; if (!wdev->connected) return -ENOLINK; if (!info->attrs[NL80211_ATTR_MLO_TTLM_DLINK] || !info->attrs[NL80211_ATTR_MLO_TTLM_ULINK]) return -EINVAL; nla_memcpy(params.dlink, info->attrs[NL80211_ATTR_MLO_TTLM_DLINK], sizeof(params.dlink)); nla_memcpy(params.ulink, info->attrs[NL80211_ATTR_MLO_TTLM_ULINK], sizeof(params.ulink)); return rdev_set_ttlm(rdev, dev, &params); } #define NL80211_FLAG_NEED_WIPHY 0x01 #define NL80211_FLAG_NEED_NETDEV 0x02 #define NL80211_FLAG_NEED_RTNL 0x04 #define NL80211_FLAG_CHECK_NETDEV_UP 0x08 #define NL80211_FLAG_NEED_NETDEV_UP (NL80211_FLAG_NEED_NETDEV |\ NL80211_FLAG_CHECK_NETDEV_UP) #define NL80211_FLAG_NEED_WDEV 0x10 /* If a netdev is associated, it must be UP, P2P must be started */ #define NL80211_FLAG_NEED_WDEV_UP (NL80211_FLAG_NEED_WDEV |\ NL80211_FLAG_CHECK_NETDEV_UP) #define NL80211_FLAG_CLEAR_SKB 0x20 #define NL80211_FLAG_NO_WIPHY_MTX 0x40 #define NL80211_FLAG_MLO_VALID_LINK_ID 0x80 #define NL80211_FLAG_MLO_UNSUPPORTED 0x100 #define INTERNAL_FLAG_SELECTORS(__sel) \ SELECTOR(__sel, NONE, 0) /* must be first */ \ SELECTOR(__sel, WIPHY, \ NL80211_FLAG_NEED_WIPHY) \ SELECTOR(__sel, WDEV, \ NL80211_FLAG_NEED_WDEV) \ SELECTOR(__sel, NETDEV, \ NL80211_FLAG_NEED_NETDEV) \ SELECTOR(__sel, NETDEV_LINK, \ NL80211_FLAG_NEED_NETDEV | \ NL80211_FLAG_MLO_VALID_LINK_ID) \ SELECTOR(__sel, NETDEV_NO_MLO, \ NL80211_FLAG_NEED_NETDEV | \ NL80211_FLAG_MLO_UNSUPPORTED) \ SELECTOR(__sel, WIPHY_RTNL, \ NL80211_FLAG_NEED_WIPHY | \ NL80211_FLAG_NEED_RTNL) \ SELECTOR(__sel, WIPHY_RTNL_NOMTX, \ NL80211_FLAG_NEED_WIPHY | \ NL80211_FLAG_NEED_RTNL | \ NL80211_FLAG_NO_WIPHY_MTX) \ SELECTOR(__sel, WDEV_RTNL, \ NL80211_FLAG_NEED_WDEV | \ NL80211_FLAG_NEED_RTNL) \ SELECTOR(__sel, NETDEV_RTNL, \ NL80211_FLAG_NEED_NETDEV | \ NL80211_FLAG_NEED_RTNL) \ SELECTOR(__sel, NETDEV_UP, \ NL80211_FLAG_NEED_NETDEV_UP) \ SELECTOR(__sel, NETDEV_UP_LINK, \ NL80211_FLAG_NEED_NETDEV_UP | \ NL80211_FLAG_MLO_VALID_LINK_ID) \ SELECTOR(__sel, NETDEV_UP_NO_MLO, \ NL80211_FLAG_NEED_NETDEV_UP | \ NL80211_FLAG_MLO_UNSUPPORTED) \ SELECTOR(__sel, NETDEV_UP_NO_MLO_CLEAR, \ NL80211_FLAG_NEED_NETDEV_UP | \ NL80211_FLAG_CLEAR_SKB | \ NL80211_FLAG_MLO_UNSUPPORTED) \ SELECTOR(__sel, NETDEV_UP_NOTMX, \ NL80211_FLAG_NEED_NETDEV_UP | \ NL80211_FLAG_NO_WIPHY_MTX) \ SELECTOR(__sel, NETDEV_UP_NOTMX_NOMLO, \ NL80211_FLAG_NEED_NETDEV_UP | \ NL80211_FLAG_NO_WIPHY_MTX | \ NL80211_FLAG_MLO_UNSUPPORTED) \ SELECTOR(__sel, NETDEV_UP_CLEAR, \ NL80211_FLAG_NEED_NETDEV_UP | \ NL80211_FLAG_CLEAR_SKB) \ SELECTOR(__sel, WDEV_UP, \ NL80211_FLAG_NEED_WDEV_UP) \ SELECTOR(__sel, WDEV_UP_LINK, \ NL80211_FLAG_NEED_WDEV_UP | \ NL80211_FLAG_MLO_VALID_LINK_ID) \ SELECTOR(__sel, WDEV_UP_RTNL, \ NL80211_FLAG_NEED_WDEV_UP | \ NL80211_FLAG_NEED_RTNL) \ SELECTOR(__sel, WIPHY_CLEAR, \ NL80211_FLAG_NEED_WIPHY | \ NL80211_FLAG_CLEAR_SKB) enum nl80211_internal_flags_selector { #define SELECTOR(_, name, value) NL80211_IFL_SEL_##name, INTERNAL_FLAG_SELECTORS(_) #undef SELECTOR }; static u32 nl80211_internal_flags[] = { #define SELECTOR(_, name, value) [NL80211_IFL_SEL_##name] = value, INTERNAL_FLAG_SELECTORS(_) #undef SELECTOR }; static int nl80211_pre_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = NULL; struct wireless_dev *wdev = NULL; struct net_device *dev = NULL; u32 internal_flags; int err; if (WARN_ON(ops->internal_flags >= ARRAY_SIZE(nl80211_internal_flags))) return -EINVAL; internal_flags = nl80211_internal_flags[ops->internal_flags]; rtnl_lock(); if (internal_flags & NL80211_FLAG_NEED_WIPHY) { rdev = cfg80211_get_dev_from_info(genl_info_net(info), info); if (IS_ERR(rdev)) { err = PTR_ERR(rdev); goto out_unlock; } info->user_ptr[0] = rdev; } else if (internal_flags & NL80211_FLAG_NEED_NETDEV || internal_flags & NL80211_FLAG_NEED_WDEV) { wdev = __cfg80211_wdev_from_attrs(NULL, genl_info_net(info), info->attrs); if (IS_ERR(wdev)) { err = PTR_ERR(wdev); goto out_unlock; } dev = wdev->netdev; dev_hold(dev); rdev = wiphy_to_rdev(wdev->wiphy); if (internal_flags & NL80211_FLAG_NEED_NETDEV) { if (!dev) { err = -EINVAL; goto out_unlock; } info->user_ptr[1] = dev; } else { info->user_ptr[1] = wdev; } if (internal_flags & NL80211_FLAG_CHECK_NETDEV_UP && !wdev_running(wdev)) { err = -ENETDOWN; goto out_unlock; } info->user_ptr[0] = rdev; } if (internal_flags & NL80211_FLAG_MLO_VALID_LINK_ID) { struct nlattr *link_id = info->attrs[NL80211_ATTR_MLO_LINK_ID]; if (!wdev) { err = -EINVAL; goto out_unlock; } /* MLO -> require valid link ID */ if (wdev->valid_links && (!link_id || !(wdev->valid_links & BIT(nla_get_u8(link_id))))) { err = -EINVAL; goto out_unlock; } /* non-MLO -> no link ID attribute accepted */ if (!wdev->valid_links && link_id) { err = -EINVAL; goto out_unlock; } } if (internal_flags & NL80211_FLAG_MLO_UNSUPPORTED) { if (info->attrs[NL80211_ATTR_MLO_LINK_ID] || (wdev && wdev->valid_links)) { err = -EINVAL; goto out_unlock; } } if (rdev && !(internal_flags & NL80211_FLAG_NO_WIPHY_MTX)) { wiphy_lock(&rdev->wiphy); /* we keep the mutex locked until post_doit */ __release(&rdev->wiphy.mtx); } if (!(internal_flags & NL80211_FLAG_NEED_RTNL)) rtnl_unlock(); return 0; out_unlock: rtnl_unlock(); dev_put(dev); return err; } static void nl80211_post_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { u32 internal_flags = nl80211_internal_flags[ops->internal_flags]; if (info->user_ptr[1]) { if (internal_flags & NL80211_FLAG_NEED_WDEV) { struct wireless_dev *wdev = info->user_ptr[1]; dev_put(wdev->netdev); } else { dev_put(info->user_ptr[1]); } } if (info->user_ptr[0] && !(internal_flags & NL80211_FLAG_NO_WIPHY_MTX)) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; /* we kept the mutex locked since pre_doit */ __acquire(&rdev->wiphy.mtx); wiphy_unlock(&rdev->wiphy); } if (internal_flags & NL80211_FLAG_NEED_RTNL) rtnl_unlock(); /* If needed, clear the netlink message payload from the SKB * as it might contain key data that shouldn't stick around on * the heap after the SKB is freed. The netlink message header * is still needed for further processing, so leave it intact. */ if (internal_flags & NL80211_FLAG_CLEAR_SKB) { struct nlmsghdr *nlh = nlmsg_hdr(skb); memset(nlmsg_data(nlh), 0, nlmsg_len(nlh)); } } static int nl80211_set_sar_sub_specs(struct cfg80211_registered_device *rdev, struct cfg80211_sar_specs *sar_specs, struct nlattr *spec[], int index) { u32 range_index, i; if (!sar_specs || !spec) return -EINVAL; if (!spec[NL80211_SAR_ATTR_SPECS_POWER] || !spec[NL80211_SAR_ATTR_SPECS_RANGE_INDEX]) return -EINVAL; range_index = nla_get_u32(spec[NL80211_SAR_ATTR_SPECS_RANGE_INDEX]); /* check if range_index exceeds num_freq_ranges */ if (range_index >= rdev->wiphy.sar_capa->num_freq_ranges) return -EINVAL; /* check if range_index duplicates */ for (i = 0; i < index; i++) { if (sar_specs->sub_specs[i].freq_range_index == range_index) return -EINVAL; } sar_specs->sub_specs[index].power = nla_get_s32(spec[NL80211_SAR_ATTR_SPECS_POWER]); sar_specs->sub_specs[index].freq_range_index = range_index; return 0; } static int nl80211_set_sar_specs(struct sk_buff *skb, struct genl_info *info) { struct cfg80211_registered_device *rdev = info->user_ptr[0]; struct nlattr *spec[NL80211_SAR_ATTR_SPECS_MAX + 1]; struct nlattr *tb[NL80211_SAR_ATTR_MAX + 1]; struct cfg80211_sar_specs *sar_spec; enum nl80211_sar_type type; struct nlattr *spec_list; u32 specs; int rem, err; if (!rdev->wiphy.sar_capa || !rdev->ops->set_sar_specs) return -EOPNOTSUPP; if (!info->attrs[NL80211_ATTR_SAR_SPEC]) return -EINVAL; nla_parse_nested(tb, NL80211_SAR_ATTR_MAX, info->attrs[NL80211_ATTR_SAR_SPEC], NULL, NULL); if (!tb[NL80211_SAR_ATTR_TYPE] || !tb[NL80211_SAR_ATTR_SPECS]) return -EINVAL; type = nla_get_u32(tb[NL80211_SAR_ATTR_TYPE]); if (type != rdev->wiphy.sar_capa->type) return -EINVAL; specs = 0; nla_for_each_nested(spec_list, tb[NL80211_SAR_ATTR_SPECS], rem) specs++; if (specs > rdev->wiphy.sar_capa->num_freq_ranges) return -EINVAL; sar_spec = kzalloc(struct_size(sar_spec, sub_specs, specs), GFP_KERNEL); if (!sar_spec) return -ENOMEM; sar_spec->type = type; specs = 0; nla_for_each_nested(spec_list, tb[NL80211_SAR_ATTR_SPECS], rem) { nla_parse_nested(spec, NL80211_SAR_ATTR_SPECS_MAX, spec_list, NULL, NULL); switch (type) { case NL80211_SAR_TYPE_POWER: if (nl80211_set_sar_sub_specs(rdev, sar_spec, spec, specs)) { err = -EINVAL; goto error; } break; default: err = -EINVAL; goto error; } specs++; } sar_spec->num_sub_specs = specs; rdev->cur_cmd_info = info; err = rdev_set_sar_specs(rdev, sar_spec); rdev->cur_cmd_info = NULL; error: kfree(sar_spec); return err; } #define SELECTOR(__sel, name, value) \ ((__sel) == (value)) ? NL80211_IFL_SEL_##name : int __missing_selector(void); #define IFLAGS(__val) INTERNAL_FLAG_SELECTORS(__val) __missing_selector() static const struct genl_ops nl80211_ops[] = { { .cmd = NL80211_CMD_GET_WIPHY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_wiphy, .dumpit = nl80211_dump_wiphy, .done = nl80211_dump_wiphy_done, /* can be retrieved by unprivileged users */ .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY), }, }; static const struct genl_small_ops nl80211_small_ops[] = { { .cmd = NL80211_CMD_SET_WIPHY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_wiphy, .flags = GENL_UNS_ADMIN_PERM, }, { .cmd = NL80211_CMD_GET_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_interface, .dumpit = nl80211_dump_interface, /* can be retrieved by unprivileged users */ .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV), }, { .cmd = NL80211_CMD_SET_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_interface, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV | NL80211_FLAG_NEED_RTNL), }, { .cmd = NL80211_CMD_NEW_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_new_interface, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY | NL80211_FLAG_NEED_RTNL | /* we take the wiphy mutex later ourselves */ NL80211_FLAG_NO_WIPHY_MTX), }, { .cmd = NL80211_CMD_DEL_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_del_interface, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV | NL80211_FLAG_NEED_RTNL), }, { .cmd = NL80211_CMD_GET_KEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_key, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_KEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_key, .flags = GENL_UNS_ADMIN_PERM, /* cannot use NL80211_FLAG_MLO_VALID_LINK_ID, depends on key */ .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_NEW_KEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_new_key, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_DEL_KEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_del_key, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_BEACON, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = nl80211_set_beacon, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_START_AP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = nl80211_start_ap, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_STOP_AP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_UNS_ADMIN_PERM, .doit = nl80211_stop_ap, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_GET_STATION, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_station, .dumpit = nl80211_dump_station, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_SET_STATION, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_station, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_NEW_STATION, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_new_station, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_DEL_STATION, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_del_station, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_GET_MPATH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_mpath, .dumpit = nl80211_dump_mpath, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_GET_MPP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_mpp, .dumpit = nl80211_dump_mpp, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_MPATH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_mpath, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_NEW_MPATH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_new_mpath, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_DEL_MPATH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_del_mpath, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_BSS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_bss, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_GET_REG, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_reg_do, .dumpit = nl80211_get_reg_dump, /* can be retrieved by unprivileged users */ }, #ifdef CONFIG_CFG80211_CRDA_SUPPORT { .cmd = NL80211_CMD_SET_REG, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_reg, .flags = GENL_ADMIN_PERM, }, #endif { .cmd = NL80211_CMD_REQ_SET_REG, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_req_set_reg, .flags = GENL_ADMIN_PERM, }, { .cmd = NL80211_CMD_RELOAD_REGDB, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_reload_regdb, .flags = GENL_ADMIN_PERM, }, { .cmd = NL80211_CMD_GET_MESH_CONFIG, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_mesh_config, /* can be retrieved by unprivileged users */ .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_MESH_CONFIG, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_update_mesh_config, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_TRIGGER_SCAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_trigger_scan, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_ABORT_SCAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_abort_scan, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_GET_SCAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .dumpit = nl80211_dump_scan, }, { .cmd = NL80211_CMD_START_SCHED_SCAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_start_sched_scan, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_STOP_SCHED_SCAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_stop_sched_scan, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_AUTHENTICATE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_authenticate, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_ASSOCIATE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_associate, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_DEAUTHENTICATE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_deauthenticate, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_DISASSOCIATE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_disassociate, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_JOIN_IBSS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_join_ibss, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_LEAVE_IBSS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_leave_ibss, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, #ifdef CONFIG_NL80211_TESTMODE { .cmd = NL80211_CMD_TESTMODE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_testmode_do, .dumpit = nl80211_testmode_dump, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY), }, #endif { .cmd = NL80211_CMD_CONNECT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_connect, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_UPDATE_CONNECT_PARAMS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_update_connect_params, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_DISCONNECT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_disconnect, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_WIPHY_NETNS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_wiphy_netns, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY | NL80211_FLAG_NEED_RTNL | NL80211_FLAG_NO_WIPHY_MTX), }, { .cmd = NL80211_CMD_GET_SURVEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .dumpit = nl80211_dump_survey, }, { .cmd = NL80211_CMD_SET_PMKSA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_pmksa, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_DEL_PMKSA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_del_pmksa, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_FLUSH_PMKSA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_flush_pmksa, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_REMAIN_ON_CHANNEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_remain_on_channel, .flags = GENL_UNS_ADMIN_PERM, /* FIXME: requiring a link ID here is probably not good */ .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_cancel_remain_on_channel, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_SET_TX_BITRATE_MASK, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_tx_bitrate_mask, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_REGISTER_FRAME, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_register_mgmt, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV), }, { .cmd = NL80211_CMD_FRAME, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_tx_mgmt, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_FRAME_WAIT_CANCEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_tx_mgmt_cancel_wait, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_SET_POWER_SAVE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_power_save, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_GET_POWER_SAVE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_power_save, /* can be retrieved by unprivileged users */ .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_SET_CQM, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_cqm, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_SET_CHANNEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_channel, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_JOIN_MESH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_join_mesh, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_LEAVE_MESH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_leave_mesh, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_JOIN_OCB, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_join_ocb, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_LEAVE_OCB, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_leave_ocb, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, #ifdef CONFIG_PM { .cmd = NL80211_CMD_GET_WOWLAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_wowlan, /* can be retrieved by unprivileged users */ .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY), }, { .cmd = NL80211_CMD_SET_WOWLAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_wowlan, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY), }, #endif { .cmd = NL80211_CMD_SET_REKEY_OFFLOAD, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_rekey_data, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_TDLS_MGMT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_tdls_mgmt, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_TDLS_OPER, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_tdls_oper, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_UNEXPECTED_FRAME, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_register_unexpected_frame, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_PROBE_CLIENT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_probe_client, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_REGISTER_BEACONS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_register_beacons, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY), }, { .cmd = NL80211_CMD_SET_NOACK_MAP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_noack_map, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_START_P2P_DEVICE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_start_p2p_device, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV | NL80211_FLAG_NEED_RTNL), }, { .cmd = NL80211_CMD_STOP_P2P_DEVICE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_stop_p2p_device, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP | NL80211_FLAG_NEED_RTNL), }, { .cmd = NL80211_CMD_START_NAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_start_nan, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV | NL80211_FLAG_NEED_RTNL), }, { .cmd = NL80211_CMD_STOP_NAN, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_stop_nan, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP | NL80211_FLAG_NEED_RTNL), }, { .cmd = NL80211_CMD_ADD_NAN_FUNCTION, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_nan_add_func, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_DEL_NAN_FUNCTION, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_nan_del_func, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_CHANGE_NAN_CONFIG, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_nan_change_config, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_SET_MCAST_RATE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_mcast_rate, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_SET_MAC_ACL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_mac_acl, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV | NL80211_FLAG_MLO_UNSUPPORTED), }, { .cmd = NL80211_CMD_RADAR_DETECT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_start_radar_detection, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_NO_WIPHY_MTX | NL80211_FLAG_MLO_UNSUPPORTED), }, { .cmd = NL80211_CMD_GET_PROTOCOL_FEATURES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_protocol_features, }, { .cmd = NL80211_CMD_UPDATE_FT_IES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_update_ft_ies, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_CRIT_PROTOCOL_START, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_crit_protocol_start, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_CRIT_PROTOCOL_STOP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_crit_protocol_stop, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_GET_COALESCE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_coalesce, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY), }, { .cmd = NL80211_CMD_SET_COALESCE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_coalesce, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY), }, { .cmd = NL80211_CMD_CHANNEL_SWITCH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_channel_switch, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_VENDOR, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_vendor_cmd, .dumpit = nl80211_vendor_cmd_dump, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_SET_QOS_MAP, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_qos_map, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_ADD_TX_TS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_add_tx_ts, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_UNSUPPORTED), }, { .cmd = NL80211_CMD_DEL_TX_TS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_del_tx_ts, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_TDLS_CHANNEL_SWITCH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_tdls_channel_switch, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_TDLS_CANCEL_CHANNEL_SWITCH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_tdls_cancel_channel_switch, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_MULTICAST_TO_UNICAST, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_multicast_to_unicast, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV), }, { .cmd = NL80211_CMD_SET_PMK, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_pmk, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_CLEAR_SKB), }, { .cmd = NL80211_CMD_DEL_PMK, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_del_pmk, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_EXTERNAL_AUTH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_external_auth, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_CONTROL_PORT_FRAME, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_tx_control_port, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_GET_FTM_RESPONDER_STATS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_get_ftm_responder_stats, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_PEER_MEASUREMENT_START, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_pmsr_start, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WDEV_UP), }, { .cmd = NL80211_CMD_NOTIFY_RADAR, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_notify_radar_detection, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_UPDATE_OWE_INFO, .doit = nl80211_update_owe_info, .flags = GENL_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_PROBE_MESH_LINK, .doit = nl80211_probe_mesh_link, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_TID_CONFIG, .doit = nl80211_set_tid_config, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_SET_SAR_SPECS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_sar_specs, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_WIPHY | NL80211_FLAG_NEED_RTNL), }, { .cmd = NL80211_CMD_COLOR_CHANGE_REQUEST, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_color_change, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_FILS_AAD, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl80211_set_fils_aad, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_ADD_LINK, .doit = nl80211_add_link, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_REMOVE_LINK, .doit = nl80211_remove_link, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_ADD_LINK_STA, .doit = nl80211_add_link_station, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_MODIFY_LINK_STA, .doit = nl80211_modify_link_station, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_REMOVE_LINK_STA, .doit = nl80211_remove_link_station, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP | NL80211_FLAG_MLO_VALID_LINK_ID), }, { .cmd = NL80211_CMD_SET_HW_TIMESTAMP, .doit = nl80211_set_hw_timestamp, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, { .cmd = NL80211_CMD_SET_TID_TO_LINK_MAPPING, .doit = nl80211_set_ttlm, .flags = GENL_UNS_ADMIN_PERM, .internal_flags = IFLAGS(NL80211_FLAG_NEED_NETDEV_UP), }, }; static struct genl_family nl80211_fam __ro_after_init = { .name = NL80211_GENL_NAME, /* have users key off the name instead */ .hdrsize = 0, /* no private header */ .version = 1, /* no particular meaning now */ .maxattr = NL80211_ATTR_MAX, .policy = nl80211_policy, .netnsok = true, .pre_doit = nl80211_pre_doit, .post_doit = nl80211_post_doit, .module = THIS_MODULE, .ops = nl80211_ops, .n_ops = ARRAY_SIZE(nl80211_ops), .small_ops = nl80211_small_ops, .n_small_ops = ARRAY_SIZE(nl80211_small_ops), .resv_start_op = NL80211_CMD_REMOVE_LINK_STA + 1, .mcgrps = nl80211_mcgrps, .n_mcgrps = ARRAY_SIZE(nl80211_mcgrps), .parallel_ops = true, }; /* notification functions */ void nl80211_notify_wiphy(struct cfg80211_registered_device *rdev, enum nl80211_commands cmd) { struct sk_buff *msg; struct nl80211_dump_wiphy_state state = {}; WARN_ON(cmd != NL80211_CMD_NEW_WIPHY && cmd != NL80211_CMD_DEL_WIPHY); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; if (nl80211_send_wiphy(rdev, cmd, msg, 0, 0, 0, &state) < 0) { nlmsg_free(msg); return; } genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_CONFIG, GFP_KERNEL); } void nl80211_notify_iface(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_commands cmd) { struct sk_buff *msg; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; if (nl80211_send_iface(msg, 0, 0, 0, rdev, wdev, cmd) < 0) { nlmsg_free(msg); return; } genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_CONFIG, GFP_KERNEL); } static int nl80211_add_scan_req(struct sk_buff *msg, struct cfg80211_registered_device *rdev) { struct cfg80211_scan_request *req = rdev->scan_req; struct nlattr *nest; int i; struct cfg80211_scan_info *info; if (WARN_ON(!req)) return 0; nest = nla_nest_start_noflag(msg, NL80211_ATTR_SCAN_SSIDS); if (!nest) goto nla_put_failure; for (i = 0; i < req->n_ssids; i++) { if (nla_put(msg, i, req->ssids[i].ssid_len, req->ssids[i].ssid)) goto nla_put_failure; } nla_nest_end(msg, nest); if (req->flags & NL80211_SCAN_FLAG_FREQ_KHZ) { nest = nla_nest_start(msg, NL80211_ATTR_SCAN_FREQ_KHZ); if (!nest) goto nla_put_failure; for (i = 0; i < req->n_channels; i++) { if (nla_put_u32(msg, i, ieee80211_channel_to_khz(req->channels[i]))) goto nla_put_failure; } nla_nest_end(msg, nest); } else { nest = nla_nest_start_noflag(msg, NL80211_ATTR_SCAN_FREQUENCIES); if (!nest) goto nla_put_failure; for (i = 0; i < req->n_channels; i++) { if (nla_put_u32(msg, i, req->channels[i]->center_freq)) goto nla_put_failure; } nla_nest_end(msg, nest); } if (req->ie && nla_put(msg, NL80211_ATTR_IE, req->ie_len, req->ie)) goto nla_put_failure; if (req->flags && nla_put_u32(msg, NL80211_ATTR_SCAN_FLAGS, req->flags)) goto nla_put_failure; info = rdev->int_scan_req ? &rdev->int_scan_req->info : &rdev->scan_req->info; if (info->scan_start_tsf && (nla_put_u64_64bit(msg, NL80211_ATTR_SCAN_START_TIME_TSF, info->scan_start_tsf, NL80211_BSS_PAD) || nla_put(msg, NL80211_ATTR_SCAN_START_TIME_TSF_BSSID, ETH_ALEN, info->tsf_bssid))) goto nla_put_failure; return 0; nla_put_failure: return -ENOBUFS; } static int nl80211_prep_scan_msg(struct sk_buff *msg, struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u32 portid, u32 seq, int flags, u32 cmd) { void *hdr; hdr = nl80211hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -1; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (wdev->netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex)) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto nla_put_failure; /* ignore errors and send incomplete event anyway */ nl80211_add_scan_req(msg, rdev); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl80211_prep_sched_scan_msg(struct sk_buff *msg, struct cfg80211_sched_scan_request *req, u32 cmd) { void *hdr; hdr = nl80211hdr_put(msg, 0, 0, 0, cmd); if (!hdr) return -1; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, wiphy_to_rdev(req->wiphy)->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, req->dev->ifindex) || nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, req->reqid, NL80211_ATTR_PAD)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } void nl80211_send_scan_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { struct sk_buff *msg; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; if (nl80211_prep_scan_msg(msg, rdev, wdev, 0, 0, 0, NL80211_CMD_TRIGGER_SCAN) < 0) { nlmsg_free(msg); return; } genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_SCAN, GFP_KERNEL); } struct sk_buff *nl80211_build_scan_msg(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, bool aborted) { struct sk_buff *msg; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return NULL; if (nl80211_prep_scan_msg(msg, rdev, wdev, 0, 0, 0, aborted ? NL80211_CMD_SCAN_ABORTED : NL80211_CMD_NEW_SCAN_RESULTS) < 0) { nlmsg_free(msg); return NULL; } return msg; } /* send message created by nl80211_build_scan_msg() */ void nl80211_send_scan_msg(struct cfg80211_registered_device *rdev, struct sk_buff *msg) { if (!msg) return; genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_SCAN, GFP_KERNEL); } void nl80211_send_sched_scan(struct cfg80211_sched_scan_request *req, u32 cmd) { struct sk_buff *msg; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; if (nl80211_prep_sched_scan_msg(msg, req, cmd) < 0) { nlmsg_free(msg); return; } genlmsg_multicast_netns(&nl80211_fam, wiphy_net(req->wiphy), msg, 0, NL80211_MCGRP_SCAN, GFP_KERNEL); } static bool nl80211_reg_change_event_fill(struct sk_buff *msg, struct regulatory_request *request) { /* Userspace can always count this one always being set */ if (nla_put_u8(msg, NL80211_ATTR_REG_INITIATOR, request->initiator)) goto nla_put_failure; if (request->alpha2[0] == '0' && request->alpha2[1] == '0') { if (nla_put_u8(msg, NL80211_ATTR_REG_TYPE, NL80211_REGDOM_TYPE_WORLD)) goto nla_put_failure; } else if (request->alpha2[0] == '9' && request->alpha2[1] == '9') { if (nla_put_u8(msg, NL80211_ATTR_REG_TYPE, NL80211_REGDOM_TYPE_CUSTOM_WORLD)) goto nla_put_failure; } else if ((request->alpha2[0] == '9' && request->alpha2[1] == '8') || request->intersect) { if (nla_put_u8(msg, NL80211_ATTR_REG_TYPE, NL80211_REGDOM_TYPE_INTERSECTION)) goto nla_put_failure; } else { if (nla_put_u8(msg, NL80211_ATTR_REG_TYPE, NL80211_REGDOM_TYPE_COUNTRY) || nla_put_string(msg, NL80211_ATTR_REG_ALPHA2, request->alpha2)) goto nla_put_failure; } if (request->wiphy_idx != WIPHY_IDX_INVALID) { struct wiphy *wiphy = wiphy_idx_to_wiphy(request->wiphy_idx); if (wiphy && nla_put_u32(msg, NL80211_ATTR_WIPHY, request->wiphy_idx)) goto nla_put_failure; if (wiphy && wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && nla_put_flag(msg, NL80211_ATTR_WIPHY_SELF_MANAGED_REG)) goto nla_put_failure; } return true; nla_put_failure: return false; } /* * This can happen on global regulatory changes or device specific settings * based on custom regulatory domains. */ void nl80211_common_reg_change_event(enum nl80211_commands cmd_id, struct regulatory_request *request) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, cmd_id); if (!hdr) goto nla_put_failure; if (!nl80211_reg_change_event_fill(msg, request)) goto nla_put_failure; genlmsg_end(msg, hdr); rcu_read_lock(); genlmsg_multicast_allns(&nl80211_fam, msg, 0, NL80211_MCGRP_REGULATORY, GFP_ATOMIC); rcu_read_unlock(); return; nla_put_failure: nlmsg_free(msg); } struct nl80211_mlme_event { enum nl80211_commands cmd; const u8 *buf; size_t buf_len; int uapsd_queues; const u8 *req_ies; size_t req_ies_len; bool reconnect; }; static void nl80211_send_mlme_event(struct cfg80211_registered_device *rdev, struct net_device *netdev, const struct nl80211_mlme_event *event, gfp_t gfp) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(100 + event->buf_len + event->req_ies_len, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, event->cmd); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_FRAME, event->buf_len, event->buf) || (event->req_ies && nla_put(msg, NL80211_ATTR_REQ_IE, event->req_ies_len, event->req_ies))) goto nla_put_failure; if (event->reconnect && nla_put_flag(msg, NL80211_ATTR_RECONNECT_REQUESTED)) goto nla_put_failure; if (event->uapsd_queues >= 0) { struct nlattr *nla_wmm = nla_nest_start_noflag(msg, NL80211_ATTR_STA_WME); if (!nla_wmm) goto nla_put_failure; if (nla_put_u8(msg, NL80211_STA_WME_UAPSD_QUEUES, event->uapsd_queues)) goto nla_put_failure; nla_nest_end(msg, nla_wmm); } genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void nl80211_send_rx_auth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp) { struct nl80211_mlme_event event = { .cmd = NL80211_CMD_AUTHENTICATE, .buf = buf, .buf_len = len, .uapsd_queues = -1, }; nl80211_send_mlme_event(rdev, netdev, &event, gfp); } void nl80211_send_rx_assoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const struct cfg80211_rx_assoc_resp_data *data) { struct nl80211_mlme_event event = { .cmd = NL80211_CMD_ASSOCIATE, .buf = data->buf, .buf_len = data->len, .uapsd_queues = data->uapsd_queues, .req_ies = data->req_ies, .req_ies_len = data->req_ies_len, }; nl80211_send_mlme_event(rdev, netdev, &event, GFP_KERNEL); } void nl80211_send_deauth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, bool reconnect, gfp_t gfp) { struct nl80211_mlme_event event = { .cmd = NL80211_CMD_DEAUTHENTICATE, .buf = buf, .buf_len = len, .reconnect = reconnect, .uapsd_queues = -1, }; nl80211_send_mlme_event(rdev, netdev, &event, gfp); } void nl80211_send_disassoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, bool reconnect, gfp_t gfp) { struct nl80211_mlme_event event = { .cmd = NL80211_CMD_DISASSOCIATE, .buf = buf, .buf_len = len, .reconnect = reconnect, .uapsd_queues = -1, }; nl80211_send_mlme_event(rdev, netdev, &event, gfp); } void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); const struct ieee80211_mgmt *mgmt = (void *)buf; struct nl80211_mlme_event event = { .buf = buf, .buf_len = len, .uapsd_queues = -1, }; if (WARN_ON(len < 2)) return; if (ieee80211_is_deauth(mgmt->frame_control)) { event.cmd = NL80211_CMD_UNPROT_DEAUTHENTICATE; } else if (ieee80211_is_disassoc(mgmt->frame_control)) { event.cmd = NL80211_CMD_UNPROT_DISASSOCIATE; } else if (ieee80211_is_beacon(mgmt->frame_control)) { if (wdev->unprot_beacon_reported && elapsed_jiffies_msecs(wdev->unprot_beacon_reported) < 10000) return; event.cmd = NL80211_CMD_UNPROT_BEACON; wdev->unprot_beacon_reported = jiffies; } else { return; } trace_cfg80211_rx_unprot_mlme_mgmt(dev, buf, len); nl80211_send_mlme_event(rdev, dev, &event, GFP_ATOMIC); } EXPORT_SYMBOL(cfg80211_rx_unprot_mlme_mgmt); static void nl80211_send_mlme_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, int cmd, const u8 *addr, gfp_t gfp) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, cmd); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put_flag(msg, NL80211_ATTR_TIMED_OUT) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, addr)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void nl80211_send_auth_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp) { nl80211_send_mlme_timeout(rdev, netdev, NL80211_CMD_AUTHENTICATE, addr, gfp); } void nl80211_send_assoc_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp) { nl80211_send_mlme_timeout(rdev, netdev, NL80211_CMD_ASSOCIATE, addr, gfp); } void nl80211_send_connect_result(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_connect_resp_params *cr, gfp_t gfp) { struct sk_buff *msg; void *hdr; unsigned int link; size_t link_info_size = 0; const u8 *connected_addr = cr->valid_links ? cr->ap_mld_addr : cr->links[0].bssid; if (cr->valid_links) { for_each_valid_link(cr, link) { /* Nested attribute header */ link_info_size += NLA_HDRLEN; /* Link ID */ link_info_size += nla_total_size(sizeof(u8)); link_info_size += cr->links[link].addr ? nla_total_size(ETH_ALEN) : 0; link_info_size += (cr->links[link].bssid || cr->links[link].bss) ? nla_total_size(ETH_ALEN) : 0; link_info_size += nla_total_size(sizeof(u16)); } } msg = nlmsg_new(100 + cr->req_ie_len + cr->resp_ie_len + cr->fils.kek_len + cr->fils.pmk_len + (cr->fils.pmkid ? WLAN_PMKID_LEN : 0) + link_info_size, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_CONNECT); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || (connected_addr && nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, connected_addr)) || nla_put_u16(msg, NL80211_ATTR_STATUS_CODE, cr->status < 0 ? WLAN_STATUS_UNSPECIFIED_FAILURE : cr->status) || (cr->status < 0 && (nla_put_flag(msg, NL80211_ATTR_TIMED_OUT) || nla_put_u32(msg, NL80211_ATTR_TIMEOUT_REASON, cr->timeout_reason))) || (cr->req_ie && nla_put(msg, NL80211_ATTR_REQ_IE, cr->req_ie_len, cr->req_ie)) || (cr->resp_ie && nla_put(msg, NL80211_ATTR_RESP_IE, cr->resp_ie_len, cr->resp_ie)) || (cr->fils.update_erp_next_seq_num && nla_put_u16(msg, NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM, cr->fils.erp_next_seq_num)) || (cr->status == WLAN_STATUS_SUCCESS && ((cr->fils.kek && nla_put(msg, NL80211_ATTR_FILS_KEK, cr->fils.kek_len, cr->fils.kek)) || (cr->fils.pmk && nla_put(msg, NL80211_ATTR_PMK, cr->fils.pmk_len, cr->fils.pmk)) || (cr->fils.pmkid && nla_put(msg, NL80211_ATTR_PMKID, WLAN_PMKID_LEN, cr->fils.pmkid))))) goto nla_put_failure; if (cr->valid_links) { int i = 1; struct nlattr *nested; nested = nla_nest_start(msg, NL80211_ATTR_MLO_LINKS); if (!nested) goto nla_put_failure; for_each_valid_link(cr, link) { struct nlattr *nested_mlo_links; const u8 *bssid = cr->links[link].bss ? cr->links[link].bss->bssid : cr->links[link].bssid; nested_mlo_links = nla_nest_start(msg, i); if (!nested_mlo_links) goto nla_put_failure; if (nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link) || (bssid && nla_put(msg, NL80211_ATTR_BSSID, ETH_ALEN, bssid)) || (cr->links[link].addr && nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, cr->links[link].addr)) || nla_put_u16(msg, NL80211_ATTR_STATUS_CODE, cr->links[link].status)) goto nla_put_failure; nla_nest_end(msg, nested_mlo_links); i++; } nla_nest_end(msg, nested); } genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void nl80211_send_roamed(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_roam_info *info, gfp_t gfp) { struct sk_buff *msg; void *hdr; size_t link_info_size = 0; unsigned int link; const u8 *connected_addr = info->ap_mld_addr ? info->ap_mld_addr : (info->links[0].bss ? info->links[0].bss->bssid : info->links[0].bssid); if (info->valid_links) { for_each_valid_link(info, link) { /* Nested attribute header */ link_info_size += NLA_HDRLEN; /* Link ID */ link_info_size += nla_total_size(sizeof(u8)); link_info_size += info->links[link].addr ? nla_total_size(ETH_ALEN) : 0; link_info_size += (info->links[link].bssid || info->links[link].bss) ? nla_total_size(ETH_ALEN) : 0; } } msg = nlmsg_new(100 + info->req_ie_len + info->resp_ie_len + info->fils.kek_len + info->fils.pmk_len + (info->fils.pmkid ? WLAN_PMKID_LEN : 0) + link_info_size, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_ROAM); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, connected_addr) || (info->req_ie && nla_put(msg, NL80211_ATTR_REQ_IE, info->req_ie_len, info->req_ie)) || (info->resp_ie && nla_put(msg, NL80211_ATTR_RESP_IE, info->resp_ie_len, info->resp_ie)) || (info->fils.update_erp_next_seq_num && nla_put_u16(msg, NL80211_ATTR_FILS_ERP_NEXT_SEQ_NUM, info->fils.erp_next_seq_num)) || (info->fils.kek && nla_put(msg, NL80211_ATTR_FILS_KEK, info->fils.kek_len, info->fils.kek)) || (info->fils.pmk && nla_put(msg, NL80211_ATTR_PMK, info->fils.pmk_len, info->fils.pmk)) || (info->fils.pmkid && nla_put(msg, NL80211_ATTR_PMKID, WLAN_PMKID_LEN, info->fils.pmkid))) goto nla_put_failure; if (info->valid_links) { int i = 1; struct nlattr *nested; nested = nla_nest_start(msg, NL80211_ATTR_MLO_LINKS); if (!nested) goto nla_put_failure; for_each_valid_link(info, link) { struct nlattr *nested_mlo_links; const u8 *bssid = info->links[link].bss ? info->links[link].bss->bssid : info->links[link].bssid; nested_mlo_links = nla_nest_start(msg, i); if (!nested_mlo_links) goto nla_put_failure; if (nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link) || (bssid && nla_put(msg, NL80211_ATTR_BSSID, ETH_ALEN, bssid)) || (info->links[link].addr && nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, info->links[link].addr))) goto nla_put_failure; nla_nest_end(msg, nested_mlo_links); i++; } nla_nest_end(msg, nested); } genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void nl80211_send_port_authorized(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *peer_addr, const u8 *td_bitmap, u8 td_bitmap_len) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_PORT_AUTHORIZED); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, peer_addr)) goto nla_put_failure; if ((td_bitmap_len > 0) && td_bitmap) if (nla_put(msg, NL80211_ATTR_TD_BITMAP, td_bitmap_len, td_bitmap)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); return; nla_put_failure: nlmsg_free(msg); } void nl80211_send_disconnected(struct cfg80211_registered_device *rdev, struct net_device *netdev, u16 reason, const u8 *ie, size_t ie_len, bool from_ap) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(100 + ie_len, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_DISCONNECT); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || (reason && nla_put_u16(msg, NL80211_ATTR_REASON_CODE, reason)) || (from_ap && nla_put_flag(msg, NL80211_ATTR_DISCONNECTED_BY_AP)) || (ie && nla_put(msg, NL80211_ATTR_IE, ie_len, ie))) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_links_removed(struct net_device *dev, u16 link_mask) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; struct nlattr *links; void *hdr; lockdep_assert_wiphy(wdev->wiphy); trace_cfg80211_links_removed(dev, link_mask); if (WARN_ON(wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_P2P_CLIENT)) return; if (WARN_ON(!wdev->valid_links || !link_mask || (wdev->valid_links & link_mask) != link_mask || wdev->valid_links == link_mask)) return; cfg80211_wdev_release_link_bsses(wdev, link_mask); wdev->valid_links &= ~link_mask; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_LINKS_REMOVED); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; links = nla_nest_start(msg, NL80211_ATTR_MLO_LINKS); if (!links) goto nla_put_failure; while (link_mask) { struct nlattr *link; int link_id = __ffs(link_mask); link = nla_nest_start(msg, link_id + 1); if (!link) goto nla_put_failure; if (nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link_id)) goto nla_put_failure; nla_nest_end(msg, link); link_mask &= ~(1 << link_id); } nla_nest_end(msg, links); genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_links_removed); void nl80211_send_ibss_bssid(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid, gfp_t gfp) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_JOIN_IBSS); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, bssid)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_notify_new_peer_candidate(struct net_device *dev, const u8 *addr, const u8 *ie, u8 ie_len, int sig_dbm, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg; void *hdr; if (WARN_ON(wdev->iftype != NL80211_IFTYPE_MESH_POINT)) return; trace_cfg80211_notify_new_peer_candidate(dev, addr); msg = nlmsg_new(100 + ie_len, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_NEW_PEER_CANDIDATE); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, addr) || (ie_len && ie && nla_put(msg, NL80211_ATTR_IE, ie_len, ie)) || (sig_dbm && nla_put_u32(msg, NL80211_ATTR_RX_SIGNAL_DBM, sig_dbm))) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_notify_new_peer_candidate); void nl80211_michael_mic_failure(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_MICHAEL_MIC_FAILURE); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || (addr && nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, addr)) || nla_put_u32(msg, NL80211_ATTR_KEY_TYPE, key_type) || (key_id != -1 && nla_put_u8(msg, NL80211_ATTR_KEY_IDX, key_id)) || (tsc && nla_put(msg, NL80211_ATTR_KEY_SEQ, 6, tsc))) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void nl80211_send_beacon_hint_event(struct wiphy *wiphy, struct ieee80211_channel *channel_before, struct ieee80211_channel *channel_after) { struct sk_buff *msg; void *hdr; struct nlattr *nl_freq; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_REG_BEACON_HINT); if (!hdr) { nlmsg_free(msg); return; } /* * Since we are applying the beacon hint to a wiphy we know its * wiphy_idx is valid */ if (nla_put_u32(msg, NL80211_ATTR_WIPHY, get_wiphy_idx(wiphy))) goto nla_put_failure; /* Before */ nl_freq = nla_nest_start_noflag(msg, NL80211_ATTR_FREQ_BEFORE); if (!nl_freq) goto nla_put_failure; if (nl80211_msg_put_channel(msg, wiphy, channel_before, false)) goto nla_put_failure; nla_nest_end(msg, nl_freq); /* After */ nl_freq = nla_nest_start_noflag(msg, NL80211_ATTR_FREQ_AFTER); if (!nl_freq) goto nla_put_failure; if (nl80211_msg_put_channel(msg, wiphy, channel_after, false)) goto nla_put_failure; nla_nest_end(msg, nl_freq); genlmsg_end(msg, hdr); rcu_read_lock(); genlmsg_multicast_allns(&nl80211_fam, msg, 0, NL80211_MCGRP_REGULATORY, GFP_ATOMIC); rcu_read_unlock(); return; nla_put_failure: nlmsg_free(msg); } static void nl80211_send_remain_on_chan_event( int cmd, struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan, unsigned int duration, gfp_t gfp) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, cmd); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (wdev->netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex)) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD) || nla_put_u32(msg, NL80211_ATTR_WIPHY_FREQ, chan->center_freq) || nla_put_u32(msg, NL80211_ATTR_WIPHY_CHANNEL_TYPE, NL80211_CHAN_NO_HT) || nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, cookie, NL80211_ATTR_PAD)) goto nla_put_failure; if (cmd == NL80211_CMD_REMAIN_ON_CHANNEL && nla_put_u32(msg, NL80211_ATTR_DURATION, duration)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_assoc_comeback(struct net_device *netdev, const u8 *ap_addr, u32 timeout) { struct wireless_dev *wdev = netdev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; trace_cfg80211_assoc_comeback(wdev, ap_addr, timeout); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_ASSOC_COMEBACK); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, ap_addr) || nla_put_u32(msg, NL80211_ATTR_TIMEOUT, timeout)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_assoc_comeback); void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan, unsigned int duration, gfp_t gfp) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); trace_cfg80211_ready_on_channel(wdev, cookie, chan, duration); nl80211_send_remain_on_chan_event(NL80211_CMD_REMAIN_ON_CHANNEL, rdev, wdev, cookie, chan, duration, gfp); } EXPORT_SYMBOL(cfg80211_ready_on_channel); void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan, gfp_t gfp) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); trace_cfg80211_ready_on_channel_expired(wdev, cookie, chan); nl80211_send_remain_on_chan_event(NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL, rdev, wdev, cookie, chan, 0, gfp); } EXPORT_SYMBOL(cfg80211_remain_on_channel_expired); void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan, gfp_t gfp) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); trace_cfg80211_tx_mgmt_expired(wdev, cookie, chan); nl80211_send_remain_on_chan_event(NL80211_CMD_FRAME_WAIT_CANCEL, rdev, wdev, cookie, chan, 0, gfp); } EXPORT_SYMBOL(cfg80211_tx_mgmt_expired); void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo, gfp_t gfp) { struct wiphy *wiphy = dev->ieee80211_ptr->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; trace_cfg80211_new_sta(dev, mac_addr, sinfo); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; if (nl80211_send_station(msg, NL80211_CMD_NEW_STATION, 0, 0, 0, rdev, dev, mac_addr, sinfo) < 0) { nlmsg_free(msg); return; } genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); } EXPORT_SYMBOL(cfg80211_new_sta); void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo, gfp_t gfp) { struct wiphy *wiphy = dev->ieee80211_ptr->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; struct station_info empty_sinfo = {}; if (!sinfo) sinfo = &empty_sinfo; trace_cfg80211_del_sta(dev, mac_addr); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) { cfg80211_sinfo_release_content(sinfo); return; } if (nl80211_send_station(msg, NL80211_CMD_DEL_STATION, 0, 0, 0, rdev, dev, mac_addr, sinfo) < 0) { nlmsg_free(msg); return; } genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); } EXPORT_SYMBOL(cfg80211_del_sta_sinfo); void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr, enum nl80211_connect_failed_reason reason, gfp_t gfp) { struct wiphy *wiphy = dev->ieee80211_ptr->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_GOODSIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_CONN_FAILED); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, mac_addr) || nla_put_u32(msg, NL80211_ATTR_CONN_FAILED_REASON, reason)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_conn_failed); static bool __nl80211_unexpected_frame(struct net_device *dev, u8 cmd, const u8 *addr, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg; void *hdr; u32 nlportid = READ_ONCE(wdev->ap_unexpected_nlportid); if (!nlportid) return false; msg = nlmsg_new(100, gfp); if (!msg) return true; hdr = nl80211hdr_put(msg, 0, 0, 0, cmd); if (!hdr) { nlmsg_free(msg); return true; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, addr)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, nlportid); return true; nla_put_failure: nlmsg_free(msg); return true; } bool cfg80211_rx_spurious_frame(struct net_device *dev, const u8 *addr, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; bool ret; trace_cfg80211_rx_spurious_frame(dev, addr); if (WARN_ON(wdev->iftype != NL80211_IFTYPE_AP && wdev->iftype != NL80211_IFTYPE_P2P_GO)) { trace_cfg80211_return_bool(false); return false; } ret = __nl80211_unexpected_frame(dev, NL80211_CMD_UNEXPECTED_FRAME, addr, gfp); trace_cfg80211_return_bool(ret); return ret; } EXPORT_SYMBOL(cfg80211_rx_spurious_frame); bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, const u8 *addr, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; bool ret; trace_cfg80211_rx_unexpected_4addr_frame(dev, addr); if (WARN_ON(wdev->iftype != NL80211_IFTYPE_AP && wdev->iftype != NL80211_IFTYPE_P2P_GO && wdev->iftype != NL80211_IFTYPE_AP_VLAN)) { trace_cfg80211_return_bool(false); return false; } ret = __nl80211_unexpected_frame(dev, NL80211_CMD_UNEXPECTED_4ADDR_FRAME, addr, gfp); trace_cfg80211_return_bool(ret); return ret; } EXPORT_SYMBOL(cfg80211_rx_unexpected_4addr_frame); int nl80211_send_mgmt(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u32 nlportid, struct cfg80211_rx_info *info, gfp_t gfp) { struct net_device *netdev = wdev->netdev; struct sk_buff *msg; void *hdr; msg = nlmsg_new(100 + info->len, gfp); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_FRAME); if (!hdr) { nlmsg_free(msg); return -ENOMEM; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex)) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD) || (info->have_link_id && nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, info->link_id)) || nla_put_u32(msg, NL80211_ATTR_WIPHY_FREQ, KHZ_TO_MHZ(info->freq)) || nla_put_u32(msg, NL80211_ATTR_WIPHY_FREQ_OFFSET, info->freq % 1000) || (info->sig_dbm && nla_put_u32(msg, NL80211_ATTR_RX_SIGNAL_DBM, info->sig_dbm)) || nla_put(msg, NL80211_ATTR_FRAME, info->len, info->buf) || (info->flags && nla_put_u32(msg, NL80211_ATTR_RXMGMT_FLAGS, info->flags)) || (info->rx_tstamp && nla_put_u64_64bit(msg, NL80211_ATTR_RX_HW_TIMESTAMP, info->rx_tstamp, NL80211_ATTR_PAD)) || (info->ack_tstamp && nla_put_u64_64bit(msg, NL80211_ATTR_TX_HW_TIMESTAMP, info->ack_tstamp, NL80211_ATTR_PAD))) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, nlportid); nla_put_failure: nlmsg_free(msg); return -ENOBUFS; } static void nl80211_frame_tx_status(struct wireless_dev *wdev, struct cfg80211_tx_status *status, gfp_t gfp, enum nl80211_commands command) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct net_device *netdev = wdev->netdev; struct sk_buff *msg; void *hdr; if (command == NL80211_CMD_FRAME_TX_STATUS) trace_cfg80211_mgmt_tx_status(wdev, status->cookie, status->ack); else trace_cfg80211_control_port_tx_status(wdev, status->cookie, status->ack); msg = nlmsg_new(100 + status->len, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, command); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex)) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD) || nla_put(msg, NL80211_ATTR_FRAME, status->len, status->buf) || nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, status->cookie, NL80211_ATTR_PAD) || (status->ack && nla_put_flag(msg, NL80211_ATTR_ACK)) || (status->tx_tstamp && nla_put_u64_64bit(msg, NL80211_ATTR_TX_HW_TIMESTAMP, status->tx_tstamp, NL80211_ATTR_PAD)) || (status->ack_tstamp && nla_put_u64_64bit(msg, NL80211_ATTR_RX_HW_TIMESTAMP, status->ack_tstamp, NL80211_ATTR_PAD))) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie, const u8 *buf, size_t len, bool ack, gfp_t gfp) { struct cfg80211_tx_status status = { .cookie = cookie, .buf = buf, .len = len, .ack = ack }; nl80211_frame_tx_status(wdev, &status, gfp, NL80211_CMD_CONTROL_PORT_FRAME_TX_STATUS); } EXPORT_SYMBOL(cfg80211_control_port_tx_status); void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev, struct cfg80211_tx_status *status, gfp_t gfp) { nl80211_frame_tx_status(wdev, status, gfp, NL80211_CMD_FRAME_TX_STATUS); } EXPORT_SYMBOL(cfg80211_mgmt_tx_status_ext); static int __nl80211_rx_control_port(struct net_device *dev, struct sk_buff *skb, bool unencrypted, int link_id, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct ethhdr *ehdr = eth_hdr(skb); const u8 *addr = ehdr->h_source; u16 proto = be16_to_cpu(skb->protocol); struct sk_buff *msg; void *hdr; struct nlattr *frame; u32 nlportid = READ_ONCE(wdev->conn_owner_nlportid); if (!nlportid) return -ENOENT; msg = nlmsg_new(100 + skb->len, gfp); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_CONTROL_PORT_FRAME); if (!hdr) { nlmsg_free(msg); return -ENOBUFS; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, addr) || nla_put_u16(msg, NL80211_ATTR_CONTROL_PORT_ETHERTYPE, proto) || (link_id >= 0 && nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link_id)) || (unencrypted && nla_put_flag(msg, NL80211_ATTR_CONTROL_PORT_NO_ENCRYPT))) goto nla_put_failure; frame = nla_reserve(msg, NL80211_ATTR_FRAME, skb->len); if (!frame) goto nla_put_failure; skb_copy_bits(skb, 0, nla_data(frame), skb->len); genlmsg_end(msg, hdr); return genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, nlportid); nla_put_failure: nlmsg_free(msg); return -ENOBUFS; } bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb, bool unencrypted, int link_id) { int ret; trace_cfg80211_rx_control_port(dev, skb, unencrypted, link_id); ret = __nl80211_rx_control_port(dev, skb, unencrypted, link_id, GFP_ATOMIC); trace_cfg80211_return_bool(ret == 0); return ret == 0; } EXPORT_SYMBOL(cfg80211_rx_control_port); static struct sk_buff *cfg80211_prepare_cqm(struct net_device *dev, const char *mac, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); void **cb; if (!msg) return NULL; cb = (void **)msg->cb; cb[0] = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_NOTIFY_CQM); if (!cb[0]) { nlmsg_free(msg); return NULL; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; if (mac && nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, mac)) goto nla_put_failure; cb[1] = nla_nest_start_noflag(msg, NL80211_ATTR_CQM); if (!cb[1]) goto nla_put_failure; cb[2] = rdev; return msg; nla_put_failure: nlmsg_free(msg); return NULL; } static void cfg80211_send_cqm(struct sk_buff *msg, gfp_t gfp) { void **cb = (void **)msg->cb; struct cfg80211_registered_device *rdev = cb[2]; nla_nest_end(msg, cb[1]); genlmsg_end(msg, cb[0]); memset(msg->cb, 0, sizeof(msg->cb)); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); } void cfg80211_cqm_rssi_notify(struct net_device *dev, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_cqm_config *cqm_config; trace_cfg80211_cqm_rssi_notify(dev, rssi_event, rssi_level); if (WARN_ON(rssi_event != NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW && rssi_event != NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH)) return; rcu_read_lock(); cqm_config = rcu_dereference(wdev->cqm_config); if (cqm_config) { cqm_config->last_rssi_event_value = rssi_level; cqm_config->last_rssi_event_type = rssi_event; wiphy_work_queue(wdev->wiphy, &wdev->cqm_rssi_work); } rcu_read_unlock(); } EXPORT_SYMBOL(cfg80211_cqm_rssi_notify); void cfg80211_cqm_rssi_notify_work(struct wiphy *wiphy, struct wiphy_work *work) { struct wireless_dev *wdev = container_of(work, struct wireless_dev, cqm_rssi_work); struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); enum nl80211_cqm_rssi_threshold_event rssi_event; struct cfg80211_cqm_config *cqm_config; struct sk_buff *msg; s32 rssi_level; cqm_config = wiphy_dereference(wdev->wiphy, wdev->cqm_config); if (!cqm_config) return; if (cqm_config->use_range_api) cfg80211_cqm_rssi_update(rdev, wdev->netdev, cqm_config); rssi_level = cqm_config->last_rssi_event_value; rssi_event = cqm_config->last_rssi_event_type; msg = cfg80211_prepare_cqm(wdev->netdev, NULL, GFP_KERNEL); if (!msg) return; if (nla_put_u32(msg, NL80211_ATTR_CQM_RSSI_THRESHOLD_EVENT, rssi_event)) goto nla_put_failure; if (rssi_level && nla_put_s32(msg, NL80211_ATTR_CQM_RSSI_LEVEL, rssi_level)) goto nla_put_failure; cfg80211_send_cqm(msg, GFP_KERNEL); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer, u32 num_packets, u32 rate, u32 intvl, gfp_t gfp) { struct sk_buff *msg; msg = cfg80211_prepare_cqm(dev, peer, gfp); if (!msg) return; if (nla_put_u32(msg, NL80211_ATTR_CQM_TXE_PKTS, num_packets)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_CQM_TXE_RATE, rate)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_CQM_TXE_INTVL, intvl)) goto nla_put_failure; cfg80211_send_cqm(msg, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_cqm_txe_notify); void cfg80211_cqm_pktloss_notify(struct net_device *dev, const u8 *peer, u32 num_packets, gfp_t gfp) { struct sk_buff *msg; trace_cfg80211_cqm_pktloss_notify(dev, peer, num_packets); msg = cfg80211_prepare_cqm(dev, peer, gfp); if (!msg) return; if (nla_put_u32(msg, NL80211_ATTR_CQM_PKT_LOSS_EVENT, num_packets)) goto nla_put_failure; cfg80211_send_cqm(msg, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_cqm_pktloss_notify); void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp) { struct sk_buff *msg; msg = cfg80211_prepare_cqm(dev, NULL, gfp); if (!msg) return; if (nla_put_flag(msg, NL80211_ATTR_CQM_BEACON_LOSS_EVENT)) goto nla_put_failure; cfg80211_send_cqm(msg, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_cqm_beacon_loss_notify); static void nl80211_gtk_rekey_notify(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid, const u8 *replay_ctr, gfp_t gfp) { struct sk_buff *msg; struct nlattr *rekey_attr; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_SET_REKEY_OFFLOAD); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, bssid)) goto nla_put_failure; rekey_attr = nla_nest_start_noflag(msg, NL80211_ATTR_REKEY_DATA); if (!rekey_attr) goto nla_put_failure; if (nla_put(msg, NL80211_REKEY_DATA_REPLAY_CTR, NL80211_REPLAY_CTR_LEN, replay_ctr)) goto nla_put_failure; nla_nest_end(msg, rekey_attr); genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid, const u8 *replay_ctr, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); trace_cfg80211_gtk_rekey_notify(dev, bssid); nl80211_gtk_rekey_notify(rdev, dev, bssid, replay_ctr, gfp); } EXPORT_SYMBOL(cfg80211_gtk_rekey_notify); static void nl80211_pmksa_candidate_notify(struct cfg80211_registered_device *rdev, struct net_device *netdev, int index, const u8 *bssid, bool preauth, gfp_t gfp) { struct sk_buff *msg; struct nlattr *attr; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_PMKSA_CANDIDATE); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex)) goto nla_put_failure; attr = nla_nest_start_noflag(msg, NL80211_ATTR_PMKSA_CANDIDATE); if (!attr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_PMKSA_CANDIDATE_INDEX, index) || nla_put(msg, NL80211_PMKSA_CANDIDATE_BSSID, ETH_ALEN, bssid) || (preauth && nla_put_flag(msg, NL80211_PMKSA_CANDIDATE_PREAUTH))) goto nla_put_failure; nla_nest_end(msg, attr); genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index, const u8 *bssid, bool preauth, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); trace_cfg80211_pmksa_candidate_notify(dev, index, bssid, preauth); nl80211_pmksa_candidate_notify(rdev, dev, index, bssid, preauth, gfp); } EXPORT_SYMBOL(cfg80211_pmksa_candidate_notify); static void nl80211_ch_switch_notify(struct cfg80211_registered_device *rdev, struct net_device *netdev, unsigned int link_id, struct cfg80211_chan_def *chandef, gfp_t gfp, enum nl80211_commands notif, u8 count, bool quiet, u16 punct_bitmap) { struct wireless_dev *wdev = netdev->ieee80211_ptr; struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, notif); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex)) goto nla_put_failure; if (wdev->valid_links && nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link_id)) goto nla_put_failure; if (nl80211_send_chandef(msg, chandef)) goto nla_put_failure; if (notif == NL80211_CMD_CH_SWITCH_STARTED_NOTIFY) { if (nla_put_u32(msg, NL80211_ATTR_CH_SWITCH_COUNT, count)) goto nla_put_failure; if (quiet && nla_put_flag(msg, NL80211_ATTR_CH_SWITCH_BLOCK_TX)) goto nla_put_failure; } if (nla_put_u32(msg, NL80211_ATTR_PUNCT_BITMAP, punct_bitmap)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_ch_switch_notify(struct net_device *dev, struct cfg80211_chan_def *chandef, unsigned int link_id, u16 punct_bitmap) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); lockdep_assert_wiphy(wdev->wiphy); WARN_INVALID_LINK_ID(wdev, link_id); trace_cfg80211_ch_switch_notify(dev, chandef, link_id, punct_bitmap); switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (!WARN_ON(!wdev->links[link_id].client.current_bss)) cfg80211_update_assoc_bss_entry(wdev, link_id, chandef->chan); break; case NL80211_IFTYPE_MESH_POINT: wdev->u.mesh.chandef = *chandef; wdev->u.mesh.preset_chandef = *chandef; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: wdev->links[link_id].ap.chandef = *chandef; break; case NL80211_IFTYPE_ADHOC: wdev->u.ibss.chandef = *chandef; break; default: WARN_ON(1); break; } cfg80211_schedule_channels_check(wdev); cfg80211_sched_dfs_chan_update(rdev); nl80211_ch_switch_notify(rdev, dev, link_id, chandef, GFP_KERNEL, NL80211_CMD_CH_SWITCH_NOTIFY, 0, false, punct_bitmap); } EXPORT_SYMBOL(cfg80211_ch_switch_notify); void cfg80211_ch_switch_started_notify(struct net_device *dev, struct cfg80211_chan_def *chandef, unsigned int link_id, u8 count, bool quiet, u16 punct_bitmap) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); lockdep_assert_wiphy(wdev->wiphy); WARN_INVALID_LINK_ID(wdev, link_id); trace_cfg80211_ch_switch_started_notify(dev, chandef, link_id, punct_bitmap); nl80211_ch_switch_notify(rdev, dev, link_id, chandef, GFP_KERNEL, NL80211_CMD_CH_SWITCH_STARTED_NOTIFY, count, quiet, punct_bitmap); } EXPORT_SYMBOL(cfg80211_ch_switch_started_notify); int cfg80211_bss_color_notify(struct net_device *dev, enum nl80211_commands cmd, u8 count, u64 color_bitmap) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; lockdep_assert_wiphy(wdev->wiphy); trace_cfg80211_bss_color_notify(dev, cmd, count, color_bitmap); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, 0, 0, 0, cmd); if (!hdr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; if (cmd == NL80211_CMD_COLOR_CHANGE_STARTED && nla_put_u32(msg, NL80211_ATTR_COLOR_CHANGE_COUNT, count)) goto nla_put_failure; if (cmd == NL80211_CMD_OBSS_COLOR_COLLISION && nla_put_u64_64bit(msg, NL80211_ATTR_OBSS_COLOR_BITMAP, color_bitmap, NL80211_ATTR_PAD)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); nla_put_failure: nlmsg_free(msg); return -EINVAL; } EXPORT_SYMBOL(cfg80211_bss_color_notify); void nl80211_radar_notify(struct cfg80211_registered_device *rdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event, struct net_device *netdev, gfp_t gfp) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_RADAR_DETECT); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx)) goto nla_put_failure; /* NOP and radar events don't need a netdev parameter */ if (netdev) { struct wireless_dev *wdev = netdev->ieee80211_ptr; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto nla_put_failure; } if (nla_put_u32(msg, NL80211_ATTR_RADAR_EVENT, event)) goto nla_put_failure; if (nl80211_send_chandef(msg, chandef)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac, struct sta_opmode_info *sta_opmode, gfp_t gfp) { struct sk_buff *msg; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); void *hdr; if (WARN_ON(!mac)) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_STA_OPMODE_CHANGED); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx)) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; if (nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, mac)) goto nla_put_failure; if ((sta_opmode->changed & STA_OPMODE_SMPS_MODE_CHANGED) && nla_put_u8(msg, NL80211_ATTR_SMPS_MODE, sta_opmode->smps_mode)) goto nla_put_failure; if ((sta_opmode->changed & STA_OPMODE_MAX_BW_CHANGED) && nla_put_u32(msg, NL80211_ATTR_CHANNEL_WIDTH, sta_opmode->bw)) goto nla_put_failure; if ((sta_opmode->changed & STA_OPMODE_N_SS_CHANGED) && nla_put_u8(msg, NL80211_ATTR_NSS, sta_opmode->rx_nss)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_sta_opmode_change_notify); void cfg80211_probe_status(struct net_device *dev, const u8 *addr, u64 cookie, bool acked, s32 ack_signal, bool is_valid_ack_signal, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg; void *hdr; trace_cfg80211_probe_status(dev, addr, cookie, acked); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_PROBE_CLIENT); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, addr) || nla_put_u64_64bit(msg, NL80211_ATTR_COOKIE, cookie, NL80211_ATTR_PAD) || (acked && nla_put_flag(msg, NL80211_ATTR_ACK)) || (is_valid_ack_signal && nla_put_s32(msg, NL80211_ATTR_ACK_SIGNAL, ack_signal))) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_probe_status); void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame, size_t len, int freq, int sig_dbm) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; struct cfg80211_beacon_registration *reg; trace_cfg80211_report_obss_beacon(wiphy, frame, len, freq, sig_dbm); spin_lock_bh(&rdev->beacon_registrations_lock); list_for_each_entry(reg, &rdev->beacon_registrations, list) { msg = nlmsg_new(len + 100, GFP_ATOMIC); if (!msg) { spin_unlock_bh(&rdev->beacon_registrations_lock); return; } hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_FRAME); if (!hdr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || (freq && (nla_put_u32(msg, NL80211_ATTR_WIPHY_FREQ, KHZ_TO_MHZ(freq)) || nla_put_u32(msg, NL80211_ATTR_WIPHY_FREQ_OFFSET, freq % 1000))) || (sig_dbm && nla_put_u32(msg, NL80211_ATTR_RX_SIGNAL_DBM, sig_dbm)) || nla_put(msg, NL80211_ATTR_FRAME, len, frame)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, reg->nlportid); } spin_unlock_bh(&rdev->beacon_registrations_lock); return; nla_put_failure: spin_unlock_bh(&rdev->beacon_registrations_lock); nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_report_obss_beacon_khz); #ifdef CONFIG_PM static int cfg80211_net_detect_results(struct sk_buff *msg, struct cfg80211_wowlan_wakeup *wakeup) { struct cfg80211_wowlan_nd_info *nd = wakeup->net_detect; struct nlattr *nl_results, *nl_match, *nl_freqs; int i, j; nl_results = nla_nest_start_noflag(msg, NL80211_WOWLAN_TRIG_NET_DETECT_RESULTS); if (!nl_results) return -EMSGSIZE; for (i = 0; i < nd->n_matches; i++) { struct cfg80211_wowlan_nd_match *match = nd->matches[i]; nl_match = nla_nest_start_noflag(msg, i); if (!nl_match) break; /* The SSID attribute is optional in nl80211, but for * simplicity reasons it's always present in the * cfg80211 structure. If a driver can't pass the * SSID, that needs to be changed. A zero length SSID * is still a valid SSID (wildcard), so it cannot be * used for this purpose. */ if (nla_put(msg, NL80211_ATTR_SSID, match->ssid.ssid_len, match->ssid.ssid)) { nla_nest_cancel(msg, nl_match); goto out; } if (match->n_channels) { nl_freqs = nla_nest_start_noflag(msg, NL80211_ATTR_SCAN_FREQUENCIES); if (!nl_freqs) { nla_nest_cancel(msg, nl_match); goto out; } for (j = 0; j < match->n_channels; j++) { if (nla_put_u32(msg, j, match->channels[j])) { nla_nest_cancel(msg, nl_freqs); nla_nest_cancel(msg, nl_match); goto out; } } nla_nest_end(msg, nl_freqs); } nla_nest_end(msg, nl_match); } out: nla_nest_end(msg, nl_results); return 0; } void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev, struct cfg80211_wowlan_wakeup *wakeup, gfp_t gfp) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg; void *hdr; int size = 200; trace_cfg80211_report_wowlan_wakeup(wdev->wiphy, wdev, wakeup); if (wakeup) size += wakeup->packet_present_len; msg = nlmsg_new(size, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_SET_WOWLAN); if (!hdr) goto free_msg; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto free_msg; if (wdev->netdev && nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex)) goto free_msg; if (wakeup) { struct nlattr *reasons; reasons = nla_nest_start_noflag(msg, NL80211_ATTR_WOWLAN_TRIGGERS); if (!reasons) goto free_msg; if (wakeup->disconnect && nla_put_flag(msg, NL80211_WOWLAN_TRIG_DISCONNECT)) goto free_msg; if (wakeup->magic_pkt && nla_put_flag(msg, NL80211_WOWLAN_TRIG_MAGIC_PKT)) goto free_msg; if (wakeup->gtk_rekey_failure && nla_put_flag(msg, NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE)) goto free_msg; if (wakeup->eap_identity_req && nla_put_flag(msg, NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST)) goto free_msg; if (wakeup->four_way_handshake && nla_put_flag(msg, NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE)) goto free_msg; if (wakeup->rfkill_release && nla_put_flag(msg, NL80211_WOWLAN_TRIG_RFKILL_RELEASE)) goto free_msg; if (wakeup->pattern_idx >= 0 && nla_put_u32(msg, NL80211_WOWLAN_TRIG_PKT_PATTERN, wakeup->pattern_idx)) goto free_msg; if (wakeup->tcp_match && nla_put_flag(msg, NL80211_WOWLAN_TRIG_WAKEUP_TCP_MATCH)) goto free_msg; if (wakeup->tcp_connlost && nla_put_flag(msg, NL80211_WOWLAN_TRIG_WAKEUP_TCP_CONNLOST)) goto free_msg; if (wakeup->tcp_nomoretokens && nla_put_flag(msg, NL80211_WOWLAN_TRIG_WAKEUP_TCP_NOMORETOKENS)) goto free_msg; if (wakeup->packet) { u32 pkt_attr = NL80211_WOWLAN_TRIG_WAKEUP_PKT_80211; u32 len_attr = NL80211_WOWLAN_TRIG_WAKEUP_PKT_80211_LEN; if (!wakeup->packet_80211) { pkt_attr = NL80211_WOWLAN_TRIG_WAKEUP_PKT_8023; len_attr = NL80211_WOWLAN_TRIG_WAKEUP_PKT_8023_LEN; } if (wakeup->packet_len && nla_put_u32(msg, len_attr, wakeup->packet_len)) goto free_msg; if (nla_put(msg, pkt_attr, wakeup->packet_present_len, wakeup->packet)) goto free_msg; } if (wakeup->net_detect && cfg80211_net_detect_results(msg, wakeup)) goto free_msg; nla_nest_end(msg, reasons); } genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; free_msg: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_report_wowlan_wakeup); #endif void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer, enum nl80211_tdls_operation oper, u16 reason_code, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg; void *hdr; trace_cfg80211_tdls_oper_request(wdev->wiphy, dev, peer, oper, reason_code); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_TDLS_OPER); if (!hdr) { nlmsg_free(msg); return; } if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put_u8(msg, NL80211_ATTR_TDLS_OPERATION, oper) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, peer) || (reason_code > 0 && nla_put_u16(msg, NL80211_ATTR_REASON_CODE, reason_code))) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_tdls_oper_request); static int nl80211_netlink_notify(struct notifier_block * nb, unsigned long state, void *_notify) { struct netlink_notify *notify = _notify; struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; struct cfg80211_beacon_registration *reg, *tmp; if (state != NETLINK_URELEASE || notify->protocol != NETLINK_GENERIC) return NOTIFY_DONE; rcu_read_lock(); list_for_each_entry_rcu(rdev, &cfg80211_rdev_list, list) { struct cfg80211_sched_scan_request *sched_scan_req; list_for_each_entry_rcu(sched_scan_req, &rdev->sched_scan_req_list, list) { if (sched_scan_req->owner_nlportid == notify->portid) { sched_scan_req->nl_owner_dead = true; wiphy_work_queue(&rdev->wiphy, &rdev->sched_scan_stop_wk); } } list_for_each_entry_rcu(wdev, &rdev->wiphy.wdev_list, list) { cfg80211_mlme_unregister_socket(wdev, notify->portid); if (wdev->owner_nlportid == notify->portid) { wdev->nl_owner_dead = true; schedule_work(&rdev->destroy_work); } else if (wdev->conn_owner_nlportid == notify->portid) { schedule_work(&wdev->disconnect_wk); } cfg80211_release_pmsr(wdev, notify->portid); } spin_lock_bh(&rdev->beacon_registrations_lock); list_for_each_entry_safe(reg, tmp, &rdev->beacon_registrations, list) { if (reg->nlportid == notify->portid) { list_del(&reg->list); kfree(reg); break; } } spin_unlock_bh(&rdev->beacon_registrations_lock); } rcu_read_unlock(); /* * It is possible that the user space process that is controlling the * indoor setting disappeared, so notify the regulatory core. */ regulatory_netlink_notify(notify->portid); return NOTIFY_OK; } static struct notifier_block nl80211_netlink_notifier = { .notifier_call = nl80211_netlink_notify, }; void cfg80211_ft_event(struct net_device *netdev, struct cfg80211_ft_event_params *ft_event) { struct wiphy *wiphy = netdev->ieee80211_ptr->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; trace_cfg80211_ft_event(wiphy, netdev, ft_event); if (!ft_event->target_ap) return; msg = nlmsg_new(100 + ft_event->ies_len + ft_event->ric_ies_len, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_FT_EVENT); if (!hdr) goto out; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, ft_event->target_ap)) goto out; if (ft_event->ies && nla_put(msg, NL80211_ATTR_IE, ft_event->ies_len, ft_event->ies)) goto out; if (ft_event->ric_ies && nla_put(msg, NL80211_ATTR_IE_RIC, ft_event->ric_ies_len, ft_event->ric_ies)) goto out; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); return; out: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_ft_event); void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp) { struct cfg80211_registered_device *rdev; struct sk_buff *msg; void *hdr; u32 nlportid; rdev = wiphy_to_rdev(wdev->wiphy); if (!rdev->crit_proto_nlportid) return; nlportid = rdev->crit_proto_nlportid; rdev->crit_proto_nlportid = 0; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_CRIT_PROTOCOL_STOP); if (!hdr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD)) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, nlportid); return; nla_put_failure: nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_crit_proto_stopped); void nl80211_send_ap_stopped(struct wireless_dev *wdev, unsigned int link_id) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_STOP_AP); if (!hdr) goto out; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex) || nla_put_u64_64bit(msg, NL80211_ATTR_WDEV, wdev_id(wdev), NL80211_ATTR_PAD) || (wdev->valid_links && nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, link_id))) goto out; genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(wiphy), msg, 0, NL80211_MCGRP_MLME, GFP_KERNEL); return; out: nlmsg_free(msg); } int cfg80211_external_auth_request(struct net_device *dev, struct cfg80211_external_auth_params *params, gfp_t gfp) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct sk_buff *msg; void *hdr; if (!wdev->conn_owner_nlportid) return -EINVAL; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return -ENOMEM; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_EXTERNAL_AUTH); if (!hdr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, dev->ifindex) || nla_put_u32(msg, NL80211_ATTR_AKM_SUITES, params->key_mgmt_suite) || nla_put_u32(msg, NL80211_ATTR_EXTERNAL_AUTH_ACTION, params->action) || nla_put(msg, NL80211_ATTR_BSSID, ETH_ALEN, params->bssid) || nla_put(msg, NL80211_ATTR_SSID, params->ssid.ssid_len, params->ssid.ssid) || (!is_zero_ether_addr(params->mld_addr) && nla_put(msg, NL80211_ATTR_MLD_ADDR, ETH_ALEN, params->mld_addr))) goto nla_put_failure; genlmsg_end(msg, hdr); genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, wdev->conn_owner_nlportid); return 0; nla_put_failure: nlmsg_free(msg); return -ENOBUFS; } EXPORT_SYMBOL(cfg80211_external_auth_request); void cfg80211_update_owe_info_event(struct net_device *netdev, struct cfg80211_update_owe_info *owe_info, gfp_t gfp) { struct wiphy *wiphy = netdev->ieee80211_ptr->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct sk_buff *msg; void *hdr; trace_cfg80211_update_owe_info_event(wiphy, netdev, owe_info); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!msg) return; hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_UPDATE_OWE_INFO); if (!hdr) goto nla_put_failure; if (nla_put_u32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex) || nla_put(msg, NL80211_ATTR_MAC, ETH_ALEN, owe_info->peer)) goto nla_put_failure; if (!owe_info->ie_len || nla_put(msg, NL80211_ATTR_IE, owe_info->ie_len, owe_info->ie)) goto nla_put_failure; if (owe_info->assoc_link_id != -1) { if (nla_put_u8(msg, NL80211_ATTR_MLO_LINK_ID, owe_info->assoc_link_id)) goto nla_put_failure; if (!is_zero_ether_addr(owe_info->peer_mld_addr) && nla_put(msg, NL80211_ATTR_MLD_ADDR, ETH_ALEN, owe_info->peer_mld_addr)) goto nla_put_failure; } genlmsg_end(msg, hdr); genlmsg_multicast_netns(&nl80211_fam, wiphy_net(&rdev->wiphy), msg, 0, NL80211_MCGRP_MLME, gfp); return; nla_put_failure: genlmsg_cancel(msg, hdr); nlmsg_free(msg); } EXPORT_SYMBOL(cfg80211_update_owe_info_event); void cfg80211_schedule_channels_check(struct wireless_dev *wdev) { struct wiphy *wiphy = wdev->wiphy; /* Schedule channels check if NO_IR or DFS relaxations are supported */ if (wdev->iftype == NL80211_IFTYPE_STATION && (wiphy_ext_feature_isset(wiphy, NL80211_EXT_FEATURE_DFS_CONCURRENT) || (IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) && wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))) reg_check_channels(); } EXPORT_SYMBOL(cfg80211_schedule_channels_check); /* initialisation/exit functions */ int __init nl80211_init(void) { int err; err = genl_register_family(&nl80211_fam); if (err) return err; err = netlink_register_notifier(&nl80211_netlink_notifier); if (err) goto err_out; return 0; err_out: genl_unregister_family(&nl80211_fam); return err; } void nl80211_exit(void) { netlink_unregister_notifier(&nl80211_netlink_notifier); genl_unregister_family(&nl80211_fam); }
1 3 3 4 2 2 2 2 9 3 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 // SPDX-License-Identifier: GPL-2.0-only /* * VMware VMCI Driver * * Copyright (C) 2012 VMware, Inc. All rights reserved. */ #include <linux/vmw_vmci_defs.h> #include <linux/vmw_vmci_api.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/bug.h> #include "vmci_datagram.h" #include "vmci_resource.h" #include "vmci_context.h" #include "vmci_driver.h" #include "vmci_event.h" #include "vmci_route.h" /* * struct datagram_entry describes the datagram entity. It is used for datagram * entities created only on the host. */ struct datagram_entry { struct vmci_resource resource; u32 flags; bool run_delayed; vmci_datagram_recv_cb recv_cb; void *client_data; u32 priv_flags; }; struct delayed_datagram_info { struct datagram_entry *entry; struct work_struct work; bool in_dg_host_queue; /* msg and msg_payload must be together. */ struct vmci_datagram msg; u8 msg_payload[]; }; /* Number of in-flight host->host datagrams */ static atomic_t delayed_dg_host_queue_size = ATOMIC_INIT(0); /* * Create a datagram entry given a handle pointer. */ static int dg_create_handle(u32 resource_id, u32 flags, u32 priv_flags, vmci_datagram_recv_cb recv_cb, void *client_data, struct vmci_handle *out_handle) { int result; u32 context_id; struct vmci_handle handle; struct datagram_entry *entry; if ((flags & VMCI_FLAG_WELLKNOWN_DG_HND) != 0) return VMCI_ERROR_INVALID_ARGS; if ((flags & VMCI_FLAG_ANYCID_DG_HND) != 0) { context_id = VMCI_INVALID_ID; } else { context_id = vmci_get_context_id(); if (context_id == VMCI_INVALID_ID) return VMCI_ERROR_NO_RESOURCES; } handle = vmci_make_handle(context_id, resource_id); entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { pr_warn("Failed allocating memory for datagram entry\n"); return VMCI_ERROR_NO_MEM; } entry->run_delayed = (flags & VMCI_FLAG_DG_DELAYED_CB) ? true : false; entry->flags = flags; entry->recv_cb = recv_cb; entry->client_data = client_data; entry->priv_flags = priv_flags; /* Make datagram resource live. */ result = vmci_resource_add(&entry->resource, VMCI_RESOURCE_TYPE_DATAGRAM, handle); if (result != VMCI_SUCCESS) { pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d\n", handle.context, handle.resource, result); kfree(entry); return result; } *out_handle = vmci_resource_handle(&entry->resource); return VMCI_SUCCESS; } /* * Internal utility function with the same purpose as * vmci_datagram_get_priv_flags that also takes a context_id. */ static int vmci_datagram_get_priv_flags(u32 context_id, struct vmci_handle handle, u32 *priv_flags) { if (context_id == VMCI_INVALID_ID) return VMCI_ERROR_INVALID_ARGS; if (context_id == VMCI_HOST_CONTEXT_ID) { struct datagram_entry *src_entry; struct vmci_resource *resource; resource = vmci_resource_by_handle(handle, VMCI_RESOURCE_TYPE_DATAGRAM); if (!resource) return VMCI_ERROR_INVALID_ARGS; src_entry = container_of(resource, struct datagram_entry, resource); *priv_flags = src_entry->priv_flags; vmci_resource_put(resource); } else if (context_id == VMCI_HYPERVISOR_CONTEXT_ID) *priv_flags = VMCI_MAX_PRIVILEGE_FLAGS; else *priv_flags = vmci_context_get_priv_flags(context_id); return VMCI_SUCCESS; } /* * Calls the specified callback in a delayed context. */ static void dg_delayed_dispatch(struct work_struct *work) { struct delayed_datagram_info *dg_info = container_of(work, struct delayed_datagram_info, work); dg_info->entry->recv_cb(dg_info->entry->client_data, &dg_info->msg); vmci_resource_put(&dg_info->entry->resource); if (dg_info->in_dg_host_queue) atomic_dec(&delayed_dg_host_queue_size); kfree(dg_info); } /* * Dispatch datagram as a host, to the host, or other vm context. This * function cannot dispatch to hypervisor context handlers. This should * have been handled before we get here by vmci_datagram_dispatch. * Returns number of bytes sent on success, error code otherwise. */ static int dg_dispatch_as_host(u32 context_id, struct vmci_datagram *dg) { int retval; size_t dg_size; u32 src_priv_flags; dg_size = VMCI_DG_SIZE(dg); /* Host cannot send to the hypervisor. */ if (dg->dst.context == VMCI_HYPERVISOR_CONTEXT_ID) return VMCI_ERROR_DST_UNREACHABLE; /* Check that source handle matches sending context. */ if (dg->src.context != context_id) { pr_devel("Sender context (ID=0x%x) is not owner of src datagram entry (handle=0x%x:0x%x)\n", context_id, dg->src.context, dg->src.resource); return VMCI_ERROR_NO_ACCESS; } /* Get hold of privileges of sending endpoint. */ retval = vmci_datagram_get_priv_flags(context_id, dg->src, &src_priv_flags); if (retval != VMCI_SUCCESS) { pr_warn("Couldn't get privileges (handle=0x%x:0x%x)\n", dg->src.context, dg->src.resource); return retval; } /* Determine if we should route to host or guest destination. */ if (dg->dst.context == VMCI_HOST_CONTEXT_ID) { /* Route to host datagram entry. */ struct datagram_entry *dst_entry; struct vmci_resource *resource; if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID && dg->dst.resource == VMCI_EVENT_HANDLER) { return vmci_event_dispatch(dg); } resource = vmci_resource_by_handle(dg->dst, VMCI_RESOURCE_TYPE_DATAGRAM); if (!resource) { pr_devel("Sending to invalid destination (handle=0x%x:0x%x)\n", dg->dst.context, dg->dst.resource); return VMCI_ERROR_INVALID_RESOURCE; } dst_entry = container_of(resource, struct datagram_entry, resource); if (vmci_deny_interaction(src_priv_flags, dst_entry->priv_flags)) { vmci_resource_put(resource); return VMCI_ERROR_NO_ACCESS; } /* * If a VMCI datagram destined for the host is also sent by the * host, we always run it delayed. This ensures that no locks * are held when the datagram callback runs. */ if (dst_entry->run_delayed || dg->src.context == VMCI_HOST_CONTEXT_ID) { struct delayed_datagram_info *dg_info; if (atomic_add_return(1, &delayed_dg_host_queue_size) == VMCI_MAX_DELAYED_DG_HOST_QUEUE_SIZE) { atomic_dec(&delayed_dg_host_queue_size); vmci_resource_put(resource); return VMCI_ERROR_NO_MEM; } dg_info = kmalloc(sizeof(*dg_info) + (size_t) dg->payload_size, GFP_ATOMIC); if (!dg_info) { atomic_dec(&delayed_dg_host_queue_size); vmci_resource_put(resource); return VMCI_ERROR_NO_MEM; } dg_info->in_dg_host_queue = true; dg_info->entry = dst_entry; memcpy(&dg_info->msg, dg, dg_size); INIT_WORK(&dg_info->work, dg_delayed_dispatch); schedule_work(&dg_info->work); retval = VMCI_SUCCESS; } else { retval = dst_entry->recv_cb(dst_entry->client_data, dg); vmci_resource_put(resource); if (retval < VMCI_SUCCESS) return retval; } } else { /* Route to destination VM context. */ struct vmci_datagram *new_dg; if (context_id != dg->dst.context) { if (vmci_deny_interaction(src_priv_flags, vmci_context_get_priv_flags (dg->dst.context))) { return VMCI_ERROR_NO_ACCESS; } else if (VMCI_CONTEXT_IS_VM(context_id)) { /* * If the sending context is a VM, it * cannot reach another VM. */ pr_devel("Datagram communication between VMs not supported (src=0x%x, dst=0x%x)\n", context_id, dg->dst.context); return VMCI_ERROR_DST_UNREACHABLE; } } /* We make a copy to enqueue. */ new_dg = kmemdup(dg, dg_size, GFP_KERNEL); if (new_dg == NULL) return VMCI_ERROR_NO_MEM; retval = vmci_ctx_enqueue_datagram(dg->dst.context, new_dg); if (retval < VMCI_SUCCESS) { kfree(new_dg); return retval; } } /* * We currently truncate the size to signed 32 bits. This doesn't * matter for this handler as it only support 4Kb messages. */ return (int)dg_size; } /* * Dispatch datagram as a guest, down through the VMX and potentially to * the host. * Returns number of bytes sent on success, error code otherwise. */ static int dg_dispatch_as_guest(struct vmci_datagram *dg) { int retval; struct vmci_resource *resource; resource = vmci_resource_by_handle(dg->src, VMCI_RESOURCE_TYPE_DATAGRAM); if (!resource) return VMCI_ERROR_NO_HANDLE; retval = vmci_send_datagram(dg); vmci_resource_put(resource); return retval; } /* * Dispatch datagram. This will determine the routing for the datagram * and dispatch it accordingly. * Returns number of bytes sent on success, error code otherwise. */ int vmci_datagram_dispatch(u32 context_id, struct vmci_datagram *dg, bool from_guest) { int retval; enum vmci_route route; BUILD_BUG_ON(sizeof(struct vmci_datagram) != 24); if (dg->payload_size > VMCI_MAX_DG_SIZE || VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE) { pr_devel("Payload (size=%llu bytes) too big to send\n", (unsigned long long)dg->payload_size); return VMCI_ERROR_INVALID_ARGS; } retval = vmci_route(&dg->src, &dg->dst, from_guest, &route); if (retval < VMCI_SUCCESS) { pr_devel("Failed to route datagram (src=0x%x, dst=0x%x, err=%d)\n", dg->src.context, dg->dst.context, retval); return retval; } if (VMCI_ROUTE_AS_HOST == route) { if (VMCI_INVALID_ID == context_id) context_id = VMCI_HOST_CONTEXT_ID; return dg_dispatch_as_host(context_id, dg); } if (VMCI_ROUTE_AS_GUEST == route) return dg_dispatch_as_guest(dg); pr_warn("Unknown route (%d) for datagram\n", route); return VMCI_ERROR_DST_UNREACHABLE; } /* * Invoke the handler for the given datagram. This is intended to be * called only when acting as a guest and receiving a datagram from the * virtual device. */ int vmci_datagram_invoke_guest_handler(struct vmci_datagram *dg) { struct vmci_resource *resource; struct datagram_entry *dst_entry; resource = vmci_resource_by_handle(dg->dst, VMCI_RESOURCE_TYPE_DATAGRAM); if (!resource) { pr_devel("destination (handle=0x%x:0x%x) doesn't exist\n", dg->dst.context, dg->dst.resource); return VMCI_ERROR_NO_HANDLE; } dst_entry = container_of(resource, struct datagram_entry, resource); if (dst_entry->run_delayed) { struct delayed_datagram_info *dg_info; dg_info = kmalloc(sizeof(*dg_info) + (size_t)dg->payload_size, GFP_ATOMIC); if (!dg_info) { vmci_resource_put(resource); return VMCI_ERROR_NO_MEM; } dg_info->in_dg_host_queue = false; dg_info->entry = dst_entry; memcpy(&dg_info->msg, dg, VMCI_DG_SIZE(dg)); INIT_WORK(&dg_info->work, dg_delayed_dispatch); schedule_work(&dg_info->work); } else { dst_entry->recv_cb(dst_entry->client_data, dg); vmci_resource_put(resource); } return VMCI_SUCCESS; } /* * vmci_datagram_create_handle_priv() - Create host context datagram endpoint * @resource_id: The resource ID. * @flags: Datagram Flags. * @priv_flags: Privilege Flags. * @recv_cb: Callback when receiving datagrams. * @client_data: Pointer for a datagram_entry struct * @out_handle: vmci_handle that is populated as a result of this function. * * Creates a host context datagram endpoint and returns a handle to it. */ int vmci_datagram_create_handle_priv(u32 resource_id, u32 flags, u32 priv_flags, vmci_datagram_recv_cb recv_cb, void *client_data, struct vmci_handle *out_handle) { if (out_handle == NULL) return VMCI_ERROR_INVALID_ARGS; if (recv_cb == NULL) { pr_devel("Client callback needed when creating datagram\n"); return VMCI_ERROR_INVALID_ARGS; } if (priv_flags & ~VMCI_PRIVILEGE_ALL_FLAGS) return VMCI_ERROR_INVALID_ARGS; return dg_create_handle(resource_id, flags, priv_flags, recv_cb, client_data, out_handle); } EXPORT_SYMBOL_GPL(vmci_datagram_create_handle_priv); /* * vmci_datagram_create_handle() - Create host context datagram endpoint * @resource_id: Resource ID. * @flags: Datagram Flags. * @recv_cb: Callback when receiving datagrams. * @client_ata: Pointer for a datagram_entry struct * @out_handle: vmci_handle that is populated as a result of this function. * * Creates a host context datagram endpoint and returns a handle to * it. Same as vmci_datagram_create_handle_priv without the priviledge * flags argument. */ int vmci_datagram_create_handle(u32 resource_id, u32 flags, vmci_datagram_recv_cb recv_cb, void *client_data, struct vmci_handle *out_handle) { return vmci_datagram_create_handle_priv( resource_id, flags, VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS, recv_cb, client_data, out_handle); } EXPORT_SYMBOL_GPL(vmci_datagram_create_handle); /* * vmci_datagram_destroy_handle() - Destroys datagram handle * @handle: vmci_handle to be destroyed and reaped. * * Use this function to destroy any datagram handles created by * vmci_datagram_create_handle{,Priv} functions. */ int vmci_datagram_destroy_handle(struct vmci_handle handle) { struct datagram_entry *entry; struct vmci_resource *resource; resource = vmci_resource_by_handle(handle, VMCI_RESOURCE_TYPE_DATAGRAM); if (!resource) { pr_devel("Failed to destroy datagram (handle=0x%x:0x%x)\n", handle.context, handle.resource); return VMCI_ERROR_NOT_FOUND; } entry = container_of(resource, struct datagram_entry, resource); vmci_resource_put(&entry->resource); vmci_resource_remove(&entry->resource); kfree(entry); return VMCI_SUCCESS; } EXPORT_SYMBOL_GPL(vmci_datagram_destroy_handle); /* * vmci_datagram_send() - Send a datagram * @msg: The datagram to send. * * Sends the provided datagram on its merry way. */ int vmci_datagram_send(struct vmci_datagram *msg) { if (msg == NULL) return VMCI_ERROR_INVALID_ARGS; return vmci_datagram_dispatch(VMCI_INVALID_ID, msg, false); } EXPORT_SYMBOL_GPL(vmci_datagram_send);
2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 // SPDX-License-Identifier: GPL-2.0-only /* * MAC commands interface * * Copyright 2007-2012 Siemens AG * * Written by: * Sergey Lapin <slapin@ossfans.org> * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/ieee802154.h> #include <net/ieee802154_netdev.h> #include <net/cfg802154.h> #include <net/mac802154.h> #include "ieee802154_i.h" #include "driver-ops.h" static int mac802154_mlme_start_req(struct net_device *dev, struct ieee802154_addr *addr, u8 channel, u8 page, u8 bcn_ord, u8 sf_ord, u8 pan_coord, u8 blx, u8 coord_realign) { struct ieee802154_llsec_params params; int changed = 0; ASSERT_RTNL(); BUG_ON(addr->mode != IEEE802154_ADDR_SHORT); dev->ieee802154_ptr->pan_id = addr->pan_id; dev->ieee802154_ptr->short_addr = addr->short_addr; mac802154_dev_set_page_channel(dev, page, channel); params.pan_id = addr->pan_id; changed |= IEEE802154_LLSEC_PARAM_PAN_ID; params.hwaddr = ieee802154_devaddr_from_raw(dev->dev_addr); changed |= IEEE802154_LLSEC_PARAM_HWADDR; params.coord_hwaddr = params.hwaddr; changed |= IEEE802154_LLSEC_PARAM_COORD_HWADDR; params.coord_shortaddr = addr->short_addr; changed |= IEEE802154_LLSEC_PARAM_COORD_SHORTADDR; return mac802154_set_params(dev, &params, changed); } static int mac802154_set_mac_params(struct net_device *dev, const struct ieee802154_mac_params *params) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct ieee802154_local *local = sdata->local; struct wpan_dev *wpan_dev = &sdata->wpan_dev; int ret; ASSERT_RTNL(); /* PHY */ wpan_dev->wpan_phy->transmit_power = params->transmit_power; wpan_dev->wpan_phy->cca = params->cca; wpan_dev->wpan_phy->cca_ed_level = params->cca_ed_level; /* MAC */ wpan_dev->min_be = params->min_be; wpan_dev->max_be = params->max_be; wpan_dev->csma_retries = params->csma_retries; wpan_dev->frame_retries = params->frame_retries; wpan_dev->lbt = params->lbt; if (local->hw.phy->flags & WPAN_PHY_FLAG_TXPOWER) { ret = drv_set_tx_power(local, params->transmit_power); if (ret < 0) return ret; } if (local->hw.phy->flags & WPAN_PHY_FLAG_CCA_MODE) { ret = drv_set_cca_mode(local, &params->cca); if (ret < 0) return ret; } if (local->hw.phy->flags & WPAN_PHY_FLAG_CCA_ED_LEVEL) { ret = drv_set_cca_ed_level(local, params->cca_ed_level); if (ret < 0) return ret; } return 0; } static void mac802154_get_mac_params(struct net_device *dev, struct ieee802154_mac_params *params) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct wpan_dev *wpan_dev = &sdata->wpan_dev; ASSERT_RTNL(); /* PHY */ params->transmit_power = wpan_dev->wpan_phy->transmit_power; params->cca = wpan_dev->wpan_phy->cca; params->cca_ed_level = wpan_dev->wpan_phy->cca_ed_level; /* MAC */ params->min_be = wpan_dev->min_be; params->max_be = wpan_dev->max_be; params->csma_retries = wpan_dev->csma_retries; params->frame_retries = wpan_dev->frame_retries; params->lbt = wpan_dev->lbt; } static const struct ieee802154_llsec_ops mac802154_llsec_ops = { .get_params = mac802154_get_params, .set_params = mac802154_set_params, .add_key = mac802154_add_key, .del_key = mac802154_del_key, .add_dev = mac802154_add_dev, .del_dev = mac802154_del_dev, .add_devkey = mac802154_add_devkey, .del_devkey = mac802154_del_devkey, .add_seclevel = mac802154_add_seclevel, .del_seclevel = mac802154_del_seclevel, .lock_table = mac802154_lock_table, .get_table = mac802154_get_table, .unlock_table = mac802154_unlock_table, }; struct ieee802154_mlme_ops mac802154_mlme_wpan = { .start_req = mac802154_mlme_start_req, .llsec = &mac802154_llsec_ops, .set_mac_params = mac802154_set_mac_params, .get_mac_params = mac802154_get_mac_params, };
2 1 1 6 212 212 69 67 2 46649 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2012-2014 Andy Lutomirski <luto@amacapital.net> * * Based on the original implementation which is: * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE * Copyright 2003 Andi Kleen, SuSE Labs. * * Parts of the original code have been moved to arch/x86/vdso/vma.c * * This file implements vsyscall emulation. vsyscalls are a legacy ABI: * Userspace can request certain kernel services by calling fixed * addresses. This concept is problematic: * * - It interferes with ASLR. * - It's awkward to write code that lives in kernel addresses but is * callable by userspace at fixed addresses. * - The whole concept is impossible for 32-bit compat userspace. * - UML cannot easily virtualize a vsyscall. * * As of mid-2014, I believe that there is no new userspace code that * will use a vsyscall if the vDSO is present. I hope that there will * soon be no new userspace code that will ever use a vsyscall. * * The code in this file emulates vsyscalls when notified of a page * fault to a vsyscall address. */ #include <linux/kernel.h> #include <linux/timer.h> #include <linux/sched/signal.h> #include <linux/mm_types.h> #include <linux/syscalls.h> #include <linux/ratelimit.h> #include <asm/vsyscall.h> #include <asm/unistd.h> #include <asm/fixmap.h> #include <asm/traps.h> #include <asm/paravirt.h> #define CREATE_TRACE_POINTS #include "vsyscall_trace.h" static enum { EMULATE, XONLY, NONE } vsyscall_mode __ro_after_init = #ifdef CONFIG_LEGACY_VSYSCALL_NONE NONE; #elif defined(CONFIG_LEGACY_VSYSCALL_XONLY) XONLY; #else #error VSYSCALL config is broken #endif static int __init vsyscall_setup(char *str) { if (str) { if (!strcmp("emulate", str)) vsyscall_mode = EMULATE; else if (!strcmp("xonly", str)) vsyscall_mode = XONLY; else if (!strcmp("none", str)) vsyscall_mode = NONE; else return -EINVAL; return 0; } return -EINVAL; } early_param("vsyscall", vsyscall_setup); static void warn_bad_vsyscall(const char *level, struct pt_regs *regs, const char *message) { if (!show_unhandled_signals) return; printk_ratelimited("%s%s[%d] %s ip:%lx cs:%lx sp:%lx ax:%lx si:%lx di:%lx\n", level, current->comm, task_pid_nr(current), message, regs->ip, regs->cs, regs->sp, regs->ax, regs->si, regs->di); } static int addr_to_vsyscall_nr(unsigned long addr) { int nr; if ((addr & ~0xC00UL) != VSYSCALL_ADDR) return -EINVAL; nr = (addr & 0xC00UL) >> 10; if (nr >= 3) return -EINVAL; return nr; } static bool write_ok_or_segv(unsigned long ptr, size_t size) { /* * XXX: if access_ok, get_user, and put_user handled * sig_on_uaccess_err, this could go away. */ if (!access_ok((void __user *)ptr, size)) { struct thread_struct *thread = &current->thread; thread->error_code = X86_PF_USER | X86_PF_WRITE; thread->cr2 = ptr; thread->trap_nr = X86_TRAP_PF; force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)ptr); return false; } else { return true; } } bool emulate_vsyscall(unsigned long error_code, struct pt_regs *regs, unsigned long address) { struct task_struct *tsk; unsigned long caller; int vsyscall_nr, syscall_nr, tmp; int prev_sig_on_uaccess_err; long ret; unsigned long orig_dx; /* Write faults or kernel-privilege faults never get fixed up. */ if ((error_code & (X86_PF_WRITE | X86_PF_USER)) != X86_PF_USER) return false; if (!(error_code & X86_PF_INSTR)) { /* Failed vsyscall read */ if (vsyscall_mode == EMULATE) return false; /* * User code tried and failed to read the vsyscall page. */ warn_bad_vsyscall(KERN_INFO, regs, "vsyscall read attempt denied -- look up the vsyscall kernel parameter if you need a workaround"); return false; } /* * No point in checking CS -- the only way to get here is a user mode * trap to a high address, which means that we're in 64-bit user code. */ WARN_ON_ONCE(address != regs->ip); if (vsyscall_mode == NONE) { warn_bad_vsyscall(KERN_INFO, regs, "vsyscall attempted with vsyscall=none"); return false; } vsyscall_nr = addr_to_vsyscall_nr(address); trace_emulate_vsyscall(vsyscall_nr); if (vsyscall_nr < 0) { warn_bad_vsyscall(KERN_WARNING, regs, "misaligned vsyscall (exploit attempt or buggy program) -- look up the vsyscall kernel parameter if you need a workaround"); goto sigsegv; } if (get_user(caller, (unsigned long __user *)regs->sp) != 0) { warn_bad_vsyscall(KERN_WARNING, regs, "vsyscall with bad stack (exploit attempt?)"); goto sigsegv; } tsk = current; /* * Check for access_ok violations and find the syscall nr. * * NULL is a valid user pointer (in the access_ok sense) on 32-bit and * 64-bit, so we don't need to special-case it here. For all the * vsyscalls, NULL means "don't write anything" not "write it at * address 0". */ switch (vsyscall_nr) { case 0: if (!write_ok_or_segv(regs->di, sizeof(struct __kernel_old_timeval)) || !write_ok_or_segv(regs->si, sizeof(struct timezone))) { ret = -EFAULT; goto check_fault; } syscall_nr = __NR_gettimeofday; break; case 1: if (!write_ok_or_segv(regs->di, sizeof(__kernel_old_time_t))) { ret = -EFAULT; goto check_fault; } syscall_nr = __NR_time; break; case 2: if (!write_ok_or_segv(regs->di, sizeof(unsigned)) || !write_ok_or_segv(regs->si, sizeof(unsigned))) { ret = -EFAULT; goto check_fault; } syscall_nr = __NR_getcpu; break; } /* * Handle seccomp. regs->ip must be the original value. * See seccomp_send_sigsys and Documentation/userspace-api/seccomp_filter.rst. * * We could optimize the seccomp disabled case, but performance * here doesn't matter. */ regs->orig_ax = syscall_nr; regs->ax = -ENOSYS; tmp = secure_computing(); if ((!tmp && regs->orig_ax != syscall_nr) || regs->ip != address) { warn_bad_vsyscall(KERN_DEBUG, regs, "seccomp tried to change syscall nr or ip"); force_exit_sig(SIGSYS); return true; } regs->orig_ax = -1; if (tmp) goto do_ret; /* skip requested */ /* * With a real vsyscall, page faults cause SIGSEGV. We want to * preserve that behavior to make writing exploits harder. */ prev_sig_on_uaccess_err = current->thread.sig_on_uaccess_err; current->thread.sig_on_uaccess_err = 1; ret = -EFAULT; switch (vsyscall_nr) { case 0: /* this decodes regs->di and regs->si on its own */ ret = __x64_sys_gettimeofday(regs); break; case 1: /* this decodes regs->di on its own */ ret = __x64_sys_time(regs); break; case 2: /* while we could clobber regs->dx, we didn't in the past... */ orig_dx = regs->dx; regs->dx = 0; /* this decodes regs->di, regs->si and regs->dx on its own */ ret = __x64_sys_getcpu(regs); regs->dx = orig_dx; break; } current->thread.sig_on_uaccess_err = prev_sig_on_uaccess_err; check_fault: if (ret == -EFAULT) { /* Bad news -- userspace fed a bad pointer to a vsyscall. */ warn_bad_vsyscall(KERN_INFO, regs, "vsyscall fault (exploit attempt?)"); /* * If we failed to generate a signal for any reason, * generate one here. (This should be impossible.) */ if (WARN_ON_ONCE(!sigismember(&tsk->pending.signal, SIGBUS) && !sigismember(&tsk->pending.signal, SIGSEGV))) goto sigsegv; return true; /* Don't emulate the ret. */ } regs->ax = ret; do_ret: /* Emulate a ret instruction. */ regs->ip = caller; regs->sp += 8; return true; sigsegv: force_sig(SIGSEGV); return true; } /* * A pseudo VMA to allow ptrace access for the vsyscall page. This only * covers the 64bit vsyscall page now. 32bit has a real VMA now and does * not need special handling anymore: */ static const char *gate_vma_name(struct vm_area_struct *vma) { return "[vsyscall]"; } static const struct vm_operations_struct gate_vma_ops = { .name = gate_vma_name, }; static struct vm_area_struct gate_vma __ro_after_init = { .vm_start = VSYSCALL_ADDR, .vm_end = VSYSCALL_ADDR + PAGE_SIZE, .vm_page_prot = PAGE_READONLY_EXEC, .vm_flags = VM_READ | VM_EXEC, .vm_ops = &gate_vma_ops, }; struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { #ifdef CONFIG_COMPAT if (!mm || !test_bit(MM_CONTEXT_HAS_VSYSCALL, &mm->context.flags)) return NULL; #endif if (vsyscall_mode == NONE) return NULL; return &gate_vma; } int in_gate_area(struct mm_struct *mm, unsigned long addr) { struct vm_area_struct *vma = get_gate_vma(mm); if (!vma) return 0; return (addr >= vma->vm_start) && (addr < vma->vm_end); } /* * Use this when you have no reliable mm, typically from interrupt * context. It is less reliable than using a task's mm and may give * false positives. */ int in_gate_area_no_mm(unsigned long addr) { return vsyscall_mode != NONE && (addr & PAGE_MASK) == VSYSCALL_ADDR; } /* * The VSYSCALL page is the only user-accessible page in the kernel address * range. Normally, the kernel page tables can have _PAGE_USER clear, but * the tables covering VSYSCALL_ADDR need _PAGE_USER set if vsyscalls * are enabled. * * Some day we may create a "minimal" vsyscall mode in which we emulate * vsyscalls but leave the page not present. If so, we skip calling * this. */ void __init set_vsyscall_pgtable_user_bits(pgd_t *root) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset_pgd(root, VSYSCALL_ADDR); set_pgd(pgd, __pgd(pgd_val(*pgd) | _PAGE_USER)); p4d = p4d_offset(pgd, VSYSCALL_ADDR); #if CONFIG_PGTABLE_LEVELS >= 5 set_p4d(p4d, __p4d(p4d_val(*p4d) | _PAGE_USER)); #endif pud = pud_offset(p4d, VSYSCALL_ADDR); set_pud(pud, __pud(pud_val(*pud) | _PAGE_USER)); pmd = pmd_offset(pud, VSYSCALL_ADDR); set_pmd(pmd, __pmd(pmd_val(*pmd) | _PAGE_USER)); } void __init map_vsyscall(void) { extern char __vsyscall_page; unsigned long physaddr_vsyscall = __pa_symbol(&__vsyscall_page); /* * For full emulation, the page needs to exist for real. In * execute-only mode, there is no PTE at all backing the vsyscall * page. */ if (vsyscall_mode == EMULATE) { __set_fixmap(VSYSCALL_PAGE, physaddr_vsyscall, PAGE_KERNEL_VVAR); set_vsyscall_pgtable_user_bits(swapper_pg_dir); } if (vsyscall_mode == XONLY) vm_flags_init(&gate_vma, VM_EXEC); BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_PAGE) != (unsigned long)VSYSCALL_ADDR); }
1 1 13 13 13 13 13 13 13 13 13 13 13 8 16 12 16 22 22 10 12 22 25 1 1 1 22 22 6 16 12 29 23 2 1 5 2 1 2 28 28 6 22 13 13 12 28 28 12 32 32 34 32 1 5 1 1 3 22 1 1 1 34 34 32 32 12 32 13 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020, Microsoft Corporation. * * Author(s): Steve French <stfrench@microsoft.com> * David Howells <dhowells@redhat.com> */ /* #include <linux/module.h> #include <linux/nsproxy.h> #include <linux/slab.h> #include <linux/magic.h> #include <linux/security.h> #include <net/net_namespace.h> #ifdef CONFIG_CIFS_DFS_UPCALL #include "dfs_cache.h" #endif */ #include <linux/ctype.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/parser.h> #include <linux/utsname.h> #include "cifsfs.h" #include "cifspdu.h" #include "cifsglob.h" #include "cifsproto.h" #include "cifs_unicode.h" #include "cifs_debug.h" #include "cifs_fs_sb.h" #include "ntlmssp.h" #include "nterr.h" #include "rfc1002pdu.h" #include "fs_context.h" static DEFINE_MUTEX(cifs_mount_mutex); static const match_table_t cifs_smb_version_tokens = { { Smb_1, SMB1_VERSION_STRING }, { Smb_20, SMB20_VERSION_STRING}, { Smb_21, SMB21_VERSION_STRING }, { Smb_30, SMB30_VERSION_STRING }, { Smb_302, SMB302_VERSION_STRING }, { Smb_302, ALT_SMB302_VERSION_STRING }, { Smb_311, SMB311_VERSION_STRING }, { Smb_311, ALT_SMB311_VERSION_STRING }, { Smb_3any, SMB3ANY_VERSION_STRING }, { Smb_default, SMBDEFAULT_VERSION_STRING }, { Smb_version_err, NULL } }; static const match_table_t cifs_secflavor_tokens = { { Opt_sec_krb5, "krb5" }, { Opt_sec_krb5i, "krb5i" }, { Opt_sec_krb5p, "krb5p" }, { Opt_sec_ntlmsspi, "ntlmsspi" }, { Opt_sec_ntlmssp, "ntlmssp" }, { Opt_sec_ntlmv2, "nontlm" }, { Opt_sec_ntlmv2, "ntlmv2" }, { Opt_sec_ntlmv2i, "ntlmv2i" }, { Opt_sec_none, "none" }, { Opt_sec_err, NULL } }; const struct fs_parameter_spec smb3_fs_parameters[] = { /* Mount options that take no arguments */ fsparam_flag_no("user_xattr", Opt_user_xattr), fsparam_flag_no("forceuid", Opt_forceuid), fsparam_flag_no("multichannel", Opt_multichannel), fsparam_flag_no("forcegid", Opt_forcegid), fsparam_flag("noblocksend", Opt_noblocksend), fsparam_flag("noautotune", Opt_noautotune), fsparam_flag("nolease", Opt_nolease), fsparam_flag_no("hard", Opt_hard), fsparam_flag_no("soft", Opt_soft), fsparam_flag_no("perm", Opt_perm), fsparam_flag("nodelete", Opt_nodelete), fsparam_flag_no("mapposix", Opt_mapposix), fsparam_flag("mapchars", Opt_mapchars), fsparam_flag("nomapchars", Opt_nomapchars), fsparam_flag_no("sfu", Opt_sfu), fsparam_flag("nodfs", Opt_nodfs), fsparam_flag_no("posixpaths", Opt_posixpaths), fsparam_flag_no("unix", Opt_unix), fsparam_flag_no("linux", Opt_unix), fsparam_flag_no("posix", Opt_unix), fsparam_flag("nocase", Opt_nocase), fsparam_flag("ignorecase", Opt_nocase), fsparam_flag_no("brl", Opt_brl), fsparam_flag_no("handlecache", Opt_handlecache), fsparam_flag("forcemandatorylock", Opt_forcemandatorylock), fsparam_flag("forcemand", Opt_forcemandatorylock), fsparam_flag("setuidfromacl", Opt_setuidfromacl), fsparam_flag("idsfromsid", Opt_setuidfromacl), fsparam_flag_no("setuids", Opt_setuids), fsparam_flag_no("dynperm", Opt_dynperm), fsparam_flag_no("intr", Opt_intr), fsparam_flag_no("strictsync", Opt_strictsync), fsparam_flag_no("serverino", Opt_serverino), fsparam_flag("rwpidforward", Opt_rwpidforward), fsparam_flag("cifsacl", Opt_cifsacl), fsparam_flag_no("acl", Opt_acl), fsparam_flag("locallease", Opt_locallease), fsparam_flag("sign", Opt_sign), fsparam_flag("ignore_signature", Opt_ignore_signature), fsparam_flag("signloosely", Opt_ignore_signature), fsparam_flag("seal", Opt_seal), fsparam_flag("noac", Opt_noac), fsparam_flag("fsc", Opt_fsc), fsparam_flag("mfsymlinks", Opt_mfsymlinks), fsparam_flag("multiuser", Opt_multiuser), fsparam_flag("sloppy", Opt_sloppy), fsparam_flag("nosharesock", Opt_nosharesock), fsparam_flag_no("persistenthandles", Opt_persistent), fsparam_flag_no("resilienthandles", Opt_resilient), fsparam_flag_no("tcpnodelay", Opt_tcp_nodelay), fsparam_flag("nosparse", Opt_nosparse), fsparam_flag("domainauto", Opt_domainauto), fsparam_flag("rdma", Opt_rdma), fsparam_flag("modesid", Opt_modesid), fsparam_flag("modefromsid", Opt_modesid), fsparam_flag("rootfs", Opt_rootfs), fsparam_flag("compress", Opt_compress), fsparam_flag("witness", Opt_witness), /* Mount options which take numeric value */ fsparam_u32("backupuid", Opt_backupuid), fsparam_u32("backupgid", Opt_backupgid), fsparam_u32("uid", Opt_uid), fsparam_u32("cruid", Opt_cruid), fsparam_u32("gid", Opt_gid), fsparam_u32("file_mode", Opt_file_mode), fsparam_u32("dirmode", Opt_dirmode), fsparam_u32("dir_mode", Opt_dirmode), fsparam_u32("port", Opt_port), fsparam_u32("min_enc_offload", Opt_min_enc_offload), fsparam_u32("retrans", Opt_retrans), fsparam_u32("esize", Opt_min_enc_offload), fsparam_u32("bsize", Opt_blocksize), fsparam_u32("rasize", Opt_rasize), fsparam_u32("rsize", Opt_rsize), fsparam_u32("wsize", Opt_wsize), fsparam_u32("actimeo", Opt_actimeo), fsparam_u32("acdirmax", Opt_acdirmax), fsparam_u32("acregmax", Opt_acregmax), fsparam_u32("closetimeo", Opt_closetimeo), fsparam_u32("echo_interval", Opt_echo_interval), fsparam_u32("max_credits", Opt_max_credits), fsparam_u32("max_cached_dirs", Opt_max_cached_dirs), fsparam_u32("handletimeout", Opt_handletimeout), fsparam_u64("snapshot", Opt_snapshot), fsparam_u32("max_channels", Opt_max_channels), /* Mount options which take string value */ fsparam_string("source", Opt_source), fsparam_string("user", Opt_user), fsparam_string("username", Opt_user), fsparam_string("pass", Opt_pass), fsparam_string("password", Opt_pass), fsparam_string("ip", Opt_ip), fsparam_string("addr", Opt_ip), fsparam_string("domain", Opt_domain), fsparam_string("dom", Opt_domain), fsparam_string("srcaddr", Opt_srcaddr), fsparam_string("iocharset", Opt_iocharset), fsparam_string("netbiosname", Opt_netbiosname), fsparam_string("servern", Opt_servern), fsparam_string("ver", Opt_ver), fsparam_string("vers", Opt_vers), fsparam_string("sec", Opt_sec), fsparam_string("cache", Opt_cache), /* Arguments that should be ignored */ fsparam_flag("guest", Opt_ignore), fsparam_flag("noatime", Opt_ignore), fsparam_flag("relatime", Opt_ignore), fsparam_flag("_netdev", Opt_ignore), fsparam_flag_no("suid", Opt_ignore), fsparam_flag_no("exec", Opt_ignore), fsparam_flag_no("dev", Opt_ignore), fsparam_flag_no("mand", Opt_ignore), fsparam_flag_no("auto", Opt_ignore), fsparam_string("cred", Opt_ignore), fsparam_string("credentials", Opt_ignore), /* * UNC and prefixpath is now extracted from Opt_source * in the new mount API so we can just ignore them going forward. */ fsparam_string("unc", Opt_ignore), fsparam_string("prefixpath", Opt_ignore), {} }; static int cifs_parse_security_flavors(struct fs_context *fc, char *value, struct smb3_fs_context *ctx) { substring_t args[MAX_OPT_ARGS]; /* * With mount options, the last one should win. Reset any existing * settings back to default. */ ctx->sectype = Unspecified; ctx->sign = false; switch (match_token(value, cifs_secflavor_tokens, args)) { case Opt_sec_krb5p: cifs_errorf(fc, "sec=krb5p is not supported. Use sec=krb5,seal instead\n"); return 1; case Opt_sec_krb5i: ctx->sign = true; fallthrough; case Opt_sec_krb5: ctx->sectype = Kerberos; break; case Opt_sec_ntlmsspi: ctx->sign = true; fallthrough; case Opt_sec_ntlmssp: ctx->sectype = RawNTLMSSP; break; case Opt_sec_ntlmv2i: ctx->sign = true; fallthrough; case Opt_sec_ntlmv2: ctx->sectype = NTLMv2; break; case Opt_sec_none: ctx->nullauth = 1; kfree(ctx->username); ctx->username = NULL; break; default: cifs_errorf(fc, "bad security option: %s\n", value); return 1; } return 0; } static const match_table_t cifs_cacheflavor_tokens = { { Opt_cache_loose, "loose" }, { Opt_cache_strict, "strict" }, { Opt_cache_none, "none" }, { Opt_cache_ro, "ro" }, { Opt_cache_rw, "singleclient" }, { Opt_cache_err, NULL } }; static int cifs_parse_cache_flavor(struct fs_context *fc, char *value, struct smb3_fs_context *ctx) { substring_t args[MAX_OPT_ARGS]; switch (match_token(value, cifs_cacheflavor_tokens, args)) { case Opt_cache_loose: ctx->direct_io = false; ctx->strict_io = false; ctx->cache_ro = false; ctx->cache_rw = false; break; case Opt_cache_strict: ctx->direct_io = false; ctx->strict_io = true; ctx->cache_ro = false; ctx->cache_rw = false; break; case Opt_cache_none: ctx->direct_io = true; ctx->strict_io = false; ctx->cache_ro = false; ctx->cache_rw = false; break; case Opt_cache_ro: ctx->direct_io = false; ctx->strict_io = false; ctx->cache_ro = true; ctx->cache_rw = false; break; case Opt_cache_rw: ctx->direct_io = false; ctx->strict_io = false; ctx->cache_ro = false; ctx->cache_rw = true; break; default: cifs_errorf(fc, "bad cache= option: %s\n", value); return 1; } return 0; } #define DUP_CTX_STR(field) \ do { \ if (ctx->field) { \ new_ctx->field = kstrdup(ctx->field, GFP_ATOMIC); \ if (new_ctx->field == NULL) { \ smb3_cleanup_fs_context_contents(new_ctx); \ return -ENOMEM; \ } \ } \ } while (0) int smb3_fs_context_dup(struct smb3_fs_context *new_ctx, struct smb3_fs_context *ctx) { memcpy(new_ctx, ctx, sizeof(*ctx)); new_ctx->prepath = NULL; new_ctx->nodename = NULL; new_ctx->username = NULL; new_ctx->password = NULL; new_ctx->server_hostname = NULL; new_ctx->domainname = NULL; new_ctx->UNC = NULL; new_ctx->source = NULL; new_ctx->iocharset = NULL; new_ctx->leaf_fullpath = NULL; /* * Make sure to stay in sync with smb3_cleanup_fs_context_contents() */ DUP_CTX_STR(prepath); DUP_CTX_STR(username); DUP_CTX_STR(password); DUP_CTX_STR(server_hostname); DUP_CTX_STR(UNC); DUP_CTX_STR(source); DUP_CTX_STR(domainname); DUP_CTX_STR(nodename); DUP_CTX_STR(iocharset); DUP_CTX_STR(leaf_fullpath); return 0; } static int cifs_parse_smb_version(struct fs_context *fc, char *value, struct smb3_fs_context *ctx, bool is_smb3) { substring_t args[MAX_OPT_ARGS]; switch (match_token(value, cifs_smb_version_tokens, args)) { #ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY case Smb_1: if (disable_legacy_dialects) { cifs_errorf(fc, "mount with legacy dialect disabled\n"); return 1; } if (is_smb3) { cifs_errorf(fc, "vers=1.0 (cifs) not permitted when mounting with smb3\n"); return 1; } cifs_errorf(fc, "Use of the less secure dialect vers=1.0 is not recommended unless required for access to very old servers\n"); ctx->ops = &smb1_operations; ctx->vals = &smb1_values; break; case Smb_20: if (disable_legacy_dialects) { cifs_errorf(fc, "mount with legacy dialect disabled\n"); return 1; } if (is_smb3) { cifs_errorf(fc, "vers=2.0 not permitted when mounting with smb3\n"); return 1; } ctx->ops = &smb20_operations; ctx->vals = &smb20_values; break; #else case Smb_1: cifs_errorf(fc, "vers=1.0 (cifs) mount not permitted when legacy dialects disabled\n"); return 1; case Smb_20: cifs_errorf(fc, "vers=2.0 mount not permitted when legacy dialects disabled\n"); return 1; #endif /* CIFS_ALLOW_INSECURE_LEGACY */ case Smb_21: ctx->ops = &smb21_operations; ctx->vals = &smb21_values; break; case Smb_30: ctx->ops = &smb30_operations; ctx->vals = &smb30_values; break; case Smb_302: ctx->ops = &smb30_operations; /* currently identical with 3.0 */ ctx->vals = &smb302_values; break; case Smb_311: ctx->ops = &smb311_operations; ctx->vals = &smb311_values; break; case Smb_3any: ctx->ops = &smb30_operations; /* currently identical with 3.0 */ ctx->vals = &smb3any_values; break; case Smb_default: ctx->ops = &smb30_operations; ctx->vals = &smbdefault_values; break; default: cifs_errorf(fc, "Unknown vers= option specified: %s\n", value); return 1; } return 0; } int smb3_parse_opt(const char *options, const char *key, char **val) { int rc = -ENOENT; char *opts, *orig, *p; orig = opts = kstrdup(options, GFP_KERNEL); if (!opts) return -ENOMEM; while ((p = strsep(&opts, ","))) { char *nval; if (!*p) continue; if (strncasecmp(p, key, strlen(key))) continue; nval = strchr(p, '='); if (nval) { if (nval == p) continue; *nval++ = 0; *val = kstrdup(nval, GFP_KERNEL); rc = !*val ? -ENOMEM : 0; goto out; } } out: kfree(orig); return rc; } /* * Remove duplicate path delimiters. Windows is supposed to do that * but there are some bugs that prevent rename from working if there are * multiple delimiters. * * Return a sanitized duplicate of @path or NULL for empty prefix paths. * Otherwise, return ERR_PTR. * * @gfp indicates the GFP_* flags for kstrdup. * The caller is responsible for freeing the original. */ #define IS_DELIM(c) ((c) == '/' || (c) == '\\') char *cifs_sanitize_prepath(char *prepath, gfp_t gfp) { char *cursor1 = prepath, *cursor2 = prepath; char *s; /* skip all prepended delimiters */ while (IS_DELIM(*cursor1)) cursor1++; /* copy the first letter */ *cursor2 = *cursor1; /* copy the remainder... */ while (*(cursor1++)) { /* ... skipping all duplicated delimiters */ if (IS_DELIM(*cursor1) && IS_DELIM(*cursor2)) continue; *(++cursor2) = *cursor1; } /* if the last character is a delimiter, skip it */ if (IS_DELIM(*(cursor2 - 1))) cursor2--; *cursor2 = '\0'; if (!*prepath) return NULL; s = kstrdup(prepath, gfp); if (!s) return ERR_PTR(-ENOMEM); return s; } /* * Return full path based on the values of @ctx->{UNC,prepath}. * * It is assumed that both values were already parsed by smb3_parse_devname(). */ char *smb3_fs_context_fullpath(const struct smb3_fs_context *ctx, char dirsep) { size_t ulen, plen; char *s; ulen = strlen(ctx->UNC); plen = ctx->prepath ? strlen(ctx->prepath) + 1 : 0; s = kmalloc(ulen + plen + 1, GFP_KERNEL); if (!s) return ERR_PTR(-ENOMEM); memcpy(s, ctx->UNC, ulen); if (plen) { s[ulen] = dirsep; memcpy(s + ulen + 1, ctx->prepath, plen); } s[ulen + plen] = '\0'; convert_delimiter(s, dirsep); return s; } /* * Parse a devname into substrings and populate the ctx->UNC and ctx->prepath * fields with the result. Returns 0 on success and an error otherwise * (e.g. ENOMEM or EINVAL) */ int smb3_parse_devname(const char *devname, struct smb3_fs_context *ctx) { char *pos; const char *delims = "/\\"; size_t len; int rc; if (unlikely(!devname || !*devname)) { cifs_dbg(VFS, "Device name not specified\n"); return -EINVAL; } /* make sure we have a valid UNC double delimiter prefix */ len = strspn(devname, delims); if (len != 2) return -EINVAL; /* find delimiter between host and sharename */ pos = strpbrk(devname + 2, delims); if (!pos) return -EINVAL; /* record the server hostname */ kfree(ctx->server_hostname); ctx->server_hostname = kstrndup(devname + 2, pos - devname - 2, GFP_KERNEL); if (!ctx->server_hostname) return -ENOMEM; /* skip past delimiter */ ++pos; /* now go until next delimiter or end of string */ len = strcspn(pos, delims); if (!len) return -EINVAL; /* move "pos" up to delimiter or NULL */ pos += len; kfree(ctx->UNC); ctx->UNC = kstrndup(devname, pos - devname, GFP_KERNEL); if (!ctx->UNC) return -ENOMEM; convert_delimiter(ctx->UNC, '\\'); /* skip any delimiter */ if (*pos == '/' || *pos == '\\') pos++; kfree(ctx->prepath); ctx->prepath = NULL; /* If pos is NULL then no prepath */ if (!*pos) return 0; ctx->prepath = cifs_sanitize_prepath(pos, GFP_KERNEL); if (IS_ERR(ctx->prepath)) { rc = PTR_ERR(ctx->prepath); ctx->prepath = NULL; return rc; } return 0; } static void smb3_fs_context_free(struct fs_context *fc); static int smb3_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param); static int smb3_fs_context_parse_monolithic(struct fs_context *fc, void *data); static int smb3_get_tree(struct fs_context *fc); static int smb3_reconfigure(struct fs_context *fc); static const struct fs_context_operations smb3_fs_context_ops = { .free = smb3_fs_context_free, .parse_param = smb3_fs_context_parse_param, .parse_monolithic = smb3_fs_context_parse_monolithic, .get_tree = smb3_get_tree, .reconfigure = smb3_reconfigure, }; /* * Parse a monolithic block of data from sys_mount(). * smb3_fs_context_parse_monolithic - Parse key[=val][,key[=val]]* mount data * @ctx: The superblock configuration to fill in. * @data: The data to parse * * Parse a blob of data that's in key[=val][,key[=val]]* form. This can be * called from the ->monolithic_mount_data() fs_context operation. * * Returns 0 on success or the error returned by the ->parse_option() fs_context * operation on failure. */ static int smb3_fs_context_parse_monolithic(struct fs_context *fc, void *data) { char *options = data, *key; int ret = 0; if (!options) return 0; ret = security_sb_eat_lsm_opts(options, &fc->security); if (ret) return ret; /* BB Need to add support for sep= here TBD */ while ((key = strsep(&options, ",")) != NULL) { size_t len; char *value; if (*key == 0) break; /* Check if following character is the deliminator If yes, * we have encountered a double deliminator reset the NULL * character to the deliminator */ while (options && options[0] == ',') { len = strlen(key); strcpy(key + len, options); options = strchr(options, ','); if (options) *options++ = 0; } len = 0; value = strchr(key, '='); if (value) { if (value == key) continue; *value++ = 0; len = strlen(value); } ret = vfs_parse_fs_string(fc, key, value, len); if (ret < 0) break; } return ret; } /* * Validate the preparsed information in the config. */ static int smb3_fs_context_validate(struct fs_context *fc) { struct smb3_fs_context *ctx = smb3_fc2context(fc); if (ctx->rdma && ctx->vals->protocol_id < SMB30_PROT_ID) { cifs_errorf(fc, "SMB Direct requires Version >=3.0\n"); return -EOPNOTSUPP; } #ifndef CONFIG_KEYS /* Muliuser mounts require CONFIG_KEYS support */ if (ctx->multiuser) { cifs_errorf(fc, "Multiuser mounts require kernels with CONFIG_KEYS enabled\n"); return -1; } #endif if (ctx->got_version == false) pr_warn_once("No dialect specified on mount. Default has changed to a more secure dialect, SMB2.1 or later (e.g. SMB3.1.1), from CIFS (SMB1). To use the less secure SMB1 dialect to access old servers which do not support SMB3.1.1 (or even SMB3 or SMB2.1) specify vers=1.0 on mount.\n"); if (!ctx->UNC) { cifs_errorf(fc, "CIFS mount error: No usable UNC path provided in device string!\n"); return -1; } /* make sure UNC has a share name */ if (strlen(ctx->UNC) < 3 || !strchr(ctx->UNC + 3, '\\')) { cifs_errorf(fc, "Malformed UNC. Unable to find share name.\n"); return -ENOENT; } if (!ctx->got_ip) { int len; const char *slash; /* No ip= option specified? Try to get it from UNC */ /* Use the address part of the UNC. */ slash = strchr(&ctx->UNC[2], '\\'); len = slash - &ctx->UNC[2]; if (!cifs_convert_address((struct sockaddr *)&ctx->dstaddr, &ctx->UNC[2], len)) { pr_err("Unable to determine destination address\n"); return -EHOSTUNREACH; } } /* set the port that we got earlier */ cifs_set_port((struct sockaddr *)&ctx->dstaddr, ctx->port); if (ctx->override_uid && !ctx->uid_specified) { ctx->override_uid = 0; pr_notice("ignoring forceuid mount option specified with no uid= option\n"); } if (ctx->override_gid && !ctx->gid_specified) { ctx->override_gid = 0; pr_notice("ignoring forcegid mount option specified with no gid= option\n"); } return 0; } static int smb3_get_tree_common(struct fs_context *fc) { struct smb3_fs_context *ctx = smb3_fc2context(fc); struct dentry *root; int rc = 0; root = cifs_smb3_do_mount(fc->fs_type, 0, ctx); if (IS_ERR(root)) return PTR_ERR(root); fc->root = root; return rc; } /* * Create an SMB3 superblock from the parameters passed. */ static int smb3_get_tree(struct fs_context *fc) { int err = smb3_fs_context_validate(fc); int ret; if (err) return err; mutex_lock(&cifs_mount_mutex); ret = smb3_get_tree_common(fc); mutex_unlock(&cifs_mount_mutex); return ret; } static void smb3_fs_context_free(struct fs_context *fc) { struct smb3_fs_context *ctx = smb3_fc2context(fc); smb3_cleanup_fs_context(ctx); } /* * Compare the old and new proposed context during reconfigure * and check if the changes are compatible. */ static int smb3_verify_reconfigure_ctx(struct fs_context *fc, struct smb3_fs_context *new_ctx, struct smb3_fs_context *old_ctx) { if (new_ctx->posix_paths != old_ctx->posix_paths) { cifs_errorf(fc, "can not change posixpaths during remount\n"); return -EINVAL; } if (new_ctx->sectype != old_ctx->sectype) { cifs_errorf(fc, "can not change sec during remount\n"); return -EINVAL; } if (new_ctx->multiuser != old_ctx->multiuser) { cifs_errorf(fc, "can not change multiuser during remount\n"); return -EINVAL; } if (new_ctx->UNC && (!old_ctx->UNC || strcmp(new_ctx->UNC, old_ctx->UNC))) { cifs_errorf(fc, "can not change UNC during remount\n"); return -EINVAL; } if (new_ctx->username && (!old_ctx->username || strcmp(new_ctx->username, old_ctx->username))) { cifs_errorf(fc, "can not change username during remount\n"); return -EINVAL; } if (new_ctx->password && (!old_ctx->password || strcmp(new_ctx->password, old_ctx->password))) { cifs_errorf(fc, "can not change password during remount\n"); return -EINVAL; } if (new_ctx->domainname && (!old_ctx->domainname || strcmp(new_ctx->domainname, old_ctx->domainname))) { cifs_errorf(fc, "can not change domainname during remount\n"); return -EINVAL; } if (strcmp(new_ctx->workstation_name, old_ctx->workstation_name)) { cifs_errorf(fc, "can not change workstation_name during remount\n"); return -EINVAL; } if (new_ctx->nodename && (!old_ctx->nodename || strcmp(new_ctx->nodename, old_ctx->nodename))) { cifs_errorf(fc, "can not change nodename during remount\n"); return -EINVAL; } if (new_ctx->iocharset && (!old_ctx->iocharset || strcmp(new_ctx->iocharset, old_ctx->iocharset))) { cifs_errorf(fc, "can not change iocharset during remount\n"); return -EINVAL; } return 0; } #define STEAL_STRING(cifs_sb, ctx, field) \ do { \ kfree(ctx->field); \ ctx->field = cifs_sb->ctx->field; \ cifs_sb->ctx->field = NULL; \ } while (0) #define STEAL_STRING_SENSITIVE(cifs_sb, ctx, field) \ do { \ kfree_sensitive(ctx->field); \ ctx->field = cifs_sb->ctx->field; \ cifs_sb->ctx->field = NULL; \ } while (0) static int smb3_reconfigure(struct fs_context *fc) { struct smb3_fs_context *ctx = smb3_fc2context(fc); struct dentry *root = fc->root; struct cifs_sb_info *cifs_sb = CIFS_SB(root->d_sb); int rc; rc = smb3_verify_reconfigure_ctx(fc, ctx, cifs_sb->ctx); if (rc) return rc; /* * We can not change UNC/username/password/domainname/ * workstation_name/nodename/iocharset * during reconnect so ignore what we have in the new context and * just use what we already have in cifs_sb->ctx. */ STEAL_STRING(cifs_sb, ctx, UNC); STEAL_STRING(cifs_sb, ctx, source); STEAL_STRING(cifs_sb, ctx, username); STEAL_STRING_SENSITIVE(cifs_sb, ctx, password); STEAL_STRING(cifs_sb, ctx, domainname); STEAL_STRING(cifs_sb, ctx, nodename); STEAL_STRING(cifs_sb, ctx, iocharset); /* if rsize or wsize not passed in on remount, use previous values */ if (ctx->rsize == 0) ctx->rsize = cifs_sb->ctx->rsize; if (ctx->wsize == 0) ctx->wsize = cifs_sb->ctx->wsize; smb3_cleanup_fs_context_contents(cifs_sb->ctx); rc = smb3_fs_context_dup(cifs_sb->ctx, ctx); smb3_update_mnt_flags(cifs_sb); #ifdef CONFIG_CIFS_DFS_UPCALL if (!rc) rc = dfs_cache_remount_fs(cifs_sb); #endif return rc; } static int smb3_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result result; struct smb3_fs_context *ctx = smb3_fc2context(fc); int i, opt; bool is_smb3 = !strcmp(fc->fs_type->name, "smb3"); bool skip_parsing = false; kuid_t uid; kgid_t gid; cifs_dbg(FYI, "CIFS: parsing cifs mount option '%s'\n", param->key); /* * fs_parse can not handle string options with an empty value so * we will need special handling of them. */ if (param->type == fs_value_is_string && param->string[0] == 0) { if (!strcmp("pass", param->key) || !strcmp("password", param->key)) { skip_parsing = true; opt = Opt_pass; } else if (!strcmp("user", param->key) || !strcmp("username", param->key)) { skip_parsing = true; opt = Opt_user; } } if (!skip_parsing) { opt = fs_parse(fc, smb3_fs_parameters, param, &result); if (opt < 0) return ctx->sloppy ? 1 : opt; } switch (opt) { case Opt_compress: ctx->compression = UNKNOWN_TYPE; cifs_dbg(VFS, "SMB3 compression support is experimental\n"); break; case Opt_nodfs: ctx->nodfs = 1; break; case Opt_hard: if (result.negated) { if (ctx->retry == 1) cifs_dbg(VFS, "conflicting hard vs. soft mount options\n"); ctx->retry = 0; } else ctx->retry = 1; break; case Opt_soft: if (result.negated) ctx->retry = 1; else { if (ctx->retry == 1) cifs_dbg(VFS, "conflicting hard vs soft mount options\n"); ctx->retry = 0; } break; case Opt_mapposix: if (result.negated) ctx->remap = false; else { ctx->remap = true; ctx->sfu_remap = false; /* disable SFU mapping */ } break; case Opt_mapchars: if (result.negated) ctx->sfu_remap = false; else { ctx->sfu_remap = true; ctx->remap = false; /* disable SFM (mapposix) mapping */ } break; case Opt_user_xattr: if (result.negated) ctx->no_xattr = 1; else ctx->no_xattr = 0; break; case Opt_forceuid: if (result.negated) ctx->override_uid = 0; else ctx->override_uid = 1; break; case Opt_forcegid: if (result.negated) ctx->override_gid = 0; else ctx->override_gid = 1; break; case Opt_perm: if (result.negated) ctx->noperm = 1; else ctx->noperm = 0; break; case Opt_dynperm: if (result.negated) ctx->dynperm = 0; else ctx->dynperm = 1; break; case Opt_sfu: if (result.negated) ctx->sfu_emul = 0; else ctx->sfu_emul = 1; break; case Opt_noblocksend: ctx->noblocksnd = 1; break; case Opt_noautotune: ctx->noautotune = 1; break; case Opt_nolease: ctx->no_lease = 1; break; case Opt_nosparse: ctx->no_sparse = 1; break; case Opt_nodelete: ctx->nodelete = 1; break; case Opt_multichannel: if (result.negated) { ctx->multichannel = false; ctx->max_channels = 1; } else { ctx->multichannel = true; /* if number of channels not specified, default to 2 */ if (ctx->max_channels < 2) ctx->max_channels = 2; } break; case Opt_uid: uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(uid)) goto cifs_parse_mount_err; ctx->linux_uid = uid; ctx->uid_specified = true; break; case Opt_cruid: uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(uid)) goto cifs_parse_mount_err; ctx->cred_uid = uid; ctx->cruid_specified = true; break; case Opt_backupuid: uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(uid)) goto cifs_parse_mount_err; ctx->backupuid = uid; ctx->backupuid_specified = true; break; case Opt_backupgid: gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(gid)) goto cifs_parse_mount_err; ctx->backupgid = gid; ctx->backupgid_specified = true; break; case Opt_gid: gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(gid)) goto cifs_parse_mount_err; ctx->linux_gid = gid; ctx->gid_specified = true; break; case Opt_port: ctx->port = result.uint_32; break; case Opt_file_mode: ctx->file_mode = result.uint_32; break; case Opt_dirmode: ctx->dir_mode = result.uint_32; break; case Opt_min_enc_offload: ctx->min_offload = result.uint_32; break; case Opt_retrans: ctx->retrans = result.uint_32; break; case Opt_blocksize: /* * inode blocksize realistically should never need to be * less than 16K or greater than 16M and default is 1MB. * Note that small inode block sizes (e.g. 64K) can lead * to very poor performance of common tools like cp and scp */ if ((result.uint_32 < CIFS_MAX_MSGSIZE) || (result.uint_32 > (4 * SMB3_DEFAULT_IOSIZE))) { cifs_errorf(fc, "%s: Invalid blocksize\n", __func__); goto cifs_parse_mount_err; } ctx->bsize = result.uint_32; ctx->got_bsize = true; break; case Opt_rasize: /* * readahead size realistically should never need to be * less than 1M (CIFS_DEFAULT_IOSIZE) or greater than 32M * (perhaps an exception should be considered in the * for the case of a large number of channels * when multichannel is negotiated) since that would lead * to plenty of parallel I/O in flight to the server. * Note that smaller read ahead sizes would * hurt performance of common tools like cp and scp * which often trigger sequential i/o with read ahead */ if ((result.uint_32 > (8 * SMB3_DEFAULT_IOSIZE)) || (result.uint_32 < CIFS_DEFAULT_IOSIZE)) { cifs_errorf(fc, "%s: Invalid rasize %d vs. %d\n", __func__, result.uint_32, SMB3_DEFAULT_IOSIZE); goto cifs_parse_mount_err; } ctx->rasize = result.uint_32; break; case Opt_rsize: ctx->rsize = result.uint_32; ctx->got_rsize = true; break; case Opt_wsize: ctx->wsize = result.uint_32; ctx->got_wsize = true; if (ctx->wsize % PAGE_SIZE != 0) { ctx->wsize = round_down(ctx->wsize, PAGE_SIZE); if (ctx->wsize == 0) { ctx->wsize = PAGE_SIZE; cifs_dbg(VFS, "wsize too small, reset to minimum %ld\n", PAGE_SIZE); } else { cifs_dbg(VFS, "wsize rounded down to %d to multiple of PAGE_SIZE %ld\n", ctx->wsize, PAGE_SIZE); } } break; case Opt_acregmax: ctx->acregmax = HZ * result.uint_32; if (ctx->acregmax > CIFS_MAX_ACTIMEO) { cifs_errorf(fc, "acregmax too large\n"); goto cifs_parse_mount_err; } break; case Opt_acdirmax: ctx->acdirmax = HZ * result.uint_32; if (ctx->acdirmax > CIFS_MAX_ACTIMEO) { cifs_errorf(fc, "acdirmax too large\n"); goto cifs_parse_mount_err; } break; case Opt_actimeo: if (HZ * result.uint_32 > CIFS_MAX_ACTIMEO) { cifs_errorf(fc, "timeout too large\n"); goto cifs_parse_mount_err; } if ((ctx->acdirmax != CIFS_DEF_ACTIMEO) || (ctx->acregmax != CIFS_DEF_ACTIMEO)) { cifs_errorf(fc, "actimeo ignored since acregmax or acdirmax specified\n"); break; } ctx->acdirmax = ctx->acregmax = HZ * result.uint_32; break; case Opt_closetimeo: ctx->closetimeo = HZ * result.uint_32; if (ctx->closetimeo > SMB3_MAX_DCLOSETIMEO) { cifs_errorf(fc, "closetimeo too large\n"); goto cifs_parse_mount_err; } break; case Opt_echo_interval: ctx->echo_interval = result.uint_32; break; case Opt_snapshot: ctx->snapshot_time = result.uint_64; break; case Opt_max_credits: if (result.uint_32 < 20 || result.uint_32 > 60000) { cifs_errorf(fc, "%s: Invalid max_credits value\n", __func__); goto cifs_parse_mount_err; } ctx->max_credits = result.uint_32; break; case Opt_max_channels: if (result.uint_32 < 1 || result.uint_32 > CIFS_MAX_CHANNELS) { cifs_errorf(fc, "%s: Invalid max_channels value, needs to be 1-%d\n", __func__, CIFS_MAX_CHANNELS); goto cifs_parse_mount_err; } ctx->max_channels = result.uint_32; /* If more than one channel requested ... they want multichan */ if (result.uint_32 > 1) ctx->multichannel = true; break; case Opt_max_cached_dirs: if (result.uint_32 < 1) { cifs_errorf(fc, "%s: Invalid max_cached_dirs, needs to be 1 or more\n", __func__); goto cifs_parse_mount_err; } ctx->max_cached_dirs = result.uint_32; break; case Opt_handletimeout: ctx->handle_timeout = result.uint_32; if (ctx->handle_timeout > SMB3_MAX_HANDLE_TIMEOUT) { cifs_errorf(fc, "Invalid handle cache timeout, longer than 16 minutes\n"); goto cifs_parse_mount_err; } break; case Opt_source: kfree(ctx->UNC); ctx->UNC = NULL; switch (smb3_parse_devname(param->string, ctx)) { case 0: break; case -ENOMEM: cifs_errorf(fc, "Unable to allocate memory for devname\n"); goto cifs_parse_mount_err; case -EINVAL: cifs_errorf(fc, "Malformed UNC in devname\n"); goto cifs_parse_mount_err; default: cifs_errorf(fc, "Unknown error parsing devname\n"); goto cifs_parse_mount_err; } ctx->source = smb3_fs_context_fullpath(ctx, '/'); if (IS_ERR(ctx->source)) { ctx->source = NULL; cifs_errorf(fc, "OOM when copying UNC string\n"); goto cifs_parse_mount_err; } fc->source = kstrdup(ctx->source, GFP_KERNEL); if (fc->source == NULL) { cifs_errorf(fc, "OOM when copying UNC string\n"); goto cifs_parse_mount_err; } break; case Opt_user: kfree(ctx->username); ctx->username = NULL; if (ctx->nullauth) break; if (strlen(param->string) == 0) { /* null user, ie. anonymous authentication */ ctx->nullauth = 1; break; } if (strnlen(param->string, CIFS_MAX_USERNAME_LEN) > CIFS_MAX_USERNAME_LEN) { pr_warn("username too long\n"); goto cifs_parse_mount_err; } ctx->username = kstrdup(param->string, GFP_KERNEL); if (ctx->username == NULL) { cifs_errorf(fc, "OOM when copying username string\n"); goto cifs_parse_mount_err; } break; case Opt_pass: kfree_sensitive(ctx->password); ctx->password = NULL; if (strlen(param->string) == 0) break; ctx->password = kstrdup(param->string, GFP_KERNEL); if (ctx->password == NULL) { cifs_errorf(fc, "OOM when copying password string\n"); goto cifs_parse_mount_err; } break; case Opt_ip: if (strlen(param->string) == 0) { ctx->got_ip = false; break; } if (!cifs_convert_address((struct sockaddr *)&ctx->dstaddr, param->string, strlen(param->string))) { pr_err("bad ip= option (%s)\n", param->string); goto cifs_parse_mount_err; } ctx->got_ip = true; break; case Opt_domain: if (strnlen(param->string, CIFS_MAX_DOMAINNAME_LEN) == CIFS_MAX_DOMAINNAME_LEN) { pr_warn("domain name too long\n"); goto cifs_parse_mount_err; } kfree(ctx->domainname); ctx->domainname = kstrdup(param->string, GFP_KERNEL); if (ctx->domainname == NULL) { cifs_errorf(fc, "OOM when copying domainname string\n"); goto cifs_parse_mount_err; } cifs_dbg(FYI, "Domain name set\n"); break; case Opt_srcaddr: if (!cifs_convert_address( (struct sockaddr *)&ctx->srcaddr, param->string, strlen(param->string))) { pr_warn("Could not parse srcaddr: %s\n", param->string); goto cifs_parse_mount_err; } break; case Opt_iocharset: if (strnlen(param->string, 1024) >= 65) { pr_warn("iocharset name too long\n"); goto cifs_parse_mount_err; } if (strncasecmp(param->string, "default", 7) != 0) { kfree(ctx->iocharset); ctx->iocharset = kstrdup(param->string, GFP_KERNEL); if (ctx->iocharset == NULL) { cifs_errorf(fc, "OOM when copying iocharset string\n"); goto cifs_parse_mount_err; } } /* if iocharset not set then load_nls_default * is used by caller */ cifs_dbg(FYI, "iocharset set to %s\n", ctx->iocharset); break; case Opt_netbiosname: memset(ctx->source_rfc1001_name, 0x20, RFC1001_NAME_LEN); /* * FIXME: are there cases in which a comma can * be valid in workstation netbios name (and * need special handling)? */ for (i = 0; i < RFC1001_NAME_LEN; i++) { /* don't ucase netbiosname for user */ if (param->string[i] == 0) break; ctx->source_rfc1001_name[i] = param->string[i]; } /* The string has 16th byte zero still from * set at top of the function */ if (i == RFC1001_NAME_LEN && param->string[i] != 0) pr_warn("netbiosname longer than 15 truncated\n"); break; case Opt_servern: /* last byte, type, is 0x20 for servr type */ memset(ctx->target_rfc1001_name, 0x20, RFC1001_NAME_LEN_WITH_NULL); /* * BB are there cases in which a comma can be valid in this * workstation netbios name (and need special handling)? */ /* user or mount helper must uppercase the netbios name */ for (i = 0; i < 15; i++) { if (param->string[i] == 0) break; ctx->target_rfc1001_name[i] = param->string[i]; } /* The string has 16th byte zero still from set at top of function */ if (i == RFC1001_NAME_LEN && param->string[i] != 0) pr_warn("server netbiosname longer than 15 truncated\n"); break; case Opt_ver: /* version of mount userspace tools, not dialect */ /* If interface changes in mount.cifs bump to new ver */ if (strncasecmp(param->string, "1", 1) == 0) { if (strlen(param->string) > 1) { pr_warn("Bad mount helper ver=%s. Did you want SMB1 (CIFS) dialect and mean to type vers=1.0 instead?\n", param->string); goto cifs_parse_mount_err; } /* This is the default */ break; } /* For all other value, error */ pr_warn("Invalid mount helper version specified\n"); goto cifs_parse_mount_err; case Opt_vers: /* protocol version (dialect) */ if (cifs_parse_smb_version(fc, param->string, ctx, is_smb3) != 0) goto cifs_parse_mount_err; ctx->got_version = true; break; case Opt_sec: if (cifs_parse_security_flavors(fc, param->string, ctx) != 0) goto cifs_parse_mount_err; break; case Opt_cache: if (cifs_parse_cache_flavor(fc, param->string, ctx) != 0) goto cifs_parse_mount_err; break; case Opt_witness: #ifndef CONFIG_CIFS_SWN_UPCALL cifs_errorf(fc, "Witness support needs CONFIG_CIFS_SWN_UPCALL config option\n"); goto cifs_parse_mount_err; #endif ctx->witness = true; pr_warn_once("Witness protocol support is experimental\n"); break; case Opt_rootfs: #ifndef CONFIG_CIFS_ROOT cifs_dbg(VFS, "rootfs support requires CONFIG_CIFS_ROOT config option\n"); goto cifs_parse_mount_err; #endif ctx->rootfs = true; break; case Opt_posixpaths: if (result.negated) ctx->posix_paths = 0; else ctx->posix_paths = 1; break; case Opt_unix: if (result.negated) { if (ctx->linux_ext == 1) pr_warn_once("conflicting posix mount options specified\n"); ctx->linux_ext = 0; ctx->no_linux_ext = 1; } else { if (ctx->no_linux_ext == 1) pr_warn_once("conflicting posix mount options specified\n"); ctx->linux_ext = 1; ctx->no_linux_ext = 0; } break; case Opt_nocase: ctx->nocase = 1; break; case Opt_brl: if (result.negated) { /* * turn off mandatory locking in mode * if remote locking is turned off since the * local vfs will do advisory */ if (ctx->file_mode == (S_IALLUGO & ~(S_ISUID | S_IXGRP))) ctx->file_mode = S_IALLUGO; ctx->nobrl = 1; } else ctx->nobrl = 0; break; case Opt_handlecache: if (result.negated) ctx->nohandlecache = 1; else ctx->nohandlecache = 0; break; case Opt_forcemandatorylock: ctx->mand_lock = 1; break; case Opt_setuids: ctx->setuids = result.negated; break; case Opt_intr: ctx->intr = !result.negated; break; case Opt_setuidfromacl: ctx->setuidfromacl = 1; break; case Opt_strictsync: ctx->nostrictsync = result.negated; break; case Opt_serverino: ctx->server_ino = !result.negated; break; case Opt_rwpidforward: ctx->rwpidforward = 1; break; case Opt_modesid: ctx->mode_ace = 1; break; case Opt_cifsacl: ctx->cifs_acl = !result.negated; break; case Opt_acl: ctx->no_psx_acl = result.negated; break; case Opt_locallease: ctx->local_lease = 1; break; case Opt_sign: ctx->sign = true; break; case Opt_ignore_signature: ctx->sign = true; ctx->ignore_signature = true; break; case Opt_seal: /* we do not do the following in secFlags because seal * is a per tree connection (mount) not a per socket * or per-smb connection option in the protocol * vol->secFlg |= CIFSSEC_MUST_SEAL; */ ctx->seal = 1; break; case Opt_noac: pr_warn("Mount option noac not supported. Instead set /proc/fs/cifs/LookupCacheEnabled to 0\n"); break; case Opt_fsc: #ifndef CONFIG_CIFS_FSCACHE cifs_errorf(fc, "FS-Cache support needs CONFIG_CIFS_FSCACHE kernel config option set\n"); goto cifs_parse_mount_err; #endif ctx->fsc = true; break; case Opt_mfsymlinks: ctx->mfsymlinks = true; break; case Opt_multiuser: ctx->multiuser = true; break; case Opt_sloppy: ctx->sloppy = true; break; case Opt_nosharesock: ctx->nosharesock = true; break; case Opt_persistent: if (result.negated) { ctx->nopersistent = true; if (ctx->persistent) { cifs_errorf(fc, "persistenthandles mount options conflict\n"); goto cifs_parse_mount_err; } } else { ctx->persistent = true; if ((ctx->nopersistent) || (ctx->resilient)) { cifs_errorf(fc, "persistenthandles mount options conflict\n"); goto cifs_parse_mount_err; } } break; case Opt_resilient: if (result.negated) { ctx->resilient = false; /* already the default */ } else { ctx->resilient = true; if (ctx->persistent) { cifs_errorf(fc, "persistenthandles mount options conflict\n"); goto cifs_parse_mount_err; } } break; case Opt_tcp_nodelay: /* tcp nodelay should not usually be needed since we CORK/UNCORK the socket */ if (result.negated) ctx->sockopt_tcp_nodelay = false; else ctx->sockopt_tcp_nodelay = true; break; case Opt_domainauto: ctx->domainauto = true; break; case Opt_rdma: ctx->rdma = true; break; } /* case Opt_ignore: - is ignored as expected ... */ return 0; cifs_parse_mount_err: kfree_sensitive(ctx->password); ctx->password = NULL; return -EINVAL; } int smb3_init_fs_context(struct fs_context *fc) { struct smb3_fs_context *ctx; char *nodename = utsname()->nodename; int i; ctx = kzalloc(sizeof(struct smb3_fs_context), GFP_KERNEL); if (unlikely(!ctx)) return -ENOMEM; strscpy(ctx->workstation_name, nodename, sizeof(ctx->workstation_name)); /* * does not have to be perfect mapping since field is * informational, only used for servers that do not support * port 445 and it can be overridden at mount time */ memset(ctx->source_rfc1001_name, 0x20, RFC1001_NAME_LEN); for (i = 0; i < strnlen(nodename, RFC1001_NAME_LEN); i++) ctx->source_rfc1001_name[i] = toupper(nodename[i]); ctx->source_rfc1001_name[RFC1001_NAME_LEN] = 0; /* * null target name indicates to use *SMBSERVR default called name * if we end up sending RFC1001 session initialize */ ctx->target_rfc1001_name[0] = 0; ctx->cred_uid = current_uid(); ctx->linux_uid = current_uid(); ctx->linux_gid = current_gid(); /* By default 4MB read ahead size, 1MB block size */ ctx->bsize = CIFS_DEFAULT_IOSIZE; /* can improve cp performance significantly */ ctx->rasize = 0; /* 0 = use default (ie negotiated rsize) for read ahead pages */ /* * default to SFM style remapping of seven reserved characters * unless user overrides it or we negotiate CIFS POSIX where * it is unnecessary. Can not simultaneously use more than one mapping * since then readdir could list files that open could not open */ ctx->remap = true; /* default to only allowing write access to owner of the mount */ ctx->dir_mode = ctx->file_mode = S_IRUGO | S_IXUGO | S_IWUSR; /* ctx->retry default is 0 (i.e. "soft" limited retry not hard retry) */ /* default is always to request posix paths. */ ctx->posix_paths = 1; /* default to using server inode numbers where available */ ctx->server_ino = 1; /* default is to use strict cifs caching semantics */ ctx->strict_io = true; ctx->acregmax = CIFS_DEF_ACTIMEO; ctx->acdirmax = CIFS_DEF_ACTIMEO; ctx->closetimeo = SMB3_DEF_DCLOSETIMEO; ctx->max_cached_dirs = MAX_CACHED_FIDS; /* Most clients set timeout to 0, allows server to use its default */ ctx->handle_timeout = 0; /* See MS-SMB2 spec section 2.2.14.2.12 */ /* offer SMB2.1 and later (SMB3 etc). Secure and widely accepted */ ctx->ops = &smb30_operations; ctx->vals = &smbdefault_values; ctx->echo_interval = SMB_ECHO_INTERVAL_DEFAULT; /* default to no multichannel (single server connection) */ ctx->multichannel = false; ctx->max_channels = 1; ctx->backupuid_specified = false; /* no backup intent for a user */ ctx->backupgid_specified = false; /* no backup intent for a group */ ctx->retrans = 1; /* * short int override_uid = -1; * short int override_gid = -1; * char *nodename = strdup(utsname()->nodename); * struct sockaddr *dstaddr = (struct sockaddr *)&vol->dstaddr; */ fc->fs_private = ctx; fc->ops = &smb3_fs_context_ops; return 0; } void smb3_cleanup_fs_context_contents(struct smb3_fs_context *ctx) { if (ctx == NULL) return; /* * Make sure this stays in sync with smb3_fs_context_dup() */ kfree(ctx->username); ctx->username = NULL; kfree_sensitive(ctx->password); ctx->password = NULL; kfree(ctx->server_hostname); ctx->server_hostname = NULL; kfree(ctx->UNC); ctx->UNC = NULL; kfree(ctx->source); ctx->source = NULL; kfree(ctx->domainname); ctx->domainname = NULL; kfree(ctx->nodename); ctx->nodename = NULL; kfree(ctx->iocharset); ctx->iocharset = NULL; kfree(ctx->prepath); ctx->prepath = NULL; kfree(ctx->leaf_fullpath); ctx->leaf_fullpath = NULL; } void smb3_cleanup_fs_context(struct smb3_fs_context *ctx) { if (!ctx) return; smb3_cleanup_fs_context_contents(ctx); kfree(ctx); } void smb3_update_mnt_flags(struct cifs_sb_info *cifs_sb) { struct smb3_fs_context *ctx = cifs_sb->ctx; if (ctx->nodfs) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_NO_DFS; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_NO_DFS; if (ctx->noperm) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_NO_PERM; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_NO_PERM; if (ctx->setuids) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_SET_UID; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SET_UID; if (ctx->setuidfromacl) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_UID_FROM_ACL; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_UID_FROM_ACL; if (ctx->server_ino) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_SERVER_INUM; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; if (ctx->remap) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_MAP_SFM_CHR; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_MAP_SFM_CHR; if (ctx->sfu_remap) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_MAP_SPECIAL_CHR; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_MAP_SPECIAL_CHR; if (ctx->no_xattr) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_NO_XATTR; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_NO_XATTR; if (ctx->sfu_emul) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_UNX_EMUL; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_UNX_EMUL; if (ctx->nobrl) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_NO_BRL; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_NO_BRL; if (ctx->nohandlecache) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_NO_HANDLE_CACHE; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_NO_HANDLE_CACHE; if (ctx->nostrictsync) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_NOSSYNC; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_NOSSYNC; if (ctx->mand_lock) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_NOPOSIXBRL; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_NOPOSIXBRL; if (ctx->rwpidforward) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_RWPIDFORWARD; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_RWPIDFORWARD; if (ctx->mode_ace) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_MODE_FROM_SID; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_MODE_FROM_SID; if (ctx->cifs_acl) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_CIFS_ACL; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_CIFS_ACL; if (ctx->backupuid_specified) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_CIFS_BACKUPUID; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_CIFS_BACKUPUID; if (ctx->backupgid_specified) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_CIFS_BACKUPGID; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_CIFS_BACKUPGID; if (ctx->override_uid) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_OVERR_UID; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_OVERR_UID; if (ctx->override_gid) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_OVERR_GID; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_OVERR_GID; if (ctx->dynperm) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_DYNPERM; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_DYNPERM; if (ctx->fsc) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_FSCACHE; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_FSCACHE; if (ctx->multiuser) cifs_sb->mnt_cifs_flags |= (CIFS_MOUNT_MULTIUSER | CIFS_MOUNT_NO_PERM); else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_MULTIUSER; if (ctx->strict_io) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_STRICT_IO; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_STRICT_IO; if (ctx->direct_io) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_DIRECT_IO; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_DIRECT_IO; if (ctx->mfsymlinks) cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_MF_SYMLINKS; else cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_MF_SYMLINKS; if (ctx->mfsymlinks) { if (ctx->sfu_emul) { /* * Our SFU ("Services for Unix" emulation does not allow * creating symlinks but does allow reading existing SFU * symlinks (it does allow both creating and reading SFU * style mknod and FIFOs though). When "mfsymlinks" and * "sfu" are both enabled at the same time, it allows * reading both types of symlinks, but will only create * them with mfsymlinks format. This allows better * Apple compatibility (probably better for Samba too) * while still recognizing old Windows style symlinks. */ cifs_dbg(VFS, "mount options mfsymlinks and sfu both enabled\n"); } } cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SHUTDOWN; return; }
1098 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 // SPDX-License-Identifier: GPL-2.0 /* * Implement the default iomap interfaces * * (C) Copyright 2004 Linus Torvalds */ #include <linux/pci.h> #include <linux/io.h> #include <linux/kmsan-checks.h> #include <linux/export.h> /* * Read/write from/to an (offsettable) iomem cookie. It might be a PIO * access or a MMIO access, these functions don't care. The info is * encoded in the hardware mapping set up by the mapping functions * (or the cookie itself, depending on implementation and hw). * * The generic routines don't assume any hardware mappings, and just * encode the PIO/MMIO as part of the cookie. They coldly assume that * the MMIO IO mappings are not in the low address range. * * Architectures for which this is not true can't use this generic * implementation and should do their own copy. */ #ifndef HAVE_ARCH_PIO_SIZE /* * We encode the physical PIO addresses (0-0xffff) into the * pointer by offsetting them with a constant (0x10000) and * assuming that all the low addresses are always PIO. That means * we can do some sanity checks on the low bits, and don't * need to just take things for granted. */ #define PIO_OFFSET 0x10000UL #define PIO_MASK 0x0ffffUL #define PIO_RESERVED 0x40000UL #endif static void bad_io_access(unsigned long port, const char *access) { static int count = 10; if (count) { count--; WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access); } } /* * Ugly macros are a way of life. */ #define IO_COND(addr, is_pio, is_mmio) do { \ unsigned long port = (unsigned long __force)addr; \ if (port >= PIO_RESERVED) { \ is_mmio; \ } else if (port > PIO_OFFSET) { \ port &= PIO_MASK; \ is_pio; \ } else \ bad_io_access(port, #is_pio ); \ } while (0) #ifndef pio_read16be #define pio_read16be(port) swab16(inw(port)) #define pio_read32be(port) swab32(inl(port)) #endif #ifndef mmio_read16be #define mmio_read16be(addr) swab16(readw(addr)) #define mmio_read32be(addr) swab32(readl(addr)) #define mmio_read64be(addr) swab64(readq(addr)) #endif /* * Here and below, we apply __no_kmsan_checks to functions reading data from * hardware, to ensure that KMSAN marks their return values as initialized. */ __no_kmsan_checks unsigned int ioread8(const void __iomem *addr) { IO_COND(addr, return inb(port), return readb(addr)); return 0xff; } __no_kmsan_checks unsigned int ioread16(const void __iomem *addr) { IO_COND(addr, return inw(port), return readw(addr)); return 0xffff; } __no_kmsan_checks unsigned int ioread16be(const void __iomem *addr) { IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr)); return 0xffff; } __no_kmsan_checks unsigned int ioread32(const void __iomem *addr) { IO_COND(addr, return inl(port), return readl(addr)); return 0xffffffff; } __no_kmsan_checks unsigned int ioread32be(const void __iomem *addr) { IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr)); return 0xffffffff; } EXPORT_SYMBOL(ioread8); EXPORT_SYMBOL(ioread16); EXPORT_SYMBOL(ioread16be); EXPORT_SYMBOL(ioread32); EXPORT_SYMBOL(ioread32be); #ifdef readq static u64 pio_read64_lo_hi(unsigned long port) { u64 lo, hi; lo = inl(port); hi = inl(port + sizeof(u32)); return lo | (hi << 32); } static u64 pio_read64_hi_lo(unsigned long port) { u64 lo, hi; hi = inl(port + sizeof(u32)); lo = inl(port); return lo | (hi << 32); } static u64 pio_read64be_lo_hi(unsigned long port) { u64 lo, hi; lo = pio_read32be(port + sizeof(u32)); hi = pio_read32be(port); return lo | (hi << 32); } static u64 pio_read64be_hi_lo(unsigned long port) { u64 lo, hi; hi = pio_read32be(port); lo = pio_read32be(port + sizeof(u32)); return lo | (hi << 32); } __no_kmsan_checks u64 ioread64_lo_hi(const void __iomem *addr) { IO_COND(addr, return pio_read64_lo_hi(port), return readq(addr)); return 0xffffffffffffffffULL; } __no_kmsan_checks u64 ioread64_hi_lo(const void __iomem *addr) { IO_COND(addr, return pio_read64_hi_lo(port), return readq(addr)); return 0xffffffffffffffffULL; } __no_kmsan_checks u64 ioread64be_lo_hi(const void __iomem *addr) { IO_COND(addr, return pio_read64be_lo_hi(port), return mmio_read64be(addr)); return 0xffffffffffffffffULL; } __no_kmsan_checks u64 ioread64be_hi_lo(const void __iomem *addr) { IO_COND(addr, return pio_read64be_hi_lo(port), return mmio_read64be(addr)); return 0xffffffffffffffffULL; } EXPORT_SYMBOL(ioread64_lo_hi); EXPORT_SYMBOL(ioread64_hi_lo); EXPORT_SYMBOL(ioread64be_lo_hi); EXPORT_SYMBOL(ioread64be_hi_lo); #endif /* readq */ #ifndef pio_write16be #define pio_write16be(val,port) outw(swab16(val),port) #define pio_write32be(val,port) outl(swab32(val),port) #endif #ifndef mmio_write16be #define mmio_write16be(val,port) writew(swab16(val),port) #define mmio_write32be(val,port) writel(swab32(val),port) #define mmio_write64be(val,port) writeq(swab64(val),port) #endif void iowrite8(u8 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, outb(val,port), writeb(val, addr)); } void iowrite16(u16 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, outw(val,port), writew(val, addr)); } void iowrite16be(u16 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr)); } void iowrite32(u32 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, outl(val,port), writel(val, addr)); } void iowrite32be(u32 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr)); } EXPORT_SYMBOL(iowrite8); EXPORT_SYMBOL(iowrite16); EXPORT_SYMBOL(iowrite16be); EXPORT_SYMBOL(iowrite32); EXPORT_SYMBOL(iowrite32be); #ifdef writeq static void pio_write64_lo_hi(u64 val, unsigned long port) { outl(val, port); outl(val >> 32, port + sizeof(u32)); } static void pio_write64_hi_lo(u64 val, unsigned long port) { outl(val >> 32, port + sizeof(u32)); outl(val, port); } static void pio_write64be_lo_hi(u64 val, unsigned long port) { pio_write32be(val, port + sizeof(u32)); pio_write32be(val >> 32, port); } static void pio_write64be_hi_lo(u64 val, unsigned long port) { pio_write32be(val >> 32, port); pio_write32be(val, port + sizeof(u32)); } void iowrite64_lo_hi(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64_lo_hi(val, port), writeq(val, addr)); } void iowrite64_hi_lo(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64_hi_lo(val, port), writeq(val, addr)); } void iowrite64be_lo_hi(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64be_lo_hi(val, port), mmio_write64be(val, addr)); } void iowrite64be_hi_lo(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64be_hi_lo(val, port), mmio_write64be(val, addr)); } EXPORT_SYMBOL(iowrite64_lo_hi); EXPORT_SYMBOL(iowrite64_hi_lo); EXPORT_SYMBOL(iowrite64be_lo_hi); EXPORT_SYMBOL(iowrite64be_hi_lo); #endif /* readq */ /* * These are the "repeat MMIO read/write" functions. * Note the "__raw" accesses, since we don't want to * convert to CPU byte order. We write in "IO byte * order" (we also don't have IO barriers). */ #ifndef mmio_insb static inline void mmio_insb(const void __iomem *addr, u8 *dst, int count) { while (--count >= 0) { u8 data = __raw_readb(addr); *dst = data; dst++; } } static inline void mmio_insw(const void __iomem *addr, u16 *dst, int count) { while (--count >= 0) { u16 data = __raw_readw(addr); *dst = data; dst++; } } static inline void mmio_insl(const void __iomem *addr, u32 *dst, int count) { while (--count >= 0) { u32 data = __raw_readl(addr); *dst = data; dst++; } } #endif #ifndef mmio_outsb static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) { while (--count >= 0) { __raw_writeb(*src, addr); src++; } } static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) { while (--count >= 0) { __raw_writew(*src, addr); src++; } } static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) { while (--count >= 0) { __raw_writel(*src, addr); src++; } } #endif void ioread8_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count)); /* KMSAN must treat values read from devices as initialized. */ kmsan_unpoison_memory(dst, count); } void ioread16_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count)); /* KMSAN must treat values read from devices as initialized. */ kmsan_unpoison_memory(dst, count * 2); } void ioread32_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count)); /* KMSAN must treat values read from devices as initialized. */ kmsan_unpoison_memory(dst, count * 4); } EXPORT_SYMBOL(ioread8_rep); EXPORT_SYMBOL(ioread16_rep); EXPORT_SYMBOL(ioread32_rep); void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(src, count); IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count)); } void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(src, count * 2); IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count)); } void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(src, count * 4); IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count)); } EXPORT_SYMBOL(iowrite8_rep); EXPORT_SYMBOL(iowrite16_rep); EXPORT_SYMBOL(iowrite32_rep); #ifdef CONFIG_HAS_IOPORT_MAP /* Create a virtual mapping cookie for an IO port range */ void __iomem *ioport_map(unsigned long port, unsigned int nr) { if (port > PIO_MASK) return NULL; return (void __iomem *) (unsigned long) (port + PIO_OFFSET); } void ioport_unmap(void __iomem *addr) { /* Nothing to do */ } EXPORT_SYMBOL(ioport_map); EXPORT_SYMBOL(ioport_unmap); #endif /* CONFIG_HAS_IOPORT_MAP */ #ifdef CONFIG_PCI /* Hide the details if this is a MMIO or PIO address space and just do what * you expect in the correct way. */ void pci_iounmap(struct pci_dev *dev, void __iomem * addr) { IO_COND(addr, /* nothing */, iounmap(addr)); } EXPORT_SYMBOL(pci_iounmap); #endif /* CONFIG_PCI */
1 25 24 24 10 24 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 // SPDX-License-Identifier: GPL-2.0 /* * fs/partitions/amiga.c * * Code extracted from drivers/block/genhd.c * * Copyright (C) 1991-1998 Linus Torvalds * Re-organised Feb 1998 Russell King */ #define pr_fmt(fmt) fmt #include <linux/types.h> #include <linux/mm_types.h> #include <linux/overflow.h> #include <linux/affs_hardblocks.h> #include "check.h" /* magic offsets in partition DosEnvVec */ #define NR_HD 3 #define NR_SECT 5 #define LO_CYL 9 #define HI_CYL 10 static __inline__ u32 checksum_block(__be32 *m, int size) { u32 sum = 0; while (size--) sum += be32_to_cpu(*m++); return sum; } int amiga_partition(struct parsed_partitions *state) { Sector sect; unsigned char *data; struct RigidDiskBlock *rdb; struct PartitionBlock *pb; u64 start_sect, nr_sects; sector_t blk, end_sect; u32 cylblk; /* rdb_CylBlocks = nr_heads*sect_per_track */ u32 nr_hd, nr_sect, lo_cyl, hi_cyl; int part, res = 0; unsigned int blksize = 1; /* Multiplier for disk block size */ int slot = 1; for (blk = 0; ; blk++, put_dev_sector(sect)) { if (blk == RDB_ALLOCATION_LIMIT) goto rdb_done; data = read_part_sector(state, blk, &sect); if (!data) { pr_err("Dev %s: unable to read RDB block %llu\n", state->disk->disk_name, blk); res = -1; goto rdb_done; } if (*(__be32 *)data != cpu_to_be32(IDNAME_RIGIDDISK)) continue; rdb = (struct RigidDiskBlock *)data; if (checksum_block((__be32 *)data, be32_to_cpu(rdb->rdb_SummedLongs) & 0x7F) == 0) break; /* Try again with 0xdc..0xdf zeroed, Windows might have * trashed it. */ *(__be32 *)(data+0xdc) = 0; if (checksum_block((__be32 *)data, be32_to_cpu(rdb->rdb_SummedLongs) & 0x7F)==0) { pr_err("Trashed word at 0xd0 in block %llu ignored in checksum calculation\n", blk); break; } pr_err("Dev %s: RDB in block %llu has bad checksum\n", state->disk->disk_name, blk); } /* blksize is blocks per 512 byte standard block */ blksize = be32_to_cpu( rdb->rdb_BlockBytes ) / 512; { char tmp[7 + 10 + 1 + 1]; /* Be more informative */ snprintf(tmp, sizeof(tmp), " RDSK (%d)", blksize * 512); strlcat(state->pp_buf, tmp, PAGE_SIZE); } blk = be32_to_cpu(rdb->rdb_PartitionList); put_dev_sector(sect); for (part = 1; (s32) blk>0 && part<=16; part++, put_dev_sector(sect)) { /* Read in terms partition table understands */ if (check_mul_overflow(blk, (sector_t) blksize, &blk)) { pr_err("Dev %s: overflow calculating partition block %llu! Skipping partitions %u and beyond\n", state->disk->disk_name, blk, part); break; } data = read_part_sector(state, blk, &sect); if (!data) { pr_err("Dev %s: unable to read partition block %llu\n", state->disk->disk_name, blk); res = -1; goto rdb_done; } pb = (struct PartitionBlock *)data; blk = be32_to_cpu(pb->pb_Next); if (pb->pb_ID != cpu_to_be32(IDNAME_PARTITION)) continue; if (checksum_block((__be32 *)pb, be32_to_cpu(pb->pb_SummedLongs) & 0x7F) != 0 ) continue; /* RDB gives us more than enough rope to hang ourselves with, * many times over (2^128 bytes if all fields max out). * Some careful checks are in order, so check for potential * overflows. * We are multiplying four 32 bit numbers to one sector_t! */ nr_hd = be32_to_cpu(pb->pb_Environment[NR_HD]); nr_sect = be32_to_cpu(pb->pb_Environment[NR_SECT]); /* CylBlocks is total number of blocks per cylinder */ if (check_mul_overflow(nr_hd, nr_sect, &cylblk)) { pr_err("Dev %s: heads*sects %u overflows u32, skipping partition!\n", state->disk->disk_name, cylblk); continue; } /* check for consistency with RDB defined CylBlocks */ if (cylblk > be32_to_cpu(rdb->rdb_CylBlocks)) { pr_warn("Dev %s: cylblk %u > rdb_CylBlocks %u!\n", state->disk->disk_name, cylblk, be32_to_cpu(rdb->rdb_CylBlocks)); } /* RDB allows for variable logical block size - * normalize to 512 byte blocks and check result. */ if (check_mul_overflow(cylblk, blksize, &cylblk)) { pr_err("Dev %s: partition %u bytes per cyl. overflows u32, skipping partition!\n", state->disk->disk_name, part); continue; } /* Calculate partition start and end. Limit of 32 bit on cylblk * guarantees no overflow occurs if LBD support is enabled. */ lo_cyl = be32_to_cpu(pb->pb_Environment[LO_CYL]); start_sect = ((u64) lo_cyl * cylblk); hi_cyl = be32_to_cpu(pb->pb_Environment[HI_CYL]); nr_sects = (((u64) hi_cyl - lo_cyl + 1) * cylblk); if (!nr_sects) continue; /* Warn user if partition end overflows u32 (AmigaDOS limit) */ if ((start_sect + nr_sects) > UINT_MAX) { pr_warn("Dev %s: partition %u (%llu-%llu) needs 64 bit device support!\n", state->disk->disk_name, part, start_sect, start_sect + nr_sects); } if (check_add_overflow(start_sect, nr_sects, &end_sect)) { pr_err("Dev %s: partition %u (%llu-%llu) needs LBD device support, skipping partition!\n", state->disk->disk_name, part, start_sect, end_sect); continue; } /* Tell Kernel about it */ put_partition(state,slot++,start_sect,nr_sects); { /* Be even more informative to aid mounting */ char dostype[4]; char tmp[42]; __be32 *dt = (__be32 *)dostype; *dt = pb->pb_Environment[16]; if (dostype[3] < ' ') snprintf(tmp, sizeof(tmp), " (%c%c%c^%c)", dostype[0], dostype[1], dostype[2], dostype[3] + '@' ); else snprintf(tmp, sizeof(tmp), " (%c%c%c%c)", dostype[0], dostype[1], dostype[2], dostype[3]); strlcat(state->pp_buf, tmp, PAGE_SIZE); snprintf(tmp, sizeof(tmp), "(res %d spb %d)", be32_to_cpu(pb->pb_Environment[6]), be32_to_cpu(pb->pb_Environment[4])); strlcat(state->pp_buf, tmp, PAGE_SIZE); } res = 1; } strlcat(state->pp_buf, "\n", PAGE_SIZE); rdb_done: return res; }
1 76 930 75 4 75 534 534 220 9 13 113 85 4 9 9 15 69 4 9 9 14 78 550 536 108 115 1 551 379 56 381 56 107 5 33 32 7 2 3 320 372 60 16 17 120 119 1 17 17 17 17 33 2 2 107 2 107 107 2 2 2 2 8 6 2 8 12 12 5 41 41 8 8 158 27 483 66 45 896 11 4 2 1 13 7 3 7 7 14 14 15 14 1 106 75 75 12 5 5 4 2 2 1 2 8 9 4 4 4 1 2 2 1 3 3 2 7 2 2 2 1 3 142 15 402 402 402 401 1 4 17 314 69 374 8 330 52 379 381 56 56 1 27 56 56 56 2 56 1 56 55 1 2 54 53 52 72 72 58 56 2 4 15 12 9 6 338 6 3 599 3 595 495 2 1 1 1 2 2 1 1 11 9 11 11 68 68 9 4 4 3 2 1 2 1 2 10 4 5 5 1 10 1 2 7 7 66 13 79 79 79 25 6 3 3 19 6 54 23 12 27 25 1 2 2 23 2 23 5 3 1 1 8 5 1 14 48 2 2 31 14 2 13 40 1 1 1 1 15 15 1 23 1 6 3 96 32 4 7 29 3 113 113 1 13 25 3 32 3 22 7 1 1 86 112 2 1 110 4 112 113 9 6 2 1 6 1 6 1 5 1 5 1 6 5 1 1 26 25 1 164 164 10 2 2 5 8 127 17 137 2 7 2 7 14 124 11 25 144 1 1 9 137 22 22 10 6 6 6 3 6 4 2 6 6 1 6 531 532 477 102 2 533 3 3 3 74 2 74 535 1 535 509 48 245 61 241 3 22 10 10 77 22 5 31 14 1 22 7 1 1 4 82 83 83 83 82 101 101 2 82 83 4 4 1 1 1 14 10 9 3 2 2 1 3 4 4 10 6 8 10 4 4 4 13 10 7 7 2 2 2 17 10 7 7 4 3 321 356 59 13 13 13 1 2 1 1 53 52 50 2 509 509 29 1 2 25 22 3 2 2 2 1 1 489 2 490 9 435 46 431 426 10 2 429 10 146 324 135 77 120 1 119 118 119 1 370 26 323 2 4 2 24 24 11 4 2 1 8 12 3 3 1 2 2 3 4 3 141 117 23 140 23 139 135 129 1 1 2 140 145 26 158 63 3 2 21 19 17 77 77 56 21 138 136 1 1 1 136 3 6 2 5 4 4 4 4 4 4 4 4 4 4 4 7 7 3 5 5 4 1 3 1 5 5 4 13 6 5 3 4 9 5 1 1 2 2 2 2 8 2 4 6 6 22 1 11 10 9 12 140 29 4 105 1 30 3 1 2 2 197 4 1 1 186 5 2 145 44 2 1 1 1 16 165 2 3 1 175 172 2 3 172 1 2 170 4 13 9 151 157 14 144 1 2 1 3 1 2 1 140 1 141 3 1 136 1 137 29 106 30 102 103 102 103 4 102 103 25 2 23 9 4 10 7 6 2 3 5 2 2 2 2 38 3 38 7 6 6 2 2 9 5 2 2 2 1 1 15 15 58 57 37 18 4 21 12 9 21 18 3 21 20 2 3 5 5 15 12 3 10 5 15 1 1 15 10 5 5 5 10 15 10 5 15 2 4 6 2 4 10 10 10 5 10 12 61 2 31 26 12 44 53 1 49 1 2 44 2 46 1 2 1 5 13 2 7 13 12 18 1 16 14 5 21 20 16 5 5 21 12 6 3 13 1 1 5 10 15 14 1 10 5 6 29 14 78 1 77 7 8 63 63 16 61 32 47 16 3 2 1 15 2 11 9 2 2 5 4 6 2 4 6 2 2 36 36 9 7 7 20 2 7 15 10 11 13 25 25 2 3 1 1 18 18 1 17 12 6 7 7 14 13 14 19 14 18 1 27 3 1 23 5 19 1 6 11 1 11 7 7 7 1 9 10 8 7 2 5 4 3 5 1 7 10 7 3 8 2 6 4 9 19 11 2 5 5 1 2 16 9 7 15 7 4 4 5 4 3 3 11 11 5 1 59 12 3 2 52 2 3 2 47 17 3 3 29 26 43 1 39 53 39 52 1 39 1 1 37 43 41 18 5 1 4 4 2 9 5 5 1 12 6 2 1 5 6 2 7 5 3 3 3 64 3 1 60 6 53 2 13 53 1 46 6 10 43 2 41 13 5 3 3 2 3 2 2 3 3 30 9 21 27 8 4 15 8 6 11 8 3 6 3 6 6 6 5 4 3 3 2 6 3 3 4 2 2 11 6 1 3 3 1 1 9 9 5 35 35 9 102 102 1961 1960 366 14 190 100 1 1 220 175 52 52 52 2 2 8 2 2 95 96 96 2 13 87 78 96 8 98 98 1039 1039 1036 5 5 163 36 36 36 101 105 104 9 106 190 68 190 3 12 190 189 189 190 190 204 17 189 1 190 190 190 189 101 190 190 172 190 190 34 1 61 61 24 2 2 53 53 21 21 97 98 10 10 10 1 5 5 4 9 3 8 8 4 4 190 190 190 190 190 7 7 7 318 59 22 101 15 3 32 7 892 895 865 32 895 44 2 1 3 318 32 4 4 57 59 57 12 12 22 21 22 21 7 7 7 7 1 101 101 4 2 2 4 15 15 14 3 3 2 2 7 32 33 33 2 4 6 892 891 349 348 7 891 894 1058 1055 1 2 1 1 74 4 69 232 50 108 108 26 23 49 7 1 15 12 145 145 140 1 2 16 2 2 1 1 1 9 1 2 2 5 6 13 28 98 7 2 52 19 3 19 24 17 10 9 7 2 20 20 18 20 2 20 20 18 13 13 20 2 2 20 1 1 1 20 2 2 2 20 18 18 20 289 255 34 16 4 20 20 21 19 478 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2009 Patrick McHardy <kaber@trash.net> * * Development of this code funded by Astaro AG (http://www.astaro.com/) */ #include <linux/module.h> #include <linux/init.h> #include <linux/list.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/vmalloc.h> #include <linux/rhashtable.h> #include <linux/audit.h> #include <linux/netfilter.h> #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_flow_table.h> #include <net/netfilter/nf_tables_core.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_offload.h> #include <net/net_namespace.h> #include <net/sock.h> #define NFT_MODULE_AUTOLOAD_LIMIT (MODULE_NAME_LEN - sizeof("nft-expr-255-")) #define NFT_SET_MAX_ANONLEN 16 unsigned int nf_tables_net_id __read_mostly; static LIST_HEAD(nf_tables_expressions); static LIST_HEAD(nf_tables_objects); static LIST_HEAD(nf_tables_flowtables); static LIST_HEAD(nf_tables_destroy_list); static LIST_HEAD(nf_tables_gc_list); static DEFINE_SPINLOCK(nf_tables_destroy_list_lock); static DEFINE_SPINLOCK(nf_tables_gc_list_lock); enum { NFT_VALIDATE_SKIP = 0, NFT_VALIDATE_NEED, NFT_VALIDATE_DO, }; static struct rhltable nft_objname_ht; static u32 nft_chain_hash(const void *data, u32 len, u32 seed); static u32 nft_chain_hash_obj(const void *data, u32 len, u32 seed); static int nft_chain_hash_cmp(struct rhashtable_compare_arg *, const void *); static u32 nft_objname_hash(const void *data, u32 len, u32 seed); static u32 nft_objname_hash_obj(const void *data, u32 len, u32 seed); static int nft_objname_hash_cmp(struct rhashtable_compare_arg *, const void *); static const struct rhashtable_params nft_chain_ht_params = { .head_offset = offsetof(struct nft_chain, rhlhead), .key_offset = offsetof(struct nft_chain, name), .hashfn = nft_chain_hash, .obj_hashfn = nft_chain_hash_obj, .obj_cmpfn = nft_chain_hash_cmp, .automatic_shrinking = true, }; static const struct rhashtable_params nft_objname_ht_params = { .head_offset = offsetof(struct nft_object, rhlhead), .key_offset = offsetof(struct nft_object, key), .hashfn = nft_objname_hash, .obj_hashfn = nft_objname_hash_obj, .obj_cmpfn = nft_objname_hash_cmp, .automatic_shrinking = true, }; struct nft_audit_data { struct nft_table *table; int entries; int op; struct list_head list; }; static const u8 nft2audit_op[NFT_MSG_MAX] = { // enum nf_tables_msg_types [NFT_MSG_NEWTABLE] = AUDIT_NFT_OP_TABLE_REGISTER, [NFT_MSG_GETTABLE] = AUDIT_NFT_OP_INVALID, [NFT_MSG_DELTABLE] = AUDIT_NFT_OP_TABLE_UNREGISTER, [NFT_MSG_NEWCHAIN] = AUDIT_NFT_OP_CHAIN_REGISTER, [NFT_MSG_GETCHAIN] = AUDIT_NFT_OP_INVALID, [NFT_MSG_DELCHAIN] = AUDIT_NFT_OP_CHAIN_UNREGISTER, [NFT_MSG_NEWRULE] = AUDIT_NFT_OP_RULE_REGISTER, [NFT_MSG_GETRULE] = AUDIT_NFT_OP_INVALID, [NFT_MSG_DELRULE] = AUDIT_NFT_OP_RULE_UNREGISTER, [NFT_MSG_NEWSET] = AUDIT_NFT_OP_SET_REGISTER, [NFT_MSG_GETSET] = AUDIT_NFT_OP_INVALID, [NFT_MSG_DELSET] = AUDIT_NFT_OP_SET_UNREGISTER, [NFT_MSG_NEWSETELEM] = AUDIT_NFT_OP_SETELEM_REGISTER, [NFT_MSG_GETSETELEM] = AUDIT_NFT_OP_INVALID, [NFT_MSG_DELSETELEM] = AUDIT_NFT_OP_SETELEM_UNREGISTER, [NFT_MSG_NEWGEN] = AUDIT_NFT_OP_GEN_REGISTER, [NFT_MSG_GETGEN] = AUDIT_NFT_OP_INVALID, [NFT_MSG_TRACE] = AUDIT_NFT_OP_INVALID, [NFT_MSG_NEWOBJ] = AUDIT_NFT_OP_OBJ_REGISTER, [NFT_MSG_GETOBJ] = AUDIT_NFT_OP_INVALID, [NFT_MSG_DELOBJ] = AUDIT_NFT_OP_OBJ_UNREGISTER, [NFT_MSG_GETOBJ_RESET] = AUDIT_NFT_OP_OBJ_RESET, [NFT_MSG_NEWFLOWTABLE] = AUDIT_NFT_OP_FLOWTABLE_REGISTER, [NFT_MSG_GETFLOWTABLE] = AUDIT_NFT_OP_INVALID, [NFT_MSG_DELFLOWTABLE] = AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, [NFT_MSG_GETSETELEM_RESET] = AUDIT_NFT_OP_SETELEM_RESET, }; static void nft_validate_state_update(struct nft_table *table, u8 new_validate_state) { switch (table->validate_state) { case NFT_VALIDATE_SKIP: WARN_ON_ONCE(new_validate_state == NFT_VALIDATE_DO); break; case NFT_VALIDATE_NEED: break; case NFT_VALIDATE_DO: if (new_validate_state == NFT_VALIDATE_NEED) return; } table->validate_state = new_validate_state; } static void nf_tables_trans_destroy_work(struct work_struct *w); static DECLARE_WORK(trans_destroy_work, nf_tables_trans_destroy_work); static void nft_trans_gc_work(struct work_struct *work); static DECLARE_WORK(trans_gc_work, nft_trans_gc_work); static void nft_ctx_init(struct nft_ctx *ctx, struct net *net, const struct sk_buff *skb, const struct nlmsghdr *nlh, u8 family, struct nft_table *table, struct nft_chain *chain, const struct nlattr * const *nla) { ctx->net = net; ctx->family = family; ctx->level = 0; ctx->table = table; ctx->chain = chain; ctx->nla = nla; ctx->portid = NETLINK_CB(skb).portid; ctx->report = nlmsg_report(nlh); ctx->flags = nlh->nlmsg_flags; ctx->seq = nlh->nlmsg_seq; } static struct nft_trans *nft_trans_alloc_gfp(const struct nft_ctx *ctx, int msg_type, u32 size, gfp_t gfp) { struct nft_trans *trans; trans = kzalloc(sizeof(struct nft_trans) + size, gfp); if (trans == NULL) return NULL; INIT_LIST_HEAD(&trans->list); INIT_LIST_HEAD(&trans->binding_list); trans->msg_type = msg_type; trans->ctx = *ctx; return trans; } static struct nft_trans *nft_trans_alloc(const struct nft_ctx *ctx, int msg_type, u32 size) { return nft_trans_alloc_gfp(ctx, msg_type, size, GFP_KERNEL); } static void nft_trans_list_del(struct nft_trans *trans) { list_del(&trans->list); list_del(&trans->binding_list); } static void nft_trans_destroy(struct nft_trans *trans) { nft_trans_list_del(trans); kfree(trans); } static void __nft_set_trans_bind(const struct nft_ctx *ctx, struct nft_set *set, bool bind) { struct nftables_pernet *nft_net; struct net *net = ctx->net; struct nft_trans *trans; if (!nft_set_is_anonymous(set)) return; nft_net = nft_pernet(net); list_for_each_entry_reverse(trans, &nft_net->commit_list, list) { switch (trans->msg_type) { case NFT_MSG_NEWSET: if (nft_trans_set(trans) == set) nft_trans_set_bound(trans) = bind; break; case NFT_MSG_NEWSETELEM: if (nft_trans_elem_set(trans) == set) nft_trans_elem_set_bound(trans) = bind; break; } } } static void nft_set_trans_bind(const struct nft_ctx *ctx, struct nft_set *set) { return __nft_set_trans_bind(ctx, set, true); } static void nft_set_trans_unbind(const struct nft_ctx *ctx, struct nft_set *set) { return __nft_set_trans_bind(ctx, set, false); } static void __nft_chain_trans_bind(const struct nft_ctx *ctx, struct nft_chain *chain, bool bind) { struct nftables_pernet *nft_net; struct net *net = ctx->net; struct nft_trans *trans; if (!nft_chain_binding(chain)) return; nft_net = nft_pernet(net); list_for_each_entry_reverse(trans, &nft_net->commit_list, list) { switch (trans->msg_type) { case NFT_MSG_NEWCHAIN: if (nft_trans_chain(trans) == chain) nft_trans_chain_bound(trans) = bind; break; case NFT_MSG_NEWRULE: if (trans->ctx.chain == chain) nft_trans_rule_bound(trans) = bind; break; } } } static void nft_chain_trans_bind(const struct nft_ctx *ctx, struct nft_chain *chain) { __nft_chain_trans_bind(ctx, chain, true); } int nf_tables_bind_chain(const struct nft_ctx *ctx, struct nft_chain *chain) { if (!nft_chain_binding(chain)) return 0; if (nft_chain_binding(ctx->chain)) return -EOPNOTSUPP; if (chain->bound) return -EBUSY; if (!nft_use_inc(&chain->use)) return -EMFILE; chain->bound = true; nft_chain_trans_bind(ctx, chain); return 0; } void nf_tables_unbind_chain(const struct nft_ctx *ctx, struct nft_chain *chain) { __nft_chain_trans_bind(ctx, chain, false); } static int nft_netdev_register_hooks(struct net *net, struct list_head *hook_list) { struct nft_hook *hook; int err, j; j = 0; list_for_each_entry(hook, hook_list, list) { err = nf_register_net_hook(net, &hook->ops); if (err < 0) goto err_register; j++; } return 0; err_register: list_for_each_entry(hook, hook_list, list) { if (j-- <= 0) break; nf_unregister_net_hook(net, &hook->ops); } return err; } static void nft_netdev_unregister_hooks(struct net *net, struct list_head *hook_list, bool release_netdev) { struct nft_hook *hook, *next; list_for_each_entry_safe(hook, next, hook_list, list) { nf_unregister_net_hook(net, &hook->ops); if (release_netdev) { list_del(&hook->list); kfree_rcu(hook, rcu); } } } static int nf_tables_register_hook(struct net *net, const struct nft_table *table, struct nft_chain *chain) { struct nft_base_chain *basechain; const struct nf_hook_ops *ops; if (table->flags & NFT_TABLE_F_DORMANT || !nft_is_base_chain(chain)) return 0; basechain = nft_base_chain(chain); ops = &basechain->ops; if (basechain->type->ops_register) return basechain->type->ops_register(net, ops); if (nft_base_chain_netdev(table->family, basechain->ops.hooknum)) return nft_netdev_register_hooks(net, &basechain->hook_list); return nf_register_net_hook(net, &basechain->ops); } static void __nf_tables_unregister_hook(struct net *net, const struct nft_table *table, struct nft_chain *chain, bool release_netdev) { struct nft_base_chain *basechain; const struct nf_hook_ops *ops; if (table->flags & NFT_TABLE_F_DORMANT || !nft_is_base_chain(chain)) return; basechain = nft_base_chain(chain); ops = &basechain->ops; if (basechain->type->ops_unregister) return basechain->type->ops_unregister(net, ops); if (nft_base_chain_netdev(table->family, basechain->ops.hooknum)) nft_netdev_unregister_hooks(net, &basechain->hook_list, release_netdev); else nf_unregister_net_hook(net, &basechain->ops); } static void nf_tables_unregister_hook(struct net *net, const struct nft_table *table, struct nft_chain *chain) { return __nf_tables_unregister_hook(net, table, chain, false); } static void nft_trans_commit_list_add_tail(struct net *net, struct nft_trans *trans) { struct nftables_pernet *nft_net = nft_pernet(net); switch (trans->msg_type) { case NFT_MSG_NEWSET: if (!nft_trans_set_update(trans) && nft_set_is_anonymous(nft_trans_set(trans))) list_add_tail(&trans->binding_list, &nft_net->binding_list); break; case NFT_MSG_NEWCHAIN: if (!nft_trans_chain_update(trans) && nft_chain_binding(nft_trans_chain(trans))) list_add_tail(&trans->binding_list, &nft_net->binding_list); break; } list_add_tail(&trans->list, &nft_net->commit_list); } static int nft_trans_table_add(struct nft_ctx *ctx, int msg_type) { struct nft_trans *trans; trans = nft_trans_alloc(ctx, msg_type, sizeof(struct nft_trans_table)); if (trans == NULL) return -ENOMEM; if (msg_type == NFT_MSG_NEWTABLE) nft_activate_next(ctx->net, ctx->table); nft_trans_commit_list_add_tail(ctx->net, trans); return 0; } static int nft_deltable(struct nft_ctx *ctx) { int err; err = nft_trans_table_add(ctx, NFT_MSG_DELTABLE); if (err < 0) return err; nft_deactivate_next(ctx->net, ctx->table); return err; } static struct nft_trans *nft_trans_chain_add(struct nft_ctx *ctx, int msg_type) { struct nft_trans *trans; trans = nft_trans_alloc(ctx, msg_type, sizeof(struct nft_trans_chain)); if (trans == NULL) return ERR_PTR(-ENOMEM); if (msg_type == NFT_MSG_NEWCHAIN) { nft_activate_next(ctx->net, ctx->chain); if (ctx->nla[NFTA_CHAIN_ID]) { nft_trans_chain_id(trans) = ntohl(nla_get_be32(ctx->nla[NFTA_CHAIN_ID])); } } nft_trans_chain(trans) = ctx->chain; nft_trans_commit_list_add_tail(ctx->net, trans); return trans; } static int nft_delchain(struct nft_ctx *ctx) { struct nft_trans *trans; trans = nft_trans_chain_add(ctx, NFT_MSG_DELCHAIN); if (IS_ERR(trans)) return PTR_ERR(trans); nft_use_dec(&ctx->table->use); nft_deactivate_next(ctx->net, ctx->chain); return 0; } void nft_rule_expr_activate(const struct nft_ctx *ctx, struct nft_rule *rule) { struct nft_expr *expr; expr = nft_expr_first(rule); while (nft_expr_more(rule, expr)) { if (expr->ops->activate) expr->ops->activate(ctx, expr); expr = nft_expr_next(expr); } } void nft_rule_expr_deactivate(const struct nft_ctx *ctx, struct nft_rule *rule, enum nft_trans_phase phase) { struct nft_expr *expr; expr = nft_expr_first(rule); while (nft_expr_more(rule, expr)) { if (expr->ops->deactivate) expr->ops->deactivate(ctx, expr, phase); expr = nft_expr_next(expr); } } static int nf_tables_delrule_deactivate(struct nft_ctx *ctx, struct nft_rule *rule) { /* You cannot delete the same rule twice */ if (nft_is_active_next(ctx->net, rule)) { nft_deactivate_next(ctx->net, rule); nft_use_dec(&ctx->chain->use); return 0; } return -ENOENT; } static struct nft_trans *nft_trans_rule_add(struct nft_ctx *ctx, int msg_type, struct nft_rule *rule) { struct nft_trans *trans; trans = nft_trans_alloc(ctx, msg_type, sizeof(struct nft_trans_rule)); if (trans == NULL) return NULL; if (msg_type == NFT_MSG_NEWRULE && ctx->nla[NFTA_RULE_ID] != NULL) { nft_trans_rule_id(trans) = ntohl(nla_get_be32(ctx->nla[NFTA_RULE_ID])); } nft_trans_rule(trans) = rule; nft_trans_commit_list_add_tail(ctx->net, trans); return trans; } static int nft_delrule(struct nft_ctx *ctx, struct nft_rule *rule) { struct nft_flow_rule *flow; struct nft_trans *trans; int err; trans = nft_trans_rule_add(ctx, NFT_MSG_DELRULE, rule); if (trans == NULL) return -ENOMEM; if (ctx->chain->flags & NFT_CHAIN_HW_OFFLOAD) { flow = nft_flow_rule_create(ctx->net, rule); if (IS_ERR(flow)) { nft_trans_destroy(trans); return PTR_ERR(flow); } nft_trans_flow_rule(trans) = flow; } err = nf_tables_delrule_deactivate(ctx, rule); if (err < 0) { nft_trans_destroy(trans); return err; } nft_rule_expr_deactivate(ctx, rule, NFT_TRANS_PREPARE); return 0; } static int nft_delrule_by_chain(struct nft_ctx *ctx) { struct nft_rule *rule; int err; list_for_each_entry(rule, &ctx->chain->rules, list) { if (!nft_is_active_next(ctx->net, rule)) continue; err = nft_delrule(ctx, rule); if (err < 0) return err; } return 0; } static int __nft_trans_set_add(const struct nft_ctx *ctx, int msg_type, struct nft_set *set, const struct nft_set_desc *desc) { struct nft_trans *trans; trans = nft_trans_alloc(ctx, msg_type, sizeof(struct nft_trans_set)); if (trans == NULL) return -ENOMEM; if (msg_type == NFT_MSG_NEWSET && ctx->nla[NFTA_SET_ID] && !desc) { nft_trans_set_id(trans) = ntohl(nla_get_be32(ctx->nla[NFTA_SET_ID])); nft_activate_next(ctx->net, set); } nft_trans_set(trans) = set; if (desc) { nft_trans_set_update(trans) = true; nft_trans_set_gc_int(trans) = desc->gc_int; nft_trans_set_timeout(trans) = desc->timeout; nft_trans_set_size(trans) = desc->size; } nft_trans_commit_list_add_tail(ctx->net, trans); return 0; } static int nft_trans_set_add(const struct nft_ctx *ctx, int msg_type, struct nft_set *set) { return __nft_trans_set_add(ctx, msg_type, set, NULL); } static int nft_mapelem_deactivate(const struct nft_ctx *ctx, struct nft_set *set, const struct nft_set_iter *iter, struct nft_elem_priv *elem_priv) { nft_setelem_data_deactivate(ctx->net, set, elem_priv); return 0; } struct nft_set_elem_catchall { struct list_head list; struct rcu_head rcu; struct nft_elem_priv *elem; }; static void nft_map_catchall_deactivate(const struct nft_ctx *ctx, struct nft_set *set) { u8 genmask = nft_genmask_next(ctx->net); struct nft_set_elem_catchall *catchall; struct nft_set_ext *ext; list_for_each_entry(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask)) continue; nft_setelem_data_deactivate(ctx->net, set, catchall->elem); break; } } static void nft_map_deactivate(const struct nft_ctx *ctx, struct nft_set *set) { struct nft_set_iter iter = { .genmask = nft_genmask_next(ctx->net), .fn = nft_mapelem_deactivate, }; set->ops->walk(ctx, set, &iter); WARN_ON_ONCE(iter.err); nft_map_catchall_deactivate(ctx, set); } static int nft_delset(const struct nft_ctx *ctx, struct nft_set *set) { int err; err = nft_trans_set_add(ctx, NFT_MSG_DELSET, set); if (err < 0) return err; if (set->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) nft_map_deactivate(ctx, set); nft_deactivate_next(ctx->net, set); nft_use_dec(&ctx->table->use); return err; } static int nft_trans_obj_add(struct nft_ctx *ctx, int msg_type, struct nft_object *obj) { struct nft_trans *trans; trans = nft_trans_alloc(ctx, msg_type, sizeof(struct nft_trans_obj)); if (trans == NULL) return -ENOMEM; if (msg_type == NFT_MSG_NEWOBJ) nft_activate_next(ctx->net, obj); nft_trans_obj(trans) = obj; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; } static int nft_delobj(struct nft_ctx *ctx, struct nft_object *obj) { int err; err = nft_trans_obj_add(ctx, NFT_MSG_DELOBJ, obj); if (err < 0) return err; nft_deactivate_next(ctx->net, obj); nft_use_dec(&ctx->table->use); return err; } static int nft_trans_flowtable_add(struct nft_ctx *ctx, int msg_type, struct nft_flowtable *flowtable) { struct nft_trans *trans; trans = nft_trans_alloc(ctx, msg_type, sizeof(struct nft_trans_flowtable)); if (trans == NULL) return -ENOMEM; if (msg_type == NFT_MSG_NEWFLOWTABLE) nft_activate_next(ctx->net, flowtable); INIT_LIST_HEAD(&nft_trans_flowtable_hooks(trans)); nft_trans_flowtable(trans) = flowtable; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; } static int nft_delflowtable(struct nft_ctx *ctx, struct nft_flowtable *flowtable) { int err; err = nft_trans_flowtable_add(ctx, NFT_MSG_DELFLOWTABLE, flowtable); if (err < 0) return err; nft_deactivate_next(ctx->net, flowtable); nft_use_dec(&ctx->table->use); return err; } static void __nft_reg_track_clobber(struct nft_regs_track *track, u8 dreg) { int i; for (i = track->regs[dreg].num_reg; i > 0; i--) __nft_reg_track_cancel(track, dreg - i); } static void __nft_reg_track_update(struct nft_regs_track *track, const struct nft_expr *expr, u8 dreg, u8 num_reg) { track->regs[dreg].selector = expr; track->regs[dreg].bitwise = NULL; track->regs[dreg].num_reg = num_reg; } void nft_reg_track_update(struct nft_regs_track *track, const struct nft_expr *expr, u8 dreg, u8 len) { unsigned int regcount; int i; __nft_reg_track_clobber(track, dreg); regcount = DIV_ROUND_UP(len, NFT_REG32_SIZE); for (i = 0; i < regcount; i++, dreg++) __nft_reg_track_update(track, expr, dreg, i); } EXPORT_SYMBOL_GPL(nft_reg_track_update); void nft_reg_track_cancel(struct nft_regs_track *track, u8 dreg, u8 len) { unsigned int regcount; int i; __nft_reg_track_clobber(track, dreg); regcount = DIV_ROUND_UP(len, NFT_REG32_SIZE); for (i = 0; i < regcount; i++, dreg++) __nft_reg_track_cancel(track, dreg); } EXPORT_SYMBOL_GPL(nft_reg_track_cancel); void __nft_reg_track_cancel(struct nft_regs_track *track, u8 dreg) { track->regs[dreg].selector = NULL; track->regs[dreg].bitwise = NULL; track->regs[dreg].num_reg = 0; } EXPORT_SYMBOL_GPL(__nft_reg_track_cancel); /* * Tables */ static struct nft_table *nft_table_lookup(const struct net *net, const struct nlattr *nla, u8 family, u8 genmask, u32 nlpid) { struct nftables_pernet *nft_net; struct nft_table *table; if (nla == NULL) return ERR_PTR(-EINVAL); nft_net = nft_pernet(net); list_for_each_entry_rcu(table, &nft_net->tables, list, lockdep_is_held(&nft_net->commit_mutex)) { if (!nla_strcmp(nla, table->name) && table->family == family && nft_active_genmask(table, genmask)) { if (nft_table_has_owner(table) && nlpid && table->nlpid != nlpid) return ERR_PTR(-EPERM); return table; } } return ERR_PTR(-ENOENT); } static struct nft_table *nft_table_lookup_byhandle(const struct net *net, const struct nlattr *nla, int family, u8 genmask, u32 nlpid) { struct nftables_pernet *nft_net; struct nft_table *table; nft_net = nft_pernet(net); list_for_each_entry(table, &nft_net->tables, list) { if (be64_to_cpu(nla_get_be64(nla)) == table->handle && table->family == family && nft_active_genmask(table, genmask)) { if (nft_table_has_owner(table) && nlpid && table->nlpid != nlpid) return ERR_PTR(-EPERM); return table; } } return ERR_PTR(-ENOENT); } static inline u64 nf_tables_alloc_handle(struct nft_table *table) { return ++table->hgenerator; } static const struct nft_chain_type *chain_type[NFPROTO_NUMPROTO][NFT_CHAIN_T_MAX]; static const struct nft_chain_type * __nft_chain_type_get(u8 family, enum nft_chain_types type) { if (family >= NFPROTO_NUMPROTO || type >= NFT_CHAIN_T_MAX) return NULL; return chain_type[family][type]; } static const struct nft_chain_type * __nf_tables_chain_type_lookup(const struct nlattr *nla, u8 family) { const struct nft_chain_type *type; int i; for (i = 0; i < NFT_CHAIN_T_MAX; i++) { type = __nft_chain_type_get(family, i); if (!type) continue; if (!nla_strcmp(nla, type->name)) return type; } return NULL; } struct nft_module_request { struct list_head list; char module[MODULE_NAME_LEN]; bool done; }; #ifdef CONFIG_MODULES __printf(2, 3) int nft_request_module(struct net *net, const char *fmt, ...) { char module_name[MODULE_NAME_LEN]; struct nftables_pernet *nft_net; struct nft_module_request *req; va_list args; int ret; va_start(args, fmt); ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); va_end(args); if (ret >= MODULE_NAME_LEN) return 0; nft_net = nft_pernet(net); list_for_each_entry(req, &nft_net->module_list, list) { if (!strcmp(req->module, module_name)) { if (req->done) return 0; /* A request to load this module already exists. */ return -EAGAIN; } } req = kmalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; req->done = false; strscpy(req->module, module_name, MODULE_NAME_LEN); list_add_tail(&req->list, &nft_net->module_list); return -EAGAIN; } EXPORT_SYMBOL_GPL(nft_request_module); #endif static void lockdep_nfnl_nft_mutex_not_held(void) { #ifdef CONFIG_PROVE_LOCKING if (debug_locks) WARN_ON_ONCE(lockdep_nfnl_is_held(NFNL_SUBSYS_NFTABLES)); #endif } static const struct nft_chain_type * nf_tables_chain_type_lookup(struct net *net, const struct nlattr *nla, u8 family, bool autoload) { const struct nft_chain_type *type; type = __nf_tables_chain_type_lookup(nla, family); if (type != NULL) return type; lockdep_nfnl_nft_mutex_not_held(); #ifdef CONFIG_MODULES if (autoload) { if (nft_request_module(net, "nft-chain-%u-%.*s", family, nla_len(nla), (const char *)nla_data(nla)) == -EAGAIN) return ERR_PTR(-EAGAIN); } #endif return ERR_PTR(-ENOENT); } static __be16 nft_base_seq(const struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); return htons(nft_net->base_seq & 0xffff); } static const struct nla_policy nft_table_policy[NFTA_TABLE_MAX + 1] = { [NFTA_TABLE_NAME] = { .type = NLA_STRING, .len = NFT_TABLE_MAXNAMELEN - 1 }, [NFTA_TABLE_FLAGS] = { .type = NLA_U32 }, [NFTA_TABLE_HANDLE] = { .type = NLA_U64 }, [NFTA_TABLE_USERDATA] = { .type = NLA_BINARY, .len = NFT_USERDATA_MAXLEN } }; static int nf_tables_fill_table_info(struct sk_buff *skb, struct net *net, u32 portid, u32 seq, int event, u32 flags, int family, const struct nft_table *table) { struct nlmsghdr *nlh; event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, family, NFNETLINK_V0, nft_base_seq(net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_TABLE_NAME, table->name) || nla_put_be32(skb, NFTA_TABLE_USE, htonl(table->use)) || nla_put_be64(skb, NFTA_TABLE_HANDLE, cpu_to_be64(table->handle), NFTA_TABLE_PAD)) goto nla_put_failure; if (event == NFT_MSG_DELTABLE) { nlmsg_end(skb, nlh); return 0; } if (nla_put_be32(skb, NFTA_TABLE_FLAGS, htonl(table->flags & NFT_TABLE_F_MASK))) goto nla_put_failure; if (nft_table_has_owner(table) && nla_put_be32(skb, NFTA_TABLE_OWNER, htonl(table->nlpid))) goto nla_put_failure; if (table->udata) { if (nla_put(skb, NFTA_TABLE_USERDATA, table->udlen, table->udata)) goto nla_put_failure; } nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -1; } struct nftnl_skb_parms { bool report; }; #define NFT_CB(skb) (*(struct nftnl_skb_parms*)&((skb)->cb)) static void nft_notify_enqueue(struct sk_buff *skb, bool report, struct list_head *notify_list) { NFT_CB(skb).report = report; list_add_tail(&skb->list, notify_list); } static void nf_tables_table_notify(const struct nft_ctx *ctx, int event) { struct nftables_pernet *nft_net; struct sk_buff *skb; u16 flags = 0; int err; if (!ctx->report && !nfnetlink_has_listeners(ctx->net, NFNLGRP_NFTABLES)) return; skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (skb == NULL) goto err; if (ctx->flags & (NLM_F_CREATE | NLM_F_EXCL)) flags |= ctx->flags & (NLM_F_CREATE | NLM_F_EXCL); err = nf_tables_fill_table_info(skb, ctx->net, ctx->portid, ctx->seq, event, flags, ctx->family, ctx->table); if (err < 0) { kfree_skb(skb); goto err; } nft_net = nft_pernet(ctx->net); nft_notify_enqueue(skb, ctx->report, &nft_net->notify_list); return; err: nfnetlink_set_err(ctx->net, ctx->portid, NFNLGRP_NFTABLES, -ENOBUFS); } static int nf_tables_dump_tables(struct sk_buff *skb, struct netlink_callback *cb) { const struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); struct nftables_pernet *nft_net; const struct nft_table *table; unsigned int idx = 0, s_idx = cb->args[0]; struct net *net = sock_net(skb->sk); int family = nfmsg->nfgen_family; rcu_read_lock(); nft_net = nft_pernet(net); cb->seq = READ_ONCE(nft_net->base_seq); list_for_each_entry_rcu(table, &nft_net->tables, list) { if (family != NFPROTO_UNSPEC && family != table->family) continue; if (idx < s_idx) goto cont; if (idx > s_idx) memset(&cb->args[1], 0, sizeof(cb->args) - sizeof(cb->args[0])); if (!nft_is_active(net, table)) continue; if (nf_tables_fill_table_info(skb, net, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFT_MSG_NEWTABLE, NLM_F_MULTI, table->family, table) < 0) goto done; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); cont: idx++; } done: rcu_read_unlock(); cb->args[0] = idx; return skb->len; } static int nft_netlink_dump_start_rcu(struct sock *nlsk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *c) { int err; if (!try_module_get(THIS_MODULE)) return -EINVAL; rcu_read_unlock(); err = netlink_dump_start(nlsk, skb, nlh, c); rcu_read_lock(); module_put(THIS_MODULE); return err; } /* called with rcu_read_lock held */ static int nf_tables_gettable(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_cur(info->net); u8 family = info->nfmsg->nfgen_family; const struct nft_table *table; struct net *net = info->net; struct sk_buff *skb2; int err; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = nf_tables_dump_tables, .module = THIS_MODULE, }; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } table = nft_table_lookup(net, nla[NFTA_TABLE_NAME], family, genmask, 0); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_TABLE_NAME]); return PTR_ERR(table); } skb2 = alloc_skb(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb2) return -ENOMEM; err = nf_tables_fill_table_info(skb2, net, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFT_MSG_NEWTABLE, 0, family, table); if (err < 0) goto err_fill_table_info; return nfnetlink_unicast(skb2, net, NETLINK_CB(skb).portid); err_fill_table_info: kfree_skb(skb2); return err; } static void nft_table_disable(struct net *net, struct nft_table *table, u32 cnt) { struct nft_chain *chain; u32 i = 0; list_for_each_entry(chain, &table->chains, list) { if (!nft_is_active_next(net, chain)) continue; if (!nft_is_base_chain(chain)) continue; if (cnt && i++ == cnt) break; nf_tables_unregister_hook(net, table, chain); } } static int nf_tables_table_enable(struct net *net, struct nft_table *table) { struct nft_chain *chain; int err, i = 0; list_for_each_entry(chain, &table->chains, list) { if (!nft_is_active_next(net, chain)) continue; if (!nft_is_base_chain(chain)) continue; err = nf_tables_register_hook(net, table, chain); if (err < 0) goto err_register_hooks; i++; } return 0; err_register_hooks: if (i) nft_table_disable(net, table, i); return err; } static void nf_tables_table_disable(struct net *net, struct nft_table *table) { table->flags &= ~NFT_TABLE_F_DORMANT; nft_table_disable(net, table, 0); table->flags |= NFT_TABLE_F_DORMANT; } #define __NFT_TABLE_F_INTERNAL (NFT_TABLE_F_MASK + 1) #define __NFT_TABLE_F_WAS_DORMANT (__NFT_TABLE_F_INTERNAL << 0) #define __NFT_TABLE_F_WAS_AWAKEN (__NFT_TABLE_F_INTERNAL << 1) #define __NFT_TABLE_F_UPDATE (__NFT_TABLE_F_WAS_DORMANT | \ __NFT_TABLE_F_WAS_AWAKEN) static int nf_tables_updtable(struct nft_ctx *ctx) { struct nft_trans *trans; u32 flags; int ret; if (!ctx->nla[NFTA_TABLE_FLAGS]) return 0; flags = ntohl(nla_get_be32(ctx->nla[NFTA_TABLE_FLAGS])); if (flags & ~NFT_TABLE_F_MASK) return -EOPNOTSUPP; if (flags == ctx->table->flags) return 0; if ((nft_table_has_owner(ctx->table) && !(flags & NFT_TABLE_F_OWNER)) || (!nft_table_has_owner(ctx->table) && flags & NFT_TABLE_F_OWNER)) return -EOPNOTSUPP; /* No dormant off/on/off/on games in single transaction */ if (ctx->table->flags & __NFT_TABLE_F_UPDATE) return -EINVAL; trans = nft_trans_alloc(ctx, NFT_MSG_NEWTABLE, sizeof(struct nft_trans_table)); if (trans == NULL) return -ENOMEM; if ((flags & NFT_TABLE_F_DORMANT) && !(ctx->table->flags & NFT_TABLE_F_DORMANT)) { ctx->table->flags |= NFT_TABLE_F_DORMANT; if (!(ctx->table->flags & __NFT_TABLE_F_UPDATE)) ctx->table->flags |= __NFT_TABLE_F_WAS_AWAKEN; } else if (!(flags & NFT_TABLE_F_DORMANT) && ctx->table->flags & NFT_TABLE_F_DORMANT) { ctx->table->flags &= ~NFT_TABLE_F_DORMANT; if (!(ctx->table->flags & __NFT_TABLE_F_UPDATE)) { ret = nf_tables_table_enable(ctx->net, ctx->table); if (ret < 0) goto err_register_hooks; ctx->table->flags |= __NFT_TABLE_F_WAS_DORMANT; } } nft_trans_table_update(trans) = true; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; err_register_hooks: nft_trans_destroy(trans); return ret; } static u32 nft_chain_hash(const void *data, u32 len, u32 seed) { const char *name = data; return jhash(name, strlen(name), seed); } static u32 nft_chain_hash_obj(const void *data, u32 len, u32 seed) { const struct nft_chain *chain = data; return nft_chain_hash(chain->name, 0, seed); } static int nft_chain_hash_cmp(struct rhashtable_compare_arg *arg, const void *ptr) { const struct nft_chain *chain = ptr; const char *name = arg->key; return strcmp(chain->name, name); } static u32 nft_objname_hash(const void *data, u32 len, u32 seed) { const struct nft_object_hash_key *k = data; seed ^= hash_ptr(k->table, 32); return jhash(k->name, strlen(k->name), seed); } static u32 nft_objname_hash_obj(const void *data, u32 len, u32 seed) { const struct nft_object *obj = data; return nft_objname_hash(&obj->key, 0, seed); } static int nft_objname_hash_cmp(struct rhashtable_compare_arg *arg, const void *ptr) { const struct nft_object_hash_key *k = arg->key; const struct nft_object *obj = ptr; if (obj->key.table != k->table) return -1; return strcmp(obj->key.name, k->name); } static bool nft_supported_family(u8 family) { return false #ifdef CONFIG_NF_TABLES_INET || family == NFPROTO_INET #endif #ifdef CONFIG_NF_TABLES_IPV4 || family == NFPROTO_IPV4 #endif #ifdef CONFIG_NF_TABLES_ARP || family == NFPROTO_ARP #endif #ifdef CONFIG_NF_TABLES_NETDEV || family == NFPROTO_NETDEV #endif #if IS_ENABLED(CONFIG_NF_TABLES_BRIDGE) || family == NFPROTO_BRIDGE #endif #ifdef CONFIG_NF_TABLES_IPV6 || family == NFPROTO_IPV6 #endif ; } static int nf_tables_newtable(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct nftables_pernet *nft_net = nft_pernet(info->net); struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_ctx ctx; u32 flags = 0; int err; if (!nft_supported_family(family)) return -EOPNOTSUPP; lockdep_assert_held(&nft_net->commit_mutex); attr = nla[NFTA_TABLE_NAME]; table = nft_table_lookup(net, attr, family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { if (PTR_ERR(table) != -ENOENT) return PTR_ERR(table); } else { if (info->nlh->nlmsg_flags & NLM_F_EXCL) { NL_SET_BAD_ATTR(extack, attr); return -EEXIST; } if (info->nlh->nlmsg_flags & NLM_F_REPLACE) return -EOPNOTSUPP; nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); return nf_tables_updtable(&ctx); } if (nla[NFTA_TABLE_FLAGS]) { flags = ntohl(nla_get_be32(nla[NFTA_TABLE_FLAGS])); if (flags & ~NFT_TABLE_F_MASK) return -EOPNOTSUPP; } err = -ENOMEM; table = kzalloc(sizeof(*table), GFP_KERNEL_ACCOUNT); if (table == NULL) goto err_kzalloc; table->validate_state = nft_net->validate_state; table->name = nla_strdup(attr, GFP_KERNEL_ACCOUNT); if (table->name == NULL) goto err_strdup; if (nla[NFTA_TABLE_USERDATA]) { table->udata = nla_memdup(nla[NFTA_TABLE_USERDATA], GFP_KERNEL_ACCOUNT); if (table->udata == NULL) goto err_table_udata; table->udlen = nla_len(nla[NFTA_TABLE_USERDATA]); } err = rhltable_init(&table->chains_ht, &nft_chain_ht_params); if (err) goto err_chain_ht; INIT_LIST_HEAD(&table->chains); INIT_LIST_HEAD(&table->sets); INIT_LIST_HEAD(&table->objects); INIT_LIST_HEAD(&table->flowtables); table->family = family; table->flags = flags; table->handle = ++nft_net->table_handle; if (table->flags & NFT_TABLE_F_OWNER) table->nlpid = NETLINK_CB(skb).portid; nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); err = nft_trans_table_add(&ctx, NFT_MSG_NEWTABLE); if (err < 0) goto err_trans; list_add_tail_rcu(&table->list, &nft_net->tables); return 0; err_trans: rhltable_destroy(&table->chains_ht); err_chain_ht: kfree(table->udata); err_table_udata: kfree(table->name); err_strdup: kfree(table); err_kzalloc: return err; } static int nft_flush_table(struct nft_ctx *ctx) { struct nft_flowtable *flowtable, *nft; struct nft_chain *chain, *nc; struct nft_object *obj, *ne; struct nft_set *set, *ns; int err; list_for_each_entry(chain, &ctx->table->chains, list) { if (!nft_is_active_next(ctx->net, chain)) continue; if (nft_chain_binding(chain)) continue; ctx->chain = chain; err = nft_delrule_by_chain(ctx); if (err < 0) goto out; } list_for_each_entry_safe(set, ns, &ctx->table->sets, list) { if (!nft_is_active_next(ctx->net, set)) continue; if (nft_set_is_anonymous(set)) continue; err = nft_delset(ctx, set); if (err < 0) goto out; } list_for_each_entry_safe(flowtable, nft, &ctx->table->flowtables, list) { if (!nft_is_active_next(ctx->net, flowtable)) continue; err = nft_delflowtable(ctx, flowtable); if (err < 0) goto out; } list_for_each_entry_safe(obj, ne, &ctx->table->objects, list) { if (!nft_is_active_next(ctx->net, obj)) continue; err = nft_delobj(ctx, obj); if (err < 0) goto out; } list_for_each_entry_safe(chain, nc, &ctx->table->chains, list) { if (!nft_is_active_next(ctx->net, chain)) continue; if (nft_chain_binding(chain)) continue; ctx->chain = chain; err = nft_delchain(ctx); if (err < 0) goto out; } err = nft_deltable(ctx); out: return err; } static int nft_flush(struct nft_ctx *ctx, int family) { struct nftables_pernet *nft_net = nft_pernet(ctx->net); const struct nlattr * const *nla = ctx->nla; struct nft_table *table, *nt; int err = 0; list_for_each_entry_safe(table, nt, &nft_net->tables, list) { if (family != AF_UNSPEC && table->family != family) continue; ctx->family = table->family; if (!nft_is_active_next(ctx->net, table)) continue; if (nft_table_has_owner(table) && table->nlpid != ctx->portid) continue; if (nla[NFTA_TABLE_NAME] && nla_strcmp(nla[NFTA_TABLE_NAME], table->name) != 0) continue; ctx->table = table; err = nft_flush_table(ctx); if (err < 0) goto out; } out: return err; } static int nf_tables_deltable(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_ctx ctx; nft_ctx_init(&ctx, net, skb, info->nlh, 0, NULL, NULL, nla); if (family == AF_UNSPEC || (!nla[NFTA_TABLE_NAME] && !nla[NFTA_TABLE_HANDLE])) return nft_flush(&ctx, family); if (nla[NFTA_TABLE_HANDLE]) { attr = nla[NFTA_TABLE_HANDLE]; table = nft_table_lookup_byhandle(net, attr, family, genmask, NETLINK_CB(skb).portid); } else { attr = nla[NFTA_TABLE_NAME]; table = nft_table_lookup(net, attr, family, genmask, NETLINK_CB(skb).portid); } if (IS_ERR(table)) { if (PTR_ERR(table) == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYTABLE) return 0; NL_SET_BAD_ATTR(extack, attr); return PTR_ERR(table); } if (info->nlh->nlmsg_flags & NLM_F_NONREC && table->use > 0) return -EBUSY; ctx.family = family; ctx.table = table; return nft_flush_table(&ctx); } static void nf_tables_table_destroy(struct nft_ctx *ctx) { if (WARN_ON(ctx->table->use > 0)) return; rhltable_destroy(&ctx->table->chains_ht); kfree(ctx->table->name); kfree(ctx->table->udata); kfree(ctx->table); } void nft_register_chain_type(const struct nft_chain_type *ctype) { nfnl_lock(NFNL_SUBSYS_NFTABLES); if (WARN_ON(__nft_chain_type_get(ctype->family, ctype->type))) { nfnl_unlock(NFNL_SUBSYS_NFTABLES); return; } chain_type[ctype->family][ctype->type] = ctype; nfnl_unlock(NFNL_SUBSYS_NFTABLES); } EXPORT_SYMBOL_GPL(nft_register_chain_type); void nft_unregister_chain_type(const struct nft_chain_type *ctype) { nfnl_lock(NFNL_SUBSYS_NFTABLES); chain_type[ctype->family][ctype->type] = NULL; nfnl_unlock(NFNL_SUBSYS_NFTABLES); } EXPORT_SYMBOL_GPL(nft_unregister_chain_type); /* * Chains */ static struct nft_chain * nft_chain_lookup_byhandle(const struct nft_table *table, u64 handle, u8 genmask) { struct nft_chain *chain; list_for_each_entry(chain, &table->chains, list) { if (chain->handle == handle && nft_active_genmask(chain, genmask)) return chain; } return ERR_PTR(-ENOENT); } static bool lockdep_commit_lock_is_held(const struct net *net) { #ifdef CONFIG_PROVE_LOCKING struct nftables_pernet *nft_net = nft_pernet(net); return lockdep_is_held(&nft_net->commit_mutex); #else return true; #endif } static struct nft_chain *nft_chain_lookup(struct net *net, struct nft_table *table, const struct nlattr *nla, u8 genmask) { char search[NFT_CHAIN_MAXNAMELEN + 1]; struct rhlist_head *tmp, *list; struct nft_chain *chain; if (nla == NULL) return ERR_PTR(-EINVAL); nla_strscpy(search, nla, sizeof(search)); WARN_ON(!rcu_read_lock_held() && !lockdep_commit_lock_is_held(net)); chain = ERR_PTR(-ENOENT); rcu_read_lock(); list = rhltable_lookup(&table->chains_ht, search, nft_chain_ht_params); if (!list) goto out_unlock; rhl_for_each_entry_rcu(chain, tmp, list, rhlhead) { if (nft_active_genmask(chain, genmask)) goto out_unlock; } chain = ERR_PTR(-ENOENT); out_unlock: rcu_read_unlock(); return chain; } static const struct nla_policy nft_chain_policy[NFTA_CHAIN_MAX + 1] = { [NFTA_CHAIN_TABLE] = { .type = NLA_STRING, .len = NFT_TABLE_MAXNAMELEN - 1 }, [NFTA_CHAIN_HANDLE] = { .type = NLA_U64 }, [NFTA_CHAIN_NAME] = { .type = NLA_STRING, .len = NFT_CHAIN_MAXNAMELEN - 1 }, [NFTA_CHAIN_HOOK] = { .type = NLA_NESTED }, [NFTA_CHAIN_POLICY] = { .type = NLA_U32 }, [NFTA_CHAIN_TYPE] = { .type = NLA_STRING, .len = NFT_MODULE_AUTOLOAD_LIMIT }, [NFTA_CHAIN_COUNTERS] = { .type = NLA_NESTED }, [NFTA_CHAIN_FLAGS] = { .type = NLA_U32 }, [NFTA_CHAIN_ID] = { .type = NLA_U32 }, [NFTA_CHAIN_USERDATA] = { .type = NLA_BINARY, .len = NFT_USERDATA_MAXLEN }, }; static const struct nla_policy nft_hook_policy[NFTA_HOOK_MAX + 1] = { [NFTA_HOOK_HOOKNUM] = { .type = NLA_U32 }, [NFTA_HOOK_PRIORITY] = { .type = NLA_U32 }, [NFTA_HOOK_DEV] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, }; static int nft_dump_stats(struct sk_buff *skb, struct nft_stats __percpu *stats) { struct nft_stats *cpu_stats, total; struct nlattr *nest; unsigned int seq; u64 pkts, bytes; int cpu; if (!stats) return 0; memset(&total, 0, sizeof(total)); for_each_possible_cpu(cpu) { cpu_stats = per_cpu_ptr(stats, cpu); do { seq = u64_stats_fetch_begin(&cpu_stats->syncp); pkts = cpu_stats->pkts; bytes = cpu_stats->bytes; } while (u64_stats_fetch_retry(&cpu_stats->syncp, seq)); total.pkts += pkts; total.bytes += bytes; } nest = nla_nest_start_noflag(skb, NFTA_CHAIN_COUNTERS); if (nest == NULL) goto nla_put_failure; if (nla_put_be64(skb, NFTA_COUNTER_PACKETS, cpu_to_be64(total.pkts), NFTA_COUNTER_PAD) || nla_put_be64(skb, NFTA_COUNTER_BYTES, cpu_to_be64(total.bytes), NFTA_COUNTER_PAD)) goto nla_put_failure; nla_nest_end(skb, nest); return 0; nla_put_failure: return -ENOSPC; } static int nft_dump_basechain_hook(struct sk_buff *skb, int family, const struct nft_base_chain *basechain, const struct list_head *hook_list) { const struct nf_hook_ops *ops = &basechain->ops; struct nft_hook *hook, *first = NULL; struct nlattr *nest, *nest_devs; int n = 0; nest = nla_nest_start_noflag(skb, NFTA_CHAIN_HOOK); if (nest == NULL) goto nla_put_failure; if (nla_put_be32(skb, NFTA_HOOK_HOOKNUM, htonl(ops->hooknum))) goto nla_put_failure; if (nla_put_be32(skb, NFTA_HOOK_PRIORITY, htonl(ops->priority))) goto nla_put_failure; if (nft_base_chain_netdev(family, ops->hooknum)) { nest_devs = nla_nest_start_noflag(skb, NFTA_HOOK_DEVS); if (!nest_devs) goto nla_put_failure; if (!hook_list) hook_list = &basechain->hook_list; list_for_each_entry(hook, hook_list, list) { if (!first) first = hook; if (nla_put_string(skb, NFTA_DEVICE_NAME, hook->ops.dev->name)) goto nla_put_failure; n++; } nla_nest_end(skb, nest_devs); if (n == 1 && nla_put_string(skb, NFTA_HOOK_DEV, first->ops.dev->name)) goto nla_put_failure; } nla_nest_end(skb, nest); return 0; nla_put_failure: return -1; } static int nf_tables_fill_chain_info(struct sk_buff *skb, struct net *net, u32 portid, u32 seq, int event, u32 flags, int family, const struct nft_table *table, const struct nft_chain *chain, const struct list_head *hook_list) { struct nlmsghdr *nlh; event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, family, NFNETLINK_V0, nft_base_seq(net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_CHAIN_TABLE, table->name) || nla_put_string(skb, NFTA_CHAIN_NAME, chain->name) || nla_put_be64(skb, NFTA_CHAIN_HANDLE, cpu_to_be64(chain->handle), NFTA_CHAIN_PAD)) goto nla_put_failure; if (event == NFT_MSG_DELCHAIN && !hook_list) { nlmsg_end(skb, nlh); return 0; } if (nft_is_base_chain(chain)) { const struct nft_base_chain *basechain = nft_base_chain(chain); struct nft_stats __percpu *stats; if (nft_dump_basechain_hook(skb, family, basechain, hook_list)) goto nla_put_failure; if (nla_put_be32(skb, NFTA_CHAIN_POLICY, htonl(basechain->policy))) goto nla_put_failure; if (nla_put_string(skb, NFTA_CHAIN_TYPE, basechain->type->name)) goto nla_put_failure; stats = rcu_dereference_check(basechain->stats, lockdep_commit_lock_is_held(net)); if (nft_dump_stats(skb, stats)) goto nla_put_failure; } if (chain->flags && nla_put_be32(skb, NFTA_CHAIN_FLAGS, htonl(chain->flags))) goto nla_put_failure; if (nla_put_be32(skb, NFTA_CHAIN_USE, htonl(chain->use))) goto nla_put_failure; if (chain->udata && nla_put(skb, NFTA_CHAIN_USERDATA, chain->udlen, chain->udata)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -1; } static void nf_tables_chain_notify(const struct nft_ctx *ctx, int event, const struct list_head *hook_list) { struct nftables_pernet *nft_net; struct sk_buff *skb; u16 flags = 0; int err; if (!ctx->report && !nfnetlink_has_listeners(ctx->net, NFNLGRP_NFTABLES)) return; skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (skb == NULL) goto err; if (ctx->flags & (NLM_F_CREATE | NLM_F_EXCL)) flags |= ctx->flags & (NLM_F_CREATE | NLM_F_EXCL); err = nf_tables_fill_chain_info(skb, ctx->net, ctx->portid, ctx->seq, event, flags, ctx->family, ctx->table, ctx->chain, hook_list); if (err < 0) { kfree_skb(skb); goto err; } nft_net = nft_pernet(ctx->net); nft_notify_enqueue(skb, ctx->report, &nft_net->notify_list); return; err: nfnetlink_set_err(ctx->net, ctx->portid, NFNLGRP_NFTABLES, -ENOBUFS); } static int nf_tables_dump_chains(struct sk_buff *skb, struct netlink_callback *cb) { const struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); unsigned int idx = 0, s_idx = cb->args[0]; struct net *net = sock_net(skb->sk); int family = nfmsg->nfgen_family; struct nftables_pernet *nft_net; const struct nft_table *table; const struct nft_chain *chain; rcu_read_lock(); nft_net = nft_pernet(net); cb->seq = READ_ONCE(nft_net->base_seq); list_for_each_entry_rcu(table, &nft_net->tables, list) { if (family != NFPROTO_UNSPEC && family != table->family) continue; list_for_each_entry_rcu(chain, &table->chains, list) { if (idx < s_idx) goto cont; if (idx > s_idx) memset(&cb->args[1], 0, sizeof(cb->args) - sizeof(cb->args[0])); if (!nft_is_active(net, chain)) continue; if (nf_tables_fill_chain_info(skb, net, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFT_MSG_NEWCHAIN, NLM_F_MULTI, table->family, table, chain, NULL) < 0) goto done; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); cont: idx++; } } done: rcu_read_unlock(); cb->args[0] = idx; return skb->len; } /* called with rcu_read_lock held */ static int nf_tables_getchain(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_cur(info->net); u8 family = info->nfmsg->nfgen_family; const struct nft_chain *chain; struct net *net = info->net; struct nft_table *table; struct sk_buff *skb2; int err; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = nf_tables_dump_chains, .module = THIS_MODULE, }; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } table = nft_table_lookup(net, nla[NFTA_CHAIN_TABLE], family, genmask, 0); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_TABLE]); return PTR_ERR(table); } chain = nft_chain_lookup(net, table, nla[NFTA_CHAIN_NAME], genmask); if (IS_ERR(chain)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_NAME]); return PTR_ERR(chain); } skb2 = alloc_skb(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb2) return -ENOMEM; err = nf_tables_fill_chain_info(skb2, net, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFT_MSG_NEWCHAIN, 0, family, table, chain, NULL); if (err < 0) goto err_fill_chain_info; return nfnetlink_unicast(skb2, net, NETLINK_CB(skb).portid); err_fill_chain_info: kfree_skb(skb2); return err; } static const struct nla_policy nft_counter_policy[NFTA_COUNTER_MAX + 1] = { [NFTA_COUNTER_PACKETS] = { .type = NLA_U64 }, [NFTA_COUNTER_BYTES] = { .type = NLA_U64 }, }; static struct nft_stats __percpu *nft_stats_alloc(const struct nlattr *attr) { struct nlattr *tb[NFTA_COUNTER_MAX+1]; struct nft_stats __percpu *newstats; struct nft_stats *stats; int err; err = nla_parse_nested_deprecated(tb, NFTA_COUNTER_MAX, attr, nft_counter_policy, NULL); if (err < 0) return ERR_PTR(err); if (!tb[NFTA_COUNTER_BYTES] || !tb[NFTA_COUNTER_PACKETS]) return ERR_PTR(-EINVAL); newstats = netdev_alloc_pcpu_stats(struct nft_stats); if (newstats == NULL) return ERR_PTR(-ENOMEM); /* Restore old counters on this cpu, no problem. Per-cpu statistics * are not exposed to userspace. */ preempt_disable(); stats = this_cpu_ptr(newstats); stats->bytes = be64_to_cpu(nla_get_be64(tb[NFTA_COUNTER_BYTES])); stats->pkts = be64_to_cpu(nla_get_be64(tb[NFTA_COUNTER_PACKETS])); preempt_enable(); return newstats; } static void nft_chain_stats_replace(struct nft_trans *trans) { struct nft_base_chain *chain = nft_base_chain(trans->ctx.chain); if (!nft_trans_chain_stats(trans)) return; nft_trans_chain_stats(trans) = rcu_replace_pointer(chain->stats, nft_trans_chain_stats(trans), lockdep_commit_lock_is_held(trans->ctx.net)); if (!nft_trans_chain_stats(trans)) static_branch_inc(&nft_counters_enabled); } static void nf_tables_chain_free_chain_rules(struct nft_chain *chain) { struct nft_rule_blob *g0 = rcu_dereference_raw(chain->blob_gen_0); struct nft_rule_blob *g1 = rcu_dereference_raw(chain->blob_gen_1); if (g0 != g1) kvfree(g1); kvfree(g0); /* should be NULL either via abort or via successful commit */ WARN_ON_ONCE(chain->blob_next); kvfree(chain->blob_next); } void nf_tables_chain_destroy(struct nft_ctx *ctx) { struct nft_chain *chain = ctx->chain; struct nft_hook *hook, *next; if (WARN_ON(chain->use > 0)) return; /* no concurrent access possible anymore */ nf_tables_chain_free_chain_rules(chain); if (nft_is_base_chain(chain)) { struct nft_base_chain *basechain = nft_base_chain(chain); if (nft_base_chain_netdev(ctx->family, basechain->ops.hooknum)) { list_for_each_entry_safe(hook, next, &basechain->hook_list, list) { list_del_rcu(&hook->list); kfree_rcu(hook, rcu); } } module_put(basechain->type->owner); if (rcu_access_pointer(basechain->stats)) { static_branch_dec(&nft_counters_enabled); free_percpu(rcu_dereference_raw(basechain->stats)); } kfree(chain->name); kfree(chain->udata); kfree(basechain); } else { kfree(chain->name); kfree(chain->udata); kfree(chain); } } static struct nft_hook *nft_netdev_hook_alloc(struct net *net, const struct nlattr *attr) { struct net_device *dev; char ifname[IFNAMSIZ]; struct nft_hook *hook; int err; hook = kmalloc(sizeof(struct nft_hook), GFP_KERNEL_ACCOUNT); if (!hook) { err = -ENOMEM; goto err_hook_alloc; } nla_strscpy(ifname, attr, IFNAMSIZ); /* nf_tables_netdev_event() is called under rtnl_mutex, this is * indirectly serializing all the other holders of the commit_mutex with * the rtnl_mutex. */ dev = __dev_get_by_name(net, ifname); if (!dev) { err = -ENOENT; goto err_hook_dev; } hook->ops.dev = dev; return hook; err_hook_dev: kfree(hook); err_hook_alloc: return ERR_PTR(err); } static struct nft_hook *nft_hook_list_find(struct list_head *hook_list, const struct nft_hook *this) { struct nft_hook *hook; list_for_each_entry(hook, hook_list, list) { if (this->ops.dev == hook->ops.dev) return hook; } return NULL; } static int nf_tables_parse_netdev_hooks(struct net *net, const struct nlattr *attr, struct list_head *hook_list, struct netlink_ext_ack *extack) { struct nft_hook *hook, *next; const struct nlattr *tmp; int rem, n = 0, err; nla_for_each_nested(tmp, attr, rem) { if (nla_type(tmp) != NFTA_DEVICE_NAME) { err = -EINVAL; goto err_hook; } hook = nft_netdev_hook_alloc(net, tmp); if (IS_ERR(hook)) { NL_SET_BAD_ATTR(extack, tmp); err = PTR_ERR(hook); goto err_hook; } if (nft_hook_list_find(hook_list, hook)) { NL_SET_BAD_ATTR(extack, tmp); kfree(hook); err = -EEXIST; goto err_hook; } list_add_tail(&hook->list, hook_list); n++; if (n == NFT_NETDEVICE_MAX) { err = -EFBIG; goto err_hook; } } return 0; err_hook: list_for_each_entry_safe(hook, next, hook_list, list) { list_del(&hook->list); kfree(hook); } return err; } struct nft_chain_hook { u32 num; s32 priority; const struct nft_chain_type *type; struct list_head list; }; static int nft_chain_parse_netdev(struct net *net, struct nlattr *tb[], struct list_head *hook_list, struct netlink_ext_ack *extack, u32 flags) { struct nft_hook *hook; int err; if (tb[NFTA_HOOK_DEV]) { hook = nft_netdev_hook_alloc(net, tb[NFTA_HOOK_DEV]); if (IS_ERR(hook)) { NL_SET_BAD_ATTR(extack, tb[NFTA_HOOK_DEV]); return PTR_ERR(hook); } list_add_tail(&hook->list, hook_list); } else if (tb[NFTA_HOOK_DEVS]) { err = nf_tables_parse_netdev_hooks(net, tb[NFTA_HOOK_DEVS], hook_list, extack); if (err < 0) return err; } if (flags & NFT_CHAIN_HW_OFFLOAD && list_empty(hook_list)) return -EINVAL; return 0; } static int nft_chain_parse_hook(struct net *net, struct nft_base_chain *basechain, const struct nlattr * const nla[], struct nft_chain_hook *hook, u8 family, u32 flags, struct netlink_ext_ack *extack) { struct nftables_pernet *nft_net = nft_pernet(net); struct nlattr *ha[NFTA_HOOK_MAX + 1]; const struct nft_chain_type *type; int err; lockdep_assert_held(&nft_net->commit_mutex); lockdep_nfnl_nft_mutex_not_held(); err = nla_parse_nested_deprecated(ha, NFTA_HOOK_MAX, nla[NFTA_CHAIN_HOOK], nft_hook_policy, NULL); if (err < 0) return err; if (!basechain) { if (!ha[NFTA_HOOK_HOOKNUM] || !ha[NFTA_HOOK_PRIORITY]) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_NAME]); return -ENOENT; } hook->num = ntohl(nla_get_be32(ha[NFTA_HOOK_HOOKNUM])); hook->priority = ntohl(nla_get_be32(ha[NFTA_HOOK_PRIORITY])); type = __nft_chain_type_get(family, NFT_CHAIN_T_DEFAULT); if (!type) return -EOPNOTSUPP; if (nla[NFTA_CHAIN_TYPE]) { type = nf_tables_chain_type_lookup(net, nla[NFTA_CHAIN_TYPE], family, true); if (IS_ERR(type)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_TYPE]); return PTR_ERR(type); } } if (hook->num >= NFT_MAX_HOOKS || !(type->hook_mask & (1 << hook->num))) return -EOPNOTSUPP; if (type->type == NFT_CHAIN_T_NAT && hook->priority <= NF_IP_PRI_CONNTRACK) return -EOPNOTSUPP; } else { if (ha[NFTA_HOOK_HOOKNUM]) { hook->num = ntohl(nla_get_be32(ha[NFTA_HOOK_HOOKNUM])); if (hook->num != basechain->ops.hooknum) return -EOPNOTSUPP; } if (ha[NFTA_HOOK_PRIORITY]) { hook->priority = ntohl(nla_get_be32(ha[NFTA_HOOK_PRIORITY])); if (hook->priority != basechain->ops.priority) return -EOPNOTSUPP; } if (nla[NFTA_CHAIN_TYPE]) { type = __nf_tables_chain_type_lookup(nla[NFTA_CHAIN_TYPE], family); if (!type) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_TYPE]); return -ENOENT; } } else { type = basechain->type; } } if (!try_module_get(type->owner)) { if (nla[NFTA_CHAIN_TYPE]) NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_TYPE]); return -ENOENT; } hook->type = type; INIT_LIST_HEAD(&hook->list); if (nft_base_chain_netdev(family, hook->num)) { err = nft_chain_parse_netdev(net, ha, &hook->list, extack, flags); if (err < 0) { module_put(type->owner); return err; } } else if (ha[NFTA_HOOK_DEV] || ha[NFTA_HOOK_DEVS]) { module_put(type->owner); return -EOPNOTSUPP; } return 0; } static void nft_chain_release_hook(struct nft_chain_hook *hook) { struct nft_hook *h, *next; list_for_each_entry_safe(h, next, &hook->list, list) { list_del(&h->list); kfree(h); } module_put(hook->type->owner); } static void nft_last_rule(const struct nft_chain *chain, const void *ptr) { struct nft_rule_dp_last *lrule; BUILD_BUG_ON(offsetof(struct nft_rule_dp_last, end) != 0); lrule = (struct nft_rule_dp_last *)ptr; lrule->end.is_last = 1; lrule->chain = chain; /* blob size does not include the trailer rule */ } static struct nft_rule_blob *nf_tables_chain_alloc_rules(const struct nft_chain *chain, unsigned int size) { struct nft_rule_blob *blob; if (size > INT_MAX) return NULL; size += sizeof(struct nft_rule_blob) + sizeof(struct nft_rule_dp_last); blob = kvmalloc(size, GFP_KERNEL_ACCOUNT); if (!blob) return NULL; blob->size = 0; nft_last_rule(chain, blob->data); return blob; } static void nft_basechain_hook_init(struct nf_hook_ops *ops, u8 family, const struct nft_chain_hook *hook, struct nft_chain *chain) { ops->pf = family; ops->hooknum = hook->num; ops->priority = hook->priority; ops->priv = chain; ops->hook = hook->type->hooks[ops->hooknum]; ops->hook_ops_type = NF_HOOK_OP_NF_TABLES; } static int nft_basechain_init(struct nft_base_chain *basechain, u8 family, struct nft_chain_hook *hook, u32 flags) { struct nft_chain *chain; struct nft_hook *h; basechain->type = hook->type; INIT_LIST_HEAD(&basechain->hook_list); chain = &basechain->chain; if (nft_base_chain_netdev(family, hook->num)) { list_splice_init(&hook->list, &basechain->hook_list); list_for_each_entry(h, &basechain->hook_list, list) nft_basechain_hook_init(&h->ops, family, hook, chain); } nft_basechain_hook_init(&basechain->ops, family, hook, chain); chain->flags |= NFT_CHAIN_BASE | flags; basechain->policy = NF_ACCEPT; if (chain->flags & NFT_CHAIN_HW_OFFLOAD && !nft_chain_offload_support(basechain)) { list_splice_init(&basechain->hook_list, &hook->list); return -EOPNOTSUPP; } flow_block_init(&basechain->flow_block); return 0; } int nft_chain_add(struct nft_table *table, struct nft_chain *chain) { int err; err = rhltable_insert_key(&table->chains_ht, chain->name, &chain->rhlhead, nft_chain_ht_params); if (err) return err; list_add_tail_rcu(&chain->list, &table->chains); return 0; } static u64 chain_id; static int nf_tables_addchain(struct nft_ctx *ctx, u8 family, u8 genmask, u8 policy, u32 flags, struct netlink_ext_ack *extack) { const struct nlattr * const *nla = ctx->nla; struct nft_table *table = ctx->table; struct nft_base_chain *basechain; struct net *net = ctx->net; char name[NFT_NAME_MAXLEN]; struct nft_rule_blob *blob; struct nft_trans *trans; struct nft_chain *chain; int err; if (nla[NFTA_CHAIN_HOOK]) { struct nft_stats __percpu *stats = NULL; struct nft_chain_hook hook = {}; if (flags & NFT_CHAIN_BINDING) return -EOPNOTSUPP; err = nft_chain_parse_hook(net, NULL, nla, &hook, family, flags, extack); if (err < 0) return err; basechain = kzalloc(sizeof(*basechain), GFP_KERNEL_ACCOUNT); if (basechain == NULL) { nft_chain_release_hook(&hook); return -ENOMEM; } chain = &basechain->chain; if (nla[NFTA_CHAIN_COUNTERS]) { stats = nft_stats_alloc(nla[NFTA_CHAIN_COUNTERS]); if (IS_ERR(stats)) { nft_chain_release_hook(&hook); kfree(basechain); return PTR_ERR(stats); } rcu_assign_pointer(basechain->stats, stats); } err = nft_basechain_init(basechain, family, &hook, flags); if (err < 0) { nft_chain_release_hook(&hook); kfree(basechain); free_percpu(stats); return err; } if (stats) static_branch_inc(&nft_counters_enabled); } else { if (flags & NFT_CHAIN_BASE) return -EINVAL; if (flags & NFT_CHAIN_HW_OFFLOAD) return -EOPNOTSUPP; chain = kzalloc(sizeof(*chain), GFP_KERNEL_ACCOUNT); if (chain == NULL) return -ENOMEM; chain->flags = flags; } ctx->chain = chain; INIT_LIST_HEAD(&chain->rules); chain->handle = nf_tables_alloc_handle(table); chain->table = table; if (nla[NFTA_CHAIN_NAME]) { chain->name = nla_strdup(nla[NFTA_CHAIN_NAME], GFP_KERNEL_ACCOUNT); } else { if (!(flags & NFT_CHAIN_BINDING)) { err = -EINVAL; goto err_destroy_chain; } snprintf(name, sizeof(name), "__chain%llu", ++chain_id); chain->name = kstrdup(name, GFP_KERNEL_ACCOUNT); } if (!chain->name) { err = -ENOMEM; goto err_destroy_chain; } if (nla[NFTA_CHAIN_USERDATA]) { chain->udata = nla_memdup(nla[NFTA_CHAIN_USERDATA], GFP_KERNEL_ACCOUNT); if (chain->udata == NULL) { err = -ENOMEM; goto err_destroy_chain; } chain->udlen = nla_len(nla[NFTA_CHAIN_USERDATA]); } blob = nf_tables_chain_alloc_rules(chain, 0); if (!blob) { err = -ENOMEM; goto err_destroy_chain; } RCU_INIT_POINTER(chain->blob_gen_0, blob); RCU_INIT_POINTER(chain->blob_gen_1, blob); err = nf_tables_register_hook(net, table, chain); if (err < 0) goto err_destroy_chain; if (!nft_use_inc(&table->use)) { err = -EMFILE; goto err_use; } trans = nft_trans_chain_add(ctx, NFT_MSG_NEWCHAIN); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto err_unregister_hook; } nft_trans_chain_policy(trans) = NFT_CHAIN_POLICY_UNSET; if (nft_is_base_chain(chain)) nft_trans_chain_policy(trans) = policy; err = nft_chain_add(table, chain); if (err < 0) { nft_trans_destroy(trans); goto err_unregister_hook; } return 0; err_unregister_hook: nft_use_dec_restore(&table->use); err_use: nf_tables_unregister_hook(net, table, chain); err_destroy_chain: nf_tables_chain_destroy(ctx); return err; } static int nf_tables_updchain(struct nft_ctx *ctx, u8 genmask, u8 policy, u32 flags, const struct nlattr *attr, struct netlink_ext_ack *extack) { const struct nlattr * const *nla = ctx->nla; struct nft_base_chain *basechain = NULL; struct nft_table *table = ctx->table; struct nft_chain *chain = ctx->chain; struct nft_chain_hook hook = {}; struct nft_stats *stats = NULL; struct nft_hook *h, *next; struct nf_hook_ops *ops; struct nft_trans *trans; bool unregister = false; int err; if (chain->flags ^ flags) return -EOPNOTSUPP; INIT_LIST_HEAD(&hook.list); if (nla[NFTA_CHAIN_HOOK]) { if (!nft_is_base_chain(chain)) { NL_SET_BAD_ATTR(extack, attr); return -EEXIST; } basechain = nft_base_chain(chain); err = nft_chain_parse_hook(ctx->net, basechain, nla, &hook, ctx->family, flags, extack); if (err < 0) return err; if (basechain->type != hook.type) { nft_chain_release_hook(&hook); NL_SET_BAD_ATTR(extack, attr); return -EEXIST; } if (nft_base_chain_netdev(ctx->family, basechain->ops.hooknum)) { list_for_each_entry_safe(h, next, &hook.list, list) { h->ops.pf = basechain->ops.pf; h->ops.hooknum = basechain->ops.hooknum; h->ops.priority = basechain->ops.priority; h->ops.priv = basechain->ops.priv; h->ops.hook = basechain->ops.hook; if (nft_hook_list_find(&basechain->hook_list, h)) { list_del(&h->list); kfree(h); } } } else { ops = &basechain->ops; if (ops->hooknum != hook.num || ops->priority != hook.priority) { nft_chain_release_hook(&hook); NL_SET_BAD_ATTR(extack, attr); return -EEXIST; } } } if (nla[NFTA_CHAIN_HANDLE] && nla[NFTA_CHAIN_NAME]) { struct nft_chain *chain2; chain2 = nft_chain_lookup(ctx->net, table, nla[NFTA_CHAIN_NAME], genmask); if (!IS_ERR(chain2)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_NAME]); err = -EEXIST; goto err_hooks; } } if (nla[NFTA_CHAIN_COUNTERS]) { if (!nft_is_base_chain(chain)) { err = -EOPNOTSUPP; goto err_hooks; } stats = nft_stats_alloc(nla[NFTA_CHAIN_COUNTERS]); if (IS_ERR(stats)) { err = PTR_ERR(stats); goto err_hooks; } } if (!(table->flags & NFT_TABLE_F_DORMANT) && nft_is_base_chain(chain) && !list_empty(&hook.list)) { basechain = nft_base_chain(chain); ops = &basechain->ops; if (nft_base_chain_netdev(table->family, basechain->ops.hooknum)) { err = nft_netdev_register_hooks(ctx->net, &hook.list); if (err < 0) goto err_hooks; } } unregister = true; err = -ENOMEM; trans = nft_trans_alloc(ctx, NFT_MSG_NEWCHAIN, sizeof(struct nft_trans_chain)); if (trans == NULL) goto err_trans; nft_trans_chain_stats(trans) = stats; nft_trans_chain_update(trans) = true; if (nla[NFTA_CHAIN_POLICY]) nft_trans_chain_policy(trans) = policy; else nft_trans_chain_policy(trans) = -1; if (nla[NFTA_CHAIN_HANDLE] && nla[NFTA_CHAIN_NAME]) { struct nftables_pernet *nft_net = nft_pernet(ctx->net); struct nft_trans *tmp; char *name; err = -ENOMEM; name = nla_strdup(nla[NFTA_CHAIN_NAME], GFP_KERNEL_ACCOUNT); if (!name) goto err_trans; err = -EEXIST; list_for_each_entry(tmp, &nft_net->commit_list, list) { if (tmp->msg_type == NFT_MSG_NEWCHAIN && tmp->ctx.table == table && nft_trans_chain_update(tmp) && nft_trans_chain_name(tmp) && strcmp(name, nft_trans_chain_name(tmp)) == 0) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_NAME]); kfree(name); goto err_trans; } } nft_trans_chain_name(trans) = name; } nft_trans_basechain(trans) = basechain; INIT_LIST_HEAD(&nft_trans_chain_hooks(trans)); list_splice(&hook.list, &nft_trans_chain_hooks(trans)); if (nla[NFTA_CHAIN_HOOK]) module_put(hook.type->owner); nft_trans_commit_list_add_tail(ctx->net, trans); return 0; err_trans: free_percpu(stats); kfree(trans); err_hooks: if (nla[NFTA_CHAIN_HOOK]) { list_for_each_entry_safe(h, next, &hook.list, list) { if (unregister) nf_unregister_net_hook(ctx->net, &h->ops); list_del(&h->list); kfree_rcu(h, rcu); } module_put(hook.type->owner); } return err; } static struct nft_chain *nft_chain_lookup_byid(const struct net *net, const struct nft_table *table, const struct nlattr *nla, u8 genmask) { struct nftables_pernet *nft_net = nft_pernet(net); u32 id = ntohl(nla_get_be32(nla)); struct nft_trans *trans; list_for_each_entry(trans, &nft_net->commit_list, list) { struct nft_chain *chain = trans->ctx.chain; if (trans->msg_type == NFT_MSG_NEWCHAIN && chain->table == table && id == nft_trans_chain_id(trans) && nft_active_genmask(chain, genmask)) return chain; } return ERR_PTR(-ENOENT); } static int nf_tables_newchain(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct nftables_pernet *nft_net = nft_pernet(info->net); struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct nft_chain *chain = NULL; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; u8 policy = NF_ACCEPT; struct nft_ctx ctx; u64 handle = 0; u32 flags = 0; lockdep_assert_held(&nft_net->commit_mutex); table = nft_table_lookup(net, nla[NFTA_CHAIN_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_TABLE]); return PTR_ERR(table); } chain = NULL; attr = nla[NFTA_CHAIN_NAME]; if (nla[NFTA_CHAIN_HANDLE]) { handle = be64_to_cpu(nla_get_be64(nla[NFTA_CHAIN_HANDLE])); chain = nft_chain_lookup_byhandle(table, handle, genmask); if (IS_ERR(chain)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_HANDLE]); return PTR_ERR(chain); } attr = nla[NFTA_CHAIN_HANDLE]; } else if (nla[NFTA_CHAIN_NAME]) { chain = nft_chain_lookup(net, table, attr, genmask); if (IS_ERR(chain)) { if (PTR_ERR(chain) != -ENOENT) { NL_SET_BAD_ATTR(extack, attr); return PTR_ERR(chain); } chain = NULL; } } else if (!nla[NFTA_CHAIN_ID]) { return -EINVAL; } if (nla[NFTA_CHAIN_POLICY]) { if (chain != NULL && !nft_is_base_chain(chain)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_POLICY]); return -EOPNOTSUPP; } if (chain == NULL && nla[NFTA_CHAIN_HOOK] == NULL) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_POLICY]); return -EOPNOTSUPP; } policy = ntohl(nla_get_be32(nla[NFTA_CHAIN_POLICY])); switch (policy) { case NF_DROP: case NF_ACCEPT: break; default: return -EINVAL; } } if (nla[NFTA_CHAIN_FLAGS]) flags = ntohl(nla_get_be32(nla[NFTA_CHAIN_FLAGS])); else if (chain) flags = chain->flags; if (flags & ~NFT_CHAIN_FLAGS) return -EOPNOTSUPP; nft_ctx_init(&ctx, net, skb, info->nlh, family, table, chain, nla); if (chain != NULL) { if (chain->flags & NFT_CHAIN_BINDING) return -EINVAL; if (info->nlh->nlmsg_flags & NLM_F_EXCL) { NL_SET_BAD_ATTR(extack, attr); return -EEXIST; } if (info->nlh->nlmsg_flags & NLM_F_REPLACE) return -EOPNOTSUPP; flags |= chain->flags & NFT_CHAIN_BASE; return nf_tables_updchain(&ctx, genmask, policy, flags, attr, extack); } return nf_tables_addchain(&ctx, family, genmask, policy, flags, extack); } static int nft_delchain_hook(struct nft_ctx *ctx, struct nft_base_chain *basechain, struct netlink_ext_ack *extack) { const struct nft_chain *chain = &basechain->chain; const struct nlattr * const *nla = ctx->nla; struct nft_chain_hook chain_hook = {}; struct nft_hook *this, *hook; LIST_HEAD(chain_del_list); struct nft_trans *trans; int err; err = nft_chain_parse_hook(ctx->net, basechain, nla, &chain_hook, ctx->family, chain->flags, extack); if (err < 0) return err; list_for_each_entry(this, &chain_hook.list, list) { hook = nft_hook_list_find(&basechain->hook_list, this); if (!hook) { err = -ENOENT; goto err_chain_del_hook; } list_move(&hook->list, &chain_del_list); } trans = nft_trans_alloc(ctx, NFT_MSG_DELCHAIN, sizeof(struct nft_trans_chain)); if (!trans) { err = -ENOMEM; goto err_chain_del_hook; } nft_trans_basechain(trans) = basechain; nft_trans_chain_update(trans) = true; INIT_LIST_HEAD(&nft_trans_chain_hooks(trans)); list_splice(&chain_del_list, &nft_trans_chain_hooks(trans)); nft_chain_release_hook(&chain_hook); nft_trans_commit_list_add_tail(ctx->net, trans); return 0; err_chain_del_hook: list_splice(&chain_del_list, &basechain->hook_list); nft_chain_release_hook(&chain_hook); return err; } static int nf_tables_delchain(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_chain *chain; struct nft_rule *rule; struct nft_ctx ctx; u64 handle; u32 use; int err; table = nft_table_lookup(net, nla[NFTA_CHAIN_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_CHAIN_TABLE]); return PTR_ERR(table); } if (nla[NFTA_CHAIN_HANDLE]) { attr = nla[NFTA_CHAIN_HANDLE]; handle = be64_to_cpu(nla_get_be64(attr)); chain = nft_chain_lookup_byhandle(table, handle, genmask); } else { attr = nla[NFTA_CHAIN_NAME]; chain = nft_chain_lookup(net, table, attr, genmask); } if (IS_ERR(chain)) { if (PTR_ERR(chain) == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYCHAIN) return 0; NL_SET_BAD_ATTR(extack, attr); return PTR_ERR(chain); } if (nft_chain_binding(chain)) return -EOPNOTSUPP; nft_ctx_init(&ctx, net, skb, info->nlh, family, table, chain, nla); if (nla[NFTA_CHAIN_HOOK]) { if (chain->flags & NFT_CHAIN_HW_OFFLOAD) return -EOPNOTSUPP; if (nft_is_base_chain(chain)) { struct nft_base_chain *basechain = nft_base_chain(chain); if (nft_base_chain_netdev(table->family, basechain->ops.hooknum)) return nft_delchain_hook(&ctx, basechain, extack); } } if (info->nlh->nlmsg_flags & NLM_F_NONREC && chain->use > 0) return -EBUSY; use = chain->use; list_for_each_entry(rule, &chain->rules, list) { if (!nft_is_active_next(net, rule)) continue; use--; err = nft_delrule(&ctx, rule); if (err < 0) return err; } /* There are rules and elements that are still holding references to us, * we cannot do a recursive removal in this case. */ if (use > 0) { NL_SET_BAD_ATTR(extack, attr); return -EBUSY; } return nft_delchain(&ctx); } /* * Expressions */ /** * nft_register_expr - register nf_tables expr type * @type: expr type * * Registers the expr type for use with nf_tables. Returns zero on * success or a negative errno code otherwise. */ int nft_register_expr(struct nft_expr_type *type) { if (WARN_ON_ONCE(type->maxattr > NFT_EXPR_MAXATTR)) return -ENOMEM; nfnl_lock(NFNL_SUBSYS_NFTABLES); if (type->family == NFPROTO_UNSPEC) list_add_tail_rcu(&type->list, &nf_tables_expressions); else list_add_rcu(&type->list, &nf_tables_expressions); nfnl_unlock(NFNL_SUBSYS_NFTABLES); return 0; } EXPORT_SYMBOL_GPL(nft_register_expr); /** * nft_unregister_expr - unregister nf_tables expr type * @type: expr type * * Unregisters the expr typefor use with nf_tables. */ void nft_unregister_expr(struct nft_expr_type *type) { nfnl_lock(NFNL_SUBSYS_NFTABLES); list_del_rcu(&type->list); nfnl_unlock(NFNL_SUBSYS_NFTABLES); } EXPORT_SYMBOL_GPL(nft_unregister_expr); static const struct nft_expr_type *__nft_expr_type_get(u8 family, struct nlattr *nla) { const struct nft_expr_type *type, *candidate = NULL; list_for_each_entry(type, &nf_tables_expressions, list) { if (!nla_strcmp(nla, type->name)) { if (!type->family && !candidate) candidate = type; else if (type->family == family) candidate = type; } } return candidate; } #ifdef CONFIG_MODULES static int nft_expr_type_request_module(struct net *net, u8 family, struct nlattr *nla) { if (nft_request_module(net, "nft-expr-%u-%.*s", family, nla_len(nla), (char *)nla_data(nla)) == -EAGAIN) return -EAGAIN; return 0; } #endif static const struct nft_expr_type *nft_expr_type_get(struct net *net, u8 family, struct nlattr *nla) { const struct nft_expr_type *type; if (nla == NULL) return ERR_PTR(-EINVAL); type = __nft_expr_type_get(family, nla); if (type != NULL && try_module_get(type->owner)) return type; lockdep_nfnl_nft_mutex_not_held(); #ifdef CONFIG_MODULES if (type == NULL) { if (nft_expr_type_request_module(net, family, nla) == -EAGAIN) return ERR_PTR(-EAGAIN); if (nft_request_module(net, "nft-expr-%.*s", nla_len(nla), (char *)nla_data(nla)) == -EAGAIN) return ERR_PTR(-EAGAIN); } #endif return ERR_PTR(-ENOENT); } static const struct nla_policy nft_expr_policy[NFTA_EXPR_MAX + 1] = { [NFTA_EXPR_NAME] = { .type = NLA_STRING, .len = NFT_MODULE_AUTOLOAD_LIMIT }, [NFTA_EXPR_DATA] = { .type = NLA_NESTED }, }; static int nf_tables_fill_expr_info(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { if (nla_put_string(skb, NFTA_EXPR_NAME, expr->ops->type->name)) goto nla_put_failure; if (expr->ops->dump) { struct nlattr *data = nla_nest_start_noflag(skb, NFTA_EXPR_DATA); if (data == NULL) goto nla_put_failure; if (expr->ops->dump(skb, expr, reset) < 0) goto nla_put_failure; nla_nest_end(skb, data); } return skb->len; nla_put_failure: return -1; }; int nft_expr_dump(struct sk_buff *skb, unsigned int attr, const struct nft_expr *expr, bool reset) { struct nlattr *nest; nest = nla_nest_start_noflag(skb, attr); if (!nest) goto nla_put_failure; if (nf_tables_fill_expr_info(skb, expr, reset) < 0) goto nla_put_failure; nla_nest_end(skb, nest); return 0; nla_put_failure: return -1; } struct nft_expr_info { const struct nft_expr_ops *ops; const struct nlattr *attr; struct nlattr *tb[NFT_EXPR_MAXATTR + 1]; }; static int nf_tables_expr_parse(const struct nft_ctx *ctx, const struct nlattr *nla, struct nft_expr_info *info) { const struct nft_expr_type *type; const struct nft_expr_ops *ops; struct nlattr *tb[NFTA_EXPR_MAX + 1]; int err; err = nla_parse_nested_deprecated(tb, NFTA_EXPR_MAX, nla, nft_expr_policy, NULL); if (err < 0) return err; type = nft_expr_type_get(ctx->net, ctx->family, tb[NFTA_EXPR_NAME]); if (IS_ERR(type)) return PTR_ERR(type); if (tb[NFTA_EXPR_DATA]) { err = nla_parse_nested_deprecated(info->tb, type->maxattr, tb[NFTA_EXPR_DATA], type->policy, NULL); if (err < 0) goto err1; } else memset(info->tb, 0, sizeof(info->tb[0]) * (type->maxattr + 1)); if (type->select_ops != NULL) { ops = type->select_ops(ctx, (const struct nlattr * const *)info->tb); if (IS_ERR(ops)) { err = PTR_ERR(ops); #ifdef CONFIG_MODULES if (err == -EAGAIN) if (nft_expr_type_request_module(ctx->net, ctx->family, tb[NFTA_EXPR_NAME]) != -EAGAIN) err = -ENOENT; #endif goto err1; } } else ops = type->ops; info->attr = nla; info->ops = ops; return 0; err1: module_put(type->owner); return err; } int nft_expr_inner_parse(const struct nft_ctx *ctx, const struct nlattr *nla, struct nft_expr_info *info) { struct nlattr *tb[NFTA_EXPR_MAX + 1]; const struct nft_expr_type *type; int err; err = nla_parse_nested_deprecated(tb, NFTA_EXPR_MAX, nla, nft_expr_policy, NULL); if (err < 0) return err; if (!tb[NFTA_EXPR_DATA] || !tb[NFTA_EXPR_NAME]) return -EINVAL; type = __nft_expr_type_get(ctx->family, tb[NFTA_EXPR_NAME]); if (!type) return -ENOENT; if (!type->inner_ops) return -EOPNOTSUPP; err = nla_parse_nested_deprecated(info->tb, type->maxattr, tb[NFTA_EXPR_DATA], type->policy, NULL); if (err < 0) goto err_nla_parse; info->attr = nla; info->ops = type->inner_ops; return 0; err_nla_parse: return err; } static int nf_tables_newexpr(const struct nft_ctx *ctx, const struct nft_expr_info *expr_info, struct nft_expr *expr) { const struct nft_expr_ops *ops = expr_info->ops; int err; expr->ops = ops; if (ops->init) { err = ops->init(ctx, expr, (const struct nlattr **)expr_info->tb); if (err < 0) goto err1; } return 0; err1: expr->ops = NULL; return err; } static void nf_tables_expr_destroy(const struct nft_ctx *ctx, struct nft_expr *expr) { const struct nft_expr_type *type = expr->ops->type; if (expr->ops->destroy) expr->ops->destroy(ctx, expr); module_put(type->owner); } static struct nft_expr *nft_expr_init(const struct nft_ctx *ctx, const struct nlattr *nla) { struct nft_expr_info expr_info; struct nft_expr *expr; struct module *owner; int err; err = nf_tables_expr_parse(ctx, nla, &expr_info); if (err < 0) goto err_expr_parse; err = -EOPNOTSUPP; if (!(expr_info.ops->type->flags & NFT_EXPR_STATEFUL)) goto err_expr_stateful; err = -ENOMEM; expr = kzalloc(expr_info.ops->size, GFP_KERNEL_ACCOUNT); if (expr == NULL) goto err_expr_stateful; err = nf_tables_newexpr(ctx, &expr_info, expr); if (err < 0) goto err_expr_new; return expr; err_expr_new: kfree(expr); err_expr_stateful: owner = expr_info.ops->type->owner; if (expr_info.ops->type->release_ops) expr_info.ops->type->release_ops(expr_info.ops); module_put(owner); err_expr_parse: return ERR_PTR(err); } int nft_expr_clone(struct nft_expr *dst, struct nft_expr *src) { int err; if (WARN_ON_ONCE(!src->ops->clone)) return -EINVAL; dst->ops = src->ops; err = src->ops->clone(dst, src); if (err < 0) return err; __module_get(src->ops->type->owner); return 0; } void nft_expr_destroy(const struct nft_ctx *ctx, struct nft_expr *expr) { nf_tables_expr_destroy(ctx, expr); kfree(expr); } /* * Rules */ static struct nft_rule *__nft_rule_lookup(const struct nft_chain *chain, u64 handle) { struct nft_rule *rule; // FIXME: this sucks list_for_each_entry_rcu(rule, &chain->rules, list) { if (handle == rule->handle) return rule; } return ERR_PTR(-ENOENT); } static struct nft_rule *nft_rule_lookup(const struct nft_chain *chain, const struct nlattr *nla) { if (nla == NULL) return ERR_PTR(-EINVAL); return __nft_rule_lookup(chain, be64_to_cpu(nla_get_be64(nla))); } static const struct nla_policy nft_rule_policy[NFTA_RULE_MAX + 1] = { [NFTA_RULE_TABLE] = { .type = NLA_STRING, .len = NFT_TABLE_MAXNAMELEN - 1 }, [NFTA_RULE_CHAIN] = { .type = NLA_STRING, .len = NFT_CHAIN_MAXNAMELEN - 1 }, [NFTA_RULE_HANDLE] = { .type = NLA_U64 }, [NFTA_RULE_EXPRESSIONS] = NLA_POLICY_NESTED_ARRAY(nft_expr_policy), [NFTA_RULE_COMPAT] = { .type = NLA_NESTED }, [NFTA_RULE_POSITION] = { .type = NLA_U64 }, [NFTA_RULE_USERDATA] = { .type = NLA_BINARY, .len = NFT_USERDATA_MAXLEN }, [NFTA_RULE_ID] = { .type = NLA_U32 }, [NFTA_RULE_POSITION_ID] = { .type = NLA_U32 }, [NFTA_RULE_CHAIN_ID] = { .type = NLA_U32 }, }; static int nf_tables_fill_rule_info(struct sk_buff *skb, struct net *net, u32 portid, u32 seq, int event, u32 flags, int family, const struct nft_table *table, const struct nft_chain *chain, const struct nft_rule *rule, u64 handle, bool reset) { struct nlmsghdr *nlh; const struct nft_expr *expr, *next; struct nlattr *list; u16 type = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, event); nlh = nfnl_msg_put(skb, portid, seq, type, flags, family, NFNETLINK_V0, nft_base_seq(net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_RULE_TABLE, table->name)) goto nla_put_failure; if (nla_put_string(skb, NFTA_RULE_CHAIN, chain->name)) goto nla_put_failure; if (nla_put_be64(skb, NFTA_RULE_HANDLE, cpu_to_be64(rule->handle), NFTA_RULE_PAD)) goto nla_put_failure; if (event != NFT_MSG_DELRULE && handle) { if (nla_put_be64(skb, NFTA_RULE_POSITION, cpu_to_be64(handle), NFTA_RULE_PAD)) goto nla_put_failure; } if (chain->flags & NFT_CHAIN_HW_OFFLOAD) nft_flow_rule_stats(chain, rule); list = nla_nest_start_noflag(skb, NFTA_RULE_EXPRESSIONS); if (list == NULL) goto nla_put_failure; nft_rule_for_each_expr(expr, next, rule) { if (nft_expr_dump(skb, NFTA_LIST_ELEM, expr, reset) < 0) goto nla_put_failure; } nla_nest_end(skb, list); if (rule->udata) { struct nft_userdata *udata = nft_userdata(rule); if (nla_put(skb, NFTA_RULE_USERDATA, udata->len + 1, udata->data) < 0) goto nla_put_failure; } nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -1; } static void nf_tables_rule_notify(const struct nft_ctx *ctx, const struct nft_rule *rule, int event) { struct nftables_pernet *nft_net = nft_pernet(ctx->net); const struct nft_rule *prule; struct sk_buff *skb; u64 handle = 0; u16 flags = 0; int err; if (!ctx->report && !nfnetlink_has_listeners(ctx->net, NFNLGRP_NFTABLES)) return; skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (skb == NULL) goto err; if (event == NFT_MSG_NEWRULE && !list_is_first(&rule->list, &ctx->chain->rules) && !list_is_last(&rule->list, &ctx->chain->rules)) { prule = list_prev_entry(rule, list); handle = prule->handle; } if (ctx->flags & (NLM_F_APPEND | NLM_F_REPLACE)) flags |= NLM_F_APPEND; if (ctx->flags & (NLM_F_CREATE | NLM_F_EXCL)) flags |= ctx->flags & (NLM_F_CREATE | NLM_F_EXCL); err = nf_tables_fill_rule_info(skb, ctx->net, ctx->portid, ctx->seq, event, flags, ctx->family, ctx->table, ctx->chain, rule, handle, false); if (err < 0) { kfree_skb(skb); goto err; } nft_notify_enqueue(skb, ctx->report, &nft_net->notify_list); return; err: nfnetlink_set_err(ctx->net, ctx->portid, NFNLGRP_NFTABLES, -ENOBUFS); } static void audit_log_rule_reset(const struct nft_table *table, unsigned int base_seq, unsigned int nentries) { char *buf = kasprintf(GFP_ATOMIC, "%s:%u", table->name, base_seq); audit_log_nfcfg(buf, table->family, nentries, AUDIT_NFT_OP_RULE_RESET, GFP_ATOMIC); kfree(buf); } struct nft_rule_dump_ctx { unsigned int s_idx; char *table; char *chain; bool reset; }; static int __nf_tables_dump_rules(struct sk_buff *skb, unsigned int *idx, struct netlink_callback *cb, const struct nft_table *table, const struct nft_chain *chain) { struct nft_rule_dump_ctx *ctx = (void *)cb->ctx; struct net *net = sock_net(skb->sk); const struct nft_rule *rule, *prule; unsigned int entries = 0; int ret = 0; u64 handle; prule = NULL; list_for_each_entry_rcu(rule, &chain->rules, list) { if (!nft_is_active(net, rule)) goto cont_skip; if (*idx < ctx->s_idx) goto cont; if (prule) handle = prule->handle; else handle = 0; if (nf_tables_fill_rule_info(skb, net, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFT_MSG_NEWRULE, NLM_F_MULTI | NLM_F_APPEND, table->family, table, chain, rule, handle, ctx->reset) < 0) { ret = 1; break; } entries++; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); cont: prule = rule; cont_skip: (*idx)++; } if (ctx->reset && entries) audit_log_rule_reset(table, cb->seq, entries); return ret; } static int nf_tables_dump_rules(struct sk_buff *skb, struct netlink_callback *cb) { const struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); struct nft_rule_dump_ctx *ctx = (void *)cb->ctx; struct nft_table *table; const struct nft_chain *chain; unsigned int idx = 0; struct net *net = sock_net(skb->sk); int family = nfmsg->nfgen_family; struct nftables_pernet *nft_net; rcu_read_lock(); nft_net = nft_pernet(net); cb->seq = READ_ONCE(nft_net->base_seq); list_for_each_entry_rcu(table, &nft_net->tables, list) { if (family != NFPROTO_UNSPEC && family != table->family) continue; if (ctx->table && strcmp(ctx->table, table->name) != 0) continue; if (ctx->table && ctx->chain) { struct rhlist_head *list, *tmp; list = rhltable_lookup(&table->chains_ht, ctx->chain, nft_chain_ht_params); if (!list) goto done; rhl_for_each_entry_rcu(chain, tmp, list, rhlhead) { if (!nft_is_active(net, chain)) continue; __nf_tables_dump_rules(skb, &idx, cb, table, chain); break; } goto done; } list_for_each_entry_rcu(chain, &table->chains, list) { if (__nf_tables_dump_rules(skb, &idx, cb, table, chain)) goto done; } if (ctx->table) break; } done: rcu_read_unlock(); ctx->s_idx = idx; return skb->len; } static int nf_tables_dumpreset_rules(struct sk_buff *skb, struct netlink_callback *cb) { struct nftables_pernet *nft_net = nft_pernet(sock_net(skb->sk)); int ret; /* Mutex is held is to prevent that two concurrent dump-and-reset calls * do not underrun counters and quotas. The commit_mutex is used for * the lack a better lock, this is not transaction path. */ mutex_lock(&nft_net->commit_mutex); ret = nf_tables_dump_rules(skb, cb); mutex_unlock(&nft_net->commit_mutex); return ret; } static int nf_tables_dump_rules_start(struct netlink_callback *cb) { struct nft_rule_dump_ctx *ctx = (void *)cb->ctx; const struct nlattr * const *nla = cb->data; BUILD_BUG_ON(sizeof(*ctx) > sizeof(cb->ctx)); if (nla[NFTA_RULE_TABLE]) { ctx->table = nla_strdup(nla[NFTA_RULE_TABLE], GFP_ATOMIC); if (!ctx->table) return -ENOMEM; } if (nla[NFTA_RULE_CHAIN]) { ctx->chain = nla_strdup(nla[NFTA_RULE_CHAIN], GFP_ATOMIC); if (!ctx->chain) { kfree(ctx->table); return -ENOMEM; } } return 0; } static int nf_tables_dumpreset_rules_start(struct netlink_callback *cb) { struct nft_rule_dump_ctx *ctx = (void *)cb->ctx; ctx->reset = true; return nf_tables_dump_rules_start(cb); } static int nf_tables_dump_rules_done(struct netlink_callback *cb) { struct nft_rule_dump_ctx *ctx = (void *)cb->ctx; kfree(ctx->table); kfree(ctx->chain); return 0; } /* called with rcu_read_lock held */ static struct sk_buff * nf_tables_getrule_single(u32 portid, const struct nfnl_info *info, const struct nlattr * const nla[], bool reset) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_cur(info->net); u8 family = info->nfmsg->nfgen_family; const struct nft_chain *chain; const struct nft_rule *rule; struct net *net = info->net; struct nft_table *table; struct sk_buff *skb2; int err; table = nft_table_lookup(net, nla[NFTA_RULE_TABLE], family, genmask, 0); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_TABLE]); return ERR_CAST(table); } chain = nft_chain_lookup(net, table, nla[NFTA_RULE_CHAIN], genmask); if (IS_ERR(chain)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_CHAIN]); return ERR_CAST(chain); } rule = nft_rule_lookup(chain, nla[NFTA_RULE_HANDLE]); if (IS_ERR(rule)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_HANDLE]); return ERR_CAST(rule); } skb2 = alloc_skb(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb2) return ERR_PTR(-ENOMEM); err = nf_tables_fill_rule_info(skb2, net, portid, info->nlh->nlmsg_seq, NFT_MSG_NEWRULE, 0, family, table, chain, rule, 0, reset); if (err < 0) { kfree_skb(skb2); return ERR_PTR(err); } return skb2; } static int nf_tables_getrule(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { u32 portid = NETLINK_CB(skb).portid; struct net *net = info->net; struct sk_buff *skb2; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start= nf_tables_dump_rules_start, .dump = nf_tables_dump_rules, .done = nf_tables_dump_rules_done, .module = THIS_MODULE, .data = (void *)nla, }; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } skb2 = nf_tables_getrule_single(portid, info, nla, false); if (IS_ERR(skb2)) return PTR_ERR(skb2); return nfnetlink_unicast(skb2, net, portid); } static int nf_tables_getrule_reset(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct nftables_pernet *nft_net = nft_pernet(info->net); u32 portid = NETLINK_CB(skb).portid; struct net *net = info->net; struct sk_buff *skb2; char *buf; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start= nf_tables_dumpreset_rules_start, .dump = nf_tables_dumpreset_rules, .done = nf_tables_dump_rules_done, .module = THIS_MODULE, .data = (void *)nla, }; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } if (!try_module_get(THIS_MODULE)) return -EINVAL; rcu_read_unlock(); mutex_lock(&nft_net->commit_mutex); skb2 = nf_tables_getrule_single(portid, info, nla, true); mutex_unlock(&nft_net->commit_mutex); rcu_read_lock(); module_put(THIS_MODULE); if (IS_ERR(skb2)) return PTR_ERR(skb2); buf = kasprintf(GFP_ATOMIC, "%.*s:%u", nla_len(nla[NFTA_RULE_TABLE]), (char *)nla_data(nla[NFTA_RULE_TABLE]), nft_net->base_seq); audit_log_nfcfg(buf, info->nfmsg->nfgen_family, 1, AUDIT_NFT_OP_RULE_RESET, GFP_ATOMIC); kfree(buf); return nfnetlink_unicast(skb2, net, portid); } void nf_tables_rule_destroy(const struct nft_ctx *ctx, struct nft_rule *rule) { struct nft_expr *expr, *next; /* * Careful: some expressions might not be initialized in case this * is called on error from nf_tables_newrule(). */ expr = nft_expr_first(rule); while (nft_expr_more(rule, expr)) { next = nft_expr_next(expr); nf_tables_expr_destroy(ctx, expr); expr = next; } kfree(rule); } static void nf_tables_rule_release(const struct nft_ctx *ctx, struct nft_rule *rule) { nft_rule_expr_deactivate(ctx, rule, NFT_TRANS_RELEASE); nf_tables_rule_destroy(ctx, rule); } int nft_chain_validate(const struct nft_ctx *ctx, const struct nft_chain *chain) { struct nft_expr *expr, *last; const struct nft_data *data; struct nft_rule *rule; int err; if (ctx->level == NFT_JUMP_STACK_SIZE) return -EMLINK; list_for_each_entry(rule, &chain->rules, list) { if (fatal_signal_pending(current)) return -EINTR; if (!nft_is_active_next(ctx->net, rule)) continue; nft_rule_for_each_expr(expr, last, rule) { if (!expr->ops->validate) continue; err = expr->ops->validate(ctx, expr, &data); if (err < 0) return err; } } return 0; } EXPORT_SYMBOL_GPL(nft_chain_validate); static int nft_table_validate(struct net *net, const struct nft_table *table) { struct nft_chain *chain; struct nft_ctx ctx = { .net = net, .family = table->family, }; int err; list_for_each_entry(chain, &table->chains, list) { if (!nft_is_base_chain(chain)) continue; ctx.chain = chain; err = nft_chain_validate(&ctx, chain); if (err < 0) return err; cond_resched(); } return 0; } int nft_setelem_validate(const struct nft_ctx *ctx, struct nft_set *set, const struct nft_set_iter *iter, struct nft_elem_priv *elem_priv) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); struct nft_ctx *pctx = (struct nft_ctx *)ctx; const struct nft_data *data; int err; if (nft_set_ext_exists(ext, NFT_SET_EXT_FLAGS) && *nft_set_ext_flags(ext) & NFT_SET_ELEM_INTERVAL_END) return 0; data = nft_set_ext_data(ext); switch (data->verdict.code) { case NFT_JUMP: case NFT_GOTO: pctx->level++; err = nft_chain_validate(ctx, data->verdict.chain); if (err < 0) return err; pctx->level--; break; default: break; } return 0; } int nft_set_catchall_validate(const struct nft_ctx *ctx, struct nft_set *set) { u8 genmask = nft_genmask_next(ctx->net); struct nft_set_elem_catchall *catchall; struct nft_set_ext *ext; int ret = 0; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask)) continue; ret = nft_setelem_validate(ctx, set, NULL, catchall->elem); if (ret < 0) return ret; } return ret; } static struct nft_rule *nft_rule_lookup_byid(const struct net *net, const struct nft_chain *chain, const struct nlattr *nla); #define NFT_RULE_MAXEXPRS 128 static int nf_tables_newrule(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct nftables_pernet *nft_net = nft_pernet(info->net); struct netlink_ext_ack *extack = info->extack; unsigned int size, i, n, ulen = 0, usize = 0; u8 genmask = nft_genmask_next(info->net); struct nft_rule *rule, *old_rule = NULL; struct nft_expr_info *expr_info = NULL; u8 family = info->nfmsg->nfgen_family; struct nft_flow_rule *flow = NULL; struct net *net = info->net; struct nft_userdata *udata; struct nft_table *table; struct nft_chain *chain; struct nft_trans *trans; u64 handle, pos_handle; struct nft_expr *expr; struct nft_ctx ctx; struct nlattr *tmp; int err, rem; lockdep_assert_held(&nft_net->commit_mutex); table = nft_table_lookup(net, nla[NFTA_RULE_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_TABLE]); return PTR_ERR(table); } if (nla[NFTA_RULE_CHAIN]) { chain = nft_chain_lookup(net, table, nla[NFTA_RULE_CHAIN], genmask); if (IS_ERR(chain)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_CHAIN]); return PTR_ERR(chain); } } else if (nla[NFTA_RULE_CHAIN_ID]) { chain = nft_chain_lookup_byid(net, table, nla[NFTA_RULE_CHAIN_ID], genmask); if (IS_ERR(chain)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_CHAIN_ID]); return PTR_ERR(chain); } } else { return -EINVAL; } if (nft_chain_is_bound(chain)) return -EOPNOTSUPP; if (nla[NFTA_RULE_HANDLE]) { handle = be64_to_cpu(nla_get_be64(nla[NFTA_RULE_HANDLE])); rule = __nft_rule_lookup(chain, handle); if (IS_ERR(rule)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_HANDLE]); return PTR_ERR(rule); } if (info->nlh->nlmsg_flags & NLM_F_EXCL) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_HANDLE]); return -EEXIST; } if (info->nlh->nlmsg_flags & NLM_F_REPLACE) old_rule = rule; else return -EOPNOTSUPP; } else { if (!(info->nlh->nlmsg_flags & NLM_F_CREATE) || info->nlh->nlmsg_flags & NLM_F_REPLACE) return -EINVAL; handle = nf_tables_alloc_handle(table); if (nla[NFTA_RULE_POSITION]) { pos_handle = be64_to_cpu(nla_get_be64(nla[NFTA_RULE_POSITION])); old_rule = __nft_rule_lookup(chain, pos_handle); if (IS_ERR(old_rule)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_POSITION]); return PTR_ERR(old_rule); } } else if (nla[NFTA_RULE_POSITION_ID]) { old_rule = nft_rule_lookup_byid(net, chain, nla[NFTA_RULE_POSITION_ID]); if (IS_ERR(old_rule)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_POSITION_ID]); return PTR_ERR(old_rule); } } } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, chain, nla); n = 0; size = 0; if (nla[NFTA_RULE_EXPRESSIONS]) { expr_info = kvmalloc_array(NFT_RULE_MAXEXPRS, sizeof(struct nft_expr_info), GFP_KERNEL); if (!expr_info) return -ENOMEM; nla_for_each_nested(tmp, nla[NFTA_RULE_EXPRESSIONS], rem) { err = -EINVAL; if (nla_type(tmp) != NFTA_LIST_ELEM) goto err_release_expr; if (n == NFT_RULE_MAXEXPRS) goto err_release_expr; err = nf_tables_expr_parse(&ctx, tmp, &expr_info[n]); if (err < 0) { NL_SET_BAD_ATTR(extack, tmp); goto err_release_expr; } size += expr_info[n].ops->size; n++; } } /* Check for overflow of dlen field */ err = -EFBIG; if (size >= 1 << 12) goto err_release_expr; if (nla[NFTA_RULE_USERDATA]) { ulen = nla_len(nla[NFTA_RULE_USERDATA]); if (ulen > 0) usize = sizeof(struct nft_userdata) + ulen; } err = -ENOMEM; rule = kzalloc(sizeof(*rule) + size + usize, GFP_KERNEL_ACCOUNT); if (rule == NULL) goto err_release_expr; nft_activate_next(net, rule); rule->handle = handle; rule->dlen = size; rule->udata = ulen ? 1 : 0; if (ulen) { udata = nft_userdata(rule); udata->len = ulen - 1; nla_memcpy(udata->data, nla[NFTA_RULE_USERDATA], ulen); } expr = nft_expr_first(rule); for (i = 0; i < n; i++) { err = nf_tables_newexpr(&ctx, &expr_info[i], expr); if (err < 0) { NL_SET_BAD_ATTR(extack, expr_info[i].attr); goto err_release_rule; } if (expr_info[i].ops->validate) nft_validate_state_update(table, NFT_VALIDATE_NEED); expr_info[i].ops = NULL; expr = nft_expr_next(expr); } if (chain->flags & NFT_CHAIN_HW_OFFLOAD) { flow = nft_flow_rule_create(net, rule); if (IS_ERR(flow)) { err = PTR_ERR(flow); goto err_release_rule; } } if (!nft_use_inc(&chain->use)) { err = -EMFILE; goto err_release_rule; } if (info->nlh->nlmsg_flags & NLM_F_REPLACE) { if (nft_chain_binding(chain)) { err = -EOPNOTSUPP; goto err_destroy_flow_rule; } err = nft_delrule(&ctx, old_rule); if (err < 0) goto err_destroy_flow_rule; trans = nft_trans_rule_add(&ctx, NFT_MSG_NEWRULE, rule); if (trans == NULL) { err = -ENOMEM; goto err_destroy_flow_rule; } list_add_tail_rcu(&rule->list, &old_rule->list); } else { trans = nft_trans_rule_add(&ctx, NFT_MSG_NEWRULE, rule); if (!trans) { err = -ENOMEM; goto err_destroy_flow_rule; } if (info->nlh->nlmsg_flags & NLM_F_APPEND) { if (old_rule) list_add_rcu(&rule->list, &old_rule->list); else list_add_tail_rcu(&rule->list, &chain->rules); } else { if (old_rule) list_add_tail_rcu(&rule->list, &old_rule->list); else list_add_rcu(&rule->list, &chain->rules); } } kvfree(expr_info); if (flow) nft_trans_flow_rule(trans) = flow; if (table->validate_state == NFT_VALIDATE_DO) return nft_table_validate(net, table); return 0; err_destroy_flow_rule: nft_use_dec_restore(&chain->use); if (flow) nft_flow_rule_destroy(flow); err_release_rule: nft_rule_expr_deactivate(&ctx, rule, NFT_TRANS_PREPARE_ERROR); nf_tables_rule_destroy(&ctx, rule); err_release_expr: for (i = 0; i < n; i++) { if (expr_info[i].ops) { module_put(expr_info[i].ops->type->owner); if (expr_info[i].ops->type->release_ops) expr_info[i].ops->type->release_ops(expr_info[i].ops); } } kvfree(expr_info); return err; } static struct nft_rule *nft_rule_lookup_byid(const struct net *net, const struct nft_chain *chain, const struct nlattr *nla) { struct nftables_pernet *nft_net = nft_pernet(net); u32 id = ntohl(nla_get_be32(nla)); struct nft_trans *trans; list_for_each_entry(trans, &nft_net->commit_list, list) { if (trans->msg_type == NFT_MSG_NEWRULE && trans->ctx.chain == chain && id == nft_trans_rule_id(trans)) return nft_trans_rule(trans); } return ERR_PTR(-ENOENT); } static int nf_tables_delrule(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct nft_chain *chain = NULL; struct net *net = info->net; struct nft_table *table; struct nft_rule *rule; struct nft_ctx ctx; int err = 0; table = nft_table_lookup(net, nla[NFTA_RULE_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_TABLE]); return PTR_ERR(table); } if (nla[NFTA_RULE_CHAIN]) { chain = nft_chain_lookup(net, table, nla[NFTA_RULE_CHAIN], genmask); if (IS_ERR(chain)) { if (PTR_ERR(chain) == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYRULE) return 0; NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_CHAIN]); return PTR_ERR(chain); } if (nft_chain_binding(chain)) return -EOPNOTSUPP; } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, chain, nla); if (chain) { if (nla[NFTA_RULE_HANDLE]) { rule = nft_rule_lookup(chain, nla[NFTA_RULE_HANDLE]); if (IS_ERR(rule)) { if (PTR_ERR(rule) == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYRULE) return 0; NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_HANDLE]); return PTR_ERR(rule); } err = nft_delrule(&ctx, rule); } else if (nla[NFTA_RULE_ID]) { rule = nft_rule_lookup_byid(net, chain, nla[NFTA_RULE_ID]); if (IS_ERR(rule)) { NL_SET_BAD_ATTR(extack, nla[NFTA_RULE_ID]); return PTR_ERR(rule); } err = nft_delrule(&ctx, rule); } else { err = nft_delrule_by_chain(&ctx); } } else { list_for_each_entry(chain, &table->chains, list) { if (!nft_is_active_next(net, chain)) continue; if (nft_chain_binding(chain)) continue; ctx.chain = chain; err = nft_delrule_by_chain(&ctx); if (err < 0) break; } } return err; } /* * Sets */ static const struct nft_set_type *nft_set_types[] = { &nft_set_hash_fast_type, &nft_set_hash_type, &nft_set_rhash_type, &nft_set_bitmap_type, &nft_set_rbtree_type, #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) &nft_set_pipapo_avx2_type, #endif &nft_set_pipapo_type, }; #define NFT_SET_FEATURES (NFT_SET_INTERVAL | NFT_SET_MAP | \ NFT_SET_TIMEOUT | NFT_SET_OBJECT | \ NFT_SET_EVAL) static bool nft_set_ops_candidate(const struct nft_set_type *type, u32 flags) { return (flags & type->features) == (flags & NFT_SET_FEATURES); } /* * Select a set implementation based on the data characteristics and the * given policy. The total memory use might not be known if no size is * given, in that case the amount of memory per element is used. */ static const struct nft_set_ops * nft_select_set_ops(const struct nft_ctx *ctx, const struct nlattr * const nla[], const struct nft_set_desc *desc) { struct nftables_pernet *nft_net = nft_pernet(ctx->net); const struct nft_set_ops *ops, *bops; struct nft_set_estimate est, best; const struct nft_set_type *type; u32 flags = 0; int i; lockdep_assert_held(&nft_net->commit_mutex); lockdep_nfnl_nft_mutex_not_held(); if (nla[NFTA_SET_FLAGS] != NULL) flags = ntohl(nla_get_be32(nla[NFTA_SET_FLAGS])); bops = NULL; best.size = ~0; best.lookup = ~0; best.space = ~0; for (i = 0; i < ARRAY_SIZE(nft_set_types); i++) { type = nft_set_types[i]; ops = &type->ops; if (!nft_set_ops_candidate(type, flags)) continue; if (!ops->estimate(desc, flags, &est)) continue; switch (desc->policy) { case NFT_SET_POL_PERFORMANCE: if (est.lookup < best.lookup) break; if (est.lookup == best.lookup && est.space < best.space) break; continue; case NFT_SET_POL_MEMORY: if (!desc->size) { if (est.space < best.space) break; if (est.space == best.space && est.lookup < best.lookup) break; } else if (est.size < best.size || !bops) { break; } continue; default: break; } bops = ops; best = est; } if (bops != NULL) return bops; return ERR_PTR(-EOPNOTSUPP); } static const struct nla_policy nft_set_policy[NFTA_SET_MAX + 1] = { [NFTA_SET_TABLE] = { .type = NLA_STRING, .len = NFT_TABLE_MAXNAMELEN - 1 }, [NFTA_SET_NAME] = { .type = NLA_STRING, .len = NFT_SET_MAXNAMELEN - 1 }, [NFTA_SET_FLAGS] = { .type = NLA_U32 }, [NFTA_SET_KEY_TYPE] = { .type = NLA_U32 }, [NFTA_SET_KEY_LEN] = { .type = NLA_U32 }, [NFTA_SET_DATA_TYPE] = { .type = NLA_U32 }, [NFTA_SET_DATA_LEN] = { .type = NLA_U32 }, [NFTA_SET_POLICY] = { .type = NLA_U32 }, [NFTA_SET_DESC] = { .type = NLA_NESTED }, [NFTA_SET_ID] = { .type = NLA_U32 }, [NFTA_SET_TIMEOUT] = { .type = NLA_U64 }, [NFTA_SET_GC_INTERVAL] = { .type = NLA_U32 }, [NFTA_SET_USERDATA] = { .type = NLA_BINARY, .len = NFT_USERDATA_MAXLEN }, [NFTA_SET_OBJ_TYPE] = { .type = NLA_U32 }, [NFTA_SET_HANDLE] = { .type = NLA_U64 }, [NFTA_SET_EXPR] = { .type = NLA_NESTED }, [NFTA_SET_EXPRESSIONS] = NLA_POLICY_NESTED_ARRAY(nft_expr_policy), }; static const struct nla_policy nft_concat_policy[NFTA_SET_FIELD_MAX + 1] = { [NFTA_SET_FIELD_LEN] = { .type = NLA_U32 }, }; static const struct nla_policy nft_set_desc_policy[NFTA_SET_DESC_MAX + 1] = { [NFTA_SET_DESC_SIZE] = { .type = NLA_U32 }, [NFTA_SET_DESC_CONCAT] = NLA_POLICY_NESTED_ARRAY(nft_concat_policy), }; static struct nft_set *nft_set_lookup(const struct nft_table *table, const struct nlattr *nla, u8 genmask) { struct nft_set *set; if (nla == NULL) return ERR_PTR(-EINVAL); list_for_each_entry_rcu(set, &table->sets, list) { if (!nla_strcmp(nla, set->name) && nft_active_genmask(set, genmask)) return set; } return ERR_PTR(-ENOENT); } static struct nft_set *nft_set_lookup_byhandle(const struct nft_table *table, const struct nlattr *nla, u8 genmask) { struct nft_set *set; list_for_each_entry(set, &table->sets, list) { if (be64_to_cpu(nla_get_be64(nla)) == set->handle && nft_active_genmask(set, genmask)) return set; } return ERR_PTR(-ENOENT); } static struct nft_set *nft_set_lookup_byid(const struct net *net, const struct nft_table *table, const struct nlattr *nla, u8 genmask) { struct nftables_pernet *nft_net = nft_pernet(net); u32 id = ntohl(nla_get_be32(nla)); struct nft_trans *trans; list_for_each_entry(trans, &nft_net->commit_list, list) { if (trans->msg_type == NFT_MSG_NEWSET) { struct nft_set *set = nft_trans_set(trans); if (id == nft_trans_set_id(trans) && set->table == table && nft_active_genmask(set, genmask)) return set; } } return ERR_PTR(-ENOENT); } struct nft_set *nft_set_lookup_global(const struct net *net, const struct nft_table *table, const struct nlattr *nla_set_name, const struct nlattr *nla_set_id, u8 genmask) { struct nft_set *set; set = nft_set_lookup(table, nla_set_name, genmask); if (IS_ERR(set)) { if (!nla_set_id) return set; set = nft_set_lookup_byid(net, table, nla_set_id, genmask); } return set; } EXPORT_SYMBOL_GPL(nft_set_lookup_global); static int nf_tables_set_alloc_name(struct nft_ctx *ctx, struct nft_set *set, const char *name) { const struct nft_set *i; const char *p; unsigned long *inuse; unsigned int n = 0, min = 0; p = strchr(name, '%'); if (p != NULL) { if (p[1] != 'd' || strchr(p + 2, '%')) return -EINVAL; if (strnlen(name, NFT_SET_MAX_ANONLEN) >= NFT_SET_MAX_ANONLEN) return -EINVAL; inuse = (unsigned long *)get_zeroed_page(GFP_KERNEL); if (inuse == NULL) return -ENOMEM; cont: list_for_each_entry(i, &ctx->table->sets, list) { int tmp; if (!nft_is_active_next(ctx->net, i)) continue; if (!sscanf(i->name, name, &tmp)) continue; if (tmp < min || tmp >= min + BITS_PER_BYTE * PAGE_SIZE) continue; set_bit(tmp - min, inuse); } n = find_first_zero_bit(inuse, BITS_PER_BYTE * PAGE_SIZE); if (n >= BITS_PER_BYTE * PAGE_SIZE) { min += BITS_PER_BYTE * PAGE_SIZE; memset(inuse, 0, PAGE_SIZE); goto cont; } free_page((unsigned long)inuse); } set->name = kasprintf(GFP_KERNEL_ACCOUNT, name, min + n); if (!set->name) return -ENOMEM; list_for_each_entry(i, &ctx->table->sets, list) { if (!nft_is_active_next(ctx->net, i)) continue; if (!strcmp(set->name, i->name)) { kfree(set->name); set->name = NULL; return -ENFILE; } } return 0; } int nf_msecs_to_jiffies64(const struct nlattr *nla, u64 *result) { u64 ms = be64_to_cpu(nla_get_be64(nla)); u64 max = (u64)(~((u64)0)); max = div_u64(max, NSEC_PER_MSEC); if (ms >= max) return -ERANGE; ms *= NSEC_PER_MSEC; *result = nsecs_to_jiffies64(ms); return 0; } __be64 nf_jiffies64_to_msecs(u64 input) { return cpu_to_be64(jiffies64_to_msecs(input)); } static int nf_tables_fill_set_concat(struct sk_buff *skb, const struct nft_set *set) { struct nlattr *concat, *field; int i; concat = nla_nest_start_noflag(skb, NFTA_SET_DESC_CONCAT); if (!concat) return -ENOMEM; for (i = 0; i < set->field_count; i++) { field = nla_nest_start_noflag(skb, NFTA_LIST_ELEM); if (!field) return -ENOMEM; if (nla_put_be32(skb, NFTA_SET_FIELD_LEN, htonl(set->field_len[i]))) return -ENOMEM; nla_nest_end(skb, field); } nla_nest_end(skb, concat); return 0; } static int nf_tables_fill_set(struct sk_buff *skb, const struct nft_ctx *ctx, const struct nft_set *set, u16 event, u16 flags) { u64 timeout = READ_ONCE(set->timeout); u32 gc_int = READ_ONCE(set->gc_int); u32 portid = ctx->portid; struct nlmsghdr *nlh; struct nlattr *nest; u32 seq = ctx->seq; int i; event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, ctx->family, NFNETLINK_V0, nft_base_seq(ctx->net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_SET_TABLE, ctx->table->name)) goto nla_put_failure; if (nla_put_string(skb, NFTA_SET_NAME, set->name)) goto nla_put_failure; if (nla_put_be64(skb, NFTA_SET_HANDLE, cpu_to_be64(set->handle), NFTA_SET_PAD)) goto nla_put_failure; if (event == NFT_MSG_DELSET) { nlmsg_end(skb, nlh); return 0; } if (set->flags != 0) if (nla_put_be32(skb, NFTA_SET_FLAGS, htonl(set->flags))) goto nla_put_failure; if (nla_put_be32(skb, NFTA_SET_KEY_TYPE, htonl(set->ktype))) goto nla_put_failure; if (nla_put_be32(skb, NFTA_SET_KEY_LEN, htonl(set->klen))) goto nla_put_failure; if (set->flags & NFT_SET_MAP) { if (nla_put_be32(skb, NFTA_SET_DATA_TYPE, htonl(set->dtype))) goto nla_put_failure; if (nla_put_be32(skb, NFTA_SET_DATA_LEN, htonl(set->dlen))) goto nla_put_failure; } if (set->flags & NFT_SET_OBJECT && nla_put_be32(skb, NFTA_SET_OBJ_TYPE, htonl(set->objtype))) goto nla_put_failure; if (timeout && nla_put_be64(skb, NFTA_SET_TIMEOUT, nf_jiffies64_to_msecs(timeout), NFTA_SET_PAD)) goto nla_put_failure; if (gc_int && nla_put_be32(skb, NFTA_SET_GC_INTERVAL, htonl(gc_int))) goto nla_put_failure; if (set->policy != NFT_SET_POL_PERFORMANCE) { if (nla_put_be32(skb, NFTA_SET_POLICY, htonl(set->policy))) goto nla_put_failure; } if (set->udata && nla_put(skb, NFTA_SET_USERDATA, set->udlen, set->udata)) goto nla_put_failure; nest = nla_nest_start_noflag(skb, NFTA_SET_DESC); if (!nest) goto nla_put_failure; if (set->size && nla_put_be32(skb, NFTA_SET_DESC_SIZE, htonl(set->size))) goto nla_put_failure; if (set->field_count > 1 && nf_tables_fill_set_concat(skb, set)) goto nla_put_failure; nla_nest_end(skb, nest); if (set->num_exprs == 1) { nest = nla_nest_start_noflag(skb, NFTA_SET_EXPR); if (nf_tables_fill_expr_info(skb, set->exprs[0], false) < 0) goto nla_put_failure; nla_nest_end(skb, nest); } else if (set->num_exprs > 1) { nest = nla_nest_start_noflag(skb, NFTA_SET_EXPRESSIONS); if (nest == NULL) goto nla_put_failure; for (i = 0; i < set->num_exprs; i++) { if (nft_expr_dump(skb, NFTA_LIST_ELEM, set->exprs[i], false) < 0) goto nla_put_failure; } nla_nest_end(skb, nest); } nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -1; } static void nf_tables_set_notify(const struct nft_ctx *ctx, const struct nft_set *set, int event, gfp_t gfp_flags) { struct nftables_pernet *nft_net = nft_pernet(ctx->net); u32 portid = ctx->portid; struct sk_buff *skb; u16 flags = 0; int err; if (!ctx->report && !nfnetlink_has_listeners(ctx->net, NFNLGRP_NFTABLES)) return; skb = nlmsg_new(NLMSG_GOODSIZE, gfp_flags); if (skb == NULL) goto err; if (ctx->flags & (NLM_F_CREATE | NLM_F_EXCL)) flags |= ctx->flags & (NLM_F_CREATE | NLM_F_EXCL); err = nf_tables_fill_set(skb, ctx, set, event, flags); if (err < 0) { kfree_skb(skb); goto err; } nft_notify_enqueue(skb, ctx->report, &nft_net->notify_list); return; err: nfnetlink_set_err(ctx->net, portid, NFNLGRP_NFTABLES, -ENOBUFS); } static int nf_tables_dump_sets(struct sk_buff *skb, struct netlink_callback *cb) { const struct nft_set *set; unsigned int idx, s_idx = cb->args[0]; struct nft_table *table, *cur_table = (struct nft_table *)cb->args[2]; struct net *net = sock_net(skb->sk); struct nft_ctx *ctx = cb->data, ctx_set; struct nftables_pernet *nft_net; if (cb->args[1]) return skb->len; rcu_read_lock(); nft_net = nft_pernet(net); cb->seq = READ_ONCE(nft_net->base_seq); list_for_each_entry_rcu(table, &nft_net->tables, list) { if (ctx->family != NFPROTO_UNSPEC && ctx->family != table->family) continue; if (ctx->table && ctx->table != table) continue; if (cur_table) { if (cur_table != table) continue; cur_table = NULL; } idx = 0; list_for_each_entry_rcu(set, &table->sets, list) { if (idx < s_idx) goto cont; if (!nft_is_active(net, set)) goto cont; ctx_set = *ctx; ctx_set.table = table; ctx_set.family = table->family; if (nf_tables_fill_set(skb, &ctx_set, set, NFT_MSG_NEWSET, NLM_F_MULTI) < 0) { cb->args[0] = idx; cb->args[2] = (unsigned long) table; goto done; } nl_dump_check_consistent(cb, nlmsg_hdr(skb)); cont: idx++; } if (s_idx) s_idx = 0; } cb->args[1] = 1; done: rcu_read_unlock(); return skb->len; } static int nf_tables_dump_sets_start(struct netlink_callback *cb) { struct nft_ctx *ctx_dump = NULL; ctx_dump = kmemdup(cb->data, sizeof(*ctx_dump), GFP_ATOMIC); if (ctx_dump == NULL) return -ENOMEM; cb->data = ctx_dump; return 0; } static int nf_tables_dump_sets_done(struct netlink_callback *cb) { kfree(cb->data); return 0; } /* called with rcu_read_lock held */ static int nf_tables_getset(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_cur(info->net); u8 family = info->nfmsg->nfgen_family; struct nft_table *table = NULL; struct net *net = info->net; const struct nft_set *set; struct sk_buff *skb2; struct nft_ctx ctx; int err; if (nla[NFTA_SET_TABLE]) { table = nft_table_lookup(net, nla[NFTA_SET_TABLE], family, genmask, 0); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_TABLE]); return PTR_ERR(table); } } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = nf_tables_dump_sets_start, .dump = nf_tables_dump_sets, .done = nf_tables_dump_sets_done, .data = &ctx, .module = THIS_MODULE, }; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } /* Only accept unspec with dump */ if (info->nfmsg->nfgen_family == NFPROTO_UNSPEC) return -EAFNOSUPPORT; if (!nla[NFTA_SET_TABLE]) return -EINVAL; set = nft_set_lookup(table, nla[NFTA_SET_NAME], genmask); if (IS_ERR(set)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_NAME]); return PTR_ERR(set); } skb2 = alloc_skb(NLMSG_GOODSIZE, GFP_ATOMIC); if (skb2 == NULL) return -ENOMEM; err = nf_tables_fill_set(skb2, &ctx, set, NFT_MSG_NEWSET, 0); if (err < 0) goto err_fill_set_info; return nfnetlink_unicast(skb2, net, NETLINK_CB(skb).portid); err_fill_set_info: kfree_skb(skb2); return err; } static int nft_set_desc_concat_parse(const struct nlattr *attr, struct nft_set_desc *desc) { struct nlattr *tb[NFTA_SET_FIELD_MAX + 1]; u32 len; int err; if (desc->field_count >= ARRAY_SIZE(desc->field_len)) return -E2BIG; err = nla_parse_nested_deprecated(tb, NFTA_SET_FIELD_MAX, attr, nft_concat_policy, NULL); if (err < 0) return err; if (!tb[NFTA_SET_FIELD_LEN]) return -EINVAL; len = ntohl(nla_get_be32(tb[NFTA_SET_FIELD_LEN])); if (!len || len > U8_MAX) return -EINVAL; desc->field_len[desc->field_count++] = len; return 0; } static int nft_set_desc_concat(struct nft_set_desc *desc, const struct nlattr *nla) { u32 num_regs = 0, key_num_regs = 0; struct nlattr *attr; int rem, err, i; nla_for_each_nested(attr, nla, rem) { if (nla_type(attr) != NFTA_LIST_ELEM) return -EINVAL; err = nft_set_desc_concat_parse(attr, desc); if (err < 0) return err; } for (i = 0; i < desc->field_count; i++) num_regs += DIV_ROUND_UP(desc->field_len[i], sizeof(u32)); key_num_regs = DIV_ROUND_UP(desc->klen, sizeof(u32)); if (key_num_regs != num_regs) return -EINVAL; if (num_regs > NFT_REG32_COUNT) return -E2BIG; return 0; } static int nf_tables_set_desc_parse(struct nft_set_desc *desc, const struct nlattr *nla) { struct nlattr *da[NFTA_SET_DESC_MAX + 1]; int err; err = nla_parse_nested_deprecated(da, NFTA_SET_DESC_MAX, nla, nft_set_desc_policy, NULL); if (err < 0) return err; if (da[NFTA_SET_DESC_SIZE] != NULL) desc->size = ntohl(nla_get_be32(da[NFTA_SET_DESC_SIZE])); if (da[NFTA_SET_DESC_CONCAT]) err = nft_set_desc_concat(desc, da[NFTA_SET_DESC_CONCAT]); return err; } static int nft_set_expr_alloc(struct nft_ctx *ctx, struct nft_set *set, const struct nlattr * const *nla, struct nft_expr **exprs, int *num_exprs, u32 flags) { struct nft_expr *expr; int err, i; if (nla[NFTA_SET_EXPR]) { expr = nft_set_elem_expr_alloc(ctx, set, nla[NFTA_SET_EXPR]); if (IS_ERR(expr)) { err = PTR_ERR(expr); goto err_set_expr_alloc; } exprs[0] = expr; (*num_exprs)++; } else if (nla[NFTA_SET_EXPRESSIONS]) { struct nlattr *tmp; int left; if (!(flags & NFT_SET_EXPR)) { err = -EINVAL; goto err_set_expr_alloc; } i = 0; nla_for_each_nested(tmp, nla[NFTA_SET_EXPRESSIONS], left) { if (i == NFT_SET_EXPR_MAX) { err = -E2BIG; goto err_set_expr_alloc; } if (nla_type(tmp) != NFTA_LIST_ELEM) { err = -EINVAL; goto err_set_expr_alloc; } expr = nft_set_elem_expr_alloc(ctx, set, tmp); if (IS_ERR(expr)) { err = PTR_ERR(expr); goto err_set_expr_alloc; } exprs[i++] = expr; (*num_exprs)++; } } return 0; err_set_expr_alloc: for (i = 0; i < *num_exprs; i++) nft_expr_destroy(ctx, exprs[i]); return err; } static bool nft_set_is_same(const struct nft_set *set, const struct nft_set_desc *desc, struct nft_expr *exprs[], u32 num_exprs, u32 flags) { int i; if (set->ktype != desc->ktype || set->dtype != desc->dtype || set->flags != flags || set->klen != desc->klen || set->dlen != desc->dlen || set->field_count != desc->field_count || set->num_exprs != num_exprs) return false; for (i = 0; i < desc->field_count; i++) { if (set->field_len[i] != desc->field_len[i]) return false; } for (i = 0; i < num_exprs; i++) { if (set->exprs[i]->ops != exprs[i]->ops) return false; } return true; } static int nf_tables_newset(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; const struct nft_set_ops *ops; struct net *net = info->net; struct nft_set_desc desc; struct nft_table *table; unsigned char *udata; struct nft_set *set; struct nft_ctx ctx; size_t alloc_size; int num_exprs = 0; char *name; int err, i; u16 udlen; u32 flags; u64 size; if (nla[NFTA_SET_TABLE] == NULL || nla[NFTA_SET_NAME] == NULL || nla[NFTA_SET_KEY_LEN] == NULL || nla[NFTA_SET_ID] == NULL) return -EINVAL; memset(&desc, 0, sizeof(desc)); desc.ktype = NFT_DATA_VALUE; if (nla[NFTA_SET_KEY_TYPE] != NULL) { desc.ktype = ntohl(nla_get_be32(nla[NFTA_SET_KEY_TYPE])); if ((desc.ktype & NFT_DATA_RESERVED_MASK) == NFT_DATA_RESERVED_MASK) return -EINVAL; } desc.klen = ntohl(nla_get_be32(nla[NFTA_SET_KEY_LEN])); if (desc.klen == 0 || desc.klen > NFT_DATA_VALUE_MAXLEN) return -EINVAL; flags = 0; if (nla[NFTA_SET_FLAGS] != NULL) { flags = ntohl(nla_get_be32(nla[NFTA_SET_FLAGS])); if (flags & ~(NFT_SET_ANONYMOUS | NFT_SET_CONSTANT | NFT_SET_INTERVAL | NFT_SET_TIMEOUT | NFT_SET_MAP | NFT_SET_EVAL | NFT_SET_OBJECT | NFT_SET_CONCAT | NFT_SET_EXPR)) return -EOPNOTSUPP; /* Only one of these operations is supported */ if ((flags & (NFT_SET_MAP | NFT_SET_OBJECT)) == (NFT_SET_MAP | NFT_SET_OBJECT)) return -EOPNOTSUPP; if ((flags & (NFT_SET_EVAL | NFT_SET_OBJECT)) == (NFT_SET_EVAL | NFT_SET_OBJECT)) return -EOPNOTSUPP; } desc.dtype = 0; if (nla[NFTA_SET_DATA_TYPE] != NULL) { if (!(flags & NFT_SET_MAP)) return -EINVAL; desc.dtype = ntohl(nla_get_be32(nla[NFTA_SET_DATA_TYPE])); if ((desc.dtype & NFT_DATA_RESERVED_MASK) == NFT_DATA_RESERVED_MASK && desc.dtype != NFT_DATA_VERDICT) return -EINVAL; if (desc.dtype != NFT_DATA_VERDICT) { if (nla[NFTA_SET_DATA_LEN] == NULL) return -EINVAL; desc.dlen = ntohl(nla_get_be32(nla[NFTA_SET_DATA_LEN])); if (desc.dlen == 0 || desc.dlen > NFT_DATA_VALUE_MAXLEN) return -EINVAL; } else desc.dlen = sizeof(struct nft_verdict); } else if (flags & NFT_SET_MAP) return -EINVAL; if (nla[NFTA_SET_OBJ_TYPE] != NULL) { if (!(flags & NFT_SET_OBJECT)) return -EINVAL; desc.objtype = ntohl(nla_get_be32(nla[NFTA_SET_OBJ_TYPE])); if (desc.objtype == NFT_OBJECT_UNSPEC || desc.objtype > NFT_OBJECT_MAX) return -EOPNOTSUPP; } else if (flags & NFT_SET_OBJECT) return -EINVAL; else desc.objtype = NFT_OBJECT_UNSPEC; desc.timeout = 0; if (nla[NFTA_SET_TIMEOUT] != NULL) { if (!(flags & NFT_SET_TIMEOUT)) return -EINVAL; if (flags & NFT_SET_ANONYMOUS) return -EOPNOTSUPP; err = nf_msecs_to_jiffies64(nla[NFTA_SET_TIMEOUT], &desc.timeout); if (err) return err; } desc.gc_int = 0; if (nla[NFTA_SET_GC_INTERVAL] != NULL) { if (!(flags & NFT_SET_TIMEOUT)) return -EINVAL; if (flags & NFT_SET_ANONYMOUS) return -EOPNOTSUPP; desc.gc_int = ntohl(nla_get_be32(nla[NFTA_SET_GC_INTERVAL])); } desc.policy = NFT_SET_POL_PERFORMANCE; if (nla[NFTA_SET_POLICY] != NULL) { desc.policy = ntohl(nla_get_be32(nla[NFTA_SET_POLICY])); switch (desc.policy) { case NFT_SET_POL_PERFORMANCE: case NFT_SET_POL_MEMORY: break; default: return -EOPNOTSUPP; } } if (nla[NFTA_SET_DESC] != NULL) { err = nf_tables_set_desc_parse(&desc, nla[NFTA_SET_DESC]); if (err < 0) return err; if (desc.field_count > 1) { if (!(flags & NFT_SET_CONCAT)) return -EINVAL; } else if (flags & NFT_SET_CONCAT) { return -EINVAL; } } else if (flags & NFT_SET_CONCAT) { return -EINVAL; } if (nla[NFTA_SET_EXPR] || nla[NFTA_SET_EXPRESSIONS]) desc.expr = true; table = nft_table_lookup(net, nla[NFTA_SET_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_TABLE]); return PTR_ERR(table); } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); set = nft_set_lookup(table, nla[NFTA_SET_NAME], genmask); if (IS_ERR(set)) { if (PTR_ERR(set) != -ENOENT) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_NAME]); return PTR_ERR(set); } } else { struct nft_expr *exprs[NFT_SET_EXPR_MAX] = {}; if (info->nlh->nlmsg_flags & NLM_F_EXCL) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_NAME]); return -EEXIST; } if (info->nlh->nlmsg_flags & NLM_F_REPLACE) return -EOPNOTSUPP; if (nft_set_is_anonymous(set)) return -EOPNOTSUPP; err = nft_set_expr_alloc(&ctx, set, nla, exprs, &num_exprs, flags); if (err < 0) return err; err = 0; if (!nft_set_is_same(set, &desc, exprs, num_exprs, flags)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_NAME]); err = -EEXIST; } for (i = 0; i < num_exprs; i++) nft_expr_destroy(&ctx, exprs[i]); if (err < 0) return err; return __nft_trans_set_add(&ctx, NFT_MSG_NEWSET, set, &desc); } if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) return -ENOENT; ops = nft_select_set_ops(&ctx, nla, &desc); if (IS_ERR(ops)) return PTR_ERR(ops); udlen = 0; if (nla[NFTA_SET_USERDATA]) udlen = nla_len(nla[NFTA_SET_USERDATA]); size = 0; if (ops->privsize != NULL) size = ops->privsize(nla, &desc); alloc_size = sizeof(*set) + size + udlen; if (alloc_size < size || alloc_size > INT_MAX) return -ENOMEM; if (!nft_use_inc(&table->use)) return -EMFILE; set = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT); if (!set) { err = -ENOMEM; goto err_alloc; } name = nla_strdup(nla[NFTA_SET_NAME], GFP_KERNEL_ACCOUNT); if (!name) { err = -ENOMEM; goto err_set_name; } err = nf_tables_set_alloc_name(&ctx, set, name); kfree(name); if (err < 0) goto err_set_name; udata = NULL; if (udlen) { udata = set->data + size; nla_memcpy(udata, nla[NFTA_SET_USERDATA], udlen); } INIT_LIST_HEAD(&set->bindings); INIT_LIST_HEAD(&set->catchall_list); refcount_set(&set->refs, 1); set->table = table; write_pnet(&set->net, net); set->ops = ops; set->ktype = desc.ktype; set->klen = desc.klen; set->dtype = desc.dtype; set->objtype = desc.objtype; set->dlen = desc.dlen; set->flags = flags; set->size = desc.size; set->policy = desc.policy; set->udlen = udlen; set->udata = udata; set->timeout = desc.timeout; set->gc_int = desc.gc_int; set->field_count = desc.field_count; for (i = 0; i < desc.field_count; i++) set->field_len[i] = desc.field_len[i]; err = ops->init(set, &desc, nla); if (err < 0) goto err_set_init; err = nft_set_expr_alloc(&ctx, set, nla, set->exprs, &num_exprs, flags); if (err < 0) goto err_set_destroy; set->num_exprs = num_exprs; set->handle = nf_tables_alloc_handle(table); INIT_LIST_HEAD(&set->pending_update); err = nft_trans_set_add(&ctx, NFT_MSG_NEWSET, set); if (err < 0) goto err_set_expr_alloc; list_add_tail_rcu(&set->list, &table->sets); return 0; err_set_expr_alloc: for (i = 0; i < set->num_exprs; i++) nft_expr_destroy(&ctx, set->exprs[i]); err_set_destroy: ops->destroy(&ctx, set); err_set_init: kfree(set->name); err_set_name: kvfree(set); err_alloc: nft_use_dec_restore(&table->use); return err; } static void nft_set_catchall_destroy(const struct nft_ctx *ctx, struct nft_set *set) { struct nft_set_elem_catchall *next, *catchall; list_for_each_entry_safe(catchall, next, &set->catchall_list, list) { list_del_rcu(&catchall->list); nf_tables_set_elem_destroy(ctx, set, catchall->elem); kfree_rcu(catchall, rcu); } } static void nft_set_put(struct nft_set *set) { if (refcount_dec_and_test(&set->refs)) { kfree(set->name); kvfree(set); } } static void nft_set_destroy(const struct nft_ctx *ctx, struct nft_set *set) { int i; if (WARN_ON(set->use > 0)) return; for (i = 0; i < set->num_exprs; i++) nft_expr_destroy(ctx, set->exprs[i]); set->ops->destroy(ctx, set); nft_set_catchall_destroy(ctx, set); nft_set_put(set); } static int nf_tables_delset(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_set *set; struct nft_ctx ctx; if (info->nfmsg->nfgen_family == NFPROTO_UNSPEC) return -EAFNOSUPPORT; table = nft_table_lookup(net, nla[NFTA_SET_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_TABLE]); return PTR_ERR(table); } if (nla[NFTA_SET_HANDLE]) { attr = nla[NFTA_SET_HANDLE]; set = nft_set_lookup_byhandle(table, attr, genmask); } else { attr = nla[NFTA_SET_NAME]; set = nft_set_lookup(table, attr, genmask); } if (IS_ERR(set)) { if (PTR_ERR(set) == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYSET) return 0; NL_SET_BAD_ATTR(extack, attr); return PTR_ERR(set); } if (set->use || (info->nlh->nlmsg_flags & NLM_F_NONREC && atomic_read(&set->nelems) > 0)) { NL_SET_BAD_ATTR(extack, attr); return -EBUSY; } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); return nft_delset(&ctx, set); } static int nft_validate_register_store(const struct nft_ctx *ctx, enum nft_registers reg, const struct nft_data *data, enum nft_data_types type, unsigned int len); static int nft_setelem_data_validate(const struct nft_ctx *ctx, struct nft_set *set, struct nft_elem_priv *elem_priv) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); enum nft_registers dreg; dreg = nft_type_to_reg(set->dtype); return nft_validate_register_store(ctx, dreg, nft_set_ext_data(ext), set->dtype == NFT_DATA_VERDICT ? NFT_DATA_VERDICT : NFT_DATA_VALUE, set->dlen); } static int nf_tables_bind_check_setelem(const struct nft_ctx *ctx, struct nft_set *set, const struct nft_set_iter *iter, struct nft_elem_priv *elem_priv) { return nft_setelem_data_validate(ctx, set, elem_priv); } static int nft_set_catchall_bind_check(const struct nft_ctx *ctx, struct nft_set *set) { u8 genmask = nft_genmask_next(ctx->net); struct nft_set_elem_catchall *catchall; struct nft_set_ext *ext; int ret = 0; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask)) continue; ret = nft_setelem_data_validate(ctx, set, catchall->elem); if (ret < 0) break; } return ret; } int nf_tables_bind_set(const struct nft_ctx *ctx, struct nft_set *set, struct nft_set_binding *binding) { struct nft_set_binding *i; struct nft_set_iter iter; if (!list_empty(&set->bindings) && nft_set_is_anonymous(set)) return -EBUSY; if (binding->flags & NFT_SET_MAP) { /* If the set is already bound to the same chain all * jumps are already validated for that chain. */ list_for_each_entry(i, &set->bindings, list) { if (i->flags & NFT_SET_MAP && i->chain == binding->chain) goto bind; } iter.genmask = nft_genmask_next(ctx->net); iter.skip = 0; iter.count = 0; iter.err = 0; iter.fn = nf_tables_bind_check_setelem; set->ops->walk(ctx, set, &iter); if (!iter.err) iter.err = nft_set_catchall_bind_check(ctx, set); if (iter.err < 0) return iter.err; } bind: if (!nft_use_inc(&set->use)) return -EMFILE; binding->chain = ctx->chain; list_add_tail_rcu(&binding->list, &set->bindings); nft_set_trans_bind(ctx, set); return 0; } EXPORT_SYMBOL_GPL(nf_tables_bind_set); static void nf_tables_unbind_set(const struct nft_ctx *ctx, struct nft_set *set, struct nft_set_binding *binding, bool event) { list_del_rcu(&binding->list); if (list_empty(&set->bindings) && nft_set_is_anonymous(set)) { list_del_rcu(&set->list); if (event) nf_tables_set_notify(ctx, set, NFT_MSG_DELSET, GFP_KERNEL); } } static void nft_setelem_data_activate(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv); static int nft_mapelem_activate(const struct nft_ctx *ctx, struct nft_set *set, const struct nft_set_iter *iter, struct nft_elem_priv *elem_priv) { nft_setelem_data_activate(ctx->net, set, elem_priv); return 0; } static void nft_map_catchall_activate(const struct nft_ctx *ctx, struct nft_set *set) { u8 genmask = nft_genmask_next(ctx->net); struct nft_set_elem_catchall *catchall; struct nft_set_ext *ext; list_for_each_entry(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask)) continue; nft_setelem_data_activate(ctx->net, set, catchall->elem); break; } } static void nft_map_activate(const struct nft_ctx *ctx, struct nft_set *set) { struct nft_set_iter iter = { .genmask = nft_genmask_next(ctx->net), .fn = nft_mapelem_activate, }; set->ops->walk(ctx, set, &iter); WARN_ON_ONCE(iter.err); nft_map_catchall_activate(ctx, set); } void nf_tables_activate_set(const struct nft_ctx *ctx, struct nft_set *set) { if (nft_set_is_anonymous(set)) { if (set->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) nft_map_activate(ctx, set); nft_clear(ctx->net, set); } nft_use_inc_restore(&set->use); } EXPORT_SYMBOL_GPL(nf_tables_activate_set); void nf_tables_deactivate_set(const struct nft_ctx *ctx, struct nft_set *set, struct nft_set_binding *binding, enum nft_trans_phase phase) { switch (phase) { case NFT_TRANS_PREPARE_ERROR: nft_set_trans_unbind(ctx, set); if (nft_set_is_anonymous(set)) nft_deactivate_next(ctx->net, set); else list_del_rcu(&binding->list); nft_use_dec(&set->use); break; case NFT_TRANS_PREPARE: if (nft_set_is_anonymous(set)) { if (set->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) nft_map_deactivate(ctx, set); nft_deactivate_next(ctx->net, set); } nft_use_dec(&set->use); return; case NFT_TRANS_ABORT: case NFT_TRANS_RELEASE: if (nft_set_is_anonymous(set) && set->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) nft_map_deactivate(ctx, set); nft_use_dec(&set->use); fallthrough; default: nf_tables_unbind_set(ctx, set, binding, phase == NFT_TRANS_COMMIT); } } EXPORT_SYMBOL_GPL(nf_tables_deactivate_set); void nf_tables_destroy_set(const struct nft_ctx *ctx, struct nft_set *set) { if (list_empty(&set->bindings) && nft_set_is_anonymous(set)) nft_set_destroy(ctx, set); } EXPORT_SYMBOL_GPL(nf_tables_destroy_set); const struct nft_set_ext_type nft_set_ext_types[] = { [NFT_SET_EXT_KEY] = { .align = __alignof__(u32), }, [NFT_SET_EXT_DATA] = { .align = __alignof__(u32), }, [NFT_SET_EXT_EXPRESSIONS] = { .align = __alignof__(struct nft_set_elem_expr), }, [NFT_SET_EXT_OBJREF] = { .len = sizeof(struct nft_object *), .align = __alignof__(struct nft_object *), }, [NFT_SET_EXT_FLAGS] = { .len = sizeof(u8), .align = __alignof__(u8), }, [NFT_SET_EXT_TIMEOUT] = { .len = sizeof(u64), .align = __alignof__(u64), }, [NFT_SET_EXT_EXPIRATION] = { .len = sizeof(u64), .align = __alignof__(u64), }, [NFT_SET_EXT_USERDATA] = { .len = sizeof(struct nft_userdata), .align = __alignof__(struct nft_userdata), }, [NFT_SET_EXT_KEY_END] = { .align = __alignof__(u32), }, }; /* * Set elements */ static const struct nla_policy nft_set_elem_policy[NFTA_SET_ELEM_MAX + 1] = { [NFTA_SET_ELEM_KEY] = { .type = NLA_NESTED }, [NFTA_SET_ELEM_DATA] = { .type = NLA_NESTED }, [NFTA_SET_ELEM_FLAGS] = { .type = NLA_U32 }, [NFTA_SET_ELEM_TIMEOUT] = { .type = NLA_U64 }, [NFTA_SET_ELEM_EXPIRATION] = { .type = NLA_U64 }, [NFTA_SET_ELEM_USERDATA] = { .type = NLA_BINARY, .len = NFT_USERDATA_MAXLEN }, [NFTA_SET_ELEM_EXPR] = { .type = NLA_NESTED }, [NFTA_SET_ELEM_OBJREF] = { .type = NLA_STRING, .len = NFT_OBJ_MAXNAMELEN - 1 }, [NFTA_SET_ELEM_KEY_END] = { .type = NLA_NESTED }, [NFTA_SET_ELEM_EXPRESSIONS] = NLA_POLICY_NESTED_ARRAY(nft_expr_policy), }; static const struct nla_policy nft_set_elem_list_policy[NFTA_SET_ELEM_LIST_MAX + 1] = { [NFTA_SET_ELEM_LIST_TABLE] = { .type = NLA_STRING, .len = NFT_TABLE_MAXNAMELEN - 1 }, [NFTA_SET_ELEM_LIST_SET] = { .type = NLA_STRING, .len = NFT_SET_MAXNAMELEN - 1 }, [NFTA_SET_ELEM_LIST_ELEMENTS] = NLA_POLICY_NESTED_ARRAY(nft_set_elem_policy), [NFTA_SET_ELEM_LIST_SET_ID] = { .type = NLA_U32 }, }; static int nft_set_elem_expr_dump(struct sk_buff *skb, const struct nft_set *set, const struct nft_set_ext *ext, bool reset) { struct nft_set_elem_expr *elem_expr; u32 size, num_exprs = 0; struct nft_expr *expr; struct nlattr *nest; elem_expr = nft_set_ext_expr(ext); nft_setelem_expr_foreach(expr, elem_expr, size) num_exprs++; if (num_exprs == 1) { expr = nft_setelem_expr_at(elem_expr, 0); if (nft_expr_dump(skb, NFTA_SET_ELEM_EXPR, expr, reset) < 0) return -1; return 0; } else if (num_exprs > 1) { nest = nla_nest_start_noflag(skb, NFTA_SET_ELEM_EXPRESSIONS); if (nest == NULL) goto nla_put_failure; nft_setelem_expr_foreach(expr, elem_expr, size) { expr = nft_setelem_expr_at(elem_expr, size); if (nft_expr_dump(skb, NFTA_LIST_ELEM, expr, reset) < 0) goto nla_put_failure; } nla_nest_end(skb, nest); } return 0; nla_put_failure: return -1; } static int nf_tables_fill_setelem(struct sk_buff *skb, const struct nft_set *set, const struct nft_elem_priv *elem_priv, bool reset) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); unsigned char *b = skb_tail_pointer(skb); struct nlattr *nest; nest = nla_nest_start_noflag(skb, NFTA_LIST_ELEM); if (nest == NULL) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY) && nft_data_dump(skb, NFTA_SET_ELEM_KEY, nft_set_ext_key(ext), NFT_DATA_VALUE, set->klen) < 0) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END) && nft_data_dump(skb, NFTA_SET_ELEM_KEY_END, nft_set_ext_key_end(ext), NFT_DATA_VALUE, set->klen) < 0) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA) && nft_data_dump(skb, NFTA_SET_ELEM_DATA, nft_set_ext_data(ext), set->dtype == NFT_DATA_VERDICT ? NFT_DATA_VERDICT : NFT_DATA_VALUE, set->dlen) < 0) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_EXPRESSIONS) && nft_set_elem_expr_dump(skb, set, ext, reset)) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF) && nla_put_string(skb, NFTA_SET_ELEM_OBJREF, (*nft_set_ext_obj(ext))->key.name) < 0) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_FLAGS) && nla_put_be32(skb, NFTA_SET_ELEM_FLAGS, htonl(*nft_set_ext_flags(ext)))) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_TIMEOUT) && nla_put_be64(skb, NFTA_SET_ELEM_TIMEOUT, nf_jiffies64_to_msecs(*nft_set_ext_timeout(ext)), NFTA_SET_ELEM_PAD)) goto nla_put_failure; if (nft_set_ext_exists(ext, NFT_SET_EXT_EXPIRATION)) { u64 expires, now = get_jiffies_64(); expires = *nft_set_ext_expiration(ext); if (time_before64(now, expires)) expires -= now; else expires = 0; if (nla_put_be64(skb, NFTA_SET_ELEM_EXPIRATION, nf_jiffies64_to_msecs(expires), NFTA_SET_ELEM_PAD)) goto nla_put_failure; } if (nft_set_ext_exists(ext, NFT_SET_EXT_USERDATA)) { struct nft_userdata *udata; udata = nft_set_ext_userdata(ext); if (nla_put(skb, NFTA_SET_ELEM_USERDATA, udata->len + 1, udata->data)) goto nla_put_failure; } nla_nest_end(skb, nest); return 0; nla_put_failure: nlmsg_trim(skb, b); return -EMSGSIZE; } struct nft_set_dump_args { const struct netlink_callback *cb; struct nft_set_iter iter; struct sk_buff *skb; bool reset; }; static int nf_tables_dump_setelem(const struct nft_ctx *ctx, struct nft_set *set, const struct nft_set_iter *iter, struct nft_elem_priv *elem_priv) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); struct nft_set_dump_args *args; if (nft_set_elem_expired(ext) || nft_set_elem_is_dead(ext)) return 0; args = container_of(iter, struct nft_set_dump_args, iter); return nf_tables_fill_setelem(args->skb, set, elem_priv, args->reset); } static void audit_log_nft_set_reset(const struct nft_table *table, unsigned int base_seq, unsigned int nentries) { char *buf = kasprintf(GFP_ATOMIC, "%s:%u", table->name, base_seq); audit_log_nfcfg(buf, table->family, nentries, AUDIT_NFT_OP_SETELEM_RESET, GFP_ATOMIC); kfree(buf); } struct nft_set_dump_ctx { const struct nft_set *set; struct nft_ctx ctx; bool reset; }; static int nft_set_catchall_dump(struct net *net, struct sk_buff *skb, const struct nft_set *set, bool reset, unsigned int base_seq) { struct nft_set_elem_catchall *catchall; u8 genmask = nft_genmask_cur(net); struct nft_set_ext *ext; int ret = 0; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask) || nft_set_elem_expired(ext)) continue; ret = nf_tables_fill_setelem(skb, set, catchall->elem, reset); if (reset && !ret) audit_log_nft_set_reset(set->table, base_seq, 1); break; } return ret; } static int nf_tables_dump_set(struct sk_buff *skb, struct netlink_callback *cb) { struct nft_set_dump_ctx *dump_ctx = cb->data; struct net *net = sock_net(skb->sk); struct nftables_pernet *nft_net; struct nft_table *table; struct nft_set *set; struct nft_set_dump_args args; bool set_found = false; struct nlmsghdr *nlh; struct nlattr *nest; u32 portid, seq; int event; rcu_read_lock(); nft_net = nft_pernet(net); cb->seq = READ_ONCE(nft_net->base_seq); list_for_each_entry_rcu(table, &nft_net->tables, list) { if (dump_ctx->ctx.family != NFPROTO_UNSPEC && dump_ctx->ctx.family != table->family) continue; if (table != dump_ctx->ctx.table) continue; list_for_each_entry_rcu(set, &table->sets, list) { if (set == dump_ctx->set) { set_found = true; break; } } break; } if (!set_found) { rcu_read_unlock(); return -ENOENT; } event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, NFT_MSG_NEWSETELEM); portid = NETLINK_CB(cb->skb).portid; seq = cb->nlh->nlmsg_seq; nlh = nfnl_msg_put(skb, portid, seq, event, NLM_F_MULTI, table->family, NFNETLINK_V0, nft_base_seq(net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_SET_ELEM_LIST_TABLE, table->name)) goto nla_put_failure; if (nla_put_string(skb, NFTA_SET_ELEM_LIST_SET, set->name)) goto nla_put_failure; nest = nla_nest_start_noflag(skb, NFTA_SET_ELEM_LIST_ELEMENTS); if (nest == NULL) goto nla_put_failure; args.cb = cb; args.skb = skb; args.reset = dump_ctx->reset; args.iter.genmask = nft_genmask_cur(net); args.iter.skip = cb->args[0]; args.iter.count = 0; args.iter.err = 0; args.iter.fn = nf_tables_dump_setelem; set->ops->walk(&dump_ctx->ctx, set, &args.iter); if (!args.iter.err && args.iter.count == cb->args[0]) args.iter.err = nft_set_catchall_dump(net, skb, set, dump_ctx->reset, cb->seq); nla_nest_end(skb, nest); nlmsg_end(skb, nlh); rcu_read_unlock(); if (args.iter.err && args.iter.err != -EMSGSIZE) return args.iter.err; if (args.iter.count == cb->args[0]) return 0; cb->args[0] = args.iter.count; return skb->len; nla_put_failure: rcu_read_unlock(); return -ENOSPC; } static int nf_tables_dumpreset_set(struct sk_buff *skb, struct netlink_callback *cb) { struct nftables_pernet *nft_net = nft_pernet(sock_net(skb->sk)); struct nft_set_dump_ctx *dump_ctx = cb->data; int ret, skip = cb->args[0]; mutex_lock(&nft_net->commit_mutex); ret = nf_tables_dump_set(skb, cb); if (cb->args[0] > skip) audit_log_nft_set_reset(dump_ctx->ctx.table, cb->seq, cb->args[0] - skip); mutex_unlock(&nft_net->commit_mutex); return ret; } static int nf_tables_dump_set_start(struct netlink_callback *cb) { struct nft_set_dump_ctx *dump_ctx = cb->data; cb->data = kmemdup(dump_ctx, sizeof(*dump_ctx), GFP_ATOMIC); return cb->data ? 0 : -ENOMEM; } static int nf_tables_dump_set_done(struct netlink_callback *cb) { kfree(cb->data); return 0; } static int nf_tables_fill_setelem_info(struct sk_buff *skb, const struct nft_ctx *ctx, u32 seq, u32 portid, int event, u16 flags, const struct nft_set *set, const struct nft_elem_priv *elem_priv, bool reset) { struct nlmsghdr *nlh; struct nlattr *nest; int err; event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, ctx->family, NFNETLINK_V0, nft_base_seq(ctx->net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_SET_TABLE, ctx->table->name)) goto nla_put_failure; if (nla_put_string(skb, NFTA_SET_NAME, set->name)) goto nla_put_failure; nest = nla_nest_start_noflag(skb, NFTA_SET_ELEM_LIST_ELEMENTS); if (nest == NULL) goto nla_put_failure; err = nf_tables_fill_setelem(skb, set, elem_priv, reset); if (err < 0) goto nla_put_failure; nla_nest_end(skb, nest); nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -1; } static int nft_setelem_parse_flags(const struct nft_set *set, const struct nlattr *attr, u32 *flags) { if (attr == NULL) return 0; *flags = ntohl(nla_get_be32(attr)); if (*flags & ~(NFT_SET_ELEM_INTERVAL_END | NFT_SET_ELEM_CATCHALL)) return -EOPNOTSUPP; if (!(set->flags & NFT_SET_INTERVAL) && *flags & NFT_SET_ELEM_INTERVAL_END) return -EINVAL; if ((*flags & (NFT_SET_ELEM_INTERVAL_END | NFT_SET_ELEM_CATCHALL)) == (NFT_SET_ELEM_INTERVAL_END | NFT_SET_ELEM_CATCHALL)) return -EINVAL; return 0; } static int nft_setelem_parse_key(struct nft_ctx *ctx, const struct nft_set *set, struct nft_data *key, struct nlattr *attr) { struct nft_data_desc desc = { .type = NFT_DATA_VALUE, .size = NFT_DATA_VALUE_MAXLEN, .len = set->klen, }; return nft_data_init(ctx, key, &desc, attr); } static int nft_setelem_parse_data(struct nft_ctx *ctx, struct nft_set *set, struct nft_data_desc *desc, struct nft_data *data, struct nlattr *attr) { u32 dtype; if (set->dtype == NFT_DATA_VERDICT) dtype = NFT_DATA_VERDICT; else dtype = NFT_DATA_VALUE; desc->type = dtype; desc->size = NFT_DATA_VALUE_MAXLEN; desc->len = set->dlen; desc->flags = NFT_DATA_DESC_SETELEM; return nft_data_init(ctx, data, desc, attr); } static void *nft_setelem_catchall_get(const struct net *net, const struct nft_set *set) { struct nft_set_elem_catchall *catchall; u8 genmask = nft_genmask_cur(net); struct nft_set_ext *ext; void *priv = NULL; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask) || nft_set_elem_expired(ext)) continue; priv = catchall->elem; break; } return priv; } static int nft_setelem_get(struct nft_ctx *ctx, const struct nft_set *set, struct nft_set_elem *elem, u32 flags) { void *priv; if (!(flags & NFT_SET_ELEM_CATCHALL)) { priv = set->ops->get(ctx->net, set, elem, flags); if (IS_ERR(priv)) return PTR_ERR(priv); } else { priv = nft_setelem_catchall_get(ctx->net, set); if (!priv) return -ENOENT; } elem->priv = priv; return 0; } static int nft_get_set_elem(struct nft_ctx *ctx, const struct nft_set *set, const struct nlattr *attr, bool reset) { struct nlattr *nla[NFTA_SET_ELEM_MAX + 1]; struct nft_set_elem elem; struct sk_buff *skb; uint32_t flags = 0; int err; err = nla_parse_nested_deprecated(nla, NFTA_SET_ELEM_MAX, attr, nft_set_elem_policy, NULL); if (err < 0) return err; err = nft_setelem_parse_flags(set, nla[NFTA_SET_ELEM_FLAGS], &flags); if (err < 0) return err; if (!nla[NFTA_SET_ELEM_KEY] && !(flags & NFT_SET_ELEM_CATCHALL)) return -EINVAL; if (nla[NFTA_SET_ELEM_KEY]) { err = nft_setelem_parse_key(ctx, set, &elem.key.val, nla[NFTA_SET_ELEM_KEY]); if (err < 0) return err; } if (nla[NFTA_SET_ELEM_KEY_END]) { err = nft_setelem_parse_key(ctx, set, &elem.key_end.val, nla[NFTA_SET_ELEM_KEY_END]); if (err < 0) return err; } err = nft_setelem_get(ctx, set, &elem, flags); if (err < 0) return err; err = -ENOMEM; skb = nlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC); if (skb == NULL) return err; err = nf_tables_fill_setelem_info(skb, ctx, ctx->seq, ctx->portid, NFT_MSG_NEWSETELEM, 0, set, elem.priv, reset); if (err < 0) goto err_fill_setelem; return nfnetlink_unicast(skb, ctx->net, ctx->portid); err_fill_setelem: kfree_skb(skb); return err; } static int nft_set_dump_ctx_init(struct nft_set_dump_ctx *dump_ctx, const struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[], bool reset) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_cur(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; struct nft_table *table; struct nft_set *set; table = nft_table_lookup(net, nla[NFTA_SET_ELEM_LIST_TABLE], family, genmask, 0); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_ELEM_LIST_TABLE]); return PTR_ERR(table); } set = nft_set_lookup(table, nla[NFTA_SET_ELEM_LIST_SET], genmask); if (IS_ERR(set)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_ELEM_LIST_SET]); return PTR_ERR(set); } nft_ctx_init(&dump_ctx->ctx, net, skb, info->nlh, family, table, NULL, nla); dump_ctx->set = set; dump_ctx->reset = reset; return 0; } /* called with rcu_read_lock held */ static int nf_tables_getsetelem(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; struct nft_set_dump_ctx dump_ctx; struct nlattr *attr; int rem, err = 0; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = nf_tables_dump_set_start, .dump = nf_tables_dump_set, .done = nf_tables_dump_set_done, .module = THIS_MODULE, }; err = nft_set_dump_ctx_init(&dump_ctx, skb, info, nla, false); if (err) return err; c.data = &dump_ctx; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } if (!nla[NFTA_SET_ELEM_LIST_ELEMENTS]) return -EINVAL; err = nft_set_dump_ctx_init(&dump_ctx, skb, info, nla, false); if (err) return err; nla_for_each_nested(attr, nla[NFTA_SET_ELEM_LIST_ELEMENTS], rem) { err = nft_get_set_elem(&dump_ctx.ctx, dump_ctx.set, attr, false); if (err < 0) { NL_SET_BAD_ATTR(extack, attr); break; } } return err; } static int nf_tables_getsetelem_reset(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct nftables_pernet *nft_net = nft_pernet(info->net); struct netlink_ext_ack *extack = info->extack; struct nft_set_dump_ctx dump_ctx; int rem, err = 0, nelems = 0; struct nlattr *attr; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = nf_tables_dump_set_start, .dump = nf_tables_dumpreset_set, .done = nf_tables_dump_set_done, .module = THIS_MODULE, }; err = nft_set_dump_ctx_init(&dump_ctx, skb, info, nla, true); if (err) return err; c.data = &dump_ctx; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } if (!nla[NFTA_SET_ELEM_LIST_ELEMENTS]) return -EINVAL; if (!try_module_get(THIS_MODULE)) return -EINVAL; rcu_read_unlock(); mutex_lock(&nft_net->commit_mutex); rcu_read_lock(); err = nft_set_dump_ctx_init(&dump_ctx, skb, info, nla, true); if (err) goto out_unlock; nla_for_each_nested(attr, nla[NFTA_SET_ELEM_LIST_ELEMENTS], rem) { err = nft_get_set_elem(&dump_ctx.ctx, dump_ctx.set, attr, true); if (err < 0) { NL_SET_BAD_ATTR(extack, attr); break; } nelems++; } audit_log_nft_set_reset(dump_ctx.ctx.table, nft_net->base_seq, nelems); out_unlock: rcu_read_unlock(); mutex_unlock(&nft_net->commit_mutex); rcu_read_lock(); module_put(THIS_MODULE); return err; } static void nf_tables_setelem_notify(const struct nft_ctx *ctx, const struct nft_set *set, const struct nft_elem_priv *elem_priv, int event) { struct nftables_pernet *nft_net; struct net *net = ctx->net; u32 portid = ctx->portid; struct sk_buff *skb; u16 flags = 0; int err; if (!ctx->report && !nfnetlink_has_listeners(net, NFNLGRP_NFTABLES)) return; skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (skb == NULL) goto err; if (ctx->flags & (NLM_F_CREATE | NLM_F_EXCL)) flags |= ctx->flags & (NLM_F_CREATE | NLM_F_EXCL); err = nf_tables_fill_setelem_info(skb, ctx, 0, portid, event, flags, set, elem_priv, false); if (err < 0) { kfree_skb(skb); goto err; } nft_net = nft_pernet(net); nft_notify_enqueue(skb, ctx->report, &nft_net->notify_list); return; err: nfnetlink_set_err(net, portid, NFNLGRP_NFTABLES, -ENOBUFS); } static struct nft_trans *nft_trans_elem_alloc(struct nft_ctx *ctx, int msg_type, struct nft_set *set) { struct nft_trans *trans; trans = nft_trans_alloc(ctx, msg_type, sizeof(struct nft_trans_elem)); if (trans == NULL) return NULL; nft_trans_elem_set(trans) = set; return trans; } struct nft_expr *nft_set_elem_expr_alloc(const struct nft_ctx *ctx, const struct nft_set *set, const struct nlattr *attr) { struct nft_expr *expr; int err; expr = nft_expr_init(ctx, attr); if (IS_ERR(expr)) return expr; err = -EOPNOTSUPP; if (expr->ops->type->flags & NFT_EXPR_GC) { if (set->flags & NFT_SET_TIMEOUT) goto err_set_elem_expr; if (!set->ops->gc_init) goto err_set_elem_expr; set->ops->gc_init(set); } return expr; err_set_elem_expr: nft_expr_destroy(ctx, expr); return ERR_PTR(err); } static int nft_set_ext_check(const struct nft_set_ext_tmpl *tmpl, u8 id, u32 len) { len += nft_set_ext_types[id].len; if (len > tmpl->ext_len[id] || len > U8_MAX) return -1; return 0; } static int nft_set_ext_memcpy(const struct nft_set_ext_tmpl *tmpl, u8 id, void *to, const void *from, u32 len) { if (nft_set_ext_check(tmpl, id, len) < 0) return -1; memcpy(to, from, len); return 0; } struct nft_elem_priv *nft_set_elem_init(const struct nft_set *set, const struct nft_set_ext_tmpl *tmpl, const u32 *key, const u32 *key_end, const u32 *data, u64 timeout, u64 expiration, gfp_t gfp) { struct nft_set_ext *ext; void *elem; elem = kzalloc(set->ops->elemsize + tmpl->len, gfp); if (elem == NULL) return ERR_PTR(-ENOMEM); ext = nft_set_elem_ext(set, elem); nft_set_ext_init(ext, tmpl); if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY) && nft_set_ext_memcpy(tmpl, NFT_SET_EXT_KEY, nft_set_ext_key(ext), key, set->klen) < 0) goto err_ext_check; if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END) && nft_set_ext_memcpy(tmpl, NFT_SET_EXT_KEY_END, nft_set_ext_key_end(ext), key_end, set->klen) < 0) goto err_ext_check; if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA) && nft_set_ext_memcpy(tmpl, NFT_SET_EXT_DATA, nft_set_ext_data(ext), data, set->dlen) < 0) goto err_ext_check; if (nft_set_ext_exists(ext, NFT_SET_EXT_EXPIRATION)) { *nft_set_ext_expiration(ext) = get_jiffies_64() + expiration; if (expiration == 0) *nft_set_ext_expiration(ext) += timeout; } if (nft_set_ext_exists(ext, NFT_SET_EXT_TIMEOUT)) *nft_set_ext_timeout(ext) = timeout; return elem; err_ext_check: kfree(elem); return ERR_PTR(-EINVAL); } static void __nft_set_elem_expr_destroy(const struct nft_ctx *ctx, struct nft_expr *expr) { if (expr->ops->destroy_clone) { expr->ops->destroy_clone(ctx, expr); module_put(expr->ops->type->owner); } else { nf_tables_expr_destroy(ctx, expr); } } static void nft_set_elem_expr_destroy(const struct nft_ctx *ctx, struct nft_set_elem_expr *elem_expr) { struct nft_expr *expr; u32 size; nft_setelem_expr_foreach(expr, elem_expr, size) __nft_set_elem_expr_destroy(ctx, expr); } /* Drop references and destroy. Called from gc, dynset and abort path. */ void nft_set_elem_destroy(const struct nft_set *set, const struct nft_elem_priv *elem_priv, bool destroy_expr) { struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); struct nft_ctx ctx = { .net = read_pnet(&set->net), .family = set->table->family, }; nft_data_release(nft_set_ext_key(ext), NFT_DATA_VALUE); if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA)) nft_data_release(nft_set_ext_data(ext), set->dtype); if (destroy_expr && nft_set_ext_exists(ext, NFT_SET_EXT_EXPRESSIONS)) nft_set_elem_expr_destroy(&ctx, nft_set_ext_expr(ext)); if (nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF)) nft_use_dec(&(*nft_set_ext_obj(ext))->use); kfree(elem_priv); } EXPORT_SYMBOL_GPL(nft_set_elem_destroy); /* Destroy element. References have been already dropped in the preparation * path via nft_setelem_data_deactivate(). */ void nf_tables_set_elem_destroy(const struct nft_ctx *ctx, const struct nft_set *set, const struct nft_elem_priv *elem_priv) { struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); if (nft_set_ext_exists(ext, NFT_SET_EXT_EXPRESSIONS)) nft_set_elem_expr_destroy(ctx, nft_set_ext_expr(ext)); kfree(elem_priv); } int nft_set_elem_expr_clone(const struct nft_ctx *ctx, struct nft_set *set, struct nft_expr *expr_array[]) { struct nft_expr *expr; int err, i, k; for (i = 0; i < set->num_exprs; i++) { expr = kzalloc(set->exprs[i]->ops->size, GFP_KERNEL_ACCOUNT); if (!expr) goto err_expr; err = nft_expr_clone(expr, set->exprs[i]); if (err < 0) { kfree(expr); goto err_expr; } expr_array[i] = expr; } return 0; err_expr: for (k = i - 1; k >= 0; k--) nft_expr_destroy(ctx, expr_array[k]); return -ENOMEM; } static int nft_set_elem_expr_setup(struct nft_ctx *ctx, const struct nft_set_ext_tmpl *tmpl, const struct nft_set_ext *ext, struct nft_expr *expr_array[], u32 num_exprs) { struct nft_set_elem_expr *elem_expr = nft_set_ext_expr(ext); u32 len = sizeof(struct nft_set_elem_expr); struct nft_expr *expr; int i, err; if (num_exprs == 0) return 0; for (i = 0; i < num_exprs; i++) len += expr_array[i]->ops->size; if (nft_set_ext_check(tmpl, NFT_SET_EXT_EXPRESSIONS, len) < 0) return -EINVAL; for (i = 0; i < num_exprs; i++) { expr = nft_setelem_expr_at(elem_expr, elem_expr->size); err = nft_expr_clone(expr, expr_array[i]); if (err < 0) goto err_elem_expr_setup; elem_expr->size += expr_array[i]->ops->size; nft_expr_destroy(ctx, expr_array[i]); expr_array[i] = NULL; } return 0; err_elem_expr_setup: for (; i < num_exprs; i++) { nft_expr_destroy(ctx, expr_array[i]); expr_array[i] = NULL; } return -ENOMEM; } struct nft_set_ext *nft_set_catchall_lookup(const struct net *net, const struct nft_set *set) { struct nft_set_elem_catchall *catchall; u8 genmask = nft_genmask_cur(net); struct nft_set_ext *ext; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (nft_set_elem_active(ext, genmask) && !nft_set_elem_expired(ext) && !nft_set_elem_is_dead(ext)) return ext; } return NULL; } EXPORT_SYMBOL_GPL(nft_set_catchall_lookup); static int nft_setelem_catchall_insert(const struct net *net, struct nft_set *set, const struct nft_set_elem *elem, struct nft_elem_priv **priv) { struct nft_set_elem_catchall *catchall; u8 genmask = nft_genmask_next(net); struct nft_set_ext *ext; list_for_each_entry(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (nft_set_elem_active(ext, genmask)) { *priv = catchall->elem; return -EEXIST; } } catchall = kmalloc(sizeof(*catchall), GFP_KERNEL); if (!catchall) return -ENOMEM; catchall->elem = elem->priv; list_add_tail_rcu(&catchall->list, &set->catchall_list); return 0; } static int nft_setelem_insert(const struct net *net, struct nft_set *set, const struct nft_set_elem *elem, struct nft_elem_priv **elem_priv, unsigned int flags) { int ret; if (flags & NFT_SET_ELEM_CATCHALL) ret = nft_setelem_catchall_insert(net, set, elem, elem_priv); else ret = set->ops->insert(net, set, elem, elem_priv); return ret; } static bool nft_setelem_is_catchall(const struct nft_set *set, const struct nft_elem_priv *elem_priv) { struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); if (nft_set_ext_exists(ext, NFT_SET_EXT_FLAGS) && *nft_set_ext_flags(ext) & NFT_SET_ELEM_CATCHALL) return true; return false; } static void nft_setelem_activate(struct net *net, struct nft_set *set, struct nft_elem_priv *elem_priv) { struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); if (nft_setelem_is_catchall(set, elem_priv)) { nft_set_elem_change_active(net, set, ext); } else { set->ops->activate(net, set, elem_priv); } } static int nft_setelem_catchall_deactivate(const struct net *net, struct nft_set *set, struct nft_set_elem *elem) { struct nft_set_elem_catchall *catchall; struct nft_set_ext *ext; list_for_each_entry(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_is_active_next(net, ext)) continue; kfree(elem->priv); elem->priv = catchall->elem; nft_set_elem_change_active(net, set, ext); return 0; } return -ENOENT; } static int __nft_setelem_deactivate(const struct net *net, struct nft_set *set, struct nft_set_elem *elem) { void *priv; priv = set->ops->deactivate(net, set, elem); if (!priv) return -ENOENT; kfree(elem->priv); elem->priv = priv; set->ndeact++; return 0; } static int nft_setelem_deactivate(const struct net *net, struct nft_set *set, struct nft_set_elem *elem, u32 flags) { int ret; if (flags & NFT_SET_ELEM_CATCHALL) ret = nft_setelem_catchall_deactivate(net, set, elem); else ret = __nft_setelem_deactivate(net, set, elem); return ret; } static void nft_setelem_catchall_destroy(struct nft_set_elem_catchall *catchall) { list_del_rcu(&catchall->list); kfree_rcu(catchall, rcu); } static void nft_setelem_catchall_remove(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv) { struct nft_set_elem_catchall *catchall, *next; list_for_each_entry_safe(catchall, next, &set->catchall_list, list) { if (catchall->elem == elem_priv) { nft_setelem_catchall_destroy(catchall); break; } } } static void nft_setelem_remove(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv) { if (nft_setelem_is_catchall(set, elem_priv)) nft_setelem_catchall_remove(net, set, elem_priv); else set->ops->remove(net, set, elem_priv); } static bool nft_setelem_valid_key_end(const struct nft_set *set, struct nlattr **nla, u32 flags) { if ((set->flags & (NFT_SET_CONCAT | NFT_SET_INTERVAL)) == (NFT_SET_CONCAT | NFT_SET_INTERVAL)) { if (flags & NFT_SET_ELEM_INTERVAL_END) return false; if (nla[NFTA_SET_ELEM_KEY_END] && flags & NFT_SET_ELEM_CATCHALL) return false; } else { if (nla[NFTA_SET_ELEM_KEY_END]) return false; } return true; } static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, const struct nlattr *attr, u32 nlmsg_flags) { struct nft_expr *expr_array[NFT_SET_EXPR_MAX] = {}; struct nlattr *nla[NFTA_SET_ELEM_MAX + 1]; u8 genmask = nft_genmask_next(ctx->net); u32 flags = 0, size = 0, num_exprs = 0; struct nft_set_ext_tmpl tmpl; struct nft_set_ext *ext, *ext2; struct nft_set_elem elem; struct nft_set_binding *binding; struct nft_elem_priv *elem_priv; struct nft_object *obj = NULL; struct nft_userdata *udata; struct nft_data_desc desc; enum nft_registers dreg; struct nft_trans *trans; u64 expiration; u64 timeout; int err, i; u8 ulen; err = nla_parse_nested_deprecated(nla, NFTA_SET_ELEM_MAX, attr, nft_set_elem_policy, NULL); if (err < 0) return err; nft_set_ext_prepare(&tmpl); err = nft_setelem_parse_flags(set, nla[NFTA_SET_ELEM_FLAGS], &flags); if (err < 0) return err; if (((flags & NFT_SET_ELEM_CATCHALL) && nla[NFTA_SET_ELEM_KEY]) || (!(flags & NFT_SET_ELEM_CATCHALL) && !nla[NFTA_SET_ELEM_KEY])) return -EINVAL; if (flags != 0) { err = nft_set_ext_add(&tmpl, NFT_SET_EXT_FLAGS); if (err < 0) return err; } if (set->flags & NFT_SET_MAP) { if (nla[NFTA_SET_ELEM_DATA] == NULL && !(flags & NFT_SET_ELEM_INTERVAL_END)) return -EINVAL; } else { if (nla[NFTA_SET_ELEM_DATA] != NULL) return -EINVAL; } if (set->flags & NFT_SET_OBJECT) { if (!nla[NFTA_SET_ELEM_OBJREF] && !(flags & NFT_SET_ELEM_INTERVAL_END)) return -EINVAL; } else { if (nla[NFTA_SET_ELEM_OBJREF]) return -EINVAL; } if (!nft_setelem_valid_key_end(set, nla, flags)) return -EINVAL; if ((flags & NFT_SET_ELEM_INTERVAL_END) && (nla[NFTA_SET_ELEM_DATA] || nla[NFTA_SET_ELEM_OBJREF] || nla[NFTA_SET_ELEM_TIMEOUT] || nla[NFTA_SET_ELEM_EXPIRATION] || nla[NFTA_SET_ELEM_USERDATA] || nla[NFTA_SET_ELEM_EXPR] || nla[NFTA_SET_ELEM_KEY_END] || nla[NFTA_SET_ELEM_EXPRESSIONS])) return -EINVAL; timeout = 0; if (nla[NFTA_SET_ELEM_TIMEOUT] != NULL) { if (!(set->flags & NFT_SET_TIMEOUT)) return -EINVAL; err = nf_msecs_to_jiffies64(nla[NFTA_SET_ELEM_TIMEOUT], &timeout); if (err) return err; } else if (set->flags & NFT_SET_TIMEOUT && !(flags & NFT_SET_ELEM_INTERVAL_END)) { timeout = READ_ONCE(set->timeout); } expiration = 0; if (nla[NFTA_SET_ELEM_EXPIRATION] != NULL) { if (!(set->flags & NFT_SET_TIMEOUT)) return -EINVAL; err = nf_msecs_to_jiffies64(nla[NFTA_SET_ELEM_EXPIRATION], &expiration); if (err) return err; } if (nla[NFTA_SET_ELEM_EXPR]) { struct nft_expr *expr; if (set->num_exprs && set->num_exprs != 1) return -EOPNOTSUPP; expr = nft_set_elem_expr_alloc(ctx, set, nla[NFTA_SET_ELEM_EXPR]); if (IS_ERR(expr)) return PTR_ERR(expr); expr_array[0] = expr; num_exprs = 1; if (set->num_exprs && set->exprs[0]->ops != expr->ops) { err = -EOPNOTSUPP; goto err_set_elem_expr; } } else if (nla[NFTA_SET_ELEM_EXPRESSIONS]) { struct nft_expr *expr; struct nlattr *tmp; int left; i = 0; nla_for_each_nested(tmp, nla[NFTA_SET_ELEM_EXPRESSIONS], left) { if (i == NFT_SET_EXPR_MAX || (set->num_exprs && set->num_exprs == i)) { err = -E2BIG; goto err_set_elem_expr; } if (nla_type(tmp) != NFTA_LIST_ELEM) { err = -EINVAL; goto err_set_elem_expr; } expr = nft_set_elem_expr_alloc(ctx, set, tmp); if (IS_ERR(expr)) { err = PTR_ERR(expr); goto err_set_elem_expr; } expr_array[i] = expr; num_exprs++; if (set->num_exprs && expr->ops != set->exprs[i]->ops) { err = -EOPNOTSUPP; goto err_set_elem_expr; } i++; } if (set->num_exprs && set->num_exprs != i) { err = -EOPNOTSUPP; goto err_set_elem_expr; } } else if (set->num_exprs > 0 && !(flags & NFT_SET_ELEM_INTERVAL_END)) { err = nft_set_elem_expr_clone(ctx, set, expr_array); if (err < 0) goto err_set_elem_expr_clone; num_exprs = set->num_exprs; } if (nla[NFTA_SET_ELEM_KEY]) { err = nft_setelem_parse_key(ctx, set, &elem.key.val, nla[NFTA_SET_ELEM_KEY]); if (err < 0) goto err_set_elem_expr; err = nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY, set->klen); if (err < 0) goto err_parse_key; } if (nla[NFTA_SET_ELEM_KEY_END]) { err = nft_setelem_parse_key(ctx, set, &elem.key_end.val, nla[NFTA_SET_ELEM_KEY_END]); if (err < 0) goto err_parse_key; err = nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY_END, set->klen); if (err < 0) goto err_parse_key_end; } if (timeout > 0) { err = nft_set_ext_add(&tmpl, NFT_SET_EXT_EXPIRATION); if (err < 0) goto err_parse_key_end; if (timeout != READ_ONCE(set->timeout)) { err = nft_set_ext_add(&tmpl, NFT_SET_EXT_TIMEOUT); if (err < 0) goto err_parse_key_end; } } if (num_exprs) { for (i = 0; i < num_exprs; i++) size += expr_array[i]->ops->size; err = nft_set_ext_add_length(&tmpl, NFT_SET_EXT_EXPRESSIONS, sizeof(struct nft_set_elem_expr) + size); if (err < 0) goto err_parse_key_end; } if (nla[NFTA_SET_ELEM_OBJREF] != NULL) { obj = nft_obj_lookup(ctx->net, ctx->table, nla[NFTA_SET_ELEM_OBJREF], set->objtype, genmask); if (IS_ERR(obj)) { err = PTR_ERR(obj); obj = NULL; goto err_parse_key_end; } if (!nft_use_inc(&obj->use)) { err = -EMFILE; obj = NULL; goto err_parse_key_end; } err = nft_set_ext_add(&tmpl, NFT_SET_EXT_OBJREF); if (err < 0) goto err_parse_key_end; } if (nla[NFTA_SET_ELEM_DATA] != NULL) { err = nft_setelem_parse_data(ctx, set, &desc, &elem.data.val, nla[NFTA_SET_ELEM_DATA]); if (err < 0) goto err_parse_key_end; dreg = nft_type_to_reg(set->dtype); list_for_each_entry(binding, &set->bindings, list) { struct nft_ctx bind_ctx = { .net = ctx->net, .family = ctx->family, .table = ctx->table, .chain = (struct nft_chain *)binding->chain, }; if (!(binding->flags & NFT_SET_MAP)) continue; err = nft_validate_register_store(&bind_ctx, dreg, &elem.data.val, desc.type, desc.len); if (err < 0) goto err_parse_data; if (desc.type == NFT_DATA_VERDICT && (elem.data.val.verdict.code == NFT_GOTO || elem.data.val.verdict.code == NFT_JUMP)) nft_validate_state_update(ctx->table, NFT_VALIDATE_NEED); } err = nft_set_ext_add_length(&tmpl, NFT_SET_EXT_DATA, desc.len); if (err < 0) goto err_parse_data; } /* The full maximum length of userdata can exceed the maximum * offset value (U8_MAX) for following extensions, therefor it * must be the last extension added. */ ulen = 0; if (nla[NFTA_SET_ELEM_USERDATA] != NULL) { ulen = nla_len(nla[NFTA_SET_ELEM_USERDATA]); if (ulen > 0) { err = nft_set_ext_add_length(&tmpl, NFT_SET_EXT_USERDATA, ulen); if (err < 0) goto err_parse_data; } } elem.priv = nft_set_elem_init(set, &tmpl, elem.key.val.data, elem.key_end.val.data, elem.data.val.data, timeout, expiration, GFP_KERNEL_ACCOUNT); if (IS_ERR(elem.priv)) { err = PTR_ERR(elem.priv); goto err_parse_data; } ext = nft_set_elem_ext(set, elem.priv); if (flags) *nft_set_ext_flags(ext) = flags; if (obj) *nft_set_ext_obj(ext) = obj; if (ulen > 0) { if (nft_set_ext_check(&tmpl, NFT_SET_EXT_USERDATA, ulen) < 0) { err = -EINVAL; goto err_elem_free; } udata = nft_set_ext_userdata(ext); udata->len = ulen - 1; nla_memcpy(&udata->data, nla[NFTA_SET_ELEM_USERDATA], ulen); } err = nft_set_elem_expr_setup(ctx, &tmpl, ext, expr_array, num_exprs); if (err < 0) goto err_elem_free; trans = nft_trans_elem_alloc(ctx, NFT_MSG_NEWSETELEM, set); if (trans == NULL) { err = -ENOMEM; goto err_elem_free; } ext->genmask = nft_genmask_cur(ctx->net); err = nft_setelem_insert(ctx->net, set, &elem, &elem_priv, flags); if (err) { if (err == -EEXIST) { ext2 = nft_set_elem_ext(set, elem_priv); if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA) ^ nft_set_ext_exists(ext2, NFT_SET_EXT_DATA) || nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF) ^ nft_set_ext_exists(ext2, NFT_SET_EXT_OBJREF)) goto err_element_clash; if ((nft_set_ext_exists(ext, NFT_SET_EXT_DATA) && nft_set_ext_exists(ext2, NFT_SET_EXT_DATA) && memcmp(nft_set_ext_data(ext), nft_set_ext_data(ext2), set->dlen) != 0) || (nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF) && nft_set_ext_exists(ext2, NFT_SET_EXT_OBJREF) && *nft_set_ext_obj(ext) != *nft_set_ext_obj(ext2))) goto err_element_clash; else if (!(nlmsg_flags & NLM_F_EXCL)) err = 0; } else if (err == -ENOTEMPTY) { /* ENOTEMPTY reports overlapping between this element * and an existing one. */ err = -EEXIST; } goto err_element_clash; } if (!(flags & NFT_SET_ELEM_CATCHALL)) { unsigned int max = set->size ? set->size + set->ndeact : UINT_MAX; if (!atomic_add_unless(&set->nelems, 1, max)) { err = -ENFILE; goto err_set_full; } } nft_trans_elem_priv(trans) = elem.priv; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; err_set_full: nft_setelem_remove(ctx->net, set, elem.priv); err_element_clash: kfree(trans); err_elem_free: nf_tables_set_elem_destroy(ctx, set, elem.priv); err_parse_data: if (nla[NFTA_SET_ELEM_DATA] != NULL) nft_data_release(&elem.data.val, desc.type); err_parse_key_end: if (obj) nft_use_dec_restore(&obj->use); nft_data_release(&elem.key_end.val, NFT_DATA_VALUE); err_parse_key: nft_data_release(&elem.key.val, NFT_DATA_VALUE); err_set_elem_expr: for (i = 0; i < num_exprs && expr_array[i]; i++) nft_expr_destroy(ctx, expr_array[i]); err_set_elem_expr_clone: return err; } static int nf_tables_newsetelem(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_set *set; struct nft_ctx ctx; int rem, err; if (nla[NFTA_SET_ELEM_LIST_ELEMENTS] == NULL) return -EINVAL; table = nft_table_lookup(net, nla[NFTA_SET_ELEM_LIST_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_ELEM_LIST_TABLE]); return PTR_ERR(table); } set = nft_set_lookup_global(net, table, nla[NFTA_SET_ELEM_LIST_SET], nla[NFTA_SET_ELEM_LIST_SET_ID], genmask); if (IS_ERR(set)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_ELEM_LIST_SET]); return PTR_ERR(set); } if (!list_empty(&set->bindings) && (set->flags & (NFT_SET_CONSTANT | NFT_SET_ANONYMOUS))) return -EBUSY; nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); nla_for_each_nested(attr, nla[NFTA_SET_ELEM_LIST_ELEMENTS], rem) { err = nft_add_set_elem(&ctx, set, attr, info->nlh->nlmsg_flags); if (err < 0) { NL_SET_BAD_ATTR(extack, attr); return err; } } if (table->validate_state == NFT_VALIDATE_DO) return nft_table_validate(net, table); return 0; } /** * nft_data_hold - hold a nft_data item * * @data: struct nft_data to release * @type: type of data * * Hold a nft_data item. NFT_DATA_VALUE types can be silently discarded, * NFT_DATA_VERDICT bumps the reference to chains in case of NFT_JUMP and * NFT_GOTO verdicts. This function must be called on active data objects * from the second phase of the commit protocol. */ void nft_data_hold(const struct nft_data *data, enum nft_data_types type) { struct nft_chain *chain; if (type == NFT_DATA_VERDICT) { switch (data->verdict.code) { case NFT_JUMP: case NFT_GOTO: chain = data->verdict.chain; nft_use_inc_restore(&chain->use); break; } } } static void nft_setelem_data_activate(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA)) nft_data_hold(nft_set_ext_data(ext), set->dtype); if (nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF)) nft_use_inc_restore(&(*nft_set_ext_obj(ext))->use); } void nft_setelem_data_deactivate(const struct net *net, const struct nft_set *set, struct nft_elem_priv *elem_priv) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA)) nft_data_release(nft_set_ext_data(ext), set->dtype); if (nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF)) nft_use_dec(&(*nft_set_ext_obj(ext))->use); } static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set, const struct nlattr *attr) { struct nlattr *nla[NFTA_SET_ELEM_MAX + 1]; struct nft_set_ext_tmpl tmpl; struct nft_set_elem elem; struct nft_set_ext *ext; struct nft_trans *trans; u32 flags = 0; int err; err = nla_parse_nested_deprecated(nla, NFTA_SET_ELEM_MAX, attr, nft_set_elem_policy, NULL); if (err < 0) return err; err = nft_setelem_parse_flags(set, nla[NFTA_SET_ELEM_FLAGS], &flags); if (err < 0) return err; if (!nla[NFTA_SET_ELEM_KEY] && !(flags & NFT_SET_ELEM_CATCHALL)) return -EINVAL; if (!nft_setelem_valid_key_end(set, nla, flags)) return -EINVAL; nft_set_ext_prepare(&tmpl); if (flags != 0) { err = nft_set_ext_add(&tmpl, NFT_SET_EXT_FLAGS); if (err < 0) return err; } if (nla[NFTA_SET_ELEM_KEY]) { err = nft_setelem_parse_key(ctx, set, &elem.key.val, nla[NFTA_SET_ELEM_KEY]); if (err < 0) return err; err = nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY, set->klen); if (err < 0) goto fail_elem; } if (nla[NFTA_SET_ELEM_KEY_END]) { err = nft_setelem_parse_key(ctx, set, &elem.key_end.val, nla[NFTA_SET_ELEM_KEY_END]); if (err < 0) goto fail_elem; err = nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY_END, set->klen); if (err < 0) goto fail_elem_key_end; } err = -ENOMEM; elem.priv = nft_set_elem_init(set, &tmpl, elem.key.val.data, elem.key_end.val.data, NULL, 0, 0, GFP_KERNEL_ACCOUNT); if (IS_ERR(elem.priv)) { err = PTR_ERR(elem.priv); goto fail_elem_key_end; } ext = nft_set_elem_ext(set, elem.priv); if (flags) *nft_set_ext_flags(ext) = flags; trans = nft_trans_elem_alloc(ctx, NFT_MSG_DELSETELEM, set); if (trans == NULL) goto fail_trans; err = nft_setelem_deactivate(ctx->net, set, &elem, flags); if (err < 0) goto fail_ops; nft_setelem_data_deactivate(ctx->net, set, elem.priv); nft_trans_elem_priv(trans) = elem.priv; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; fail_ops: kfree(trans); fail_trans: kfree(elem.priv); fail_elem_key_end: nft_data_release(&elem.key_end.val, NFT_DATA_VALUE); fail_elem: nft_data_release(&elem.key.val, NFT_DATA_VALUE); return err; } static int nft_setelem_flush(const struct nft_ctx *ctx, struct nft_set *set, const struct nft_set_iter *iter, struct nft_elem_priv *elem_priv) { struct nft_trans *trans; trans = nft_trans_alloc_gfp(ctx, NFT_MSG_DELSETELEM, sizeof(struct nft_trans_elem), GFP_ATOMIC); if (!trans) return -ENOMEM; set->ops->flush(ctx->net, set, elem_priv); set->ndeact++; nft_setelem_data_deactivate(ctx->net, set, elem_priv); nft_trans_elem_set(trans) = set; nft_trans_elem_priv(trans) = elem_priv; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; } static int __nft_set_catchall_flush(const struct nft_ctx *ctx, struct nft_set *set, struct nft_elem_priv *elem_priv) { struct nft_trans *trans; trans = nft_trans_alloc_gfp(ctx, NFT_MSG_DELSETELEM, sizeof(struct nft_trans_elem), GFP_KERNEL); if (!trans) return -ENOMEM; nft_setelem_data_deactivate(ctx->net, set, elem_priv); nft_trans_elem_set(trans) = set; nft_trans_elem_priv(trans) = elem_priv; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; } static int nft_set_catchall_flush(const struct nft_ctx *ctx, struct nft_set *set) { u8 genmask = nft_genmask_next(ctx->net); struct nft_set_elem_catchall *catchall; struct nft_set_ext *ext; int ret = 0; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask)) continue; ret = __nft_set_catchall_flush(ctx, set, catchall->elem); if (ret < 0) break; nft_set_elem_change_active(ctx->net, set, ext); } return ret; } static int nft_set_flush(struct nft_ctx *ctx, struct nft_set *set, u8 genmask) { struct nft_set_iter iter = { .genmask = genmask, .fn = nft_setelem_flush, }; set->ops->walk(ctx, set, &iter); if (!iter.err) iter.err = nft_set_catchall_flush(ctx, set); return iter.err; } static int nf_tables_delsetelem(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_set *set; struct nft_ctx ctx; int rem, err = 0; table = nft_table_lookup(net, nla[NFTA_SET_ELEM_LIST_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_ELEM_LIST_TABLE]); return PTR_ERR(table); } set = nft_set_lookup(table, nla[NFTA_SET_ELEM_LIST_SET], genmask); if (IS_ERR(set)) { NL_SET_BAD_ATTR(extack, nla[NFTA_SET_ELEM_LIST_SET]); return PTR_ERR(set); } if (nft_set_is_anonymous(set)) return -EOPNOTSUPP; if (!list_empty(&set->bindings) && (set->flags & NFT_SET_CONSTANT)) return -EBUSY; nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); if (!nla[NFTA_SET_ELEM_LIST_ELEMENTS]) return nft_set_flush(&ctx, set, genmask); nla_for_each_nested(attr, nla[NFTA_SET_ELEM_LIST_ELEMENTS], rem) { err = nft_del_setelem(&ctx, set, attr); if (err == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYSETELEM) continue; if (err < 0) { NL_SET_BAD_ATTR(extack, attr); return err; } } return 0; } /* * Stateful objects */ /** * nft_register_obj- register nf_tables stateful object type * @obj_type: object type * * Registers the object type for use with nf_tables. Returns zero on * success or a negative errno code otherwise. */ int nft_register_obj(struct nft_object_type *obj_type) { if (obj_type->type == NFT_OBJECT_UNSPEC) return -EINVAL; nfnl_lock(NFNL_SUBSYS_NFTABLES); list_add_rcu(&obj_type->list, &nf_tables_objects); nfnl_unlock(NFNL_SUBSYS_NFTABLES); return 0; } EXPORT_SYMBOL_GPL(nft_register_obj); /** * nft_unregister_obj - unregister nf_tables object type * @obj_type: object type * * Unregisters the object type for use with nf_tables. */ void nft_unregister_obj(struct nft_object_type *obj_type) { nfnl_lock(NFNL_SUBSYS_NFTABLES); list_del_rcu(&obj_type->list); nfnl_unlock(NFNL_SUBSYS_NFTABLES); } EXPORT_SYMBOL_GPL(nft_unregister_obj); struct nft_object *nft_obj_lookup(const struct net *net, const struct nft_table *table, const struct nlattr *nla, u32 objtype, u8 genmask) { struct nft_object_hash_key k = { .table = table }; char search[NFT_OBJ_MAXNAMELEN]; struct rhlist_head *tmp, *list; struct nft_object *obj; nla_strscpy(search, nla, sizeof(search)); k.name = search; WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_commit_lock_is_held(net)); rcu_read_lock(); list = rhltable_lookup(&nft_objname_ht, &k, nft_objname_ht_params); if (!list) goto out; rhl_for_each_entry_rcu(obj, tmp, list, rhlhead) { if (objtype == obj->ops->type->type && nft_active_genmask(obj, genmask)) { rcu_read_unlock(); return obj; } } out: rcu_read_unlock(); return ERR_PTR(-ENOENT); } EXPORT_SYMBOL_GPL(nft_obj_lookup); static struct nft_object *nft_obj_lookup_byhandle(const struct nft_table *table, const struct nlattr *nla, u32 objtype, u8 genmask) { struct nft_object *obj; list_for_each_entry(obj, &table->objects, list) { if (be64_to_cpu(nla_get_be64(nla)) == obj->handle && objtype == obj->ops->type->type && nft_active_genmask(obj, genmask)) return obj; } return ERR_PTR(-ENOENT); } static const struct nla_policy nft_obj_policy[NFTA_OBJ_MAX + 1] = { [NFTA_OBJ_TABLE] = { .type = NLA_STRING, .len = NFT_TABLE_MAXNAMELEN - 1 }, [NFTA_OBJ_NAME] = { .type = NLA_STRING, .len = NFT_OBJ_MAXNAMELEN - 1 }, [NFTA_OBJ_TYPE] = { .type = NLA_U32 }, [NFTA_OBJ_DATA] = { .type = NLA_NESTED }, [NFTA_OBJ_HANDLE] = { .type = NLA_U64}, [NFTA_OBJ_USERDATA] = { .type = NLA_BINARY, .len = NFT_USERDATA_MAXLEN }, }; static struct nft_object *nft_obj_init(const struct nft_ctx *ctx, const struct nft_object_type *type, const struct nlattr *attr) { struct nlattr **tb; const struct nft_object_ops *ops; struct nft_object *obj; int err = -ENOMEM; tb = kmalloc_array(type->maxattr + 1, sizeof(*tb), GFP_KERNEL); if (!tb) goto err1; if (attr) { err = nla_parse_nested_deprecated(tb, type->maxattr, attr, type->policy, NULL); if (err < 0) goto err2; } else { memset(tb, 0, sizeof(tb[0]) * (type->maxattr + 1)); } if (type->select_ops) { ops = type->select_ops(ctx, (const struct nlattr * const *)tb); if (IS_ERR(ops)) { err = PTR_ERR(ops); goto err2; } } else { ops = type->ops; } err = -ENOMEM; obj = kzalloc(sizeof(*obj) + ops->size, GFP_KERNEL_ACCOUNT); if (!obj) goto err2; err = ops->init(ctx, (const struct nlattr * const *)tb, obj); if (err < 0) goto err3; obj->ops = ops; kfree(tb); return obj; err3: kfree(obj); err2: kfree(tb); err1: return ERR_PTR(err); } static int nft_object_dump(struct sk_buff *skb, unsigned int attr, struct nft_object *obj, bool reset) { struct nlattr *nest; nest = nla_nest_start_noflag(skb, attr); if (!nest) goto nla_put_failure; if (obj->ops->dump(skb, obj, reset) < 0) goto nla_put_failure; nla_nest_end(skb, nest); return 0; nla_put_failure: return -1; } static const struct nft_object_type *__nft_obj_type_get(u32 objtype, u8 family) { const struct nft_object_type *type; list_for_each_entry(type, &nf_tables_objects, list) { if (type->family != NFPROTO_UNSPEC && type->family != family) continue; if (objtype == type->type) return type; } return NULL; } static const struct nft_object_type * nft_obj_type_get(struct net *net, u32 objtype, u8 family) { const struct nft_object_type *type; type = __nft_obj_type_get(objtype, family); if (type != NULL && try_module_get(type->owner)) return type; lockdep_nfnl_nft_mutex_not_held(); #ifdef CONFIG_MODULES if (type == NULL) { if (nft_request_module(net, "nft-obj-%u", objtype) == -EAGAIN) return ERR_PTR(-EAGAIN); } #endif return ERR_PTR(-ENOENT); } static int nf_tables_updobj(const struct nft_ctx *ctx, const struct nft_object_type *type, const struct nlattr *attr, struct nft_object *obj) { struct nft_object *newobj; struct nft_trans *trans; int err = -ENOMEM; if (!try_module_get(type->owner)) return -ENOENT; trans = nft_trans_alloc(ctx, NFT_MSG_NEWOBJ, sizeof(struct nft_trans_obj)); if (!trans) goto err_trans; newobj = nft_obj_init(ctx, type, attr); if (IS_ERR(newobj)) { err = PTR_ERR(newobj); goto err_free_trans; } nft_trans_obj(trans) = obj; nft_trans_obj_update(trans) = true; nft_trans_obj_newobj(trans) = newobj; nft_trans_commit_list_add_tail(ctx->net, trans); return 0; err_free_trans: kfree(trans); err_trans: module_put(type->owner); return err; } static int nf_tables_newobj(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; const struct nft_object_type *type; struct net *net = info->net; struct nft_table *table; struct nft_object *obj; struct nft_ctx ctx; u32 objtype; int err; if (!nla[NFTA_OBJ_TYPE] || !nla[NFTA_OBJ_NAME] || !nla[NFTA_OBJ_DATA]) return -EINVAL; table = nft_table_lookup(net, nla[NFTA_OBJ_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_OBJ_TABLE]); return PTR_ERR(table); } objtype = ntohl(nla_get_be32(nla[NFTA_OBJ_TYPE])); obj = nft_obj_lookup(net, table, nla[NFTA_OBJ_NAME], objtype, genmask); if (IS_ERR(obj)) { err = PTR_ERR(obj); if (err != -ENOENT) { NL_SET_BAD_ATTR(extack, nla[NFTA_OBJ_NAME]); return err; } } else { if (info->nlh->nlmsg_flags & NLM_F_EXCL) { NL_SET_BAD_ATTR(extack, nla[NFTA_OBJ_NAME]); return -EEXIST; } if (info->nlh->nlmsg_flags & NLM_F_REPLACE) return -EOPNOTSUPP; type = __nft_obj_type_get(objtype, family); if (WARN_ON_ONCE(!type)) return -ENOENT; nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); return nf_tables_updobj(&ctx, type, nla[NFTA_OBJ_DATA], obj); } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); if (!nft_use_inc(&table->use)) return -EMFILE; type = nft_obj_type_get(net, objtype, family); if (IS_ERR(type)) { err = PTR_ERR(type); goto err_type; } obj = nft_obj_init(&ctx, type, nla[NFTA_OBJ_DATA]); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto err_init; } obj->key.table = table; obj->handle = nf_tables_alloc_handle(table); obj->key.name = nla_strdup(nla[NFTA_OBJ_NAME], GFP_KERNEL_ACCOUNT); if (!obj->key.name) { err = -ENOMEM; goto err_strdup; } if (nla[NFTA_OBJ_USERDATA]) { obj->udata = nla_memdup(nla[NFTA_OBJ_USERDATA], GFP_KERNEL_ACCOUNT); if (obj->udata == NULL) goto err_userdata; obj->udlen = nla_len(nla[NFTA_OBJ_USERDATA]); } err = nft_trans_obj_add(&ctx, NFT_MSG_NEWOBJ, obj); if (err < 0) goto err_trans; err = rhltable_insert(&nft_objname_ht, &obj->rhlhead, nft_objname_ht_params); if (err < 0) goto err_obj_ht; list_add_tail_rcu(&obj->list, &table->objects); return 0; err_obj_ht: /* queued in transaction log */ INIT_LIST_HEAD(&obj->list); return err; err_trans: kfree(obj->udata); err_userdata: kfree(obj->key.name); err_strdup: if (obj->ops->destroy) obj->ops->destroy(&ctx, obj); kfree(obj); err_init: module_put(type->owner); err_type: nft_use_dec_restore(&table->use); return err; } static int nf_tables_fill_obj_info(struct sk_buff *skb, struct net *net, u32 portid, u32 seq, int event, u32 flags, int family, const struct nft_table *table, struct nft_object *obj, bool reset) { struct nlmsghdr *nlh; event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, family, NFNETLINK_V0, nft_base_seq(net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_OBJ_TABLE, table->name) || nla_put_string(skb, NFTA_OBJ_NAME, obj->key.name) || nla_put_be64(skb, NFTA_OBJ_HANDLE, cpu_to_be64(obj->handle), NFTA_OBJ_PAD)) goto nla_put_failure; if (event == NFT_MSG_DELOBJ) { nlmsg_end(skb, nlh); return 0; } if (nla_put_be32(skb, NFTA_OBJ_TYPE, htonl(obj->ops->type->type)) || nla_put_be32(skb, NFTA_OBJ_USE, htonl(obj->use)) || nft_object_dump(skb, NFTA_OBJ_DATA, obj, reset)) goto nla_put_failure; if (obj->udata && nla_put(skb, NFTA_OBJ_USERDATA, obj->udlen, obj->udata)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -1; } static void audit_log_obj_reset(const struct nft_table *table, unsigned int base_seq, unsigned int nentries) { char *buf = kasprintf(GFP_ATOMIC, "%s:%u", table->name, base_seq); audit_log_nfcfg(buf, table->family, nentries, AUDIT_NFT_OP_OBJ_RESET, GFP_ATOMIC); kfree(buf); } struct nft_obj_dump_ctx { unsigned int s_idx; char *table; u32 type; bool reset; }; static int nf_tables_dump_obj(struct sk_buff *skb, struct netlink_callback *cb) { const struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); struct nft_obj_dump_ctx *ctx = (void *)cb->ctx; struct net *net = sock_net(skb->sk); int family = nfmsg->nfgen_family; struct nftables_pernet *nft_net; const struct nft_table *table; unsigned int entries = 0; struct nft_object *obj; unsigned int idx = 0; int rc = 0; rcu_read_lock(); nft_net = nft_pernet(net); cb->seq = READ_ONCE(nft_net->base_seq); list_for_each_entry_rcu(table, &nft_net->tables, list) { if (family != NFPROTO_UNSPEC && family != table->family) continue; entries = 0; list_for_each_entry_rcu(obj, &table->objects, list) { if (!nft_is_active(net, obj)) goto cont; if (idx < ctx->s_idx) goto cont; if (ctx->table && strcmp(ctx->table, table->name)) goto cont; if (ctx->type != NFT_OBJECT_UNSPEC && obj->ops->type->type != ctx->type) goto cont; rc = nf_tables_fill_obj_info(skb, net, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFT_MSG_NEWOBJ, NLM_F_MULTI | NLM_F_APPEND, table->family, table, obj, ctx->reset); if (rc < 0) break; entries++; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); cont: idx++; } if (ctx->reset && entries) audit_log_obj_reset(table, nft_net->base_seq, entries); if (rc < 0) break; } rcu_read_unlock(); ctx->s_idx = idx; return skb->len; } static int nf_tables_dump_obj_start(struct netlink_callback *cb) { struct nft_obj_dump_ctx *ctx = (void *)cb->ctx; const struct nlattr * const *nla = cb->data; BUILD_BUG_ON(sizeof(*ctx) > sizeof(cb->ctx)); if (nla[NFTA_OBJ_TABLE]) { ctx->table = nla_strdup(nla[NFTA_OBJ_TABLE], GFP_ATOMIC); if (!ctx->table) return -ENOMEM; } if (nla[NFTA_OBJ_TYPE]) ctx->type = ntohl(nla_get_be32(nla[NFTA_OBJ_TYPE])); if (NFNL_MSG_TYPE(cb->nlh->nlmsg_type) == NFT_MSG_GETOBJ_RESET) ctx->reset = true; return 0; } static int nf_tables_dump_obj_done(struct netlink_callback *cb) { struct nft_obj_dump_ctx *ctx = (void *)cb->ctx; kfree(ctx->table); return 0; } /* called with rcu_read_lock held */ static int nf_tables_getobj(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_cur(info->net); u8 family = info->nfmsg->nfgen_family; const struct nft_table *table; struct net *net = info->net; struct nft_object *obj; struct sk_buff *skb2; bool reset = false; u32 objtype; int err; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = nf_tables_dump_obj_start, .dump = nf_tables_dump_obj, .done = nf_tables_dump_obj_done, .module = THIS_MODULE, .data = (void *)nla, }; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } if (!nla[NFTA_OBJ_NAME] || !nla[NFTA_OBJ_TYPE]) return -EINVAL; table = nft_table_lookup(net, nla[NFTA_OBJ_TABLE], family, genmask, 0); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_OBJ_TABLE]); return PTR_ERR(table); } objtype = ntohl(nla_get_be32(nla[NFTA_OBJ_TYPE])); obj = nft_obj_lookup(net, table, nla[NFTA_OBJ_NAME], objtype, genmask); if (IS_ERR(obj)) { NL_SET_BAD_ATTR(extack, nla[NFTA_OBJ_NAME]); return PTR_ERR(obj); } skb2 = alloc_skb(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb2) return -ENOMEM; if (NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_GETOBJ_RESET) reset = true; if (reset) { const struct nftables_pernet *nft_net; char *buf; nft_net = nft_pernet(net); buf = kasprintf(GFP_ATOMIC, "%s:%u", table->name, nft_net->base_seq); audit_log_nfcfg(buf, family, 1, AUDIT_NFT_OP_OBJ_RESET, GFP_ATOMIC); kfree(buf); } err = nf_tables_fill_obj_info(skb2, net, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFT_MSG_NEWOBJ, 0, family, table, obj, reset); if (err < 0) goto err_fill_obj_info; return nfnetlink_unicast(skb2, net, NETLINK_CB(skb).portid); err_fill_obj_info: kfree_skb(skb2); return err; } static void nft_obj_destroy(const struct nft_ctx *ctx, struct nft_object *obj) { if (obj->ops->destroy) obj->ops->destroy(ctx, obj); module_put(obj->ops->type->owner); kfree(obj->key.name); kfree(obj->udata); kfree(obj); } static int nf_tables_delobj(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_object *obj; struct nft_ctx ctx; u32 objtype; if (!nla[NFTA_OBJ_TYPE] || (!nla[NFTA_OBJ_NAME] && !nla[NFTA_OBJ_HANDLE])) return -EINVAL; table = nft_table_lookup(net, nla[NFTA_OBJ_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_OBJ_TABLE]); return PTR_ERR(table); } objtype = ntohl(nla_get_be32(nla[NFTA_OBJ_TYPE])); if (nla[NFTA_OBJ_HANDLE]) { attr = nla[NFTA_OBJ_HANDLE]; obj = nft_obj_lookup_byhandle(table, attr, objtype, genmask); } else { attr = nla[NFTA_OBJ_NAME]; obj = nft_obj_lookup(net, table, attr, objtype, genmask); } if (IS_ERR(obj)) { if (PTR_ERR(obj) == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYOBJ) return 0; NL_SET_BAD_ATTR(extack, attr); return PTR_ERR(obj); } if (obj->use > 0) { NL_SET_BAD_ATTR(extack, attr); return -EBUSY; } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); return nft_delobj(&ctx, obj); } static void __nft_obj_notify(struct net *net, const struct nft_table *table, struct nft_object *obj, u32 portid, u32 seq, int event, u16 flags, int family, int report, gfp_t gfp) { struct nftables_pernet *nft_net = nft_pernet(net); struct sk_buff *skb; int err; if (!report && !nfnetlink_has_listeners(net, NFNLGRP_NFTABLES)) return; skb = nlmsg_new(NLMSG_GOODSIZE, gfp); if (skb == NULL) goto err; err = nf_tables_fill_obj_info(skb, net, portid, seq, event, flags & (NLM_F_CREATE | NLM_F_EXCL), family, table, obj, false); if (err < 0) { kfree_skb(skb); goto err; } nft_notify_enqueue(skb, report, &nft_net->notify_list); return; err: nfnetlink_set_err(net, portid, NFNLGRP_NFTABLES, -ENOBUFS); } void nft_obj_notify(struct net *net, const struct nft_table *table, struct nft_object *obj, u32 portid, u32 seq, int event, u16 flags, int family, int report, gfp_t gfp) { struct nftables_pernet *nft_net = nft_pernet(net); char *buf = kasprintf(gfp, "%s:%u", table->name, nft_net->base_seq); audit_log_nfcfg(buf, family, obj->handle, event == NFT_MSG_NEWOBJ ? AUDIT_NFT_OP_OBJ_REGISTER : AUDIT_NFT_OP_OBJ_UNREGISTER, gfp); kfree(buf); __nft_obj_notify(net, table, obj, portid, seq, event, flags, family, report, gfp); } EXPORT_SYMBOL_GPL(nft_obj_notify); static void nf_tables_obj_notify(const struct nft_ctx *ctx, struct nft_object *obj, int event) { __nft_obj_notify(ctx->net, ctx->table, obj, ctx->portid, ctx->seq, event, ctx->flags, ctx->family, ctx->report, GFP_KERNEL); } /* * Flow tables */ void nft_register_flowtable_type(struct nf_flowtable_type *type) { nfnl_lock(NFNL_SUBSYS_NFTABLES); list_add_tail_rcu(&type->list, &nf_tables_flowtables); nfnl_unlock(NFNL_SUBSYS_NFTABLES); } EXPORT_SYMBOL_GPL(nft_register_flowtable_type); void nft_unregister_flowtable_type(struct nf_flowtable_type *type) { nfnl_lock(NFNL_SUBSYS_NFTABLES); list_del_rcu(&type->list); nfnl_unlock(NFNL_SUBSYS_NFTABLES); } EXPORT_SYMBOL_GPL(nft_unregister_flowtable_type); static const struct nla_policy nft_flowtable_policy[NFTA_FLOWTABLE_MAX + 1] = { [NFTA_FLOWTABLE_TABLE] = { .type = NLA_STRING, .len = NFT_NAME_MAXLEN - 1 }, [NFTA_FLOWTABLE_NAME] = { .type = NLA_STRING, .len = NFT_NAME_MAXLEN - 1 }, [NFTA_FLOWTABLE_HOOK] = { .type = NLA_NESTED }, [NFTA_FLOWTABLE_HANDLE] = { .type = NLA_U64 }, [NFTA_FLOWTABLE_FLAGS] = { .type = NLA_U32 }, }; struct nft_flowtable *nft_flowtable_lookup(const struct nft_table *table, const struct nlattr *nla, u8 genmask) { struct nft_flowtable *flowtable; list_for_each_entry_rcu(flowtable, &table->flowtables, list) { if (!nla_strcmp(nla, flowtable->name) && nft_active_genmask(flowtable, genmask)) return flowtable; } return ERR_PTR(-ENOENT); } EXPORT_SYMBOL_GPL(nft_flowtable_lookup); void nf_tables_deactivate_flowtable(const struct nft_ctx *ctx, struct nft_flowtable *flowtable, enum nft_trans_phase phase) { switch (phase) { case NFT_TRANS_PREPARE_ERROR: case NFT_TRANS_PREPARE: case NFT_TRANS_ABORT: case NFT_TRANS_RELEASE: nft_use_dec(&flowtable->use); fallthrough; default: return; } } EXPORT_SYMBOL_GPL(nf_tables_deactivate_flowtable); static struct nft_flowtable * nft_flowtable_lookup_byhandle(const struct nft_table *table, const struct nlattr *nla, u8 genmask) { struct nft_flowtable *flowtable; list_for_each_entry(flowtable, &table->flowtables, list) { if (be64_to_cpu(nla_get_be64(nla)) == flowtable->handle && nft_active_genmask(flowtable, genmask)) return flowtable; } return ERR_PTR(-ENOENT); } struct nft_flowtable_hook { u32 num; int priority; struct list_head list; }; static const struct nla_policy nft_flowtable_hook_policy[NFTA_FLOWTABLE_HOOK_MAX + 1] = { [NFTA_FLOWTABLE_HOOK_NUM] = { .type = NLA_U32 }, [NFTA_FLOWTABLE_HOOK_PRIORITY] = { .type = NLA_U32 }, [NFTA_FLOWTABLE_HOOK_DEVS] = { .type = NLA_NESTED }, }; static int nft_flowtable_parse_hook(const struct nft_ctx *ctx, const struct nlattr * const nla[], struct nft_flowtable_hook *flowtable_hook, struct nft_flowtable *flowtable, struct netlink_ext_ack *extack, bool add) { struct nlattr *tb[NFTA_FLOWTABLE_HOOK_MAX + 1]; struct nft_hook *hook; int hooknum, priority; int err; INIT_LIST_HEAD(&flowtable_hook->list); err = nla_parse_nested_deprecated(tb, NFTA_FLOWTABLE_HOOK_MAX, nla[NFTA_FLOWTABLE_HOOK], nft_flowtable_hook_policy, NULL); if (err < 0) return err; if (add) { if (!tb[NFTA_FLOWTABLE_HOOK_NUM] || !tb[NFTA_FLOWTABLE_HOOK_PRIORITY]) { NL_SET_BAD_ATTR(extack, nla[NFTA_FLOWTABLE_NAME]); return -ENOENT; } hooknum = ntohl(nla_get_be32(tb[NFTA_FLOWTABLE_HOOK_NUM])); if (hooknum != NF_NETDEV_INGRESS) return -EOPNOTSUPP; priority = ntohl(nla_get_be32(tb[NFTA_FLOWTABLE_HOOK_PRIORITY])); flowtable_hook->priority = priority; flowtable_hook->num = hooknum; } else { if (tb[NFTA_FLOWTABLE_HOOK_NUM]) { hooknum = ntohl(nla_get_be32(tb[NFTA_FLOWTABLE_HOOK_NUM])); if (hooknum != flowtable->hooknum) return -EOPNOTSUPP; } if (tb[NFTA_FLOWTABLE_HOOK_PRIORITY]) { priority = ntohl(nla_get_be32(tb[NFTA_FLOWTABLE_HOOK_PRIORITY])); if (priority != flowtable->data.priority) return -EOPNOTSUPP; } flowtable_hook->priority = flowtable->data.priority; flowtable_hook->num = flowtable->hooknum; } if (tb[NFTA_FLOWTABLE_HOOK_DEVS]) { err = nf_tables_parse_netdev_hooks(ctx->net, tb[NFTA_FLOWTABLE_HOOK_DEVS], &flowtable_hook->list, extack); if (err < 0) return err; } list_for_each_entry(hook, &flowtable_hook->list, list) { hook->ops.pf = NFPROTO_NETDEV; hook->ops.hooknum = flowtable_hook->num; hook->ops.priority = flowtable_hook->priority; hook->ops.priv = &flowtable->data; hook->ops.hook = flowtable->data.type->hook; } return err; } static const struct nf_flowtable_type *__nft_flowtable_type_get(u8 family) { const struct nf_flowtable_type *type; list_for_each_entry(type, &nf_tables_flowtables, list) { if (family == type->family) return type; } return NULL; } static const struct nf_flowtable_type * nft_flowtable_type_get(struct net *net, u8 family) { const struct nf_flowtable_type *type; type = __nft_flowtable_type_get(family); if (type != NULL && try_module_get(type->owner)) return type; lockdep_nfnl_nft_mutex_not_held(); #ifdef CONFIG_MODULES if (type == NULL) { if (nft_request_module(net, "nf-flowtable-%u", family) == -EAGAIN) return ERR_PTR(-EAGAIN); } #endif return ERR_PTR(-ENOENT); } /* Only called from error and netdev event paths. */ static void nft_unregister_flowtable_hook(struct net *net, struct nft_flowtable *flowtable, struct nft_hook *hook) { nf_unregister_net_hook(net, &hook->ops); flowtable->data.type->setup(&flowtable->data, hook->ops.dev, FLOW_BLOCK_UNBIND); } static void __nft_unregister_flowtable_net_hooks(struct net *net, struct list_head *hook_list, bool release_netdev) { struct nft_hook *hook, *next; list_for_each_entry_safe(hook, next, hook_list, list) { nf_unregister_net_hook(net, &hook->ops); if (release_netdev) { list_del(&hook->list); kfree_rcu(hook, rcu); } } } static void nft_unregister_flowtable_net_hooks(struct net *net, struct list_head *hook_list) { __nft_unregister_flowtable_net_hooks(net, hook_list, false); } static int nft_register_flowtable_net_hooks(struct net *net, struct nft_table *table, struct list_head *hook_list, struct nft_flowtable *flowtable) { struct nft_hook *hook, *hook2, *next; struct nft_flowtable *ft; int err, i = 0; list_for_each_entry(hook, hook_list, list) { list_for_each_entry(ft, &table->flowtables, list) { if (!nft_is_active_next(net, ft)) continue; list_for_each_entry(hook2, &ft->hook_list, list) { if (hook->ops.dev == hook2->ops.dev && hook->ops.pf == hook2->ops.pf) { err = -EEXIST; goto err_unregister_net_hooks; } } } err = flowtable->data.type->setup(&flowtable->data, hook->ops.dev, FLOW_BLOCK_BIND); if (err < 0) goto err_unregister_net_hooks; err = nf_register_net_hook(net, &hook->ops); if (err < 0) { flowtable->data.type->setup(&flowtable->data, hook->ops.dev, FLOW_BLOCK_UNBIND); goto err_unregister_net_hooks; } i++; } return 0; err_unregister_net_hooks: list_for_each_entry_safe(hook, next, hook_list, list) { if (i-- <= 0) break; nft_unregister_flowtable_hook(net, flowtable, hook); list_del_rcu(&hook->list); kfree_rcu(hook, rcu); } return err; } static void nft_hooks_destroy(struct list_head *hook_list) { struct nft_hook *hook, *next; list_for_each_entry_safe(hook, next, hook_list, list) { list_del_rcu(&hook->list); kfree_rcu(hook, rcu); } } static int nft_flowtable_update(struct nft_ctx *ctx, const struct nlmsghdr *nlh, struct nft_flowtable *flowtable, struct netlink_ext_ack *extack) { const struct nlattr * const *nla = ctx->nla; struct nft_flowtable_hook flowtable_hook; struct nft_hook *hook, *next; struct nft_trans *trans; bool unregister = false; u32 flags; int err; err = nft_flowtable_parse_hook(ctx, nla, &flowtable_hook, flowtable, extack, false); if (err < 0) return err; list_for_each_entry_safe(hook, next, &flowtable_hook.list, list) { if (nft_hook_list_find(&flowtable->hook_list, hook)) { list_del(&hook->list); kfree(hook); } } if (nla[NFTA_FLOWTABLE_FLAGS]) { flags = ntohl(nla_get_be32(nla[NFTA_FLOWTABLE_FLAGS])); if (flags & ~NFT_FLOWTABLE_MASK) { err = -EOPNOTSUPP; goto err_flowtable_update_hook; } if ((flowtable->data.flags & NFT_FLOWTABLE_HW_OFFLOAD) ^ (flags & NFT_FLOWTABLE_HW_OFFLOAD)) { err = -EOPNOTSUPP; goto err_flowtable_update_hook; } } else { flags = flowtable->data.flags; } err = nft_register_flowtable_net_hooks(ctx->net, ctx->table, &flowtable_hook.list, flowtable); if (err < 0) goto err_flowtable_update_hook; trans = nft_trans_alloc(ctx, NFT_MSG_NEWFLOWTABLE, sizeof(struct nft_trans_flowtable)); if (!trans) { unregister = true; err = -ENOMEM; goto err_flowtable_update_hook; } nft_trans_flowtable_flags(trans) = flags; nft_trans_flowtable(trans) = flowtable; nft_trans_flowtable_update(trans) = true; INIT_LIST_HEAD(&nft_trans_flowtable_hooks(trans)); list_splice(&flowtable_hook.list, &nft_trans_flowtable_hooks(trans)); nft_trans_commit_list_add_tail(ctx->net, trans); return 0; err_flowtable_update_hook: list_for_each_entry_safe(hook, next, &flowtable_hook.list, list) { if (unregister) nft_unregister_flowtable_hook(ctx->net, flowtable, hook); list_del_rcu(&hook->list); kfree_rcu(hook, rcu); } return err; } static int nf_tables_newflowtable(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; struct nft_flowtable_hook flowtable_hook; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; const struct nf_flowtable_type *type; struct nft_flowtable *flowtable; struct nft_hook *hook, *next; struct net *net = info->net; struct nft_table *table; struct nft_ctx ctx; int err; if (!nla[NFTA_FLOWTABLE_TABLE] || !nla[NFTA_FLOWTABLE_NAME] || !nla[NFTA_FLOWTABLE_HOOK]) return -EINVAL; table = nft_table_lookup(net, nla[NFTA_FLOWTABLE_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_FLOWTABLE_TABLE]); return PTR_ERR(table); } flowtable = nft_flowtable_lookup(table, nla[NFTA_FLOWTABLE_NAME], genmask); if (IS_ERR(flowtable)) { err = PTR_ERR(flowtable); if (err != -ENOENT) { NL_SET_BAD_ATTR(extack, nla[NFTA_FLOWTABLE_NAME]); return err; } } else { if (info->nlh->nlmsg_flags & NLM_F_EXCL) { NL_SET_BAD_ATTR(extack, nla[NFTA_FLOWTABLE_NAME]); return -EEXIST; } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); return nft_flowtable_update(&ctx, info->nlh, flowtable, extack); } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); if (!nft_use_inc(&table->use)) return -EMFILE; flowtable = kzalloc(sizeof(*flowtable), GFP_KERNEL_ACCOUNT); if (!flowtable) { err = -ENOMEM; goto flowtable_alloc; } flowtable->table = table; flowtable->handle = nf_tables_alloc_handle(table); INIT_LIST_HEAD(&flowtable->hook_list); flowtable->name = nla_strdup(nla[NFTA_FLOWTABLE_NAME], GFP_KERNEL_ACCOUNT); if (!flowtable->name) { err = -ENOMEM; goto err1; } type = nft_flowtable_type_get(net, family); if (IS_ERR(type)) { err = PTR_ERR(type); goto err2; } if (nla[NFTA_FLOWTABLE_FLAGS]) { flowtable->data.flags = ntohl(nla_get_be32(nla[NFTA_FLOWTABLE_FLAGS])); if (flowtable->data.flags & ~NFT_FLOWTABLE_MASK) { err = -EOPNOTSUPP; goto err3; } } write_pnet(&flowtable->data.net, net); flowtable->data.type = type; err = type->init(&flowtable->data); if (err < 0) goto err3; err = nft_flowtable_parse_hook(&ctx, nla, &flowtable_hook, flowtable, extack, true); if (err < 0) goto err4; list_splice(&flowtable_hook.list, &flowtable->hook_list); flowtable->data.priority = flowtable_hook.priority; flowtable->hooknum = flowtable_hook.num; err = nft_register_flowtable_net_hooks(ctx.net, table, &flowtable->hook_list, flowtable); if (err < 0) { nft_hooks_destroy(&flowtable->hook_list); goto err4; } err = nft_trans_flowtable_add(&ctx, NFT_MSG_NEWFLOWTABLE, flowtable); if (err < 0) goto err5; list_add_tail_rcu(&flowtable->list, &table->flowtables); return 0; err5: list_for_each_entry_safe(hook, next, &flowtable->hook_list, list) { nft_unregister_flowtable_hook(net, flowtable, hook); list_del_rcu(&hook->list); kfree_rcu(hook, rcu); } err4: flowtable->data.type->free(&flowtable->data); err3: module_put(type->owner); err2: kfree(flowtable->name); err1: kfree(flowtable); flowtable_alloc: nft_use_dec_restore(&table->use); return err; } static void nft_flowtable_hook_release(struct nft_flowtable_hook *flowtable_hook) { struct nft_hook *this, *next; list_for_each_entry_safe(this, next, &flowtable_hook->list, list) { list_del(&this->list); kfree(this); } } static int nft_delflowtable_hook(struct nft_ctx *ctx, struct nft_flowtable *flowtable, struct netlink_ext_ack *extack) { const struct nlattr * const *nla = ctx->nla; struct nft_flowtable_hook flowtable_hook; LIST_HEAD(flowtable_del_list); struct nft_hook *this, *hook; struct nft_trans *trans; int err; err = nft_flowtable_parse_hook(ctx, nla, &flowtable_hook, flowtable, extack, false); if (err < 0) return err; list_for_each_entry(this, &flowtable_hook.list, list) { hook = nft_hook_list_find(&flowtable->hook_list, this); if (!hook) { err = -ENOENT; goto err_flowtable_del_hook; } list_move(&hook->list, &flowtable_del_list); } trans = nft_trans_alloc(ctx, NFT_MSG_DELFLOWTABLE, sizeof(struct nft_trans_flowtable)); if (!trans) { err = -ENOMEM; goto err_flowtable_del_hook; } nft_trans_flowtable(trans) = flowtable; nft_trans_flowtable_update(trans) = true; INIT_LIST_HEAD(&nft_trans_flowtable_hooks(trans)); list_splice(&flowtable_del_list, &nft_trans_flowtable_hooks(trans)); nft_flowtable_hook_release(&flowtable_hook); nft_trans_commit_list_add_tail(ctx->net, trans); return 0; err_flowtable_del_hook: list_splice(&flowtable_del_list, &flowtable->hook_list); nft_flowtable_hook_release(&flowtable_hook); return err; } static int nf_tables_delflowtable(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_next(info->net); u8 family = info->nfmsg->nfgen_family; struct nft_flowtable *flowtable; struct net *net = info->net; const struct nlattr *attr; struct nft_table *table; struct nft_ctx ctx; if (!nla[NFTA_FLOWTABLE_TABLE] || (!nla[NFTA_FLOWTABLE_NAME] && !nla[NFTA_FLOWTABLE_HANDLE])) return -EINVAL; table = nft_table_lookup(net, nla[NFTA_FLOWTABLE_TABLE], family, genmask, NETLINK_CB(skb).portid); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_FLOWTABLE_TABLE]); return PTR_ERR(table); } if (nla[NFTA_FLOWTABLE_HANDLE]) { attr = nla[NFTA_FLOWTABLE_HANDLE]; flowtable = nft_flowtable_lookup_byhandle(table, attr, genmask); } else { attr = nla[NFTA_FLOWTABLE_NAME]; flowtable = nft_flowtable_lookup(table, attr, genmask); } if (IS_ERR(flowtable)) { if (PTR_ERR(flowtable) == -ENOENT && NFNL_MSG_TYPE(info->nlh->nlmsg_type) == NFT_MSG_DESTROYFLOWTABLE) return 0; NL_SET_BAD_ATTR(extack, attr); return PTR_ERR(flowtable); } nft_ctx_init(&ctx, net, skb, info->nlh, family, table, NULL, nla); if (nla[NFTA_FLOWTABLE_HOOK]) return nft_delflowtable_hook(&ctx, flowtable, extack); if (flowtable->use > 0) { NL_SET_BAD_ATTR(extack, attr); return -EBUSY; } return nft_delflowtable(&ctx, flowtable); } static int nf_tables_fill_flowtable_info(struct sk_buff *skb, struct net *net, u32 portid, u32 seq, int event, u32 flags, int family, struct nft_flowtable *flowtable, struct list_head *hook_list) { struct nlattr *nest, *nest_devs; struct nft_hook *hook; struct nlmsghdr *nlh; event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, event); nlh = nfnl_msg_put(skb, portid, seq, event, flags, family, NFNETLINK_V0, nft_base_seq(net)); if (!nlh) goto nla_put_failure; if (nla_put_string(skb, NFTA_FLOWTABLE_TABLE, flowtable->table->name) || nla_put_string(skb, NFTA_FLOWTABLE_NAME, flowtable->name) || nla_put_be64(skb, NFTA_FLOWTABLE_HANDLE, cpu_to_be64(flowtable->handle), NFTA_FLOWTABLE_PAD)) goto nla_put_failure; if (event == NFT_MSG_DELFLOWTABLE && !hook_list) { nlmsg_end(skb, nlh); return 0; } if (nla_put_be32(skb, NFTA_FLOWTABLE_USE, htonl(flowtable->use)) || nla_put_be32(skb, NFTA_FLOWTABLE_FLAGS, htonl(flowtable->data.flags))) goto nla_put_failure; nest = nla_nest_start_noflag(skb, NFTA_FLOWTABLE_HOOK); if (!nest) goto nla_put_failure; if (nla_put_be32(skb, NFTA_FLOWTABLE_HOOK_NUM, htonl(flowtable->hooknum)) || nla_put_be32(skb, NFTA_FLOWTABLE_HOOK_PRIORITY, htonl(flowtable->data.priority))) goto nla_put_failure; nest_devs = nla_nest_start_noflag(skb, NFTA_FLOWTABLE_HOOK_DEVS); if (!nest_devs) goto nla_put_failure; if (!hook_list) hook_list = &flowtable->hook_list; list_for_each_entry_rcu(hook, hook_list, list) { if (nla_put_string(skb, NFTA_DEVICE_NAME, hook->ops.dev->name)) goto nla_put_failure; } nla_nest_end(skb, nest_devs); nla_nest_end(skb, nest); nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -1; } struct nft_flowtable_filter { char *table; }; static int nf_tables_dump_flowtable(struct sk_buff *skb, struct netlink_callback *cb) { const struct nfgenmsg *nfmsg = nlmsg_data(cb->nlh); struct nft_flowtable_filter *filter = cb->data; unsigned int idx = 0, s_idx = cb->args[0]; struct net *net = sock_net(skb->sk); int family = nfmsg->nfgen_family; struct nft_flowtable *flowtable; struct nftables_pernet *nft_net; const struct nft_table *table; rcu_read_lock(); nft_net = nft_pernet(net); cb->seq = READ_ONCE(nft_net->base_seq); list_for_each_entry_rcu(table, &nft_net->tables, list) { if (family != NFPROTO_UNSPEC && family != table->family) continue; list_for_each_entry_rcu(flowtable, &table->flowtables, list) { if (!nft_is_active(net, flowtable)) goto cont; if (idx < s_idx) goto cont; if (idx > s_idx) memset(&cb->args[1], 0, sizeof(cb->args) - sizeof(cb->args[0])); if (filter && filter->table && strcmp(filter->table, table->name)) goto cont; if (nf_tables_fill_flowtable_info(skb, net, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NFT_MSG_NEWFLOWTABLE, NLM_F_MULTI | NLM_F_APPEND, table->family, flowtable, NULL) < 0) goto done; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); cont: idx++; } } done: rcu_read_unlock(); cb->args[0] = idx; return skb->len; } static int nf_tables_dump_flowtable_start(struct netlink_callback *cb) { const struct nlattr * const *nla = cb->data; struct nft_flowtable_filter *filter = NULL; if (nla[NFTA_FLOWTABLE_TABLE]) { filter = kzalloc(sizeof(*filter), GFP_ATOMIC); if (!filter) return -ENOMEM; filter->table = nla_strdup(nla[NFTA_FLOWTABLE_TABLE], GFP_ATOMIC); if (!filter->table) { kfree(filter); return -ENOMEM; } } cb->data = filter; return 0; } static int nf_tables_dump_flowtable_done(struct netlink_callback *cb) { struct nft_flowtable_filter *filter = cb->data; if (!filter) return 0; kfree(filter->table); kfree(filter); return 0; } /* called with rcu_read_lock held */ static int nf_tables_getflowtable(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct netlink_ext_ack *extack = info->extack; u8 genmask = nft_genmask_cur(info->net); u8 family = info->nfmsg->nfgen_family; struct nft_flowtable *flowtable; const struct nft_table *table; struct net *net = info->net; struct sk_buff *skb2; int err; if (info->nlh->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .start = nf_tables_dump_flowtable_start, .dump = nf_tables_dump_flowtable, .done = nf_tables_dump_flowtable_done, .module = THIS_MODULE, .data = (void *)nla, }; return nft_netlink_dump_start_rcu(info->sk, skb, info->nlh, &c); } if (!nla[NFTA_FLOWTABLE_NAME]) return -EINVAL; table = nft_table_lookup(net, nla[NFTA_FLOWTABLE_TABLE], family, genmask, 0); if (IS_ERR(table)) { NL_SET_BAD_ATTR(extack, nla[NFTA_FLOWTABLE_TABLE]); return PTR_ERR(table); } flowtable = nft_flowtable_lookup(table, nla[NFTA_FLOWTABLE_NAME], genmask); if (IS_ERR(flowtable)) { NL_SET_BAD_ATTR(extack, nla[NFTA_FLOWTABLE_NAME]); return PTR_ERR(flowtable); } skb2 = alloc_skb(NLMSG_GOODSIZE, GFP_ATOMIC); if (!skb2) return -ENOMEM; err = nf_tables_fill_flowtable_info(skb2, net, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq, NFT_MSG_NEWFLOWTABLE, 0, family, flowtable, NULL); if (err < 0) goto err_fill_flowtable_info; return nfnetlink_unicast(skb2, net, NETLINK_CB(skb).portid); err_fill_flowtable_info: kfree_skb(skb2); return err; } static void nf_tables_flowtable_notify(struct nft_ctx *ctx, struct nft_flowtable *flowtable, struct list_head *hook_list, int event) { struct nftables_pernet *nft_net = nft_pernet(ctx->net); struct sk_buff *skb; u16 flags = 0; int err; if (!ctx->report && !nfnetlink_has_listeners(ctx->net, NFNLGRP_NFTABLES)) return; skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (skb == NULL) goto err; if (ctx->flags & (NLM_F_CREATE | NLM_F_EXCL)) flags |= ctx->flags & (NLM_F_CREATE | NLM_F_EXCL); err = nf_tables_fill_flowtable_info(skb, ctx->net, ctx->portid, ctx->seq, event, flags, ctx->family, flowtable, hook_list); if (err < 0) { kfree_skb(skb); goto err; } nft_notify_enqueue(skb, ctx->report, &nft_net->notify_list); return; err: nfnetlink_set_err(ctx->net, ctx->portid, NFNLGRP_NFTABLES, -ENOBUFS); } static void nf_tables_flowtable_destroy(struct nft_flowtable *flowtable) { struct nft_hook *hook, *next; flowtable->data.type->free(&flowtable->data); list_for_each_entry_safe(hook, next, &flowtable->hook_list, list) { flowtable->data.type->setup(&flowtable->data, hook->ops.dev, FLOW_BLOCK_UNBIND); list_del_rcu(&hook->list); kfree(hook); } kfree(flowtable->name); module_put(flowtable->data.type->owner); kfree(flowtable); } static int nf_tables_fill_gen_info(struct sk_buff *skb, struct net *net, u32 portid, u32 seq) { struct nftables_pernet *nft_net = nft_pernet(net); struct nlmsghdr *nlh; char buf[TASK_COMM_LEN]; int event = nfnl_msg_type(NFNL_SUBSYS_NFTABLES, NFT_MSG_NEWGEN); nlh = nfnl_msg_put(skb, portid, seq, event, 0, AF_UNSPEC, NFNETLINK_V0, nft_base_seq(net)); if (!nlh) goto nla_put_failure; if (nla_put_be32(skb, NFTA_GEN_ID, htonl(nft_net->base_seq)) || nla_put_be32(skb, NFTA_GEN_PROC_PID, htonl(task_pid_nr(current))) || nla_put_string(skb, NFTA_GEN_PROC_NAME, get_task_comm(buf, current))) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_trim(skb, nlh); return -EMSGSIZE; } static void nft_flowtable_event(unsigned long event, struct net_device *dev, struct nft_flowtable *flowtable) { struct nft_hook *hook; list_for_each_entry(hook, &flowtable->hook_list, list) { if (hook->ops.dev != dev) continue; /* flow_offload_netdev_event() cleans up entries for us. */ nft_unregister_flowtable_hook(dev_net(dev), flowtable, hook); list_del_rcu(&hook->list); kfree_rcu(hook, rcu); break; } } static int nf_tables_flowtable_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct nft_flowtable *flowtable; struct nftables_pernet *nft_net; struct nft_table *table; struct net *net; if (event != NETDEV_UNREGISTER) return 0; net = dev_net(dev); nft_net = nft_pernet(net); mutex_lock(&nft_net->commit_mutex); list_for_each_entry(table, &nft_net->tables, list) { list_for_each_entry(flowtable, &table->flowtables, list) { nft_flowtable_event(event, dev, flowtable); } } mutex_unlock(&nft_net->commit_mutex); return NOTIFY_DONE; } static struct notifier_block nf_tables_flowtable_notifier = { .notifier_call = nf_tables_flowtable_event, }; static void nf_tables_gen_notify(struct net *net, struct sk_buff *skb, int event) { struct nlmsghdr *nlh = nlmsg_hdr(skb); struct sk_buff *skb2; int err; if (!nlmsg_report(nlh) && !nfnetlink_has_listeners(net, NFNLGRP_NFTABLES)) return; skb2 = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (skb2 == NULL) goto err; err = nf_tables_fill_gen_info(skb2, net, NETLINK_CB(skb).portid, nlh->nlmsg_seq); if (err < 0) { kfree_skb(skb2); goto err; } nfnetlink_send(skb2, net, NETLINK_CB(skb).portid, NFNLGRP_NFTABLES, nlmsg_report(nlh), GFP_KERNEL); return; err: nfnetlink_set_err(net, NETLINK_CB(skb).portid, NFNLGRP_NFTABLES, -ENOBUFS); } static int nf_tables_getgen(struct sk_buff *skb, const struct nfnl_info *info, const struct nlattr * const nla[]) { struct sk_buff *skb2; int err; skb2 = alloc_skb(NLMSG_GOODSIZE, GFP_ATOMIC); if (skb2 == NULL) return -ENOMEM; err = nf_tables_fill_gen_info(skb2, info->net, NETLINK_CB(skb).portid, info->nlh->nlmsg_seq); if (err < 0) goto err_fill_gen_info; return nfnetlink_unicast(skb2, info->net, NETLINK_CB(skb).portid); err_fill_gen_info: kfree_skb(skb2); return err; } static const struct nfnl_callback nf_tables_cb[NFT_MSG_MAX] = { [NFT_MSG_NEWTABLE] = { .call = nf_tables_newtable, .type = NFNL_CB_BATCH, .attr_count = NFTA_TABLE_MAX, .policy = nft_table_policy, }, [NFT_MSG_GETTABLE] = { .call = nf_tables_gettable, .type = NFNL_CB_RCU, .attr_count = NFTA_TABLE_MAX, .policy = nft_table_policy, }, [NFT_MSG_DELTABLE] = { .call = nf_tables_deltable, .type = NFNL_CB_BATCH, .attr_count = NFTA_TABLE_MAX, .policy = nft_table_policy, }, [NFT_MSG_DESTROYTABLE] = { .call = nf_tables_deltable, .type = NFNL_CB_BATCH, .attr_count = NFTA_TABLE_MAX, .policy = nft_table_policy, }, [NFT_MSG_NEWCHAIN] = { .call = nf_tables_newchain, .type = NFNL_CB_BATCH, .attr_count = NFTA_CHAIN_MAX, .policy = nft_chain_policy, }, [NFT_MSG_GETCHAIN] = { .call = nf_tables_getchain, .type = NFNL_CB_RCU, .attr_count = NFTA_CHAIN_MAX, .policy = nft_chain_policy, }, [NFT_MSG_DELCHAIN] = { .call = nf_tables_delchain, .type = NFNL_CB_BATCH, .attr_count = NFTA_CHAIN_MAX, .policy = nft_chain_policy, }, [NFT_MSG_DESTROYCHAIN] = { .call = nf_tables_delchain, .type = NFNL_CB_BATCH, .attr_count = NFTA_CHAIN_MAX, .policy = nft_chain_policy, }, [NFT_MSG_NEWRULE] = { .call = nf_tables_newrule, .type = NFNL_CB_BATCH, .attr_count = NFTA_RULE_MAX, .policy = nft_rule_policy, }, [NFT_MSG_GETRULE] = { .call = nf_tables_getrule, .type = NFNL_CB_RCU, .attr_count = NFTA_RULE_MAX, .policy = nft_rule_policy, }, [NFT_MSG_GETRULE_RESET] = { .call = nf_tables_getrule_reset, .type = NFNL_CB_RCU, .attr_count = NFTA_RULE_MAX, .policy = nft_rule_policy, }, [NFT_MSG_DELRULE] = { .call = nf_tables_delrule, .type = NFNL_CB_BATCH, .attr_count = NFTA_RULE_MAX, .policy = nft_rule_policy, }, [NFT_MSG_DESTROYRULE] = { .call = nf_tables_delrule, .type = NFNL_CB_BATCH, .attr_count = NFTA_RULE_MAX, .policy = nft_rule_policy, }, [NFT_MSG_NEWSET] = { .call = nf_tables_newset, .type = NFNL_CB_BATCH, .attr_count = NFTA_SET_MAX, .policy = nft_set_policy, }, [NFT_MSG_GETSET] = { .call = nf_tables_getset, .type = NFNL_CB_RCU, .attr_count = NFTA_SET_MAX, .policy = nft_set_policy, }, [NFT_MSG_DELSET] = { .call = nf_tables_delset, .type = NFNL_CB_BATCH, .attr_count = NFTA_SET_MAX, .policy = nft_set_policy, }, [NFT_MSG_DESTROYSET] = { .call = nf_tables_delset, .type = NFNL_CB_BATCH, .attr_count = NFTA_SET_MAX, .policy = nft_set_policy, }, [NFT_MSG_NEWSETELEM] = { .call = nf_tables_newsetelem, .type = NFNL_CB_BATCH, .attr_count = NFTA_SET_ELEM_LIST_MAX, .policy = nft_set_elem_list_policy, }, [NFT_MSG_GETSETELEM] = { .call = nf_tables_getsetelem, .type = NFNL_CB_RCU, .attr_count = NFTA_SET_ELEM_LIST_MAX, .policy = nft_set_elem_list_policy, }, [NFT_MSG_GETSETELEM_RESET] = { .call = nf_tables_getsetelem_reset, .type = NFNL_CB_RCU, .attr_count = NFTA_SET_ELEM_LIST_MAX, .policy = nft_set_elem_list_policy, }, [NFT_MSG_DELSETELEM] = { .call = nf_tables_delsetelem, .type = NFNL_CB_BATCH, .attr_count = NFTA_SET_ELEM_LIST_MAX, .policy = nft_set_elem_list_policy, }, [NFT_MSG_DESTROYSETELEM] = { .call = nf_tables_delsetelem, .type = NFNL_CB_BATCH, .attr_count = NFTA_SET_ELEM_LIST_MAX, .policy = nft_set_elem_list_policy, }, [NFT_MSG_GETGEN] = { .call = nf_tables_getgen, .type = NFNL_CB_RCU, }, [NFT_MSG_NEWOBJ] = { .call = nf_tables_newobj, .type = NFNL_CB_BATCH, .attr_count = NFTA_OBJ_MAX, .policy = nft_obj_policy, }, [NFT_MSG_GETOBJ] = { .call = nf_tables_getobj, .type = NFNL_CB_RCU, .attr_count = NFTA_OBJ_MAX, .policy = nft_obj_policy, }, [NFT_MSG_DELOBJ] = { .call = nf_tables_delobj, .type = NFNL_CB_BATCH, .attr_count = NFTA_OBJ_MAX, .policy = nft_obj_policy, }, [NFT_MSG_DESTROYOBJ] = { .call = nf_tables_delobj, .type = NFNL_CB_BATCH, .attr_count = NFTA_OBJ_MAX, .policy = nft_obj_policy, }, [NFT_MSG_GETOBJ_RESET] = { .call = nf_tables_getobj, .type = NFNL_CB_RCU, .attr_count = NFTA_OBJ_MAX, .policy = nft_obj_policy, }, [NFT_MSG_NEWFLOWTABLE] = { .call = nf_tables_newflowtable, .type = NFNL_CB_BATCH, .attr_count = NFTA_FLOWTABLE_MAX, .policy = nft_flowtable_policy, }, [NFT_MSG_GETFLOWTABLE] = { .call = nf_tables_getflowtable, .type = NFNL_CB_RCU, .attr_count = NFTA_FLOWTABLE_MAX, .policy = nft_flowtable_policy, }, [NFT_MSG_DELFLOWTABLE] = { .call = nf_tables_delflowtable, .type = NFNL_CB_BATCH, .attr_count = NFTA_FLOWTABLE_MAX, .policy = nft_flowtable_policy, }, [NFT_MSG_DESTROYFLOWTABLE] = { .call = nf_tables_delflowtable, .type = NFNL_CB_BATCH, .attr_count = NFTA_FLOWTABLE_MAX, .policy = nft_flowtable_policy, }, }; static int nf_tables_validate(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_table *table; list_for_each_entry(table, &nft_net->tables, list) { switch (table->validate_state) { case NFT_VALIDATE_SKIP: continue; case NFT_VALIDATE_NEED: nft_validate_state_update(table, NFT_VALIDATE_DO); fallthrough; case NFT_VALIDATE_DO: if (nft_table_validate(net, table) < 0) return -EAGAIN; nft_validate_state_update(table, NFT_VALIDATE_SKIP); break; } } return 0; } /* a drop policy has to be deferred until all rules have been activated, * otherwise a large ruleset that contains a drop-policy base chain will * cause all packets to get dropped until the full transaction has been * processed. * * We defer the drop policy until the transaction has been finalized. */ static void nft_chain_commit_drop_policy(struct nft_trans *trans) { struct nft_base_chain *basechain; if (nft_trans_chain_policy(trans) != NF_DROP) return; if (!nft_is_base_chain(trans->ctx.chain)) return; basechain = nft_base_chain(trans->ctx.chain); basechain->policy = NF_DROP; } static void nft_chain_commit_update(struct nft_trans *trans) { struct nft_base_chain *basechain; if (nft_trans_chain_name(trans)) { rhltable_remove(&trans->ctx.table->chains_ht, &trans->ctx.chain->rhlhead, nft_chain_ht_params); swap(trans->ctx.chain->name, nft_trans_chain_name(trans)); rhltable_insert_key(&trans->ctx.table->chains_ht, trans->ctx.chain->name, &trans->ctx.chain->rhlhead, nft_chain_ht_params); } if (!nft_is_base_chain(trans->ctx.chain)) return; nft_chain_stats_replace(trans); basechain = nft_base_chain(trans->ctx.chain); switch (nft_trans_chain_policy(trans)) { case NF_DROP: case NF_ACCEPT: basechain->policy = nft_trans_chain_policy(trans); break; } } static void nft_obj_commit_update(struct nft_trans *trans) { struct nft_object *newobj; struct nft_object *obj; obj = nft_trans_obj(trans); newobj = nft_trans_obj_newobj(trans); if (obj->ops->update) obj->ops->update(obj, newobj); nft_obj_destroy(&trans->ctx, newobj); } static void nft_commit_release(struct nft_trans *trans) { switch (trans->msg_type) { case NFT_MSG_DELTABLE: case NFT_MSG_DESTROYTABLE: nf_tables_table_destroy(&trans->ctx); break; case NFT_MSG_NEWCHAIN: free_percpu(nft_trans_chain_stats(trans)); kfree(nft_trans_chain_name(trans)); break; case NFT_MSG_DELCHAIN: case NFT_MSG_DESTROYCHAIN: if (nft_trans_chain_update(trans)) nft_hooks_destroy(&nft_trans_chain_hooks(trans)); else nf_tables_chain_destroy(&trans->ctx); break; case NFT_MSG_DELRULE: case NFT_MSG_DESTROYRULE: nf_tables_rule_destroy(&trans->ctx, nft_trans_rule(trans)); break; case NFT_MSG_DELSET: case NFT_MSG_DESTROYSET: nft_set_destroy(&trans->ctx, nft_trans_set(trans)); break; case NFT_MSG_DELSETELEM: case NFT_MSG_DESTROYSETELEM: nf_tables_set_elem_destroy(&trans->ctx, nft_trans_elem_set(trans), nft_trans_elem_priv(trans)); break; case NFT_MSG_DELOBJ: case NFT_MSG_DESTROYOBJ: nft_obj_destroy(&trans->ctx, nft_trans_obj(trans)); break; case NFT_MSG_DELFLOWTABLE: case NFT_MSG_DESTROYFLOWTABLE: if (nft_trans_flowtable_update(trans)) nft_hooks_destroy(&nft_trans_flowtable_hooks(trans)); else nf_tables_flowtable_destroy(nft_trans_flowtable(trans)); break; } if (trans->put_net) put_net(trans->ctx.net); kfree(trans); } static void nf_tables_trans_destroy_work(struct work_struct *w) { struct nft_trans *trans, *next; LIST_HEAD(head); spin_lock(&nf_tables_destroy_list_lock); list_splice_init(&nf_tables_destroy_list, &head); spin_unlock(&nf_tables_destroy_list_lock); if (list_empty(&head)) return; synchronize_rcu(); list_for_each_entry_safe(trans, next, &head, list) { nft_trans_list_del(trans); nft_commit_release(trans); } } void nf_tables_trans_destroy_flush_work(void) { flush_work(&trans_destroy_work); } EXPORT_SYMBOL_GPL(nf_tables_trans_destroy_flush_work); static bool nft_expr_reduce(struct nft_regs_track *track, const struct nft_expr *expr) { return false; } static int nf_tables_commit_chain_prepare(struct net *net, struct nft_chain *chain) { const struct nft_expr *expr, *last; struct nft_regs_track track = {}; unsigned int size, data_size; void *data, *data_boundary; struct nft_rule_dp *prule; struct nft_rule *rule; /* already handled or inactive chain? */ if (chain->blob_next || !nft_is_active_next(net, chain)) return 0; data_size = 0; list_for_each_entry(rule, &chain->rules, list) { if (nft_is_active_next(net, rule)) { data_size += sizeof(*prule) + rule->dlen; if (data_size > INT_MAX) return -ENOMEM; } } chain->blob_next = nf_tables_chain_alloc_rules(chain, data_size); if (!chain->blob_next) return -ENOMEM; data = (void *)chain->blob_next->data; data_boundary = data + data_size; size = 0; list_for_each_entry(rule, &chain->rules, list) { if (!nft_is_active_next(net, rule)) continue; prule = (struct nft_rule_dp *)data; data += offsetof(struct nft_rule_dp, data); if (WARN_ON_ONCE(data > data_boundary)) return -ENOMEM; size = 0; track.last = nft_expr_last(rule); nft_rule_for_each_expr(expr, last, rule) { track.cur = expr; if (nft_expr_reduce(&track, expr)) { expr = track.cur; continue; } if (WARN_ON_ONCE(data + size + expr->ops->size > data_boundary)) return -ENOMEM; memcpy(data + size, expr, expr->ops->size); size += expr->ops->size; } if (WARN_ON_ONCE(size >= 1 << 12)) return -ENOMEM; prule->handle = rule->handle; prule->dlen = size; prule->is_last = 0; data += size; size = 0; chain->blob_next->size += (unsigned long)(data - (void *)prule); } if (WARN_ON_ONCE(data > data_boundary)) return -ENOMEM; prule = (struct nft_rule_dp *)data; nft_last_rule(chain, prule); return 0; } static void nf_tables_commit_chain_prepare_cancel(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_trans *trans, *next; list_for_each_entry_safe(trans, next, &nft_net->commit_list, list) { struct nft_chain *chain = trans->ctx.chain; if (trans->msg_type == NFT_MSG_NEWRULE || trans->msg_type == NFT_MSG_DELRULE) { kvfree(chain->blob_next); chain->blob_next = NULL; } } } static void __nf_tables_commit_chain_free_rules(struct rcu_head *h) { struct nft_rule_dp_last *l = container_of(h, struct nft_rule_dp_last, h); kvfree(l->blob); } static void nf_tables_commit_chain_free_rules_old(struct nft_rule_blob *blob) { struct nft_rule_dp_last *last; /* last rule trailer is after end marker */ last = (void *)blob + sizeof(*blob) + blob->size; last->blob = blob; call_rcu(&last->h, __nf_tables_commit_chain_free_rules); } static void nf_tables_commit_chain(struct net *net, struct nft_chain *chain) { struct nft_rule_blob *g0, *g1; bool next_genbit; next_genbit = nft_gencursor_next(net); g0 = rcu_dereference_protected(chain->blob_gen_0, lockdep_commit_lock_is_held(net)); g1 = rcu_dereference_protected(chain->blob_gen_1, lockdep_commit_lock_is_held(net)); /* No changes to this chain? */ if (chain->blob_next == NULL) { /* chain had no change in last or next generation */ if (g0 == g1) return; /* * chain had no change in this generation; make sure next * one uses same rules as current generation. */ if (next_genbit) { rcu_assign_pointer(chain->blob_gen_1, g0); nf_tables_commit_chain_free_rules_old(g1); } else { rcu_assign_pointer(chain->blob_gen_0, g1); nf_tables_commit_chain_free_rules_old(g0); } return; } if (next_genbit) rcu_assign_pointer(chain->blob_gen_1, chain->blob_next); else rcu_assign_pointer(chain->blob_gen_0, chain->blob_next); chain->blob_next = NULL; if (g0 == g1) return; if (next_genbit) nf_tables_commit_chain_free_rules_old(g1); else nf_tables_commit_chain_free_rules_old(g0); } static void nft_obj_del(struct nft_object *obj) { rhltable_remove(&nft_objname_ht, &obj->rhlhead, nft_objname_ht_params); list_del_rcu(&obj->list); } void nft_chain_del(struct nft_chain *chain) { struct nft_table *table = chain->table; WARN_ON_ONCE(rhltable_remove(&table->chains_ht, &chain->rhlhead, nft_chain_ht_params)); list_del_rcu(&chain->list); } static void nft_trans_gc_setelem_remove(struct nft_ctx *ctx, struct nft_trans_gc *trans) { struct nft_elem_priv **priv = trans->priv; unsigned int i; for (i = 0; i < trans->count; i++) { nft_setelem_data_deactivate(ctx->net, trans->set, priv[i]); nft_setelem_remove(ctx->net, trans->set, priv[i]); } } void nft_trans_gc_destroy(struct nft_trans_gc *trans) { nft_set_put(trans->set); put_net(trans->net); kfree(trans); } static void nft_trans_gc_trans_free(struct rcu_head *rcu) { struct nft_elem_priv *elem_priv; struct nft_trans_gc *trans; struct nft_ctx ctx = {}; unsigned int i; trans = container_of(rcu, struct nft_trans_gc, rcu); ctx.net = read_pnet(&trans->set->net); for (i = 0; i < trans->count; i++) { elem_priv = trans->priv[i]; if (!nft_setelem_is_catchall(trans->set, elem_priv)) atomic_dec(&trans->set->nelems); nf_tables_set_elem_destroy(&ctx, trans->set, elem_priv); } nft_trans_gc_destroy(trans); } static bool nft_trans_gc_work_done(struct nft_trans_gc *trans) { struct nftables_pernet *nft_net; struct nft_ctx ctx = {}; nft_net = nft_pernet(trans->net); mutex_lock(&nft_net->commit_mutex); /* Check for race with transaction, otherwise this batch refers to * stale objects that might not be there anymore. Skip transaction if * set has been destroyed from control plane transaction in case gc * worker loses race. */ if (READ_ONCE(nft_net->gc_seq) != trans->seq || trans->set->dead) { mutex_unlock(&nft_net->commit_mutex); return false; } ctx.net = trans->net; ctx.table = trans->set->table; nft_trans_gc_setelem_remove(&ctx, trans); mutex_unlock(&nft_net->commit_mutex); return true; } static void nft_trans_gc_work(struct work_struct *work) { struct nft_trans_gc *trans, *next; LIST_HEAD(trans_gc_list); spin_lock(&nf_tables_gc_list_lock); list_splice_init(&nf_tables_gc_list, &trans_gc_list); spin_unlock(&nf_tables_gc_list_lock); list_for_each_entry_safe(trans, next, &trans_gc_list, list) { list_del(&trans->list); if (!nft_trans_gc_work_done(trans)) { nft_trans_gc_destroy(trans); continue; } call_rcu(&trans->rcu, nft_trans_gc_trans_free); } } struct nft_trans_gc *nft_trans_gc_alloc(struct nft_set *set, unsigned int gc_seq, gfp_t gfp) { struct net *net = read_pnet(&set->net); struct nft_trans_gc *trans; trans = kzalloc(sizeof(*trans), gfp); if (!trans) return NULL; trans->net = maybe_get_net(net); if (!trans->net) { kfree(trans); return NULL; } refcount_inc(&set->refs); trans->set = set; trans->seq = gc_seq; return trans; } void nft_trans_gc_elem_add(struct nft_trans_gc *trans, void *priv) { trans->priv[trans->count++] = priv; } static void nft_trans_gc_queue_work(struct nft_trans_gc *trans) { spin_lock(&nf_tables_gc_list_lock); list_add_tail(&trans->list, &nf_tables_gc_list); spin_unlock(&nf_tables_gc_list_lock); schedule_work(&trans_gc_work); } static int nft_trans_gc_space(struct nft_trans_gc *trans) { return NFT_TRANS_GC_BATCHCOUNT - trans->count; } struct nft_trans_gc *nft_trans_gc_queue_async(struct nft_trans_gc *gc, unsigned int gc_seq, gfp_t gfp) { struct nft_set *set; if (nft_trans_gc_space(gc)) return gc; set = gc->set; nft_trans_gc_queue_work(gc); return nft_trans_gc_alloc(set, gc_seq, gfp); } void nft_trans_gc_queue_async_done(struct nft_trans_gc *trans) { if (trans->count == 0) { nft_trans_gc_destroy(trans); return; } nft_trans_gc_queue_work(trans); } struct nft_trans_gc *nft_trans_gc_queue_sync(struct nft_trans_gc *gc, gfp_t gfp) { struct nft_set *set; if (WARN_ON_ONCE(!lockdep_commit_lock_is_held(gc->net))) return NULL; if (nft_trans_gc_space(gc)) return gc; set = gc->set; call_rcu(&gc->rcu, nft_trans_gc_trans_free); return nft_trans_gc_alloc(set, 0, gfp); } void nft_trans_gc_queue_sync_done(struct nft_trans_gc *trans) { WARN_ON_ONCE(!lockdep_commit_lock_is_held(trans->net)); if (trans->count == 0) { nft_trans_gc_destroy(trans); return; } call_rcu(&trans->rcu, nft_trans_gc_trans_free); } struct nft_trans_gc *nft_trans_gc_catchall_async(struct nft_trans_gc *gc, unsigned int gc_seq) { struct nft_set_elem_catchall *catchall; const struct nft_set *set = gc->set; struct nft_set_ext *ext; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_expired(ext)) continue; if (nft_set_elem_is_dead(ext)) goto dead_elem; nft_set_elem_dead(ext); dead_elem: gc = nft_trans_gc_queue_async(gc, gc_seq, GFP_ATOMIC); if (!gc) return NULL; nft_trans_gc_elem_add(gc, catchall->elem); } return gc; } struct nft_trans_gc *nft_trans_gc_catchall_sync(struct nft_trans_gc *gc) { struct nft_set_elem_catchall *catchall, *next; u64 tstamp = nft_net_tstamp(gc->net); const struct nft_set *set = gc->set; struct nft_elem_priv *elem_priv; struct nft_set_ext *ext; WARN_ON_ONCE(!lockdep_commit_lock_is_held(gc->net)); list_for_each_entry_safe(catchall, next, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!__nft_set_elem_expired(ext, tstamp)) continue; gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL); if (!gc) return NULL; elem_priv = catchall->elem; nft_setelem_data_deactivate(gc->net, gc->set, elem_priv); nft_setelem_catchall_destroy(catchall); nft_trans_gc_elem_add(gc, elem_priv); } return gc; } static void nf_tables_module_autoload_cleanup(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_module_request *req, *next; WARN_ON_ONCE(!list_empty(&nft_net->commit_list)); list_for_each_entry_safe(req, next, &nft_net->module_list, list) { WARN_ON_ONCE(!req->done); list_del(&req->list); kfree(req); } } static void nf_tables_commit_release(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_trans *trans; /* all side effects have to be made visible. * For example, if a chain named 'foo' has been deleted, a * new transaction must not find it anymore. * * Memory reclaim happens asynchronously from work queue * to prevent expensive synchronize_rcu() in commit phase. */ if (list_empty(&nft_net->commit_list)) { nf_tables_module_autoload_cleanup(net); mutex_unlock(&nft_net->commit_mutex); return; } trans = list_last_entry(&nft_net->commit_list, struct nft_trans, list); get_net(trans->ctx.net); WARN_ON_ONCE(trans->put_net); trans->put_net = true; spin_lock(&nf_tables_destroy_list_lock); list_splice_tail_init(&nft_net->commit_list, &nf_tables_destroy_list); spin_unlock(&nf_tables_destroy_list_lock); nf_tables_module_autoload_cleanup(net); schedule_work(&trans_destroy_work); mutex_unlock(&nft_net->commit_mutex); } static void nft_commit_notify(struct net *net, u32 portid) { struct nftables_pernet *nft_net = nft_pernet(net); struct sk_buff *batch_skb = NULL, *nskb, *skb; unsigned char *data; int len; list_for_each_entry_safe(skb, nskb, &nft_net->notify_list, list) { if (!batch_skb) { new_batch: batch_skb = skb; len = NLMSG_GOODSIZE - skb->len; list_del(&skb->list); continue; } len -= skb->len; if (len > 0 && NFT_CB(skb).report == NFT_CB(batch_skb).report) { data = skb_put(batch_skb, skb->len); memcpy(data, skb->data, skb->len); list_del(&skb->list); kfree_skb(skb); continue; } nfnetlink_send(batch_skb, net, portid, NFNLGRP_NFTABLES, NFT_CB(batch_skb).report, GFP_KERNEL); goto new_batch; } if (batch_skb) { nfnetlink_send(batch_skb, net, portid, NFNLGRP_NFTABLES, NFT_CB(batch_skb).report, GFP_KERNEL); } WARN_ON_ONCE(!list_empty(&nft_net->notify_list)); } static int nf_tables_commit_audit_alloc(struct list_head *adl, struct nft_table *table) { struct nft_audit_data *adp; list_for_each_entry(adp, adl, list) { if (adp->table == table) return 0; } adp = kzalloc(sizeof(*adp), GFP_KERNEL); if (!adp) return -ENOMEM; adp->table = table; list_add(&adp->list, adl); return 0; } static void nf_tables_commit_audit_free(struct list_head *adl) { struct nft_audit_data *adp, *adn; list_for_each_entry_safe(adp, adn, adl, list) { list_del(&adp->list); kfree(adp); } } static void nf_tables_commit_audit_collect(struct list_head *adl, struct nft_table *table, u32 op) { struct nft_audit_data *adp; list_for_each_entry(adp, adl, list) { if (adp->table == table) goto found; } WARN_ONCE(1, "table=%s not expected in commit list", table->name); return; found: adp->entries++; if (!adp->op || adp->op > op) adp->op = op; } #define AUNFTABLENAMELEN (NFT_TABLE_MAXNAMELEN + 22) static void nf_tables_commit_audit_log(struct list_head *adl, u32 generation) { struct nft_audit_data *adp, *adn; char aubuf[AUNFTABLENAMELEN]; list_for_each_entry_safe(adp, adn, adl, list) { snprintf(aubuf, AUNFTABLENAMELEN, "%s:%u", adp->table->name, generation); audit_log_nfcfg(aubuf, adp->table->family, adp->entries, nft2audit_op[adp->op], GFP_KERNEL); list_del(&adp->list); kfree(adp); } } static void nft_set_commit_update(struct list_head *set_update_list) { struct nft_set *set, *next; list_for_each_entry_safe(set, next, set_update_list, pending_update) { list_del_init(&set->pending_update); if (!set->ops->commit || set->dead) continue; set->ops->commit(set); } } static unsigned int nft_gc_seq_begin(struct nftables_pernet *nft_net) { unsigned int gc_seq; /* Bump gc counter, it becomes odd, this is the busy mark. */ gc_seq = READ_ONCE(nft_net->gc_seq); WRITE_ONCE(nft_net->gc_seq, ++gc_seq); return gc_seq; } static void nft_gc_seq_end(struct nftables_pernet *nft_net, unsigned int gc_seq) { WRITE_ONCE(nft_net->gc_seq, ++gc_seq); } static int nf_tables_commit(struct net *net, struct sk_buff *skb) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_trans *trans, *next; unsigned int base_seq, gc_seq; LIST_HEAD(set_update_list); struct nft_trans_elem *te; struct nft_chain *chain; struct nft_table *table; LIST_HEAD(adl); int err; if (list_empty(&nft_net->commit_list)) { mutex_unlock(&nft_net->commit_mutex); return 0; } list_for_each_entry(trans, &nft_net->binding_list, binding_list) { switch (trans->msg_type) { case NFT_MSG_NEWSET: if (!nft_trans_set_update(trans) && nft_set_is_anonymous(nft_trans_set(trans)) && !nft_trans_set_bound(trans)) { pr_warn_once("nftables ruleset with unbound set\n"); return -EINVAL; } break; case NFT_MSG_NEWCHAIN: if (!nft_trans_chain_update(trans) && nft_chain_binding(nft_trans_chain(trans)) && !nft_trans_chain_bound(trans)) { pr_warn_once("nftables ruleset with unbound chain\n"); return -EINVAL; } break; } } /* 0. Validate ruleset, otherwise roll back for error reporting. */ if (nf_tables_validate(net) < 0) { nft_net->validate_state = NFT_VALIDATE_DO; return -EAGAIN; } err = nft_flow_rule_offload_commit(net); if (err < 0) return err; /* 1. Allocate space for next generation rules_gen_X[] */ list_for_each_entry_safe(trans, next, &nft_net->commit_list, list) { int ret; ret = nf_tables_commit_audit_alloc(&adl, trans->ctx.table); if (ret) { nf_tables_commit_chain_prepare_cancel(net); nf_tables_commit_audit_free(&adl); return ret; } if (trans->msg_type == NFT_MSG_NEWRULE || trans->msg_type == NFT_MSG_DELRULE) { chain = trans->ctx.chain; ret = nf_tables_commit_chain_prepare(net, chain); if (ret < 0) { nf_tables_commit_chain_prepare_cancel(net); nf_tables_commit_audit_free(&adl); return ret; } } } /* step 2. Make rules_gen_X visible to packet path */ list_for_each_entry(table, &nft_net->tables, list) { list_for_each_entry(chain, &table->chains, list) nf_tables_commit_chain(net, chain); } /* * Bump generation counter, invalidate any dump in progress. * Cannot fail after this point. */ base_seq = READ_ONCE(nft_net->base_seq); while (++base_seq == 0) ; WRITE_ONCE(nft_net->base_seq, base_seq); gc_seq = nft_gc_seq_begin(nft_net); /* step 3. Start new generation, rules_gen_X now in use. */ net->nft.gencursor = nft_gencursor_next(net); list_for_each_entry_safe(trans, next, &nft_net->commit_list, list) { nf_tables_commit_audit_collect(&adl, trans->ctx.table, trans->msg_type); switch (trans->msg_type) { case NFT_MSG_NEWTABLE: if (nft_trans_table_update(trans)) { if (!(trans->ctx.table->flags & __NFT_TABLE_F_UPDATE)) { nft_trans_destroy(trans); break; } if (trans->ctx.table->flags & NFT_TABLE_F_DORMANT) nf_tables_table_disable(net, trans->ctx.table); trans->ctx.table->flags &= ~__NFT_TABLE_F_UPDATE; } else { nft_clear(net, trans->ctx.table); } nf_tables_table_notify(&trans->ctx, NFT_MSG_NEWTABLE); nft_trans_destroy(trans); break; case NFT_MSG_DELTABLE: case NFT_MSG_DESTROYTABLE: list_del_rcu(&trans->ctx.table->list); nf_tables_table_notify(&trans->ctx, trans->msg_type); break; case NFT_MSG_NEWCHAIN: if (nft_trans_chain_update(trans)) { nft_chain_commit_update(trans); nf_tables_chain_notify(&trans->ctx, NFT_MSG_NEWCHAIN, &nft_trans_chain_hooks(trans)); list_splice(&nft_trans_chain_hooks(trans), &nft_trans_basechain(trans)->hook_list); /* trans destroyed after rcu grace period */ } else { nft_chain_commit_drop_policy(trans); nft_clear(net, trans->ctx.chain); nf_tables_chain_notify(&trans->ctx, NFT_MSG_NEWCHAIN, NULL); nft_trans_destroy(trans); } break; case NFT_MSG_DELCHAIN: case NFT_MSG_DESTROYCHAIN: if (nft_trans_chain_update(trans)) { nf_tables_chain_notify(&trans->ctx, NFT_MSG_DELCHAIN, &nft_trans_chain_hooks(trans)); nft_netdev_unregister_hooks(net, &nft_trans_chain_hooks(trans), true); } else { nft_chain_del(trans->ctx.chain); nf_tables_chain_notify(&trans->ctx, NFT_MSG_DELCHAIN, NULL); nf_tables_unregister_hook(trans->ctx.net, trans->ctx.table, trans->ctx.chain); } break; case NFT_MSG_NEWRULE: nft_clear(trans->ctx.net, nft_trans_rule(trans)); nf_tables_rule_notify(&trans->ctx, nft_trans_rule(trans), NFT_MSG_NEWRULE); if (trans->ctx.chain->flags & NFT_CHAIN_HW_OFFLOAD) nft_flow_rule_destroy(nft_trans_flow_rule(trans)); nft_trans_destroy(trans); break; case NFT_MSG_DELRULE: case NFT_MSG_DESTROYRULE: list_del_rcu(&nft_trans_rule(trans)->list); nf_tables_rule_notify(&trans->ctx, nft_trans_rule(trans), trans->msg_type); nft_rule_expr_deactivate(&trans->ctx, nft_trans_rule(trans), NFT_TRANS_COMMIT); if (trans->ctx.chain->flags & NFT_CHAIN_HW_OFFLOAD) nft_flow_rule_destroy(nft_trans_flow_rule(trans)); break; case NFT_MSG_NEWSET: if (nft_trans_set_update(trans)) { struct nft_set *set = nft_trans_set(trans); WRITE_ONCE(set->timeout, nft_trans_set_timeout(trans)); WRITE_ONCE(set->gc_int, nft_trans_set_gc_int(trans)); if (nft_trans_set_size(trans)) WRITE_ONCE(set->size, nft_trans_set_size(trans)); } else { nft_clear(net, nft_trans_set(trans)); /* This avoids hitting -EBUSY when deleting the table * from the transaction. */ if (nft_set_is_anonymous(nft_trans_set(trans)) && !list_empty(&nft_trans_set(trans)->bindings)) nft_use_dec(&trans->ctx.table->use); } nf_tables_set_notify(&trans->ctx, nft_trans_set(trans), NFT_MSG_NEWSET, GFP_KERNEL); nft_trans_destroy(trans); break; case NFT_MSG_DELSET: case NFT_MSG_DESTROYSET: nft_trans_set(trans)->dead = 1; list_del_rcu(&nft_trans_set(trans)->list); nf_tables_set_notify(&trans->ctx, nft_trans_set(trans), trans->msg_type, GFP_KERNEL); break; case NFT_MSG_NEWSETELEM: te = (struct nft_trans_elem *)trans->data; nft_setelem_activate(net, te->set, te->elem_priv); nf_tables_setelem_notify(&trans->ctx, te->set, te->elem_priv, NFT_MSG_NEWSETELEM); if (te->set->ops->commit && list_empty(&te->set->pending_update)) { list_add_tail(&te->set->pending_update, &set_update_list); } nft_trans_destroy(trans); break; case NFT_MSG_DELSETELEM: case NFT_MSG_DESTROYSETELEM: te = (struct nft_trans_elem *)trans->data; nf_tables_setelem_notify(&trans->ctx, te->set, te->elem_priv, trans->msg_type); nft_setelem_remove(net, te->set, te->elem_priv); if (!nft_setelem_is_catchall(te->set, te->elem_priv)) { atomic_dec(&te->set->nelems); te->set->ndeact--; } if (te->set->ops->commit && list_empty(&te->set->pending_update)) { list_add_tail(&te->set->pending_update, &set_update_list); } break; case NFT_MSG_NEWOBJ: if (nft_trans_obj_update(trans)) { nft_obj_commit_update(trans); nf_tables_obj_notify(&trans->ctx, nft_trans_obj(trans), NFT_MSG_NEWOBJ); } else { nft_clear(net, nft_trans_obj(trans)); nf_tables_obj_notify(&trans->ctx, nft_trans_obj(trans), NFT_MSG_NEWOBJ); nft_trans_destroy(trans); } break; case NFT_MSG_DELOBJ: case NFT_MSG_DESTROYOBJ: nft_obj_del(nft_trans_obj(trans)); nf_tables_obj_notify(&trans->ctx, nft_trans_obj(trans), trans->msg_type); break; case NFT_MSG_NEWFLOWTABLE: if (nft_trans_flowtable_update(trans)) { nft_trans_flowtable(trans)->data.flags = nft_trans_flowtable_flags(trans); nf_tables_flowtable_notify(&trans->ctx, nft_trans_flowtable(trans), &nft_trans_flowtable_hooks(trans), NFT_MSG_NEWFLOWTABLE); list_splice(&nft_trans_flowtable_hooks(trans), &nft_trans_flowtable(trans)->hook_list); } else { nft_clear(net, nft_trans_flowtable(trans)); nf_tables_flowtable_notify(&trans->ctx, nft_trans_flowtable(trans), NULL, NFT_MSG_NEWFLOWTABLE); } nft_trans_destroy(trans); break; case NFT_MSG_DELFLOWTABLE: case NFT_MSG_DESTROYFLOWTABLE: if (nft_trans_flowtable_update(trans)) { nf_tables_flowtable_notify(&trans->ctx, nft_trans_flowtable(trans), &nft_trans_flowtable_hooks(trans), trans->msg_type); nft_unregister_flowtable_net_hooks(net, &nft_trans_flowtable_hooks(trans)); } else { list_del_rcu(&nft_trans_flowtable(trans)->list); nf_tables_flowtable_notify(&trans->ctx, nft_trans_flowtable(trans), NULL, trans->msg_type); nft_unregister_flowtable_net_hooks(net, &nft_trans_flowtable(trans)->hook_list); } break; } } nft_set_commit_update(&set_update_list); nft_commit_notify(net, NETLINK_CB(skb).portid); nf_tables_gen_notify(net, skb, NFT_MSG_NEWGEN); nf_tables_commit_audit_log(&adl, nft_net->base_seq); nft_gc_seq_end(nft_net, gc_seq); nft_net->validate_state = NFT_VALIDATE_SKIP; nf_tables_commit_release(net); return 0; } static void nf_tables_module_autoload(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_module_request *req, *next; LIST_HEAD(module_list); list_splice_init(&nft_net->module_list, &module_list); mutex_unlock(&nft_net->commit_mutex); list_for_each_entry_safe(req, next, &module_list, list) { request_module("%s", req->module); req->done = true; } mutex_lock(&nft_net->commit_mutex); list_splice(&module_list, &nft_net->module_list); } static void nf_tables_abort_release(struct nft_trans *trans) { switch (trans->msg_type) { case NFT_MSG_NEWTABLE: nf_tables_table_destroy(&trans->ctx); break; case NFT_MSG_NEWCHAIN: if (nft_trans_chain_update(trans)) nft_hooks_destroy(&nft_trans_chain_hooks(trans)); else nf_tables_chain_destroy(&trans->ctx); break; case NFT_MSG_NEWRULE: nf_tables_rule_destroy(&trans->ctx, nft_trans_rule(trans)); break; case NFT_MSG_NEWSET: nft_set_destroy(&trans->ctx, nft_trans_set(trans)); break; case NFT_MSG_NEWSETELEM: nft_set_elem_destroy(nft_trans_elem_set(trans), nft_trans_elem_priv(trans), true); break; case NFT_MSG_NEWOBJ: nft_obj_destroy(&trans->ctx, nft_trans_obj(trans)); break; case NFT_MSG_NEWFLOWTABLE: if (nft_trans_flowtable_update(trans)) nft_hooks_destroy(&nft_trans_flowtable_hooks(trans)); else nf_tables_flowtable_destroy(nft_trans_flowtable(trans)); break; } kfree(trans); } static void nft_set_abort_update(struct list_head *set_update_list) { struct nft_set *set, *next; list_for_each_entry_safe(set, next, set_update_list, pending_update) { list_del_init(&set->pending_update); if (!set->ops->abort) continue; set->ops->abort(set); } } static int __nf_tables_abort(struct net *net, enum nfnl_abort_action action) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_trans *trans, *next; LIST_HEAD(set_update_list); struct nft_trans_elem *te; if (action == NFNL_ABORT_VALIDATE && nf_tables_validate(net) < 0) return -EAGAIN; list_for_each_entry_safe_reverse(trans, next, &nft_net->commit_list, list) { switch (trans->msg_type) { case NFT_MSG_NEWTABLE: if (nft_trans_table_update(trans)) { if (!(trans->ctx.table->flags & __NFT_TABLE_F_UPDATE)) { nft_trans_destroy(trans); break; } if (trans->ctx.table->flags & __NFT_TABLE_F_WAS_DORMANT) { nf_tables_table_disable(net, trans->ctx.table); trans->ctx.table->flags |= NFT_TABLE_F_DORMANT; } else if (trans->ctx.table->flags & __NFT_TABLE_F_WAS_AWAKEN) { trans->ctx.table->flags &= ~NFT_TABLE_F_DORMANT; } trans->ctx.table->flags &= ~__NFT_TABLE_F_UPDATE; nft_trans_destroy(trans); } else { list_del_rcu(&trans->ctx.table->list); } break; case NFT_MSG_DELTABLE: case NFT_MSG_DESTROYTABLE: nft_clear(trans->ctx.net, trans->ctx.table); nft_trans_destroy(trans); break; case NFT_MSG_NEWCHAIN: if (nft_trans_chain_update(trans)) { nft_netdev_unregister_hooks(net, &nft_trans_chain_hooks(trans), true); free_percpu(nft_trans_chain_stats(trans)); kfree(nft_trans_chain_name(trans)); nft_trans_destroy(trans); } else { if (nft_trans_chain_bound(trans)) { nft_trans_destroy(trans); break; } nft_use_dec_restore(&trans->ctx.table->use); nft_chain_del(trans->ctx.chain); nf_tables_unregister_hook(trans->ctx.net, trans->ctx.table, trans->ctx.chain); } break; case NFT_MSG_DELCHAIN: case NFT_MSG_DESTROYCHAIN: if (nft_trans_chain_update(trans)) { list_splice(&nft_trans_chain_hooks(trans), &nft_trans_basechain(trans)->hook_list); } else { nft_use_inc_restore(&trans->ctx.table->use); nft_clear(trans->ctx.net, trans->ctx.chain); } nft_trans_destroy(trans); break; case NFT_MSG_NEWRULE: if (nft_trans_rule_bound(trans)) { nft_trans_destroy(trans); break; } nft_use_dec_restore(&trans->ctx.chain->use); list_del_rcu(&nft_trans_rule(trans)->list); nft_rule_expr_deactivate(&trans->ctx, nft_trans_rule(trans), NFT_TRANS_ABORT); if (trans->ctx.chain->flags & NFT_CHAIN_HW_OFFLOAD) nft_flow_rule_destroy(nft_trans_flow_rule(trans)); break; case NFT_MSG_DELRULE: case NFT_MSG_DESTROYRULE: nft_use_inc_restore(&trans->ctx.chain->use); nft_clear(trans->ctx.net, nft_trans_rule(trans)); nft_rule_expr_activate(&trans->ctx, nft_trans_rule(trans)); if (trans->ctx.chain->flags & NFT_CHAIN_HW_OFFLOAD) nft_flow_rule_destroy(nft_trans_flow_rule(trans)); nft_trans_destroy(trans); break; case NFT_MSG_NEWSET: if (nft_trans_set_update(trans)) { nft_trans_destroy(trans); break; } nft_use_dec_restore(&trans->ctx.table->use); if (nft_trans_set_bound(trans)) { nft_trans_destroy(trans); break; } nft_trans_set(trans)->dead = 1; list_del_rcu(&nft_trans_set(trans)->list); break; case NFT_MSG_DELSET: case NFT_MSG_DESTROYSET: nft_use_inc_restore(&trans->ctx.table->use); nft_clear(trans->ctx.net, nft_trans_set(trans)); if (nft_trans_set(trans)->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) nft_map_activate(&trans->ctx, nft_trans_set(trans)); nft_trans_destroy(trans); break; case NFT_MSG_NEWSETELEM: if (nft_trans_elem_set_bound(trans)) { nft_trans_destroy(trans); break; } te = (struct nft_trans_elem *)trans->data; nft_setelem_remove(net, te->set, te->elem_priv); if (!nft_setelem_is_catchall(te->set, te->elem_priv)) atomic_dec(&te->set->nelems); if (te->set->ops->abort && list_empty(&te->set->pending_update)) { list_add_tail(&te->set->pending_update, &set_update_list); } break; case NFT_MSG_DELSETELEM: case NFT_MSG_DESTROYSETELEM: te = (struct nft_trans_elem *)trans->data; nft_setelem_data_activate(net, te->set, te->elem_priv); nft_setelem_activate(net, te->set, te->elem_priv); if (!nft_setelem_is_catchall(te->set, te->elem_priv)) te->set->ndeact--; if (te->set->ops->abort && list_empty(&te->set->pending_update)) { list_add_tail(&te->set->pending_update, &set_update_list); } nft_trans_destroy(trans); break; case NFT_MSG_NEWOBJ: if (nft_trans_obj_update(trans)) { nft_obj_destroy(&trans->ctx, nft_trans_obj_newobj(trans)); nft_trans_destroy(trans); } else { nft_use_dec_restore(&trans->ctx.table->use); nft_obj_del(nft_trans_obj(trans)); } break; case NFT_MSG_DELOBJ: case NFT_MSG_DESTROYOBJ: nft_use_inc_restore(&trans->ctx.table->use); nft_clear(trans->ctx.net, nft_trans_obj(trans)); nft_trans_destroy(trans); break; case NFT_MSG_NEWFLOWTABLE: if (nft_trans_flowtable_update(trans)) { nft_unregister_flowtable_net_hooks(net, &nft_trans_flowtable_hooks(trans)); } else { nft_use_dec_restore(&trans->ctx.table->use); list_del_rcu(&nft_trans_flowtable(trans)->list); nft_unregister_flowtable_net_hooks(net, &nft_trans_flowtable(trans)->hook_list); } break; case NFT_MSG_DELFLOWTABLE: case NFT_MSG_DESTROYFLOWTABLE: if (nft_trans_flowtable_update(trans)) { list_splice(&nft_trans_flowtable_hooks(trans), &nft_trans_flowtable(trans)->hook_list); } else { nft_use_inc_restore(&trans->ctx.table->use); nft_clear(trans->ctx.net, nft_trans_flowtable(trans)); } nft_trans_destroy(trans); break; } } nft_set_abort_update(&set_update_list); synchronize_rcu(); list_for_each_entry_safe_reverse(trans, next, &nft_net->commit_list, list) { nft_trans_list_del(trans); nf_tables_abort_release(trans); } if (action == NFNL_ABORT_AUTOLOAD) nf_tables_module_autoload(net); else nf_tables_module_autoload_cleanup(net); return 0; } static int nf_tables_abort(struct net *net, struct sk_buff *skb, enum nfnl_abort_action action) { struct nftables_pernet *nft_net = nft_pernet(net); unsigned int gc_seq; int ret; gc_seq = nft_gc_seq_begin(nft_net); ret = __nf_tables_abort(net, action); nft_gc_seq_end(nft_net, gc_seq); mutex_unlock(&nft_net->commit_mutex); return ret; } static bool nf_tables_valid_genid(struct net *net, u32 genid) { struct nftables_pernet *nft_net = nft_pernet(net); bool genid_ok; mutex_lock(&nft_net->commit_mutex); nft_net->tstamp = get_jiffies_64(); genid_ok = genid == 0 || nft_net->base_seq == genid; if (!genid_ok) mutex_unlock(&nft_net->commit_mutex); /* else, commit mutex has to be released by commit or abort function */ return genid_ok; } static const struct nfnetlink_subsystem nf_tables_subsys = { .name = "nf_tables", .subsys_id = NFNL_SUBSYS_NFTABLES, .cb_count = NFT_MSG_MAX, .cb = nf_tables_cb, .commit = nf_tables_commit, .abort = nf_tables_abort, .valid_genid = nf_tables_valid_genid, .owner = THIS_MODULE, }; int nft_chain_validate_dependency(const struct nft_chain *chain, enum nft_chain_types type) { const struct nft_base_chain *basechain; if (nft_is_base_chain(chain)) { basechain = nft_base_chain(chain); if (basechain->type->type != type) return -EOPNOTSUPP; } return 0; } EXPORT_SYMBOL_GPL(nft_chain_validate_dependency); int nft_chain_validate_hooks(const struct nft_chain *chain, unsigned int hook_flags) { struct nft_base_chain *basechain; if (nft_is_base_chain(chain)) { basechain = nft_base_chain(chain); if ((1 << basechain->ops.hooknum) & hook_flags) return 0; return -EOPNOTSUPP; } return 0; } EXPORT_SYMBOL_GPL(nft_chain_validate_hooks); /* * Loop detection - walk through the ruleset beginning at the destination chain * of a new jump until either the source chain is reached (loop) or all * reachable chains have been traversed. * * The loop check is performed whenever a new jump verdict is added to an * expression or verdict map or a verdict map is bound to a new chain. */ static int nf_tables_check_loops(const struct nft_ctx *ctx, const struct nft_chain *chain); static int nft_check_loops(const struct nft_ctx *ctx, const struct nft_set_ext *ext) { const struct nft_data *data; int ret; data = nft_set_ext_data(ext); switch (data->verdict.code) { case NFT_JUMP: case NFT_GOTO: ret = nf_tables_check_loops(ctx, data->verdict.chain); break; default: ret = 0; break; } return ret; } static int nf_tables_loop_check_setelem(const struct nft_ctx *ctx, struct nft_set *set, const struct nft_set_iter *iter, struct nft_elem_priv *elem_priv) { const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv); if (nft_set_ext_exists(ext, NFT_SET_EXT_FLAGS) && *nft_set_ext_flags(ext) & NFT_SET_ELEM_INTERVAL_END) return 0; return nft_check_loops(ctx, ext); } static int nft_set_catchall_loops(const struct nft_ctx *ctx, struct nft_set *set) { u8 genmask = nft_genmask_next(ctx->net); struct nft_set_elem_catchall *catchall; struct nft_set_ext *ext; int ret = 0; list_for_each_entry_rcu(catchall, &set->catchall_list, list) { ext = nft_set_elem_ext(set, catchall->elem); if (!nft_set_elem_active(ext, genmask)) continue; ret = nft_check_loops(ctx, ext); if (ret < 0) return ret; } return ret; } static int nf_tables_check_loops(const struct nft_ctx *ctx, const struct nft_chain *chain) { const struct nft_rule *rule; const struct nft_expr *expr, *last; struct nft_set *set; struct nft_set_binding *binding; struct nft_set_iter iter; if (ctx->chain == chain) return -ELOOP; if (fatal_signal_pending(current)) return -EINTR; list_for_each_entry(rule, &chain->rules, list) { nft_rule_for_each_expr(expr, last, rule) { struct nft_immediate_expr *priv; const struct nft_data *data; int err; if (strcmp(expr->ops->type->name, "immediate")) continue; priv = nft_expr_priv(expr); if (priv->dreg != NFT_REG_VERDICT) continue; data = &priv->data; switch (data->verdict.code) { case NFT_JUMP: case NFT_GOTO: err = nf_tables_check_loops(ctx, data->verdict.chain); if (err < 0) return err; break; default: break; } } } list_for_each_entry(set, &ctx->table->sets, list) { if (!nft_is_active_next(ctx->net, set)) continue; if (!(set->flags & NFT_SET_MAP) || set->dtype != NFT_DATA_VERDICT) continue; list_for_each_entry(binding, &set->bindings, list) { if (!(binding->flags & NFT_SET_MAP) || binding->chain != chain) continue; iter.genmask = nft_genmask_next(ctx->net); iter.skip = 0; iter.count = 0; iter.err = 0; iter.fn = nf_tables_loop_check_setelem; set->ops->walk(ctx, set, &iter); if (!iter.err) iter.err = nft_set_catchall_loops(ctx, set); if (iter.err < 0) return iter.err; } } return 0; } /** * nft_parse_u32_check - fetch u32 attribute and check for maximum value * * @attr: netlink attribute to fetch value from * @max: maximum value to be stored in dest * @dest: pointer to the variable * * Parse, check and store a given u32 netlink attribute into variable. * This function returns -ERANGE if the value goes over maximum value. * Otherwise a 0 is returned and the attribute value is stored in the * destination variable. */ int nft_parse_u32_check(const struct nlattr *attr, int max, u32 *dest) { u32 val; val = ntohl(nla_get_be32(attr)); if (val > max) return -ERANGE; *dest = val; return 0; } EXPORT_SYMBOL_GPL(nft_parse_u32_check); static int nft_parse_register(const struct nlattr *attr, u32 *preg) { unsigned int reg; reg = ntohl(nla_get_be32(attr)); switch (reg) { case NFT_REG_VERDICT...NFT_REG_4: *preg = reg * NFT_REG_SIZE / NFT_REG32_SIZE; break; case NFT_REG32_00...NFT_REG32_15: *preg = reg + NFT_REG_SIZE / NFT_REG32_SIZE - NFT_REG32_00; break; default: return -ERANGE; } return 0; } /** * nft_dump_register - dump a register value to a netlink attribute * * @skb: socket buffer * @attr: attribute number * @reg: register number * * Construct a netlink attribute containing the register number. For * compatibility reasons, register numbers being a multiple of 4 are * translated to the corresponding 128 bit register numbers. */ int nft_dump_register(struct sk_buff *skb, unsigned int attr, unsigned int reg) { if (reg % (NFT_REG_SIZE / NFT_REG32_SIZE) == 0) reg = reg / (NFT_REG_SIZE / NFT_REG32_SIZE); else reg = reg - NFT_REG_SIZE / NFT_REG32_SIZE + NFT_REG32_00; return nla_put_be32(skb, attr, htonl(reg)); } EXPORT_SYMBOL_GPL(nft_dump_register); static int nft_validate_register_load(enum nft_registers reg, unsigned int len) { if (reg < NFT_REG_1 * NFT_REG_SIZE / NFT_REG32_SIZE) return -EINVAL; if (len == 0) return -EINVAL; if (reg * NFT_REG32_SIZE + len > sizeof_field(struct nft_regs, data)) return -ERANGE; return 0; } int nft_parse_register_load(const struct nlattr *attr, u8 *sreg, u32 len) { u32 reg; int err; err = nft_parse_register(attr, &reg); if (err < 0) return err; err = nft_validate_register_load(reg, len); if (err < 0) return err; *sreg = reg; return 0; } EXPORT_SYMBOL_GPL(nft_parse_register_load); static int nft_validate_register_store(const struct nft_ctx *ctx, enum nft_registers reg, const struct nft_data *data, enum nft_data_types type, unsigned int len) { int err; switch (reg) { case NFT_REG_VERDICT: if (type != NFT_DATA_VERDICT) return -EINVAL; if (data != NULL && (data->verdict.code == NFT_GOTO || data->verdict.code == NFT_JUMP)) { err = nf_tables_check_loops(ctx, data->verdict.chain); if (err < 0) return err; } return 0; default: if (reg < NFT_REG_1 * NFT_REG_SIZE / NFT_REG32_SIZE) return -EINVAL; if (len == 0) return -EINVAL; if (reg * NFT_REG32_SIZE + len > sizeof_field(struct nft_regs, data)) return -ERANGE; if (data != NULL && type != NFT_DATA_VALUE) return -EINVAL; return 0; } } int nft_parse_register_store(const struct nft_ctx *ctx, const struct nlattr *attr, u8 *dreg, const struct nft_data *data, enum nft_data_types type, unsigned int len) { int err; u32 reg; err = nft_parse_register(attr, &reg); if (err < 0) return err; err = nft_validate_register_store(ctx, reg, data, type, len); if (err < 0) return err; *dreg = reg; return 0; } EXPORT_SYMBOL_GPL(nft_parse_register_store); static const struct nla_policy nft_verdict_policy[NFTA_VERDICT_MAX + 1] = { [NFTA_VERDICT_CODE] = { .type = NLA_U32 }, [NFTA_VERDICT_CHAIN] = { .type = NLA_STRING, .len = NFT_CHAIN_MAXNAMELEN - 1 }, [NFTA_VERDICT_CHAIN_ID] = { .type = NLA_U32 }, }; static int nft_verdict_init(const struct nft_ctx *ctx, struct nft_data *data, struct nft_data_desc *desc, const struct nlattr *nla) { u8 genmask = nft_genmask_next(ctx->net); struct nlattr *tb[NFTA_VERDICT_MAX + 1]; struct nft_chain *chain; int err; err = nla_parse_nested_deprecated(tb, NFTA_VERDICT_MAX, nla, nft_verdict_policy, NULL); if (err < 0) return err; if (!tb[NFTA_VERDICT_CODE]) return -EINVAL; /* zero padding hole for memcmp */ memset(data, 0, sizeof(*data)); data->verdict.code = ntohl(nla_get_be32(tb[NFTA_VERDICT_CODE])); switch (data->verdict.code) { case NF_ACCEPT: case NF_DROP: case NF_QUEUE: break; case NFT_CONTINUE: case NFT_BREAK: case NFT_RETURN: break; case NFT_JUMP: case NFT_GOTO: if (tb[NFTA_VERDICT_CHAIN]) { chain = nft_chain_lookup(ctx->net, ctx->table, tb[NFTA_VERDICT_CHAIN], genmask); } else if (tb[NFTA_VERDICT_CHAIN_ID]) { chain = nft_chain_lookup_byid(ctx->net, ctx->table, tb[NFTA_VERDICT_CHAIN_ID], genmask); if (IS_ERR(chain)) return PTR_ERR(chain); } else { return -EINVAL; } if (IS_ERR(chain)) return PTR_ERR(chain); if (nft_is_base_chain(chain)) return -EOPNOTSUPP; if (nft_chain_is_bound(chain)) return -EINVAL; if (desc->flags & NFT_DATA_DESC_SETELEM && chain->flags & NFT_CHAIN_BINDING) return -EINVAL; if (!nft_use_inc(&chain->use)) return -EMFILE; data->verdict.chain = chain; break; default: return -EINVAL; } desc->len = sizeof(data->verdict); return 0; } static void nft_verdict_uninit(const struct nft_data *data) { struct nft_chain *chain; switch (data->verdict.code) { case NFT_JUMP: case NFT_GOTO: chain = data->verdict.chain; nft_use_dec(&chain->use); break; } } int nft_verdict_dump(struct sk_buff *skb, int type, const struct nft_verdict *v) { struct nlattr *nest; nest = nla_nest_start_noflag(skb, type); if (!nest) goto nla_put_failure; if (nla_put_be32(skb, NFTA_VERDICT_CODE, htonl(v->code))) goto nla_put_failure; switch (v->code) { case NFT_JUMP: case NFT_GOTO: if (nla_put_string(skb, NFTA_VERDICT_CHAIN, v->chain->name)) goto nla_put_failure; } nla_nest_end(skb, nest); return 0; nla_put_failure: return -1; } static int nft_value_init(const struct nft_ctx *ctx, struct nft_data *data, struct nft_data_desc *desc, const struct nlattr *nla) { unsigned int len; len = nla_len(nla); if (len == 0) return -EINVAL; if (len > desc->size) return -EOVERFLOW; if (desc->len) { if (len != desc->len) return -EINVAL; } else { desc->len = len; } nla_memcpy(data->data, nla, len); return 0; } static int nft_value_dump(struct sk_buff *skb, const struct nft_data *data, unsigned int len) { return nla_put(skb, NFTA_DATA_VALUE, len, data->data); } static const struct nla_policy nft_data_policy[NFTA_DATA_MAX + 1] = { [NFTA_DATA_VALUE] = { .type = NLA_BINARY }, [NFTA_DATA_VERDICT] = { .type = NLA_NESTED }, }; /** * nft_data_init - parse nf_tables data netlink attributes * * @ctx: context of the expression using the data * @data: destination struct nft_data * @desc: data description * @nla: netlink attribute containing data * * Parse the netlink data attributes and initialize a struct nft_data. * The type and length of data are returned in the data description. * * The caller can indicate that it only wants to accept data of type * NFT_DATA_VALUE by passing NULL for the ctx argument. */ int nft_data_init(const struct nft_ctx *ctx, struct nft_data *data, struct nft_data_desc *desc, const struct nlattr *nla) { struct nlattr *tb[NFTA_DATA_MAX + 1]; int err; if (WARN_ON_ONCE(!desc->size)) return -EINVAL; err = nla_parse_nested_deprecated(tb, NFTA_DATA_MAX, nla, nft_data_policy, NULL); if (err < 0) return err; if (tb[NFTA_DATA_VALUE]) { if (desc->type != NFT_DATA_VALUE) return -EINVAL; err = nft_value_init(ctx, data, desc, tb[NFTA_DATA_VALUE]); } else if (tb[NFTA_DATA_VERDICT] && ctx != NULL) { if (desc->type != NFT_DATA_VERDICT) return -EINVAL; err = nft_verdict_init(ctx, data, desc, tb[NFTA_DATA_VERDICT]); } else { err = -EINVAL; } return err; } EXPORT_SYMBOL_GPL(nft_data_init); /** * nft_data_release - release a nft_data item * * @data: struct nft_data to release * @type: type of data * * Release a nft_data item. NFT_DATA_VALUE types can be silently discarded, * all others need to be released by calling this function. */ void nft_data_release(const struct nft_data *data, enum nft_data_types type) { if (type < NFT_DATA_VERDICT) return; switch (type) { case NFT_DATA_VERDICT: return nft_verdict_uninit(data); default: WARN_ON(1); } } EXPORT_SYMBOL_GPL(nft_data_release); int nft_data_dump(struct sk_buff *skb, int attr, const struct nft_data *data, enum nft_data_types type, unsigned int len) { struct nlattr *nest; int err; nest = nla_nest_start_noflag(skb, attr); if (nest == NULL) return -1; switch (type) { case NFT_DATA_VALUE: err = nft_value_dump(skb, data, len); break; case NFT_DATA_VERDICT: err = nft_verdict_dump(skb, NFTA_DATA_VERDICT, &data->verdict); break; default: err = -EINVAL; WARN_ON(1); } nla_nest_end(skb, nest); return err; } EXPORT_SYMBOL_GPL(nft_data_dump); int __nft_release_basechain(struct nft_ctx *ctx) { struct nft_rule *rule, *nr; if (WARN_ON(!nft_is_base_chain(ctx->chain))) return 0; nf_tables_unregister_hook(ctx->net, ctx->chain->table, ctx->chain); list_for_each_entry_safe(rule, nr, &ctx->chain->rules, list) { list_del(&rule->list); nft_use_dec(&ctx->chain->use); nf_tables_rule_release(ctx, rule); } nft_chain_del(ctx->chain); nft_use_dec(&ctx->table->use); nf_tables_chain_destroy(ctx); return 0; } EXPORT_SYMBOL_GPL(__nft_release_basechain); static void __nft_release_hook(struct net *net, struct nft_table *table) { struct nft_flowtable *flowtable; struct nft_chain *chain; list_for_each_entry(chain, &table->chains, list) __nf_tables_unregister_hook(net, table, chain, true); list_for_each_entry(flowtable, &table->flowtables, list) __nft_unregister_flowtable_net_hooks(net, &flowtable->hook_list, true); } static void __nft_release_hooks(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_table *table; list_for_each_entry(table, &nft_net->tables, list) { if (nft_table_has_owner(table)) continue; __nft_release_hook(net, table); } } static void __nft_release_table(struct net *net, struct nft_table *table) { struct nft_flowtable *flowtable, *nf; struct nft_chain *chain, *nc; struct nft_object *obj, *ne; struct nft_rule *rule, *nr; struct nft_set *set, *ns; struct nft_ctx ctx = { .net = net, .family = NFPROTO_NETDEV, }; ctx.family = table->family; ctx.table = table; list_for_each_entry(chain, &table->chains, list) { if (nft_chain_binding(chain)) continue; ctx.chain = chain; list_for_each_entry_safe(rule, nr, &chain->rules, list) { list_del(&rule->list); nft_use_dec(&chain->use); nf_tables_rule_release(&ctx, rule); } } list_for_each_entry_safe(flowtable, nf, &table->flowtables, list) { list_del(&flowtable->list); nft_use_dec(&table->use); nf_tables_flowtable_destroy(flowtable); } list_for_each_entry_safe(set, ns, &table->sets, list) { list_del(&set->list); nft_use_dec(&table->use); if (set->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) nft_map_deactivate(&ctx, set); nft_set_destroy(&ctx, set); } list_for_each_entry_safe(obj, ne, &table->objects, list) { nft_obj_del(obj); nft_use_dec(&table->use); nft_obj_destroy(&ctx, obj); } list_for_each_entry_safe(chain, nc, &table->chains, list) { ctx.chain = chain; nft_chain_del(chain); nft_use_dec(&table->use); nf_tables_chain_destroy(&ctx); } nf_tables_table_destroy(&ctx); } static void __nft_release_tables(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); struct nft_table *table, *nt; list_for_each_entry_safe(table, nt, &nft_net->tables, list) { if (nft_table_has_owner(table)) continue; list_del(&table->list); __nft_release_table(net, table); } } static int nft_rcv_nl_event(struct notifier_block *this, unsigned long event, void *ptr) { struct nft_table *table, *to_delete[8]; struct nftables_pernet *nft_net; struct netlink_notify *n = ptr; struct net *net = n->net; unsigned int deleted; bool restart = false; unsigned int gc_seq; if (event != NETLINK_URELEASE || n->protocol != NETLINK_NETFILTER) return NOTIFY_DONE; nft_net = nft_pernet(net); deleted = 0; mutex_lock(&nft_net->commit_mutex); gc_seq = nft_gc_seq_begin(nft_net); if (!list_empty(&nf_tables_destroy_list)) nf_tables_trans_destroy_flush_work(); again: list_for_each_entry(table, &nft_net->tables, list) { if (nft_table_has_owner(table) && n->portid == table->nlpid) { __nft_release_hook(net, table); list_del_rcu(&table->list); to_delete[deleted++] = table; if (deleted >= ARRAY_SIZE(to_delete)) break; } } if (deleted) { restart = deleted >= ARRAY_SIZE(to_delete); synchronize_rcu(); while (deleted) __nft_release_table(net, to_delete[--deleted]); if (restart) goto again; } nft_gc_seq_end(nft_net, gc_seq); mutex_unlock(&nft_net->commit_mutex); return NOTIFY_DONE; } static struct notifier_block nft_nl_notifier = { .notifier_call = nft_rcv_nl_event, }; static int __net_init nf_tables_init_net(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); INIT_LIST_HEAD(&nft_net->tables); INIT_LIST_HEAD(&nft_net->commit_list); INIT_LIST_HEAD(&nft_net->binding_list); INIT_LIST_HEAD(&nft_net->module_list); INIT_LIST_HEAD(&nft_net->notify_list); mutex_init(&nft_net->commit_mutex); nft_net->base_seq = 1; nft_net->gc_seq = 0; nft_net->validate_state = NFT_VALIDATE_SKIP; return 0; } static void __net_exit nf_tables_pre_exit_net(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); mutex_lock(&nft_net->commit_mutex); __nft_release_hooks(net); mutex_unlock(&nft_net->commit_mutex); } static void __net_exit nf_tables_exit_net(struct net *net) { struct nftables_pernet *nft_net = nft_pernet(net); unsigned int gc_seq; mutex_lock(&nft_net->commit_mutex); gc_seq = nft_gc_seq_begin(nft_net); if (!list_empty(&nft_net->commit_list) || !list_empty(&nft_net->module_list)) __nf_tables_abort(net, NFNL_ABORT_NONE); __nft_release_tables(net); nft_gc_seq_end(nft_net, gc_seq); mutex_unlock(&nft_net->commit_mutex); WARN_ON_ONCE(!list_empty(&nft_net->tables)); WARN_ON_ONCE(!list_empty(&nft_net->module_list)); WARN_ON_ONCE(!list_empty(&nft_net->notify_list)); } static void nf_tables_exit_batch(struct list_head *net_exit_list) { flush_work(&trans_gc_work); } static struct pernet_operations nf_tables_net_ops = { .init = nf_tables_init_net, .pre_exit = nf_tables_pre_exit_net, .exit = nf_tables_exit_net, .exit_batch = nf_tables_exit_batch, .id = &nf_tables_net_id, .size = sizeof(struct nftables_pernet), }; static int __init nf_tables_module_init(void) { int err; err = register_pernet_subsys(&nf_tables_net_ops); if (err < 0) return err; err = nft_chain_filter_init(); if (err < 0) goto err_chain_filter; err = nf_tables_core_module_init(); if (err < 0) goto err_core_module; err = register_netdevice_notifier(&nf_tables_flowtable_notifier); if (err < 0) goto err_netdev_notifier; err = rhltable_init(&nft_objname_ht, &nft_objname_ht_params); if (err < 0) goto err_rht_objname; err = nft_offload_init(); if (err < 0) goto err_offload; err = netlink_register_notifier(&nft_nl_notifier); if (err < 0) goto err_netlink_notifier; /* must be last */ err = nfnetlink_subsys_register(&nf_tables_subsys); if (err < 0) goto err_nfnl_subsys; nft_chain_route_init(); return err; err_nfnl_subsys: netlink_unregister_notifier(&nft_nl_notifier); err_netlink_notifier: nft_offload_exit(); err_offload: rhltable_destroy(&nft_objname_ht); err_rht_objname: unregister_netdevice_notifier(&nf_tables_flowtable_notifier); err_netdev_notifier: nf_tables_core_module_exit(); err_core_module: nft_chain_filter_fini(); err_chain_filter: unregister_pernet_subsys(&nf_tables_net_ops); return err; } static void __exit nf_tables_module_exit(void) { nfnetlink_subsys_unregister(&nf_tables_subsys); netlink_unregister_notifier(&nft_nl_notifier); nft_offload_exit(); unregister_netdevice_notifier(&nf_tables_flowtable_notifier); nft_chain_filter_fini(); nft_chain_route_fini(); unregister_pernet_subsys(&nf_tables_net_ops); cancel_work_sync(&trans_gc_work); cancel_work_sync(&trans_destroy_work); rcu_barrier(); rhltable_destroy(&nft_objname_ht); nf_tables_core_module_exit(); } module_init(nf_tables_module_init); module_exit(nf_tables_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_DESCRIPTION("Framework for packet filtering and classification"); MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_NFTABLES);
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_IRQDESC_H #define _LINUX_IRQDESC_H #include <linux/rcupdate.h> #include <linux/kobject.h> #include <linux/mutex.h> /* * Core internal functions to deal with irq descriptors */ struct irq_affinity_notify; struct proc_dir_entry; struct module; struct irq_desc; struct irq_domain; struct pt_regs; /** * struct irq_desc - interrupt descriptor * @irq_common_data: per irq and chip data passed down to chip functions * @kstat_irqs: irq stats per cpu * @handle_irq: highlevel irq-events handler * @action: the irq action chain * @status_use_accessors: status information * @core_internal_state__do_not_mess_with_it: core internal status information * @depth: disable-depth, for nested irq_disable() calls * @wake_depth: enable depth, for multiple irq_set_irq_wake() callers * @tot_count: stats field for non-percpu irqs * @irq_count: stats field to detect stalled irqs * @last_unhandled: aging timer for unhandled count * @irqs_unhandled: stats field for spurious unhandled interrupts * @threads_handled: stats field for deferred spurious detection of threaded handlers * @threads_handled_last: comparator field for deferred spurious detection of threaded handlers * @lock: locking for SMP * @affinity_hint: hint to user space for preferred irq affinity * @affinity_notify: context for notification of affinity changes * @pending_mask: pending rebalanced interrupts * @threads_oneshot: bitfield to handle shared oneshot threads * @threads_active: number of irqaction threads currently running * @wait_for_threads: wait queue for sync_irq to wait for threaded handlers * @nr_actions: number of installed actions on this descriptor * @no_suspend_depth: number of irqactions on a irq descriptor with * IRQF_NO_SUSPEND set * @force_resume_depth: number of irqactions on a irq descriptor with * IRQF_FORCE_RESUME set * @rcu: rcu head for delayed free * @kobj: kobject used to represent this struct in sysfs * @request_mutex: mutex to protect request/free before locking desc->lock * @dir: /proc/irq/ procfs entry * @debugfs_file: dentry for the debugfs file * @name: flow handler name for /proc/interrupts output */ struct irq_desc { struct irq_common_data irq_common_data; struct irq_data irq_data; unsigned int __percpu *kstat_irqs; irq_flow_handler_t handle_irq; struct irqaction *action; /* IRQ action list */ unsigned int status_use_accessors; unsigned int core_internal_state__do_not_mess_with_it; unsigned int depth; /* nested irq disables */ unsigned int wake_depth; /* nested wake enables */ unsigned int tot_count; unsigned int irq_count; /* For detecting broken IRQs */ unsigned long last_unhandled; /* Aging timer for unhandled count */ unsigned int irqs_unhandled; atomic_t threads_handled; int threads_handled_last; raw_spinlock_t lock; struct cpumask *percpu_enabled; const struct cpumask *percpu_affinity; #ifdef CONFIG_SMP const struct cpumask *affinity_hint; struct irq_affinity_notify *affinity_notify; #ifdef CONFIG_GENERIC_PENDING_IRQ cpumask_var_t pending_mask; #endif #endif unsigned long threads_oneshot; atomic_t threads_active; wait_queue_head_t wait_for_threads; #ifdef CONFIG_PM_SLEEP unsigned int nr_actions; unsigned int no_suspend_depth; unsigned int cond_suspend_depth; unsigned int force_resume_depth; #endif #ifdef CONFIG_PROC_FS struct proc_dir_entry *dir; #endif #ifdef CONFIG_GENERIC_IRQ_DEBUGFS struct dentry *debugfs_file; const char *dev_name; #endif #ifdef CONFIG_SPARSE_IRQ struct rcu_head rcu; struct kobject kobj; #endif struct mutex request_mutex; int parent_irq; struct module *owner; const char *name; #ifdef CONFIG_HARDIRQS_SW_RESEND struct hlist_node resend_node; #endif } ____cacheline_internodealigned_in_smp; #ifdef CONFIG_SPARSE_IRQ extern void irq_lock_sparse(void); extern void irq_unlock_sparse(void); #else static inline void irq_lock_sparse(void) { } static inline void irq_unlock_sparse(void) { } extern struct irq_desc irq_desc[NR_IRQS]; #endif static inline unsigned int irq_desc_kstat_cpu(struct irq_desc *desc, unsigned int cpu) { return desc->kstat_irqs ? *per_cpu_ptr(desc->kstat_irqs, cpu) : 0; } static inline struct irq_desc *irq_data_to_desc(struct irq_data *data) { return container_of(data->common, struct irq_desc, irq_common_data); } static inline unsigned int irq_desc_get_irq(struct irq_desc *desc) { return desc->irq_data.irq; } static inline struct irq_data *irq_desc_get_irq_data(struct irq_desc *desc) { return &desc->irq_data; } static inline struct irq_chip *irq_desc_get_chip(struct irq_desc *desc) { return desc->irq_data.chip; } static inline void *irq_desc_get_chip_data(struct irq_desc *desc) { return desc->irq_data.chip_data; } static inline void *irq_desc_get_handler_data(struct irq_desc *desc) { return desc->irq_common_data.handler_data; } /* * Architectures call this to let the generic IRQ layer * handle an interrupt. */ static inline void generic_handle_irq_desc(struct irq_desc *desc) { desc->handle_irq(desc); } int handle_irq_desc(struct irq_desc *desc); int generic_handle_irq(unsigned int irq); int generic_handle_irq_safe(unsigned int irq); #ifdef CONFIG_IRQ_DOMAIN /* * Convert a HW interrupt number to a logical one using a IRQ domain, * and handle the result interrupt number. Return -EINVAL if * conversion failed. */ int generic_handle_domain_irq(struct irq_domain *domain, unsigned int hwirq); int generic_handle_domain_irq_safe(struct irq_domain *domain, unsigned int hwirq); int generic_handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq); #endif /* Test to see if a driver has successfully requested an irq */ static inline int irq_desc_has_action(struct irq_desc *desc) { return desc && desc->action != NULL; } /** * irq_set_handler_locked - Set irq handler from a locked region * @data: Pointer to the irq_data structure which identifies the irq * @handler: Flow control handler function for this interrupt * * Sets the handler in the irq descriptor associated to @data. * * Must be called with irq_desc locked and valid parameters. Typical * call site is the irq_set_type() callback. */ static inline void irq_set_handler_locked(struct irq_data *data, irq_flow_handler_t handler) { struct irq_desc *desc = irq_data_to_desc(data); desc->handle_irq = handler; } /** * irq_set_chip_handler_name_locked - Set chip, handler and name from a locked region * @data: Pointer to the irq_data structure for which the chip is set * @chip: Pointer to the new irq chip * @handler: Flow control handler function for this interrupt * @name: Name of the interrupt * * Replace the irq chip at the proper hierarchy level in @data and * sets the handler and name in the associated irq descriptor. * * Must be called with irq_desc locked and valid parameters. */ static inline void irq_set_chip_handler_name_locked(struct irq_data *data, const struct irq_chip *chip, irq_flow_handler_t handler, const char *name) { struct irq_desc *desc = irq_data_to_desc(data); desc->handle_irq = handler; desc->name = name; data->chip = (struct irq_chip *)chip; } bool irq_check_status_bit(unsigned int irq, unsigned int bitmask); static inline bool irq_balancing_disabled(unsigned int irq) { return irq_check_status_bit(irq, IRQ_NO_BALANCING_MASK); } static inline bool irq_is_percpu(unsigned int irq) { return irq_check_status_bit(irq, IRQ_PER_CPU); } static inline bool irq_is_percpu_devid(unsigned int irq) { return irq_check_status_bit(irq, IRQ_PER_CPU_DEVID); } void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class, struct lock_class_key *request_class); static inline void irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class, struct lock_class_key *request_class) { if (IS_ENABLED(CONFIG_LOCKDEP)) __irq_set_lockdep_class(irq, lock_class, request_class); } #endif
2 3 3 4 2 5 4 3 3 1 3 3 3 1 1 1 1 1 3 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 // SPDX-License-Identifier: GPL-2.0-only /* * TCP Veno congestion control * * This is based on the congestion detection/avoidance scheme described in * C. P. Fu, S. C. Liew. * "TCP Veno: TCP Enhancement for Transmission over Wireless Access Networks." * IEEE Journal on Selected Areas in Communication, * Feb. 2003. * See https://www.ie.cuhk.edu.hk/fileadmin/staff_upload/soung/Journal/J3.pdf */ #include <linux/mm.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/inet_diag.h> #include <net/tcp.h> /* Default values of the Veno variables, in fixed-point representation * with V_PARAM_SHIFT bits to the right of the binary point. */ #define V_PARAM_SHIFT 1 static const int beta = 3 << V_PARAM_SHIFT; /* Veno variables */ struct veno { u8 doing_veno_now; /* if true, do veno for this rtt */ u16 cntrtt; /* # of rtts measured within last rtt */ u32 minrtt; /* min of rtts measured within last rtt (in usec) */ u32 basertt; /* the min of all Veno rtt measurements seen (in usec) */ u32 inc; /* decide whether to increase cwnd */ u32 diff; /* calculate the diff rate */ }; /* There are several situations when we must "re-start" Veno: * * o when a connection is established * o after an RTO * o after fast recovery * o when we send a packet and there is no outstanding * unacknowledged data (restarting an idle connection) * */ static inline void veno_enable(struct sock *sk) { struct veno *veno = inet_csk_ca(sk); /* turn on Veno */ veno->doing_veno_now = 1; veno->minrtt = 0x7fffffff; } static inline void veno_disable(struct sock *sk) { struct veno *veno = inet_csk_ca(sk); /* turn off Veno */ veno->doing_veno_now = 0; } static void tcp_veno_init(struct sock *sk) { struct veno *veno = inet_csk_ca(sk); veno->basertt = 0x7fffffff; veno->inc = 1; veno_enable(sk); } /* Do rtt sampling needed for Veno. */ static void tcp_veno_pkts_acked(struct sock *sk, const struct ack_sample *sample) { struct veno *veno = inet_csk_ca(sk); u32 vrtt; if (sample->rtt_us < 0) return; /* Never allow zero rtt or baseRTT */ vrtt = sample->rtt_us + 1; /* Filter to find propagation delay: */ if (vrtt < veno->basertt) veno->basertt = vrtt; /* Find the min rtt during the last rtt to find * the current prop. delay + queuing delay: */ veno->minrtt = min(veno->minrtt, vrtt); veno->cntrtt++; } static void tcp_veno_state(struct sock *sk, u8 ca_state) { if (ca_state == TCP_CA_Open) veno_enable(sk); else veno_disable(sk); } /* * If the connection is idle and we are restarting, * then we don't want to do any Veno calculations * until we get fresh rtt samples. So when we * restart, we reset our Veno state to a clean * state. After we get acks for this flight of * packets, _then_ we can make Veno calculations * again. */ static void tcp_veno_cwnd_event(struct sock *sk, enum tcp_ca_event event) { if (event == CA_EVENT_CWND_RESTART || event == CA_EVENT_TX_START) tcp_veno_init(sk); } static void tcp_veno_cong_avoid(struct sock *sk, u32 ack, u32 acked) { struct tcp_sock *tp = tcp_sk(sk); struct veno *veno = inet_csk_ca(sk); if (!veno->doing_veno_now) { tcp_reno_cong_avoid(sk, ack, acked); return; } /* limited by applications */ if (!tcp_is_cwnd_limited(sk)) return; /* We do the Veno calculations only if we got enough rtt samples */ if (veno->cntrtt <= 2) { /* We don't have enough rtt samples to do the Veno * calculation, so we'll behave like Reno. */ tcp_reno_cong_avoid(sk, ack, acked); } else { u64 target_cwnd; u32 rtt; /* We have enough rtt samples, so, using the Veno * algorithm, we determine the state of the network. */ rtt = veno->minrtt; target_cwnd = (u64)tcp_snd_cwnd(tp) * veno->basertt; target_cwnd <<= V_PARAM_SHIFT; do_div(target_cwnd, rtt); veno->diff = (tcp_snd_cwnd(tp) << V_PARAM_SHIFT) - target_cwnd; if (tcp_in_slow_start(tp)) { /* Slow start. */ acked = tcp_slow_start(tp, acked); if (!acked) goto done; } /* Congestion avoidance. */ if (veno->diff < beta) { /* In the "non-congestive state", increase cwnd * every rtt. */ tcp_cong_avoid_ai(tp, tcp_snd_cwnd(tp), acked); } else { /* In the "congestive state", increase cwnd * every other rtt. */ if (tp->snd_cwnd_cnt >= tcp_snd_cwnd(tp)) { if (veno->inc && tcp_snd_cwnd(tp) < tp->snd_cwnd_clamp) { tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); veno->inc = 0; } else veno->inc = 1; tp->snd_cwnd_cnt = 0; } else tp->snd_cwnd_cnt += acked; } done: if (tcp_snd_cwnd(tp) < 2) tcp_snd_cwnd_set(tp, 2); else if (tcp_snd_cwnd(tp) > tp->snd_cwnd_clamp) tcp_snd_cwnd_set(tp, tp->snd_cwnd_clamp); } /* Wipe the slate clean for the next rtt. */ /* veno->cntrtt = 0; */ veno->minrtt = 0x7fffffff; } /* Veno MD phase */ static u32 tcp_veno_ssthresh(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); struct veno *veno = inet_csk_ca(sk); if (veno->diff < beta) /* in "non-congestive state", cut cwnd by 1/5 */ return max(tcp_snd_cwnd(tp) * 4 / 5, 2U); else /* in "congestive state", cut cwnd by 1/2 */ return max(tcp_snd_cwnd(tp) >> 1U, 2U); } static struct tcp_congestion_ops tcp_veno __read_mostly = { .init = tcp_veno_init, .ssthresh = tcp_veno_ssthresh, .undo_cwnd = tcp_reno_undo_cwnd, .cong_avoid = tcp_veno_cong_avoid, .pkts_acked = tcp_veno_pkts_acked, .set_state = tcp_veno_state, .cwnd_event = tcp_veno_cwnd_event, .owner = THIS_MODULE, .name = "veno", }; static int __init tcp_veno_register(void) { BUILD_BUG_ON(sizeof(struct veno) > ICSK_CA_PRIV_SIZE); tcp_register_congestion_control(&tcp_veno); return 0; } static void __exit tcp_veno_unregister(void) { tcp_unregister_congestion_control(&tcp_veno); } module_init(tcp_veno_register); module_exit(tcp_veno_unregister); MODULE_AUTHOR("Bin Zhou, Cheng Peng Fu"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("TCP Veno");
19 19 2 2 5 5 5 3 1 3 8 8 8 8 11 11 11 11 11 2 2 2 2 1 1 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2015 Intel Corporation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #include <asm/unaligned.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include <net/bluetooth/hci_mon.h> #include <net/bluetooth/mgmt.h> #include "mgmt_util.h" static struct sk_buff *create_monitor_ctrl_event(__le16 index, u32 cookie, u16 opcode, u16 len, void *buf) { struct hci_mon_hdr *hdr; struct sk_buff *skb; skb = bt_skb_alloc(6 + len, GFP_ATOMIC); if (!skb) return NULL; put_unaligned_le32(cookie, skb_put(skb, 4)); put_unaligned_le16(opcode, skb_put(skb, 2)); if (buf) skb_put_data(skb, buf, len); __net_timestamp(skb); hdr = skb_push(skb, HCI_MON_HDR_SIZE); hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); hdr->index = index; hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); return skb; } struct sk_buff *mgmt_alloc_skb(struct hci_dev *hdev, u16 opcode, unsigned int size) { struct sk_buff *skb; skb = alloc_skb(sizeof(struct mgmt_hdr) + size, GFP_KERNEL); if (!skb) return skb; skb_reserve(skb, sizeof(struct mgmt_hdr)); bt_cb(skb)->mgmt.hdev = hdev; bt_cb(skb)->mgmt.opcode = opcode; return skb; } int mgmt_send_event_skb(unsigned short channel, struct sk_buff *skb, int flag, struct sock *skip_sk) { struct hci_dev *hdev; struct mgmt_hdr *hdr; int len; if (!skb) return -EINVAL; len = skb->len; hdev = bt_cb(skb)->mgmt.hdev; /* Time stamp */ __net_timestamp(skb); /* Send just the data, without headers, to the monitor */ if (channel == HCI_CHANNEL_CONTROL) hci_send_monitor_ctrl_event(hdev, bt_cb(skb)->mgmt.opcode, skb->data, skb->len, skb_get_ktime(skb), flag, skip_sk); hdr = skb_push(skb, sizeof(*hdr)); hdr->opcode = cpu_to_le16(bt_cb(skb)->mgmt.opcode); if (hdev) hdr->index = cpu_to_le16(hdev->id); else hdr->index = cpu_to_le16(MGMT_INDEX_NONE); hdr->len = cpu_to_le16(len); hci_send_to_channel(channel, skb, flag, skip_sk); kfree_skb(skb); return 0; } int mgmt_send_event(u16 event, struct hci_dev *hdev, unsigned short channel, void *data, u16 data_len, int flag, struct sock *skip_sk) { struct sk_buff *skb; skb = mgmt_alloc_skb(hdev, event, data_len); if (!skb) return -ENOMEM; if (data) skb_put_data(skb, data, data_len); return mgmt_send_event_skb(channel, skb, flag, skip_sk); } int mgmt_cmd_status(struct sock *sk, u16 index, u16 cmd, u8 status) { struct sk_buff *skb, *mskb; struct mgmt_hdr *hdr; struct mgmt_ev_cmd_status *ev; int err; BT_DBG("sock %p, index %u, cmd %u, status %u", sk, index, cmd, status); skb = alloc_skb(sizeof(*hdr) + sizeof(*ev), GFP_KERNEL); if (!skb) return -ENOMEM; hdr = skb_put(skb, sizeof(*hdr)); hdr->opcode = cpu_to_le16(MGMT_EV_CMD_STATUS); hdr->index = cpu_to_le16(index); hdr->len = cpu_to_le16(sizeof(*ev)); ev = skb_put(skb, sizeof(*ev)); ev->status = status; ev->opcode = cpu_to_le16(cmd); mskb = create_monitor_ctrl_event(hdr->index, hci_sock_get_cookie(sk), MGMT_EV_CMD_STATUS, sizeof(*ev), ev); if (mskb) skb->tstamp = mskb->tstamp; else __net_timestamp(skb); err = sock_queue_rcv_skb(sk, skb); if (err < 0) kfree_skb(skb); if (mskb) { hci_send_to_channel(HCI_CHANNEL_MONITOR, mskb, HCI_SOCK_TRUSTED, NULL); kfree_skb(mskb); } return err; } int mgmt_cmd_complete(struct sock *sk, u16 index, u16 cmd, u8 status, void *rp, size_t rp_len) { struct sk_buff *skb, *mskb; struct mgmt_hdr *hdr; struct mgmt_ev_cmd_complete *ev; int err; BT_DBG("sock %p", sk); skb = alloc_skb(sizeof(*hdr) + sizeof(*ev) + rp_len, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = skb_put(skb, sizeof(*hdr)); hdr->opcode = cpu_to_le16(MGMT_EV_CMD_COMPLETE); hdr->index = cpu_to_le16(index); hdr->len = cpu_to_le16(sizeof(*ev) + rp_len); ev = skb_put(skb, sizeof(*ev) + rp_len); ev->opcode = cpu_to_le16(cmd); ev->status = status; if (rp) memcpy(ev->data, rp, rp_len); mskb = create_monitor_ctrl_event(hdr->index, hci_sock_get_cookie(sk), MGMT_EV_CMD_COMPLETE, sizeof(*ev) + rp_len, ev); if (mskb) skb->tstamp = mskb->tstamp; else __net_timestamp(skb); err = sock_queue_rcv_skb(sk, skb); if (err < 0) kfree_skb(skb); if (mskb) { hci_send_to_channel(HCI_CHANNEL_MONITOR, mskb, HCI_SOCK_TRUSTED, NULL); kfree_skb(mskb); } return err; } struct mgmt_pending_cmd *mgmt_pending_find(unsigned short channel, u16 opcode, struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; list_for_each_entry(cmd, &hdev->mgmt_pending, list) { if (hci_sock_get_channel(cmd->sk) != channel) continue; if (cmd->opcode == opcode) return cmd; } return NULL; } struct mgmt_pending_cmd *mgmt_pending_find_data(unsigned short channel, u16 opcode, struct hci_dev *hdev, const void *data) { struct mgmt_pending_cmd *cmd; list_for_each_entry(cmd, &hdev->mgmt_pending, list) { if (cmd->user_data != data) continue; if (cmd->opcode == opcode) return cmd; } return NULL; } void mgmt_pending_foreach(u16 opcode, struct hci_dev *hdev, void (*cb)(struct mgmt_pending_cmd *cmd, void *data), void *data) { struct mgmt_pending_cmd *cmd, *tmp; list_for_each_entry_safe(cmd, tmp, &hdev->mgmt_pending, list) { if (opcode > 0 && cmd->opcode != opcode) continue; cb(cmd, data); } } struct mgmt_pending_cmd *mgmt_pending_new(struct sock *sk, u16 opcode, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_pending_cmd *cmd; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) return NULL; cmd->opcode = opcode; cmd->index = hdev->id; cmd->param = kmemdup(data, len, GFP_KERNEL); if (!cmd->param) { kfree(cmd); return NULL; } cmd->param_len = len; cmd->sk = sk; sock_hold(sk); return cmd; } struct mgmt_pending_cmd *mgmt_pending_add(struct sock *sk, u16 opcode, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_pending_cmd *cmd; cmd = mgmt_pending_new(sk, opcode, hdev, data, len); if (!cmd) return NULL; list_add_tail(&cmd->list, &hdev->mgmt_pending); return cmd; } void mgmt_pending_free(struct mgmt_pending_cmd *cmd) { sock_put(cmd->sk); kfree(cmd->param); kfree(cmd); } void mgmt_pending_remove(struct mgmt_pending_cmd *cmd) { list_del(&cmd->list); mgmt_pending_free(cmd); } void mgmt_mesh_foreach(struct hci_dev *hdev, void (*cb)(struct mgmt_mesh_tx *mesh_tx, void *data), void *data, struct sock *sk) { struct mgmt_mesh_tx *mesh_tx, *tmp; list_for_each_entry_safe(mesh_tx, tmp, &hdev->mgmt_pending, list) { if (!sk || mesh_tx->sk == sk) cb(mesh_tx, data); } } struct mgmt_mesh_tx *mgmt_mesh_next(struct hci_dev *hdev, struct sock *sk) { struct mgmt_mesh_tx *mesh_tx; if (list_empty(&hdev->mesh_pending)) return NULL; list_for_each_entry(mesh_tx, &hdev->mesh_pending, list) { if (!sk || mesh_tx->sk == sk) return mesh_tx; } return NULL; } struct mgmt_mesh_tx *mgmt_mesh_find(struct hci_dev *hdev, u8 handle) { struct mgmt_mesh_tx *mesh_tx; if (list_empty(&hdev->mesh_pending)) return NULL; list_for_each_entry(mesh_tx, &hdev->mesh_pending, list) { if (mesh_tx->handle == handle) return mesh_tx; } return NULL; } struct mgmt_mesh_tx *mgmt_mesh_add(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mesh_tx *mesh_tx; mesh_tx = kzalloc(sizeof(*mesh_tx), GFP_KERNEL); if (!mesh_tx) return NULL; hdev->mesh_send_ref++; if (!hdev->mesh_send_ref) hdev->mesh_send_ref++; mesh_tx->handle = hdev->mesh_send_ref; mesh_tx->index = hdev->id; memcpy(mesh_tx->param, data, len); mesh_tx->param_len = len; mesh_tx->sk = sk; sock_hold(sk); list_add_tail(&mesh_tx->list, &hdev->mesh_pending); return mesh_tx; } void mgmt_mesh_remove(struct mgmt_mesh_tx *mesh_tx) { list_del(&mesh_tx->list); sock_put(mesh_tx->sk); kfree(mesh_tx); }
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* * Copyright (C) 2014 Red Hat * Author: Rob Clark <robdclark@gmail.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef DRM_MODESET_LOCK_H_ #define DRM_MODESET_LOCK_H_ #include <linux/types.h> /* stackdepot.h is not self-contained */ #include <linux/stackdepot.h> #include <linux/ww_mutex.h> struct drm_modeset_lock; /** * struct drm_modeset_acquire_ctx - locking context (see ww_acquire_ctx) * @ww_ctx: base acquire ctx * @contended: used internally for -EDEADLK handling * @stack_depot: used internally for contention debugging * @locked: list of held locks * @trylock_only: trylock mode used in atomic contexts/panic notifiers * @interruptible: whether interruptible locking should be used. * * Each thread competing for a set of locks must use one acquire * ctx. And if any lock fxn returns -EDEADLK, it must backoff and * retry. */ struct drm_modeset_acquire_ctx { struct ww_acquire_ctx ww_ctx; /* * Contended lock: if a lock is contended you should only call * drm_modeset_backoff() which drops locks and slow-locks the * contended lock. */ struct drm_modeset_lock *contended; /* * Stack depot for debugging when a contended lock was not backed off * from. */ depot_stack_handle_t stack_depot; /* * list of held locks (drm_modeset_lock) */ struct list_head locked; /* * Trylock mode, use only for panic handlers! */ bool trylock_only; /* Perform interruptible waits on this context. */ bool interruptible; }; /** * struct drm_modeset_lock - used for locking modeset resources. * @mutex: resource locking * @head: used to hold its place on &drm_atomi_state.locked list when * part of an atomic update * * Used for locking CRTCs and other modeset resources. */ struct drm_modeset_lock { /* * modeset lock */ struct ww_mutex mutex; /* * Resources that are locked as part of an atomic update are added * to a list (so we know what to unlock at the end). */ struct list_head head; }; #define DRM_MODESET_ACQUIRE_INTERRUPTIBLE BIT(0) void drm_modeset_acquire_init(struct drm_modeset_acquire_ctx *ctx, uint32_t flags); void drm_modeset_acquire_fini(struct drm_modeset_acquire_ctx *ctx); void drm_modeset_drop_locks(struct drm_modeset_acquire_ctx *ctx); int drm_modeset_backoff(struct drm_modeset_acquire_ctx *ctx); void drm_modeset_lock_init(struct drm_modeset_lock *lock); /** * drm_modeset_lock_fini - cleanup lock * @lock: lock to cleanup */ static inline void drm_modeset_lock_fini(struct drm_modeset_lock *lock) { WARN_ON(!list_empty(&lock->head)); } /** * drm_modeset_is_locked - equivalent to mutex_is_locked() * @lock: lock to check */ static inline bool drm_modeset_is_locked(struct drm_modeset_lock *lock) { return ww_mutex_is_locked(&lock->mutex); } /** * drm_modeset_lock_assert_held - equivalent to lockdep_assert_held() * @lock: lock to check */ static inline void drm_modeset_lock_assert_held(struct drm_modeset_lock *lock) { lockdep_assert_held(&lock->mutex.base); } int drm_modeset_lock(struct drm_modeset_lock *lock, struct drm_modeset_acquire_ctx *ctx); int __must_check drm_modeset_lock_single_interruptible(struct drm_modeset_lock *lock); void drm_modeset_unlock(struct drm_modeset_lock *lock); struct drm_device; struct drm_crtc; struct drm_plane; void drm_modeset_lock_all(struct drm_device *dev); void drm_modeset_unlock_all(struct drm_device *dev); void drm_warn_on_modeset_not_all_locked(struct drm_device *dev); int drm_modeset_lock_all_ctx(struct drm_device *dev, struct drm_modeset_acquire_ctx *ctx); /** * DRM_MODESET_LOCK_ALL_BEGIN - Helper to acquire modeset locks * @dev: drm device * @ctx: local modeset acquire context, will be dereferenced * @flags: DRM_MODESET_ACQUIRE_* flags to pass to drm_modeset_acquire_init() * @ret: local ret/err/etc variable to track error status * * Use these macros to simplify grabbing all modeset locks using a local * context. This has the advantage of reducing boilerplate, but also properly * checking return values where appropriate. * * Any code run between BEGIN and END will be holding the modeset locks. * * This must be paired with DRM_MODESET_LOCK_ALL_END(). We will jump back and * forth between the labels on deadlock and error conditions. * * Drivers can acquire additional modeset locks. If any lock acquisition * fails, the control flow needs to jump to DRM_MODESET_LOCK_ALL_END() with * the @ret parameter containing the return value of drm_modeset_lock(). * * Returns: * The only possible value of ret immediately after DRM_MODESET_LOCK_ALL_BEGIN() * is 0, so no error checking is necessary */ #define DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, flags, ret) \ if (!drm_drv_uses_atomic_modeset(dev)) \ mutex_lock(&dev->mode_config.mutex); \ drm_modeset_acquire_init(&ctx, flags); \ modeset_lock_retry: \ ret = drm_modeset_lock_all_ctx(dev, &ctx); \ if (ret) \ goto modeset_lock_fail; /** * DRM_MODESET_LOCK_ALL_END - Helper to release and cleanup modeset locks * @dev: drm device * @ctx: local modeset acquire context, will be dereferenced * @ret: local ret/err/etc variable to track error status * * The other side of DRM_MODESET_LOCK_ALL_BEGIN(). It will bounce back to BEGIN * if ret is -EDEADLK. * * It's important that you use the same ret variable for begin and end so * deadlock conditions are properly handled. * * Returns: * ret will be untouched unless it is -EDEADLK on entry. That means that if you * successfully acquire the locks, ret will be whatever your code sets it to. If * there is a deadlock or other failure with acquire or backoff, ret will be set * to that failure. In both of these cases the code between BEGIN/END will not * be run, so the failure will reflect the inability to grab the locks. */ #define DRM_MODESET_LOCK_ALL_END(dev, ctx, ret) \ modeset_lock_fail: \ if (ret == -EDEADLK) { \ ret = drm_modeset_backoff(&ctx); \ if (!ret) \ goto modeset_lock_retry; \ } \ drm_modeset_drop_locks(&ctx); \ drm_modeset_acquire_fini(&ctx); \ if (!drm_drv_uses_atomic_modeset(dev)) \ mutex_unlock(&dev->mode_config.mutex); #endif /* DRM_MODESET_LOCK_H_ */
49 49 50 4 46 46 4 4 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 75 74 75 76 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 358 358 358 6 6 555 554 3 949 948 1854 1853 1853 569 570 4 5 5 5 1 4 4 4 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 5 5 5 5 5 5 5 5 5 5 1 4 4 4 4 4 4 1 5 1 4 4 4 4 125 125 4 3 1 1 1 777 776 777 3 3 3 3 46 46 46 46 46 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 // SPDX-License-Identifier: GPL-2.0 /* * Performance events core code: * * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> */ #include <linux/fs.h> #include <linux/mm.h> #include <linux/cpu.h> #include <linux/smp.h> #include <linux/idr.h> #include <linux/file.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/hash.h> #include <linux/tick.h> #include <linux/sysfs.h> #include <linux/dcache.h> #include <linux/percpu.h> #include <linux/ptrace.h> #include <linux/reboot.h> #include <linux/vmstat.h> #include <linux/device.h> #include <linux/export.h> #include <linux/vmalloc.h> #include <linux/hardirq.h> #include <linux/hugetlb.h> #include <linux/rculist.h> #include <linux/uaccess.h> #include <linux/syscalls.h> #include <linux/anon_inodes.h> #include <linux/kernel_stat.h> #include <linux/cgroup.h> #include <linux/perf_event.h> #include <linux/trace_events.h> #include <linux/hw_breakpoint.h> #include <linux/mm_types.h> #include <linux/module.h> #include <linux/mman.h> #include <linux/compat.h> #include <linux/bpf.h> #include <linux/filter.h> #include <linux/namei.h> #include <linux/parser.h> #include <linux/sched/clock.h> #include <linux/sched/mm.h> #include <linux/proc_ns.h> #include <linux/mount.h> #include <linux/min_heap.h> #include <linux/highmem.h> #include <linux/pgtable.h> #include <linux/buildid.h> #include <linux/task_work.h> #include "internal.h" #include <asm/irq_regs.h> typedef int (*remote_function_f)(void *); struct remote_function_call { struct task_struct *p; remote_function_f func; void *info; int ret; }; static void remote_function(void *data) { struct remote_function_call *tfc = data; struct task_struct *p = tfc->p; if (p) { /* -EAGAIN */ if (task_cpu(p) != smp_processor_id()) return; /* * Now that we're on right CPU with IRQs disabled, we can test * if we hit the right task without races. */ tfc->ret = -ESRCH; /* No such (running) process */ if (p != current) return; } tfc->ret = tfc->func(tfc->info); } /** * task_function_call - call a function on the cpu on which a task runs * @p: the task to evaluate * @func: the function to be called * @info: the function call argument * * Calls the function @func when the task is currently running. This might * be on the current CPU, which just calls the function directly. This will * retry due to any failures in smp_call_function_single(), such as if the * task_cpu() goes offline concurrently. * * returns @func return value or -ESRCH or -ENXIO when the process isn't running */ static int task_function_call(struct task_struct *p, remote_function_f func, void *info) { struct remote_function_call data = { .p = p, .func = func, .info = info, .ret = -EAGAIN, }; int ret; for (;;) { ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); if (!ret) ret = data.ret; if (ret != -EAGAIN) break; cond_resched(); } return ret; } /** * cpu_function_call - call a function on the cpu * @cpu: target cpu to queue this function * @func: the function to be called * @info: the function call argument * * Calls the function @func on the remote cpu. * * returns: @func return value or -ENXIO when the cpu is offline */ static int cpu_function_call(int cpu, remote_function_f func, void *info) { struct remote_function_call data = { .p = NULL, .func = func, .info = info, .ret = -ENXIO, /* No such CPU */ }; smp_call_function_single(cpu, remote_function, &data, 1); return data.ret; } static void perf_ctx_lock(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { raw_spin_lock(&cpuctx->ctx.lock); if (ctx) raw_spin_lock(&ctx->lock); } static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { if (ctx) raw_spin_unlock(&ctx->lock); raw_spin_unlock(&cpuctx->ctx.lock); } #define TASK_TOMBSTONE ((void *)-1L) static bool is_kernel_event(struct perf_event *event) { return READ_ONCE(event->owner) == TASK_TOMBSTONE; } static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); struct perf_event_context *perf_cpu_task_ctx(void) { lockdep_assert_irqs_disabled(); return this_cpu_ptr(&perf_cpu_context)->task_ctx; } /* * On task ctx scheduling... * * When !ctx->nr_events a task context will not be scheduled. This means * we can disable the scheduler hooks (for performance) without leaving * pending task ctx state. * * This however results in two special cases: * * - removing the last event from a task ctx; this is relatively straight * forward and is done in __perf_remove_from_context. * * - adding the first event to a task ctx; this is tricky because we cannot * rely on ctx->is_active and therefore cannot use event_function_call(). * See perf_install_in_context(). * * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. */ typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, struct perf_event_context *, void *); struct event_function_struct { struct perf_event *event; event_f func; void *data; }; static int event_function(void *info) { struct event_function_struct *efs = info; struct perf_event *event = efs->event; struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_context *task_ctx = cpuctx->task_ctx; int ret = 0; lockdep_assert_irqs_disabled(); perf_ctx_lock(cpuctx, task_ctx); /* * Since we do the IPI call without holding ctx->lock things can have * changed, double check we hit the task we set out to hit. */ if (ctx->task) { if (ctx->task != current) { ret = -ESRCH; goto unlock; } /* * We only use event_function_call() on established contexts, * and event_function() is only ever called when active (or * rather, we'll have bailed in task_function_call() or the * above ctx->task != current test), therefore we must have * ctx->is_active here. */ WARN_ON_ONCE(!ctx->is_active); /* * And since we have ctx->is_active, cpuctx->task_ctx must * match. */ WARN_ON_ONCE(task_ctx != ctx); } else { WARN_ON_ONCE(&cpuctx->ctx != ctx); } efs->func(event, cpuctx, ctx, efs->data); unlock: perf_ctx_unlock(cpuctx, task_ctx); return ret; } static void event_function_call(struct perf_event *event, event_f func, void *data) { struct perf_event_context *ctx = event->ctx; struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ struct event_function_struct efs = { .event = event, .func = func, .data = data, }; if (!event->parent) { /* * If this is a !child event, we must hold ctx::mutex to * stabilize the event->ctx relation. See * perf_event_ctx_lock(). */ lockdep_assert_held(&ctx->mutex); } if (!task) { cpu_function_call(event->cpu, event_function, &efs); return; } if (task == TASK_TOMBSTONE) return; again: if (!task_function_call(task, event_function, &efs)) return; raw_spin_lock_irq(&ctx->lock); /* * Reload the task pointer, it might have been changed by * a concurrent perf_event_context_sched_out(). */ task = ctx->task; if (task == TASK_TOMBSTONE) { raw_spin_unlock_irq(&ctx->lock); return; } if (ctx->is_active) { raw_spin_unlock_irq(&ctx->lock); goto again; } func(event, NULL, ctx, data); raw_spin_unlock_irq(&ctx->lock); } /* * Similar to event_function_call() + event_function(), but hard assumes IRQs * are already disabled and we're on the right CPU. */ static void event_function_local(struct perf_event *event, event_f func, void *data) { struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct task_struct *task = READ_ONCE(ctx->task); struct perf_event_context *task_ctx = NULL; lockdep_assert_irqs_disabled(); if (task) { if (task == TASK_TOMBSTONE) return; task_ctx = ctx; } perf_ctx_lock(cpuctx, task_ctx); task = ctx->task; if (task == TASK_TOMBSTONE) goto unlock; if (task) { /* * We must be either inactive or active and the right task, * otherwise we're screwed, since we cannot IPI to somewhere * else. */ if (ctx->is_active) { if (WARN_ON_ONCE(task != current)) goto unlock; if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) goto unlock; } } else { WARN_ON_ONCE(&cpuctx->ctx != ctx); } func(event, cpuctx, ctx, data); unlock: perf_ctx_unlock(cpuctx, task_ctx); } #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ PERF_FLAG_FD_OUTPUT |\ PERF_FLAG_PID_CGROUP |\ PERF_FLAG_FD_CLOEXEC) /* * branch priv levels that need permission checks */ #define PERF_SAMPLE_BRANCH_PERM_PLM \ (PERF_SAMPLE_BRANCH_KERNEL |\ PERF_SAMPLE_BRANCH_HV) enum event_type_t { EVENT_FLEXIBLE = 0x1, EVENT_PINNED = 0x2, EVENT_TIME = 0x4, /* see ctx_resched() for details */ EVENT_CPU = 0x8, EVENT_CGROUP = 0x10, EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, }; /* * perf_sched_events : >0 events exist */ static void perf_sched_delayed(struct work_struct *work); DEFINE_STATIC_KEY_FALSE(perf_sched_events); static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); static DEFINE_MUTEX(perf_sched_mutex); static atomic_t perf_sched_count; static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); static atomic_t nr_mmap_events __read_mostly; static atomic_t nr_comm_events __read_mostly; static atomic_t nr_namespaces_events __read_mostly; static atomic_t nr_task_events __read_mostly; static atomic_t nr_freq_events __read_mostly; static atomic_t nr_switch_events __read_mostly; static atomic_t nr_ksymbol_events __read_mostly; static atomic_t nr_bpf_events __read_mostly; static atomic_t nr_cgroup_events __read_mostly; static atomic_t nr_text_poke_events __read_mostly; static atomic_t nr_build_id_events __read_mostly; static LIST_HEAD(pmus); static DEFINE_MUTEX(pmus_lock); static struct srcu_struct pmus_srcu; static cpumask_var_t perf_online_mask; static struct kmem_cache *perf_event_cache; /* * perf event paranoia level: * -1 - not paranoid at all * 0 - disallow raw tracepoint access for unpriv * 1 - disallow cpu events for unpriv * 2 - disallow kernel profiling for unpriv */ int sysctl_perf_event_paranoid __read_mostly = 2; /* Minimum for 512 kiB + 1 user control page */ int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ /* * max perf event sample rate */ #define DEFAULT_MAX_SAMPLE_RATE 100000 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) #define DEFAULT_CPU_TIME_MAX_PERCENT 25 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; static int perf_sample_allowed_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; static void update_perf_cpu_limits(void) { u64 tmp = perf_sample_period_ns; tmp *= sysctl_perf_cpu_time_max_percent; tmp = div_u64(tmp, 100); if (!tmp) tmp = 1; WRITE_ONCE(perf_sample_allowed_ns, tmp); } static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); int perf_event_max_sample_rate_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; int perf_cpu = sysctl_perf_cpu_time_max_percent; /* * If throttling is disabled don't allow the write: */ if (write && (perf_cpu == 100 || perf_cpu == 0)) return -EINVAL; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret || !write) return ret; max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; update_perf_cpu_limits(); return 0; } int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret || !write) return ret; if (sysctl_perf_cpu_time_max_percent == 100 || sysctl_perf_cpu_time_max_percent == 0) { printk(KERN_WARNING "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); WRITE_ONCE(perf_sample_allowed_ns, 0); } else { update_perf_cpu_limits(); } return 0; } /* * perf samples are done in some very critical code paths (NMIs). * If they take too much CPU time, the system can lock up and not * get any real work done. This will drop the sample rate when * we detect that events are taking too long. */ #define NR_ACCUMULATED_SAMPLES 128 static DEFINE_PER_CPU(u64, running_sample_length); static u64 __report_avg; static u64 __report_allowed; static void perf_duration_warn(struct irq_work *w) { printk_ratelimited(KERN_INFO "perf: interrupt took too long (%lld > %lld), lowering " "kernel.perf_event_max_sample_rate to %d\n", __report_avg, __report_allowed, sysctl_perf_event_sample_rate); } static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); void perf_sample_event_took(u64 sample_len_ns) { u64 max_len = READ_ONCE(perf_sample_allowed_ns); u64 running_len; u64 avg_len; u32 max; if (max_len == 0) return; /* Decay the counter by 1 average sample. */ running_len = __this_cpu_read(running_sample_length); running_len -= running_len/NR_ACCUMULATED_SAMPLES; running_len += sample_len_ns; __this_cpu_write(running_sample_length, running_len); /* * Note: this will be biased artifically low until we have * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us * from having to maintain a count. */ avg_len = running_len/NR_ACCUMULATED_SAMPLES; if (avg_len <= max_len) return; __report_avg = avg_len; __report_allowed = max_len; /* * Compute a throttle threshold 25% below the current duration. */ avg_len += avg_len / 4; max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; if (avg_len < max) max /= (u32)avg_len; else max = 1; WRITE_ONCE(perf_sample_allowed_ns, avg_len); WRITE_ONCE(max_samples_per_tick, max); sysctl_perf_event_sample_rate = max * HZ; perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; if (!irq_work_queue(&perf_duration_work)) { early_printk("perf: interrupt took too long (%lld > %lld), lowering " "kernel.perf_event_max_sample_rate to %d\n", __report_avg, __report_allowed, sysctl_perf_event_sample_rate); } } static atomic64_t perf_event_id; static void update_context_time(struct perf_event_context *ctx); static u64 perf_event_time(struct perf_event *event); void __weak perf_event_print_debug(void) { } static inline u64 perf_clock(void) { return local_clock(); } static inline u64 perf_event_clock(struct perf_event *event) { return event->clock(); } /* * State based event timekeeping... * * The basic idea is to use event->state to determine which (if any) time * fields to increment with the current delta. This means we only need to * update timestamps when we change state or when they are explicitly requested * (read). * * Event groups make things a little more complicated, but not terribly so. The * rules for a group are that if the group leader is OFF the entire group is * OFF, irrespecive of what the group member states are. This results in * __perf_effective_state(). * * A futher ramification is that when a group leader flips between OFF and * !OFF, we need to update all group member times. * * * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we * need to make sure the relevant context time is updated before we try and * update our timestamps. */ static __always_inline enum perf_event_state __perf_effective_state(struct perf_event *event) { struct perf_event *leader = event->group_leader; if (leader->state <= PERF_EVENT_STATE_OFF) return leader->state; return event->state; } static __always_inline void __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) { enum perf_event_state state = __perf_effective_state(event); u64 delta = now - event->tstamp; *enabled = event->total_time_enabled; if (state >= PERF_EVENT_STATE_INACTIVE) *enabled += delta; *running = event->total_time_running; if (state >= PERF_EVENT_STATE_ACTIVE) *running += delta; } static void perf_event_update_time(struct perf_event *event) { u64 now = perf_event_time(event); __perf_update_times(event, now, &event->total_time_enabled, &event->total_time_running); event->tstamp = now; } static void perf_event_update_sibling_time(struct perf_event *leader) { struct perf_event *sibling; for_each_sibling_event(sibling, leader) perf_event_update_time(sibling); } static void perf_event_set_state(struct perf_event *event, enum perf_event_state state) { if (event->state == state) return; perf_event_update_time(event); /* * If a group leader gets enabled/disabled all its siblings * are affected too. */ if ((event->state < 0) ^ (state < 0)) perf_event_update_sibling_time(event); WRITE_ONCE(event->state, state); } /* * UP store-release, load-acquire */ #define __store_release(ptr, val) \ do { \ barrier(); \ WRITE_ONCE(*(ptr), (val)); \ } while (0) #define __load_acquire(ptr) \ ({ \ __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ barrier(); \ ___p; \ }) static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) { struct perf_event_pmu_context *pmu_ctx; list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { if (cgroup && !pmu_ctx->nr_cgroups) continue; perf_pmu_disable(pmu_ctx->pmu); } } static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) { struct perf_event_pmu_context *pmu_ctx; list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { if (cgroup && !pmu_ctx->nr_cgroups) continue; perf_pmu_enable(pmu_ctx->pmu); } } static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); #ifdef CONFIG_CGROUP_PERF static inline bool perf_cgroup_match(struct perf_event *event) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); /* @event doesn't care about cgroup */ if (!event->cgrp) return true; /* wants specific cgroup scope but @cpuctx isn't associated with any */ if (!cpuctx->cgrp) return false; /* * Cgroup scoping is recursive. An event enabled for a cgroup is * also enabled for all its descendant cgroups. If @cpuctx's * cgroup is a descendant of @event's (the test covers identity * case), it's a match. */ return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, event->cgrp->css.cgroup); } static inline void perf_detach_cgroup(struct perf_event *event) { css_put(&event->cgrp->css); event->cgrp = NULL; } static inline int is_cgroup_event(struct perf_event *event) { return event->cgrp != NULL; } static inline u64 perf_cgroup_event_time(struct perf_event *event) { struct perf_cgroup_info *t; t = per_cpu_ptr(event->cgrp->info, event->cpu); return t->time; } static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) { struct perf_cgroup_info *t; t = per_cpu_ptr(event->cgrp->info, event->cpu); if (!__load_acquire(&t->active)) return t->time; now += READ_ONCE(t->timeoffset); return now; } static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) { if (adv) info->time += now - info->timestamp; info->timestamp = now; /* * see update_context_time() */ WRITE_ONCE(info->timeoffset, info->time - info->timestamp); } static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) { struct perf_cgroup *cgrp = cpuctx->cgrp; struct cgroup_subsys_state *css; struct perf_cgroup_info *info; if (cgrp) { u64 now = perf_clock(); for (css = &cgrp->css; css; css = css->parent) { cgrp = container_of(css, struct perf_cgroup, css); info = this_cpu_ptr(cgrp->info); __update_cgrp_time(info, now, true); if (final) __store_release(&info->active, 0); } } } static inline void update_cgrp_time_from_event(struct perf_event *event) { struct perf_cgroup_info *info; /* * ensure we access cgroup data only when needed and * when we know the cgroup is pinned (css_get) */ if (!is_cgroup_event(event)) return; info = this_cpu_ptr(event->cgrp->info); /* * Do not update time when cgroup is not active */ if (info->active) __update_cgrp_time(info, perf_clock(), true); } static inline void perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) { struct perf_event_context *ctx = &cpuctx->ctx; struct perf_cgroup *cgrp = cpuctx->cgrp; struct perf_cgroup_info *info; struct cgroup_subsys_state *css; /* * ctx->lock held by caller * ensure we do not access cgroup data * unless we have the cgroup pinned (css_get) */ if (!cgrp) return; WARN_ON_ONCE(!ctx->nr_cgroups); for (css = &cgrp->css; css; css = css->parent) { cgrp = container_of(css, struct perf_cgroup, css); info = this_cpu_ptr(cgrp->info); __update_cgrp_time(info, ctx->timestamp, false); __store_release(&info->active, 1); } } /* * reschedule events based on the cgroup constraint of task. */ static void perf_cgroup_switch(struct task_struct *task) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_cgroup *cgrp; /* * cpuctx->cgrp is set when the first cgroup event enabled, * and is cleared when the last cgroup event disabled. */ if (READ_ONCE(cpuctx->cgrp) == NULL) return; WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); cgrp = perf_cgroup_from_task(task, NULL); if (READ_ONCE(cpuctx->cgrp) == cgrp) return; perf_ctx_lock(cpuctx, cpuctx->task_ctx); perf_ctx_disable(&cpuctx->ctx, true); ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); /* * must not be done before ctxswout due * to update_cgrp_time_from_cpuctx() in * ctx_sched_out() */ cpuctx->cgrp = cgrp; /* * set cgrp before ctxsw in to allow * perf_cgroup_set_timestamp() in ctx_sched_in() * to not have to pass task around */ ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); perf_ctx_enable(&cpuctx->ctx, true); perf_ctx_unlock(cpuctx, cpuctx->task_ctx); } static int perf_cgroup_ensure_storage(struct perf_event *event, struct cgroup_subsys_state *css) { struct perf_cpu_context *cpuctx; struct perf_event **storage; int cpu, heap_size, ret = 0; /* * Allow storage to have sufficent space for an iterator for each * possibly nested cgroup plus an iterator for events with no cgroup. */ for (heap_size = 1; css; css = css->parent) heap_size++; for_each_possible_cpu(cpu) { cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); if (heap_size <= cpuctx->heap_size) continue; storage = kmalloc_node(heap_size * sizeof(struct perf_event *), GFP_KERNEL, cpu_to_node(cpu)); if (!storage) { ret = -ENOMEM; break; } raw_spin_lock_irq(&cpuctx->ctx.lock); if (cpuctx->heap_size < heap_size) { swap(cpuctx->heap, storage); if (storage == cpuctx->heap_default) storage = NULL; cpuctx->heap_size = heap_size; } raw_spin_unlock_irq(&cpuctx->ctx.lock); kfree(storage); } return ret; } static inline int perf_cgroup_connect(int fd, struct perf_event *event, struct perf_event_attr *attr, struct perf_event *group_leader) { struct perf_cgroup *cgrp; struct cgroup_subsys_state *css; struct fd f = fdget(fd); int ret = 0; if (!f.file) return -EBADF; css = css_tryget_online_from_dir(f.file->f_path.dentry, &perf_event_cgrp_subsys); if (IS_ERR(css)) { ret = PTR_ERR(css); goto out; } ret = perf_cgroup_ensure_storage(event, css); if (ret) goto out; cgrp = container_of(css, struct perf_cgroup, css); event->cgrp = cgrp; /* * all events in a group must monitor * the same cgroup because a task belongs * to only one perf cgroup at a time */ if (group_leader && group_leader->cgrp != cgrp) { perf_detach_cgroup(event); ret = -EINVAL; } out: fdput(f); return ret; } static inline void perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) { struct perf_cpu_context *cpuctx; if (!is_cgroup_event(event)) return; event->pmu_ctx->nr_cgroups++; /* * Because cgroup events are always per-cpu events, * @ctx == &cpuctx->ctx. */ cpuctx = container_of(ctx, struct perf_cpu_context, ctx); if (ctx->nr_cgroups++) return; cpuctx->cgrp = perf_cgroup_from_task(current, ctx); } static inline void perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) { struct perf_cpu_context *cpuctx; if (!is_cgroup_event(event)) return; event->pmu_ctx->nr_cgroups--; /* * Because cgroup events are always per-cpu events, * @ctx == &cpuctx->ctx. */ cpuctx = container_of(ctx, struct perf_cpu_context, ctx); if (--ctx->nr_cgroups) return; cpuctx->cgrp = NULL; } #else /* !CONFIG_CGROUP_PERF */ static inline bool perf_cgroup_match(struct perf_event *event) { return true; } static inline void perf_detach_cgroup(struct perf_event *event) {} static inline int is_cgroup_event(struct perf_event *event) { return 0; } static inline void update_cgrp_time_from_event(struct perf_event *event) { } static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) { } static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, struct perf_event_attr *attr, struct perf_event *group_leader) { return -EINVAL; } static inline void perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) { } static inline u64 perf_cgroup_event_time(struct perf_event *event) { return 0; } static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) { return 0; } static inline void perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) { } static inline void perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) { } static void perf_cgroup_switch(struct task_struct *task) { } #endif /* * set default to be dependent on timer tick just * like original code */ #define PERF_CPU_HRTIMER (1000 / HZ) /* * function must be called with interrupts disabled */ static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) { struct perf_cpu_pmu_context *cpc; bool rotations; lockdep_assert_irqs_disabled(); cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); rotations = perf_rotate_context(cpc); raw_spin_lock(&cpc->hrtimer_lock); if (rotations) hrtimer_forward_now(hr, cpc->hrtimer_interval); else cpc->hrtimer_active = 0; raw_spin_unlock(&cpc->hrtimer_lock); return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; } static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) { struct hrtimer *timer = &cpc->hrtimer; struct pmu *pmu = cpc->epc.pmu; u64 interval; /* * check default is sane, if not set then force to * default interval (1/tick) */ interval = pmu->hrtimer_interval_ms; if (interval < 1) interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); raw_spin_lock_init(&cpc->hrtimer_lock); hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); timer->function = perf_mux_hrtimer_handler; } static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) { struct hrtimer *timer = &cpc->hrtimer; unsigned long flags; raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); if (!cpc->hrtimer_active) { cpc->hrtimer_active = 1; hrtimer_forward_now(timer, cpc->hrtimer_interval); hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); } raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); return 0; } static int perf_mux_hrtimer_restart_ipi(void *arg) { return perf_mux_hrtimer_restart(arg); } void perf_pmu_disable(struct pmu *pmu) { int *count = this_cpu_ptr(pmu->pmu_disable_count); if (!(*count)++) pmu->pmu_disable(pmu); } void perf_pmu_enable(struct pmu *pmu) { int *count = this_cpu_ptr(pmu->pmu_disable_count); if (!--(*count)) pmu->pmu_enable(pmu); } static void perf_assert_pmu_disabled(struct pmu *pmu) { WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); } static void get_ctx(struct perf_event_context *ctx) { refcount_inc(&ctx->refcount); } static void *alloc_task_ctx_data(struct pmu *pmu) { if (pmu->task_ctx_cache) return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); return NULL; } static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) { if (pmu->task_ctx_cache && task_ctx_data) kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); } static void free_ctx(struct rcu_head *head) { struct perf_event_context *ctx; ctx = container_of(head, struct perf_event_context, rcu_head); kfree(ctx); } static void put_ctx(struct perf_event_context *ctx) { if (refcount_dec_and_test(&ctx->refcount)) { if (ctx->parent_ctx) put_ctx(ctx->parent_ctx); if (ctx->task && ctx->task != TASK_TOMBSTONE) put_task_struct(ctx->task); call_rcu(&ctx->rcu_head, free_ctx); } } /* * Because of perf_event::ctx migration in sys_perf_event_open::move_group and * perf_pmu_migrate_context() we need some magic. * * Those places that change perf_event::ctx will hold both * perf_event_ctx::mutex of the 'old' and 'new' ctx value. * * Lock ordering is by mutex address. There are two other sites where * perf_event_context::mutex nests and those are: * * - perf_event_exit_task_context() [ child , 0 ] * perf_event_exit_event() * put_event() [ parent, 1 ] * * - perf_event_init_context() [ parent, 0 ] * inherit_task_group() * inherit_group() * inherit_event() * perf_event_alloc() * perf_init_event() * perf_try_init_event() [ child , 1 ] * * While it appears there is an obvious deadlock here -- the parent and child * nesting levels are inverted between the two. This is in fact safe because * life-time rules separate them. That is an exiting task cannot fork, and a * spawning task cannot (yet) exit. * * But remember that these are parent<->child context relations, and * migration does not affect children, therefore these two orderings should not * interact. * * The change in perf_event::ctx does not affect children (as claimed above) * because the sys_perf_event_open() case will install a new event and break * the ctx parent<->child relation, and perf_pmu_migrate_context() is only * concerned with cpuctx and that doesn't have children. * * The places that change perf_event::ctx will issue: * * perf_remove_from_context(); * synchronize_rcu(); * perf_install_in_context(); * * to affect the change. The remove_from_context() + synchronize_rcu() should * quiesce the event, after which we can install it in the new location. This * means that only external vectors (perf_fops, prctl) can perturb the event * while in transit. Therefore all such accessors should also acquire * perf_event_context::mutex to serialize against this. * * However; because event->ctx can change while we're waiting to acquire * ctx->mutex we must be careful and use the below perf_event_ctx_lock() * function. * * Lock order: * exec_update_lock * task_struct::perf_event_mutex * perf_event_context::mutex * perf_event::child_mutex; * perf_event_context::lock * perf_event::mmap_mutex * mmap_lock * perf_addr_filters_head::lock * * cpu_hotplug_lock * pmus_lock * cpuctx->mutex / perf_event_context::mutex */ static struct perf_event_context * perf_event_ctx_lock_nested(struct perf_event *event, int nesting) { struct perf_event_context *ctx; again: rcu_read_lock(); ctx = READ_ONCE(event->ctx); if (!refcount_inc_not_zero(&ctx->refcount)) { rcu_read_unlock(); goto again; } rcu_read_unlock(); mutex_lock_nested(&ctx->mutex, nesting); if (event->ctx != ctx) { mutex_unlock(&ctx->mutex); put_ctx(ctx); goto again; } return ctx; } static inline struct perf_event_context * perf_event_ctx_lock(struct perf_event *event) { return perf_event_ctx_lock_nested(event, 0); } static void perf_event_ctx_unlock(struct perf_event *event, struct perf_event_context *ctx) { mutex_unlock(&ctx->mutex); put_ctx(ctx); } /* * This must be done under the ctx->lock, such as to serialize against * context_equiv(), therefore we cannot call put_ctx() since that might end up * calling scheduler related locks and ctx->lock nests inside those. */ static __must_check struct perf_event_context * unclone_ctx(struct perf_event_context *ctx) { struct perf_event_context *parent_ctx = ctx->parent_ctx; lockdep_assert_held(&ctx->lock); if (parent_ctx) ctx->parent_ctx = NULL; ctx->generation++; return parent_ctx; } static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, enum pid_type type) { u32 nr; /* * only top level events have the pid namespace they were created in */ if (event->parent) event = event->parent; nr = __task_pid_nr_ns(p, type, event->ns); /* avoid -1 if it is idle thread or runs in another ns */ if (!nr && !pid_alive(p)) nr = -1; return nr; } static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) { return perf_event_pid_type(event, p, PIDTYPE_TGID); } static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) { return perf_event_pid_type(event, p, PIDTYPE_PID); } /* * If we inherit events we want to return the parent event id * to userspace. */ static u64 primary_event_id(struct perf_event *event) { u64 id = event->id; if (event->parent) id = event->parent->id; return id; } /* * Get the perf_event_context for a task and lock it. * * This has to cope with the fact that until it is locked, * the context could get moved to another task. */ static struct perf_event_context * perf_lock_task_context(struct task_struct *task, unsigned long *flags) { struct perf_event_context *ctx; retry: /* * One of the few rules of preemptible RCU is that one cannot do * rcu_read_unlock() while holding a scheduler (or nested) lock when * part of the read side critical section was irqs-enabled -- see * rcu_read_unlock_special(). * * Since ctx->lock nests under rq->lock we must ensure the entire read * side critical section has interrupts disabled. */ local_irq_save(*flags); rcu_read_lock(); ctx = rcu_dereference(task->perf_event_ctxp); if (ctx) { /* * If this context is a clone of another, it might * get swapped for another underneath us by * perf_event_task_sched_out, though the * rcu_read_lock() protects us from any context * getting freed. Lock the context and check if it * got swapped before we could get the lock, and retry * if so. If we locked the right context, then it * can't get swapped on us any more. */ raw_spin_lock(&ctx->lock); if (ctx != rcu_dereference(task->perf_event_ctxp)) { raw_spin_unlock(&ctx->lock); rcu_read_unlock(); local_irq_restore(*flags); goto retry; } if (ctx->task == TASK_TOMBSTONE || !refcount_inc_not_zero(&ctx->refcount)) { raw_spin_unlock(&ctx->lock); ctx = NULL; } else { WARN_ON_ONCE(ctx->task != task); } } rcu_read_unlock(); if (!ctx) local_irq_restore(*flags); return ctx; } /* * Get the context for a task and increment its pin_count so it * can't get swapped to another task. This also increments its * reference count so that the context can't get freed. */ static struct perf_event_context * perf_pin_task_context(struct task_struct *task) { struct perf_event_context *ctx; unsigned long flags; ctx = perf_lock_task_context(task, &flags); if (ctx) { ++ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); } return ctx; } static void perf_unpin_context(struct perf_event_context *ctx) { unsigned long flags; raw_spin_lock_irqsave(&ctx->lock, flags); --ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); } /* * Update the record of the current time in a context. */ static void __update_context_time(struct perf_event_context *ctx, bool adv) { u64 now = perf_clock(); lockdep_assert_held(&ctx->lock); if (adv) ctx->time += now - ctx->timestamp; ctx->timestamp = now; /* * The above: time' = time + (now - timestamp), can be re-arranged * into: time` = now + (time - timestamp), which gives a single value * offset to compute future time without locks on. * * See perf_event_time_now(), which can be used from NMI context where * it's (obviously) not possible to acquire ctx->lock in order to read * both the above values in a consistent manner. */ WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); } static void update_context_time(struct perf_event_context *ctx) { __update_context_time(ctx, true); } static u64 perf_event_time(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; if (unlikely(!ctx)) return 0; if (is_cgroup_event(event)) return perf_cgroup_event_time(event); return ctx->time; } static u64 perf_event_time_now(struct perf_event *event, u64 now) { struct perf_event_context *ctx = event->ctx; if (unlikely(!ctx)) return 0; if (is_cgroup_event(event)) return perf_cgroup_event_time_now(event, now); if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) return ctx->time; now += READ_ONCE(ctx->timeoffset); return now; } static enum event_type_t get_event_type(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; enum event_type_t event_type; lockdep_assert_held(&ctx->lock); /* * It's 'group type', really, because if our group leader is * pinned, so are we. */ if (event->group_leader != event) event = event->group_leader; event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; if (!ctx->task) event_type |= EVENT_CPU; return event_type; } /* * Helper function to initialize event group nodes. */ static void init_event_group(struct perf_event *event) { RB_CLEAR_NODE(&event->group_node); event->group_index = 0; } /* * Extract pinned or flexible groups from the context * based on event attrs bits. */ static struct perf_event_groups * get_event_groups(struct perf_event *event, struct perf_event_context *ctx) { if (event->attr.pinned) return &ctx->pinned_groups; else return &ctx->flexible_groups; } /* * Helper function to initializes perf_event_group trees. */ static void perf_event_groups_init(struct perf_event_groups *groups) { groups->tree = RB_ROOT; groups->index = 0; } static inline struct cgroup *event_cgroup(const struct perf_event *event) { struct cgroup *cgroup = NULL; #ifdef CONFIG_CGROUP_PERF if (event->cgrp) cgroup = event->cgrp->css.cgroup; #endif return cgroup; } /* * Compare function for event groups; * * Implements complex key that first sorts by CPU and then by virtual index * which provides ordering when rotating groups for the same CPU. */ static __always_inline int perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, const struct cgroup *left_cgroup, const u64 left_group_index, const struct perf_event *right) { if (left_cpu < right->cpu) return -1; if (left_cpu > right->cpu) return 1; if (left_pmu) { if (left_pmu < right->pmu_ctx->pmu) return -1; if (left_pmu > right->pmu_ctx->pmu) return 1; } #ifdef CONFIG_CGROUP_PERF { const struct cgroup *right_cgroup = event_cgroup(right); if (left_cgroup != right_cgroup) { if (!left_cgroup) { /* * Left has no cgroup but right does, no * cgroups come first. */ return -1; } if (!right_cgroup) { /* * Right has no cgroup but left does, no * cgroups come first. */ return 1; } /* Two dissimilar cgroups, order by id. */ if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) return -1; return 1; } } #endif if (left_group_index < right->group_index) return -1; if (left_group_index > right->group_index) return 1; return 0; } #define __node_2_pe(node) \ rb_entry((node), struct perf_event, group_node) static inline bool __group_less(struct rb_node *a, const struct rb_node *b) { struct perf_event *e = __node_2_pe(a); return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), e->group_index, __node_2_pe(b)) < 0; } struct __group_key { int cpu; struct pmu *pmu; struct cgroup *cgroup; }; static inline int __group_cmp(const void *key, const struct rb_node *node) { const struct __group_key *a = key; const struct perf_event *b = __node_2_pe(node); /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); } static inline int __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) { const struct __group_key *a = key; const struct perf_event *b = __node_2_pe(node); /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), b->group_index, b); } /* * Insert @event into @groups' tree; using * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} * as key. This places it last inside the {cpu,pmu,cgroup} subtree. */ static void perf_event_groups_insert(struct perf_event_groups *groups, struct perf_event *event) { event->group_index = ++groups->index; rb_add(&event->group_node, &groups->tree, __group_less); } /* * Helper function to insert event into the pinned or flexible groups. */ static void add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event_groups *groups; groups = get_event_groups(event, ctx); perf_event_groups_insert(groups, event); } /* * Delete a group from a tree. */ static void perf_event_groups_delete(struct perf_event_groups *groups, struct perf_event *event) { WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || RB_EMPTY_ROOT(&groups->tree)); rb_erase(&event->group_node, &groups->tree); init_event_group(event); } /* * Helper function to delete event from its groups. */ static void del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event_groups *groups; groups = get_event_groups(event, ctx); perf_event_groups_delete(groups, event); } /* * Get the leftmost event in the {cpu,pmu,cgroup} subtree. */ static struct perf_event * perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct pmu *pmu, struct cgroup *cgrp) { struct __group_key key = { .cpu = cpu, .pmu = pmu, .cgroup = cgrp, }; struct rb_node *node; node = rb_find_first(&key, &groups->tree, __group_cmp); if (node) return __node_2_pe(node); return NULL; } static struct perf_event * perf_event_groups_next(struct perf_event *event, struct pmu *pmu) { struct __group_key key = { .cpu = event->cpu, .pmu = pmu, .cgroup = event_cgroup(event), }; struct rb_node *next; next = rb_next_match(&key, &event->group_node, __group_cmp); if (next) return __node_2_pe(next); return NULL; } #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ event; event = perf_event_groups_next(event, pmu)) /* * Iterate through the whole groups tree. */ #define perf_event_groups_for_each(event, groups) \ for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ typeof(*event), group_node); event; \ event = rb_entry_safe(rb_next(&event->group_node), \ typeof(*event), group_node)) /* * Add an event from the lists for its context. * Must be called with ctx->mutex and ctx->lock held. */ static void list_add_event(struct perf_event *event, struct perf_event_context *ctx) { lockdep_assert_held(&ctx->lock); WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); event->attach_state |= PERF_ATTACH_CONTEXT; event->tstamp = perf_event_time(event); /* * If we're a stand alone event or group leader, we go to the context * list, group events are kept attached to the group so that * perf_group_detach can, at all times, locate all siblings. */ if (event->group_leader == event) { event->group_caps = event->event_caps; add_event_to_groups(event, ctx); } list_add_rcu(&event->event_entry, &ctx->event_list); ctx->nr_events++; if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) ctx->nr_user++; if (event->attr.inherit_stat) ctx->nr_stat++; if (event->state > PERF_EVENT_STATE_OFF) perf_cgroup_event_enable(event, ctx); ctx->generation++; event->pmu_ctx->nr_events++; } /* * Initialize event state based on the perf_event_attr::disabled. */ static inline void perf_event__state_init(struct perf_event *event) { event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : PERF_EVENT_STATE_INACTIVE; } static int __perf_event_read_size(u64 read_format, int nr_siblings) { int entry = sizeof(u64); /* value */ int size = 0; int nr = 1; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) size += sizeof(u64); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) size += sizeof(u64); if (read_format & PERF_FORMAT_ID) entry += sizeof(u64); if (read_format & PERF_FORMAT_LOST) entry += sizeof(u64); if (read_format & PERF_FORMAT_GROUP) { nr += nr_siblings; size += sizeof(u64); } /* * Since perf_event_validate_size() limits this to 16k and inhibits * adding more siblings, this will never overflow. */ return size + nr * entry; } static void __perf_event_header_size(struct perf_event *event, u64 sample_type) { struct perf_sample_data *data; u16 size = 0; if (sample_type & PERF_SAMPLE_IP) size += sizeof(data->ip); if (sample_type & PERF_SAMPLE_ADDR) size += sizeof(data->addr); if (sample_type & PERF_SAMPLE_PERIOD) size += sizeof(data->period); if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) size += sizeof(data->weight.full); if (sample_type & PERF_SAMPLE_READ) size += event->read_size; if (sample_type & PERF_SAMPLE_DATA_SRC) size += sizeof(data->data_src.val); if (sample_type & PERF_SAMPLE_TRANSACTION) size += sizeof(data->txn); if (sample_type & PERF_SAMPLE_PHYS_ADDR) size += sizeof(data->phys_addr); if (sample_type & PERF_SAMPLE_CGROUP) size += sizeof(data->cgroup); if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) size += sizeof(data->data_page_size); if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) size += sizeof(data->code_page_size); event->header_size = size; } /* * Called at perf_event creation and when events are attached/detached from a * group. */ static void perf_event__header_size(struct perf_event *event) { event->read_size = __perf_event_read_size(event->attr.read_format, event->group_leader->nr_siblings); __perf_event_header_size(event, event->attr.sample_type); } static void perf_event__id_header_size(struct perf_event *event) { struct perf_sample_data *data; u64 sample_type = event->attr.sample_type; u16 size = 0; if (sample_type & PERF_SAMPLE_TID) size += sizeof(data->tid_entry); if (sample_type & PERF_SAMPLE_TIME) size += sizeof(data->time); if (sample_type & PERF_SAMPLE_IDENTIFIER) size += sizeof(data->id); if (sample_type & PERF_SAMPLE_ID) size += sizeof(data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) size += sizeof(data->stream_id); if (sample_type & PERF_SAMPLE_CPU) size += sizeof(data->cpu_entry); event->id_header_size = size; } /* * Check that adding an event to the group does not result in anybody * overflowing the 64k event limit imposed by the output buffer. * * Specifically, check that the read_size for the event does not exceed 16k, * read_size being the one term that grows with groups size. Since read_size * depends on per-event read_format, also (re)check the existing events. * * This leaves 48k for the constant size fields and things like callchains, * branch stacks and register sets. */ static bool perf_event_validate_size(struct perf_event *event) { struct perf_event *sibling, *group_leader = event->group_leader; if (__perf_event_read_size(event->attr.read_format, group_leader->nr_siblings + 1) > 16*1024) return false; if (__perf_event_read_size(group_leader->attr.read_format, group_leader->nr_siblings + 1) > 16*1024) return false; /* * When creating a new group leader, group_leader->ctx is initialized * after the size has been validated, but we cannot safely use * for_each_sibling_event() until group_leader->ctx is set. A new group * leader cannot have any siblings yet, so we can safely skip checking * the non-existent siblings. */ if (event == group_leader) return true; for_each_sibling_event(sibling, group_leader) { if (__perf_event_read_size(sibling->attr.read_format, group_leader->nr_siblings + 1) > 16*1024) return false; } return true; } static void perf_group_attach(struct perf_event *event) { struct perf_event *group_leader = event->group_leader, *pos; lockdep_assert_held(&event->ctx->lock); /* * We can have double attach due to group movement (move_group) in * perf_event_open(). */ if (event->attach_state & PERF_ATTACH_GROUP) return; event->attach_state |= PERF_ATTACH_GROUP; if (group_leader == event) return; WARN_ON_ONCE(group_leader->ctx != event->ctx); group_leader->group_caps &= event->event_caps; list_add_tail(&event->sibling_list, &group_leader->sibling_list); group_leader->nr_siblings++; group_leader->group_generation++; perf_event__header_size(group_leader); for_each_sibling_event(pos, group_leader) perf_event__header_size(pos); } /* * Remove an event from the lists for its context. * Must be called with ctx->mutex and ctx->lock held. */ static void list_del_event(struct perf_event *event, struct perf_event_context *ctx) { WARN_ON_ONCE(event->ctx != ctx); lockdep_assert_held(&ctx->lock); /* * We can have double detach due to exit/hot-unplug + close. */ if (!(event->attach_state & PERF_ATTACH_CONTEXT)) return; event->attach_state &= ~PERF_ATTACH_CONTEXT; ctx->nr_events--; if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) ctx->nr_user--; if (event->attr.inherit_stat) ctx->nr_stat--; list_del_rcu(&event->event_entry); if (event->group_leader == event) del_event_from_groups(event, ctx); /* * If event was in error state, then keep it * that way, otherwise bogus counts will be * returned on read(). The only way to get out * of error state is by explicit re-enabling * of the event */ if (event->state > PERF_EVENT_STATE_OFF) { perf_cgroup_event_disable(event, ctx); perf_event_set_state(event, PERF_EVENT_STATE_OFF); } ctx->generation++; event->pmu_ctx->nr_events--; } static int perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) { if (!has_aux(aux_event)) return 0; if (!event->pmu->aux_output_match) return 0; return event->pmu->aux_output_match(aux_event); } static void put_event(struct perf_event *event); static void event_sched_out(struct perf_event *event, struct perf_event_context *ctx); static void perf_put_aux_event(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; struct perf_event *iter; /* * If event uses aux_event tear down the link */ if (event->aux_event) { iter = event->aux_event; event->aux_event = NULL; put_event(iter); return; } /* * If the event is an aux_event, tear down all links to * it from other events. */ for_each_sibling_event(iter, event->group_leader) { if (iter->aux_event != event) continue; iter->aux_event = NULL; put_event(event); /* * If it's ACTIVE, schedule it out and put it into ERROR * state so that we don't try to schedule it again. Note * that perf_event_enable() will clear the ERROR status. */ event_sched_out(iter, ctx); perf_event_set_state(event, PERF_EVENT_STATE_ERROR); } } static bool perf_need_aux_event(struct perf_event *event) { return !!event->attr.aux_output || !!event->attr.aux_sample_size; } static int perf_get_aux_event(struct perf_event *event, struct perf_event *group_leader) { /* * Our group leader must be an aux event if we want to be * an aux_output. This way, the aux event will precede its * aux_output events in the group, and therefore will always * schedule first. */ if (!group_leader) return 0; /* * aux_output and aux_sample_size are mutually exclusive. */ if (event->attr.aux_output && event->attr.aux_sample_size) return 0; if (event->attr.aux_output && !perf_aux_output_match(event, group_leader)) return 0; if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) return 0; if (!atomic_long_inc_not_zero(&group_leader->refcount)) return 0; /* * Link aux_outputs to their aux event; this is undone in * perf_group_detach() by perf_put_aux_event(). When the * group in torn down, the aux_output events loose their * link to the aux_event and can't schedule any more. */ event->aux_event = group_leader; return 1; } static inline struct list_head *get_event_list(struct perf_event *event) { return event->attr.pinned ? &event->pmu_ctx->pinned_active : &event->pmu_ctx->flexible_active; } /* * Events that have PERF_EV_CAP_SIBLING require being part of a group and * cannot exist on their own, schedule them out and move them into the ERROR * state. Also see _perf_event_enable(), it will not be able to recover * this ERROR state. */ static inline void perf_remove_sibling_event(struct perf_event *event) { event_sched_out(event, event->ctx); perf_event_set_state(event, PERF_EVENT_STATE_ERROR); } static void perf_group_detach(struct perf_event *event) { struct perf_event *leader = event->group_leader; struct perf_event *sibling, *tmp; struct perf_event_context *ctx = event->ctx; lockdep_assert_held(&ctx->lock); /* * We can have double detach due to exit/hot-unplug + close. */ if (!(event->attach_state & PERF_ATTACH_GROUP)) return; event->attach_state &= ~PERF_ATTACH_GROUP; perf_put_aux_event(event); /* * If this is a sibling, remove it from its group. */ if (leader != event) { list_del_init(&event->sibling_list); event->group_leader->nr_siblings--; event->group_leader->group_generation++; goto out; } /* * If this was a group event with sibling events then * upgrade the siblings to singleton events by adding them * to whatever list we are on. */ list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { if (sibling->event_caps & PERF_EV_CAP_SIBLING) perf_remove_sibling_event(sibling); sibling->group_leader = sibling; list_del_init(&sibling->sibling_list); /* Inherit group flags from the previous leader */ sibling->group_caps = event->group_caps; if (sibling->attach_state & PERF_ATTACH_CONTEXT) { add_event_to_groups(sibling, event->ctx); if (sibling->state == PERF_EVENT_STATE_ACTIVE) list_add_tail(&sibling->active_list, get_event_list(sibling)); } WARN_ON_ONCE(sibling->ctx != event->ctx); } out: for_each_sibling_event(tmp, leader) perf_event__header_size(tmp); perf_event__header_size(leader); } static void sync_child_event(struct perf_event *child_event); static void perf_child_detach(struct perf_event *event) { struct perf_event *parent_event = event->parent; if (!(event->attach_state & PERF_ATTACH_CHILD)) return; event->attach_state &= ~PERF_ATTACH_CHILD; if (WARN_ON_ONCE(!parent_event)) return; lockdep_assert_held(&parent_event->child_mutex); sync_child_event(event); list_del_init(&event->child_list); } static bool is_orphaned_event(struct perf_event *event) { return event->state == PERF_EVENT_STATE_DEAD; } static inline int event_filter_match(struct perf_event *event) { return (event->cpu == -1 || event->cpu == smp_processor_id()) && perf_cgroup_match(event); } static void event_sched_out(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event_pmu_context *epc = event->pmu_ctx; struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; // XXX cpc serialization, probably per-cpu IRQ disabled WARN_ON_ONCE(event->ctx != ctx); lockdep_assert_held(&ctx->lock); if (event->state != PERF_EVENT_STATE_ACTIVE) return; /* * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but * we can schedule events _OUT_ individually through things like * __perf_remove_from_context(). */ list_del_init(&event->active_list); perf_pmu_disable(event->pmu); event->pmu->del(event, 0); event->oncpu = -1; if (event->pending_disable) { event->pending_disable = 0; perf_cgroup_event_disable(event, ctx); state = PERF_EVENT_STATE_OFF; } if (event->pending_sigtrap) { bool dec = true; event->pending_sigtrap = 0; if (state != PERF_EVENT_STATE_OFF && !event->pending_work) { event->pending_work = 1; dec = false; WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); task_work_add(current, &event->pending_task, TWA_RESUME); } if (dec) local_dec(&event->ctx->nr_pending); } perf_event_set_state(event, state); if (!is_software_event(event)) cpc->active_oncpu--; if (event->attr.freq && event->attr.sample_freq) ctx->nr_freq--; if (event->attr.exclusive || !cpc->active_oncpu) cpc->exclusive = 0; perf_pmu_enable(event->pmu); } static void group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) { struct perf_event *event; if (group_event->state != PERF_EVENT_STATE_ACTIVE) return; perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); event_sched_out(group_event, ctx); /* * Schedule out siblings (if any): */ for_each_sibling_event(event, group_event) event_sched_out(event, ctx); } #define DETACH_GROUP 0x01UL #define DETACH_CHILD 0x02UL #define DETACH_DEAD 0x04UL /* * Cross CPU call to remove a performance event * * We disable the event on the hardware level first. After that we * remove it from the context list. */ static void __perf_remove_from_context(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; unsigned long flags = (unsigned long)info; if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_cpuctx(cpuctx, false); } /* * Ensure event_sched_out() switches to OFF, at the very least * this avoids raising perf_pending_task() at this time. */ if (flags & DETACH_DEAD) event->pending_disable = 1; event_sched_out(event, ctx); if (flags & DETACH_GROUP) perf_group_detach(event); if (flags & DETACH_CHILD) perf_child_detach(event); list_del_event(event, ctx); if (flags & DETACH_DEAD) event->state = PERF_EVENT_STATE_DEAD; if (!pmu_ctx->nr_events) { pmu_ctx->rotate_necessary = 0; if (ctx->task && ctx->is_active) { struct perf_cpu_pmu_context *cpc; cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); cpc->task_epc = NULL; } } if (!ctx->nr_events && ctx->is_active) { if (ctx == &cpuctx->ctx) update_cgrp_time_from_cpuctx(cpuctx, true); ctx->is_active = 0; if (ctx->task) { WARN_ON_ONCE(cpuctx->task_ctx != ctx); cpuctx->task_ctx = NULL; } } } /* * Remove the event from a task's (or a CPU's) list of events. * * If event->ctx is a cloned context, callers must make sure that * every task struct that event->ctx->task could possibly point to * remains valid. This is OK when called from perf_release since * that only calls us on the top-level context, which can't be a clone. * When called from perf_event_exit_task, it's OK because the * context has been detached from its task. */ static void perf_remove_from_context(struct perf_event *event, unsigned long flags) { struct perf_event_context *ctx = event->ctx; lockdep_assert_held(&ctx->mutex); /* * Because of perf_event_exit_task(), perf_remove_from_context() ought * to work in the face of TASK_TOMBSTONE, unlike every other * event_function_call() user. */ raw_spin_lock_irq(&ctx->lock); if (!ctx->is_active) { __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), ctx, (void *)flags); raw_spin_unlock_irq(&ctx->lock); return; } raw_spin_unlock_irq(&ctx->lock); event_function_call(event, __perf_remove_from_context, (void *)flags); } /* * Cross CPU call to disable a performance event */ static void __perf_event_disable(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { if (event->state < PERF_EVENT_STATE_INACTIVE) return; if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_event(event); } perf_pmu_disable(event->pmu_ctx->pmu); if (event == event->group_leader) group_sched_out(event, ctx); else event_sched_out(event, ctx); perf_event_set_state(event, PERF_EVENT_STATE_OFF); perf_cgroup_event_disable(event, ctx); perf_pmu_enable(event->pmu_ctx->pmu); } /* * Disable an event. * * If event->ctx is a cloned context, callers must make sure that * every task struct that event->ctx->task could possibly point to * remains valid. This condition is satisfied when called through * perf_event_for_each_child or perf_event_for_each because they * hold the top-level event's child_mutex, so any descendant that * goes to exit will block in perf_event_exit_event(). * * When called from perf_pending_irq it's OK because event->ctx * is the current context on this CPU and preemption is disabled, * hence we can't get into perf_event_task_sched_out for this context. */ static void _perf_event_disable(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; raw_spin_lock_irq(&ctx->lock); if (event->state <= PERF_EVENT_STATE_OFF) { raw_spin_unlock_irq(&ctx->lock); return; } raw_spin_unlock_irq(&ctx->lock); event_function_call(event, __perf_event_disable, NULL); } void perf_event_disable_local(struct perf_event *event) { event_function_local(event, __perf_event_disable, NULL); } /* * Strictly speaking kernel users cannot create groups and therefore this * interface does not need the perf_event_ctx_lock() magic. */ void perf_event_disable(struct perf_event *event) { struct perf_event_context *ctx; ctx = perf_event_ctx_lock(event); _perf_event_disable(event); perf_event_ctx_unlock(event, ctx); } EXPORT_SYMBOL_GPL(perf_event_disable); void perf_event_disable_inatomic(struct perf_event *event) { event->pending_disable = 1; irq_work_queue(&event->pending_irq); } #define MAX_INTERRUPTS (~0ULL) static void perf_log_throttle(struct perf_event *event, int enable); static void perf_log_itrace_start(struct perf_event *event); static int event_sched_in(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event_pmu_context *epc = event->pmu_ctx; struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); int ret = 0; WARN_ON_ONCE(event->ctx != ctx); lockdep_assert_held(&ctx->lock); if (event->state <= PERF_EVENT_STATE_OFF) return 0; WRITE_ONCE(event->oncpu, smp_processor_id()); /* * Order event::oncpu write to happen before the ACTIVE state is * visible. This allows perf_event_{stop,read}() to observe the correct * ->oncpu if it sees ACTIVE. */ smp_wmb(); perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); /* * Unthrottle events, since we scheduled we might have missed several * ticks already, also for a heavily scheduling task there is little * guarantee it'll get a tick in a timely manner. */ if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { perf_log_throttle(event, 1); event->hw.interrupts = 0; } perf_pmu_disable(event->pmu); perf_log_itrace_start(event); if (event->pmu->add(event, PERF_EF_START)) { perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); event->oncpu = -1; ret = -EAGAIN; goto out; } if (!is_software_event(event)) cpc->active_oncpu++; if (event->attr.freq && event->attr.sample_freq) ctx->nr_freq++; if (event->attr.exclusive) cpc->exclusive = 1; out: perf_pmu_enable(event->pmu); return ret; } static int group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) { struct perf_event *event, *partial_group = NULL; struct pmu *pmu = group_event->pmu_ctx->pmu; if (group_event->state == PERF_EVENT_STATE_OFF) return 0; pmu->start_txn(pmu, PERF_PMU_TXN_ADD); if (event_sched_in(group_event, ctx)) goto error; /* * Schedule in siblings as one group (if any): */ for_each_sibling_event(event, group_event) { if (event_sched_in(event, ctx)) { partial_group = event; goto group_error; } } if (!pmu->commit_txn(pmu)) return 0; group_error: /* * Groups can be scheduled in as one unit only, so undo any * partial group before returning: * The events up to the failed event are scheduled out normally. */ for_each_sibling_event(event, group_event) { if (event == partial_group) break; event_sched_out(event, ctx); } event_sched_out(group_event, ctx); error: pmu->cancel_txn(pmu); return -EAGAIN; } /* * Work out whether we can put this event group on the CPU now. */ static int group_can_go_on(struct perf_event *event, int can_add_hw) { struct perf_event_pmu_context *epc = event->pmu_ctx; struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); /* * Groups consisting entirely of software events can always go on. */ if (event->group_caps & PERF_EV_CAP_SOFTWARE) return 1; /* * If an exclusive group is already on, no other hardware * events can go on. */ if (cpc->exclusive) return 0; /* * If this group is exclusive and there are already * events on the CPU, it can't go on. */ if (event->attr.exclusive && !list_empty(get_event_list(event))) return 0; /* * Otherwise, try to add it if all previous groups were able * to go on. */ return can_add_hw; } static void add_event_to_ctx(struct perf_event *event, struct perf_event_context *ctx) { list_add_event(event, ctx); perf_group_attach(event); } static void task_ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); if (!cpuctx->task_ctx) return; if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) return; ctx_sched_out(ctx, event_type); } static void perf_event_sched_in(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); if (ctx) ctx_sched_in(ctx, EVENT_PINNED); ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); if (ctx) ctx_sched_in(ctx, EVENT_FLEXIBLE); } /* * We want to maintain the following priority of scheduling: * - CPU pinned (EVENT_CPU | EVENT_PINNED) * - task pinned (EVENT_PINNED) * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) * - task flexible (EVENT_FLEXIBLE). * * In order to avoid unscheduling and scheduling back in everything every * time an event is added, only do it for the groups of equal priority and * below. * * This can be called after a batch operation on task events, in which case * event_type is a bit mask of the types of events involved. For CPU events, * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. */ /* * XXX: ctx_resched() reschedule entire perf_event_context while adding new * event to the context or enabling existing event in the context. We can * probably optimize it by rescheduling only affected pmu_ctx. */ static void ctx_resched(struct perf_cpu_context *cpuctx, struct perf_event_context *task_ctx, enum event_type_t event_type) { bool cpu_event = !!(event_type & EVENT_CPU); /* * If pinned groups are involved, flexible groups also need to be * scheduled out. */ if (event_type & EVENT_PINNED) event_type |= EVENT_FLEXIBLE; event_type &= EVENT_ALL; perf_ctx_disable(&cpuctx->ctx, false); if (task_ctx) { perf_ctx_disable(task_ctx, false); task_ctx_sched_out(task_ctx, event_type); } /* * Decide which cpu ctx groups to schedule out based on the types * of events that caused rescheduling: * - EVENT_CPU: schedule out corresponding groups; * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; * - otherwise, do nothing more. */ if (cpu_event) ctx_sched_out(&cpuctx->ctx, event_type); else if (event_type & EVENT_PINNED) ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); perf_event_sched_in(cpuctx, task_ctx); perf_ctx_enable(&cpuctx->ctx, false); if (task_ctx) perf_ctx_enable(task_ctx, false); } void perf_pmu_resched(struct pmu *pmu) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_context *task_ctx = cpuctx->task_ctx; perf_ctx_lock(cpuctx, task_ctx); ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); perf_ctx_unlock(cpuctx, task_ctx); } /* * Cross CPU call to install and enable a performance event * * Very similar to remote_function() + event_function() but cannot assume that * things like ctx->is_active and cpuctx->task_ctx are set. */ static int __perf_install_in_context(void *info) { struct perf_event *event = info; struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_context *task_ctx = cpuctx->task_ctx; bool reprogram = true; int ret = 0; raw_spin_lock(&cpuctx->ctx.lock); if (ctx->task) { raw_spin_lock(&ctx->lock); task_ctx = ctx; reprogram = (ctx->task == current); /* * If the task is running, it must be running on this CPU, * otherwise we cannot reprogram things. * * If its not running, we don't care, ctx->lock will * serialize against it becoming runnable. */ if (task_curr(ctx->task) && !reprogram) { ret = -ESRCH; goto unlock; } WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); } else if (task_ctx) { raw_spin_lock(&task_ctx->lock); } #ifdef CONFIG_CGROUP_PERF if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { /* * If the current cgroup doesn't match the event's * cgroup, we should not try to schedule it. */ struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); reprogram = cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup); } #endif if (reprogram) { ctx_sched_out(ctx, EVENT_TIME); add_event_to_ctx(event, ctx); ctx_resched(cpuctx, task_ctx, get_event_type(event)); } else { add_event_to_ctx(event, ctx); } unlock: perf_ctx_unlock(cpuctx, task_ctx); return ret; } static bool exclusive_event_installable(struct perf_event *event, struct perf_event_context *ctx); /* * Attach a performance event to a context. * * Very similar to event_function_call, see comment there. */ static void perf_install_in_context(struct perf_event_context *ctx, struct perf_event *event, int cpu) { struct task_struct *task = READ_ONCE(ctx->task); lockdep_assert_held(&ctx->mutex); WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); if (event->cpu != -1) WARN_ON_ONCE(event->cpu != cpu); /* * Ensures that if we can observe event->ctx, both the event and ctx * will be 'complete'. See perf_iterate_sb_cpu(). */ smp_store_release(&event->ctx, ctx); /* * perf_event_attr::disabled events will not run and can be initialized * without IPI. Except when this is the first event for the context, in * that case we need the magic of the IPI to set ctx->is_active. * * The IOC_ENABLE that is sure to follow the creation of a disabled * event will issue the IPI and reprogram the hardware. */ if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events && !is_cgroup_event(event)) { raw_spin_lock_irq(&ctx->lock); if (ctx->task == TASK_TOMBSTONE) { raw_spin_unlock_irq(&ctx->lock); return; } add_event_to_ctx(event, ctx); raw_spin_unlock_irq(&ctx->lock); return; } if (!task) { cpu_function_call(cpu, __perf_install_in_context, event); return; } /* * Should not happen, we validate the ctx is still alive before calling. */ if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) return; /* * Installing events is tricky because we cannot rely on ctx->is_active * to be set in case this is the nr_events 0 -> 1 transition. * * Instead we use task_curr(), which tells us if the task is running. * However, since we use task_curr() outside of rq::lock, we can race * against the actual state. This means the result can be wrong. * * If we get a false positive, we retry, this is harmless. * * If we get a false negative, things are complicated. If we are after * perf_event_context_sched_in() ctx::lock will serialize us, and the * value must be correct. If we're before, it doesn't matter since * perf_event_context_sched_in() will program the counter. * * However, this hinges on the remote context switch having observed * our task->perf_event_ctxp[] store, such that it will in fact take * ctx::lock in perf_event_context_sched_in(). * * We do this by task_function_call(), if the IPI fails to hit the task * we know any future context switch of task must see the * perf_event_ctpx[] store. */ /* * This smp_mb() orders the task->perf_event_ctxp[] store with the * task_cpu() load, such that if the IPI then does not find the task * running, a future context switch of that task must observe the * store. */ smp_mb(); again: if (!task_function_call(task, __perf_install_in_context, event)) return; raw_spin_lock_irq(&ctx->lock); task = ctx->task; if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { /* * Cannot happen because we already checked above (which also * cannot happen), and we hold ctx->mutex, which serializes us * against perf_event_exit_task_context(). */ raw_spin_unlock_irq(&ctx->lock); return; } /* * If the task is not running, ctx->lock will avoid it becoming so, * thus we can safely install the event. */ if (task_curr(task)) { raw_spin_unlock_irq(&ctx->lock); goto again; } add_event_to_ctx(event, ctx); raw_spin_unlock_irq(&ctx->lock); } /* * Cross CPU call to enable a performance event */ static void __perf_event_enable(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { struct perf_event *leader = event->group_leader; struct perf_event_context *task_ctx; if (event->state >= PERF_EVENT_STATE_INACTIVE || event->state <= PERF_EVENT_STATE_ERROR) return; if (ctx->is_active) ctx_sched_out(ctx, EVENT_TIME); perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); perf_cgroup_event_enable(event, ctx); if (!ctx->is_active) return; if (!event_filter_match(event)) { ctx_sched_in(ctx, EVENT_TIME); return; } /* * If the event is in a group and isn't the group leader, * then don't put it on unless the group is on. */ if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { ctx_sched_in(ctx, EVENT_TIME); return; } task_ctx = cpuctx->task_ctx; if (ctx->task) WARN_ON_ONCE(task_ctx != ctx); ctx_resched(cpuctx, task_ctx, get_event_type(event)); } /* * Enable an event. * * If event->ctx is a cloned context, callers must make sure that * every task struct that event->ctx->task could possibly point to * remains valid. This condition is satisfied when called through * perf_event_for_each_child or perf_event_for_each as described * for perf_event_disable. */ static void _perf_event_enable(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; raw_spin_lock_irq(&ctx->lock); if (event->state >= PERF_EVENT_STATE_INACTIVE || event->state < PERF_EVENT_STATE_ERROR) { out: raw_spin_unlock_irq(&ctx->lock); return; } /* * If the event is in error state, clear that first. * * That way, if we see the event in error state below, we know that it * has gone back into error state, as distinct from the task having * been scheduled away before the cross-call arrived. */ if (event->state == PERF_EVENT_STATE_ERROR) { /* * Detached SIBLING events cannot leave ERROR state. */ if (event->event_caps & PERF_EV_CAP_SIBLING && event->group_leader == event) goto out; event->state = PERF_EVENT_STATE_OFF; } raw_spin_unlock_irq(&ctx->lock); event_function_call(event, __perf_event_enable, NULL); } /* * See perf_event_disable(); */ void perf_event_enable(struct perf_event *event) { struct perf_event_context *ctx; ctx = perf_event_ctx_lock(event); _perf_event_enable(event); perf_event_ctx_unlock(event, ctx); } EXPORT_SYMBOL_GPL(perf_event_enable); struct stop_event_data { struct perf_event *event; unsigned int restart; }; static int __perf_event_stop(void *info) { struct stop_event_data *sd = info; struct perf_event *event = sd->event; /* if it's already INACTIVE, do nothing */ if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) return 0; /* matches smp_wmb() in event_sched_in() */ smp_rmb(); /* * There is a window with interrupts enabled before we get here, * so we need to check again lest we try to stop another CPU's event. */ if (READ_ONCE(event->oncpu) != smp_processor_id()) return -EAGAIN; event->pmu->stop(event, PERF_EF_UPDATE); /* * May race with the actual stop (through perf_pmu_output_stop()), * but it is only used for events with AUX ring buffer, and such * events will refuse to restart because of rb::aux_mmap_count==0, * see comments in perf_aux_output_begin(). * * Since this is happening on an event-local CPU, no trace is lost * while restarting. */ if (sd->restart) event->pmu->start(event, 0); return 0; } static int perf_event_stop(struct perf_event *event, int restart) { struct stop_event_data sd = { .event = event, .restart = restart, }; int ret = 0; do { if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) return 0; /* matches smp_wmb() in event_sched_in() */ smp_rmb(); /* * We only want to restart ACTIVE events, so if the event goes * inactive here (event->oncpu==-1), there's nothing more to do; * fall through with ret==-ENXIO. */ ret = cpu_function_call(READ_ONCE(event->oncpu), __perf_event_stop, &sd); } while (ret == -EAGAIN); return ret; } /* * In order to contain the amount of racy and tricky in the address filter * configuration management, it is a two part process: * * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, * we update the addresses of corresponding vmas in * event::addr_filter_ranges array and bump the event::addr_filters_gen; * (p2) when an event is scheduled in (pmu::add), it calls * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() * if the generation has changed since the previous call. * * If (p1) happens while the event is active, we restart it to force (p2). * * (1) perf_addr_filters_apply(): adjusting filters' offsets based on * pre-existing mappings, called once when new filters arrive via SET_FILTER * ioctl; * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly * registered mapping, called for every new mmap(), with mm::mmap_lock down * for reading; * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process * of exec. */ void perf_event_addr_filters_sync(struct perf_event *event) { struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); if (!has_addr_filter(event)) return; raw_spin_lock(&ifh->lock); if (event->addr_filters_gen != event->hw.addr_filters_gen) { event->pmu->addr_filters_sync(event); event->hw.addr_filters_gen = event->addr_filters_gen; } raw_spin_unlock(&ifh->lock); } EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); static int _perf_event_refresh(struct perf_event *event, int refresh) { /* * not supported on inherited events */ if (event->attr.inherit || !is_sampling_event(event)) return -EINVAL; atomic_add(refresh, &event->event_limit); _perf_event_enable(event); return 0; } /* * See perf_event_disable() */ int perf_event_refresh(struct perf_event *event, int refresh) { struct perf_event_context *ctx; int ret; ctx = perf_event_ctx_lock(event); ret = _perf_event_refresh(event, refresh); perf_event_ctx_unlock(event, ctx); return ret; } EXPORT_SYMBOL_GPL(perf_event_refresh); static int perf_event_modify_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) { int err; _perf_event_disable(bp); err = modify_user_hw_breakpoint_check(bp, attr, true); if (!bp->attr.disabled) _perf_event_enable(bp); return err; } /* * Copy event-type-independent attributes that may be modified. */ static void perf_event_modify_copy_attr(struct perf_event_attr *to, const struct perf_event_attr *from) { to->sig_data = from->sig_data; } static int perf_event_modify_attr(struct perf_event *event, struct perf_event_attr *attr) { int (*func)(struct perf_event *, struct perf_event_attr *); struct perf_event *child; int err; if (event->attr.type != attr->type) return -EINVAL; switch (event->attr.type) { case PERF_TYPE_BREAKPOINT: func = perf_event_modify_breakpoint; break; default: /* Place holder for future additions. */ return -EOPNOTSUPP; } WARN_ON_ONCE(event->ctx->parent_ctx); mutex_lock(&event->child_mutex); /* * Event-type-independent attributes must be copied before event-type * modification, which will validate that final attributes match the * source attributes after all relevant attributes have been copied. */ perf_event_modify_copy_attr(&event->attr, attr); err = func(event, attr); if (err) goto out; list_for_each_entry(child, &event->child_list, child_list) { perf_event_modify_copy_attr(&child->attr, attr); err = func(child, attr); if (err) goto out; } out: mutex_unlock(&event->child_mutex); return err; } static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, enum event_type_t event_type) { struct perf_event_context *ctx = pmu_ctx->ctx; struct perf_event *event, *tmp; struct pmu *pmu = pmu_ctx->pmu; if (ctx->task && !ctx->is_active) { struct perf_cpu_pmu_context *cpc; cpc = this_cpu_ptr(pmu->cpu_pmu_context); WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); cpc->task_epc = NULL; } if (!event_type) return; perf_pmu_disable(pmu); if (event_type & EVENT_PINNED) { list_for_each_entry_safe(event, tmp, &pmu_ctx->pinned_active, active_list) group_sched_out(event, ctx); } if (event_type & EVENT_FLEXIBLE) { list_for_each_entry_safe(event, tmp, &pmu_ctx->flexible_active, active_list) group_sched_out(event, ctx); /* * Since we cleared EVENT_FLEXIBLE, also clear * rotate_necessary, is will be reset by * ctx_flexible_sched_in() when needed. */ pmu_ctx->rotate_necessary = 0; } perf_pmu_enable(pmu); } static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_pmu_context *pmu_ctx; int is_active = ctx->is_active; bool cgroup = event_type & EVENT_CGROUP; event_type &= ~EVENT_CGROUP; lockdep_assert_held(&ctx->lock); if (likely(!ctx->nr_events)) { /* * See __perf_remove_from_context(). */ WARN_ON_ONCE(ctx->is_active); if (ctx->task) WARN_ON_ONCE(cpuctx->task_ctx); return; } /* * Always update time if it was set; not only when it changes. * Otherwise we can 'forget' to update time for any but the last * context we sched out. For example: * * ctx_sched_out(.event_type = EVENT_FLEXIBLE) * ctx_sched_out(.event_type = EVENT_PINNED) * * would only update time for the pinned events. */ if (is_active & EVENT_TIME) { /* update (and stop) ctx time */ update_context_time(ctx); update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); /* * CPU-release for the below ->is_active store, * see __load_acquire() in perf_event_time_now() */ barrier(); } ctx->is_active &= ~event_type; if (!(ctx->is_active & EVENT_ALL)) ctx->is_active = 0; if (ctx->task) { WARN_ON_ONCE(cpuctx->task_ctx != ctx); if (!ctx->is_active) cpuctx->task_ctx = NULL; } is_active ^= ctx->is_active; /* changed bits */ list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { if (cgroup && !pmu_ctx->nr_cgroups) continue; __pmu_ctx_sched_out(pmu_ctx, is_active); } } /* * Test whether two contexts are equivalent, i.e. whether they have both been * cloned from the same version of the same context. * * Equivalence is measured using a generation number in the context that is * incremented on each modification to it; see unclone_ctx(), list_add_event() * and list_del_event(). */ static int context_equiv(struct perf_event_context *ctx1, struct perf_event_context *ctx2) { lockdep_assert_held(&ctx1->lock); lockdep_assert_held(&ctx2->lock); /* Pinning disables the swap optimization */ if (ctx1->pin_count || ctx2->pin_count) return 0; /* If ctx1 is the parent of ctx2 */ if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) return 1; /* If ctx2 is the parent of ctx1 */ if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) return 1; /* * If ctx1 and ctx2 have the same parent; we flatten the parent * hierarchy, see perf_event_init_context(). */ if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && ctx1->parent_gen == ctx2->parent_gen) return 1; /* Unmatched */ return 0; } static void __perf_event_sync_stat(struct perf_event *event, struct perf_event *next_event) { u64 value; if (!event->attr.inherit_stat) return; /* * Update the event value, we cannot use perf_event_read() * because we're in the middle of a context switch and have IRQs * disabled, which upsets smp_call_function_single(), however * we know the event must be on the current CPU, therefore we * don't need to use it. */ if (event->state == PERF_EVENT_STATE_ACTIVE) event->pmu->read(event); perf_event_update_time(event); /* * In order to keep per-task stats reliable we need to flip the event * values when we flip the contexts. */ value = local64_read(&next_event->count); value = local64_xchg(&event->count, value); local64_set(&next_event->count, value); swap(event->total_time_enabled, next_event->total_time_enabled); swap(event->total_time_running, next_event->total_time_running); /* * Since we swizzled the values, update the user visible data too. */ perf_event_update_userpage(event); perf_event_update_userpage(next_event); } static void perf_event_sync_stat(struct perf_event_context *ctx, struct perf_event_context *next_ctx) { struct perf_event *event, *next_event; if (!ctx->nr_stat) return; update_context_time(ctx); event = list_first_entry(&ctx->event_list, struct perf_event, event_entry); next_event = list_first_entry(&next_ctx->event_list, struct perf_event, event_entry); while (&event->event_entry != &ctx->event_list && &next_event->event_entry != &next_ctx->event_list) { __perf_event_sync_stat(event, next_event); event = list_next_entry(event, event_entry); next_event = list_next_entry(next_event, event_entry); } } #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ pos2 = list_first_entry(head2, typeof(*pos2), member); \ !list_entry_is_head(pos1, head1, member) && \ !list_entry_is_head(pos2, head2, member); \ pos1 = list_next_entry(pos1, member), \ pos2 = list_next_entry(pos2, member)) static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, struct perf_event_context *next_ctx) { struct perf_event_pmu_context *prev_epc, *next_epc; if (!prev_ctx->nr_task_data) return; double_list_for_each_entry(prev_epc, next_epc, &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, pmu_ctx_entry) { if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) continue; /* * PMU specific parts of task perf context can require * additional synchronization. As an example of such * synchronization see implementation details of Intel * LBR call stack data profiling; */ if (prev_epc->pmu->swap_task_ctx) prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); else swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); } } static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) { struct perf_event_pmu_context *pmu_ctx; struct perf_cpu_pmu_context *cpc; list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); } } static void perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) { struct perf_event_context *ctx = task->perf_event_ctxp; struct perf_event_context *next_ctx; struct perf_event_context *parent, *next_parent; int do_switch = 1; if (likely(!ctx)) return; rcu_read_lock(); next_ctx = rcu_dereference(next->perf_event_ctxp); if (!next_ctx) goto unlock; parent = rcu_dereference(ctx->parent_ctx); next_parent = rcu_dereference(next_ctx->parent_ctx); /* If neither context have a parent context; they cannot be clones. */ if (!parent && !next_parent) goto unlock; if (next_parent == ctx || next_ctx == parent || next_parent == parent) { /* * Looks like the two contexts are clones, so we might be * able to optimize the context switch. We lock both * contexts and check that they are clones under the * lock (including re-checking that neither has been * uncloned in the meantime). It doesn't matter which * order we take the locks because no other cpu could * be trying to lock both of these tasks. */ raw_spin_lock(&ctx->lock); raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); if (context_equiv(ctx, next_ctx)) { perf_ctx_disable(ctx, false); /* PMIs are disabled; ctx->nr_pending is stable. */ if (local_read(&ctx->nr_pending) || local_read(&next_ctx->nr_pending)) { /* * Must not swap out ctx when there's pending * events that rely on the ctx->task relation. */ raw_spin_unlock(&next_ctx->lock); rcu_read_unlock(); goto inside_switch; } WRITE_ONCE(ctx->task, next); WRITE_ONCE(next_ctx->task, task); perf_ctx_sched_task_cb(ctx, false); perf_event_swap_task_ctx_data(ctx, next_ctx); perf_ctx_enable(ctx, false); /* * RCU_INIT_POINTER here is safe because we've not * modified the ctx and the above modification of * ctx->task and ctx->task_ctx_data are immaterial * since those values are always verified under * ctx->lock which we're now holding. */ RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); RCU_INIT_POINTER(next->perf_event_ctxp, ctx); do_switch = 0; perf_event_sync_stat(ctx, next_ctx); } raw_spin_unlock(&next_ctx->lock); raw_spin_unlock(&ctx->lock); } unlock: rcu_read_unlock(); if (do_switch) { raw_spin_lock(&ctx->lock); perf_ctx_disable(ctx, false); inside_switch: perf_ctx_sched_task_cb(ctx, false); task_ctx_sched_out(ctx, EVENT_ALL); perf_ctx_enable(ctx, false); raw_spin_unlock(&ctx->lock); } } static DEFINE_PER_CPU(struct list_head, sched_cb_list); static DEFINE_PER_CPU(int, perf_sched_cb_usages); void perf_sched_cb_dec(struct pmu *pmu) { struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); this_cpu_dec(perf_sched_cb_usages); barrier(); if (!--cpc->sched_cb_usage) list_del(&cpc->sched_cb_entry); } void perf_sched_cb_inc(struct pmu *pmu) { struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); if (!cpc->sched_cb_usage++) list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); barrier(); this_cpu_inc(perf_sched_cb_usages); } /* * This function provides the context switch callback to the lower code * layer. It is invoked ONLY when the context switch callback is enabled. * * This callback is relevant even to per-cpu events; for example multi event * PEBS requires this to provide PID/TID information. This requires we flush * all queued PEBS records before we context switch to a new task. */ static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct pmu *pmu; pmu = cpc->epc.pmu; /* software PMUs will not have sched_task */ if (WARN_ON_ONCE(!pmu->sched_task)) return; perf_ctx_lock(cpuctx, cpuctx->task_ctx); perf_pmu_disable(pmu); pmu->sched_task(cpc->task_epc, sched_in); perf_pmu_enable(pmu); perf_ctx_unlock(cpuctx, cpuctx->task_ctx); } static void perf_pmu_sched_task(struct task_struct *prev, struct task_struct *next, bool sched_in) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_cpu_pmu_context *cpc; /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ if (prev == next || cpuctx->task_ctx) return; list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) __perf_pmu_sched_task(cpc, sched_in); } static void perf_event_switch(struct task_struct *task, struct task_struct *next_prev, bool sched_in); /* * Called from scheduler to remove the events of the current task, * with interrupts disabled. * * We stop each event and update the event value in event->count. * * This does not protect us against NMI, but disable() * sets the disabled bit in the control field of event _before_ * accessing the event control register. If a NMI hits, then it will * not restart the event. */ void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next) { if (__this_cpu_read(perf_sched_cb_usages)) perf_pmu_sched_task(task, next, false); if (atomic_read(&nr_switch_events)) perf_event_switch(task, next, false); perf_event_context_sched_out(task, next); /* * if cgroup events exist on this CPU, then we need * to check if we have to switch out PMU state. * cgroup event are system-wide mode only */ perf_cgroup_switch(next); } static bool perf_less_group_idx(const void *l, const void *r) { const struct perf_event *le = *(const struct perf_event **)l; const struct perf_event *re = *(const struct perf_event **)r; return le->group_index < re->group_index; } static void swap_ptr(void *l, void *r) { void **lp = l, **rp = r; swap(*lp, *rp); } static const struct min_heap_callbacks perf_min_heap = { .elem_size = sizeof(struct perf_event *), .less = perf_less_group_idx, .swp = swap_ptr, }; static void __heap_add(struct min_heap *heap, struct perf_event *event) { struct perf_event **itrs = heap->data; if (event) { itrs[heap->nr] = event; heap->nr++; } } static void __link_epc(struct perf_event_pmu_context *pmu_ctx) { struct perf_cpu_pmu_context *cpc; if (!pmu_ctx->ctx->task) return; cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); cpc->task_epc = pmu_ctx; } static noinline int visit_groups_merge(struct perf_event_context *ctx, struct perf_event_groups *groups, int cpu, struct pmu *pmu, int (*func)(struct perf_event *, void *), void *data) { #ifdef CONFIG_CGROUP_PERF struct cgroup_subsys_state *css = NULL; #endif struct perf_cpu_context *cpuctx = NULL; /* Space for per CPU and/or any CPU event iterators. */ struct perf_event *itrs[2]; struct min_heap event_heap; struct perf_event **evt; int ret; if (pmu->filter && pmu->filter(pmu, cpu)) return 0; if (!ctx->task) { cpuctx = this_cpu_ptr(&perf_cpu_context); event_heap = (struct min_heap){ .data = cpuctx->heap, .nr = 0, .size = cpuctx->heap_size, }; lockdep_assert_held(&cpuctx->ctx.lock); #ifdef CONFIG_CGROUP_PERF if (cpuctx->cgrp) css = &cpuctx->cgrp->css; #endif } else { event_heap = (struct min_heap){ .data = itrs, .nr = 0, .size = ARRAY_SIZE(itrs), }; /* Events not within a CPU context may be on any CPU. */ __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); } evt = event_heap.data; __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); #ifdef CONFIG_CGROUP_PERF for (; css; css = css->parent) __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); #endif if (event_heap.nr) { __link_epc((*evt)->pmu_ctx); perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); } min_heapify_all(&event_heap, &perf_min_heap); while (event_heap.nr) { ret = func(*evt, data); if (ret) return ret; *evt = perf_event_groups_next(*evt, pmu); if (*evt) min_heapify(&event_heap, 0, &perf_min_heap); else min_heap_pop(&event_heap, &perf_min_heap); } return 0; } /* * Because the userpage is strictly per-event (there is no concept of context, * so there cannot be a context indirection), every userpage must be updated * when context time starts :-( * * IOW, we must not miss EVENT_TIME edges. */ static inline bool event_update_userpage(struct perf_event *event) { if (likely(!atomic_read(&event->mmap_count))) return false; perf_event_update_time(event); perf_event_update_userpage(event); return true; } static inline void group_update_userpage(struct perf_event *group_event) { struct perf_event *event; if (!event_update_userpage(group_event)) return; for_each_sibling_event(event, group_event) event_update_userpage(event); } static int merge_sched_in(struct perf_event *event, void *data) { struct perf_event_context *ctx = event->ctx; int *can_add_hw = data; if (event->state <= PERF_EVENT_STATE_OFF) return 0; if (!event_filter_match(event)) return 0; if (group_can_go_on(event, *can_add_hw)) { if (!group_sched_in(event, ctx)) list_add_tail(&event->active_list, get_event_list(event)); } if (event->state == PERF_EVENT_STATE_INACTIVE) { *can_add_hw = 0; if (event->attr.pinned) { perf_cgroup_event_disable(event, ctx); perf_event_set_state(event, PERF_EVENT_STATE_ERROR); } else { struct perf_cpu_pmu_context *cpc; event->pmu_ctx->rotate_necessary = 1; cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); perf_mux_hrtimer_restart(cpc); group_update_userpage(event); } } return 0; } static void pmu_groups_sched_in(struct perf_event_context *ctx, struct perf_event_groups *groups, struct pmu *pmu) { int can_add_hw = 1; visit_groups_merge(ctx, groups, smp_processor_id(), pmu, merge_sched_in, &can_add_hw); } static void ctx_groups_sched_in(struct perf_event_context *ctx, struct perf_event_groups *groups, bool cgroup) { struct perf_event_pmu_context *pmu_ctx; list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { if (cgroup && !pmu_ctx->nr_cgroups) continue; pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); } } static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu) { pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); } static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); int is_active = ctx->is_active; bool cgroup = event_type & EVENT_CGROUP; event_type &= ~EVENT_CGROUP; lockdep_assert_held(&ctx->lock); if (likely(!ctx->nr_events)) return; if (!(is_active & EVENT_TIME)) { /* start ctx time */ __update_context_time(ctx, false); perf_cgroup_set_timestamp(cpuctx); /* * CPU-release for the below ->is_active store, * see __load_acquire() in perf_event_time_now() */ barrier(); } ctx->is_active |= (event_type | EVENT_TIME); if (ctx->task) { if (!is_active) cpuctx->task_ctx = ctx; else WARN_ON_ONCE(cpuctx->task_ctx != ctx); } is_active ^= ctx->is_active; /* changed bits */ /* * First go through the list and put on any pinned groups * in order to give them the best chance of going on. */ if (is_active & EVENT_PINNED) ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); /* Then walk through the lower prio flexible groups */ if (is_active & EVENT_FLEXIBLE) ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); } static void perf_event_context_sched_in(struct task_struct *task) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_context *ctx; rcu_read_lock(); ctx = rcu_dereference(task->perf_event_ctxp); if (!ctx) goto rcu_unlock; if (cpuctx->task_ctx == ctx) { perf_ctx_lock(cpuctx, ctx); perf_ctx_disable(ctx, false); perf_ctx_sched_task_cb(ctx, true); perf_ctx_enable(ctx, false); perf_ctx_unlock(cpuctx, ctx); goto rcu_unlock; } perf_ctx_lock(cpuctx, ctx); /* * We must check ctx->nr_events while holding ctx->lock, such * that we serialize against perf_install_in_context(). */ if (!ctx->nr_events) goto unlock; perf_ctx_disable(ctx, false); /* * We want to keep the following priority order: * cpu pinned (that don't need to move), task pinned, * cpu flexible, task flexible. * * However, if task's ctx is not carrying any pinned * events, no need to flip the cpuctx's events around. */ if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { perf_ctx_disable(&cpuctx->ctx, false); ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); } perf_event_sched_in(cpuctx, ctx); perf_ctx_sched_task_cb(cpuctx->task_ctx, true); if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) perf_ctx_enable(&cpuctx->ctx, false); perf_ctx_enable(ctx, false); unlock: perf_ctx_unlock(cpuctx, ctx); rcu_unlock: rcu_read_unlock(); } /* * Called from scheduler to add the events of the current task * with interrupts disabled. * * We restore the event value and then enable it. * * This does not protect us against NMI, but enable() * sets the enabled bit in the control field of event _before_ * accessing the event control register. If a NMI hits, then it will * keep the event running. */ void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { perf_event_context_sched_in(task); if (atomic_read(&nr_switch_events)) perf_event_switch(task, prev, true); if (__this_cpu_read(perf_sched_cb_usages)) perf_pmu_sched_task(prev, task, true); } static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) { u64 frequency = event->attr.sample_freq; u64 sec = NSEC_PER_SEC; u64 divisor, dividend; int count_fls, nsec_fls, frequency_fls, sec_fls; count_fls = fls64(count); nsec_fls = fls64(nsec); frequency_fls = fls64(frequency); sec_fls = 30; /* * We got @count in @nsec, with a target of sample_freq HZ * the target period becomes: * * @count * 10^9 * period = ------------------- * @nsec * sample_freq * */ /* * Reduce accuracy by one bit such that @a and @b converge * to a similar magnitude. */ #define REDUCE_FLS(a, b) \ do { \ if (a##_fls > b##_fls) { \ a >>= 1; \ a##_fls--; \ } else { \ b >>= 1; \ b##_fls--; \ } \ } while (0) /* * Reduce accuracy until either term fits in a u64, then proceed with * the other, so that finally we can do a u64/u64 division. */ while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { REDUCE_FLS(nsec, frequency); REDUCE_FLS(sec, count); } if (count_fls + sec_fls > 64) { divisor = nsec * frequency; while (count_fls + sec_fls > 64) { REDUCE_FLS(count, sec); divisor >>= 1; } dividend = count * sec; } else { dividend = count * sec; while (nsec_fls + frequency_fls > 64) { REDUCE_FLS(nsec, frequency); dividend >>= 1; } divisor = nsec * frequency; } if (!divisor) return dividend; return div64_u64(dividend, divisor); } static DEFINE_PER_CPU(int, perf_throttled_count); static DEFINE_PER_CPU(u64, perf_throttled_seq); static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) { struct hw_perf_event *hwc = &event->hw; s64 period, sample_period; s64 delta; period = perf_calculate_period(event, nsec, count); delta = (s64)(period - hwc->sample_period); delta = (delta + 7) / 8; /* low pass filter */ sample_period = hwc->sample_period + delta; if (!sample_period) sample_period = 1; hwc->sample_period = sample_period; if (local64_read(&hwc->period_left) > 8*sample_period) { if (disable) event->pmu->stop(event, PERF_EF_UPDATE); local64_set(&hwc->period_left, 0); if (disable) event->pmu->start(event, PERF_EF_RELOAD); } } /* * combine freq adjustment with unthrottling to avoid two passes over the * events. At the same time, make sure, having freq events does not change * the rate of unthrottling as that would introduce bias. */ static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) { struct perf_event *event; struct hw_perf_event *hwc; u64 now, period = TICK_NSEC; s64 delta; /* * only need to iterate over all events iff: * - context have events in frequency mode (needs freq adjust) * - there are events to unthrottle on this cpu */ if (!(ctx->nr_freq || unthrottle)) return; raw_spin_lock(&ctx->lock); list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { if (event->state != PERF_EVENT_STATE_ACTIVE) continue; // XXX use visit thingy to avoid the -1,cpu match if (!event_filter_match(event)) continue; perf_pmu_disable(event->pmu); hwc = &event->hw; if (hwc->interrupts == MAX_INTERRUPTS) { hwc->interrupts = 0; perf_log_throttle(event, 1); event->pmu->start(event, 0); } if (!event->attr.freq || !event->attr.sample_freq) goto next; /* * stop the event and update event->count */ event->pmu->stop(event, PERF_EF_UPDATE); now = local64_read(&event->count); delta = now - hwc->freq_count_stamp; hwc->freq_count_stamp = now; /* * restart the event * reload only if value has changed * we have stopped the event so tell that * to perf_adjust_period() to avoid stopping it * twice. */ if (delta > 0) perf_adjust_period(event, period, delta, false); event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); next: perf_pmu_enable(event->pmu); } raw_spin_unlock(&ctx->lock); } /* * Move @event to the tail of the @ctx's elegible events. */ static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) { /* * Rotate the first entry last of non-pinned groups. Rotation might be * disabled by the inheritance code. */ if (ctx->rotate_disable) return; perf_event_groups_delete(&ctx->flexible_groups, event); perf_event_groups_insert(&ctx->flexible_groups, event); } /* pick an event from the flexible_groups to rotate */ static inline struct perf_event * ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) { struct perf_event *event; struct rb_node *node; struct rb_root *tree; struct __group_key key = { .pmu = pmu_ctx->pmu, }; /* pick the first active flexible event */ event = list_first_entry_or_null(&pmu_ctx->flexible_active, struct perf_event, active_list); if (event) goto out; /* if no active flexible event, pick the first event */ tree = &pmu_ctx->ctx->flexible_groups.tree; if (!pmu_ctx->ctx->task) { key.cpu = smp_processor_id(); node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); if (node) event = __node_2_pe(node); goto out; } key.cpu = -1; node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); if (node) { event = __node_2_pe(node); goto out; } key.cpu = smp_processor_id(); node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); if (node) event = __node_2_pe(node); out: /* * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() * finds there are unschedulable events, it will set it again. */ pmu_ctx->rotate_necessary = 0; return event; } static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; struct perf_event *cpu_event = NULL, *task_event = NULL; int cpu_rotate, task_rotate; struct pmu *pmu; /* * Since we run this from IRQ context, nobody can install new * events, thus the event count values are stable. */ cpu_epc = &cpc->epc; pmu = cpu_epc->pmu; task_epc = cpc->task_epc; cpu_rotate = cpu_epc->rotate_necessary; task_rotate = task_epc ? task_epc->rotate_necessary : 0; if (!(cpu_rotate || task_rotate)) return false; perf_ctx_lock(cpuctx, cpuctx->task_ctx); perf_pmu_disable(pmu); if (task_rotate) task_event = ctx_event_to_rotate(task_epc); if (cpu_rotate) cpu_event = ctx_event_to_rotate(cpu_epc); /* * As per the order given at ctx_resched() first 'pop' task flexible * and then, if needed CPU flexible. */ if (task_event || (task_epc && cpu_event)) { update_context_time(task_epc->ctx); __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); } if (cpu_event) { update_context_time(&cpuctx->ctx); __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); rotate_ctx(&cpuctx->ctx, cpu_event); __pmu_ctx_sched_in(&cpuctx->ctx, pmu); } if (task_event) rotate_ctx(task_epc->ctx, task_event); if (task_event || (task_epc && cpu_event)) __pmu_ctx_sched_in(task_epc->ctx, pmu); perf_pmu_enable(pmu); perf_ctx_unlock(cpuctx, cpuctx->task_ctx); return true; } void perf_event_task_tick(void) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_context *ctx; int throttled; lockdep_assert_irqs_disabled(); __this_cpu_inc(perf_throttled_seq); throttled = __this_cpu_xchg(perf_throttled_count, 0); tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); rcu_read_lock(); ctx = rcu_dereference(current->perf_event_ctxp); if (ctx) perf_adjust_freq_unthr_context(ctx, !!throttled); rcu_read_unlock(); } static int event_enable_on_exec(struct perf_event *event, struct perf_event_context *ctx) { if (!event->attr.enable_on_exec) return 0; event->attr.enable_on_exec = 0; if (event->state >= PERF_EVENT_STATE_INACTIVE) return 0; perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); return 1; } /* * Enable all of a task's events that have been marked enable-on-exec. * This expects task == current. */ static void perf_event_enable_on_exec(struct perf_event_context *ctx) { struct perf_event_context *clone_ctx = NULL; enum event_type_t event_type = 0; struct perf_cpu_context *cpuctx; struct perf_event *event; unsigned long flags; int enabled = 0; local_irq_save(flags); if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) goto out; if (!ctx->nr_events) goto out; cpuctx = this_cpu_ptr(&perf_cpu_context); perf_ctx_lock(cpuctx, ctx); ctx_sched_out(ctx, EVENT_TIME); list_for_each_entry(event, &ctx->event_list, event_entry) { enabled |= event_enable_on_exec(event, ctx); event_type |= get_event_type(event); } /* * Unclone and reschedule this context if we enabled any event. */ if (enabled) { clone_ctx = unclone_ctx(ctx); ctx_resched(cpuctx, ctx, event_type); } else { ctx_sched_in(ctx, EVENT_TIME); } perf_ctx_unlock(cpuctx, ctx); out: local_irq_restore(flags); if (clone_ctx) put_ctx(clone_ctx); } static void perf_remove_from_owner(struct perf_event *event); static void perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx); /* * Removes all events from the current task that have been marked * remove-on-exec, and feeds their values back to parent events. */ static void perf_event_remove_on_exec(struct perf_event_context *ctx) { struct perf_event_context *clone_ctx = NULL; struct perf_event *event, *next; unsigned long flags; bool modified = false; mutex_lock(&ctx->mutex); if (WARN_ON_ONCE(ctx->task != current)) goto unlock; list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { if (!event->attr.remove_on_exec) continue; if (!is_kernel_event(event)) perf_remove_from_owner(event); modified = true; perf_event_exit_event(event, ctx); } raw_spin_lock_irqsave(&ctx->lock, flags); if (modified) clone_ctx = unclone_ctx(ctx); raw_spin_unlock_irqrestore(&ctx->lock, flags); unlock: mutex_unlock(&ctx->mutex); if (clone_ctx) put_ctx(clone_ctx); } struct perf_read_data { struct perf_event *event; bool group; int ret; }; static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) { u16 local_pkg, event_pkg; if ((unsigned)event_cpu >= nr_cpu_ids) return event_cpu; if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { int local_cpu = smp_processor_id(); event_pkg = topology_physical_package_id(event_cpu); local_pkg = topology_physical_package_id(local_cpu); if (event_pkg == local_pkg) return local_cpu; } return event_cpu; } /* * Cross CPU call to read the hardware event */ static void __perf_event_read(void *info) { struct perf_read_data *data = info; struct perf_event *sub, *event = data->event; struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct pmu *pmu = event->pmu; /* * If this is a task context, we need to check whether it is * the current task context of this cpu. If not it has been * scheduled out before the smp call arrived. In that case * event->count would have been updated to a recent sample * when the event was scheduled out. */ if (ctx->task && cpuctx->task_ctx != ctx) return; raw_spin_lock(&ctx->lock); if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_event(event); } perf_event_update_time(event); if (data->group) perf_event_update_sibling_time(event); if (event->state != PERF_EVENT_STATE_ACTIVE) goto unlock; if (!data->group) { pmu->read(event); data->ret = 0; goto unlock; } pmu->start_txn(pmu, PERF_PMU_TXN_READ); pmu->read(event); for_each_sibling_event(sub, event) { if (sub->state == PERF_EVENT_STATE_ACTIVE) { /* * Use sibling's PMU rather than @event's since * sibling could be on different (eg: software) PMU. */ sub->pmu->read(sub); } } data->ret = pmu->commit_txn(pmu); unlock: raw_spin_unlock(&ctx->lock); } static inline u64 perf_event_count(struct perf_event *event) { return local64_read(&event->count) + atomic64_read(&event->child_count); } static void calc_timer_values(struct perf_event *event, u64 *now, u64 *enabled, u64 *running) { u64 ctx_time; *now = perf_clock(); ctx_time = perf_event_time_now(event, *now); __perf_update_times(event, ctx_time, enabled, running); } /* * NMI-safe method to read a local event, that is an event that * is: * - either for the current task, or for this CPU * - does not have inherit set, for inherited task events * will not be local and we cannot read them atomically * - must not have a pmu::count method */ int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running) { unsigned long flags; int event_oncpu; int event_cpu; int ret = 0; /* * Disabling interrupts avoids all counter scheduling (context * switches, timer based rotation and IPIs). */ local_irq_save(flags); /* * It must not be an event with inherit set, we cannot read * all child counters from atomic context. */ if (event->attr.inherit) { ret = -EOPNOTSUPP; goto out; } /* If this is a per-task event, it must be for current */ if ((event->attach_state & PERF_ATTACH_TASK) && event->hw.target != current) { ret = -EINVAL; goto out; } /* * Get the event CPU numbers, and adjust them to local if the event is * a per-package event that can be read locally */ event_oncpu = __perf_event_read_cpu(event, event->oncpu); event_cpu = __perf_event_read_cpu(event, event->cpu); /* If this is a per-CPU event, it must be for this CPU */ if (!(event->attach_state & PERF_ATTACH_TASK) && event_cpu != smp_processor_id()) { ret = -EINVAL; goto out; } /* If this is a pinned event it must be running on this CPU */ if (event->attr.pinned && event_oncpu != smp_processor_id()) { ret = -EBUSY; goto out; } /* * If the event is currently on this CPU, its either a per-task event, * or local to this CPU. Furthermore it means its ACTIVE (otherwise * oncpu == -1). */ if (event_oncpu == smp_processor_id()) event->pmu->read(event); *value = local64_read(&event->count); if (enabled || running) { u64 __enabled, __running, __now; calc_timer_values(event, &__now, &__enabled, &__running); if (enabled) *enabled = __enabled; if (running) *running = __running; } out: local_irq_restore(flags); return ret; } static int perf_event_read(struct perf_event *event, bool group) { enum perf_event_state state = READ_ONCE(event->state); int event_cpu, ret = 0; /* * If event is enabled and currently active on a CPU, update the * value in the event structure: */ again: if (state == PERF_EVENT_STATE_ACTIVE) { struct perf_read_data data; /* * Orders the ->state and ->oncpu loads such that if we see * ACTIVE we must also see the right ->oncpu. * * Matches the smp_wmb() from event_sched_in(). */ smp_rmb(); event_cpu = READ_ONCE(event->oncpu); if ((unsigned)event_cpu >= nr_cpu_ids) return 0; data = (struct perf_read_data){ .event = event, .group = group, .ret = 0, }; preempt_disable(); event_cpu = __perf_event_read_cpu(event, event_cpu); /* * Purposely ignore the smp_call_function_single() return * value. * * If event_cpu isn't a valid CPU it means the event got * scheduled out and that will have updated the event count. * * Therefore, either way, we'll have an up-to-date event count * after this. */ (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); preempt_enable(); ret = data.ret; } else if (state == PERF_EVENT_STATE_INACTIVE) { struct perf_event_context *ctx = event->ctx; unsigned long flags; raw_spin_lock_irqsave(&ctx->lock, flags); state = event->state; if (state != PERF_EVENT_STATE_INACTIVE) { raw_spin_unlock_irqrestore(&ctx->lock, flags); goto again; } /* * May read while context is not active (e.g., thread is * blocked), in that case we cannot update context time */ if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_event(event); } perf_event_update_time(event); if (group) perf_event_update_sibling_time(event); raw_spin_unlock_irqrestore(&ctx->lock, flags); } return ret; } /* * Initialize the perf_event context in a task_struct: */ static void __perf_event_init_context(struct perf_event_context *ctx) { raw_spin_lock_init(&ctx->lock); mutex_init(&ctx->mutex); INIT_LIST_HEAD(&ctx->pmu_ctx_list); perf_event_groups_init(&ctx->pinned_groups); perf_event_groups_init(&ctx->flexible_groups); INIT_LIST_HEAD(&ctx->event_list); refcount_set(&ctx->refcount, 1); } static void __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) { epc->pmu = pmu; INIT_LIST_HEAD(&epc->pmu_ctx_entry); INIT_LIST_HEAD(&epc->pinned_active); INIT_LIST_HEAD(&epc->flexible_active); atomic_set(&epc->refcount, 1); } static struct perf_event_context * alloc_perf_context(struct task_struct *task) { struct perf_event_context *ctx; ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); if (!ctx) return NULL; __perf_event_init_context(ctx); if (task) ctx->task = get_task_struct(task); return ctx; } static struct task_struct * find_lively_task_by_vpid(pid_t vpid) { struct task_struct *task; rcu_read_lock(); if (!vpid) task = current; else task = find_task_by_vpid(vpid); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) return ERR_PTR(-ESRCH); return task; } /* * Returns a matching context with refcount and pincount. */ static struct perf_event_context * find_get_context(struct task_struct *task, struct perf_event *event) { struct perf_event_context *ctx, *clone_ctx = NULL; struct perf_cpu_context *cpuctx; unsigned long flags; int err; if (!task) { /* Must be root to operate on a CPU event: */ err = perf_allow_cpu(&event->attr); if (err) return ERR_PTR(err); cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); ctx = &cpuctx->ctx; get_ctx(ctx); raw_spin_lock_irqsave(&ctx->lock, flags); ++ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); return ctx; } err = -EINVAL; retry: ctx = perf_lock_task_context(task, &flags); if (ctx) { clone_ctx = unclone_ctx(ctx); ++ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); if (clone_ctx) put_ctx(clone_ctx); } else { ctx = alloc_perf_context(task); err = -ENOMEM; if (!ctx) goto errout; err = 0; mutex_lock(&task->perf_event_mutex); /* * If it has already passed perf_event_exit_task(). * we must see PF_EXITING, it takes this mutex too. */ if (task->flags & PF_EXITING) err = -ESRCH; else if (task->perf_event_ctxp) err = -EAGAIN; else { get_ctx(ctx); ++ctx->pin_count; rcu_assign_pointer(task->perf_event_ctxp, ctx); } mutex_unlock(&task->perf_event_mutex); if (unlikely(err)) { put_ctx(ctx); if (err == -EAGAIN) goto retry; goto errout; } } return ctx; errout: return ERR_PTR(err); } static struct perf_event_pmu_context * find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, struct perf_event *event) { struct perf_event_pmu_context *new = NULL, *epc; void *task_ctx_data = NULL; if (!ctx->task) { /* * perf_pmu_migrate_context() / __perf_pmu_install_event() * relies on the fact that find_get_pmu_context() cannot fail * for CPU contexts. */ struct perf_cpu_pmu_context *cpc; cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); epc = &cpc->epc; raw_spin_lock_irq(&ctx->lock); if (!epc->ctx) { atomic_set(&epc->refcount, 1); epc->embedded = 1; list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); epc->ctx = ctx; } else { WARN_ON_ONCE(epc->ctx != ctx); atomic_inc(&epc->refcount); } raw_spin_unlock_irq(&ctx->lock); return epc; } new = kzalloc(sizeof(*epc), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); if (event->attach_state & PERF_ATTACH_TASK_DATA) { task_ctx_data = alloc_task_ctx_data(pmu); if (!task_ctx_data) { kfree(new); return ERR_PTR(-ENOMEM); } } __perf_init_event_pmu_context(new, pmu); /* * XXX * * lockdep_assert_held(&ctx->mutex); * * can't because perf_event_init_task() doesn't actually hold the * child_ctx->mutex. */ raw_spin_lock_irq(&ctx->lock); list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { if (epc->pmu == pmu) { WARN_ON_ONCE(epc->ctx != ctx); atomic_inc(&epc->refcount); goto found_epc; } } epc = new; new = NULL; list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); epc->ctx = ctx; found_epc: if (task_ctx_data && !epc->task_ctx_data) { epc->task_ctx_data = task_ctx_data; task_ctx_data = NULL; ctx->nr_task_data++; } raw_spin_unlock_irq(&ctx->lock); free_task_ctx_data(pmu, task_ctx_data); kfree(new); return epc; } static void get_pmu_ctx(struct perf_event_pmu_context *epc) { WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); } static void free_epc_rcu(struct rcu_head *head) { struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); kfree(epc->task_ctx_data); kfree(epc); } static void put_pmu_ctx(struct perf_event_pmu_context *epc) { struct perf_event_context *ctx = epc->ctx; unsigned long flags; /* * XXX * * lockdep_assert_held(&ctx->mutex); * * can't because of the call-site in _free_event()/put_event() * which isn't always called under ctx->mutex. */ if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) return; WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); list_del_init(&epc->pmu_ctx_entry); epc->ctx = NULL; WARN_ON_ONCE(!list_empty(&epc->pinned_active)); WARN_ON_ONCE(!list_empty(&epc->flexible_active)); raw_spin_unlock_irqrestore(&ctx->lock, flags); if (epc->embedded) return; call_rcu(&epc->rcu_head, free_epc_rcu); } static void perf_event_free_filter(struct perf_event *event); static void free_event_rcu(struct rcu_head *head) { struct perf_event *event = container_of(head, typeof(*event), rcu_head); if (event->ns) put_pid_ns(event->ns); perf_event_free_filter(event); kmem_cache_free(perf_event_cache, event); } static void ring_buffer_attach(struct perf_event *event, struct perf_buffer *rb); static void detach_sb_event(struct perf_event *event) { struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); raw_spin_lock(&pel->lock); list_del_rcu(&event->sb_list); raw_spin_unlock(&pel->lock); } static bool is_sb_event(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; if (event->parent) return false; if (event->attach_state & PERF_ATTACH_TASK) return false; if (attr->mmap || attr->mmap_data || attr->mmap2 || attr->comm || attr->comm_exec || attr->task || attr->ksymbol || attr->context_switch || attr->text_poke || attr->bpf_event) return true; return false; } static void unaccount_pmu_sb_event(struct perf_event *event) { if (is_sb_event(event)) detach_sb_event(event); } #ifdef CONFIG_NO_HZ_FULL static DEFINE_SPINLOCK(nr_freq_lock); #endif static void unaccount_freq_event_nohz(void) { #ifdef CONFIG_NO_HZ_FULL spin_lock(&nr_freq_lock); if (atomic_dec_and_test(&nr_freq_events)) tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); spin_unlock(&nr_freq_lock); #endif } static void unaccount_freq_event(void) { if (tick_nohz_full_enabled()) unaccount_freq_event_nohz(); else atomic_dec(&nr_freq_events); } static void unaccount_event(struct perf_event *event) { bool dec = false; if (event->parent) return; if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) dec = true; if (event->attr.mmap || event->attr.mmap_data) atomic_dec(&nr_mmap_events); if (event->attr.build_id) atomic_dec(&nr_build_id_events); if (event->attr.comm) atomic_dec(&nr_comm_events); if (event->attr.namespaces) atomic_dec(&nr_namespaces_events); if (event->attr.cgroup) atomic_dec(&nr_cgroup_events); if (event->attr.task) atomic_dec(&nr_task_events); if (event->attr.freq) unaccount_freq_event(); if (event->attr.context_switch) { dec = true; atomic_dec(&nr_switch_events); } if (is_cgroup_event(event)) dec = true; if (has_branch_stack(event)) dec = true; if (event->attr.ksymbol) atomic_dec(&nr_ksymbol_events); if (event->attr.bpf_event) atomic_dec(&nr_bpf_events); if (event->attr.text_poke) atomic_dec(&nr_text_poke_events); if (dec) { if (!atomic_add_unless(&perf_sched_count, -1, 1)) schedule_delayed_work(&perf_sched_work, HZ); } unaccount_pmu_sb_event(event); } static void perf_sched_delayed(struct work_struct *work) { mutex_lock(&perf_sched_mutex); if (atomic_dec_and_test(&perf_sched_count)) static_branch_disable(&perf_sched_events); mutex_unlock(&perf_sched_mutex); } /* * The following implement mutual exclusion of events on "exclusive" pmus * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled * at a time, so we disallow creating events that might conflict, namely: * * 1) cpu-wide events in the presence of per-task events, * 2) per-task events in the presence of cpu-wide events, * 3) two matching events on the same perf_event_context. * * The former two cases are handled in the allocation path (perf_event_alloc(), * _free_event()), the latter -- before the first perf_install_in_context(). */ static int exclusive_event_init(struct perf_event *event) { struct pmu *pmu = event->pmu; if (!is_exclusive_pmu(pmu)) return 0; /* * Prevent co-existence of per-task and cpu-wide events on the * same exclusive pmu. * * Negative pmu::exclusive_cnt means there are cpu-wide * events on this "exclusive" pmu, positive means there are * per-task events. * * Since this is called in perf_event_alloc() path, event::ctx * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK * to mean "per-task event", because unlike other attach states it * never gets cleared. */ if (event->attach_state & PERF_ATTACH_TASK) { if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) return -EBUSY; } else { if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) return -EBUSY; } return 0; } static void exclusive_event_destroy(struct perf_event *event) { struct pmu *pmu = event->pmu; if (!is_exclusive_pmu(pmu)) return; /* see comment in exclusive_event_init() */ if (event->attach_state & PERF_ATTACH_TASK) atomic_dec(&pmu->exclusive_cnt); else atomic_inc(&pmu->exclusive_cnt); } static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) { if ((e1->pmu == e2->pmu) && (e1->cpu == e2->cpu || e1->cpu == -1 || e2->cpu == -1)) return true; return false; } static bool exclusive_event_installable(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event *iter_event; struct pmu *pmu = event->pmu; lockdep_assert_held(&ctx->mutex); if (!is_exclusive_pmu(pmu)) return true; list_for_each_entry(iter_event, &ctx->event_list, event_entry) { if (exclusive_event_match(iter_event, event)) return false; } return true; } static void perf_addr_filters_splice(struct perf_event *event, struct list_head *head); static void _free_event(struct perf_event *event) { irq_work_sync(&event->pending_irq); unaccount_event(event); security_perf_event_free(event); if (event->rb) { /* * Can happen when we close an event with re-directed output. * * Since we have a 0 refcount, perf_mmap_close() will skip * over us; possibly making our ring_buffer_put() the last. */ mutex_lock(&event->mmap_mutex); ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); } if (is_cgroup_event(event)) perf_detach_cgroup(event); if (!event->parent) { if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) put_callchain_buffers(); } perf_event_free_bpf_prog(event); perf_addr_filters_splice(event, NULL); kfree(event->addr_filter_ranges); if (event->destroy) event->destroy(event); /* * Must be after ->destroy(), due to uprobe_perf_close() using * hw.target. */ if (event->hw.target) put_task_struct(event->hw.target); if (event->pmu_ctx) put_pmu_ctx(event->pmu_ctx); /* * perf_event_free_task() relies on put_ctx() being 'last', in particular * all task references must be cleaned up. */ if (event->ctx) put_ctx(event->ctx); exclusive_event_destroy(event); module_put(event->pmu->module); call_rcu(&event->rcu_head, free_event_rcu); } /* * Used to free events which have a known refcount of 1, such as in error paths * where the event isn't exposed yet and inherited events. */ static void free_event(struct perf_event *event) { if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, "unexpected event refcount: %ld; ptr=%p\n", atomic_long_read(&event->refcount), event)) { /* leak to avoid use-after-free */ return; } _free_event(event); } /* * Remove user event from the owner task. */ static void perf_remove_from_owner(struct perf_event *event) { struct task_struct *owner; rcu_read_lock(); /* * Matches the smp_store_release() in perf_event_exit_task(). If we * observe !owner it means the list deletion is complete and we can * indeed free this event, otherwise we need to serialize on * owner->perf_event_mutex. */ owner = READ_ONCE(event->owner); if (owner) { /* * Since delayed_put_task_struct() also drops the last * task reference we can safely take a new reference * while holding the rcu_read_lock(). */ get_task_struct(owner); } rcu_read_unlock(); if (owner) { /* * If we're here through perf_event_exit_task() we're already * holding ctx->mutex which would be an inversion wrt. the * normal lock order. * * However we can safely take this lock because its the child * ctx->mutex. */ mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); /* * We have to re-check the event->owner field, if it is cleared * we raced with perf_event_exit_task(), acquiring the mutex * ensured they're done, and we can proceed with freeing the * event. */ if (event->owner) { list_del_init(&event->owner_entry); smp_store_release(&event->owner, NULL); } mutex_unlock(&owner->perf_event_mutex); put_task_struct(owner); } } static void put_event(struct perf_event *event) { if (!atomic_long_dec_and_test(&event->refcount)) return; _free_event(event); } /* * Kill an event dead; while event:refcount will preserve the event * object, it will not preserve its functionality. Once the last 'user' * gives up the object, we'll destroy the thing. */ int perf_event_release_kernel(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; struct perf_event *child, *tmp; LIST_HEAD(free_list); /* * If we got here through err_alloc: free_event(event); we will not * have attached to a context yet. */ if (!ctx) { WARN_ON_ONCE(event->attach_state & (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); goto no_ctx; } if (!is_kernel_event(event)) perf_remove_from_owner(event); ctx = perf_event_ctx_lock(event); WARN_ON_ONCE(ctx->parent_ctx); /* * Mark this event as STATE_DEAD, there is no external reference to it * anymore. * * Anybody acquiring event->child_mutex after the below loop _must_ * also see this, most importantly inherit_event() which will avoid * placing more children on the list. * * Thus this guarantees that we will in fact observe and kill _ALL_ * child events. */ perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); perf_event_ctx_unlock(event, ctx); again: mutex_lock(&event->child_mutex); list_for_each_entry(child, &event->child_list, child_list) { /* * Cannot change, child events are not migrated, see the * comment with perf_event_ctx_lock_nested(). */ ctx = READ_ONCE(child->ctx); /* * Since child_mutex nests inside ctx::mutex, we must jump * through hoops. We start by grabbing a reference on the ctx. * * Since the event cannot get freed while we hold the * child_mutex, the context must also exist and have a !0 * reference count. */ get_ctx(ctx); /* * Now that we have a ctx ref, we can drop child_mutex, and * acquire ctx::mutex without fear of it going away. Then we * can re-acquire child_mutex. */ mutex_unlock(&event->child_mutex); mutex_lock(&ctx->mutex); mutex_lock(&event->child_mutex); /* * Now that we hold ctx::mutex and child_mutex, revalidate our * state, if child is still the first entry, it didn't get freed * and we can continue doing so. */ tmp = list_first_entry_or_null(&event->child_list, struct perf_event, child_list); if (tmp == child) { perf_remove_from_context(child, DETACH_GROUP); list_move(&child->child_list, &free_list); /* * This matches the refcount bump in inherit_event(); * this can't be the last reference. */ put_event(event); } mutex_unlock(&event->child_mutex); mutex_unlock(&ctx->mutex); put_ctx(ctx); goto again; } mutex_unlock(&event->child_mutex); list_for_each_entry_safe(child, tmp, &free_list, child_list) { void *var = &child->ctx->refcount; list_del(&child->child_list); free_event(child); /* * Wake any perf_event_free_task() waiting for this event to be * freed. */ smp_mb(); /* pairs with wait_var_event() */ wake_up_var(var); } no_ctx: put_event(event); /* Must be the 'last' reference */ return 0; } EXPORT_SYMBOL_GPL(perf_event_release_kernel); /* * Called when the last reference to the file is gone. */ static int perf_release(struct inode *inode, struct file *file) { perf_event_release_kernel(file->private_data); return 0; } static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) { struct perf_event *child; u64 total = 0; *enabled = 0; *running = 0; mutex_lock(&event->child_mutex); (void)perf_event_read(event, false); total += perf_event_count(event); *enabled += event->total_time_enabled + atomic64_read(&event->child_total_time_enabled); *running += event->total_time_running + atomic64_read(&event->child_total_time_running); list_for_each_entry(child, &event->child_list, child_list) { (void)perf_event_read(child, false); total += perf_event_count(child); *enabled += child->total_time_enabled; *running += child->total_time_running; } mutex_unlock(&event->child_mutex); return total; } u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) { struct perf_event_context *ctx; u64 count; ctx = perf_event_ctx_lock(event); count = __perf_event_read_value(event, enabled, running); perf_event_ctx_unlock(event, ctx); return count; } EXPORT_SYMBOL_GPL(perf_event_read_value); static int __perf_read_group_add(struct perf_event *leader, u64 read_format, u64 *values) { struct perf_event_context *ctx = leader->ctx; struct perf_event *sub, *parent; unsigned long flags; int n = 1; /* skip @nr */ int ret; ret = perf_event_read(leader, true); if (ret) return ret; raw_spin_lock_irqsave(&ctx->lock, flags); /* * Verify the grouping between the parent and child (inherited) * events is still in tact. * * Specifically: * - leader->ctx->lock pins leader->sibling_list * - parent->child_mutex pins parent->child_list * - parent->ctx->mutex pins parent->sibling_list * * Because parent->ctx != leader->ctx (and child_list nests inside * ctx->mutex), group destruction is not atomic between children, also * see perf_event_release_kernel(). Additionally, parent can grow the * group. * * Therefore it is possible to have parent and child groups in a * different configuration and summing over such a beast makes no sense * what so ever. * * Reject this. */ parent = leader->parent; if (parent && (parent->group_generation != leader->group_generation || parent->nr_siblings != leader->nr_siblings)) { ret = -ECHILD; goto unlock; } /* * Since we co-schedule groups, {enabled,running} times of siblings * will be identical to those of the leader, so we only publish one * set. */ if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { values[n++] += leader->total_time_enabled + atomic64_read(&leader->child_total_time_enabled); } if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { values[n++] += leader->total_time_running + atomic64_read(&leader->child_total_time_running); } /* * Write {count,id} tuples for every sibling. */ values[n++] += perf_event_count(leader); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(leader); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&leader->lost_samples); for_each_sibling_event(sub, leader) { values[n++] += perf_event_count(sub); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(sub); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&sub->lost_samples); } unlock: raw_spin_unlock_irqrestore(&ctx->lock, flags); return ret; } static int perf_read_group(struct perf_event *event, u64 read_format, char __user *buf) { struct perf_event *leader = event->group_leader, *child; struct perf_event_context *ctx = leader->ctx; int ret; u64 *values; lockdep_assert_held(&ctx->mutex); values = kzalloc(event->read_size, GFP_KERNEL); if (!values) return -ENOMEM; values[0] = 1 + leader->nr_siblings; mutex_lock(&leader->child_mutex); ret = __perf_read_group_add(leader, read_format, values); if (ret) goto unlock; list_for_each_entry(child, &leader->child_list, child_list) { ret = __perf_read_group_add(child, read_format, values); if (ret) goto unlock; } mutex_unlock(&leader->child_mutex); ret = event->read_size; if (copy_to_user(buf, values, event->read_size)) ret = -EFAULT; goto out; unlock: mutex_unlock(&leader->child_mutex); out: kfree(values); return ret; } static int perf_read_one(struct perf_event *event, u64 read_format, char __user *buf) { u64 enabled, running; u64 values[5]; int n = 0; values[n++] = __perf_event_read_value(event, &enabled, &running); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) values[n++] = enabled; if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) values[n++] = running; if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(event); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&event->lost_samples); if (copy_to_user(buf, values, n * sizeof(u64))) return -EFAULT; return n * sizeof(u64); } static bool is_event_hup(struct perf_event *event) { bool no_children; if (event->state > PERF_EVENT_STATE_EXIT) return false; mutex_lock(&event->child_mutex); no_children = list_empty(&event->child_list); mutex_unlock(&event->child_mutex); return no_children; } /* * Read the performance event - simple non blocking version for now */ static ssize_t __perf_read(struct perf_event *event, char __user *buf, size_t count) { u64 read_format = event->attr.read_format; int ret; /* * Return end-of-file for a read on an event that is in * error state (i.e. because it was pinned but it couldn't be * scheduled on to the CPU at some point). */ if (event->state == PERF_EVENT_STATE_ERROR) return 0; if (count < event->read_size) return -ENOSPC; WARN_ON_ONCE(event->ctx->parent_ctx); if (read_format & PERF_FORMAT_GROUP) ret = perf_read_group(event, read_format, buf); else ret = perf_read_one(event, read_format, buf); return ret; } static ssize_t perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct perf_event *event = file->private_data; struct perf_event_context *ctx; int ret; ret = security_perf_event_read(event); if (ret) return ret; ctx = perf_event_ctx_lock(event); ret = __perf_read(event, buf, count); perf_event_ctx_unlock(event, ctx); return ret; } static __poll_t perf_poll(struct file *file, poll_table *wait) { struct perf_event *event = file->private_data; struct perf_buffer *rb; __poll_t events = EPOLLHUP; poll_wait(file, &event->waitq, wait); if (is_event_hup(event)) return events; /* * Pin the event->rb by taking event->mmap_mutex; otherwise * perf_event_set_output() can swizzle our rb and make us miss wakeups. */ mutex_lock(&event->mmap_mutex); rb = event->rb; if (rb) events = atomic_xchg(&rb->poll, 0); mutex_unlock(&event->mmap_mutex); return events; } static void _perf_event_reset(struct perf_event *event) { (void)perf_event_read(event, false); local64_set(&event->count, 0); perf_event_update_userpage(event); } /* Assume it's not an event with inherit set. */ u64 perf_event_pause(struct perf_event *event, bool reset) { struct perf_event_context *ctx; u64 count; ctx = perf_event_ctx_lock(event); WARN_ON_ONCE(event->attr.inherit); _perf_event_disable(event); count = local64_read(&event->count); if (reset) local64_set(&event->count, 0); perf_event_ctx_unlock(event, ctx); return count; } EXPORT_SYMBOL_GPL(perf_event_pause); /* * Holding the top-level event's child_mutex means that any * descendant process that has inherited this event will block * in perf_event_exit_event() if it goes to exit, thus satisfying the * task existence requirements of perf_event_enable/disable. */ static void perf_event_for_each_child(struct perf_event *event, void (*func)(struct perf_event *)) { struct perf_event *child; WARN_ON_ONCE(event->ctx->parent_ctx); mutex_lock(&event->child_mutex); func(event); list_for_each_entry(child, &event->child_list, child_list) func(child); mutex_unlock(&event->child_mutex); } static void perf_event_for_each(struct perf_event *event, void (*func)(struct perf_event *)) { struct perf_event_context *ctx = event->ctx; struct perf_event *sibling; lockdep_assert_held(&ctx->mutex); event = event->group_leader; perf_event_for_each_child(event, func); for_each_sibling_event(sibling, event) perf_event_for_each_child(sibling, func); } static void __perf_event_period(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { u64 value = *((u64 *)info); bool active; if (event->attr.freq) { event->attr.sample_freq = value; } else { event->attr.sample_period = value; event->hw.sample_period = value; } active = (event->state == PERF_EVENT_STATE_ACTIVE); if (active) { perf_pmu_disable(event->pmu); /* * We could be throttled; unthrottle now to avoid the tick * trying to unthrottle while we already re-started the event. */ if (event->hw.interrupts == MAX_INTERRUPTS) { event->hw.interrupts = 0; perf_log_throttle(event, 1); } event->pmu->stop(event, PERF_EF_UPDATE); } local64_set(&event->hw.period_left, 0); if (active) { event->pmu->start(event, PERF_EF_RELOAD); perf_pmu_enable(event->pmu); } } static int perf_event_check_period(struct perf_event *event, u64 value) { return event->pmu->check_period(event, value); } static int _perf_event_period(struct perf_event *event, u64 value) { if (!is_sampling_event(event)) return -EINVAL; if (!value) return -EINVAL; if (event->attr.freq && value > sysctl_perf_event_sample_rate) return -EINVAL; if (perf_event_check_period(event, value)) return -EINVAL; if (!event->attr.freq && (value & (1ULL << 63))) return -EINVAL; event_function_call(event, __perf_event_period, &value); return 0; } int perf_event_period(struct perf_event *event, u64 value) { struct perf_event_context *ctx; int ret; ctx = perf_event_ctx_lock(event); ret = _perf_event_period(event, value); perf_event_ctx_unlock(event, ctx); return ret; } EXPORT_SYMBOL_GPL(perf_event_period); static const struct file_operations perf_fops; static inline int perf_fget_light(int fd, struct fd *p) { struct fd f = fdget(fd); if (!f.file) return -EBADF; if (f.file->f_op != &perf_fops) { fdput(f); return -EBADF; } *p = f; return 0; } static int perf_event_set_output(struct perf_event *event, struct perf_event *output_event); static int perf_event_set_filter(struct perf_event *event, void __user *arg); static int perf_copy_attr(struct perf_event_attr __user *uattr, struct perf_event_attr *attr); static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) { void (*func)(struct perf_event *); u32 flags = arg; switch (cmd) { case PERF_EVENT_IOC_ENABLE: func = _perf_event_enable; break; case PERF_EVENT_IOC_DISABLE: func = _perf_event_disable; break; case PERF_EVENT_IOC_RESET: func = _perf_event_reset; break; case PERF_EVENT_IOC_REFRESH: return _perf_event_refresh(event, arg); case PERF_EVENT_IOC_PERIOD: { u64 value; if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) return -EFAULT; return _perf_event_period(event, value); } case PERF_EVENT_IOC_ID: { u64 id = primary_event_id(event); if (copy_to_user((void __user *)arg, &id, sizeof(id))) return -EFAULT; return 0; } case PERF_EVENT_IOC_SET_OUTPUT: { int ret; if (arg != -1) { struct perf_event *output_event; struct fd output; ret = perf_fget_light(arg, &output); if (ret) return ret; output_event = output.file->private_data; ret = perf_event_set_output(event, output_event); fdput(output); } else { ret = perf_event_set_output(event, NULL); } return ret; } case PERF_EVENT_IOC_SET_FILTER: return perf_event_set_filter(event, (void __user *)arg); case PERF_EVENT_IOC_SET_BPF: { struct bpf_prog *prog; int err; prog = bpf_prog_get(arg); if (IS_ERR(prog)) return PTR_ERR(prog); err = perf_event_set_bpf_prog(event, prog, 0); if (err) { bpf_prog_put(prog); return err; } return 0; } case PERF_EVENT_IOC_PAUSE_OUTPUT: { struct perf_buffer *rb; rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb || !rb->nr_pages) { rcu_read_unlock(); return -EINVAL; } rb_toggle_paused(rb, !!arg); rcu_read_unlock(); return 0; } case PERF_EVENT_IOC_QUERY_BPF: return perf_event_query_prog_array(event, (void __user *)arg); case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { struct perf_event_attr new_attr; int err = perf_copy_attr((struct perf_event_attr __user *)arg, &new_attr); if (err) return err; return perf_event_modify_attr(event, &new_attr); } default: return -ENOTTY; } if (flags & PERF_IOC_FLAG_GROUP) perf_event_for_each(event, func); else perf_event_for_each_child(event, func); return 0; } static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct perf_event *event = file->private_data; struct perf_event_context *ctx; long ret; /* Treat ioctl like writes as it is likely a mutating operation. */ ret = security_perf_event_write(event); if (ret) return ret; ctx = perf_event_ctx_lock(event); ret = _perf_ioctl(event, cmd, arg); perf_event_ctx_unlock(event, ctx); return ret; } #ifdef CONFIG_COMPAT static long perf_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (_IOC_NR(cmd)) { case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): case _IOC_NR(PERF_EVENT_IOC_ID): case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { cmd &= ~IOCSIZE_MASK; cmd |= sizeof(void *) << IOCSIZE_SHIFT; } break; } return perf_ioctl(file, cmd, arg); } #else # define perf_compat_ioctl NULL #endif int perf_event_task_enable(void) { struct perf_event_context *ctx; struct perf_event *event; mutex_lock(&current->perf_event_mutex); list_for_each_entry(event, &current->perf_event_list, owner_entry) { ctx = perf_event_ctx_lock(event); perf_event_for_each_child(event, _perf_event_enable); perf_event_ctx_unlock(event, ctx); } mutex_unlock(&current->perf_event_mutex); return 0; } int perf_event_task_disable(void) { struct perf_event_context *ctx; struct perf_event *event; mutex_lock(&current->perf_event_mutex); list_for_each_entry(event, &current->perf_event_list, owner_entry) { ctx = perf_event_ctx_lock(event); perf_event_for_each_child(event, _perf_event_disable); perf_event_ctx_unlock(event, ctx); } mutex_unlock(&current->perf_event_mutex); return 0; } static int perf_event_index(struct perf_event *event) { if (event->hw.state & PERF_HES_STOPPED) return 0; if (event->state != PERF_EVENT_STATE_ACTIVE) return 0; return event->pmu->event_idx(event); } static void perf_event_init_userpage(struct perf_event *event) { struct perf_event_mmap_page *userpg; struct perf_buffer *rb; rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb) goto unlock; userpg = rb->user_page; /* Allow new userspace to detect that bit 0 is deprecated */ userpg->cap_bit0_is_deprecated = 1; userpg->size = offsetof(struct perf_event_mmap_page, __reserved); userpg->data_offset = PAGE_SIZE; userpg->data_size = perf_data_size(rb); unlock: rcu_read_unlock(); } void __weak arch_perf_update_userpage( struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) { } /* * Callers need to ensure there can be no nesting of this function, otherwise * the seqlock logic goes bad. We can not serialize this because the arch * code calls this from NMI context. */ void perf_event_update_userpage(struct perf_event *event) { struct perf_event_mmap_page *userpg; struct perf_buffer *rb; u64 enabled, running, now; rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb) goto unlock; /* * compute total_time_enabled, total_time_running * based on snapshot values taken when the event * was last scheduled in. * * we cannot simply called update_context_time() * because of locking issue as we can be called in * NMI context */ calc_timer_values(event, &now, &enabled, &running); userpg = rb->user_page; /* * Disable preemption to guarantee consistent time stamps are stored to * the user page. */ preempt_disable(); ++userpg->lock; barrier(); userpg->index = perf_event_index(event); userpg->offset = perf_event_count(event); if (userpg->index) userpg->offset -= local64_read(&event->hw.prev_count); userpg->time_enabled = enabled + atomic64_read(&event->child_total_time_enabled); userpg->time_running = running + atomic64_read(&event->child_total_time_running); arch_perf_update_userpage(event, userpg, now); barrier(); ++userpg->lock; preempt_enable(); unlock: rcu_read_unlock(); } EXPORT_SYMBOL_GPL(perf_event_update_userpage); static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) { struct perf_event *event = vmf->vma->vm_file->private_data; struct perf_buffer *rb; vm_fault_t ret = VM_FAULT_SIGBUS; if (vmf->flags & FAULT_FLAG_MKWRITE) { if (vmf->pgoff == 0) ret = 0; return ret; } rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb) goto unlock; if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) goto unlock; vmf->page = perf_mmap_to_page(rb, vmf->pgoff); if (!vmf->page) goto unlock; get_page(vmf->page); vmf->page->mapping = vmf->vma->vm_file->f_mapping; vmf->page->index = vmf->pgoff; ret = 0; unlock: rcu_read_unlock(); return ret; } static void ring_buffer_attach(struct perf_event *event, struct perf_buffer *rb) { struct perf_buffer *old_rb = NULL; unsigned long flags; WARN_ON_ONCE(event->parent); if (event->rb) { /* * Should be impossible, we set this when removing * event->rb_entry and wait/clear when adding event->rb_entry. */ WARN_ON_ONCE(event->rcu_pending); old_rb = event->rb; spin_lock_irqsave(&old_rb->event_lock, flags); list_del_rcu(&event->rb_entry); spin_unlock_irqrestore(&old_rb->event_lock, flags); event->rcu_batches = get_state_synchronize_rcu(); event->rcu_pending = 1; } if (rb) { if (event->rcu_pending) { cond_synchronize_rcu(event->rcu_batches); event->rcu_pending = 0; } spin_lock_irqsave(&rb->event_lock, flags); list_add_rcu(&event->rb_entry, &rb->event_list); spin_unlock_irqrestore(&rb->event_lock, flags); } /* * Avoid racing with perf_mmap_close(AUX): stop the event * before swizzling the event::rb pointer; if it's getting * unmapped, its aux_mmap_count will be 0 and it won't * restart. See the comment in __perf_pmu_output_stop(). * * Data will inevitably be lost when set_output is done in * mid-air, but then again, whoever does it like this is * not in for the data anyway. */ if (has_aux(event)) perf_event_stop(event, 0); rcu_assign_pointer(event->rb, rb); if (old_rb) { ring_buffer_put(old_rb); /* * Since we detached before setting the new rb, so that we * could attach the new rb, we could have missed a wakeup. * Provide it now. */ wake_up_all(&event->waitq); } } static void ring_buffer_wakeup(struct perf_event *event) { struct perf_buffer *rb; if (event->parent) event = event->parent; rcu_read_lock(); rb = rcu_dereference(event->rb); if (rb) { list_for_each_entry_rcu(event, &rb->event_list, rb_entry) wake_up_all(&event->waitq); } rcu_read_unlock(); } struct perf_buffer *ring_buffer_get(struct perf_event *event) { struct perf_buffer *rb; if (event->parent) event = event->parent; rcu_read_lock(); rb = rcu_dereference(event->rb); if (rb) { if (!refcount_inc_not_zero(&rb->refcount)) rb = NULL; } rcu_read_unlock(); return rb; } void ring_buffer_put(struct perf_buffer *rb) { if (!refcount_dec_and_test(&rb->refcount)) return; WARN_ON_ONCE(!list_empty(&rb->event_list)); call_rcu(&rb->rcu_head, rb_free_rcu); } static void perf_mmap_open(struct vm_area_struct *vma) { struct perf_event *event = vma->vm_file->private_data; atomic_inc(&event->mmap_count); atomic_inc(&event->rb->mmap_count); if (vma->vm_pgoff) atomic_inc(&event->rb->aux_mmap_count); if (event->pmu->event_mapped) event->pmu->event_mapped(event, vma->vm_mm); } static void perf_pmu_output_stop(struct perf_event *event); /* * A buffer can be mmap()ed multiple times; either directly through the same * event, or through other events by use of perf_event_set_output(). * * In order to undo the VM accounting done by perf_mmap() we need to destroy * the buffer here, where we still have a VM context. This means we need * to detach all events redirecting to us. */ static void perf_mmap_close(struct vm_area_struct *vma) { struct perf_event *event = vma->vm_file->private_data; struct perf_buffer *rb = ring_buffer_get(event); struct user_struct *mmap_user = rb->mmap_user; int mmap_locked = rb->mmap_locked; unsigned long size = perf_data_size(rb); bool detach_rest = false; if (event->pmu->event_unmapped) event->pmu->event_unmapped(event, vma->vm_mm); /* * rb->aux_mmap_count will always drop before rb->mmap_count and * event->mmap_count, so it is ok to use event->mmap_mutex to * serialize with perf_mmap here. */ if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { /* * Stop all AUX events that are writing to this buffer, * so that we can free its AUX pages and corresponding PMU * data. Note that after rb::aux_mmap_count dropped to zero, * they won't start any more (see perf_aux_output_begin()). */ perf_pmu_output_stop(event); /* now it's safe to free the pages */ atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); /* this has to be the last one */ rb_free_aux(rb); WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); mutex_unlock(&event->mmap_mutex); } if (atomic_dec_and_test(&rb->mmap_count)) detach_rest = true; if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) goto out_put; ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); /* If there's still other mmap()s of this buffer, we're done. */ if (!detach_rest) goto out_put; /* * No other mmap()s, detach from all other events that might redirect * into the now unreachable buffer. Somewhat complicated by the * fact that rb::event_lock otherwise nests inside mmap_mutex. */ again: rcu_read_lock(); list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { if (!atomic_long_inc_not_zero(&event->refcount)) { /* * This event is en-route to free_event() which will * detach it and remove it from the list. */ continue; } rcu_read_unlock(); mutex_lock(&event->mmap_mutex); /* * Check we didn't race with perf_event_set_output() which can * swizzle the rb from under us while we were waiting to * acquire mmap_mutex. * * If we find a different rb; ignore this event, a next * iteration will no longer find it on the list. We have to * still restart the iteration to make sure we're not now * iterating the wrong list. */ if (event->rb == rb) ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); put_event(event); /* * Restart the iteration; either we're on the wrong list or * destroyed its integrity by doing a deletion. */ goto again; } rcu_read_unlock(); /* * It could be there's still a few 0-ref events on the list; they'll * get cleaned up by free_event() -- they'll also still have their * ref on the rb and will free it whenever they are done with it. * * Aside from that, this buffer is 'fully' detached and unmapped, * undo the VM accounting. */ atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, &mmap_user->locked_vm); atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); free_uid(mmap_user); out_put: ring_buffer_put(rb); /* could be last */ } static const struct vm_operations_struct perf_mmap_vmops = { .open = perf_mmap_open, .close = perf_mmap_close, /* non mergeable */ .fault = perf_mmap_fault, .page_mkwrite = perf_mmap_fault, }; static int perf_mmap(struct file *file, struct vm_area_struct *vma) { struct perf_event *event = file->private_data; unsigned long user_locked, user_lock_limit; struct user_struct *user = current_user(); struct perf_buffer *rb = NULL; unsigned long locked, lock_limit; unsigned long vma_size; unsigned long nr_pages; long user_extra = 0, extra = 0; int ret = 0, flags = 0; /* * Don't allow mmap() of inherited per-task counters. This would * create a performance issue due to all children writing to the * same rb. */ if (event->cpu == -1 && event->attr.inherit) return -EINVAL; if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; ret = security_perf_event_read(event); if (ret) return ret; vma_size = vma->vm_end - vma->vm_start; if (vma->vm_pgoff == 0) { nr_pages = (vma_size / PAGE_SIZE) - 1; } else { /* * AUX area mapping: if rb->aux_nr_pages != 0, it's already * mapped, all subsequent mappings should have the same size * and offset. Must be above the normal perf buffer. */ u64 aux_offset, aux_size; if (!event->rb) return -EINVAL; nr_pages = vma_size / PAGE_SIZE; mutex_lock(&event->mmap_mutex); ret = -EINVAL; rb = event->rb; if (!rb) goto aux_unlock; aux_offset = READ_ONCE(rb->user_page->aux_offset); aux_size = READ_ONCE(rb->user_page->aux_size); if (aux_offset < perf_data_size(rb) + PAGE_SIZE) goto aux_unlock; if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) goto aux_unlock; /* already mapped with a different offset */ if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) goto aux_unlock; if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) goto aux_unlock; /* already mapped with a different size */ if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) goto aux_unlock; if (!is_power_of_2(nr_pages)) goto aux_unlock; if (!atomic_inc_not_zero(&rb->mmap_count)) goto aux_unlock; if (rb_has_aux(rb)) { atomic_inc(&rb->aux_mmap_count); ret = 0; goto unlock; } atomic_set(&rb->aux_mmap_count, 1); user_extra = nr_pages; goto accounting; } /* * If we have rb pages ensure they're a power-of-two number, so we * can do bitmasks instead of modulo. */ if (nr_pages != 0 && !is_power_of_2(nr_pages)) return -EINVAL; if (vma_size != PAGE_SIZE * (1 + nr_pages)) return -EINVAL; WARN_ON_ONCE(event->ctx->parent_ctx); again: mutex_lock(&event->mmap_mutex); if (event->rb) { if (data_page_nr(event->rb) != nr_pages) { ret = -EINVAL; goto unlock; } if (!atomic_inc_not_zero(&event->rb->mmap_count)) { /* * Raced against perf_mmap_close(); remove the * event and try again. */ ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); goto again; } goto unlock; } user_extra = nr_pages + 1; accounting: user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); /* * Increase the limit linearly with more CPUs: */ user_lock_limit *= num_online_cpus(); user_locked = atomic_long_read(&user->locked_vm); /* * sysctl_perf_event_mlock may have changed, so that * user->locked_vm > user_lock_limit */ if (user_locked > user_lock_limit) user_locked = user_lock_limit; user_locked += user_extra; if (user_locked > user_lock_limit) { /* * charge locked_vm until it hits user_lock_limit; * charge the rest from pinned_vm */ extra = user_locked - user_lock_limit; user_extra -= extra; } lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; if ((locked > lock_limit) && perf_is_paranoid() && !capable(CAP_IPC_LOCK)) { ret = -EPERM; goto unlock; } WARN_ON(!rb && event->rb); if (vma->vm_flags & VM_WRITE) flags |= RING_BUFFER_WRITABLE; if (!rb) { rb = rb_alloc(nr_pages, event->attr.watermark ? event->attr.wakeup_watermark : 0, event->cpu, flags); if (!rb) { ret = -ENOMEM; goto unlock; } atomic_set(&rb->mmap_count, 1); rb->mmap_user = get_current_user(); rb->mmap_locked = extra; ring_buffer_attach(event, rb); perf_event_update_time(event); perf_event_init_userpage(event); perf_event_update_userpage(event); } else { ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, event->attr.aux_watermark, flags); if (!ret) rb->aux_mmap_locked = extra; } unlock: if (!ret) { atomic_long_add(user_extra, &user->locked_vm); atomic64_add(extra, &vma->vm_mm->pinned_vm); atomic_inc(&event->mmap_count); } else if (rb) { atomic_dec(&rb->mmap_count); } aux_unlock: mutex_unlock(&event->mmap_mutex); /* * Since pinned accounting is per vm we cannot allow fork() to copy our * vma. */ vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); vma->vm_ops = &perf_mmap_vmops; if (event->pmu->event_mapped) event->pmu->event_mapped(event, vma->vm_mm); return ret; } static int perf_fasync(int fd, struct file *filp, int on) { struct inode *inode = file_inode(filp); struct perf_event *event = filp->private_data; int retval; inode_lock(inode); retval = fasync_helper(fd, filp, on, &event->fasync); inode_unlock(inode); if (retval < 0) return retval; return 0; } static const struct file_operations perf_fops = { .llseek = no_llseek, .release = perf_release, .read = perf_read, .poll = perf_poll, .unlocked_ioctl = perf_ioctl, .compat_ioctl = perf_compat_ioctl, .mmap = perf_mmap, .fasync = perf_fasync, }; /* * Perf event wakeup * * If there's data, ensure we set the poll() state and publish everything * to user-space before waking everybody up. */ static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) { /* only the parent has fasync state */ if (event->parent) event = event->parent; return &event->fasync; } void perf_event_wakeup(struct perf_event *event) { ring_buffer_wakeup(event); if (event->pending_kill) { kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); event->pending_kill = 0; } } static void perf_sigtrap(struct perf_event *event) { /* * We'd expect this to only occur if the irq_work is delayed and either * ctx->task or current has changed in the meantime. This can be the * case on architectures that do not implement arch_irq_work_raise(). */ if (WARN_ON_ONCE(event->ctx->task != current)) return; /* * Both perf_pending_task() and perf_pending_irq() can race with the * task exiting. */ if (current->flags & PF_EXITING) return; send_sig_perf((void __user *)event->pending_addr, event->orig_type, event->attr.sig_data); } /* * Deliver the pending work in-event-context or follow the context. */ static void __perf_pending_irq(struct perf_event *event) { int cpu = READ_ONCE(event->oncpu); /* * If the event isn't running; we done. event_sched_out() will have * taken care of things. */ if (cpu < 0) return; /* * Yay, we hit home and are in the context of the event. */ if (cpu == smp_processor_id()) { if (event->pending_sigtrap) { event->pending_sigtrap = 0; perf_sigtrap(event); local_dec(&event->ctx->nr_pending); } if (event->pending_disable) { event->pending_disable = 0; perf_event_disable_local(event); } return; } /* * CPU-A CPU-B * * perf_event_disable_inatomic() * @pending_disable = CPU-A; * irq_work_queue(); * * sched-out * @pending_disable = -1; * * sched-in * perf_event_disable_inatomic() * @pending_disable = CPU-B; * irq_work_queue(); // FAILS * * irq_work_run() * perf_pending_irq() * * But the event runs on CPU-B and wants disabling there. */ irq_work_queue_on(&event->pending_irq, cpu); } static void perf_pending_irq(struct irq_work *entry) { struct perf_event *event = container_of(entry, struct perf_event, pending_irq); int rctx; /* * If we 'fail' here, that's OK, it means recursion is already disabled * and we won't recurse 'further'. */ rctx = perf_swevent_get_recursion_context(); /* * The wakeup isn't bound to the context of the event -- it can happen * irrespective of where the event is. */ if (event->pending_wakeup) { event->pending_wakeup = 0; perf_event_wakeup(event); } __perf_pending_irq(event); if (rctx >= 0) perf_swevent_put_recursion_context(rctx); } static void perf_pending_task(struct callback_head *head) { struct perf_event *event = container_of(head, struct perf_event, pending_task); int rctx; /* * If we 'fail' here, that's OK, it means recursion is already disabled * and we won't recurse 'further'. */ preempt_disable_notrace(); rctx = perf_swevent_get_recursion_context(); if (event->pending_work) { event->pending_work = 0; perf_sigtrap(event); local_dec(&event->ctx->nr_pending); } if (rctx >= 0) perf_swevent_put_recursion_context(rctx); preempt_enable_notrace(); put_event(event); } #ifdef CONFIG_GUEST_PERF_EVENTS struct perf_guest_info_callbacks __rcu *perf_guest_cbs; DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) { if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) return; rcu_assign_pointer(perf_guest_cbs, cbs); static_call_update(__perf_guest_state, cbs->state); static_call_update(__perf_guest_get_ip, cbs->get_ip); /* Implementing ->handle_intel_pt_intr is optional. */ if (cbs->handle_intel_pt_intr) static_call_update(__perf_guest_handle_intel_pt_intr, cbs->handle_intel_pt_intr); } EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) { if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) return; rcu_assign_pointer(perf_guest_cbs, NULL); static_call_update(__perf_guest_state, (void *)&__static_call_return0); static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); static_call_update(__perf_guest_handle_intel_pt_intr, (void *)&__static_call_return0); synchronize_rcu(); } EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); #endif static void perf_output_sample_regs(struct perf_output_handle *handle, struct pt_regs *regs, u64 mask) { int bit; DECLARE_BITMAP(_mask, 64); bitmap_from_u64(_mask, mask); for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { u64 val; val = perf_reg_value(regs, bit); perf_output_put(handle, val); } } static void perf_sample_regs_user(struct perf_regs *regs_user, struct pt_regs *regs) { if (user_mode(regs)) { regs_user->abi = perf_reg_abi(current); regs_user->regs = regs; } else if (!(current->flags & PF_KTHREAD)) { perf_get_regs_user(regs_user, regs); } else { regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; regs_user->regs = NULL; } } static void perf_sample_regs_intr(struct perf_regs *regs_intr, struct pt_regs *regs) { regs_intr->regs = regs; regs_intr->abi = perf_reg_abi(current); } /* * Get remaining task size from user stack pointer. * * It'd be better to take stack vma map and limit this more * precisely, but there's no way to get it safely under interrupt, * so using TASK_SIZE as limit. */ static u64 perf_ustack_task_size(struct pt_regs *regs) { unsigned long addr = perf_user_stack_pointer(regs); if (!addr || addr >= TASK_SIZE) return 0; return TASK_SIZE - addr; } static u16 perf_sample_ustack_size(u16 stack_size, u16 header_size, struct pt_regs *regs) { u64 task_size; /* No regs, no stack pointer, no dump. */ if (!regs) return 0; /* * Check if we fit in with the requested stack size into the: * - TASK_SIZE * If we don't, we limit the size to the TASK_SIZE. * * - remaining sample size * If we don't, we customize the stack size to * fit in to the remaining sample size. */ task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); stack_size = min(stack_size, (u16) task_size); /* Current header size plus static size and dynamic size. */ header_size += 2 * sizeof(u64); /* Do we fit in with the current stack dump size? */ if ((u16) (header_size + stack_size) < header_size) { /* * If we overflow the maximum size for the sample, * we customize the stack dump size to fit in. */ stack_size = USHRT_MAX - header_size - sizeof(u64); stack_size = round_up(stack_size, sizeof(u64)); } return stack_size; } static void perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, struct pt_regs *regs) { /* Case of a kernel thread, nothing to dump */ if (!regs) { u64 size = 0; perf_output_put(handle, size); } else { unsigned long sp; unsigned int rem; u64 dyn_size; /* * We dump: * static size * - the size requested by user or the best one we can fit * in to the sample max size * data * - user stack dump data * dynamic size * - the actual dumped size */ /* Static size. */ perf_output_put(handle, dump_size); /* Data. */ sp = perf_user_stack_pointer(regs); rem = __output_copy_user(handle, (void *) sp, dump_size); dyn_size = dump_size - rem; perf_output_skip(handle, rem); /* Dynamic size. */ perf_output_put(handle, dyn_size); } } static unsigned long perf_prepare_sample_aux(struct perf_event *event, struct perf_sample_data *data, size_t size) { struct perf_event *sampler = event->aux_event; struct perf_buffer *rb; data->aux_size = 0; if (!sampler) goto out; if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) goto out; if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) goto out; rb = ring_buffer_get(sampler); if (!rb) goto out; /* * If this is an NMI hit inside sampling code, don't take * the sample. See also perf_aux_sample_output(). */ if (READ_ONCE(rb->aux_in_sampling)) { data->aux_size = 0; } else { size = min_t(size_t, size, perf_aux_size(rb)); data->aux_size = ALIGN(size, sizeof(u64)); } ring_buffer_put(rb); out: return data->aux_size; } static long perf_pmu_snapshot_aux(struct perf_buffer *rb, struct perf_event *event, struct perf_output_handle *handle, unsigned long size) { unsigned long flags; long ret; /* * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler * paths. If we start calling them in NMI context, they may race with * the IRQ ones, that is, for example, re-starting an event that's just * been stopped, which is why we're using a separate callback that * doesn't change the event state. * * IRQs need to be disabled to prevent IPIs from racing with us. */ local_irq_save(flags); /* * Guard against NMI hits inside the critical section; * see also perf_prepare_sample_aux(). */ WRITE_ONCE(rb->aux_in_sampling, 1); barrier(); ret = event->pmu->snapshot_aux(event, handle, size); barrier(); WRITE_ONCE(rb->aux_in_sampling, 0); local_irq_restore(flags); return ret; } static void perf_aux_sample_output(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *data) { struct perf_event *sampler = event->aux_event; struct perf_buffer *rb; unsigned long pad; long size; if (WARN_ON_ONCE(!sampler || !data->aux_size)) return; rb = ring_buffer_get(sampler); if (!rb) return; size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); /* * An error here means that perf_output_copy() failed (returned a * non-zero surplus that it didn't copy), which in its current * enlightened implementation is not possible. If that changes, we'd * like to know. */ if (WARN_ON_ONCE(size < 0)) goto out_put; /* * The pad comes from ALIGN()ing data->aux_size up to u64 in * perf_prepare_sample_aux(), so should not be more than that. */ pad = data->aux_size - size; if (WARN_ON_ONCE(pad >= sizeof(u64))) pad = 8; if (pad) { u64 zero = 0; perf_output_copy(handle, &zero, pad); } out_put: ring_buffer_put(rb); } /* * A set of common sample data types saved even for non-sample records * when event->attr.sample_id_all is set. */ #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) static void __perf_event_header__init_id(struct perf_sample_data *data, struct perf_event *event, u64 sample_type) { data->type = event->attr.sample_type; data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; if (sample_type & PERF_SAMPLE_TID) { /* namespace issues */ data->tid_entry.pid = perf_event_pid(event, current); data->tid_entry.tid = perf_event_tid(event, current); } if (sample_type & PERF_SAMPLE_TIME) data->time = perf_event_clock(event); if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) data->id = primary_event_id(event); if (sample_type & PERF_SAMPLE_STREAM_ID) data->stream_id = event->id; if (sample_type & PERF_SAMPLE_CPU) { data->cpu_entry.cpu = raw_smp_processor_id(); data->cpu_entry.reserved = 0; } } void perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event) { if (event->attr.sample_id_all) { header->size += event->id_header_size; __perf_event_header__init_id(data, event, event->attr.sample_type); } } static void __perf_event__output_id_sample(struct perf_output_handle *handle, struct perf_sample_data *data) { u64 sample_type = data->type; if (sample_type & PERF_SAMPLE_TID) perf_output_put(handle, data->tid_entry); if (sample_type & PERF_SAMPLE_TIME) perf_output_put(handle, data->time); if (sample_type & PERF_SAMPLE_ID) perf_output_put(handle, data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) perf_output_put(handle, data->stream_id); if (sample_type & PERF_SAMPLE_CPU) perf_output_put(handle, data->cpu_entry); if (sample_type & PERF_SAMPLE_IDENTIFIER) perf_output_put(handle, data->id); } void perf_event__output_id_sample(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *sample) { if (event->attr.sample_id_all) __perf_event__output_id_sample(handle, sample); } static void perf_output_read_one(struct perf_output_handle *handle, struct perf_event *event, u64 enabled, u64 running) { u64 read_format = event->attr.read_format; u64 values[5]; int n = 0; values[n++] = perf_event_count(event); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { values[n++] = enabled + atomic64_read(&event->child_total_time_enabled); } if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { values[n++] = running + atomic64_read(&event->child_total_time_running); } if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(event); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&event->lost_samples); __output_copy(handle, values, n * sizeof(u64)); } static void perf_output_read_group(struct perf_output_handle *handle, struct perf_event *event, u64 enabled, u64 running) { struct perf_event *leader = event->group_leader, *sub; u64 read_format = event->attr.read_format; unsigned long flags; u64 values[6]; int n = 0; /* * Disabling interrupts avoids all counter scheduling * (context switches, timer based rotation and IPIs). */ local_irq_save(flags); values[n++] = 1 + leader->nr_siblings; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) values[n++] = enabled; if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) values[n++] = running; if ((leader != event) && (leader->state == PERF_EVENT_STATE_ACTIVE)) leader->pmu->read(leader); values[n++] = perf_event_count(leader); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(leader); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&leader->lost_samples); __output_copy(handle, values, n * sizeof(u64)); for_each_sibling_event(sub, leader) { n = 0; if ((sub != event) && (sub->state == PERF_EVENT_STATE_ACTIVE)) sub->pmu->read(sub); values[n++] = perf_event_count(sub); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(sub); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&sub->lost_samples); __output_copy(handle, values, n * sizeof(u64)); } local_irq_restore(flags); } #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ PERF_FORMAT_TOTAL_TIME_RUNNING) /* * XXX PERF_SAMPLE_READ vs inherited events seems difficult. * * The problem is that its both hard and excessively expensive to iterate the * child list, not to mention that its impossible to IPI the children running * on another CPU, from interrupt/NMI context. */ static void perf_output_read(struct perf_output_handle *handle, struct perf_event *event) { u64 enabled = 0, running = 0, now; u64 read_format = event->attr.read_format; /* * compute total_time_enabled, total_time_running * based on snapshot values taken when the event * was last scheduled in. * * we cannot simply called update_context_time() * because of locking issue as we are called in * NMI context */ if (read_format & PERF_FORMAT_TOTAL_TIMES) calc_timer_values(event, &now, &enabled, &running); if (event->attr.read_format & PERF_FORMAT_GROUP) perf_output_read_group(handle, event, enabled, running); else perf_output_read_one(handle, event, enabled, running); } void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event) { u64 sample_type = data->type; perf_output_put(handle, *header); if (sample_type & PERF_SAMPLE_IDENTIFIER) perf_output_put(handle, data->id); if (sample_type & PERF_SAMPLE_IP) perf_output_put(handle, data->ip); if (sample_type & PERF_SAMPLE_TID) perf_output_put(handle, data->tid_entry); if (sample_type & PERF_SAMPLE_TIME) perf_output_put(handle, data->time); if (sample_type & PERF_SAMPLE_ADDR) perf_output_put(handle, data->addr); if (sample_type & PERF_SAMPLE_ID) perf_output_put(handle, data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) perf_output_put(handle, data->stream_id); if (sample_type & PERF_SAMPLE_CPU) perf_output_put(handle, data->cpu_entry); if (sample_type & PERF_SAMPLE_PERIOD) perf_output_put(handle, data->period); if (sample_type & PERF_SAMPLE_READ) perf_output_read(handle, event); if (sample_type & PERF_SAMPLE_CALLCHAIN) { int size = 1; size += data->callchain->nr; size *= sizeof(u64); __output_copy(handle, data->callchain, size); } if (sample_type & PERF_SAMPLE_RAW) { struct perf_raw_record *raw = data->raw; if (raw) { struct perf_raw_frag *frag = &raw->frag; perf_output_put(handle, raw->size); do { if (frag->copy) { __output_custom(handle, frag->copy, frag->data, frag->size); } else { __output_copy(handle, frag->data, frag->size); } if (perf_raw_frag_last(frag)) break; frag = frag->next; } while (1); if (frag->pad) __output_skip(handle, NULL, frag->pad); } else { struct { u32 size; u32 data; } raw = { .size = sizeof(u32), .data = 0, }; perf_output_put(handle, raw); } } if (sample_type & PERF_SAMPLE_BRANCH_STACK) { if (data->br_stack) { size_t size; size = data->br_stack->nr * sizeof(struct perf_branch_entry); perf_output_put(handle, data->br_stack->nr); if (branch_sample_hw_index(event)) perf_output_put(handle, data->br_stack->hw_idx); perf_output_copy(handle, data->br_stack->entries, size); /* * Add the extension space which is appended * right after the struct perf_branch_stack. */ if (data->br_stack_cntr) { size = data->br_stack->nr * sizeof(u64); perf_output_copy(handle, data->br_stack_cntr, size); } } else { /* * we always store at least the value of nr */ u64 nr = 0; perf_output_put(handle, nr); } } if (sample_type & PERF_SAMPLE_REGS_USER) { u64 abi = data->regs_user.abi; /* * If there are no regs to dump, notice it through * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). */ perf_output_put(handle, abi); if (abi) { u64 mask = event->attr.sample_regs_user; perf_output_sample_regs(handle, data->regs_user.regs, mask); } } if (sample_type & PERF_SAMPLE_STACK_USER) { perf_output_sample_ustack(handle, data->stack_user_size, data->regs_user.regs); } if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) perf_output_put(handle, data->weight.full); if (sample_type & PERF_SAMPLE_DATA_SRC) perf_output_put(handle, data->data_src.val); if (sample_type & PERF_SAMPLE_TRANSACTION) perf_output_put(handle, data->txn); if (sample_type & PERF_SAMPLE_REGS_INTR) { u64 abi = data->regs_intr.abi; /* * If there are no regs to dump, notice it through * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). */ perf_output_put(handle, abi); if (abi) { u64 mask = event->attr.sample_regs_intr; perf_output_sample_regs(handle, data->regs_intr.regs, mask); } } if (sample_type & PERF_SAMPLE_PHYS_ADDR) perf_output_put(handle, data->phys_addr); if (sample_type & PERF_SAMPLE_CGROUP) perf_output_put(handle, data->cgroup); if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) perf_output_put(handle, data->data_page_size); if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) perf_output_put(handle, data->code_page_size); if (sample_type & PERF_SAMPLE_AUX) { perf_output_put(handle, data->aux_size); if (data->aux_size) perf_aux_sample_output(event, handle, data); } if (!event->attr.watermark) { int wakeup_events = event->attr.wakeup_events; if (wakeup_events) { struct perf_buffer *rb = handle->rb; int events = local_inc_return(&rb->events); if (events >= wakeup_events) { local_sub(wakeup_events, &rb->events); local_inc(&rb->wakeup); } } } } static u64 perf_virt_to_phys(u64 virt) { u64 phys_addr = 0; if (!virt) return 0; if (virt >= TASK_SIZE) { /* If it's vmalloc()d memory, leave phys_addr as 0 */ if (virt_addr_valid((void *)(uintptr_t)virt) && !(virt >= VMALLOC_START && virt < VMALLOC_END)) phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); } else { /* * Walking the pages tables for user address. * Interrupts are disabled, so it prevents any tear down * of the page tables. * Try IRQ-safe get_user_page_fast_only first. * If failed, leave phys_addr as 0. */ if (current->mm != NULL) { struct page *p; pagefault_disable(); if (get_user_page_fast_only(virt, 0, &p)) { phys_addr = page_to_phys(p) + virt % PAGE_SIZE; put_page(p); } pagefault_enable(); } } return phys_addr; } /* * Return the pagetable size of a given virtual address. */ static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) { u64 size = 0; #ifdef CONFIG_HAVE_FAST_GUP pgd_t *pgdp, pgd; p4d_t *p4dp, p4d; pud_t *pudp, pud; pmd_t *pmdp, pmd; pte_t *ptep, pte; pgdp = pgd_offset(mm, addr); pgd = READ_ONCE(*pgdp); if (pgd_none(pgd)) return 0; if (pgd_leaf(pgd)) return pgd_leaf_size(pgd); p4dp = p4d_offset_lockless(pgdp, pgd, addr); p4d = READ_ONCE(*p4dp); if (!p4d_present(p4d)) return 0; if (p4d_leaf(p4d)) return p4d_leaf_size(p4d); pudp = pud_offset_lockless(p4dp, p4d, addr); pud = READ_ONCE(*pudp); if (!pud_present(pud)) return 0; if (pud_leaf(pud)) return pud_leaf_size(pud); pmdp = pmd_offset_lockless(pudp, pud, addr); again: pmd = pmdp_get_lockless(pmdp); if (!pmd_present(pmd)) return 0; if (pmd_leaf(pmd)) return pmd_leaf_size(pmd); ptep = pte_offset_map(&pmd, addr); if (!ptep) goto again; pte = ptep_get_lockless(ptep); if (pte_present(pte)) size = pte_leaf_size(pte); pte_unmap(ptep); #endif /* CONFIG_HAVE_FAST_GUP */ return size; } static u64 perf_get_page_size(unsigned long addr) { struct mm_struct *mm; unsigned long flags; u64 size; if (!addr) return 0; /* * Software page-table walkers must disable IRQs, * which prevents any tear down of the page tables. */ local_irq_save(flags); mm = current->mm; if (!mm) { /* * For kernel threads and the like, use init_mm so that * we can find kernel memory. */ mm = &init_mm; } size = perf_get_pgtable_size(mm, addr); local_irq_restore(flags); return size; } static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; struct perf_callchain_entry * perf_callchain(struct perf_event *event, struct pt_regs *regs) { bool kernel = !event->attr.exclude_callchain_kernel; bool user = !event->attr.exclude_callchain_user; /* Disallow cross-task user callchains. */ bool crosstask = event->ctx->task && event->ctx->task != current; const u32 max_stack = event->attr.sample_max_stack; struct perf_callchain_entry *callchain; if (!kernel && !user) return &__empty_callchain; callchain = get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true); return callchain ?: &__empty_callchain; } static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) { return d * !!(flags & s); } void perf_prepare_sample(struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs) { u64 sample_type = event->attr.sample_type; u64 filtered_sample_type; /* * Add the sample flags that are dependent to others. And clear the * sample flags that have already been done by the PMU driver. */ filtered_sample_type = sample_type; filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, PERF_SAMPLE_IP); filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, PERF_SAMPLE_REGS_USER); filtered_sample_type &= ~data->sample_flags; if (filtered_sample_type == 0) { /* Make sure it has the correct data->type for output */ data->type = event->attr.sample_type; return; } __perf_event_header__init_id(data, event, filtered_sample_type); if (filtered_sample_type & PERF_SAMPLE_IP) { data->ip = perf_instruction_pointer(regs); data->sample_flags |= PERF_SAMPLE_IP; } if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) perf_sample_save_callchain(data, event, regs); if (filtered_sample_type & PERF_SAMPLE_RAW) { data->raw = NULL; data->dyn_size += sizeof(u64); data->sample_flags |= PERF_SAMPLE_RAW; } if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { data->br_stack = NULL; data->dyn_size += sizeof(u64); data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; } if (filtered_sample_type & PERF_SAMPLE_REGS_USER) perf_sample_regs_user(&data->regs_user, regs); /* * It cannot use the filtered_sample_type here as REGS_USER can be set * by STACK_USER (using __cond_set() above) and we don't want to update * the dyn_size if it's not requested by users. */ if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { /* regs dump ABI info */ int size = sizeof(u64); if (data->regs_user.regs) { u64 mask = event->attr.sample_regs_user; size += hweight64(mask) * sizeof(u64); } data->dyn_size += size; data->sample_flags |= PERF_SAMPLE_REGS_USER; } if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { /* * Either we need PERF_SAMPLE_STACK_USER bit to be always * processed as the last one or have additional check added * in case new sample type is added, because we could eat * up the rest of the sample size. */ u16 stack_size = event->attr.sample_stack_user; u16 header_size = perf_sample_data_size(data, event); u16 size = sizeof(u64); stack_size = perf_sample_ustack_size(stack_size, header_size, data->regs_user.regs); /* * If there is something to dump, add space for the dump * itself and for the field that tells the dynamic size, * which is how many have been actually dumped. */ if (stack_size) size += sizeof(u64) + stack_size; data->stack_user_size = stack_size; data->dyn_size += size; data->sample_flags |= PERF_SAMPLE_STACK_USER; } if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { data->weight.full = 0; data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; } if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { data->data_src.val = PERF_MEM_NA; data->sample_flags |= PERF_SAMPLE_DATA_SRC; } if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { data->txn = 0; data->sample_flags |= PERF_SAMPLE_TRANSACTION; } if (filtered_sample_type & PERF_SAMPLE_ADDR) { data->addr = 0; data->sample_flags |= PERF_SAMPLE_ADDR; } if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { /* regs dump ABI info */ int size = sizeof(u64); perf_sample_regs_intr(&data->regs_intr, regs); if (data->regs_intr.regs) { u64 mask = event->attr.sample_regs_intr; size += hweight64(mask) * sizeof(u64); } data->dyn_size += size; data->sample_flags |= PERF_SAMPLE_REGS_INTR; } if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { data->phys_addr = perf_virt_to_phys(data->addr); data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; } #ifdef CONFIG_CGROUP_PERF if (filtered_sample_type & PERF_SAMPLE_CGROUP) { struct cgroup *cgrp; /* protected by RCU */ cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; data->cgroup = cgroup_id(cgrp); data->sample_flags |= PERF_SAMPLE_CGROUP; } #endif /* * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, * but the value will not dump to the userspace. */ if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { data->data_page_size = perf_get_page_size(data->addr); data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; } if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { data->code_page_size = perf_get_page_size(data->ip); data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; } if (filtered_sample_type & PERF_SAMPLE_AUX) { u64 size; u16 header_size = perf_sample_data_size(data, event); header_size += sizeof(u64); /* size */ /* * Given the 16bit nature of header::size, an AUX sample can * easily overflow it, what with all the preceding sample bits. * Make sure this doesn't happen by using up to U16_MAX bytes * per sample in total (rounded down to 8 byte boundary). */ size = min_t(size_t, U16_MAX - header_size, event->attr.aux_sample_size); size = rounddown(size, 8); size = perf_prepare_sample_aux(event, data, size); WARN_ON_ONCE(size + header_size > U16_MAX); data->dyn_size += size + sizeof(u64); /* size above */ data->sample_flags |= PERF_SAMPLE_AUX; } } void perf_prepare_header(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs) { header->type = PERF_RECORD_SAMPLE; header->size = perf_sample_data_size(data, event); header->misc = perf_misc_flags(regs); /* * If you're adding more sample types here, you likely need to do * something about the overflowing header::size, like repurpose the * lowest 3 bits of size, which should be always zero at the moment. * This raises a more important question, do we really need 512k sized * samples and why, so good argumentation is in order for whatever you * do here next. */ WARN_ON_ONCE(header->size & 7); } static __always_inline int __perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs, int (*output_begin)(struct perf_output_handle *, struct perf_sample_data *, struct perf_event *, unsigned int)) { struct perf_output_handle handle; struct perf_event_header header; int err; /* protect the callchain buffers */ rcu_read_lock(); perf_prepare_sample(data, event, regs); perf_prepare_header(&header, data, event, regs); err = output_begin(&handle, data, event, header.size); if (err) goto exit; perf_output_sample(&handle, &header, data, event); perf_output_end(&handle); exit: rcu_read_unlock(); return err; } void perf_event_output_forward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { __perf_event_output(event, data, regs, perf_output_begin_forward); } void perf_event_output_backward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { __perf_event_output(event, data, regs, perf_output_begin_backward); } int perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { return __perf_event_output(event, data, regs, perf_output_begin); } /* * read event_id */ struct perf_read_event { struct perf_event_header header; u32 pid; u32 tid; }; static void perf_event_read_event(struct perf_event *event, struct task_struct *task) { struct perf_output_handle handle; struct perf_sample_data sample; struct perf_read_event read_event = { .header = { .type = PERF_RECORD_READ, .misc = 0, .size = sizeof(read_event) + event->read_size, }, .pid = perf_event_pid(event, task), .tid = perf_event_tid(event, task), }; int ret; perf_event_header__init_id(&read_event.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, read_event.header.size); if (ret) return; perf_output_put(&handle, read_event); perf_output_read(&handle, event); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } typedef void (perf_iterate_f)(struct perf_event *event, void *data); static void perf_iterate_ctx(struct perf_event_context *ctx, perf_iterate_f output, void *data, bool all) { struct perf_event *event; list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { if (!all) { if (event->state < PERF_EVENT_STATE_INACTIVE) continue; if (!event_filter_match(event)) continue; } output(event, data); } } static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) { struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); struct perf_event *event; list_for_each_entry_rcu(event, &pel->list, sb_list) { /* * Skip events that are not fully formed yet; ensure that * if we observe event->ctx, both event and ctx will be * complete enough. See perf_install_in_context(). */ if (!smp_load_acquire(&event->ctx)) continue; if (event->state < PERF_EVENT_STATE_INACTIVE) continue; if (!event_filter_match(event)) continue; output(event, data); } } /* * Iterate all events that need to receive side-band events. * * For new callers; ensure that account_pmu_sb_event() includes * your event, otherwise it might not get delivered. */ static void perf_iterate_sb(perf_iterate_f output, void *data, struct perf_event_context *task_ctx) { struct perf_event_context *ctx; rcu_read_lock(); preempt_disable(); /* * If we have task_ctx != NULL we only notify the task context itself. * The task_ctx is set only for EXIT events before releasing task * context. */ if (task_ctx) { perf_iterate_ctx(task_ctx, output, data, false); goto done; } perf_iterate_sb_cpu(output, data); ctx = rcu_dereference(current->perf_event_ctxp); if (ctx) perf_iterate_ctx(ctx, output, data, false); done: preempt_enable(); rcu_read_unlock(); } /* * Clear all file-based filters at exec, they'll have to be * re-instated when/if these objects are mmapped again. */ static void perf_event_addr_filters_exec(struct perf_event *event, void *data) { struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); struct perf_addr_filter *filter; unsigned int restart = 0, count = 0; unsigned long flags; if (!has_addr_filter(event)) return; raw_spin_lock_irqsave(&ifh->lock, flags); list_for_each_entry(filter, &ifh->list, entry) { if (filter->path.dentry) { event->addr_filter_ranges[count].start = 0; event->addr_filter_ranges[count].size = 0; restart++; } count++; } if (restart) event->addr_filters_gen++; raw_spin_unlock_irqrestore(&ifh->lock, flags); if (restart) perf_event_stop(event, 1); } void perf_event_exec(void) { struct perf_event_context *ctx; ctx = perf_pin_task_context(current); if (!ctx) return; perf_event_enable_on_exec(ctx); perf_event_remove_on_exec(ctx); perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); perf_unpin_context(ctx); put_ctx(ctx); } struct remote_output { struct perf_buffer *rb; int err; }; static void __perf_event_output_stop(struct perf_event *event, void *data) { struct perf_event *parent = event->parent; struct remote_output *ro = data; struct perf_buffer *rb = ro->rb; struct stop_event_data sd = { .event = event, }; if (!has_aux(event)) return; if (!parent) parent = event; /* * In case of inheritance, it will be the parent that links to the * ring-buffer, but it will be the child that's actually using it. * * We are using event::rb to determine if the event should be stopped, * however this may race with ring_buffer_attach() (through set_output), * which will make us skip the event that actually needs to be stopped. * So ring_buffer_attach() has to stop an aux event before re-assigning * its rb pointer. */ if (rcu_dereference(parent->rb) == rb) ro->err = __perf_event_stop(&sd); } static int __perf_pmu_output_stop(void *info) { struct perf_event *event = info; struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct remote_output ro = { .rb = event->rb, }; rcu_read_lock(); perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); if (cpuctx->task_ctx) perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, &ro, false); rcu_read_unlock(); return ro.err; } static void perf_pmu_output_stop(struct perf_event *event) { struct perf_event *iter; int err, cpu; restart: rcu_read_lock(); list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { /* * For per-CPU events, we need to make sure that neither they * nor their children are running; for cpu==-1 events it's * sufficient to stop the event itself if it's active, since * it can't have children. */ cpu = iter->cpu; if (cpu == -1) cpu = READ_ONCE(iter->oncpu); if (cpu == -1) continue; err = cpu_function_call(cpu, __perf_pmu_output_stop, event); if (err == -EAGAIN) { rcu_read_unlock(); goto restart; } } rcu_read_unlock(); } /* * task tracking -- fork/exit * * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task */ struct perf_task_event { struct task_struct *task; struct perf_event_context *task_ctx; struct { struct perf_event_header header; u32 pid; u32 ppid; u32 tid; u32 ptid; u64 time; } event_id; }; static int perf_event_task_match(struct perf_event *event) { return event->attr.comm || event->attr.mmap || event->attr.mmap2 || event->attr.mmap_data || event->attr.task; } static void perf_event_task_output(struct perf_event *event, void *data) { struct perf_task_event *task_event = data; struct perf_output_handle handle; struct perf_sample_data sample; struct task_struct *task = task_event->task; int ret, size = task_event->event_id.header.size; if (!perf_event_task_match(event)) return; perf_event_header__init_id(&task_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, task_event->event_id.header.size); if (ret) goto out; task_event->event_id.pid = perf_event_pid(event, task); task_event->event_id.tid = perf_event_tid(event, task); if (task_event->event_id.header.type == PERF_RECORD_EXIT) { task_event->event_id.ppid = perf_event_pid(event, task->real_parent); task_event->event_id.ptid = perf_event_pid(event, task->real_parent); } else { /* PERF_RECORD_FORK */ task_event->event_id.ppid = perf_event_pid(event, current); task_event->event_id.ptid = perf_event_tid(event, current); } task_event->event_id.time = perf_event_clock(event); perf_output_put(&handle, task_event->event_id); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: task_event->event_id.header.size = size; } static void perf_event_task(struct task_struct *task, struct perf_event_context *task_ctx, int new) { struct perf_task_event task_event; if (!atomic_read(&nr_comm_events) && !atomic_read(&nr_mmap_events) && !atomic_read(&nr_task_events)) return; task_event = (struct perf_task_event){ .task = task, .task_ctx = task_ctx, .event_id = { .header = { .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, .misc = 0, .size = sizeof(task_event.event_id), }, /* .pid */ /* .ppid */ /* .tid */ /* .ptid */ /* .time */ }, }; perf_iterate_sb(perf_event_task_output, &task_event, task_ctx); } void perf_event_fork(struct task_struct *task) { perf_event_task(task, NULL, 1); perf_event_namespaces(task); } /* * comm tracking */ struct perf_comm_event { struct task_struct *task; char *comm; int comm_size; struct { struct perf_event_header header; u32 pid; u32 tid; } event_id; }; static int perf_event_comm_match(struct perf_event *event) { return event->attr.comm; } static void perf_event_comm_output(struct perf_event *event, void *data) { struct perf_comm_event *comm_event = data; struct perf_output_handle handle; struct perf_sample_data sample; int size = comm_event->event_id.header.size; int ret; if (!perf_event_comm_match(event)) return; perf_event_header__init_id(&comm_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, comm_event->event_id.header.size); if (ret) goto out; comm_event->event_id.pid = perf_event_pid(event, comm_event->task); comm_event->event_id.tid = perf_event_tid(event, comm_event->task); perf_output_put(&handle, comm_event->event_id); __output_copy(&handle, comm_event->comm, comm_event->comm_size); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: comm_event->event_id.header.size = size; } static void perf_event_comm_event(struct perf_comm_event *comm_event) { char comm[TASK_COMM_LEN]; unsigned int size; memset(comm, 0, sizeof(comm)); strscpy(comm, comm_event->task->comm, sizeof(comm)); size = ALIGN(strlen(comm)+1, sizeof(u64)); comm_event->comm = comm; comm_event->comm_size = size; comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; perf_iterate_sb(perf_event_comm_output, comm_event, NULL); } void perf_event_comm(struct task_struct *task, bool exec) { struct perf_comm_event comm_event; if (!atomic_read(&nr_comm_events)) return; comm_event = (struct perf_comm_event){ .task = task, /* .comm */ /* .comm_size */ .event_id = { .header = { .type = PERF_RECORD_COMM, .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, /* .size */ }, /* .pid */ /* .tid */ }, }; perf_event_comm_event(&comm_event); } /* * namespaces tracking */ struct perf_namespaces_event { struct task_struct *task; struct { struct perf_event_header header; u32 pid; u32 tid; u64 nr_namespaces; struct perf_ns_link_info link_info[NR_NAMESPACES]; } event_id; }; static int perf_event_namespaces_match(struct perf_event *event) { return event->attr.namespaces; } static void perf_event_namespaces_output(struct perf_event *event, void *data) { struct perf_namespaces_event *namespaces_event = data; struct perf_output_handle handle; struct perf_sample_data sample; u16 header_size = namespaces_event->event_id.header.size; int ret; if (!perf_event_namespaces_match(event)) return; perf_event_header__init_id(&namespaces_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, namespaces_event->event_id.header.size); if (ret) goto out; namespaces_event->event_id.pid = perf_event_pid(event, namespaces_event->task); namespaces_event->event_id.tid = perf_event_tid(event, namespaces_event->task); perf_output_put(&handle, namespaces_event->event_id); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: namespaces_event->event_id.header.size = header_size; } static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, struct task_struct *task, const struct proc_ns_operations *ns_ops) { struct path ns_path; struct inode *ns_inode; int error; error = ns_get_path(&ns_path, task, ns_ops); if (!error) { ns_inode = ns_path.dentry->d_inode; ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); ns_link_info->ino = ns_inode->i_ino; path_put(&ns_path); } } void perf_event_namespaces(struct task_struct *task) { struct perf_namespaces_event namespaces_event; struct perf_ns_link_info *ns_link_info; if (!atomic_read(&nr_namespaces_events)) return; namespaces_event = (struct perf_namespaces_event){ .task = task, .event_id = { .header = { .type = PERF_RECORD_NAMESPACES, .misc = 0, .size = sizeof(namespaces_event.event_id), }, /* .pid */ /* .tid */ .nr_namespaces = NR_NAMESPACES, /* .link_info[NR_NAMESPACES] */ }, }; ns_link_info = namespaces_event.event_id.link_info; perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], task, &mntns_operations); #ifdef CONFIG_USER_NS perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], task, &userns_operations); #endif #ifdef CONFIG_NET_NS perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], task, &netns_operations); #endif #ifdef CONFIG_UTS_NS perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], task, &utsns_operations); #endif #ifdef CONFIG_IPC_NS perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], task, &ipcns_operations); #endif #ifdef CONFIG_PID_NS perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], task, &pidns_operations); #endif #ifdef CONFIG_CGROUPS perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], task, &cgroupns_operations); #endif perf_iterate_sb(perf_event_namespaces_output, &namespaces_event, NULL); } /* * cgroup tracking */ #ifdef CONFIG_CGROUP_PERF struct perf_cgroup_event { char *path; int path_size; struct { struct perf_event_header header; u64 id; char path[]; } event_id; }; static int perf_event_cgroup_match(struct perf_event *event) { return event->attr.cgroup; } static void perf_event_cgroup_output(struct perf_event *event, void *data) { struct perf_cgroup_event *cgroup_event = data; struct perf_output_handle handle; struct perf_sample_data sample; u16 header_size = cgroup_event->event_id.header.size; int ret; if (!perf_event_cgroup_match(event)) return; perf_event_header__init_id(&cgroup_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, cgroup_event->event_id.header.size); if (ret) goto out; perf_output_put(&handle, cgroup_event->event_id); __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: cgroup_event->event_id.header.size = header_size; } static void perf_event_cgroup(struct cgroup *cgrp) { struct perf_cgroup_event cgroup_event; char path_enomem[16] = "//enomem"; char *pathname; size_t size; if (!atomic_read(&nr_cgroup_events)) return; cgroup_event = (struct perf_cgroup_event){ .event_id = { .header = { .type = PERF_RECORD_CGROUP, .misc = 0, .size = sizeof(cgroup_event.event_id), }, .id = cgroup_id(cgrp), }, }; pathname = kmalloc(PATH_MAX, GFP_KERNEL); if (pathname == NULL) { cgroup_event.path = path_enomem; } else { /* just to be sure to have enough space for alignment */ cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); cgroup_event.path = pathname; } /* * Since our buffer works in 8 byte units we need to align our string * size to a multiple of 8. However, we must guarantee the tail end is * zero'd out to avoid leaking random bits to userspace. */ size = strlen(cgroup_event.path) + 1; while (!IS_ALIGNED(size, sizeof(u64))) cgroup_event.path[size++] = '\0'; cgroup_event.event_id.header.size += size; cgroup_event.path_size = size; perf_iterate_sb(perf_event_cgroup_output, &cgroup_event, NULL); kfree(pathname); } #endif /* * mmap tracking */ struct perf_mmap_event { struct vm_area_struct *vma; const char *file_name; int file_size; int maj, min; u64 ino; u64 ino_generation; u32 prot, flags; u8 build_id[BUILD_ID_SIZE_MAX]; u32 build_id_size; struct { struct perf_event_header header; u32 pid; u32 tid; u64 start; u64 len; u64 pgoff; } event_id; }; static int perf_event_mmap_match(struct perf_event *event, void *data) { struct perf_mmap_event *mmap_event = data; struct vm_area_struct *vma = mmap_event->vma; int executable = vma->vm_flags & VM_EXEC; return (!executable && event->attr.mmap_data) || (executable && (event->attr.mmap || event->attr.mmap2)); } static void perf_event_mmap_output(struct perf_event *event, void *data) { struct perf_mmap_event *mmap_event = data; struct perf_output_handle handle; struct perf_sample_data sample; int size = mmap_event->event_id.header.size; u32 type = mmap_event->event_id.header.type; bool use_build_id; int ret; if (!perf_event_mmap_match(event, data)) return; if (event->attr.mmap2) { mmap_event->event_id.header.type = PERF_RECORD_MMAP2; mmap_event->event_id.header.size += sizeof(mmap_event->maj); mmap_event->event_id.header.size += sizeof(mmap_event->min); mmap_event->event_id.header.size += sizeof(mmap_event->ino); mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); mmap_event->event_id.header.size += sizeof(mmap_event->prot); mmap_event->event_id.header.size += sizeof(mmap_event->flags); } perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, mmap_event->event_id.header.size); if (ret) goto out; mmap_event->event_id.pid = perf_event_pid(event, current); mmap_event->event_id.tid = perf_event_tid(event, current); use_build_id = event->attr.build_id && mmap_event->build_id_size; if (event->attr.mmap2 && use_build_id) mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; perf_output_put(&handle, mmap_event->event_id); if (event->attr.mmap2) { if (use_build_id) { u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; __output_copy(&handle, size, 4); __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); } else { perf_output_put(&handle, mmap_event->maj); perf_output_put(&handle, mmap_event->min); perf_output_put(&handle, mmap_event->ino); perf_output_put(&handle, mmap_event->ino_generation); } perf_output_put(&handle, mmap_event->prot); perf_output_put(&handle, mmap_event->flags); } __output_copy(&handle, mmap_event->file_name, mmap_event->file_size); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: mmap_event->event_id.header.size = size; mmap_event->event_id.header.type = type; } static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) { struct vm_area_struct *vma = mmap_event->vma; struct file *file = vma->vm_file; int maj = 0, min = 0; u64 ino = 0, gen = 0; u32 prot = 0, flags = 0; unsigned int size; char tmp[16]; char *buf = NULL; char *name = NULL; if (vma->vm_flags & VM_READ) prot |= PROT_READ; if (vma->vm_flags & VM_WRITE) prot |= PROT_WRITE; if (vma->vm_flags & VM_EXEC) prot |= PROT_EXEC; if (vma->vm_flags & VM_MAYSHARE) flags = MAP_SHARED; else flags = MAP_PRIVATE; if (vma->vm_flags & VM_LOCKED) flags |= MAP_LOCKED; if (is_vm_hugetlb_page(vma)) flags |= MAP_HUGETLB; if (file) { struct inode *inode; dev_t dev; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) { name = "//enomem"; goto cpy_name; } /* * d_path() works from the end of the rb backwards, so we * need to add enough zero bytes after the string to handle * the 64bit alignment we do later. */ name = file_path(file, buf, PATH_MAX - sizeof(u64)); if (IS_ERR(name)) { name = "//toolong"; goto cpy_name; } inode = file_inode(vma->vm_file); dev = inode->i_sb->s_dev; ino = inode->i_ino; gen = inode->i_generation; maj = MAJOR(dev); min = MINOR(dev); goto got_name; } else { if (vma->vm_ops && vma->vm_ops->name) name = (char *) vma->vm_ops->name(vma); if (!name) name = (char *)arch_vma_name(vma); if (!name) { if (vma_is_initial_heap(vma)) name = "[heap]"; else if (vma_is_initial_stack(vma)) name = "[stack]"; else name = "//anon"; } } cpy_name: strscpy(tmp, name, sizeof(tmp)); name = tmp; got_name: /* * Since our buffer works in 8 byte units we need to align our string * size to a multiple of 8. However, we must guarantee the tail end is * zero'd out to avoid leaking random bits to userspace. */ size = strlen(name)+1; while (!IS_ALIGNED(size, sizeof(u64))) name[size++] = '\0'; mmap_event->file_name = name; mmap_event->file_size = size; mmap_event->maj = maj; mmap_event->min = min; mmap_event->ino = ino; mmap_event->ino_generation = gen; mmap_event->prot = prot; mmap_event->flags = flags; if (!(vma->vm_flags & VM_EXEC)) mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; if (atomic_read(&nr_build_id_events)) build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); perf_iterate_sb(perf_event_mmap_output, mmap_event, NULL); kfree(buf); } /* * Check whether inode and address range match filter criteria. */ static bool perf_addr_filter_match(struct perf_addr_filter *filter, struct file *file, unsigned long offset, unsigned long size) { /* d_inode(NULL) won't be equal to any mapped user-space file */ if (!filter->path.dentry) return false; if (d_inode(filter->path.dentry) != file_inode(file)) return false; if (filter->offset > offset + size) return false; if (filter->offset + filter->size < offset) return false; return true; } static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, struct vm_area_struct *vma, struct perf_addr_filter_range *fr) { unsigned long vma_size = vma->vm_end - vma->vm_start; unsigned long off = vma->vm_pgoff << PAGE_SHIFT; struct file *file = vma->vm_file; if (!perf_addr_filter_match(filter, file, off, vma_size)) return false; if (filter->offset < off) { fr->start = vma->vm_start; fr->size = min(vma_size, filter->size - (off - filter->offset)); } else { fr->start = vma->vm_start + filter->offset - off; fr->size = min(vma->vm_end - fr->start, filter->size); } return true; } static void __perf_addr_filters_adjust(struct perf_event *event, void *data) { struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); struct vm_area_struct *vma = data; struct perf_addr_filter *filter; unsigned int restart = 0, count = 0; unsigned long flags; if (!has_addr_filter(event)) return; if (!vma->vm_file) return; raw_spin_lock_irqsave(&ifh->lock, flags); list_for_each_entry(filter, &ifh->list, entry) { if (perf_addr_filter_vma_adjust(filter, vma, &event->addr_filter_ranges[count])) restart++; count++; } if (restart) event->addr_filters_gen++; raw_spin_unlock_irqrestore(&ifh->lock, flags); if (restart) perf_event_stop(event, 1); } /* * Adjust all task's events' filters to the new vma */ static void perf_addr_filters_adjust(struct vm_area_struct *vma) { struct perf_event_context *ctx; /* * Data tracing isn't supported yet and as such there is no need * to keep track of anything that isn't related to executable code: */ if (!(vma->vm_flags & VM_EXEC)) return; rcu_read_lock(); ctx = rcu_dereference(current->perf_event_ctxp); if (ctx) perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); rcu_read_unlock(); } void perf_event_mmap(struct vm_area_struct *vma) { struct perf_mmap_event mmap_event; if (!atomic_read(&nr_mmap_events)) return; mmap_event = (struct perf_mmap_event){ .vma = vma, /* .file_name */ /* .file_size */ .event_id = { .header = { .type = PERF_RECORD_MMAP, .misc = PERF_RECORD_MISC_USER, /* .size */ }, /* .pid */ /* .tid */ .start = vma->vm_start, .len = vma->vm_end - vma->vm_start, .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, }, /* .maj (attr_mmap2 only) */ /* .min (attr_mmap2 only) */ /* .ino (attr_mmap2 only) */ /* .ino_generation (attr_mmap2 only) */ /* .prot (attr_mmap2 only) */ /* .flags (attr_mmap2 only) */ }; perf_addr_filters_adjust(vma); perf_event_mmap_event(&mmap_event); } void perf_event_aux_event(struct perf_event *event, unsigned long head, unsigned long size, u64 flags) { struct perf_output_handle handle; struct perf_sample_data sample; struct perf_aux_event { struct perf_event_header header; u64 offset; u64 size; u64 flags; } rec = { .header = { .type = PERF_RECORD_AUX, .misc = 0, .size = sizeof(rec), }, .offset = head, .size = size, .flags = flags, }; int ret; perf_event_header__init_id(&rec.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, rec.header.size); if (ret) return; perf_output_put(&handle, rec); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } /* * Lost/dropped samples logging */ void perf_log_lost_samples(struct perf_event *event, u64 lost) { struct perf_output_handle handle; struct perf_sample_data sample; int ret; struct { struct perf_event_header header; u64 lost; } lost_samples_event = { .header = { .type = PERF_RECORD_LOST_SAMPLES, .misc = 0, .size = sizeof(lost_samples_event), }, .lost = lost, }; perf_event_header__init_id(&lost_samples_event.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, lost_samples_event.header.size); if (ret) return; perf_output_put(&handle, lost_samples_event); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } /* * context_switch tracking */ struct perf_switch_event { struct task_struct *task; struct task_struct *next_prev; struct { struct perf_event_header header; u32 next_prev_pid; u32 next_prev_tid; } event_id; }; static int perf_event_switch_match(struct perf_event *event) { return event->attr.context_switch; } static void perf_event_switch_output(struct perf_event *event, void *data) { struct perf_switch_event *se = data; struct perf_output_handle handle; struct perf_sample_data sample; int ret; if (!perf_event_switch_match(event)) return; /* Only CPU-wide events are allowed to see next/prev pid/tid */ if (event->ctx->task) { se->event_id.header.type = PERF_RECORD_SWITCH; se->event_id.header.size = sizeof(se->event_id.header); } else { se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; se->event_id.header.size = sizeof(se->event_id); se->event_id.next_prev_pid = perf_event_pid(event, se->next_prev); se->event_id.next_prev_tid = perf_event_tid(event, se->next_prev); } perf_event_header__init_id(&se->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); if (ret) return; if (event->ctx->task) perf_output_put(&handle, se->event_id.header); else perf_output_put(&handle, se->event_id); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } static void perf_event_switch(struct task_struct *task, struct task_struct *next_prev, bool sched_in) { struct perf_switch_event switch_event; /* N.B. caller checks nr_switch_events != 0 */ switch_event = (struct perf_switch_event){ .task = task, .next_prev = next_prev, .event_id = { .header = { /* .type */ .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, /* .size */ }, /* .next_prev_pid */ /* .next_prev_tid */ }, }; if (!sched_in && task->on_rq) { switch_event.event_id.header.misc |= PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; } perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); } /* * IRQ throttle logging */ static void perf_log_throttle(struct perf_event *event, int enable) { struct perf_output_handle handle; struct perf_sample_data sample; int ret; struct { struct perf_event_header header; u64 time; u64 id; u64 stream_id; } throttle_event = { .header = { .type = PERF_RECORD_THROTTLE, .misc = 0, .size = sizeof(throttle_event), }, .time = perf_event_clock(event), .id = primary_event_id(event), .stream_id = event->id, }; if (enable) throttle_event.header.type = PERF_RECORD_UNTHROTTLE; perf_event_header__init_id(&throttle_event.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, throttle_event.header.size); if (ret) return; perf_output_put(&handle, throttle_event); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } /* * ksymbol register/unregister tracking */ struct perf_ksymbol_event { const char *name; int name_len; struct { struct perf_event_header header; u64 addr; u32 len; u16 ksym_type; u16 flags; } event_id; }; static int perf_event_ksymbol_match(struct perf_event *event) { return event->attr.ksymbol; } static void perf_event_ksymbol_output(struct perf_event *event, void *data) { struct perf_ksymbol_event *ksymbol_event = data; struct perf_output_handle handle; struct perf_sample_data sample; int ret; if (!perf_event_ksymbol_match(event)) return; perf_event_header__init_id(&ksymbol_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, ksymbol_event->event_id.header.size); if (ret) return; perf_output_put(&handle, ksymbol_event->event_id); __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym) { struct perf_ksymbol_event ksymbol_event; char name[KSYM_NAME_LEN]; u16 flags = 0; int name_len; if (!atomic_read(&nr_ksymbol_events)) return; if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) goto err; strscpy(name, sym, KSYM_NAME_LEN); name_len = strlen(name) + 1; while (!IS_ALIGNED(name_len, sizeof(u64))) name[name_len++] = '\0'; BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); if (unregister) flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; ksymbol_event = (struct perf_ksymbol_event){ .name = name, .name_len = name_len, .event_id = { .header = { .type = PERF_RECORD_KSYMBOL, .size = sizeof(ksymbol_event.event_id) + name_len, }, .addr = addr, .len = len, .ksym_type = ksym_type, .flags = flags, }, }; perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); return; err: WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); } /* * bpf program load/unload tracking */ struct perf_bpf_event { struct bpf_prog *prog; struct { struct perf_event_header header; u16 type; u16 flags; u32 id; u8 tag[BPF_TAG_SIZE]; } event_id; }; static int perf_event_bpf_match(struct perf_event *event) { return event->attr.bpf_event; } static void perf_event_bpf_output(struct perf_event *event, void *data) { struct perf_bpf_event *bpf_event = data; struct perf_output_handle handle; struct perf_sample_data sample; int ret; if (!perf_event_bpf_match(event)) return; perf_event_header__init_id(&bpf_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, bpf_event->event_id.header.size); if (ret) return; perf_output_put(&handle, bpf_event->event_id); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, enum perf_bpf_event_type type) { bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; int i; if (prog->aux->func_cnt == 0) { perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, (u64)(unsigned long)prog->bpf_func, prog->jited_len, unregister, prog->aux->ksym.name); } else { for (i = 0; i < prog->aux->func_cnt; i++) { struct bpf_prog *subprog = prog->aux->func[i]; perf_event_ksymbol( PERF_RECORD_KSYMBOL_TYPE_BPF, (u64)(unsigned long)subprog->bpf_func, subprog->jited_len, unregister, subprog->aux->ksym.name); } } } void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags) { struct perf_bpf_event bpf_event; if (type <= PERF_BPF_EVENT_UNKNOWN || type >= PERF_BPF_EVENT_MAX) return; switch (type) { case PERF_BPF_EVENT_PROG_LOAD: case PERF_BPF_EVENT_PROG_UNLOAD: if (atomic_read(&nr_ksymbol_events)) perf_event_bpf_emit_ksymbols(prog, type); break; default: break; } if (!atomic_read(&nr_bpf_events)) return; bpf_event = (struct perf_bpf_event){ .prog = prog, .event_id = { .header = { .type = PERF_RECORD_BPF_EVENT, .size = sizeof(bpf_event.event_id), }, .type = type, .flags = flags, .id = prog->aux->id, }, }; BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); } struct perf_text_poke_event { const void *old_bytes; const void *new_bytes; size_t pad; u16 old_len; u16 new_len; struct { struct perf_event_header header; u64 addr; } event_id; }; static int perf_event_text_poke_match(struct perf_event *event) { return event->attr.text_poke; } static void perf_event_text_poke_output(struct perf_event *event, void *data) { struct perf_text_poke_event *text_poke_event = data; struct perf_output_handle handle; struct perf_sample_data sample; u64 padding = 0; int ret; if (!perf_event_text_poke_match(event)) return; perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, text_poke_event->event_id.header.size); if (ret) return; perf_output_put(&handle, text_poke_event->event_id); perf_output_put(&handle, text_poke_event->old_len); perf_output_put(&handle, text_poke_event->new_len); __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); if (text_poke_event->pad) __output_copy(&handle, &padding, text_poke_event->pad); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len) { struct perf_text_poke_event text_poke_event; size_t tot, pad; if (!atomic_read(&nr_text_poke_events)) return; tot = sizeof(text_poke_event.old_len) + old_len; tot += sizeof(text_poke_event.new_len) + new_len; pad = ALIGN(tot, sizeof(u64)) - tot; text_poke_event = (struct perf_text_poke_event){ .old_bytes = old_bytes, .new_bytes = new_bytes, .pad = pad, .old_len = old_len, .new_len = new_len, .event_id = { .header = { .type = PERF_RECORD_TEXT_POKE, .misc = PERF_RECORD_MISC_KERNEL, .size = sizeof(text_poke_event.event_id) + tot + pad, }, .addr = (unsigned long)addr, }, }; perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); } void perf_event_itrace_started(struct perf_event *event) { event->attach_state |= PERF_ATTACH_ITRACE; } static void perf_log_itrace_start(struct perf_event *event) { struct perf_output_handle handle; struct perf_sample_data sample; struct perf_aux_event { struct perf_event_header header; u32 pid; u32 tid; } rec; int ret; if (event->parent) event = event->parent; if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || event->attach_state & PERF_ATTACH_ITRACE) return; rec.header.type = PERF_RECORD_ITRACE_START; rec.header.misc = 0; rec.header.size = sizeof(rec); rec.pid = perf_event_pid(event, current); rec.tid = perf_event_tid(event, current); perf_event_header__init_id(&rec.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, rec.header.size); if (ret) return; perf_output_put(&handle, rec); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) { struct perf_output_handle handle; struct perf_sample_data sample; struct perf_aux_event { struct perf_event_header header; u64 hw_id; } rec; int ret; if (event->parent) event = event->parent; rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; rec.header.misc = 0; rec.header.size = sizeof(rec); rec.hw_id = hw_id; perf_event_header__init_id(&rec.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, rec.header.size); if (ret) return; perf_output_put(&handle, rec); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } EXPORT_SYMBOL_GPL(perf_report_aux_output_id); static int __perf_event_account_interrupt(struct perf_event *event, int throttle) { struct hw_perf_event *hwc = &event->hw; int ret = 0; u64 seq; seq = __this_cpu_read(perf_throttled_seq); if (seq != hwc->interrupts_seq) { hwc->interrupts_seq = seq; hwc->interrupts = 1; } else { hwc->interrupts++; if (unlikely(throttle && hwc->interrupts > max_samples_per_tick)) { __this_cpu_inc(perf_throttled_count); tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); hwc->interrupts = MAX_INTERRUPTS; perf_log_throttle(event, 0); ret = 1; } } if (event->attr.freq) { u64 now = perf_clock(); s64 delta = now - hwc->freq_time_stamp; hwc->freq_time_stamp = now; if (delta > 0 && delta < 2*TICK_NSEC) perf_adjust_period(event, delta, hwc->last_period, true); } return ret; } int perf_event_account_interrupt(struct perf_event *event) { return __perf_event_account_interrupt(event, 1); } static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) { /* * Due to interrupt latency (AKA "skid"), we may enter the * kernel before taking an overflow, even if the PMU is only * counting user events. */ if (event->attr.exclude_kernel && !user_mode(regs)) return false; return true; } /* * Generic event overflow handling, sampling. */ static int __perf_event_overflow(struct perf_event *event, int throttle, struct perf_sample_data *data, struct pt_regs *regs) { int events = atomic_read(&event->event_limit); int ret = 0; /* * Non-sampling counters might still use the PMI to fold short * hardware counters, ignore those. */ if (unlikely(!is_sampling_event(event))) return 0; ret = __perf_event_account_interrupt(event, throttle); /* * XXX event_limit might not quite work as expected on inherited * events */ event->pending_kill = POLL_IN; if (events && atomic_dec_and_test(&event->event_limit)) { ret = 1; event->pending_kill = POLL_HUP; perf_event_disable_inatomic(event); } if (event->attr.sigtrap) { /* * The desired behaviour of sigtrap vs invalid samples is a bit * tricky; on the one hand, one should not loose the SIGTRAP if * it is the first event, on the other hand, we should also not * trigger the WARN or override the data address. */ bool valid_sample = sample_is_allowed(event, regs); unsigned int pending_id = 1; if (regs) pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; if (!event->pending_sigtrap) { event->pending_sigtrap = pending_id; local_inc(&event->ctx->nr_pending); } else if (event->attr.exclude_kernel && valid_sample) { /* * Should not be able to return to user space without * consuming pending_sigtrap; with exceptions: * * 1. Where !exclude_kernel, events can overflow again * in the kernel without returning to user space. * * 2. Events that can overflow again before the IRQ- * work without user space progress (e.g. hrtimer). * To approximate progress (with false negatives), * check 32-bit hash of the current IP. */ WARN_ON_ONCE(event->pending_sigtrap != pending_id); } event->pending_addr = 0; if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) event->pending_addr = data->addr; irq_work_queue(&event->pending_irq); } READ_ONCE(event->overflow_handler)(event, data, regs); if (*perf_event_fasync(event) && event->pending_kill) { event->pending_wakeup = 1; irq_work_queue(&event->pending_irq); } return ret; } int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { return __perf_event_overflow(event, 1, data, regs); } /* * Generic software event infrastructure */ struct swevent_htable { struct swevent_hlist *swevent_hlist; struct mutex hlist_mutex; int hlist_refcount; /* Recursion avoidance in each contexts */ int recursion[PERF_NR_CONTEXTS]; }; static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); /* * We directly increment event->count and keep a second value in * event->hw.period_left to count intervals. This period event * is kept in the range [-sample_period, 0] so that we can use the * sign as trigger. */ u64 perf_swevent_set_period(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 period = hwc->last_period; u64 nr, offset; s64 old, val; hwc->last_period = hwc->sample_period; old = local64_read(&hwc->period_left); do { val = old; if (val < 0) return 0; nr = div64_u64(period + val, period); offset = nr * period; val -= offset; } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); return nr; } static void perf_swevent_overflow(struct perf_event *event, u64 overflow, struct perf_sample_data *data, struct pt_regs *regs) { struct hw_perf_event *hwc = &event->hw; int throttle = 0; if (!overflow) overflow = perf_swevent_set_period(event); if (hwc->interrupts == MAX_INTERRUPTS) return; for (; overflow; overflow--) { if (__perf_event_overflow(event, throttle, data, regs)) { /* * We inhibit the overflow from happening when * hwc->interrupts == MAX_INTERRUPTS. */ break; } throttle = 1; } } static void perf_swevent_event(struct perf_event *event, u64 nr, struct perf_sample_data *data, struct pt_regs *regs) { struct hw_perf_event *hwc = &event->hw; local64_add(nr, &event->count); if (!regs) return; if (!is_sampling_event(event)) return; if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { data->period = nr; return perf_swevent_overflow(event, 1, data, regs); } else data->period = event->hw.last_period; if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) return perf_swevent_overflow(event, 1, data, regs); if (local64_add_negative(nr, &hwc->period_left)) return; perf_swevent_overflow(event, 0, data, regs); } static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) { if (event->hw.state & PERF_HES_STOPPED) return 1; if (regs) { if (event->attr.exclude_user && user_mode(regs)) return 1; if (event->attr.exclude_kernel && !user_mode(regs)) return 1; } return 0; } static int perf_swevent_match(struct perf_event *event, enum perf_type_id type, u32 event_id, struct perf_sample_data *data, struct pt_regs *regs) { if (event->attr.type != type) return 0; if (event->attr.config != event_id) return 0; if (perf_exclude_event(event, regs)) return 0; return 1; } static inline u64 swevent_hash(u64 type, u32 event_id) { u64 val = event_id | (type << 32); return hash_64(val, SWEVENT_HLIST_BITS); } static inline struct hlist_head * __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) { u64 hash = swevent_hash(type, event_id); return &hlist->heads[hash]; } /* For the read side: events when they trigger */ static inline struct hlist_head * find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) { struct swevent_hlist *hlist; hlist = rcu_dereference(swhash->swevent_hlist); if (!hlist) return NULL; return __find_swevent_head(hlist, type, event_id); } /* For the event head insertion and removal in the hlist */ static inline struct hlist_head * find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) { struct swevent_hlist *hlist; u32 event_id = event->attr.config; u64 type = event->attr.type; /* * Event scheduling is always serialized against hlist allocation * and release. Which makes the protected version suitable here. * The context lock guarantees that. */ hlist = rcu_dereference_protected(swhash->swevent_hlist, lockdep_is_held(&event->ctx->lock)); if (!hlist) return NULL; return __find_swevent_head(hlist, type, event_id); } static void do_perf_sw_event(enum perf_type_id type, u32 event_id, u64 nr, struct perf_sample_data *data, struct pt_regs *regs) { struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); struct perf_event *event; struct hlist_head *head; rcu_read_lock(); head = find_swevent_head_rcu(swhash, type, event_id); if (!head) goto end; hlist_for_each_entry_rcu(event, head, hlist_entry) { if (perf_swevent_match(event, type, event_id, data, regs)) perf_swevent_event(event, nr, data, regs); } end: rcu_read_unlock(); } DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); int perf_swevent_get_recursion_context(void) { struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); return get_recursion_context(swhash->recursion); } EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); void perf_swevent_put_recursion_context(int rctx) { struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); put_recursion_context(swhash->recursion, rctx); } void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { struct perf_sample_data data; if (WARN_ON_ONCE(!regs)) return; perf_sample_data_init(&data, addr, 0); do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); } void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { int rctx; preempt_disable_notrace(); rctx = perf_swevent_get_recursion_context(); if (unlikely(rctx < 0)) goto fail; ___perf_sw_event(event_id, nr, regs, addr); perf_swevent_put_recursion_context(rctx); fail: preempt_enable_notrace(); } static void perf_swevent_read(struct perf_event *event) { } static int perf_swevent_add(struct perf_event *event, int flags) { struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); struct hw_perf_event *hwc = &event->hw; struct hlist_head *head; if (is_sampling_event(event)) { hwc->last_period = hwc->sample_period; perf_swevent_set_period(event); } hwc->state = !(flags & PERF_EF_START); head = find_swevent_head(swhash, event); if (WARN_ON_ONCE(!head)) return -EINVAL; hlist_add_head_rcu(&event->hlist_entry, head); perf_event_update_userpage(event); return 0; } static void perf_swevent_del(struct perf_event *event, int flags) { hlist_del_rcu(&event->hlist_entry); } static void perf_swevent_start(struct perf_event *event, int flags) { event->hw.state = 0; } static void perf_swevent_stop(struct perf_event *event, int flags) { event->hw.state = PERF_HES_STOPPED; } /* Deref the hlist from the update side */ static inline struct swevent_hlist * swevent_hlist_deref(struct swevent_htable *swhash) { return rcu_dereference_protected(swhash->swevent_hlist, lockdep_is_held(&swhash->hlist_mutex)); } static void swevent_hlist_release(struct swevent_htable *swhash) { struct swevent_hlist *hlist = swevent_hlist_deref(swhash); if (!hlist) return; RCU_INIT_POINTER(swhash->swevent_hlist, NULL); kfree_rcu(hlist, rcu_head); } static void swevent_hlist_put_cpu(int cpu) { struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); mutex_lock(&swhash->hlist_mutex); if (!--swhash->hlist_refcount) swevent_hlist_release(swhash); mutex_unlock(&swhash->hlist_mutex); } static void swevent_hlist_put(void) { int cpu; for_each_possible_cpu(cpu) swevent_hlist_put_cpu(cpu); } static int swevent_hlist_get_cpu(int cpu) { struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); int err = 0; mutex_lock(&swhash->hlist_mutex); if (!swevent_hlist_deref(swhash) && cpumask_test_cpu(cpu, perf_online_mask)) { struct swevent_hlist *hlist; hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); if (!hlist) { err = -ENOMEM; goto exit; } rcu_assign_pointer(swhash->swevent_hlist, hlist); } swhash->hlist_refcount++; exit: mutex_unlock(&swhash->hlist_mutex); return err; } static int swevent_hlist_get(void) { int err, cpu, failed_cpu; mutex_lock(&pmus_lock); for_each_possible_cpu(cpu) { err = swevent_hlist_get_cpu(cpu); if (err) { failed_cpu = cpu; goto fail; } } mutex_unlock(&pmus_lock); return 0; fail: for_each_possible_cpu(cpu) { if (cpu == failed_cpu) break; swevent_hlist_put_cpu(cpu); } mutex_unlock(&pmus_lock); return err; } struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; static void sw_perf_event_destroy(struct perf_event *event) { u64 event_id = event->attr.config; WARN_ON(event->parent); static_key_slow_dec(&perf_swevent_enabled[event_id]); swevent_hlist_put(); } static struct pmu perf_cpu_clock; /* fwd declaration */ static struct pmu perf_task_clock; static int perf_swevent_init(struct perf_event *event) { u64 event_id = event->attr.config; if (event->attr.type != PERF_TYPE_SOFTWARE) return -ENOENT; /* * no branch sampling for software events */ if (has_branch_stack(event)) return -EOPNOTSUPP; switch (event_id) { case PERF_COUNT_SW_CPU_CLOCK: event->attr.type = perf_cpu_clock.type; return -ENOENT; case PERF_COUNT_SW_TASK_CLOCK: event->attr.type = perf_task_clock.type; return -ENOENT; default: break; } if (event_id >= PERF_COUNT_SW_MAX) return -ENOENT; if (!event->parent) { int err; err = swevent_hlist_get(); if (err) return err; static_key_slow_inc(&perf_swevent_enabled[event_id]); event->destroy = sw_perf_event_destroy; } return 0; } static struct pmu perf_swevent = { .task_ctx_nr = perf_sw_context, .capabilities = PERF_PMU_CAP_NO_NMI, .event_init = perf_swevent_init, .add = perf_swevent_add, .del = perf_swevent_del, .start = perf_swevent_start, .stop = perf_swevent_stop, .read = perf_swevent_read, }; #ifdef CONFIG_EVENT_TRACING static void tp_perf_event_destroy(struct perf_event *event) { perf_trace_destroy(event); } static int perf_tp_event_init(struct perf_event *event) { int err; if (event->attr.type != PERF_TYPE_TRACEPOINT) return -ENOENT; /* * no branch sampling for tracepoint events */ if (has_branch_stack(event)) return -EOPNOTSUPP; err = perf_trace_init(event); if (err) return err; event->destroy = tp_perf_event_destroy; return 0; } static struct pmu perf_tracepoint = { .task_ctx_nr = perf_sw_context, .event_init = perf_tp_event_init, .add = perf_trace_add, .del = perf_trace_del, .start = perf_swevent_start, .stop = perf_swevent_stop, .read = perf_swevent_read, }; static int perf_tp_filter_match(struct perf_event *event, struct perf_sample_data *data) { void *record = data->raw->frag.data; /* only top level events have filters set */ if (event->parent) event = event->parent; if (likely(!event->filter) || filter_match_preds(event->filter, record)) return 1; return 0; } static int perf_tp_event_match(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { if (event->hw.state & PERF_HES_STOPPED) return 0; /* * If exclude_kernel, only trace user-space tracepoints (uprobes) */ if (event->attr.exclude_kernel && !user_mode(regs)) return 0; if (!perf_tp_filter_match(event, data)) return 0; return 1; } void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, struct trace_event_call *call, u64 count, struct pt_regs *regs, struct hlist_head *head, struct task_struct *task) { if (bpf_prog_array_valid(call)) { *(struct pt_regs **)raw_data = regs; if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { perf_swevent_put_recursion_context(rctx); return; } } perf_tp_event(call->event.type, count, raw_data, size, regs, head, rctx, task); } EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); static void __perf_tp_event_target_task(u64 count, void *record, struct pt_regs *regs, struct perf_sample_data *data, struct perf_event *event) { struct trace_entry *entry = record; if (event->attr.config != entry->type) return; /* Cannot deliver synchronous signal to other task. */ if (event->attr.sigtrap) return; if (perf_tp_event_match(event, data, regs)) perf_swevent_event(event, count, data, regs); } static void perf_tp_event_target_task(u64 count, void *record, struct pt_regs *regs, struct perf_sample_data *data, struct perf_event_context *ctx) { unsigned int cpu = smp_processor_id(); struct pmu *pmu = &perf_tracepoint; struct perf_event *event, *sibling; perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { __perf_tp_event_target_task(count, record, regs, data, event); for_each_sibling_event(sibling, event) __perf_tp_event_target_task(count, record, regs, data, sibling); } perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { __perf_tp_event_target_task(count, record, regs, data, event); for_each_sibling_event(sibling, event) __perf_tp_event_target_task(count, record, regs, data, sibling); } } void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task) { struct perf_sample_data data; struct perf_event *event; struct perf_raw_record raw = { .frag = { .size = entry_size, .data = record, }, }; perf_sample_data_init(&data, 0, 0); perf_sample_save_raw_data(&data, &raw); perf_trace_buf_update(record, event_type); hlist_for_each_entry_rcu(event, head, hlist_entry) { if (perf_tp_event_match(event, &data, regs)) { perf_swevent_event(event, count, &data, regs); /* * Here use the same on-stack perf_sample_data, * some members in data are event-specific and * need to be re-computed for different sweveents. * Re-initialize data->sample_flags safely to avoid * the problem that next event skips preparing data * because data->sample_flags is set. */ perf_sample_data_init(&data, 0, 0); perf_sample_save_raw_data(&data, &raw); } } /* * If we got specified a target task, also iterate its context and * deliver this event there too. */ if (task && task != current) { struct perf_event_context *ctx; rcu_read_lock(); ctx = rcu_dereference(task->perf_event_ctxp); if (!ctx) goto unlock; raw_spin_lock(&ctx->lock); perf_tp_event_target_task(count, record, regs, &data, ctx); raw_spin_unlock(&ctx->lock); unlock: rcu_read_unlock(); } perf_swevent_put_recursion_context(rctx); } EXPORT_SYMBOL_GPL(perf_tp_event); #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) /* * Flags in config, used by dynamic PMU kprobe and uprobe * The flags should match following PMU_FORMAT_ATTR(). * * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe * if not set, create kprobe/uprobe * * The following values specify a reference counter (or semaphore in the * terminology of tools like dtrace, systemtap, etc.) Userspace Statically * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. * * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left */ enum perf_probe_config { PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, }; PMU_FORMAT_ATTR(retprobe, "config:0"); #endif #ifdef CONFIG_KPROBE_EVENTS static struct attribute *kprobe_attrs[] = { &format_attr_retprobe.attr, NULL, }; static struct attribute_group kprobe_format_group = { .name = "format", .attrs = kprobe_attrs, }; static const struct attribute_group *kprobe_attr_groups[] = { &kprobe_format_group, NULL, }; static int perf_kprobe_event_init(struct perf_event *event); static struct pmu perf_kprobe = { .task_ctx_nr = perf_sw_context, .event_init = perf_kprobe_event_init, .add = perf_trace_add, .del = perf_trace_del, .start = perf_swevent_start, .stop = perf_swevent_stop, .read = perf_swevent_read, .attr_groups = kprobe_attr_groups, }; static int perf_kprobe_event_init(struct perf_event *event) { int err; bool is_retprobe; if (event->attr.type != perf_kprobe.type) return -ENOENT; if (!perfmon_capable()) return -EACCES; /* * no branch sampling for probe events */ if (has_branch_stack(event)) return -EOPNOTSUPP; is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; err = perf_kprobe_init(event, is_retprobe); if (err) return err; event->destroy = perf_kprobe_destroy; return 0; } #endif /* CONFIG_KPROBE_EVENTS */ #ifdef CONFIG_UPROBE_EVENTS PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); static struct attribute *uprobe_attrs[] = { &format_attr_retprobe.attr, &format_attr_ref_ctr_offset.attr, NULL, }; static struct attribute_group uprobe_format_group = { .name = "format", .attrs = uprobe_attrs, }; static const struct attribute_group *uprobe_attr_groups[] = { &uprobe_format_group, NULL, }; static int perf_uprobe_event_init(struct perf_event *event); static struct pmu perf_uprobe = { .task_ctx_nr = perf_sw_context, .event_init = perf_uprobe_event_init, .add = perf_trace_add, .del = perf_trace_del, .start = perf_swevent_start, .stop = perf_swevent_stop, .read = perf_swevent_read, .attr_groups = uprobe_attr_groups, }; static int perf_uprobe_event_init(struct perf_event *event) { int err; unsigned long ref_ctr_offset; bool is_retprobe; if (event->attr.type != perf_uprobe.type) return -ENOENT; if (!perfmon_capable()) return -EACCES; /* * no branch sampling for probe events */ if (has_branch_stack(event)) return -EOPNOTSUPP; is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); if (err) return err; event->destroy = perf_uprobe_destroy; return 0; } #endif /* CONFIG_UPROBE_EVENTS */ static inline void perf_tp_register(void) { perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); #ifdef CONFIG_KPROBE_EVENTS perf_pmu_register(&perf_kprobe, "kprobe", -1); #endif #ifdef CONFIG_UPROBE_EVENTS perf_pmu_register(&perf_uprobe, "uprobe", -1); #endif } static void perf_event_free_filter(struct perf_event *event) { ftrace_profile_free_filter(event); } #ifdef CONFIG_BPF_SYSCALL static void bpf_overflow_handler(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { struct bpf_perf_event_data_kern ctx = { .data = data, .event = event, }; struct bpf_prog *prog; int ret = 0; ctx.regs = perf_arch_bpf_user_pt_regs(regs); if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) goto out; rcu_read_lock(); prog = READ_ONCE(event->prog); if (prog) { perf_prepare_sample(data, event, regs); ret = bpf_prog_run(prog, &ctx); } rcu_read_unlock(); out: __this_cpu_dec(bpf_prog_active); if (!ret) return; event->orig_overflow_handler(event, data, regs); } static int perf_event_set_bpf_handler(struct perf_event *event, struct bpf_prog *prog, u64 bpf_cookie) { if (event->overflow_handler_context) /* hw breakpoint or kernel counter */ return -EINVAL; if (event->prog) return -EEXIST; if (prog->type != BPF_PROG_TYPE_PERF_EVENT) return -EINVAL; if (event->attr.precise_ip && prog->call_get_stack && (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || event->attr.exclude_callchain_kernel || event->attr.exclude_callchain_user)) { /* * On perf_event with precise_ip, calling bpf_get_stack() * may trigger unwinder warnings and occasional crashes. * bpf_get_[stack|stackid] works around this issue by using * callchain attached to perf_sample_data. If the * perf_event does not full (kernel and user) callchain * attached to perf_sample_data, do not allow attaching BPF * program that calls bpf_get_[stack|stackid]. */ return -EPROTO; } event->prog = prog; event->bpf_cookie = bpf_cookie; event->orig_overflow_handler = READ_ONCE(event->overflow_handler); WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); return 0; } static void perf_event_free_bpf_handler(struct perf_event *event) { struct bpf_prog *prog = event->prog; if (!prog) return; WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); event->prog = NULL; bpf_prog_put(prog); } #else static int perf_event_set_bpf_handler(struct perf_event *event, struct bpf_prog *prog, u64 bpf_cookie) { return -EOPNOTSUPP; } static void perf_event_free_bpf_handler(struct perf_event *event) { } #endif /* * returns true if the event is a tracepoint, or a kprobe/upprobe created * with perf_event_open() */ static inline bool perf_event_is_tracing(struct perf_event *event) { if (event->pmu == &perf_tracepoint) return true; #ifdef CONFIG_KPROBE_EVENTS if (event->pmu == &perf_kprobe) return true; #endif #ifdef CONFIG_UPROBE_EVENTS if (event->pmu == &perf_uprobe) return true; #endif return false; } int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, u64 bpf_cookie) { bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; if (!perf_event_is_tracing(event)) return perf_event_set_bpf_handler(event, prog, bpf_cookie); is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; is_syscall_tp = is_syscall_trace_event(event->tp_event); if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) /* bpf programs can only be attached to u/kprobe or tracepoint */ return -EINVAL; if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) return -EINVAL; if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) /* only uprobe programs are allowed to be sleepable */ return -EINVAL; /* Kprobe override only works for kprobes, not uprobes. */ if (prog->kprobe_override && !is_kprobe) return -EINVAL; if (is_tracepoint || is_syscall_tp) { int off = trace_event_get_offsets(event->tp_event); if (prog->aux->max_ctx_offset > off) return -EACCES; } return perf_event_attach_bpf_prog(event, prog, bpf_cookie); } void perf_event_free_bpf_prog(struct perf_event *event) { if (!perf_event_is_tracing(event)) { perf_event_free_bpf_handler(event); return; } perf_event_detach_bpf_prog(event); } #else static inline void perf_tp_register(void) { } static void perf_event_free_filter(struct perf_event *event) { } int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, u64 bpf_cookie) { return -ENOENT; } void perf_event_free_bpf_prog(struct perf_event *event) { } #endif /* CONFIG_EVENT_TRACING */ #ifdef CONFIG_HAVE_HW_BREAKPOINT void perf_bp_event(struct perf_event *bp, void *data) { struct perf_sample_data sample; struct pt_regs *regs = data; perf_sample_data_init(&sample, bp->attr.bp_addr, 0); if (!bp->hw.state && !perf_exclude_event(bp, regs)) perf_swevent_event(bp, 1, &sample, regs); } #endif /* * Allocate a new address filter */ static struct perf_addr_filter * perf_addr_filter_new(struct perf_event *event, struct list_head *filters) { int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); struct perf_addr_filter *filter; filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); if (!filter) return NULL; INIT_LIST_HEAD(&filter->entry); list_add_tail(&filter->entry, filters); return filter; } static void free_filters_list(struct list_head *filters) { struct perf_addr_filter *filter, *iter; list_for_each_entry_safe(filter, iter, filters, entry) { path_put(&filter->path); list_del(&filter->entry); kfree(filter); } } /* * Free existing address filters and optionally install new ones */ static void perf_addr_filters_splice(struct perf_event *event, struct list_head *head) { unsigned long flags; LIST_HEAD(list); if (!has_addr_filter(event)) return; /* don't bother with children, they don't have their own filters */ if (event->parent) return; raw_spin_lock_irqsave(&event->addr_filters.lock, flags); list_splice_init(&event->addr_filters.list, &list); if (head) list_splice(head, &event->addr_filters.list); raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); free_filters_list(&list); } /* * Scan through mm's vmas and see if one of them matches the * @filter; if so, adjust filter's address range. * Called with mm::mmap_lock down for reading. */ static void perf_addr_filter_apply(struct perf_addr_filter *filter, struct mm_struct *mm, struct perf_addr_filter_range *fr) { struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, 0); for_each_vma(vmi, vma) { if (!vma->vm_file) continue; if (perf_addr_filter_vma_adjust(filter, vma, fr)) return; } } /* * Update event's address range filters based on the * task's existing mappings, if any. */ static void perf_event_addr_filters_apply(struct perf_event *event) { struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); struct task_struct *task = READ_ONCE(event->ctx->task); struct perf_addr_filter *filter; struct mm_struct *mm = NULL; unsigned int count = 0; unsigned long flags; /* * We may observe TASK_TOMBSTONE, which means that the event tear-down * will stop on the parent's child_mutex that our caller is also holding */ if (task == TASK_TOMBSTONE) return; if (ifh->nr_file_filters) { mm = get_task_mm(task); if (!mm) goto restart; mmap_read_lock(mm); } raw_spin_lock_irqsave(&ifh->lock, flags); list_for_each_entry(filter, &ifh->list, entry) { if (filter->path.dentry) { /* * Adjust base offset if the filter is associated to a * binary that needs to be mapped: */ event->addr_filter_ranges[count].start = 0; event->addr_filter_ranges[count].size = 0; perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); } else { event->addr_filter_ranges[count].start = filter->offset; event->addr_filter_ranges[count].size = filter->size; } count++; } event->addr_filters_gen++; raw_spin_unlock_irqrestore(&ifh->lock, flags); if (ifh->nr_file_filters) { mmap_read_unlock(mm); mmput(mm); } restart: perf_event_stop(event, 1); } /* * Address range filtering: limiting the data to certain * instruction address ranges. Filters are ioctl()ed to us from * userspace as ascii strings. * * Filter string format: * * ACTION RANGE_SPEC * where ACTION is one of the * * "filter": limit the trace to this region * * "start": start tracing from this address * * "stop": stop tracing at this address/region; * RANGE_SPEC is * * for kernel addresses: <start address>[/<size>] * * for object files: <start address>[/<size>]@</path/to/object/file> * * if <size> is not specified or is zero, the range is treated as a single * address; not valid for ACTION=="filter". */ enum { IF_ACT_NONE = -1, IF_ACT_FILTER, IF_ACT_START, IF_ACT_STOP, IF_SRC_FILE, IF_SRC_KERNEL, IF_SRC_FILEADDR, IF_SRC_KERNELADDR, }; enum { IF_STATE_ACTION = 0, IF_STATE_SOURCE, IF_STATE_END, }; static const match_table_t if_tokens = { { IF_ACT_FILTER, "filter" }, { IF_ACT_START, "start" }, { IF_ACT_STOP, "stop" }, { IF_SRC_FILE, "%u/%u@%s" }, { IF_SRC_KERNEL, "%u/%u" }, { IF_SRC_FILEADDR, "%u@%s" }, { IF_SRC_KERNELADDR, "%u" }, { IF_ACT_NONE, NULL }, }; /* * Address filter string parser */ static int perf_event_parse_addr_filter(struct perf_event *event, char *fstr, struct list_head *filters) { struct perf_addr_filter *filter = NULL; char *start, *orig, *filename = NULL; substring_t args[MAX_OPT_ARGS]; int state = IF_STATE_ACTION, token; unsigned int kernel = 0; int ret = -EINVAL; orig = fstr = kstrdup(fstr, GFP_KERNEL); if (!fstr) return -ENOMEM; while ((start = strsep(&fstr, " ,\n")) != NULL) { static const enum perf_addr_filter_action_t actions[] = { [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, }; ret = -EINVAL; if (!*start) continue; /* filter definition begins */ if (state == IF_STATE_ACTION) { filter = perf_addr_filter_new(event, filters); if (!filter) goto fail; } token = match_token(start, if_tokens, args); switch (token) { case IF_ACT_FILTER: case IF_ACT_START: case IF_ACT_STOP: if (state != IF_STATE_ACTION) goto fail; filter->action = actions[token]; state = IF_STATE_SOURCE; break; case IF_SRC_KERNELADDR: case IF_SRC_KERNEL: kernel = 1; fallthrough; case IF_SRC_FILEADDR: case IF_SRC_FILE: if (state != IF_STATE_SOURCE) goto fail; *args[0].to = 0; ret = kstrtoul(args[0].from, 0, &filter->offset); if (ret) goto fail; if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { *args[1].to = 0; ret = kstrtoul(args[1].from, 0, &filter->size); if (ret) goto fail; } if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { int fpos = token == IF_SRC_FILE ? 2 : 1; kfree(filename); filename = match_strdup(&args[fpos]); if (!filename) { ret = -ENOMEM; goto fail; } } state = IF_STATE_END; break; default: goto fail; } /* * Filter definition is fully parsed, validate and install it. * Make sure that it doesn't contradict itself or the event's * attribute. */ if (state == IF_STATE_END) { ret = -EINVAL; /* * ACTION "filter" must have a non-zero length region * specified. */ if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && !filter->size) goto fail; if (!kernel) { if (!filename) goto fail; /* * For now, we only support file-based filters * in per-task events; doing so for CPU-wide * events requires additional context switching * trickery, since same object code will be * mapped at different virtual addresses in * different processes. */ ret = -EOPNOTSUPP; if (!event->ctx->task) goto fail; /* look up the path and grab its inode */ ret = kern_path(filename, LOOKUP_FOLLOW, &filter->path); if (ret) goto fail; ret = -EINVAL; if (!filter->path.dentry || !S_ISREG(d_inode(filter->path.dentry) ->i_mode)) goto fail; event->addr_filters.nr_file_filters++; } /* ready to consume more filters */ kfree(filename); filename = NULL; state = IF_STATE_ACTION; filter = NULL; kernel = 0; } } if (state != IF_STATE_ACTION) goto fail; kfree(filename); kfree(orig); return 0; fail: kfree(filename); free_filters_list(filters); kfree(orig); return ret; } static int perf_event_set_addr_filter(struct perf_event *event, char *filter_str) { LIST_HEAD(filters); int ret; /* * Since this is called in perf_ioctl() path, we're already holding * ctx::mutex. */ lockdep_assert_held(&event->ctx->mutex); if (WARN_ON_ONCE(event->parent)) return -EINVAL; ret = perf_event_parse_addr_filter(event, filter_str, &filters); if (ret) goto fail_clear_files; ret = event->pmu->addr_filters_validate(&filters); if (ret) goto fail_free_filters; /* remove existing filters, if any */ perf_addr_filters_splice(event, &filters); /* install new filters */ perf_event_for_each_child(event, perf_event_addr_filters_apply); return ret; fail_free_filters: free_filters_list(&filters); fail_clear_files: event->addr_filters.nr_file_filters = 0; return ret; } static int perf_event_set_filter(struct perf_event *event, void __user *arg) { int ret = -EINVAL; char *filter_str; filter_str = strndup_user(arg, PAGE_SIZE); if (IS_ERR(filter_str)) return PTR_ERR(filter_str); #ifdef CONFIG_EVENT_TRACING if (perf_event_is_tracing(event)) { struct perf_event_context *ctx = event->ctx; /* * Beware, here be dragons!! * * the tracepoint muck will deadlock against ctx->mutex, but * the tracepoint stuff does not actually need it. So * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we * already have a reference on ctx. * * This can result in event getting moved to a different ctx, * but that does not affect the tracepoint state. */ mutex_unlock(&ctx->mutex); ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); mutex_lock(&ctx->mutex); } else #endif if (has_addr_filter(event)) ret = perf_event_set_addr_filter(event, filter_str); kfree(filter_str); return ret; } /* * hrtimer based swevent callback */ static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) { enum hrtimer_restart ret = HRTIMER_RESTART; struct perf_sample_data data; struct pt_regs *regs; struct perf_event *event; u64 period; event = container_of(hrtimer, struct perf_event, hw.hrtimer); if (event->state != PERF_EVENT_STATE_ACTIVE) return HRTIMER_NORESTART; event->pmu->read(event); perf_sample_data_init(&data, 0, event->hw.last_period); regs = get_irq_regs(); if (regs && !perf_exclude_event(event, regs)) { if (!(event->attr.exclude_idle && is_idle_task(current))) if (__perf_event_overflow(event, 1, &data, regs)) ret = HRTIMER_NORESTART; } period = max_t(u64, 10000, event->hw.sample_period); hrtimer_forward_now(hrtimer, ns_to_ktime(period)); return ret; } static void perf_swevent_start_hrtimer(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; s64 period; if (!is_sampling_event(event)) return; period = local64_read(&hwc->period_left); if (period) { if (period < 0) period = 10000; local64_set(&hwc->period_left, 0); } else { period = max_t(u64, 10000, hwc->sample_period); } hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), HRTIMER_MODE_REL_PINNED_HARD); } static void perf_swevent_cancel_hrtimer(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (is_sampling_event(event)) { ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); local64_set(&hwc->period_left, ktime_to_ns(remaining)); hrtimer_cancel(&hwc->hrtimer); } } static void perf_swevent_init_hrtimer(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (!is_sampling_event(event)) return; hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); hwc->hrtimer.function = perf_swevent_hrtimer; /* * Since hrtimers have a fixed rate, we can do a static freq->period * mapping and avoid the whole period adjust feedback stuff. */ if (event->attr.freq) { long freq = event->attr.sample_freq; event->attr.sample_period = NSEC_PER_SEC / freq; hwc->sample_period = event->attr.sample_period; local64_set(&hwc->period_left, hwc->sample_period); hwc->last_period = hwc->sample_period; event->attr.freq = 0; } } /* * Software event: cpu wall time clock */ static void cpu_clock_event_update(struct perf_event *event) { s64 prev; u64 now; now = local_clock(); prev = local64_xchg(&event->hw.prev_count, now); local64_add(now - prev, &event->count); } static void cpu_clock_event_start(struct perf_event *event, int flags) { local64_set(&event->hw.prev_count, local_clock()); perf_swevent_start_hrtimer(event); } static void cpu_clock_event_stop(struct perf_event *event, int flags) { perf_swevent_cancel_hrtimer(event); cpu_clock_event_update(event); } static int cpu_clock_event_add(struct perf_event *event, int flags) { if (flags & PERF_EF_START) cpu_clock_event_start(event, flags); perf_event_update_userpage(event); return 0; } static void cpu_clock_event_del(struct perf_event *event, int flags) { cpu_clock_event_stop(event, flags); } static void cpu_clock_event_read(struct perf_event *event) { cpu_clock_event_update(event); } static int cpu_clock_event_init(struct perf_event *event) { if (event->attr.type != perf_cpu_clock.type) return -ENOENT; if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) return -ENOENT; /* * no branch sampling for software events */ if (has_branch_stack(event)) return -EOPNOTSUPP; perf_swevent_init_hrtimer(event); return 0; } static struct pmu perf_cpu_clock = { .task_ctx_nr = perf_sw_context, .capabilities = PERF_PMU_CAP_NO_NMI, .dev = PMU_NULL_DEV, .event_init = cpu_clock_event_init, .add = cpu_clock_event_add, .del = cpu_clock_event_del, .start = cpu_clock_event_start, .stop = cpu_clock_event_stop, .read = cpu_clock_event_read, }; /* * Software event: task time clock */ static void task_clock_event_update(struct perf_event *event, u64 now) { u64 prev; s64 delta; prev = local64_xchg(&event->hw.prev_count, now); delta = now - prev; local64_add(delta, &event->count); } static void task_clock_event_start(struct perf_event *event, int flags) { local64_set(&event->hw.prev_count, event->ctx->time); perf_swevent_start_hrtimer(event); } static void task_clock_event_stop(struct perf_event *event, int flags) { perf_swevent_cancel_hrtimer(event); task_clock_event_update(event, event->ctx->time); } static int task_clock_event_add(struct perf_event *event, int flags) { if (flags & PERF_EF_START) task_clock_event_start(event, flags); perf_event_update_userpage(event); return 0; } static void task_clock_event_del(struct perf_event *event, int flags) { task_clock_event_stop(event, PERF_EF_UPDATE); } static void task_clock_event_read(struct perf_event *event) { u64 now = perf_clock(); u64 delta = now - event->ctx->timestamp; u64 time = event->ctx->time + delta; task_clock_event_update(event, time); } static int task_clock_event_init(struct perf_event *event) { if (event->attr.type != perf_task_clock.type) return -ENOENT; if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) return -ENOENT; /* * no branch sampling for software events */ if (has_branch_stack(event)) return -EOPNOTSUPP; perf_swevent_init_hrtimer(event); return 0; } static struct pmu perf_task_clock = { .task_ctx_nr = perf_sw_context, .capabilities = PERF_PMU_CAP_NO_NMI, .dev = PMU_NULL_DEV, .event_init = task_clock_event_init, .add = task_clock_event_add, .del = task_clock_event_del, .start = task_clock_event_start, .stop = task_clock_event_stop, .read = task_clock_event_read, }; static void perf_pmu_nop_void(struct pmu *pmu) { } static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) { } static int perf_pmu_nop_int(struct pmu *pmu) { return 0; } static int perf_event_nop_int(struct perf_event *event, u64 value) { return 0; } static DEFINE_PER_CPU(unsigned int, nop_txn_flags); static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) { __this_cpu_write(nop_txn_flags, flags); if (flags & ~PERF_PMU_TXN_ADD) return; perf_pmu_disable(pmu); } static int perf_pmu_commit_txn(struct pmu *pmu) { unsigned int flags = __this_cpu_read(nop_txn_flags); __this_cpu_write(nop_txn_flags, 0); if (flags & ~PERF_PMU_TXN_ADD) return 0; perf_pmu_enable(pmu); return 0; } static void perf_pmu_cancel_txn(struct pmu *pmu) { unsigned int flags = __this_cpu_read(nop_txn_flags); __this_cpu_write(nop_txn_flags, 0); if (flags & ~PERF_PMU_TXN_ADD) return; perf_pmu_enable(pmu); } static int perf_event_idx_default(struct perf_event *event) { return 0; } static void free_pmu_context(struct pmu *pmu) { free_percpu(pmu->cpu_pmu_context); } /* * Let userspace know that this PMU supports address range filtering: */ static ssize_t nr_addr_filters_show(struct device *dev, struct device_attribute *attr, char *page) { struct pmu *pmu = dev_get_drvdata(dev); return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); } DEVICE_ATTR_RO(nr_addr_filters); static struct idr pmu_idr; static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *page) { struct pmu *pmu = dev_get_drvdata(dev); return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); } static DEVICE_ATTR_RO(type); static ssize_t perf_event_mux_interval_ms_show(struct device *dev, struct device_attribute *attr, char *page) { struct pmu *pmu = dev_get_drvdata(dev); return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); } static DEFINE_MUTEX(mux_interval_mutex); static ssize_t perf_event_mux_interval_ms_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct pmu *pmu = dev_get_drvdata(dev); int timer, cpu, ret; ret = kstrtoint(buf, 0, &timer); if (ret) return ret; if (timer < 1) return -EINVAL; /* same value, noting to do */ if (timer == pmu->hrtimer_interval_ms) return count; mutex_lock(&mux_interval_mutex); pmu->hrtimer_interval_ms = timer; /* update all cpuctx for this PMU */ cpus_read_lock(); for_each_online_cpu(cpu) { struct perf_cpu_pmu_context *cpc; cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); } cpus_read_unlock(); mutex_unlock(&mux_interval_mutex); return count; } static DEVICE_ATTR_RW(perf_event_mux_interval_ms); static struct attribute *pmu_dev_attrs[] = { &dev_attr_type.attr, &dev_attr_perf_event_mux_interval_ms.attr, &dev_attr_nr_addr_filters.attr, NULL, }; static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = kobj_to_dev(kobj); struct pmu *pmu = dev_get_drvdata(dev); if (n == 2 && !pmu->nr_addr_filters) return 0; return a->mode; } static struct attribute_group pmu_dev_attr_group = { .is_visible = pmu_dev_is_visible, .attrs = pmu_dev_attrs, }; static const struct attribute_group *pmu_dev_groups[] = { &pmu_dev_attr_group, NULL, }; static int pmu_bus_running; static struct bus_type pmu_bus = { .name = "event_source", .dev_groups = pmu_dev_groups, }; static void pmu_dev_release(struct device *dev) { kfree(dev); } static int pmu_dev_alloc(struct pmu *pmu) { int ret = -ENOMEM; pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); if (!pmu->dev) goto out; pmu->dev->groups = pmu->attr_groups; device_initialize(pmu->dev); dev_set_drvdata(pmu->dev, pmu); pmu->dev->bus = &pmu_bus; pmu->dev->parent = pmu->parent; pmu->dev->release = pmu_dev_release; ret = dev_set_name(pmu->dev, "%s", pmu->name); if (ret) goto free_dev; ret = device_add(pmu->dev); if (ret) goto free_dev; if (pmu->attr_update) { ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); if (ret) goto del_dev; } out: return ret; del_dev: device_del(pmu->dev); free_dev: put_device(pmu->dev); goto out; } static struct lock_class_key cpuctx_mutex; static struct lock_class_key cpuctx_lock; int perf_pmu_register(struct pmu *pmu, const char *name, int type) { int cpu, ret, max = PERF_TYPE_MAX; mutex_lock(&pmus_lock); ret = -ENOMEM; pmu->pmu_disable_count = alloc_percpu(int); if (!pmu->pmu_disable_count) goto unlock; pmu->type = -1; if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { ret = -EINVAL; goto free_pdc; } pmu->name = name; if (type >= 0) max = type; ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); if (ret < 0) goto free_pdc; WARN_ON(type >= 0 && ret != type); type = ret; pmu->type = type; if (pmu_bus_running && !pmu->dev) { ret = pmu_dev_alloc(pmu); if (ret) goto free_idr; } ret = -ENOMEM; pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); if (!pmu->cpu_pmu_context) goto free_dev; for_each_possible_cpu(cpu) { struct perf_cpu_pmu_context *cpc; cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); __perf_init_event_pmu_context(&cpc->epc, pmu); __perf_mux_hrtimer_init(cpc, cpu); } if (!pmu->start_txn) { if (pmu->pmu_enable) { /* * If we have pmu_enable/pmu_disable calls, install * transaction stubs that use that to try and batch * hardware accesses. */ pmu->start_txn = perf_pmu_start_txn; pmu->commit_txn = perf_pmu_commit_txn; pmu->cancel_txn = perf_pmu_cancel_txn; } else { pmu->start_txn = perf_pmu_nop_txn; pmu->commit_txn = perf_pmu_nop_int; pmu->cancel_txn = perf_pmu_nop_void; } } if (!pmu->pmu_enable) { pmu->pmu_enable = perf_pmu_nop_void; pmu->pmu_disable = perf_pmu_nop_void; } if (!pmu->check_period) pmu->check_period = perf_event_nop_int; if (!pmu->event_idx) pmu->event_idx = perf_event_idx_default; list_add_rcu(&pmu->entry, &pmus); atomic_set(&pmu->exclusive_cnt, 0); ret = 0; unlock: mutex_unlock(&pmus_lock); return ret; free_dev: if (pmu->dev && pmu->dev != PMU_NULL_DEV) { device_del(pmu->dev); put_device(pmu->dev); } free_idr: idr_remove(&pmu_idr, pmu->type); free_pdc: free_percpu(pmu->pmu_disable_count); goto unlock; } EXPORT_SYMBOL_GPL(perf_pmu_register); void perf_pmu_unregister(struct pmu *pmu) { mutex_lock(&pmus_lock); list_del_rcu(&pmu->entry); /* * We dereference the pmu list under both SRCU and regular RCU, so * synchronize against both of those. */ synchronize_srcu(&pmus_srcu); synchronize_rcu(); free_percpu(pmu->pmu_disable_count); idr_remove(&pmu_idr, pmu->type); if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { if (pmu->nr_addr_filters) device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); device_del(pmu->dev); put_device(pmu->dev); } free_pmu_context(pmu); mutex_unlock(&pmus_lock); } EXPORT_SYMBOL_GPL(perf_pmu_unregister); static inline bool has_extended_regs(struct perf_event *event) { return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); } static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) { struct perf_event_context *ctx = NULL; int ret; if (!try_module_get(pmu->module)) return -ENODEV; /* * A number of pmu->event_init() methods iterate the sibling_list to, * for example, validate if the group fits on the PMU. Therefore, * if this is a sibling event, acquire the ctx->mutex to protect * the sibling_list. */ if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { /* * This ctx->mutex can nest when we're called through * inheritance. See the perf_event_ctx_lock_nested() comment. */ ctx = perf_event_ctx_lock_nested(event->group_leader, SINGLE_DEPTH_NESTING); BUG_ON(!ctx); } event->pmu = pmu; ret = pmu->event_init(event); if (ctx) perf_event_ctx_unlock(event->group_leader, ctx); if (!ret) { if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && has_extended_regs(event)) ret = -EOPNOTSUPP; if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && event_has_any_exclude_flag(event)) ret = -EINVAL; if (ret && event->destroy) event->destroy(event); } if (ret) module_put(pmu->module); return ret; } static struct pmu *perf_init_event(struct perf_event *event) { bool extended_type = false; int idx, type, ret; struct pmu *pmu; idx = srcu_read_lock(&pmus_srcu); /* * Save original type before calling pmu->event_init() since certain * pmus overwrites event->attr.type to forward event to another pmu. */ event->orig_type = event->attr.type; /* Try parent's PMU first: */ if (event->parent && event->parent->pmu) { pmu = event->parent->pmu; ret = perf_try_init_event(pmu, event); if (!ret) goto unlock; } /* * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE * are often aliases for PERF_TYPE_RAW. */ type = event->attr.type; if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { type = event->attr.config >> PERF_PMU_TYPE_SHIFT; if (!type) { type = PERF_TYPE_RAW; } else { extended_type = true; event->attr.config &= PERF_HW_EVENT_MASK; } } again: rcu_read_lock(); pmu = idr_find(&pmu_idr, type); rcu_read_unlock(); if (pmu) { if (event->attr.type != type && type != PERF_TYPE_RAW && !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) goto fail; ret = perf_try_init_event(pmu, event); if (ret == -ENOENT && event->attr.type != type && !extended_type) { type = event->attr.type; goto again; } if (ret) pmu = ERR_PTR(ret); goto unlock; } list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { ret = perf_try_init_event(pmu, event); if (!ret) goto unlock; if (ret != -ENOENT) { pmu = ERR_PTR(ret); goto unlock; } } fail: pmu = ERR_PTR(-ENOENT); unlock: srcu_read_unlock(&pmus_srcu, idx); return pmu; } static void attach_sb_event(struct perf_event *event) { struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); raw_spin_lock(&pel->lock); list_add_rcu(&event->sb_list, &pel->list); raw_spin_unlock(&pel->lock); } /* * We keep a list of all !task (and therefore per-cpu) events * that need to receive side-band records. * * This avoids having to scan all the various PMU per-cpu contexts * looking for them. */ static void account_pmu_sb_event(struct perf_event *event) { if (is_sb_event(event)) attach_sb_event(event); } /* Freq events need the tick to stay alive (see perf_event_task_tick). */ static void account_freq_event_nohz(void) { #ifdef CONFIG_NO_HZ_FULL /* Lock so we don't race with concurrent unaccount */ spin_lock(&nr_freq_lock); if (atomic_inc_return(&nr_freq_events) == 1) tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); spin_unlock(&nr_freq_lock); #endif } static void account_freq_event(void) { if (tick_nohz_full_enabled()) account_freq_event_nohz(); else atomic_inc(&nr_freq_events); } static void account_event(struct perf_event *event) { bool inc = false; if (event->parent) return; if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) inc = true; if (event->attr.mmap || event->attr.mmap_data) atomic_inc(&nr_mmap_events); if (event->attr.build_id) atomic_inc(&nr_build_id_events); if (event->attr.comm) atomic_inc(&nr_comm_events); if (event->attr.namespaces) atomic_inc(&nr_namespaces_events); if (event->attr.cgroup) atomic_inc(&nr_cgroup_events); if (event->attr.task) atomic_inc(&nr_task_events); if (event->attr.freq) account_freq_event(); if (event->attr.context_switch) { atomic_inc(&nr_switch_events); inc = true; } if (has_branch_stack(event)) inc = true; if (is_cgroup_event(event)) inc = true; if (event->attr.ksymbol) atomic_inc(&nr_ksymbol_events); if (event->attr.bpf_event) atomic_inc(&nr_bpf_events); if (event->attr.text_poke) atomic_inc(&nr_text_poke_events); if (inc) { /* * We need the mutex here because static_branch_enable() * must complete *before* the perf_sched_count increment * becomes visible. */ if (atomic_inc_not_zero(&perf_sched_count)) goto enabled; mutex_lock(&perf_sched_mutex); if (!atomic_read(&perf_sched_count)) { static_branch_enable(&perf_sched_events); /* * Guarantee that all CPUs observe they key change and * call the perf scheduling hooks before proceeding to * install events that need them. */ synchronize_rcu(); } /* * Now that we have waited for the sync_sched(), allow further * increments to by-pass the mutex. */ atomic_inc(&perf_sched_count); mutex_unlock(&perf_sched_mutex); } enabled: account_pmu_sb_event(event); } /* * Allocate and initialize an event structure */ static struct perf_event * perf_event_alloc(struct perf_event_attr *attr, int cpu, struct task_struct *task, struct perf_event *group_leader, struct perf_event *parent_event, perf_overflow_handler_t overflow_handler, void *context, int cgroup_fd) { struct pmu *pmu; struct perf_event *event; struct hw_perf_event *hwc; long err = -EINVAL; int node; if ((unsigned)cpu >= nr_cpu_ids) { if (!task || cpu != -1) return ERR_PTR(-EINVAL); } if (attr->sigtrap && !task) { /* Requires a task: avoid signalling random tasks. */ return ERR_PTR(-EINVAL); } node = (cpu >= 0) ? cpu_to_node(cpu) : -1; event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); if (!event) return ERR_PTR(-ENOMEM); /* * Single events are their own group leaders, with an * empty sibling list: */ if (!group_leader) group_leader = event; mutex_init(&event->child_mutex); INIT_LIST_HEAD(&event->child_list); INIT_LIST_HEAD(&event->event_entry); INIT_LIST_HEAD(&event->sibling_list); INIT_LIST_HEAD(&event->active_list); init_event_group(event); INIT_LIST_HEAD(&event->rb_entry); INIT_LIST_HEAD(&event->active_entry); INIT_LIST_HEAD(&event->addr_filters.list); INIT_HLIST_NODE(&event->hlist_entry); init_waitqueue_head(&event->waitq); init_irq_work(&event->pending_irq, perf_pending_irq); init_task_work(&event->pending_task, perf_pending_task); mutex_init(&event->mmap_mutex); raw_spin_lock_init(&event->addr_filters.lock); atomic_long_set(&event->refcount, 1); event->cpu = cpu; event->attr = *attr; event->group_leader = group_leader; event->pmu = NULL; event->oncpu = -1; event->parent = parent_event; event->ns = get_pid_ns(task_active_pid_ns(current)); event->id = atomic64_inc_return(&perf_event_id); event->state = PERF_EVENT_STATE_INACTIVE; if (parent_event) event->event_caps = parent_event->event_caps; if (task) { event->attach_state = PERF_ATTACH_TASK; /* * XXX pmu::event_init needs to know what task to account to * and we cannot use the ctx information because we need the * pmu before we get a ctx. */ event->hw.target = get_task_struct(task); } event->clock = &local_clock; if (parent_event) event->clock = parent_event->clock; if (!overflow_handler && parent_event) { overflow_handler = parent_event->overflow_handler; context = parent_event->overflow_handler_context; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) if (overflow_handler == bpf_overflow_handler) { struct bpf_prog *prog = parent_event->prog; bpf_prog_inc(prog); event->prog = prog; event->orig_overflow_handler = parent_event->orig_overflow_handler; } #endif } if (overflow_handler) { event->overflow_handler = overflow_handler; event->overflow_handler_context = context; } else if (is_write_backward(event)){ event->overflow_handler = perf_event_output_backward; event->overflow_handler_context = NULL; } else { event->overflow_handler = perf_event_output_forward; event->overflow_handler_context = NULL; } perf_event__state_init(event); pmu = NULL; hwc = &event->hw; hwc->sample_period = attr->sample_period; if (attr->freq && attr->sample_freq) hwc->sample_period = 1; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); /* * We currently do not support PERF_SAMPLE_READ on inherited events. * See perf_output_read(). */ if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) goto err_ns; if (!has_branch_stack(event)) event->attr.branch_sample_type = 0; pmu = perf_init_event(event); if (IS_ERR(pmu)) { err = PTR_ERR(pmu); goto err_ns; } /* * Disallow uncore-task events. Similarly, disallow uncore-cgroup * events (they don't make sense as the cgroup will be different * on other CPUs in the uncore mask). */ if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { err = -EINVAL; goto err_pmu; } if (event->attr.aux_output && !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { err = -EOPNOTSUPP; goto err_pmu; } if (cgroup_fd != -1) { err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); if (err) goto err_pmu; } err = exclusive_event_init(event); if (err) goto err_pmu; if (has_addr_filter(event)) { event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, sizeof(struct perf_addr_filter_range), GFP_KERNEL); if (!event->addr_filter_ranges) { err = -ENOMEM; goto err_per_task; } /* * Clone the parent's vma offsets: they are valid until exec() * even if the mm is not shared with the parent. */ if (event->parent) { struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); raw_spin_lock_irq(&ifh->lock); memcpy(event->addr_filter_ranges, event->parent->addr_filter_ranges, pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); raw_spin_unlock_irq(&ifh->lock); } /* force hw sync on the address filters */ event->addr_filters_gen = 1; } if (!event->parent) { if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { err = get_callchain_buffers(attr->sample_max_stack); if (err) goto err_addr_filters; } } err = security_perf_event_alloc(event); if (err) goto err_callchain_buffer; /* symmetric to unaccount_event() in _free_event() */ account_event(event); return event; err_callchain_buffer: if (!event->parent) { if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) put_callchain_buffers(); } err_addr_filters: kfree(event->addr_filter_ranges); err_per_task: exclusive_event_destroy(event); err_pmu: if (is_cgroup_event(event)) perf_detach_cgroup(event); if (event->destroy) event->destroy(event); module_put(pmu->module); err_ns: if (event->hw.target) put_task_struct(event->hw.target); call_rcu(&event->rcu_head, free_event_rcu); return ERR_PTR(err); } static int perf_copy_attr(struct perf_event_attr __user *uattr, struct perf_event_attr *attr) { u32 size; int ret; /* Zero the full structure, so that a short copy will be nice. */ memset(attr, 0, sizeof(*attr)); ret = get_user(size, &uattr->size); if (ret) return ret; /* ABI compatibility quirk: */ if (!size) size = PERF_ATTR_SIZE_VER0; if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) goto err_size; ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); if (ret) { if (ret == -E2BIG) goto err_size; return ret; } attr->size = size; if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) return -EINVAL; if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) return -EINVAL; if (attr->read_format & ~(PERF_FORMAT_MAX-1)) return -EINVAL; if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { u64 mask = attr->branch_sample_type; /* only using defined bits */ if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) return -EINVAL; /* at least one branch bit must be set */ if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) return -EINVAL; /* propagate priv level, when not set for branch */ if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { /* exclude_kernel checked on syscall entry */ if (!attr->exclude_kernel) mask |= PERF_SAMPLE_BRANCH_KERNEL; if (!attr->exclude_user) mask |= PERF_SAMPLE_BRANCH_USER; if (!attr->exclude_hv) mask |= PERF_SAMPLE_BRANCH_HV; /* * adjust user setting (for HW filter setup) */ attr->branch_sample_type = mask; } /* privileged levels capture (kernel, hv): check permissions */ if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { ret = perf_allow_kernel(attr); if (ret) return ret; } } if (attr->sample_type & PERF_SAMPLE_REGS_USER) { ret = perf_reg_validate(attr->sample_regs_user); if (ret) return ret; } if (attr->sample_type & PERF_SAMPLE_STACK_USER) { if (!arch_perf_have_user_stack_dump()) return -ENOSYS; /* * We have __u32 type for the size, but so far * we can only use __u16 as maximum due to the * __u16 sample size limit. */ if (attr->sample_stack_user >= USHRT_MAX) return -EINVAL; else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) return -EINVAL; } if (!attr->sample_max_stack) attr->sample_max_stack = sysctl_perf_event_max_stack; if (attr->sample_type & PERF_SAMPLE_REGS_INTR) ret = perf_reg_validate(attr->sample_regs_intr); #ifndef CONFIG_CGROUP_PERF if (attr->sample_type & PERF_SAMPLE_CGROUP) return -EINVAL; #endif if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) return -EINVAL; if (!attr->inherit && attr->inherit_thread) return -EINVAL; if (attr->remove_on_exec && attr->enable_on_exec) return -EINVAL; if (attr->sigtrap && !attr->remove_on_exec) return -EINVAL; out: return ret; err_size: put_user(sizeof(*attr), &uattr->size); ret = -E2BIG; goto out; } static void mutex_lock_double(struct mutex *a, struct mutex *b) { if (b < a) swap(a, b); mutex_lock(a); mutex_lock_nested(b, SINGLE_DEPTH_NESTING); } static int perf_event_set_output(struct perf_event *event, struct perf_event *output_event) { struct perf_buffer *rb = NULL; int ret = -EINVAL; if (!output_event) { mutex_lock(&event->mmap_mutex); goto set; } /* don't allow circular references */ if (event == output_event) goto out; /* * Don't allow cross-cpu buffers */ if (output_event->cpu != event->cpu) goto out; /* * If its not a per-cpu rb, it must be the same task. */ if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) goto out; /* * Mixing clocks in the same buffer is trouble you don't need. */ if (output_event->clock != event->clock) goto out; /* * Either writing ring buffer from beginning or from end. * Mixing is not allowed. */ if (is_write_backward(output_event) != is_write_backward(event)) goto out; /* * If both events generate aux data, they must be on the same PMU */ if (has_aux(event) && has_aux(output_event) && event->pmu != output_event->pmu) goto out; /* * Hold both mmap_mutex to serialize against perf_mmap_close(). Since * output_event is already on rb->event_list, and the list iteration * restarts after every removal, it is guaranteed this new event is * observed *OR* if output_event is already removed, it's guaranteed we * observe !rb->mmap_count. */ mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); set: /* Can't redirect output if we've got an active mmap() */ if (atomic_read(&event->mmap_count)) goto unlock; if (output_event) { /* get the rb we want to redirect to */ rb = ring_buffer_get(output_event); if (!rb) goto unlock; /* did we race against perf_mmap_close() */ if (!atomic_read(&rb->mmap_count)) { ring_buffer_put(rb); goto unlock; } } ring_buffer_attach(event, rb); ret = 0; unlock: mutex_unlock(&event->mmap_mutex); if (output_event) mutex_unlock(&output_event->mmap_mutex); out: return ret; } static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) { bool nmi_safe = false; switch (clk_id) { case CLOCK_MONOTONIC: event->clock = &ktime_get_mono_fast_ns; nmi_safe = true; break; case CLOCK_MONOTONIC_RAW: event->clock = &ktime_get_raw_fast_ns; nmi_safe = true; break; case CLOCK_REALTIME: event->clock = &ktime_get_real_ns; break; case CLOCK_BOOTTIME: event->clock = &ktime_get_boottime_ns; break; case CLOCK_TAI: event->clock = &ktime_get_clocktai_ns; break; default: return -EINVAL; } if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) return -EINVAL; return 0; } static bool perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) { unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; bool is_capable = perfmon_capable(); if (attr->sigtrap) { /* * perf_event_attr::sigtrap sends signals to the other task. * Require the current task to also have CAP_KILL. */ rcu_read_lock(); is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); rcu_read_unlock(); /* * If the required capabilities aren't available, checks for * ptrace permissions: upgrade to ATTACH, since sending signals * can effectively change the target task. */ ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; } /* * Preserve ptrace permission check for backwards compatibility. The * ptrace check also includes checks that the current task and other * task have matching uids, and is therefore not done here explicitly. */ return is_capable || ptrace_may_access(task, ptrace_mode); } /** * sys_perf_event_open - open a performance event, associate it to a task/cpu * * @attr_uptr: event_id type attributes for monitoring/sampling * @pid: target pid * @cpu: target cpu * @group_fd: group leader event fd * @flags: perf event open flags */ SYSCALL_DEFINE5(perf_event_open, struct perf_event_attr __user *, attr_uptr, pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) { struct perf_event *group_leader = NULL, *output_event = NULL; struct perf_event_pmu_context *pmu_ctx; struct perf_event *event, *sibling; struct perf_event_attr attr; struct perf_event_context *ctx; struct file *event_file = NULL; struct fd group = {NULL, 0}; struct task_struct *task = NULL; struct pmu *pmu; int event_fd; int move_group = 0; int err; int f_flags = O_RDWR; int cgroup_fd = -1; /* for future expandability... */ if (flags & ~PERF_FLAG_ALL) return -EINVAL; err = perf_copy_attr(attr_uptr, &attr); if (err) return err; /* Do we allow access to perf_event_open(2) ? */ err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); if (err) return err; if (!attr.exclude_kernel) { err = perf_allow_kernel(&attr); if (err) return err; } if (attr.namespaces) { if (!perfmon_capable()) return -EACCES; } if (attr.freq) { if (attr.sample_freq > sysctl_perf_event_sample_rate) return -EINVAL; } else { if (attr.sample_period & (1ULL << 63)) return -EINVAL; } /* Only privileged users can get physical addresses */ if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { err = perf_allow_kernel(&attr); if (err) return err; } /* REGS_INTR can leak data, lockdown must prevent this */ if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { err = security_locked_down(LOCKDOWN_PERF); if (err) return err; } /* * In cgroup mode, the pid argument is used to pass the fd * opened to the cgroup directory in cgroupfs. The cpu argument * designates the cpu on which to monitor threads from that * cgroup. */ if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) return -EINVAL; if (flags & PERF_FLAG_FD_CLOEXEC) f_flags |= O_CLOEXEC; event_fd = get_unused_fd_flags(f_flags); if (event_fd < 0) return event_fd; if (group_fd != -1) { err = perf_fget_light(group_fd, &group); if (err) goto err_fd; group_leader = group.file->private_data; if (flags & PERF_FLAG_FD_OUTPUT) output_event = group_leader; if (flags & PERF_FLAG_FD_NO_GROUP) group_leader = NULL; } if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { task = find_lively_task_by_vpid(pid); if (IS_ERR(task)) { err = PTR_ERR(task); goto err_group_fd; } } if (task && group_leader && group_leader->attr.inherit != attr.inherit) { err = -EINVAL; goto err_task; } if (flags & PERF_FLAG_PID_CGROUP) cgroup_fd = pid; event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL, NULL, cgroup_fd); if (IS_ERR(event)) { err = PTR_ERR(event); goto err_task; } if (is_sampling_event(event)) { if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { err = -EOPNOTSUPP; goto err_alloc; } } /* * Special case software events and allow them to be part of * any hardware group. */ pmu = event->pmu; if (attr.use_clockid) { err = perf_event_set_clock(event, attr.clockid); if (err) goto err_alloc; } if (pmu->task_ctx_nr == perf_sw_context) event->event_caps |= PERF_EV_CAP_SOFTWARE; if (task) { err = down_read_interruptible(&task->signal->exec_update_lock); if (err) goto err_alloc; /* * We must hold exec_update_lock across this and any potential * perf_install_in_context() call for this new event to * serialize against exec() altering our credentials (and the * perf_event_exit_task() that could imply). */ err = -EACCES; if (!perf_check_permission(&attr, task)) goto err_cred; } /* * Get the target context (task or percpu): */ ctx = find_get_context(task, event); if (IS_ERR(ctx)) { err = PTR_ERR(ctx); goto err_cred; } mutex_lock(&ctx->mutex); if (ctx->task == TASK_TOMBSTONE) { err = -ESRCH; goto err_locked; } if (!task) { /* * Check if the @cpu we're creating an event for is online. * * We use the perf_cpu_context::ctx::mutex to serialize against * the hotplug notifiers. See perf_event_{init,exit}_cpu(). */ struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); if (!cpuctx->online) { err = -ENODEV; goto err_locked; } } if (group_leader) { err = -EINVAL; /* * Do not allow a recursive hierarchy (this new sibling * becoming part of another group-sibling): */ if (group_leader->group_leader != group_leader) goto err_locked; /* All events in a group should have the same clock */ if (group_leader->clock != event->clock) goto err_locked; /* * Make sure we're both events for the same CPU; * grouping events for different CPUs is broken; since * you can never concurrently schedule them anyhow. */ if (group_leader->cpu != event->cpu) goto err_locked; /* * Make sure we're both on the same context; either task or cpu. */ if (group_leader->ctx != ctx) goto err_locked; /* * Only a group leader can be exclusive or pinned */ if (attr.exclusive || attr.pinned) goto err_locked; if (is_software_event(event) && !in_software_context(group_leader)) { /* * If the event is a sw event, but the group_leader * is on hw context. * * Allow the addition of software events to hw * groups, this is safe because software events * never fail to schedule. * * Note the comment that goes with struct * perf_event_pmu_context. */ pmu = group_leader->pmu_ctx->pmu; } else if (!is_software_event(event)) { if (is_software_event(group_leader) && (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { /* * In case the group is a pure software group, and we * try to add a hardware event, move the whole group to * the hardware context. */ move_group = 1; } /* Don't allow group of multiple hw events from different pmus */ if (!in_software_context(group_leader) && group_leader->pmu_ctx->pmu != pmu) goto err_locked; } } /* * Now that we're certain of the pmu; find the pmu_ctx. */ pmu_ctx = find_get_pmu_context(pmu, ctx, event); if (IS_ERR(pmu_ctx)) { err = PTR_ERR(pmu_ctx); goto err_locked; } event->pmu_ctx = pmu_ctx; if (output_event) { err = perf_event_set_output(event, output_event); if (err) goto err_context; } if (!perf_event_validate_size(event)) { err = -E2BIG; goto err_context; } if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { err = -EINVAL; goto err_context; } /* * Must be under the same ctx::mutex as perf_install_in_context(), * because we need to serialize with concurrent event creation. */ if (!exclusive_event_installable(event, ctx)) { err = -EBUSY; goto err_context; } WARN_ON_ONCE(ctx->parent_ctx); event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); if (IS_ERR(event_file)) { err = PTR_ERR(event_file); event_file = NULL; goto err_context; } /* * This is the point on no return; we cannot fail hereafter. This is * where we start modifying current state. */ if (move_group) { perf_remove_from_context(group_leader, 0); put_pmu_ctx(group_leader->pmu_ctx); for_each_sibling_event(sibling, group_leader) { perf_remove_from_context(sibling, 0); put_pmu_ctx(sibling->pmu_ctx); } /* * Install the group siblings before the group leader. * * Because a group leader will try and install the entire group * (through the sibling list, which is still in-tact), we can * end up with siblings installed in the wrong context. * * By installing siblings first we NO-OP because they're not * reachable through the group lists. */ for_each_sibling_event(sibling, group_leader) { sibling->pmu_ctx = pmu_ctx; get_pmu_ctx(pmu_ctx); perf_event__state_init(sibling); perf_install_in_context(ctx, sibling, sibling->cpu); } /* * Removing from the context ends up with disabled * event. What we want here is event in the initial * startup state, ready to be add into new context. */ group_leader->pmu_ctx = pmu_ctx; get_pmu_ctx(pmu_ctx); perf_event__state_init(group_leader); perf_install_in_context(ctx, group_leader, group_leader->cpu); } /* * Precalculate sample_data sizes; do while holding ctx::mutex such * that we're serialized against further additions and before * perf_install_in_context() which is the point the event is active and * can use these values. */ perf_event__header_size(event); perf_event__id_header_size(event); event->owner = current; perf_install_in_context(ctx, event, event->cpu); perf_unpin_context(ctx); mutex_unlock(&ctx->mutex); if (task) { up_read(&task->signal->exec_update_lock); put_task_struct(task); } mutex_lock(&current->perf_event_mutex); list_add_tail(&event->owner_entry, &current->perf_event_list); mutex_unlock(&current->perf_event_mutex); /* * Drop the reference on the group_event after placing the * new event on the sibling_list. This ensures destruction * of the group leader will find the pointer to itself in * perf_group_detach(). */ fdput(group); fd_install(event_fd, event_file); return event_fd; err_context: put_pmu_ctx(event->pmu_ctx); event->pmu_ctx = NULL; /* _free_event() */ err_locked: mutex_unlock(&ctx->mutex); perf_unpin_context(ctx); put_ctx(ctx); err_cred: if (task) up_read(&task->signal->exec_update_lock); err_alloc: free_event(event); err_task: if (task) put_task_struct(task); err_group_fd: fdput(group); err_fd: put_unused_fd(event_fd); return err; } /** * perf_event_create_kernel_counter * * @attr: attributes of the counter to create * @cpu: cpu in which the counter is bound * @task: task to profile (NULL for percpu) * @overflow_handler: callback to trigger when we hit the event * @context: context data could be used in overflow_handler callback */ struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, struct task_struct *task, perf_overflow_handler_t overflow_handler, void *context) { struct perf_event_pmu_context *pmu_ctx; struct perf_event_context *ctx; struct perf_event *event; struct pmu *pmu; int err; /* * Grouping is not supported for kernel events, neither is 'AUX', * make sure the caller's intentions are adjusted. */ if (attr->aux_output) return ERR_PTR(-EINVAL); event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler, context, -1); if (IS_ERR(event)) { err = PTR_ERR(event); goto err; } /* Mark owner so we could distinguish it from user events. */ event->owner = TASK_TOMBSTONE; pmu = event->pmu; if (pmu->task_ctx_nr == perf_sw_context) event->event_caps |= PERF_EV_CAP_SOFTWARE; /* * Get the target context (task or percpu): */ ctx = find_get_context(task, event); if (IS_ERR(ctx)) { err = PTR_ERR(ctx); goto err_alloc; } WARN_ON_ONCE(ctx->parent_ctx); mutex_lock(&ctx->mutex); if (ctx->task == TASK_TOMBSTONE) { err = -ESRCH; goto err_unlock; } pmu_ctx = find_get_pmu_context(pmu, ctx, event); if (IS_ERR(pmu_ctx)) { err = PTR_ERR(pmu_ctx); goto err_unlock; } event->pmu_ctx = pmu_ctx; if (!task) { /* * Check if the @cpu we're creating an event for is online. * * We use the perf_cpu_context::ctx::mutex to serialize against * the hotplug notifiers. See perf_event_{init,exit}_cpu(). */ struct perf_cpu_context *cpuctx = container_of(ctx, struct perf_cpu_context, ctx); if (!cpuctx->online) { err = -ENODEV; goto err_pmu_ctx; } } if (!exclusive_event_installable(event, ctx)) { err = -EBUSY; goto err_pmu_ctx; } perf_install_in_context(ctx, event, event->cpu); perf_unpin_context(ctx); mutex_unlock(&ctx->mutex); return event; err_pmu_ctx: put_pmu_ctx(pmu_ctx); event->pmu_ctx = NULL; /* _free_event() */ err_unlock: mutex_unlock(&ctx->mutex); perf_unpin_context(ctx); put_ctx(ctx); err_alloc: free_event(event); err: return ERR_PTR(err); } EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); static void __perf_pmu_remove(struct perf_event_context *ctx, int cpu, struct pmu *pmu, struct perf_event_groups *groups, struct list_head *events) { struct perf_event *event, *sibling; perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { perf_remove_from_context(event, 0); put_pmu_ctx(event->pmu_ctx); list_add(&event->migrate_entry, events); for_each_sibling_event(sibling, event) { perf_remove_from_context(sibling, 0); put_pmu_ctx(sibling->pmu_ctx); list_add(&sibling->migrate_entry, events); } } } static void __perf_pmu_install_event(struct pmu *pmu, struct perf_event_context *ctx, int cpu, struct perf_event *event) { struct perf_event_pmu_context *epc; struct perf_event_context *old_ctx = event->ctx; get_ctx(ctx); /* normally find_get_context() */ event->cpu = cpu; epc = find_get_pmu_context(pmu, ctx, event); event->pmu_ctx = epc; if (event->state >= PERF_EVENT_STATE_OFF) event->state = PERF_EVENT_STATE_INACTIVE; perf_install_in_context(ctx, event, cpu); /* * Now that event->ctx is updated and visible, put the old ctx. */ put_ctx(old_ctx); } static void __perf_pmu_install(struct perf_event_context *ctx, int cpu, struct pmu *pmu, struct list_head *events) { struct perf_event *event, *tmp; /* * Re-instate events in 2 passes. * * Skip over group leaders and only install siblings on this first * pass, siblings will not get enabled without a leader, however a * leader will enable its siblings, even if those are still on the old * context. */ list_for_each_entry_safe(event, tmp, events, migrate_entry) { if (event->group_leader == event) continue; list_del(&event->migrate_entry); __perf_pmu_install_event(pmu, ctx, cpu, event); } /* * Once all the siblings are setup properly, install the group leaders * to make it go. */ list_for_each_entry_safe(event, tmp, events, migrate_entry) { list_del(&event->migrate_entry); __perf_pmu_install_event(pmu, ctx, cpu, event); } } void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) { struct perf_event_context *src_ctx, *dst_ctx; LIST_HEAD(events); /* * Since per-cpu context is persistent, no need to grab an extra * reference. */ src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; /* * See perf_event_ctx_lock() for comments on the details * of swizzling perf_event::ctx. */ mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); if (!list_empty(&events)) { /* * Wait for the events to quiesce before re-instating them. */ synchronize_rcu(); __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); } mutex_unlock(&dst_ctx->mutex); mutex_unlock(&src_ctx->mutex); } EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); static void sync_child_event(struct perf_event *child_event) { struct perf_event *parent_event = child_event->parent; u64 child_val; if (child_event->attr.inherit_stat) { struct task_struct *task = child_event->ctx->task; if (task && task != TASK_TOMBSTONE) perf_event_read_event(child_event, task); } child_val = perf_event_count(child_event); /* * Add back the child's count to the parent's count: */ atomic64_add(child_val, &parent_event->child_count); atomic64_add(child_event->total_time_enabled, &parent_event->child_total_time_enabled); atomic64_add(child_event->total_time_running, &parent_event->child_total_time_running); } static void perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event *parent_event = event->parent; unsigned long detach_flags = 0; if (parent_event) { /* * Do not destroy the 'original' grouping; because of the * context switch optimization the original events could've * ended up in a random child task. * * If we were to destroy the original group, all group related * operations would cease to function properly after this * random child dies. * * Do destroy all inherited groups, we don't care about those * and being thorough is better. */ detach_flags = DETACH_GROUP | DETACH_CHILD; mutex_lock(&parent_event->child_mutex); } perf_remove_from_context(event, detach_flags); raw_spin_lock_irq(&ctx->lock); if (event->state > PERF_EVENT_STATE_EXIT) perf_event_set_state(event, PERF_EVENT_STATE_EXIT); raw_spin_unlock_irq(&ctx->lock); /* * Child events can be freed. */ if (parent_event) { mutex_unlock(&parent_event->child_mutex); /* * Kick perf_poll() for is_event_hup(); */ perf_event_wakeup(parent_event); free_event(event); put_event(parent_event); return; } /* * Parent events are governed by their filedesc, retain them. */ perf_event_wakeup(event); } static void perf_event_exit_task_context(struct task_struct *child) { struct perf_event_context *child_ctx, *clone_ctx = NULL; struct perf_event *child_event, *next; WARN_ON_ONCE(child != current); child_ctx = perf_pin_task_context(child); if (!child_ctx) return; /* * In order to reduce the amount of tricky in ctx tear-down, we hold * ctx::mutex over the entire thing. This serializes against almost * everything that wants to access the ctx. * * The exception is sys_perf_event_open() / * perf_event_create_kernel_count() which does find_get_context() * without ctx::mutex (it cannot because of the move_group double mutex * lock thing). See the comments in perf_install_in_context(). */ mutex_lock(&child_ctx->mutex); /* * In a single ctx::lock section, de-schedule the events and detach the * context from the task such that we cannot ever get it scheduled back * in. */ raw_spin_lock_irq(&child_ctx->lock); task_ctx_sched_out(child_ctx, EVENT_ALL); /* * Now that the context is inactive, destroy the task <-> ctx relation * and mark the context dead. */ RCU_INIT_POINTER(child->perf_event_ctxp, NULL); put_ctx(child_ctx); /* cannot be last */ WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); put_task_struct(current); /* cannot be last */ clone_ctx = unclone_ctx(child_ctx); raw_spin_unlock_irq(&child_ctx->lock); if (clone_ctx) put_ctx(clone_ctx); /* * Report the task dead after unscheduling the events so that we * won't get any samples after PERF_RECORD_EXIT. We can however still * get a few PERF_RECORD_READ events. */ perf_event_task(child, child_ctx, 0); list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) perf_event_exit_event(child_event, child_ctx); mutex_unlock(&child_ctx->mutex); put_ctx(child_ctx); } /* * When a child task exits, feed back event values to parent events. * * Can be called with exec_update_lock held when called from * setup_new_exec(). */ void perf_event_exit_task(struct task_struct *child) { struct perf_event *event, *tmp; mutex_lock(&child->perf_event_mutex); list_for_each_entry_safe(event, tmp, &child->perf_event_list, owner_entry) { list_del_init(&event->owner_entry); /* * Ensure the list deletion is visible before we clear * the owner, closes a race against perf_release() where * we need to serialize on the owner->perf_event_mutex. */ smp_store_release(&event->owner, NULL); } mutex_unlock(&child->perf_event_mutex); perf_event_exit_task_context(child); /* * The perf_event_exit_task_context calls perf_event_task * with child's task_ctx, which generates EXIT events for * child contexts and sets child->perf_event_ctxp[] to NULL. * At this point we need to send EXIT events to cpu contexts. */ perf_event_task(child, NULL, 0); } static void perf_free_event(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event *parent = event->parent; if (WARN_ON_ONCE(!parent)) return; mutex_lock(&parent->child_mutex); list_del_init(&event->child_list); mutex_unlock(&parent->child_mutex); put_event(parent); raw_spin_lock_irq(&ctx->lock); perf_group_detach(event); list_del_event(event, ctx); raw_spin_unlock_irq(&ctx->lock); free_event(event); } /* * Free a context as created by inheritance by perf_event_init_task() below, * used by fork() in case of fail. * * Even though the task has never lived, the context and events have been * exposed through the child_list, so we must take care tearing it all down. */ void perf_event_free_task(struct task_struct *task) { struct perf_event_context *ctx; struct perf_event *event, *tmp; ctx = rcu_access_pointer(task->perf_event_ctxp); if (!ctx) return; mutex_lock(&ctx->mutex); raw_spin_lock_irq(&ctx->lock); /* * Destroy the task <-> ctx relation and mark the context dead. * * This is important because even though the task hasn't been * exposed yet the context has been (through child_list). */ RCU_INIT_POINTER(task->perf_event_ctxp, NULL); WRITE_ONCE(ctx->task, TASK_TOMBSTONE); put_task_struct(task); /* cannot be last */ raw_spin_unlock_irq(&ctx->lock); list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) perf_free_event(event, ctx); mutex_unlock(&ctx->mutex); /* * perf_event_release_kernel() could've stolen some of our * child events and still have them on its free_list. In that * case we must wait for these events to have been freed (in * particular all their references to this task must've been * dropped). * * Without this copy_process() will unconditionally free this * task (irrespective of its reference count) and * _free_event()'s put_task_struct(event->hw.target) will be a * use-after-free. * * Wait for all events to drop their context reference. */ wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); put_ctx(ctx); /* must be last */ } void perf_event_delayed_put(struct task_struct *task) { WARN_ON_ONCE(task->perf_event_ctxp); } struct file *perf_event_get(unsigned int fd) { struct file *file = fget(fd); if (!file) return ERR_PTR(-EBADF); if (file->f_op != &perf_fops) { fput(file); return ERR_PTR(-EBADF); } return file; } const struct perf_event *perf_get_event(struct file *file) { if (file->f_op != &perf_fops) return ERR_PTR(-EINVAL); return file->private_data; } const struct perf_event_attr *perf_event_attrs(struct perf_event *event) { if (!event) return ERR_PTR(-EINVAL); return &event->attr; } /* * Inherit an event from parent task to child task. * * Returns: * - valid pointer on success * - NULL for orphaned events * - IS_ERR() on error */ static struct perf_event * inherit_event(struct perf_event *parent_event, struct task_struct *parent, struct perf_event_context *parent_ctx, struct task_struct *child, struct perf_event *group_leader, struct perf_event_context *child_ctx) { enum perf_event_state parent_state = parent_event->state; struct perf_event_pmu_context *pmu_ctx; struct perf_event *child_event; unsigned long flags; /* * Instead of creating recursive hierarchies of events, * we link inherited events back to the original parent, * which has a filp for sure, which we use as the reference * count: */ if (parent_event->parent) parent_event = parent_event->parent; child_event = perf_event_alloc(&parent_event->attr, parent_event->cpu, child, group_leader, parent_event, NULL, NULL, -1); if (IS_ERR(child_event)) return child_event; pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); if (IS_ERR(pmu_ctx)) { free_event(child_event); return ERR_CAST(pmu_ctx); } child_event->pmu_ctx = pmu_ctx; /* * is_orphaned_event() and list_add_tail(&parent_event->child_list) * must be under the same lock in order to serialize against * perf_event_release_kernel(), such that either we must observe * is_orphaned_event() or they will observe us on the child_list. */ mutex_lock(&parent_event->child_mutex); if (is_orphaned_event(parent_event) || !atomic_long_inc_not_zero(&parent_event->refcount)) { mutex_unlock(&parent_event->child_mutex); /* task_ctx_data is freed with child_ctx */ free_event(child_event); return NULL; } get_ctx(child_ctx); /* * Make the child state follow the state of the parent event, * not its attr.disabled bit. We hold the parent's mutex, * so we won't race with perf_event_{en, dis}able_family. */ if (parent_state >= PERF_EVENT_STATE_INACTIVE) child_event->state = PERF_EVENT_STATE_INACTIVE; else child_event->state = PERF_EVENT_STATE_OFF; if (parent_event->attr.freq) { u64 sample_period = parent_event->hw.sample_period; struct hw_perf_event *hwc = &child_event->hw; hwc->sample_period = sample_period; hwc->last_period = sample_period; local64_set(&hwc->period_left, sample_period); } child_event->ctx = child_ctx; child_event->overflow_handler = parent_event->overflow_handler; child_event->overflow_handler_context = parent_event->overflow_handler_context; /* * Precalculate sample_data sizes */ perf_event__header_size(child_event); perf_event__id_header_size(child_event); /* * Link it up in the child's context: */ raw_spin_lock_irqsave(&child_ctx->lock, flags); add_event_to_ctx(child_event, child_ctx); child_event->attach_state |= PERF_ATTACH_CHILD; raw_spin_unlock_irqrestore(&child_ctx->lock, flags); /* * Link this into the parent event's child list */ list_add_tail(&child_event->child_list, &parent_event->child_list); mutex_unlock(&parent_event->child_mutex); return child_event; } /* * Inherits an event group. * * This will quietly suppress orphaned events; !inherit_event() is not an error. * This matches with perf_event_release_kernel() removing all child events. * * Returns: * - 0 on success * - <0 on error */ static int inherit_group(struct perf_event *parent_event, struct task_struct *parent, struct perf_event_context *parent_ctx, struct task_struct *child, struct perf_event_context *child_ctx) { struct perf_event *leader; struct perf_event *sub; struct perf_event *child_ctr; leader = inherit_event(parent_event, parent, parent_ctx, child, NULL, child_ctx); if (IS_ERR(leader)) return PTR_ERR(leader); /* * @leader can be NULL here because of is_orphaned_event(). In this * case inherit_event() will create individual events, similar to what * perf_group_detach() would do anyway. */ for_each_sibling_event(sub, parent_event) { child_ctr = inherit_event(sub, parent, parent_ctx, child, leader, child_ctx); if (IS_ERR(child_ctr)) return PTR_ERR(child_ctr); if (sub->aux_event == parent_event && child_ctr && !perf_get_aux_event(child_ctr, leader)) return -EINVAL; } if (leader) leader->group_generation = parent_event->group_generation; return 0; } /* * Creates the child task context and tries to inherit the event-group. * * Clears @inherited_all on !attr.inherited or error. Note that we'll leave * inherited_all set when we 'fail' to inherit an orphaned event; this is * consistent with perf_event_release_kernel() removing all child events. * * Returns: * - 0 on success * - <0 on error */ static int inherit_task_group(struct perf_event *event, struct task_struct *parent, struct perf_event_context *parent_ctx, struct task_struct *child, u64 clone_flags, int *inherited_all) { struct perf_event_context *child_ctx; int ret; if (!event->attr.inherit || (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || /* Do not inherit if sigtrap and signal handlers were cleared. */ (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { *inherited_all = 0; return 0; } child_ctx = child->perf_event_ctxp; if (!child_ctx) { /* * This is executed from the parent task context, so * inherit events that have been marked for cloning. * First allocate and initialize a context for the * child. */ child_ctx = alloc_perf_context(child); if (!child_ctx) return -ENOMEM; child->perf_event_ctxp = child_ctx; } ret = inherit_group(event, parent, parent_ctx, child, child_ctx); if (ret) *inherited_all = 0; return ret; } /* * Initialize the perf_event context in task_struct */ static int perf_event_init_context(struct task_struct *child, u64 clone_flags) { struct perf_event_context *child_ctx, *parent_ctx; struct perf_event_context *cloned_ctx; struct perf_event *event; struct task_struct *parent = current; int inherited_all = 1; unsigned long flags; int ret = 0; if (likely(!parent->perf_event_ctxp)) return 0; /* * If the parent's context is a clone, pin it so it won't get * swapped under us. */ parent_ctx = perf_pin_task_context(parent); if (!parent_ctx) return 0; /* * No need to check if parent_ctx != NULL here; since we saw * it non-NULL earlier, the only reason for it to become NULL * is if we exit, and since we're currently in the middle of * a fork we can't be exiting at the same time. */ /* * Lock the parent list. No need to lock the child - not PID * hashed yet and not running, so nobody can access it. */ mutex_lock(&parent_ctx->mutex); /* * We dont have to disable NMIs - we are only looking at * the list, not manipulating it: */ perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { ret = inherit_task_group(event, parent, parent_ctx, child, clone_flags, &inherited_all); if (ret) goto out_unlock; } /* * We can't hold ctx->lock when iterating the ->flexible_group list due * to allocations, but we need to prevent rotation because * rotate_ctx() will change the list from interrupt context. */ raw_spin_lock_irqsave(&parent_ctx->lock, flags); parent_ctx->rotate_disable = 1; raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { ret = inherit_task_group(event, parent, parent_ctx, child, clone_flags, &inherited_all); if (ret) goto out_unlock; } raw_spin_lock_irqsave(&parent_ctx->lock, flags); parent_ctx->rotate_disable = 0; child_ctx = child->perf_event_ctxp; if (child_ctx && inherited_all) { /* * Mark the child context as a clone of the parent * context, or of whatever the parent is a clone of. * * Note that if the parent is a clone, the holding of * parent_ctx->lock avoids it from being uncloned. */ cloned_ctx = parent_ctx->parent_ctx; if (cloned_ctx) { child_ctx->parent_ctx = cloned_ctx; child_ctx->parent_gen = parent_ctx->parent_gen; } else { child_ctx->parent_ctx = parent_ctx; child_ctx->parent_gen = parent_ctx->generation; } get_ctx(child_ctx->parent_ctx); } raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); out_unlock: mutex_unlock(&parent_ctx->mutex); perf_unpin_context(parent_ctx); put_ctx(parent_ctx); return ret; } /* * Initialize the perf_event context in task_struct */ int perf_event_init_task(struct task_struct *child, u64 clone_flags) { int ret; child->perf_event_ctxp = NULL; mutex_init(&child->perf_event_mutex); INIT_LIST_HEAD(&child->perf_event_list); ret = perf_event_init_context(child, clone_flags); if (ret) { perf_event_free_task(child); return ret; } return 0; } static void __init perf_event_init_all_cpus(void) { struct swevent_htable *swhash; struct perf_cpu_context *cpuctx; int cpu; zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); for_each_possible_cpu(cpu) { swhash = &per_cpu(swevent_htable, cpu); mutex_init(&swhash->hlist_mutex); INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); __perf_event_init_context(&cpuctx->ctx); lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); cpuctx->heap = cpuctx->heap_default; } } static void perf_swevent_init_cpu(unsigned int cpu) { struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); mutex_lock(&swhash->hlist_mutex); if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { struct swevent_hlist *hlist; hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); WARN_ON(!hlist); rcu_assign_pointer(swhash->swevent_hlist, hlist); } mutex_unlock(&swhash->hlist_mutex); } #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE static void __perf_event_exit_context(void *__info) { struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); struct perf_event_context *ctx = __info; struct perf_event *event; raw_spin_lock(&ctx->lock); ctx_sched_out(ctx, EVENT_TIME); list_for_each_entry(event, &ctx->event_list, event_entry) __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); raw_spin_unlock(&ctx->lock); } static void perf_event_exit_cpu_context(int cpu) { struct perf_cpu_context *cpuctx; struct perf_event_context *ctx; // XXX simplify cpuctx->online mutex_lock(&pmus_lock); cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); ctx = &cpuctx->ctx; mutex_lock(&ctx->mutex); smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); cpuctx->online = 0; mutex_unlock(&ctx->mutex); cpumask_clear_cpu(cpu, perf_online_mask); mutex_unlock(&pmus_lock); } #else static void perf_event_exit_cpu_context(int cpu) { } #endif int perf_event_init_cpu(unsigned int cpu) { struct perf_cpu_context *cpuctx; struct perf_event_context *ctx; perf_swevent_init_cpu(cpu); mutex_lock(&pmus_lock); cpumask_set_cpu(cpu, perf_online_mask); cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); ctx = &cpuctx->ctx; mutex_lock(&ctx->mutex); cpuctx->online = 1; mutex_unlock(&ctx->mutex); mutex_unlock(&pmus_lock); return 0; } int perf_event_exit_cpu(unsigned int cpu) { perf_event_exit_cpu_context(cpu); return 0; } static int perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) { int cpu; for_each_online_cpu(cpu) perf_event_exit_cpu(cpu); return NOTIFY_OK; } /* * Run the perf reboot notifier at the very last possible moment so that * the generic watchdog code runs as long as possible. */ static struct notifier_block perf_reboot_notifier = { .notifier_call = perf_reboot, .priority = INT_MIN, }; void __init perf_event_init(void) { int ret; idr_init(&pmu_idr); perf_event_init_all_cpus(); init_srcu_struct(&pmus_srcu); perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); perf_pmu_register(&perf_task_clock, "task_clock", -1); perf_tp_register(); perf_event_init_cpu(smp_processor_id()); register_reboot_notifier(&perf_reboot_notifier); ret = init_hw_breakpoint(); WARN(ret, "hw_breakpoint initialization failed with: %d", ret); perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); /* * Build time assertion that we keep the data_head at the intended * location. IOW, validation we got the __reserved[] size right. */ BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) != 1024); } ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); if (pmu_attr->event_str) return sprintf(page, "%s\n", pmu_attr->event_str); return 0; } EXPORT_SYMBOL_GPL(perf_event_sysfs_show); static int __init perf_event_sysfs_init(void) { struct pmu *pmu; int ret; mutex_lock(&pmus_lock); ret = bus_register(&pmu_bus); if (ret) goto unlock; list_for_each_entry(pmu, &pmus, entry) { if (pmu->dev) continue; ret = pmu_dev_alloc(pmu); WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); } pmu_bus_running = 1; ret = 0; unlock: mutex_unlock(&pmus_lock); return ret; } device_initcall(perf_event_sysfs_init); #ifdef CONFIG_CGROUP_PERF static struct cgroup_subsys_state * perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) { struct perf_cgroup *jc; jc = kzalloc(sizeof(*jc), GFP_KERNEL); if (!jc) return ERR_PTR(-ENOMEM); jc->info = alloc_percpu(struct perf_cgroup_info); if (!jc->info) { kfree(jc); return ERR_PTR(-ENOMEM); } return &jc->css; } static void perf_cgroup_css_free(struct cgroup_subsys_state *css) { struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); free_percpu(jc->info); kfree(jc); } static int perf_cgroup_css_online(struct cgroup_subsys_state *css) { perf_event_cgroup(css->cgroup); return 0; } static int __perf_cgroup_move(void *info) { struct task_struct *task = info; preempt_disable(); perf_cgroup_switch(task); preempt_enable(); return 0; } static void perf_cgroup_attach(struct cgroup_taskset *tset) { struct task_struct *task; struct cgroup_subsys_state *css; cgroup_taskset_for_each(task, css, tset) task_function_call(task, __perf_cgroup_move, task); } struct cgroup_subsys perf_event_cgrp_subsys = { .css_alloc = perf_cgroup_css_alloc, .css_free = perf_cgroup_css_free, .css_online = perf_cgroup_css_online, .attach = perf_cgroup_attach, /* * Implicitly enable on dfl hierarchy so that perf events can * always be filtered by cgroup2 path as long as perf_event * controller is not mounted on a legacy hierarchy. */ .implicit_on_dfl = true, .threaded = true, }; #endif /* CONFIG_CGROUP_PERF */ DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
48 2 46 1 45 44 44 3 6 15 12 3 3 1 1 1 29 6 7 14 9 16 9 7 14 1 15 9 15 1 28 28 28 26 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1